PHYSICAL REVIEW D, VOLUME 59, 054506

Reducing chiral symmetry violations in lattice QCD with domain-wall fermions
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The inverse of the fermion matrix squared is used to define a transfer matrix for domain-wall fermions.
When the domain-wall heightl is bigger than one, the transfer matrixasmplex Slowly suppressed chiral
symmetry violations may then arise from all eigenvalues of the transfer matrix which are located near the unit
circle. Using a variable lattice spacing for the fifth coordinate we enforce the strict positivity of the transfer
matrix for anyM. We furthermore propose a modified pseudo-fermion action, aimed to decrease the density of
close-to-unity eigenvalues of thgositive transfer matrix, at the price of a small renormalization of the
coupling constant. We explain why these changes may reduce chiral symmetry violations in lattice QCD
simulations[S0556-282(199)03705-4

PACS numbds): 11.15.Ha, 12.38.Gc

[. INTRODUCTION dimensional, non-local, chirally invariant actipt3]) has the
same massless-quark spectrum fer M <2. In the range
Numerical QCD simulationgl—4] using domain-wall fer- 2<M<4 four massless quarks with flipped chiralities ap-
mions[5-8] reveal small, but still significant, lattice-artifact pear as before, but the original massless quemkainsin the
violations of chiral symmetries foNs~ 15, whereNg is the  spectrum. AsM is further increased more massless quarks
extent of the lattice in the fifth direction. It is important to appear, alongside with all the previous ones that keep staying
improve our understanding of such anomalous effects, andn the spectrum. This different free-field spectrum agrees
hopefully, to devise new domain-wall actions capable of betwith the pattern of level crossing found in a smooth instanton
ter suppressing them. Both at the tree level and in perturbabackground14].
tion theory the anomalous effects decrease exponentially A more fundamental difference between the two overlap
with increasingNg. This applies in particular to the additive formulas is found in the properties of the transfer matrix. In
radiatively induced quark mag$,8,9,3. In this paper we the new overlap formalism the transfer matrix is strictly posi-
will thus focus on non-perturbative anomalous contributiongive for all values ofM, simply because it is defined from the
to the chiral Ward identities introduced in R€L0] and first  outset as exp{H), whereH is a well-defined local lattice
studied numerically in Ref.1]. Hamiltonian. In the old overlap formalism, on the other
Free domain-wall fermions have a single chiral zero modéhand, the transfer matrix is positive only ford <1, as in
on each four-dimensional boundary of a five-dimensional latthe framework of domain-wall fermions from which it is
tice when the five-dimensional mass tefar “domain wall ~ derived. We argue below that fén >1 both positivity and
height”) M is in the range 82M <2. As one moves to the hermiticity of the domain wall’s transfer matrix are lost, and
range 2ZM <4 this zero mode disappears, and four newits eigenvalues are in gene@mplex
zero modes of the opposite chirality appear on each bound- The aim of this paper is to study what could be the domi-
ary. Thus, the range OM <2 supports a singléapproxi-  nant anomalous contributions to chiral Ward identities, and
mately) massless quark, and the range 1<4 supports to suggest methods for suppressing them. A key role will be
four (approximately massless quarks with “flipped” chirali- played by a(first quantizegl transfer matrix related to the
ties. This pattern generalizes to higher value$/ofuntil for  inverse of the fermion matrix squared. For flavor non-singlet
M>10 there are no zero modes at all. chiral symmetries, the anomalous term in the lattice Ward
With suitable subtractions to ensure its finitenéssbe identities[10] involves the correlations of fermion operators
discussed in detail in this papehe Ng— o limit of domain-  on thes=1 ands= Ng boundaries with fermion operators at
wall fermions can be written down compactly in the overlaps~Ng/2. Such correlations decrease exponentially if the
formalism[11,17. In this formalism thesubtractegifermion  transfer matrix has no eigenvalue with an absolute value
partition function is expressed in terms of the overlap of aclose to one. Conversely, if there are many such eigenvalues,
second-quantized ground state with a reference state or, moogie expects a much slowgresumably power-lapdecrease
generally, as the ground-state expectation value of an operaf anomalous correlations.
tor representing the boundary conditions in thdirection Numerical resultd1,3] suggest an optimal value d¥l
[10]. between 1.6 and 1.7 foB~6. In this range, the transfer
In the “old” overlap formalism [11], the second- matrix of standard domain-wall fermions is complex. Slowly
quantized Hamiltonian isminus the logarithm of the trans- decreasing anomalous contributions may then arise from all
fer matrix that hops domain-wall fermions a single site in theeigenvalues of the transfer matrix which are close to the unit
s-direction. This formalism has the same massless-quarkircle.
spectrum as above. The “new” overlap formali§i?] in- The positivity of the transfer matrix can be enforced for
volves a different Hamiltonian which arises in a continuousany M by restricting the range a5, the lattice spacing for
s-coordinate limit. The new overlagand the related four- the fifth coordinatg 15], a result that could have been antici-
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pated in view of the relation between the old and new overteviewed in Sec. Il. Thefirst quantized transfer matrix is
laps. The transfer matrix is strictly positive fiMas<<1. introduced in Sec. lll. The case of a complex transfer matrix
(Thus, forM <2 it is sufficient to take e.ggs=0.5.) In this  is discussed in Sec. IV. The modified pseudo-fermion action
case, only close-to-unity eigenvalug4,10,12,16,1Y may s introduced and discussed in Sec. V. Our conclusions are
lead to significant anomalous contributions. We propose given in Sec. VI, and some technical details are relegated to
method to reduce the density of such eigenvalues in dynamiwo appendices.
cal simulations. The method consists of a modification of the
pseudo-fermion(Pauli-Villarg part of the action, and it
might be effective already for modest values N§. The II. DOMAIN-WALL EERMIONS WITH A
main side effect of the modified action is a small renormal- VARIABLE SSPACING
ization of the coupling constant.

