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Overlap formula for the chiral multiplet

Tatsumi Aoyama* and Yoshio Kikukawa†

Department of Physics, Kyoto University, Kyoto 606-8502, Japan
~Received 24 March 1998; published 8 February 1999!

The vacuum overlap formalism is extended to describe the supersymmetric multiplet of a Weyl fermion, a
complex scalar boson and an auxiliary field in the case without an interaction, based on the fact that super-
symmetry can be maintained up to quadratic terms by introducing bosonic species doublers. We also obtain a
local action which describes the chiral multiplet and discuss its symmetry structure. It is shown that, in addition
to the manifest supersymmetry, the action possesses a chiral symmetry of the type given by Lu¨scher and
analogous bosonic symmetries which may be regarded as independent infinitesimal rotations of complex
phases of the scalar and the auxiliary fields. This implies that the U(1)3U(1)R symmetry of the chiral
multiplet can be exact on the lattice.@S0556-2821~98!05419-8#

PACS number~s!: 11.15.Ha, 11.30.Pb, 11.30.Rd
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I. INTRODUCTION

The vacuum overlap formula@1,2# provides a well-
defined lattice regularization of the chiral determinant. It c
reproduce the known features of the chiral determinant in
continuum theory: the one-loop effective action of the ba
ground gauge field@3# including the consistent anomaly@4#,
topological charges and fermionic zero modes associ
with the topologically nontrivial gauge fields@1,2,5#, the
SU(2) global anomaly@6,7#, and so on. These properties
this formalism allow the description of fermion number vi
lation on the lattice. Several numerical applications@8# have
been performed. Their results strongly suggest that the o
lap formalism can actually be a promising building block f
the construction of lattice chiral gauge theories.

When applied to vectorlike theories like QCD, the overl
formalism also provides a quite satisfactory description
the massless Dirac fermion. It has been shown by Neube
@9,10# that the vacuum overlaps for the massless Dirac
mion can be written as a single determinant of a Dirac
erator which satisfies the Ginsparg-Wilson relation@11#.
Moreover, Lüscher has shown that the action given by t
Dirac operator possesses an exact chiral symmetry@12#. For
the free fermion, the Dirac operator defines a local acti
The Ginsparg-Wilson relation is the clue to escape
Nielsen-Ninomiya theorem@13#.

The use of the overlap formalism to describe the sup
symmetric Yang-Mills theory was also suggested in@2#. It
has been further considered in@14,6,10#.

In this paper, we discuss an extension of the vacu
overlap formalism to describe the chiral multiplet@15# of a
single Weyl fermion and a complex scalar boson in the c
without an interaction. We first formulate a supersymme
version of the domain-wall system, based on the fact t
supersymmetry can be maintained up to quadratic terms
introducing bosonic species doublers. Then we derive
overlap formula of the partition function of the chiral mu
tiplet. In order to examine the symmetry structure of t
theory of the chiral multiplet so obtained, we next derive
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local action with which a functional integral reproduces t
partition function of the chiral multiplet. We find that, be
sides the manifest supersymmetry, the action possesses
ral symmetry of the type given by Lu¨scher and analogou
bosonic symmetries which may be regarded as indepen
infinitesimal rotations of complex phases of the scalar a
the auxiliary fields. This means that all the symmetries of
continuum theory can be manifest on the lattice in this f
malism.

II. BOSONIC SPECIES DOUBLERS, LATTICE
SUPERSYMMETRY, AND THE BREAKDOWN

OF U„1…3U„1…R SYMMETRY

It is known that there are several difficulties in formula
ing supersymmetric theories on the lattice@16–22#. One of
the difficulties is that the Leibniz rule breaks down on t
lattice:

(
n

$]mAn•Bn•Cn1An•]mBn•Cn1An•Bn•]mCn%Þ0,

~1!

where]m is taken as the symmetric lattice derivative

]m5
1

2
~¹m1¹̄m!. ~2!

¹m and ¹̄m are the nearest-neighbor forward and backw
difference operators, respectively. This breakdown of
Leibniz rule causes difficulty in introducing a local cub
interaction in a supersymmetric manner.

On the other hand, since the lattice derivative is an
Hermitian, the quadratic rule holds true:

(
n

$]mAn•Bn1An•]mBn%50. ~3!

