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Overlap formula for the chiral multiplet
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The vacuum overlap formalism is extended to describe the supersymmetric multiplet of a Weyl fermion, a
complex scalar boson and an auxiliary field in the case without an interaction, based on the fact that super-
symmetry can be maintained up to quadratic terms by introducing bosonic species doublers. We also obtain a
local action which describes the chiral multiplet and discuss its symmetry structure. It is shown that, in addition
to the manifest supersymmetry, the action possesses a chiral symmetry of the type giveschgrland
analogous bosonic symmetries which may be regarded as independent infinitesimal rotations of complex
phases of the scalar and the auxiliary fields. This implies that the XJU()1)r symmetry of the chiral
multiplet can be exact on the lattideS0556-282(98)05419-§

PACS numbgs): 11.15.Ha, 11.30.Pb, 11.30.Rd

[. INTRODUCTION local action with which a functional integral reproduces the
partition function of the chiral multiplet. We find that, be-
The vacuum overlap formuld1,2] provides a well- sides the manifest supersymmetry, the action possesses a chi-
defined lattice regularization of the chiral determinant. It carral symmetry of the type given by lseher and analogous
reproduce the known features of the chiral determinant in th®0sonic symmetries which may be regarded as independent
continuum theory: the one-loop effective action of the backnfinitesimal rotations of complex phases of the scalar and
ground gauge fiel@3] including the consistent anomall¢],  the auxiliary fields. This means that all the symmetries of the
topological charges and fermionic zero modes associategPntinuum theory can be manifest on the lattice in this for-
with the topologically nontrivial gauge fieldgl,2,5, the — malism.
SU(2) global anomaly6,7], and so on. These properties of

this formalism allow the description of fermion number vio- Il. BOSONIC SPECIES DOUBLERS, LATTICE
lation on the lattice. Several numerical applicatipg8shave SUPERSYMMETRY, AND THE BREAKDOWN
been performed. Their results strongly suggest that the over- OF U(1) xU(1)g SYMMETRY

lap formalism can actually be a promising building block for ) e e
the construction of lattice chiral gauge theories. _ It is known that_there are several difficulties in formulat-
When applied to vectorlike theories like QCD, the overlap!d SUPersymmetric theories on the lattjd6—23. One of
formalism also provides a quite satisfactory description oithe, difficulties is that the Leibniz rule breaks down on the

the massless Dirac fermion. It has been shown by Neubergdfttice:
[9,10] that the vacuum overlaps for the massless Dirac fer-
mion can be written as a single determinant of a Dirac op- ' {9,A1 By CotAy-d,B,-Cpt Ay By d,Cot #0,
erator which satisfies the Ginsparg-Wilson relatigit]. n
Moreover, Lischer has shown that the action given by the (1)
Dirac operator possesses an exact chiral symnjégty For ) ) ) L
the free fermion, the Dirac operator defines a local actionWhered, is taken as the symmetric lattice derivative
The Ginsparg-Wilson relation is the clue to escape the 1
Nielsen-Ninomiya theorerfii 3]. 9,==(V, +V,). )
The use of the overlap formalism to describe the super- ro2hom ok
symmetric Yang-Mills theory was also suggested 2h It _
has been further considered[itv,6,10. V, andV , are the nearest-neighbor forward and backward
In this paper, we discuss an extension of the vacuunglifference operators, respectively. This breakdown of the
overlap formalism to describe the chiral multip[d5] of a  Leibniz rule causes difficulty in introducing a local cubic
single Weyl fermion and a complex scalar boson in the casé#teraction in a supersymmetric manner.
without an interaction. We first formulate a supersymmetric On the other hand, since the lattice derivative is anti-
version of the domain-wall system, based on the fact thaHermitian, the quadratic rule holds true:
supersymmetry can be maintained up to quadratic terms by
introducing bosonic species doublers. Then we derive the _
overlap formula of the partition function of the chiral mul- ; {0uAn'Bnt An- 9,80} =0. ®
tiplet. In order to examine the symmetry structure of the
theory of the chiral multiplet so obtained, we next derive aThen free lattice theories may possess manifest supersymme-
try. In fact, it is known that, if species doublers are also
introduced for the boson, the free lattice theory of a single
*Email address: aoyama@gauge.scphys.kyoto-u.ac.jp Weyl fermion and a complex scalar boson has a manifest
TEmail address: kikukawa@gauge.scphys.kyoto-u.ac.jp supersymmetry.
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This fact can easily be understood by considering the can- P — _
cellation of the free energy. The action of a free Weyl fer- Sin=1/2 0, €& 5Vt V) gnt V2 &F,, (13
mion is given on a lattice by