This paper is organized as follows. Domain-wall fermions  Allowing for a variable lattice spacings for the fifth
with a variable lattice spacing for the fifth coordinate arecoordinatel15], the domain-wall fermion matrix is

a5D_1 PR O O 0 O _maspL
PL a5D_1 PR 0 0 0 O
0 P asD—1 P 0 0 0
D= T 2.1
0 0 0 P, aD—-1 P

The four-dimensional lattice spacirgyis set to unity. The where the subscript zero denotes free-field quantities,
above matrix structure corresponds to the fifth coordisate Wy(p,)==,(1—cosp,)), and at the corners of the Bril-
which we assume to take the valugs 1,2, ... Ng. Each  louin zoneWy(p,) takes the values 0,2..,8. Theabove
entry is a four-dimensional matri>P.R,|_=%(1i vs) denote  homogeneous solution is a zero mo@e., it is normaliz-

chiral projectors, and is the Wilson-Dirac operator ablg provided
M-W C —1<l+as(Wo(p,)—M)<1. 2.7
D= N , (2.2
-C M-W We depart from the original domain-wall framework by re-

placing the constraint on the lower bound with the stronger
where one

1 0<1-Mas. 2.8
Cyy=3 % [SxsmyUsu— Ox—pyUt,lo, (2.3 °

SinceW is a positive matrix, this implies

0<1+as(specW)—M). (2.9

1
Wiy=46y,— 2 2 [5X+,4ALVYUXM+ 5X—;L,yu;r',u]' (2.4
"

The last condition ensures the strigositivity of B. The

The matrice<C andW correspond to the kinetic and Wilson UPPer-bound constraint in E(.7) is simply
term respectively. We also define
pecively Wo(p,)~M<0, (2.10

Byy=(1=Mag) &,y +asWyy . (2.9 \which is evidently independent af,. For 0<M <2 there is

. ) ) ) o . a single zero mode @, =0. If we increaséM while decreas-

(B is proportional to the identity matrix in spinor space. Theing as to maintain the constrair®.8), new zero modes will
latter may be either two-by-two or four-by-four; the correct appear aM =2,4,6,8, while all the zero modes from smaller

meaning can be inferrgd from the _c_on_téz_xt. values ofM will remain in the spectrum.

Assume momentarily a semi-infinite range for the  Agsuming <M <2, on a finite lattice the right-handed
s-coordinate. For sim,)=0, u=1,...,4, thefree-field  at of the quark field corresponds to the above zero mode,
equation has a right-handed homogeneous solution whereas the left-handed part corresponds to another zero