Then free lattice theories may possess manifest supersym
try. In fact, it is known that, if species doublers are al
introduced for the boson, the free lattice theory of a sin
Weyl fermion and a complex scalar boson has a mani
supersymmetry.
©1999 The American Physical Society07-1
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This fact can easily be understood by considering the c
cellation of the free energy. The action of a free Weyl fe
mion is given on a lattice by1

SF5(
n

cn
†sm

1

2
~¹m1¹̄m!cn . ~4!

The free energy of this fermion is given by

FF52 lnF)
p

det ism sin pmG52 lnF)
p

sin2 pmG . ~5!

We can see that there are 15 species doublers. On the
hand, the action of the free complex boson is usually ta
as the following form:

SB52(
n

fn
†¹̄m¹mfn , ~6!

and its free energy is given by

FB5 lnF)
p

4 sin2
pm

2 G . ~7!

Since there is no species doubler for the boson, the bos
free energy cannot cancel the fermionic one. However, if
adopt the following action for the boson,

SB52(
n

fn
†H 1

2
~¹m1¹̄m!J 2

fn , ~8!

then its free energy is given by

FB5 lnF)
p

sin2 pmG . ~9!

Fifteen species doublers for the boson appear and their
energies exactly cancel the free energies of species dou
of the fermion, as long as both the fermion and the boson
subject to the same boundary condition.2

Thus we are led to consider the lattice theory whose
tion is given by

S05(
n

H c̄nsm

1

2
~¹m1¹̄m!cn

2fn* F1

2
~¹m1¹̄m!G2

fn2Fn* FnJ . ~10!

The supersymmetry transformation is then defined by

dfn52A2 jTecn , ~11!

dfn* 51A2 c̄ne j̄T, ~12!

1In our convention,sm matrices are defined bysm5(1,isk).
2In the following discussion, we will assume that this is the ca
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dcn5A2 sm
† e j̄T

1

2
~¹m1¹̄m!fn1A2 jFn , ~13!

dc̄n5A2
1

2
~¹m1¹̄m!fn* jTe sm

† 2A2 j̄Fn* , ~14!

dFn52A2 j̄sm

1

2
~¹m1¹̄m!cn , ~15!

dFn* 52A2
1

2
~¹m1¹̄m!c̄nsmj. ~16!

j and j̄ are the parameters of the supertransformatione
5eab stands for the invariant antisymmetric tensor in spin
space with the conventione1251.

The degeneracy due to the species doublers of both
fermion and the boson can be resolved by adding
Majorana-type Wilson mass term

Mw5S m02
1

2
¹m¹̄mD , ~17!

in a supersymmetric manner:

SMW5(
n

H c̄nsm

1

2
~¹m1¹̄m!cn

2fn* F1

2
~¹m1¹̄m!G2

fn2Fn* FnJ
1(

n

1

2
$cn

Te Mwcn1fnMwFn1FnMwfn

2cn
†e Mwcn* 1fn* MwFn* 1Fn* Mwfn* %. ~18!

Note, however, that because of the introduction of
Majorana-Wilson term, the chiral symmetry of the fermio

cn→exp~ ia!cn , ~19!

and the symmetry associated with the coherent rotation
the complex phases of the scalar and the auxiliary fields

fn→exp~ ib!fn , ~20!

Fn→exp~ ib!Fn , ~21!

are lost. This means that U(1)3U(1)R symmetry of the chi-
ral multiplet cannot be maintained by this procedure. In
following, we will formulate the same theory through th
vacuum overlap formalism and will find that it can mainta
all the required symmetries.

III. SUPERSYMMETRIC DOMAIN-WALL SYSTEM

Since the domain-wall fermion@23# can be regarded as
collection of an infinite flavors of the Wilson fermion with
specific mass matrix@24,25#, it is then rather straightforward
to formulate the supersymmetric version of the domain-w
system. The action may be written in the form.
7-2
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S5a(
ns

H c̄1nssm

1

2
~¹m1¹̄m!c1ns2f1ns

† F1

2
~¹m1¹̄m!G2

f1ns2F1ns* F1nsJ
1a(

ns
H c̄2nssm

1

2
~¹m1¹̄m!c2ns2f2ns

† F1

2
~¹m1¹̄m!G2

f2ns2F2ns* F2nsJ
1a(

nst
$c1ns

T e M ~s,t !c2nt1f1nsM ~s,t !F2nt1F1nsM ~s,t !f2nt

2c̄2nse M†~s,t !c̄1nt
T 1f2ns* M†~s,t !F1nt* 1F2ns* M†~s,t !f1nt* %, ~22!
n
e
fo

b
m

n
is

f

ll
where

M ~s,t !5F2m0sgnS s1
1

2D2
1

2
¹m¹̄mGdst1

1

a
~dst2ds11,t!.