— 1 — —
1 = =2V, + e Te ol -2 €FF, (14
S =2 h0uz(Vut Vi (@) Pn=\23(Vut V)4 fleoy =2 Ry, (14
The free energy of this fermion is given by SF,=— \/EEUM%(VM+€;L) W, (15)
Fe=—In[]] detio, sinp,|=—In I sir Pl (B 1 o
P P OFh == N2 5(V,+V ) dho,é. (16)

We can see that there are 15 species doublers. On the other  __
hand, the action of the free complex boson is usually takeg and £ are the parameters of the supertransformation.
as the following form: = €, stands for the invariant antisymmetric tensor in spinor
space with the conventioa,=1.
= The degeneracy due to the species doublers of both the
Se= _; (/’EVMVMQ{’”’ 6) fermion and the boson can be resolved by adding the
Majorana-type Wilson mass term
and its free energy is given by

M, =

mo— ;VMVM) : (17)
: (7)

FBZIn

11 4sinz&
p 2

in a supersymmetric manner:

Since there is no species doubler for the boson, the bosonic _ 1 o
free energy cannot cancel the fermionic one. However, if we  Sy,,= >, [ a0, 5(V,+V )
adopt the following action for the boson, n 2

1 . 2
1 _ )2 o= %
S%=-3 ¢$[§(VM+V,L> b, ® ‘%[z(vﬁvﬂ) o= FaF
1
then its free energy is given by +; E{I/I;I]—E Mo+ doMFrtF M d,
Fe=In|I] s p,|. 9) —yhe Myin + dr My Fr+FEM, @i}, (18)
p

Note, however, that because of the introduction of the
Fifteen species doublers for the boson appear and their fre@ajorana-Wilson term, the chiral symmetry of the fermion,
energies exactly cancel the free energies of species doublers
of the fermion, as long as both the fermion and the boson are n—explia) ¢y, (19
subject to the same boundary conditfon.
Thus we are led to consider the lattice theory whose a
tion is given by

cand the symmetry associated with the coherent rotation of
the complex phases of the scalar and the auxiliary fields,

1 _ dn—exXpliB) ¢y, (20)
SH=2 {wna@(v#wﬂ)wn _
n Fo—expip)F,, (21
2 . .
— ¢ E(V;ﬁﬁ#) bo—F* Fn] _ (10) are Iost._ This means that U_(X)l_J(l)R symmetry of the chi-
2 ral multiplet cannot be maintained by this procedure. In the
o ) following, we will formulate the same theory through the
The supersymmetry transformation is then defined by vacuum overlap formalism and will find that it can maintain
all the required symmetries.
Sbn=—N2 &' ey, (11
. — = lll. SUPERSYMMETRIC DOMAIN-WALL SYSTEM
S ="+2 e &, (12

Since the domain-wall fermiof23] can be regarded as a
collection of an infinite flavors of the Wilson fermion with a
L _ ) _ ) specific mass matriiz4,25, it is then rather straightforward
In our conventiong,, matrices are defined by, = (1,io). to formulate the supersymmetric version of the domain-wall
2In the following discussion, we will assume that this is the case.system. The action may be written in the form
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2
*
d’lns_ I:1ns|: 1ns

_ 1 — T 1 —
S:a% l/’lnSa-/.LE(V/.L_‘_V}L)wlnS_qslnS E(V,u'l'v#)

— 1 — + (1 — |7
+a% l/IZHSO-,LLE(V;L+V}L)l//2nS_¢2nSE(V;L+V/L)

*
¢’2ns_ 2n sF 2ns]

+ anES:t {lﬂnse M (S,t) Yontt d1nM(S,H)Fonit F1nsM(S,t) dont

_EZnse M T(Sit)ﬂnt_{— ¢;nsM T(S1t)FInt+ F;nsM T(S’t) ¢1€nt}r (22)

where method for simplicity. We will summarize the derivation of
the transfer matrix by the former method in Appendix A.
Following [25], instead of considering the domain-wall

1 1_ = 1 system, we simply take theflavor pairs of free chiral mul-

M(S’t)_[ —mosgr( ST 3] 72 VaVu| st 3 (Osi= Osr10): tiplets from the negative mass region-efm,. We introduce
(23 the bosonic field variable defined as
We only keep the lattice spacing of the fifth dimension, Fos
which we denote bya, for convenience in deducing the "
Hamiltonian. Hereafter we will suppress the indexes for .= is _ (24)
four-dimensional latticesy,m ® 1s
Fls