0 < . mode located near thee= Ng boundary. Both at the tree level
Yr(s;P,) =Bo(pL) =[1+as(Wo(p,)—M)I°, (2.6)  and in perturbation theory, fan=0 there is a small mixing
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between the two chiral modes that vanishes exponentiallfhe basic properties of theansfer matrix Tfollow from
with Ng [6,8,9,4. The parametem in Eqg. (2.1) is related to

the bare quark mass. An easy way to see this is to invoke the T=K'K, (3.10
free domain-wall Hamiltonian. Fom=0, the eigenvalues
E(py) of helicity eigenstates are given byE?  where
=E§:13inz(pk). For m#0 we find using first-order pertur- s " y
bation theory thaE(0)=m, where K—( B 0 ) KT—(B asB 20)
- ascTBfIIZ Bl/2 ' - 0 Bl/2 '

mg=mMas(2—Mas), (211 (3.11

lizing th It of Ref8]. ~
generalizing the result of Ref] which imply that T is strictly positive, bounded, and has

lll. PROPAGATORS AND TRANSFER MATRICES detT= 1: . . )
The first-quantized transfer matrix usually encountered in

The familiar relationD = ysD'ys, valid for the Wilson-  the context of domain-wall fermions E=KK. Evidently,
Dirac operator, generalizes in the case of domain-wall fermiT 5nqT have the same spectrum, afg to normalization

ons to the eigenvectors of are obtained from those & by mul-
De=RysDLRys, (3.) tiplication with K. The appearance Gf instead ofT is due to

a technical reason that we explain later.
where Ry = 65N +1-s [10]. Equation(3.1) implies rela- Equations(3.4) and(3.8) imply that an eigenvalue of is

tions between second-order operatomT'DFz(Ryg,DF)2 equal to oneiff the Hermitian operatoysD has a zero
=’Ry5(D,:DJ,§)R75. We also note thaRysD is Hermit- mode. The last condition implies d&§=0, an equation

ian. For definiteness we will focus on the operameE. which defines a measure-zero subset of the gauge field con-
One has figuration space. In the rest of this section we will assume
that det ©) # 0, and hence that no eigenvalueTofs exactly
DeDf= 5B ysB, (32 equal to one.

We now turn to the construction of the domain-wall

where explicitly propagatoiGg = D;l. Using EQ.(3.2) one has

X++ _1 0 0 P 0 0 X_+ GF:DE’YSB_:L/ZG’}/SB_]'/Z' (312
-1y -1 0 ... O 0 0
0o -1 Y -1 ... o0 0 0 whereG=Q*1: Our ta§I_< is to find an explicit repres_gntation
0= ] ] ) ) ) ] ] ) for G. We begin by writing the spectral decomposition
0 0 0 o ... -1 Yy -1 '~I'=Z et (3.13
X, 0 0 0O ... 0 -1 X__ :
3.3 For each eigenvalue, we defimp=min(\; \; }). We now
1
and construct a new matrix
Y=2+ajysB DD ysB "2 (3.9
i & Q=3 lv)aivl, (314
X+ =Y+P B (mag)*-1) (3.5
. ) with the property 6<specQ)<1. Next we consider the
X__-=Y+PgB  ((mag)°—1) (3.6) infinite-size matrix()., constructed from the translationally
invariant part of(), extended to the range o <s,s' <o,
Xi=X_y=mas. 3.7 The inverseG,,=01is
The B*Y? factors have been introduced for later conve- /
nience. Thanks to our insistence on the strict positivitPpf G..(s,8)=2, lv)al s f(q)(vil (3.15
these factors are strictly positive too. An interesting observa- !
tion is that ,
. =QIf(Q), (3.16
Y=T+T71, (3.9
wheref ~1(q)=q~*—qg>0. Equationg3.3 and(3.8) imply
where 20..(5",5)G.(s,s')=0 for s"#s’, while the correct nor-

B-14a2B-12%CCIB-12 4.8~ 12CBY2 m_alizgtion fors"=s’ is enSl_Jred by the presence Q).
T= ° 5 . (3.9 Since it was constructed usig (and notT),G..(s,s’) van-
asBY°C'B 12 B ishes for largds—s’|.
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Returning to the finites case, we now have, fords,s’
=Njg,

G(s,s')=G.(s,8')+H, . (s,s")+H__(s,8')+H . _(s,5")

+H_,(s,8), (3.17

where
H,.(ss)=QA, Q%

H__(S,S,):QN5+1_SA__QN5+1_S,
(3.18

H, (s,8")=Q°A, QNs"1~¢
H_+(S,S,):QN5+1_SA_+QSI-

The four-dimensional matrices.. . solve a system of linear
equations given in Appendix A, and have a convergeqt
—oo limit. Hermiticity of G implies A,+=A1, .

PHYSICAL REVIEW D 59 054506

1+ag(M—W)
asC'

asC
l-ag(M-W)/’

T~ (3.19

If we now take the limita;— 0 while keeping the product
asN =L, fixed, we havelNs(ag) —exp(ysDLy). This repro-
duces the result of Refl15]. Recognizing thatysD is the
new overlap’s Hamiltonian, we see that both the old and the
new overlap formulas for QCD can be recovered as suitable
limits of domain-wall fermions.