~23!

We only keep the lattice spacing of the fifth dimensio
which we denote bya, for convenience in deducing th
Hamiltonian. Hereafter we will suppress the indexes
four-dimensional lattices,n,m.

IV. TRANSFER MATRIX OF THE BOSONIC SECTOR

The transfer matrix of the bosonic part can be obtained
the standard method, which is quite analogous to the fer
onic case given by Narayanan and Neuberger in@1#. It is also
possible to obtain it starting from the vectorlike formulatio
@26#, which may be truncated at finite flavors just as d
cussed by Neuberger in@25#. Here we follow the latter
05450
,

r

y
i-
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method for simplicity. We will summarize the derivation o
the transfer matrix by the former method in Appendix A.

Following @25#, instead of considering the domain-wa
system, we simply take thek flavor pairs of free chiral mul-
tiplets from the negative mass region of2m0. We introduce
the bosonic field variable defined as

Fs5S F2s

f2s

f1s*

F1s*
D . ~24!

Then the bosonic part of the action may be written as

SB5Fs
†DB~s,t !F t , ~25!

where
DB51
s1C̃s1 B1 0 0 0 0 ••• 0 0

B1 C̃ 21 0 0 0 ••• 0 0

0 21 s1C̃s1 B1 0 0 ••• 0 0

0 0 B1 C̃ 21 0 ••• 0 0

0 0 0 21 s1C̃s1 B1 ••• 0 0

0 0 0 0 B1 C̃ ••• 0 0

A A A A A A � A A

0 0 0 0 0 0 ••• s1C̃s1 B1

0 0 0 0 0 0 ••• B1 C̃

2 .

~26!
7-3
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This is the 4k34k matrix-valued operator acting on the la
tice index, which we have suppressed for simplicity.C̃ is a
232 matrix defined by

C̃5S 2H 1

2
~¹m1¹̄m!J 2

0

0 21
D . ~27!

1 is a 232 unit matrix and the factorB is defined by

B511aS 2m02
1

2
¹m¹̄mD . ~28!

The partition function of the bosonic part reads

ZB5E )
s
DFsDFs

† exp~2SB!5~detDB!21. ~29!

In evaluating the determinant, we can apply the form
given in the Appendix of@25#. The result is

detDB5~2 !qk~det B1!kdet@11ekaHB#

3detF 11G5tanhS k

2
aHBD

2
G , ~30!

where the transfer matrix is identified as

e2aHB5S 1

B
1 2a

1

B
C̃

as1C̃s1

1

B
2a2s1C̃s1

1

B
C̃1B1

D , ~31!

G55S 1 0

0 21D . ~32!

The result of the fermionic sector has been obtained
Neuberger in@25#:

detDF5~2 !qk~det B1!k

3det@11ekaHF#detF 11g5tanhS k

2
aHFD

2
G ,

~33!

where the transfer matrix is identified as

e2aHF5S 1

B
1 a

1

B
C

aC†
1

B
a2C†

1

B
C1B1

D ~34!

and

C5sm

1

2
~¹m1¹̄m!. ~35!
05450
a

y

Because of supersymmetry, this determinant of the fer
onic part is identical to the determinant of the bosonic pa

detDF5detDB . ~36!

This is also true if we take the antiperiodic boundary con
tion in the fifth dimension~flavor space!, which implies that

~2 !qk~det B1!kdet@11ekaHF#

5~2 !qk~det B1!kdet@11ekaHB#. ~37!

Therefore, the supersymmetric relation implies that the to
partition function of the chiral multiplets is unity, but it ma
be written as

Z5detF 11g5tanhS k

2
aHFD

2
G

3
1

detF 11G5tanhS k

2
aHBD

2
G . ~38!

Taking the limit of the infinite extent of the fifth dimen
sion ~infinite number of flavors! and the continuum limit in
the fifth dimension~flavor space!, we obtain a formula for
the partition function of the ‘‘vectorlike’’ pair of the chira
multiplets:

Z5detF11g5e~HF!