IV. TRANSFER MATRIX OF THE BOSONIC SECTOR

The transfer matrix of the bosonic part can be obtained b)}r hen the bosonic part of the action may be written as

the standard method, which is quite analogous to the fermi-

onic case given by Narayanan and Neubergét jnit is also Sg=d ! Dy(s,t) Dy, (25)
possible to obtain it starting from the vectorlike formulation

[26], which may be truncated at finite flavors just as dis-

cussed by Neuberger if25]. Here we follow the latter where

0,Co; Bl 0 0 0 0 0 0

BIL € -1 0 0 0 0 0

0 -1 4Coy Bl O 0 0 0

0 0 =3 c -1 0 0 0

Dg= 0 0 0 -1 ¢,Coy Bl 0 0
0 0 0 0 Bl € 0 0

0 0 0 0 0 0 - o,Coy BI

0 0 0 0 0 0 Bl ¢

(26)
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This is the 4« x4k matrix-valued operator acting on the lat-
tice index, which we have suppressed for simplicilyis a
2X2 matrix defined by

1 . 2
~ -1 =(V,+V 0
2= [2( A @7
0 -1
1 is a 2X2 unit matrix and the factoB is defined by
1 —
B=1+a| —my— §V#V# . (28

The partition function of the bosonic part reads

PHYSICAL REVIEW D 59 054507

Because of supersymmetry, this determinant of the fermi-

onic part is identical to the determinant of the bosonic part:

det DF: det DB . (36)

This is also true if we take the antiperiodic boundary condi-
tion in the fifth dimensior{flavor spacg which implies that

(—)9%(det B1)*def 1+ ekaHF]

=(—)%(detB1)kdef 1+ ekaHs]. (37)

Therefore, the supersymmetric relation implies that the total

partition function of the chiral multiplets is unity, but it may
be written as

Zg= DO DD! exp—Sg)=(detDg) . (29 k
: f [ DO D] expt —Sg)=(detDg) . (29 1+75tam(§aHF
In evaluating the determinant, we can apply the formula z=de 2
given in the Appendix of25]. The result is 1
det Dg=(—)9(det B1)*def 1+ ekaHe] X K (39)
1+F5tanl‘(—aHB
k 2
1+F5tani‘(§aHB de >
X de 3 . (30
Taking the limit of the infinite extent of the fifth dimen-
where the transfer matrix is identified as sion (infinite number of flavorsand the continuum limit in
the fifth dimension(flavor spacg we obtain a formula for
1 1. the partition function of the “vectorlike” pair of the chiral
El —agc multiplets:
ees 1 - @Y 1+ yee(Hp) 1
~ = = ; Ys€(ME
as,Co,= —a%0,Co;<C+BI =
g1 O']_B g1 O']_B Z de{ 2 :| l+r5€(HB) , (39)
de —
1 0
s=lg 1) ©2 here
The result of the fermionic sector has been obtained by
Neuberger i 25]: eH)=—, 40
ger in(25] (H) NG (40)
det De=(—)9(det B1)¥
1
k -mg—zV,V )1] C
1+ ystanl‘(zaHF y ( 0 27 n'm
X def 1+ e*@r]de 3 , F : 1 '
C —| —mg EVMV,U« 1
(33 (41)
where the transfer matrix is identified as
1 1 (—mO—EVMVM)Jl C
. E aEC HB= _ 1 -
e afF= 1 1 (34) —0'1C0'1 - _mO_EV#V# l
aC'z a’C'gC+Bl (42)
and Note also that
1 = 2 2 + 1o
C=0,5(V,+V,) (35 HE=Hs=X'X|, ] (43)
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2
+

1_2
V.V

~5V.V |- 49

t 1 v
XTX=| = {5(V,+V,)

V. OVERLAP FORMULA FOR THE CHIRAL MULTIPLET

PHYSICAL REVIEW D59 054507

(54

1+T'se(H
de{ﬂ =detOg, detO, _ .