IV. COMPLEX TRANSFER MATRIX

In this section we discuss what happenMif;>1, start-
ing with the free-field case. Sin¢8,,C,]=0, one can lump
togetherB; /2 factors, so that onlyB5 will occur in the
equations that defin€, and Y, [cf. Egs.(3.2) and (3.4)].
One has

Yo(p,)=Bo(p,) 1+BS<pM>+§ sird(p,) |- (4.1

The physical significance of the above construction is thexote that the sign ofro(p,) is determined by the sign of

following. In a fixed gauge-field backgrourd={U,,} one
has Gr(s,s";U)=(¥(s)¥(s'))y,. Suppose that we project
Z(s’), the anti-fermion field on a gives'-slice, onto the
(four-dimensional stateysBY%; wherev; is an eigenvector
of T. Using Egs.(3.12 and (3.17, each term in the corre-
sponding projection of ((s)¢(s')), must have an
s’-dependence given by eithif s or A (\; is the cor-
responding eigenvaljieThe s’-dependence will involve no

other eigenvalue of . A similar statement can be made for
the y-field. To this end, we writeG=(D!D¢) D} and
use Eq.(3.1) to relate OD¢) ! to (DD{) 1. This repro-

Bo(p,), and that eitherYy(p,)>2 or Yo(p,)<—2. The

eigenvalues':l'o(pﬂ) are all real, and have the same sign as
Bo(p,) [cf. Eq. (3.8)]. Therefore, the free-field propagator
exhibits sign oscillations, but otherwise everything stays
pretty much the same as in tia;<<1 case.

The situation is different in the interacting theory, where
[B,C]#0. WhenMas>1, B has both positive and negative
eigenvalues, an8'? has both real and imaginary eigenval-

ues. Consequently, the transfer maffiis no longer Hermit-
ian. [Equation (3.10 still holds if the samedefinition of
B*Y2is used in the expressions fisrandK, cf. Eq.(3.12),

even thougtB*?is no longer Hermitian. Of cours&" does

duces a key feature of the second-quantized transfer matrfot stand for the Hermitian conjugate &fin this case.

formalism [11,10, but now in the Lagrangian formalism,

While detDg) is always real due to Eq3.1), it is not

which is directly related to the manner one simulates ferminecessarily positive foMas>1. In particular detDg) may

onic correlation functions.

occasionally vanish(This is not true forMas<1 andm

We end this section with two technical comments. In the>0, see Appendix AThe propagator exists except on the
second-quantized transfer matrix formalism one can defingheasure-zero subset defined by d&t)=0, and can be con-

s-dependent operators vig g(s)=T%, gT 5, whereT is
the second-quantized version of [defined by T
=exp@a’ log(T)a), wherea anda’ are creation and annihi-
lation anti-commuting operatoksAs noted in Ref[10] [see
Eq. (A9) therd using the transfer matriX implies that the
operatorsag(s) anda, (s) are identified with the Grassmann
variablesyr(s) and ¢ (s— 1) respectively. In other words,
related Grassmann variables and operators do not alwa

have the same-coordinate. On the other hand, if one uses| o

the second-quantized version f then related Grassmann
variables and operators do have the saweordinate in all

cases. This explains the appearancd afistead ofT in the
expressions for the domain-wall propagator.

structed using the same technique as in Sec. Ill. The matrix
Q is now defined as follows. Le; denote an(in general
complex eigenvalue ofy. Fory; that does not belong to the
closed interval —2,2] on the real axis, we defirgg to be the
solution ofg; +q; *=y; obeying|q;|<1. Fory; e (—2,2) the
roots obeyq;| =1 whileq;#q; *. In this case we arbitrarily
pick one of the roots. Finally, we disregard gauge-field con-
figurations leading to any;= =2, hencef(q;) exists.(This
ounts to ignoring another measure-zero set; see also the
t paragraph of Appendix AThe rest of the construction
the same as before.