2 G 1

detF11G5e~HB!

2 G , ~39!

where

e~H !5
H

AH2
, ~40!

HF5S S 2m02
1

2
¹m¹̄mD 1 C

C†
2S 2m02

1

2
¹m¹̄mD 1D ,

~41!

HB5S S 2m02
1

2
¹m¹̄mD 1 C̃

2s1C̃s1 2S 2m02
1

2
¹m¹̄mD 1D .

~42!

Note also that

HF
25HB

25X†XS 1 0

0 1 D , ~43!
7-4
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X†X5F2H 1

2
~¹m1¹̄m!J 2

1S 2m02
1

2
¹m¹̄mD 2G . ~44!

V. OVERLAP FORMULA FOR THE CHIRAL MULTIPLET

Next we discuss the factorization property of the partiti
function of the ‘‘vectorlike’’ pair of the chiral multiplets
given by Eq.~39! into overlaps. We follow the argumen
given by Narayanan@27#. HF is a Hermitian matrix and can
be diagonalized by a certain unitary matrix:

HFU5U S l1 0

0 l2
D , ~45!

where l6 are the diagonal matrices which consist of t
positive eigenvalues and negative eigenvalues ofHF , re-
spectively. We denoteU in the chiral basis as

U5S UR1 UR2

UL1 UL2
D . ~46!

For the free theory, it is possible to fix the phases of
eigenvectors so that the determinant ofU would be unity:

det U51. ~47!

Using U, the Dirac operator can be written as

11g5e~HF!

2
5S UR1 0

0 UL2
D U†, ~48!

and we obtain

detF11g5e~HF!

2 G5det UR1det UL2 . ~49!

In the bosonic case,HB is a real nonsymmetric matrix
But it can be diagonalized by a certain matrix:

HBO5OS l18 0

0 l28
D , ~50!

where l68 are the diagonal matrices which consist of t
positive eigenvalues and negative eigenvalues ofHB , re-
spectively. It is also possible to normalize the eigenvect
so that the determinant ofO would be unity.

det O51. ~51!

If we denoteO in the ‘‘chiral basis’’ with respect toG5 as

O5S OR1 OR2

OL1 OL2
D , ~52!

we have

11G5e~HB!

2
5S OR1 0

0 OL2
DO21. ~53!

Therefore we obtain
05450
e

rs

detF11G5e~HB!

2 G5det OR1det OL2 . ~54!

From these factorization properties, we may define
partition function of the single chiral multiplet by the follow
ing overlaps:

Zchiral5det UL1

1

det OL1
. ~55!

In fact, if U andO are chosen as given in Appendix B, th
overlaps are evaluated as

det UL15det OL15detF~AX†X2m02 1
2 ¹¹̄!

2AX†X
G

~56!

and the supersymmetric relation holds true.

VI. ACTION OF THE CHIRAL MULTIPLET

We will next discuss a local action which describes t
chiral multiplet. It can be obtained by reducing the half d
grees of freedom of the field variables in the vectorli
theory with the Majorana condition. Once the local action
given, we can discuss the symmetry structure of the theo

The partition function of the vectorlike pair of the chira
multiplets can be expressed as a functional integral ba
with a local action:

Z5E DCDC̄DFDF̄ exp~2C̄DFC2F̄DBF!, ~57!

where

DF511g5HF

1

AHF
2

, ~58!

DB511G5HB

1

AHB
2

. ~59!

C andF are the field variables which describe the vectorli
pair of the chiral multiplets and may be written in terms
components as

Cn5S c2n

c1n
D , C̄n5~ c̄1n c̄2n!, ~60!

Fn5S F2n

f2n

f1n*

F1n*
D , F̄n5~f1n F1n F2n* f2n* !.

~61!

As shown by Neuberger,DF satisfies the Ginsparg-Wilso
relation

DFg51g5DF5DFg5DF . ~62!
7-5
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Furthermore, as shown by Lu¨scher, the fermionic action pos
sesses the symmetry under the chiral transformation

dC5g5S 12
DF

2 DC, dC̄5C̄S 12
DF

2 Dg5 . ~63!

It is interesting to note that the bosonic operatorDB sat-
isfies an analogous relation

DBG51G5DB5DBG5DB . ~64!