2

From these factorization properties, we may define the
partition function of the single chiral multiplet by the follow-

Next we discuss the factorization property of the partitioning overlaps:

function of the *vectorlike” pair of the chiral multiplets

given by Eq.(39) into overlaps. We follow the argument

given by Narayanaf27]. Hg is a Hermitian matrix and can
be diagonalized by a certain unitary matrix:

b 0)

HU=U
F 0 M

(49)

where A, are the diagonal matrices which consist of the

positive eigenvalues and negative eigenvalueef, re-
spectively. We denotdl in the chiral basis as

_(um uR> o
Ue U/

For the free theory, it is possible to fix the phases of the

eigenvectors so that the determinantbfvould be unity:

detU=1. (47)

Using U, the Dirac operator can be written as

1+ yee(H U 0
¥s€(Hg) _ [ URt ut 48)
2 0 U
and we obtain
1+ yse(H

de{y —detUg, detU, _ . (49)

In the bosonic casejlg is a real nonsymmetric matrix.
But it can be diagonalized by a certain matrix:

N, 0
0o \.J’

HBo:o( (50)

1
Zehira=detU . deto, . (55)

In fact, if U and O are chosen as given in Appendix B, the
overlaps are evaluated as

(W—mo— %vV)
2xFx

detU, ., =detO,, = de{
(56)

and the supersymmetric relation holds true.

VI. ACTION OF THE CHIRAL MULTIPLET

We will next discuss a local action which describes the
chiral multiplet. It can be obtained by reducing the half de-
grees of freedom of the field variables in the vectorlike
theory with the Majorana condition. Once the local action is
given, we can discuss the symmetry structure of the theory.
The partition function of the vectorlike pair of the chiral

multiplets can be expressed as a functional integral based
with a local action:

z:f DYDY DODP exp — VDV —dDgd), (57)

where
DF:1+75HFL1 (58)
JHZ
DB=1+FSHBLZ. (59)

VHE

positive eigenvalues and negative eigenvaluedgf re-

pair of the chiral multiplets and may be written in terms of

spectively. It is also possible to normalize the eigenvector§0mponents as

so that the determinant @ would be unity.
detO=1. (51

If we denoteO in the “chiral basis” with respect td's as

_(om oR) .
Oy O )
we have
1+I'se(Hg) [Or+ O 4
— % | o oL o . (53

Therefore we obtain

o R
wn=( 2), Vo= (n o), (60)
’/’1n
Fan
bom|
b= i , ®,=(¢1n Fun zn d’;n)
ot
Tn
(61)

As shown by NeubergeD ¢ satisfies the Ginsparg-Wilson
relation

Drys+ ysDr=DgysDk. (62
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Furthermore, as shown by kaher, the fermionic action pos-
sesses the symmetry under the chiral transformation

De — — De
It is interesting to note that the bosonic operdiy sat-
isfies an analogous relation
DBF5+F5DB:DBF5DB' (64)
Accordingly, the bosonic action is symmetric under the
transformation

. De

— Dg
)(I), 5¢=<I>(1— 7)1“5. (65
The action of the chiral multiplet can be obtained by re-
ducing the half degrees of freedom of the field variable® in
andV¥ with the Majorana condition. The Majorana condition
on the fermion implies tha#,,, is identified with the conju-
gate of;, as

Yon=— €Y1, an=P1ine. (68)

For the boson, we mean by the Majorana condition thzat
and F,, are identified with the complex conjugates &f,
andF,,,, respectively:

in- (69

bon= ¢1cn )

Then we may expresd andW¥ in terms of a two-component
Weyl spinor, a complex scalar, and an auxiliary field as

2N

R\ [ ——
"2
3By this identification, the kinetic term of,, is transformed to
that of ¢,,, as follows:

S Vit
- ¢2nUM§

Fon=

_ EE:]—
¥n

T e
y n_\/z (//n n y

(70

(V,+V )

_>E '/fln

<V +V ) (— )i,

1 —
=2 5V, V) (€0}, o

—E 5Vt V)0 (66)

At the last step, we used the identitr),e= — o7, . Similarly, the
Dirac mass term among,, and ¢, is transformed to the Majorana
mass term ofj,,, as

EZn Yn +%.n Pon— ‘p-{n Ewln_ilneﬂn : (67)

PHYSICAL REVIEW D 59 054507

Fn
1| ¢n — 1
®,=-= . Dy=——(¢n Fn Fi &%)
n \/E ¢: n \/E( n n n n)
Fa

(71)

Accordingly, the above action reduces to

S= 2[% 0,5Vt V) _rwn

2

1
—¢n E(V,ﬁv

\/_’r_d)” \/—’r— ]

+E} T 1+ﬂ - (1+—V_V)F
) ne \/W UnTt bn \/W n
PR 14
n \/W ¢n

1 w T * V7V F*
(ﬂn +\/W l?//n+¢n +\/W> n
+Fp ) ] (72

o= -mo- 7.5
E . (73

This action should be compared to E8).