Again, as discussed in Sec. lll, the dependence of the
propagator ors ands’ is governed by thénow complex

eigenvalues and eigenvectors of the transfer mairix

is

Our last comment concerns the new overlap formalismyence, slowly decreasing anomalous effects may now arise

Dropping all terms of ordeaé and higher inT one has

from eigenvalues lying anywhere close to the unit circle.
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When Mas>1, bothB~Y2 and T are unbounded. The nhipulations of determinantgl8]. The latter technique will

possibility thatT may have very large eigenvalues is, how- &S0 b€ used below. Explicitly,
ever, not worrisome. The latter correspond to very small ei-
genvalues ofQ, and so they lead to very short-range corre- wp= H A, (5.2)
lations in thes-direction. Ni>1
Of special significance is the chiral Ward identity that
governs the pion mass. For amy and M, the anomalous where the product is over the greater-than-one eigenvalues of
term in the pion-mass Ward identity is positive when theT, cf. Eq.(3.9). As expected, the bulk term is independent of
number of equal-mass dynamical flavors is even, as well aghe choice of boundary conditions in tealirection(i.e., it is
in the quenched casdsee Appendix B of Refl10]). Thus, independent ofn). One way to cancel the bulk contribution
the anomalous contributions to this particular Ward identity is to introduce a five-dimensional boson fiefg, having
coming from all(real or complexeigenvalues of the transfer the same spin and internal indices as the domain-wall fermi-
matrix, always add up. ons, on a lattice whose fifth coordinate ranges only from 1 to
Because of Eqs(3.4) and (3.8), close-to-unity eigenval-  N=Ny/2. We will refer to ¢, as the pseudo-fermion field.
ues of the non-Hermitiad should still correspond to ap- The pseudo-fermion action is
proximate zero modes of the Hermitian operaggD. The
latter have been extensively studied recenyl6,3. To -
date, however, no information exists on the distribution of Sg?mdmed: 2 ¢Is(Dprgf)xs,ys’ bys' - (5.3
eigenvalue in all the rest of the complex plane. In particular, XSS

it is not known how many eigenvalues are located near theA common choice isD=D(mag=1). Exceptingmas
pf— F =4).

unit circle awayfrom the point one on the positive real axis. _ ., . . L
Therefore it is also not known how much of the anomalous 1, in fact, anyO(1) value formas will do. When inte

effect observed in numerical simulatiofis-4] is due to(ap- grating over both fermions and pseudo-fermions the bulk
. ; P terms cancel out, leaving a convergdht—« result that has
proximatg zero modes ofysD. The above issues clearly

deserve a more detailed study thg same Io_ng—distance behavior in _four_ dimensions.as the
' finite factor in Eq.(5.1). (Another option is to use a first-
order pseudo-fermion action. When the transfer matrix has a
V. A MODIFIED PSEUDO-FERMION ACTION gap, the bulk term of the first-order action converges faster to
the fermionic bulk ternj4]. This advantage disappears if the
In the rest of this paper we impose the conditiblrag gap is smal.
<1, and alongside with it the strict positivity of the transfer = As mentioned above, fdvlas<1 chiral symmetry viola-
matrix. For simplicity we also restrict the discussion to Otjons should arise from close-to-unity eigenvalues of the
<M<2. As discussed in the Introduction, the troublesomeyansfer matrix. Actually, in the free-field case the spectrum

eigenvalues of the transfer matrix are now the ones close tRas a gap. This follows from Eq¢3.4) and (3.8), and the
unity. In this section we propose a method to reduce thgact that

density of close-to-unity eigenvalues in a dynamical simula-
tion by modifying thepseudo-fermiorfalso known as Pauli-
Villars) part of the action. DoD{(pL)=(M—Wq(p,))2+ > sirf(p,)>0. (5.4
Let us first recall why a domain-wall fermion action must #
be accompanied by a pseudo-fermion action. From the point o )
of view of the gauge field, the domain-wall action introduce>iNc€ the Brillouin zone g compact, thevi¢dependent
N, “flavors” of four-dimensional Dirac fermions. For 0 Minimal eigenvalue oDDy is strictly positive. Now, the
<M<2, only one Dirac fermion is lightand is identified ~€igenvalues ofDD" are gauge-invariant continuous func-
with a quark field. The otheml,— 1 Dirac fields haved(1)  tions of the link variables. Sinc®,Dj has a gap in the
masses. If their number was kept fixed, we could simplyfree-field case, one expects thatD' too should have a
ignore them in the continuum limit. The chiral limit, how- (somewhat smallgrgap if the local plaguette action
ever, requiredN;— . If this limit is taken at fixed value of
the bare couplingg, the Ng-dependent contribution of the
heavy “flavors” must be subtracted.
One can express the domain-wall fermion determinant as