Accordingly, the bosonic action is symmetric under t
transformation

dF5G5S 12
DB

2 DF, dF̄5F̄S 12
DB

2 DG5 . ~65!

The action of the chiral multiplet can be obtained by
ducing the half degrees of freedom of the field variables inF
andC with the Majorana condition. The Majorana conditio
on the fermion implies thatc2n is identified with the conju-
gate ofc1n as3

c2n52ec̄1n
T ,c̄2n5c1n

T e. ~68!

For the boson, we mean by the Majorana condition thatf2n
and F2n are identified with the complex conjugates off1n
andF1n , respectively:

f2n5f1n* , F2n5F1n* . ~69!

Then we may expressF andC in terms of a two-componen
Weyl spinor, a complex scalar, and an auxiliary field as

Cn5
1

A2
S 2ec̄n

T

cn
D , C̄n5

1

A2
~ c̄n cn

Te!, ~70!

3By this identification, the kinetic term ofc2n is transformed to
that of c1n as follows:

(
n

c̄2nsm
†

1

2
~¹m1¹̄m!c2n

→(
n

c1n
T esm

†
1

2
~¹m1¹̄m!~2e!c̄1n

T

5(
n

1

2
~¹m1¹̄m!c̄1n~esm

†e!Tc1n

52(
n

1

2
~¹m1¹̄m!c̄1nsmc1n . ~66!

At the last step, we used the identity,esm
† e52sm

T . Similarly, the
Dirac mass term amongc1n andc2n is transformed to the Majoran
mass term ofc1n as

c̄2nc1n1c̄1nc2n→c1n
T ec1n2c̄1nec̄1n

T . ~67!
05450
-

Fn5
1

A2 S Fn

fn

fn*

Fn*
D , F̄n5

1

A2
~fn Fn Fn* fn* !.

~71!

Accordingly, the above action reduces to

S5(
n

H c̄nsm

1

2
~¹m1¹̄m!

1

AX†X
cn

2fn* F1

2
~¹m1¹̄m!G2 1

AX†X
fn2Fn*

1

AX†X
FnJ

1(
n

1

2H cn
TeS 11

Mw
2

AX†X
D cn1fnS 11

Mw
2

AX†X
D Fn

1FnS 11
Mw

2

AX†X
D fn

2c̄neS 11
Mw

2

AX†X
D c̄n

T1fn* S 11
Mw

2

AX†X
D Fn*

1Fn* S 11
Mw

2

AX†X
D fn* J , ~72!

Mw
25S 2m02

1

2
¹m¹̄mD . ~73!

This action should be compared to Eq.~18!.
The remarkable point about this action is that it posses

as many symmetries as the target continuum theory. Firs
all, it possesses the manifest supersymmetry under the su
transformation of Eq.~11!. Second, it possesses a chiral sy
metry of the type given by Lu¨scher, which corresponds to th
transformation~63!. In terms of the single Weyl spinor vari
able, the transformation reads

dcn52
1

2
cn1

1

2

1

AX†X
F S 2m02

1

2
¹m¹̄mDcn

2sm
† 1

2
~¹m1¹̄m!ec̄TG ,

dc̄n51
1

2
c̄n2

1

2 F c̄nS 2m02
1

2
¹m¹̄mD

1cTesm
† 1

2
~¹m1¹̄m!G 1

AX†X
. ~74!

Third, the bosonic part of the action possesses symme
associated with independent infinitesimal rotations of co
plex phases of the scalar and the auxiliary fields. It is ea
7-6
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seen that the action is invariant under the asymmetric r
tion of the complex phases of the scalar and the auxili
fields:

dfn5fn , ~75!

dFn52Fn . ~76!

Moreover, corresponding to the transformation~65!, the ac-
tion possesses the symmetry under the transformation

dfn5
1

2
fn2

1

2

1

AX†X
F S 2m02

1

2
¹m¹̄mDfn2Fn* G ,

~77!

dFn5
1

2
Fn2

1

2

1

AX†X
F S 2m02

1

2
¹m¹̄mDFn

2H 1

2
~¹m1¹̄m!J 2

fn* G . ~78!