The remarkable point about this action is that it possesses
as many symmetries as the target continuum theory. First of
all, it possesses the manifest supersymmetry under the super-
transformation of Eq(11). Second, it possesses a chiral sym-
metry of the type given by Lscher, which corresponds to the
transformation63). In terms of the single Weyl spinor vari-
able, the transformation reads

1
B

™

1 _
—O'LE(VM-FV#)GI//T ,

1 1 —
5'pn:_§'//n 5V.V

2 ' utu

5¢n + ‘r/fn [En(_mo__

+yT ea' (V +V W == (74

1
XX
Third, the bosonic part of the action possesses symmetries

associated with independent infinitesimal rotations of com-
plex phases of the scalar and the auxiliary fields. It is easily
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seen that the action is invariant under the asymmetric rotesf the lattice superspace could be different from the con-
tion of the complex phases of the scalar and the auxiliarginuum theory counterpart.

fields:
ACKNOWLEDGMENTS
0dhn= dn, (795
The authors would like to thank H. Neuberger and T.
SF,=—F,. (76) Kugo for enlightening discussions.

Moreover, corresponding to the transformati@3), the ac- APPENDIX A: TRANSEER MATRIX OF THE BOSONIC
tion possesses the symmetry under the transformation PART

In this appendix, we explain the derivation of the transfer
matrix for the bosonic part of the supersymmetric domain-
wall system in some detail. It turns out that the following

(77) holomorphic variables may be regarded to consist of the ca-
nonical variables:

1 1 1 1 — .
0n=5¢n~ 5 x| Mo 2 VuVu) b Fn ),

1 1 1 1 —
P27 ox x“ o™ EV“V”>F" 21~ VBFas, (A1
1 v 2 * o \/— *
- E(V,u,—’_v,u.) ¢n . (78) ZlS_ BSFZS’ (Az)
This transformation can be regarded as the coherent infini- Z2s= \/B_s¢>25, (A3)
tesimal rotation of the complex phases of the scalar and the
auxiliary fields. These latter two symmetries imply that the Zys= Bl (A4)

U(1) X U(1)g symmetry of the chiral multiplet can be exact
on the lattice, if we formulate it through the vacuum overlapgnq

formalism.
Zi=\Bsds, (A5)
VII. DISCUSSION
In summary, we have seen that the vacuum overlap for- 7= Bso%s, (AB)
malism can provide a natural description of the supersym-
metric chiral multiplet on the lattice: all the symmetries of
# Y Zzs: \/B—SF 1s» (A7)

the target continuum theory can be manifest in this formal-

ism. This feature may be useful in attempts at the construc- o

tion of supersymmetric theories on the lattice. z5=BF%s, (A8)
When the gauge field is introduced, the phase of the fer-

mionic overlap should be fixed by the Wigner-Brillouin \yhere

phase conventiofl]. For the bosonic overlap, we would

also need to fix the phase in a similar manner and this pro- 1\ 1 _
cedure would cause the explicit gauge symmetry breaking. B.=1+a —mosgr( st5]—-5V,.V,| (A9)
On the other hand, it is straightforward to introduce the 2] 2

gauge field in the overlap formula of the partition function of
the vectorlike pair of the chiral multiplet, E¢39). In any  Then the bosonic part of the partition function can be written
way, for the construction of the supersymmetric gaugen the form
theory, we must consider how to introduce the cubic interac-
tion with the gaugino.

The next issue would be to formulate a lattice Wess-
Zumino model by constructing local and supersymmetric cu-
bic interactions among chiral multiplets, although it seems a

Zg= f D¢ DI DF DFI D, Dy DF,DF} e~ 58

difficult issue in view of the problem discussed in Sec. Il. :f H (det BS)4dZSdZ: e ZsZs To(Z5 ,Zgi 1),
It may be interesting to formulate the chiral multiplet dis- s
cussed in this paper in terms of the superfigd]. In par- (A10)

ticular, the structure of the lattice superspace should be ex-

amined. This is because the lattice counterpart of the U(1)vhere

X U(1)g symmetry transformation, which consists of the

transformations of Eqg74) and (77), mixes the field vari- To(Z3 Zs11)=Ls(Z%) Kssr1(Z3 \Zs11) Rer1(Zsi1),
ables with their conjugates. This suggests that the structure (Al1)
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Kss+1(Z§ Zs+1)