is very small everywhere. In other words, zero modes of
det(DF)=,uES><(finite factop. (5.1 DD' should arise only ifP, exceeds arO(1) constant
Cco(M)>0 at least forsomelattice sites. Hence, if one is
o ) ) sufficiently close to the continuum limit anlll is not too
The “finite factor,” which accounts for ”?\Ie quark field, has a ¢|ose to the critical points 0 or 2, these zero modes should be
convergenNg— o limit. The bulk termu® is the (undesir-  suppressed by the plaquette action. In the context of domain-
able contribution of theO(Ng) massive “flavors.” Explicit ~ wall fermions we can therefore regard these zero modes as
expressions for both terms were first derived in the transfelattice artefacts|See Refs[16,17] for related work. The ex-
matrix formulation[11,10], and more recently by direct ma- istence of acj(M)>0 can be tested numerically. A proof

Pe= > Ret(1-U, Uy .Uy, UL), (55

u<v
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thatcy(M)>0 is desirable, but one should keep in mind that -1 Y o
rigorous inequalities may underestimate the value of PTf,fP*1= 2 . (5.13
co(M).] ~er Vet

For B~6, one is probably not close enough to the con-
tinuum limit to effectively suppress the zero modesDdd '
by the plaquette action alone. The above consideration Ieaé)s
us to propose a modified pseudo-fermion action

Note that the RHS of the last equation is a functionYgf

For largeN, pr vanishes wherea@pf grows unbound-
edly. Like Eq.(5.1), one can express de(y) as ,upf(cl)
times a finite factor, where
xgs d’xs prpf)xs ys’ d’ysf“‘z (/’xs(ClP )" d’x:; . ,U«pf(Cl):de(Q;fl(Cl))- (5.14)
[See Eq.(B7) for the finite factor] For Ng=2N, the total
wherec; is a continuous parameter ands a positive inte-  bulk factor coming from the integration over both fermions
ger. Assumingcy,(M) is known, a reasonable choicedg  and pseudo-fermions is
~c51(M). The choice ofn is discussed later. The idea be-
hind the modified pseudo-fermion action is to suppress in a
selective way those gauge-field configurations supporting
close-to-unity eigenvalues. The aim is to achieve this sup-
pression in(dynamical-fermioh simulations with not too In the unmodified caser;l—o using Eq.(5.2 and det{)
large Ng and at presently accessible values &f As ex- =1 one hampf(O) /'LF1 showing that the bulk factors in-
plained below the main side effect of the modified action isdeed cancel each other.
expected to be a small renormalization of the coupling con- We now discuss how the bulk factor is modified for
stant. >0. Since the plaquette term is positive, thederivative of
As in Eq.(3.2), the pseudo-fermion matrix defined by Eq. the eigenvalues ofY, is always positive, and the
(5.6) can be written ag:sBY() ;1ysB"2 The explicit expres- ¢, -derivative of the elgenvalues @, is always negative.
sion foerf is the same as the right'hand SI(CW—IS) of Eq Therefore/-LF//-Lpf(Cl) is a decreas|ng function (m‘l

(3.3 except for the replacement Let us now assume that (or Q) has an eigenvalue very
close to one. FoM ~ 1.7, the support of the corresponding
eigenvector should consist of very few lattice si{d$].
Moreover, as discussed earligy, is likely O(1) on those
sites. Asc, is varied from zero to its chosen value, we thus
expect anO(1) change in the corresponding eigenvalue of
Qpi(c1). We will argue below that there should be only a
small change in the product of all eigenvalues whichraoe
close to unity. Consequently, tl@&(1) change in what used
to be a close-to-unity eigenvalue implies @f1) reduction
in the magnitude ofu;‘_i/,upf(cl). This, in turn, should sup-
press the Boltzmann weight of the corresponding gauge-field
configuration already for modest values bk [cf. Eq.
where (513]

Eigenvalues of the transfer matrix not too close to unity

2 \N
ME

Mpf(cl)

(5.19

Y—Yp(c)=Y+B Y4c,P)"B~ 12, (5.7

where P stands for the diagonal matri&,,P, . (Similar re-
placements are made in the definitions>af , and X__ .
Formas=1 one hasy,=X%, =X?"_

An expression for det@,) can be written for everN
using the general formulas of Rdfl8], see Appendix B
below. The result is

det( Q)= de‘(R‘—PT P IRM), (5.8

R = 1 0 (5.9 are typically not localized, and it is plausible that the effect
Ypi— XPr —X,_ ' of the modified action on them can be accounted for by
perturbation theory. It is easy to see that the leading pertur-
—X V_.— XPf bative effect of the modified action is to renormalize the
-+ pf ++ .
R+=( 0 L ) (5.10 coupling constant as
1 1 n n—1,t
(pr 0 ) ?_)?'H’]Cl}s: (Px ¢xs¢xs>- (5.1
= - (5.1
Lo Qut