This transformation can be regarded as the coherent in
tesimal rotation of the complex phases of the scalar and
auxiliary fields. These latter two symmetries imply that t
U(1)3U(1)R symmetry of the chiral multiplet can be exa
on the lattice, if we formulate it through the vacuum overl
formalism.

VII. DISCUSSION

In summary, we have seen that the vacuum overlap
malism can provide a natural description of the supersy
metric chiral multiplet on the lattice: all the symmetries
the target continuum theory can be manifest in this form
ism. This feature may be useful in attempts at the const
tion of supersymmetric theories on the lattice.

When the gauge field is introduced, the phase of the
mionic overlap should be fixed by the Wigner-Brillou
phase convention@1#. For the bosonic overlap, we woul
also need to fix the phase in a similar manner and this p
cedure would cause the explicit gauge symmetry break
On the other hand, it is straightforward to introduce t
gauge field in the overlap formula of the partition function
the vectorlike pair of the chiral multiplet, Eq.~39!. In any
way, for the construction of the supersymmetric gau
theory, we must consider how to introduce the cubic inter
tion with the gaugino.

The next issue would be to formulate a lattice We
Zumino model by constructing local and supersymmetric
bic interactions among chiral multiplets, although it seem
difficult issue in view of the problem discussed in Sec. II

It may be interesting to formulate the chiral multiplet di
cussed in this paper in terms of the superfield@28#. In par-
ticular, the structure of the lattice superspace should be
amined. This is because the lattice counterpart of the U
3U(1)R symmetry transformation, which consists of th
transformations of Eqs.~74! and ~77!, mixes the field vari-
ables with their conjugates. This suggests that the struc
05450
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y
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of the lattice superspace could be different from the c
tinuum theory counterpart.
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APPENDIX A: TRANSFER MATRIX OF THE BOSONIC
PART

In this appendix, we explain the derivation of the trans
matrix for the bosonic part of the supersymmetric doma
wall system in some detail. It turns out that the followin
holomorphic variables may be regarded to consist of the
nonical variables:

z1s5ABsF2s , ~A1!

z̄1s5ABsF2s* , ~A2!

z2s5ABsf2s , ~A3!

z̄2s5ABsf2s* ~A4!

and

z1s* 5ABsf1s , ~A5!

z̄1s* 5ABsf1s* , ~A6!

z2s* 5ABsF1s , ~A7!

z̄2s* 5ABsF1s* , ~A8!

where

Bs511aF2m0sgnS s1
1

2D2
1

2
¹m¹̄mG . ~A9!

Then the bosonic part of the partition function can be writt
in the form

ZB5E Df1Df1
†DF1DF1

†Df2Df2
†DF2DF2

† e2SB

5E )
s

~det Bs!
4dZsdZs* e2Zs* Zs Ts~Zs* ,Zs11!,

~A10!

where

Ts~Zs* ,Zs11!5Ls~Zs* ! Ks,s11~Zs* ,Zs11! Rs11~Zs11!,
~A11!
7-7
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Ks,s11~Zs* ,Zs11!

5expS z1s*
1

ABs

1

ABs11

z1s111 z̄1s*
1

ABs

1

ABs11

z̄1s11

1z2s*
1

ABs

1

ABs11

z2s111 z̄2s*
1

ABs

1

ABs11

z̄2s11D ,

~A12!

Ls~Zs* !5expS a z̄1s*
1

ABs
H 1

2
~¹m1¹̄m!J 2

1

ABs

z1s*

2a z̄2s*
1

Bs
z2s* D , ~A13!

Rs11~Zs11!5expS a z̄2s11

1

ABs11
H 1

2
~¹m1¹̄m!J 2

3
1

ABs11

z2s112a z̄1s11

1

Bs11
z1s11D .

~A14!

Note that we have made use of the following notation:

Z5$z1 ,z̄1 ,z2 ,z̄2%, ~A15!

Z* 5$z1* ,z̄1* ,z2* ,z̄2* %, ~A16!

and

dZdZ* e2Z* Z5dz1dz1* dz̄1dz̄1* dz2dz2* dz̄2dz̄2*

3e2z1* z12z2* z22 z̄1* z̄12 z̄2* z̄2. ~A17!

Next we introduce the bosonic operators which satisfy
canonical commutation relation:

@a1n ,a1m
† #5dnm , ~A18!