1 1 1

1 — _
=exp Zi.— ——2Zjo1+ 2. — ——2
F{ ls\/B—s\/@ 1s+1 13\/8—5\/@ 1s+1

1 1 — 1 1 —
+5———=12 +5———=2 )
2s /—BS ,_BS+1 2s+1 2s /—BS ,_BS+1 25+1)

(A12)
L(Z5)= _*11V+V21*
(Z7)=ex azls\/B_s 2( wTV,0) \/B_szls
x 1 *
S

2
_ 1 1 _
RS+1(ZS+1)=GX[{ a sy \/B_{ E(V#‘FV#)]
s+1

1 1

X —225+1_a;15+1_215+1
\/BSJrl BS+1

(A14)
Note that we have made use of the following notation:
Z={z1,21,2,25}, (A15)
z*={z1 .2} .23 .33}, (A16)
and
dzdz*e %" ?=dzdz dzdZ dz,dZ dzdZ;

* * %k
Xe AU 5LL L1122

(A17)

Next we introduce the bosonic operators which satisfy the

canonical commutation relation:

(10,2} ] = S, (A18)
(10,2} ] = S, (A19)
[a2n,23m] = Snm, (A20)
[azn . 85] = Sam- (A21)

Using these operators, the transition amplitudes are trans-

lated to operators as follows:

=

Kesi1= exp( alln

1
\/Es \/Bs+1
1

1
\VBs VBg: 1

+alln

(A22)

PHYSICAL REVIEW D 59 054507

2
1 — 1 1
=(V, +V —aT—a?—aT ,
2( p.)} \/B—s 1 2 S 2)

(A23)

o _ Ll R ?1 1
s—€exX aaZE E( ,u+ M) Eaz—a alB—Sal .

(A24)

Then the partition function can be expressed as

Zg=(bc+| l_s[ (det Bs)4£sRs,s+ 1Rs+1|bc—).
(A25)

By introducing another set of the canonical bosonic op-

erators defined by

ai

b'=(al al -a -a&) (a2

oo
Il
2] 8

we obtain

Kss+1= (detBg)(detBs, 1) exp(b'Db)exp(b'Ds, 1b),

(A27)
Ls=expb'Q.b), (A28)
Rs=exp(b'Qgb), (A29)
where
1
—1 O
expDg)=| Bs : (A30)
0 BJd
1.1
exp(Qs) = VBs VBs |, (A31)
0 1
1 0
exp(Qro = 1 = 1 L (A32)
a—0o g1 —F—
VB, B,
C is a 2x2 matrix defined by
1 . 2
- | —{=(V,+V 0
C= [2( ” ")] (A33)

0 -1

Then we define the transfer matrix by
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OVERLAP FORMULA FOR THE CHIRAL MULTIPLET

T.=exp(—ab'H.b), (A34)
where
exp(—aHs) =expDg)expQrg)eXp(QLs)expDg)  (A35)
1 1(~2
B, ?B,
h _ 1 , = 1
a.O']_CO'lB_S —a (Tlctle_SC+ BS
(A36)

Fors=0, the mass parameter is homogeneous and negative.I
We denote the quantities in this region with the subscript
* —." For s<—1, it is homogeneous and positive. We de-

note the quantities in that region with the subscript.”
The partition function now can be written as

PHYSICAL REVIEW D59 054507

Zs=1] (detBy2 (bc’+| [T T, I T [bc’—).
S s<—1 s=0
(A37)
Note that we have redefined the boundary states as
(bc’ +|=(bc+|L,expb'D,b), (A38)
lbc’—)=expb'D_b)R_|bc—). (A39)

In the continuum limit in the fifth direction §—0), the
“Hamiltonian” operator is obtained as follows:

1 ~
:mo—ivﬂvﬂ)ﬂ ¢
~ :BT A
~ 1
_0'1C0'1 _<Imo_ivﬂvﬂ)l

(A40)

We should note that this operator is not Hermitian.

APPENDIX B: DIAGONALIZATION OF HAMILTONIANS

In this appendix, we give explicit forms of the matriceslbind O, which diagonalizeH andHg, respectively. They are

given by the Fourier transforms of the following matrices:

1
1 A—mO—EVV)Jl C
U= — : (BY)
Var(A-mo= 3 VY) ct —()\—mo—lVV)Jl
2
A 1VV11 c
o ! e (B2
= B
—m.— lvv - 1 ’
\/2)\()\ mo ZVV) _(TlCO'l _<)\_m0_§VV)l
where
1 — 2 1 \?
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