Since the free transfer matrix has a gap, the perturbative
1 0 1 ~Q value 0f<¢15¢xs> at any finite order, and in any gauge-field
P:( Pf) P—lz(l_QZ)—l( pf). background, is regulafThis is true even if the associated
Qu 1 ' pf — Qpr 1 exact transfer matrix has a unit eigenvalue. In other words, a
(5.12 singularity in the propagator cannot develop if we sum the
Born series only up to a finite ordgMow, the expectation
As before, the matriXQ,y is defined byQ+ ngl=Ypf and  value on the RHS of Eq(5.16) involvesn or more loops.
the condition G<specQ,)<1. One has Therefore the resulting change ing#/should be of order
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Nga". Since in practicen~0.1, if we take for example close to one, but in fact from eigenvalues in the vicinity of
=4 this effect may be at the level of 1% or less, winis  the entire unit circle.

in the range of 10 to 100. Thus, the leading side-effect of the For a5=0.5 and 6<M <2 the transfer matrix will be
modified action seems to be an innocuous, relatively smabtrictly positive. The first question that has to be addressed
change in the bare coupling. numerically is whether the favorable range for a single light

In short, we believe that perturbation theory can be trustedjuark is stillM~ 1.7, as in theas=1 cas€[1,3]. The range
for the collective contribution of all eigenvaluesxcept M~ 1.7 seems reasonable also from the point of view of the
when there are close-to-unity ones. Since the perturbativeew overlap formulatior{16]. Since the new overlap in-
effect should be small, a®@(1) change inuy(c;,) should volves a continuous-coordinate limit, it is plausible that the
take place only when there are close-to-unity eigenvalued)est value oM may be rather insensitive .
and this change works in the direction of suppressing the For fixed 1<M <2, asag is decreased from 1 to 0.5 all
Boltzmann weight of the corresponding gauge-field configueigenvalues must flow towards the positive real axis. De-
rations. pending on the flow pattern, the number of close-to-one ei-

The above arguments, while plausible, are heuristic. Ongenvalues af;=0.5 could be quite different from the origi-
question that can be settled by an explipierturbative cal-  nal number of eigenvalues close to the unit circle. Hence, the
culation is whether the loop integrals i(r*PQ‘l¢I5¢XS), transition fromas=1 to a5= 0.5 could by itself have a sig-
while regular, happen to produce large numerical factors. Aificant effect on the anomalous term. Finally, once the
calculation of this expectation value is also necessary in orabove issues are resolved, one can proceed to test whether
der to be able to compare results at different values,of the modified pseudo-fermion action is useful in further re-
while maintaining a fixed value of the effective bare cou-ducing lattice-artifact violations of chiral symmetries at pres-
pling [cf. the RHS of Eq(5.16)]. ently accessible values of;.

Last we discuss how thidg— o0 limit may be taken with
the modified action. Evidently, if all other parameter were
kept fixed, then in the limiNs—c the perturbative effects
induced by the modified pseudo-fermion action would even- | thank the participants of the RIKEN BNL Research
tually run out of control. While the stridilc— limitis not = Center workshop on “Fermion Frontiers in Vector Lattice
very useful for practical purposes, it is legitimate to askGauge Theories,” at Brookhaven National Laboratory, for
whether, in principle, the modified action has a sensible extensive discussions that motivated this work. Especially |
—o0 limit. would like to thank the organizers for creating this unique

If we allow bothNg andn to grow, the limit may in fact opportunity to exchange ideas on the subject. This work is
depend on the ratio of these two numbers. As an examplsupported in part by the Israel Science Foundation.
one option is to take the limih—c« beforethe limit Ng
—o, Sendingn to infinity has the following effect. For
¢, P,<1, the limit of (c;P,)" is zero. Hence, the modifica-
tion vanishes ifc,P,<1 for all x. If, on the other hand, For 2<s"<N4—1, Egs.(3.3) and(3.8) imply
c,P,>1 even for a single site, the norm o (P,)" willl
blow up, and along with it some of the eigenvaluegi-.