@ ā1n ,ā1m
† #5dnm , ~A19!

@a2n ,a2m
† #5dnm , ~A20!

@ ā2n ,ā2m
† #5dnm . ~A21!

Using these operators, the transition amplitudes are tr
lated to operators as follows:

K̂s,s115expS a1
†lnF 1

ABs

1

ABs11
Ga11ā1

†lnF 1

ABs

1

ABs11
G ā1

1a2
†lnF 1

ABs

1

ABs11
Ga21ā2

†lnF 1

ABs

1

ABs11
G ā2D ,

~A22!
05450
e

s-

L̂s5expS a ā1
† 1

ABs
H 1

2
~¹m1¹̄m!J 2

1

ABs

a1
†2a ā2

† 1

Bs
a2

†D ,

~A23!

R̂s5expS a ā2

1

ABs
H 1

2
~¹m1¹̄m!J 2

1

ABs

a22a ā1

1

Bs
a1D .

~A24!

Then the partition function can be expressed as

ZB5^bc1u)
s

~det Bs!
4L̂sK̂s,s11R̂s11ubc2&.

~A25!

By introducing another set of the canonical bosonic o
erators defined by

b̂5S a1

a2

ā1
†

ā2*

D , b̂†5~ a1
† a2

†
2ā1 2ā2! , ~A26!

we obtain

K̂s,s115~det Bs!~det Bs11!exp~ b̂†Dsb̂!exp~ b̂†Ds11b̂!,

~A27!

L̂s5exp~ b̂†QLb̂!, ~A28!

R̂s5exp~ b̂†QRb̂!, ~A29!

where

exp~Ds!5S 1

ABs

1 0

0 ABs1
D , ~A30!

exp~QLs!5S 1 2a
1

ABs

C̃
1

ABs

0 1
D , ~A31!

exp~QRs!5S 1 0

a
1

ABs

s1C̃s1

1

ABs

1D . ~A32!

C is a 232 matrix defined by

C̃5S 2H 1

2
~¹m1¹̄m!J 2

0

0 21
D . ~A33!

Then we define the transfer matrix by
7-8
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T̂s5exp~2ab̂†Hsb̂!, ~A34!

where

exp~2aHs!5exp~Ds!exp~QRs!exp~QLs!exp~Ds! ~A35!

5S 1

Bs
2a

1

Bs
C̃

as1C̃s1

1

Bs
2a2s1C̃s1

1

Bs
C̃1Bs

D .

~A36!

For s>0, the mass parameter is homogeneous and nega
We denote the quantities in this region with the subsc
‘‘ 2.’’ For s<21, it is homogeneous and positive. We d
note the quantities in that region with the subscript ‘‘1.’’
The partition function now can be written as
05450
ve.
t

ZB5)
s

~det Bs!
2 ^bc81u )

s<21
T1 )

s>0
T2 ubc82&.

~A37!

Note that we have redefined the boundary states as

^bc81u5^bc1uL̂1exp~ b̂†D1b̂!, ~A38!

ubc82&5exp~ b̂†D2b̂!R̂2ubc2&. ~A39!

In the continuum limit in the fifth direction (a→0), the
‘‘Hamiltonian’’ operator is obtained as follows:

Ĥ75b̂†S S 7m02
1

2
¹m¹̄mD 1 C̃

2s1C̃s1 2S 7m02
1

2
¹m¹̄mD 1D b̂.

~A40!

We should note that this operator is not Hermitian.
APPENDIX B: DIAGONALIZATION OF HAMILTONIANS

In this appendix, we give explicit forms of the matrices ofU andO, which diagonalizeHF andHB , respectively. They are
given by the Fourier transforms of the following matrices:

U5
1

A2l~ l2m02 1
2 ¹¹̄! S S l2m02

1

2
¹¹̄ D 1 C

C†
2S l2m02

1

2
¹¹̄ D 1D , ~B1!

O5
1

A2l~ l2m02 1
2 ¹¹̄! S S l2m02

1

2
¹¹̄ D 1 C̃

2s1C̃s1 2S l2m02
1

2
¹¹̄ D 1D , ~B2!

where

l5AX†X5A2H 1

2
~¹m1¹̄m!J 2

1S 2m02
1

2
¹m¹̄mD 2

. ~B3!
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