In summary, in the limin—c the bulk factorﬂ,%/#pfg is zs Q(s",5)G.(s,s") — 5s~,sr=§ Q(s",s)H. +(s,8")=0.
unchanged ic;P,<1 for all x, whereas it vanishes i; P, (A1)
>1 for any lattice site. Therefore, the limit—c amounts to

imposing the constraint; P,<<1 on the gauge-field configu-

ration space. While this constraint should not change th%xpressions are not zero, and tre&irdependence is given by
continuum limit, throwing out all configurations with some '

iS’ . . . .
c,P,>1 in a completely unselective manner could slowQ . The linear combination that gives the propagaBr

down simulations. As argued above, for moderate values JiEE',(S'l?)] is determined by requiring the coefflc/lents of
N, and relatively small values of, the modified action may Q~° to vanish. By imposing this condition on ti@"* part
do a good job in suppressing only those gauge-field configuve obtain

rations supporting close-to-unity eigenvalues, leading to a

minimal “waste” of configurations. (AH) (QZ—XHQl

Ay _X+—Q71
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APPENDIX A: THE SECOND-ORDER PROPAGATOR

Fors”=1 ands”"= N there are boundary effects. The above

)f(Q), (A2)

VI. CONCLUSIONS _ _ _ N , _
and by imposing this condition on tH@ " ° part we obtain

In this paper we have studied potential sources for the

anomalous term in chiral Ward identities. For conventional A -X_,Q7!
domain-wall fermions §s=1) the transfer matrix is com- ( +_) :( 72 - l)f(Q), (A3)
plex if M>1. As discussed in Sec. IV, in the numerical work A__ Q “—X__Q

of Refs.[1-4] slowly-suppressed chiral symmetry violations
could therefore arise not only from eigenvalues which arewvhere
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X1+ Q-Q%+X_, QN

X QNs—QNsT+ X, Q

Note the C has a convergeniNg—o limit. A second-
qguantized transfer-matrix representation of the filNtefer-
mion determinant is given in Ref10] [see in particular Egs.
(3.1 and(3.10 therein. We conclude from it that foM a5
<1 andm>0, det(D¢g) is (real and strictly positive for any
number of flavors. Therefor®¢ has an inverse, and the
above equations must have a solution which obays,
=AT_.

We note thaD; ' may exist even ifl has an eigenvalue

which is exactly equal to one. In this case, a possible way to

PHYSICAL REVIEW D 59 054506

X+ QNs—QNs7 4 X, Q
X__Q-Q+X. QY (A9
[
_(—1 Ypf>_ .
B= 0 -1 —,Bj, J—l,...,N/z—l,
(B3)
XPL X
IBN/ZI( 0 _1)- (B4)

With these definitions, EqA.10) of Ref.[18] reads
de( Q) =defa tan,—(—a 18N8 Bys). (B5)

cpnstructD;l_is to perturb the background field so that that Substituting the above explicit expressions we arrive at Eq.
eigenvalue will be only approximately equal to one, say up(5.8). Note that o~ 1) is equal to the RHS of Eq5.13.

to O(e€). The construction of Sec. Il is now applicablh,;1

for the initial background field can then be found by care-
fully removing the perturbation, keeping track of the leading

terms ine.

APPENDIX B: THE SECOND-ORDER DETERMINANT

For evenN, we can use the formulas for the determinant
of a general tridiagonal matrix, derived in the appendix of

Ref.[18], to write down an expression for dg?(c,)), cf.
Eq. (5.8). [Here the block entries of the tridiagonal matrix

have spin indices ranging from one to four. With the replace-

mentN—Ng, a similar formula holds for det¥), cf. Eq.
(3.3.] In the notation of Ref{18], the present application is
defined by

( b0 ) j=1 N/2—1 B1

a= Ypf _ 1 - a] 3 J Ty e ey -4, ( )
-1 0

ANR=| ot ot | (B2
T T

The bulk factor of det2,y) can be separated as follows. We
first rewrite Eq.(5.8) as

det Q) =de(1-Qp)detS™ ~TyS"), (B6)

whereS* =P~ 1R*. Using Eq.(5.1]) it is now easy to check
that

1 0
de‘(pr)=de‘(prN)de(l—Q§f)de{ ( 0 Qg,f) S

£ 3

The bulk factor del(Q,ij) appears explicitly in the above
equation. The other terms are by definition the finite factor.
For Mas<1 the entries of) ; are bounded, and déd(,) is
finite for any finite N. This is more easily seen using Egs.
(5.8 and(5.13. It can be checked that if an eigenvalueQf
approaches one, then the restriction of the RHS of(&4.3

to this eigenvalue has a finite limit. Moreover, the restriction
of PTny‘l to this eigenvalue grows only linearlyot ex-
ponentially with N.

N
pr

0 : (B7)
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