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Reducing chiral symmetry violations in lattice QCD with domain-wall fermions
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The inverse of the fermion matrix squared is used to define a transfer matrix for domain-wall fermions.
When the domain-wall heightM is bigger than one, the transfer matrix iscomplex. Slowly suppressed chiral
symmetry violations may then arise from all eigenvalues of the transfer matrix which are located near the unit
circle. Using a variable lattice spacing for the fifth coordinate we enforce the strict positivity of the transfer
matrix for anyM. We furthermore propose a modified pseudo-fermion action, aimed to decrease the density of
close-to-unity eigenvalues of the~positive! transfer matrix, at the price of a small renormalization of the
coupling constant. We explain why these changes may reduce chiral symmetry violations in lattice QCD
simulations.@S0556-2821~99!03705-4#

PACS number~s!: 11.15.Ha, 12.38.Gc
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I. INTRODUCTION

Numerical QCD simulations@1–4# using domain-wall fer-
mions@5–8# reveal small, but still significant, lattice-artifac
violations of chiral symmetries forNs;15, whereNs is the
extent of the lattice in the fifth direction. It is important t
improve our understanding of such anomalous effects, a
hopefully, to devise new domain-wall actions capable of b
ter suppressing them. Both at the tree level and in pertu
tion theory the anomalous effects decrease exponent
with increasingNs . This applies in particular to the additiv
radiatively induced quark mass@6,8,9,2#. In this paper we
will thus focus on non-perturbative anomalous contributio
to the chiral Ward identities introduced in Ref.@10# and first
studied numerically in Ref.@1#.

Free domain-wall fermions have a single chiral zero mo
on each four-dimensional boundary of a five-dimensional
tice when the five-dimensional mass term~or ‘‘domain wall
height’’! M is in the range 0,M,2. As one moves to the
range 2,M,4 this zero mode disappears, and four n
zero modes of the opposite chirality appear on each bou
ary. Thus, the range 0,M,2 supports a single~approxi-
mately! massless quark, and the range 2,M,4 supports
four ~approximately! massless quarks with ‘‘flipped’’ chirali-
ties. This pattern generalizes to higher values ofM, until for
M.10 there are no zero modes at all.

With suitable subtractions to ensure its finiteness~to be
discussed in detail in this paper! theNs→` limit of domain-
wall fermions can be written down compactly in the overl
formalism@11,12#. In this formalism the~subtracted! fermion
partition function is expressed in terms of the overlap o
second-quantized ground state with a reference state or, m
generally, as the ground-state expectation value of an op
tor representing the boundary conditions in thes-direction
@10#.

In the ‘‘old’’ overlap formalism @11#, the second-
quantized Hamiltonian is~minus! the logarithm of the trans
fer matrix that hops domain-wall fermions a single site in t
s-direction. This formalism has the same massless-qu
spectrum as above. The ‘‘new’’ overlap formalism@12# in-
volves a different Hamiltonian which arises in a continuo
s-coordinate limit. The new overlap~and the related four-
0556-2821/99/59~5!/054506~8!/$15.00 59 0545
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dimensional, non-local, chirally invariant action@13#! has the
same massless-quark spectrum for 0,M,2. In the range
2,M,4 four massless quarks with flipped chiralities a
pear as before, but the original massless quarkremainsin the
spectrum. AsM is further increased more massless qua
appear, alongside with all the previous ones that keep sta
in the spectrum. This different free-field spectrum agre
with the pattern of level crossing found in a smooth instan
background@14#.

A more fundamental difference between the two over
formulas is found in the properties of the transfer matrix.
the new overlap formalism the transfer matrix is strictly po
tive for all values ofM, simply because it is defined from th
outset as exp(2H), whereH is a well-defined local lattice
Hamiltonian. In the old overlap formalism, on the oth
hand, the transfer matrix is positive only for 0,M,1, as in
the framework of domain-wall fermions from which it i
derived. We argue below that forM.1 both positivity and
hermiticity of the domain wall’s transfer matrix are lost, an
its eigenvalues are in generalcomplex.

The aim of this paper is to study what could be the dom
nant anomalous contributions to chiral Ward identities, a
to suggest methods for suppressing them. A key role will
played by a~first quantized! transfer matrix related to the
inverse of the fermion matrix squared. For flavor non-sing
chiral symmetries, the anomalous term in the lattice W
identities@10# involves the correlations of fermion operato
on thes51 ands5Ns boundaries with fermion operators a
s;Ns/2. Such correlations decrease exponentially if t
transfer matrix has no eigenvalue with an absolute va
close to one. Conversely, if there are many such eigenval
one expects a much slower~presumably power-law! decrease
of anomalous correlations.

Numerical results@1,3# suggest an optimal value ofM
between 1.6 and 1.7 forb;6. In this range, the transfe
matrix of standard domain-wall fermions is complex. Slow
decreasing anomalous contributions may then arise from
eigenvalues of the transfer matrix which are close to the u
circle.

The positivity of the transfer matrix can be enforced f
any M by restricting the range ofa5 , the lattice spacing for
the fifth coordinate@15#, a result that could have been antic
©1999 The American Physical Society06-1



e

e
m

th

al

ns
re

trix
ion
are

d to

YIGAL SHAMIR PHYSICAL REVIEW D 59 054506
pated in view of the relation between the old and new ov
laps. The transfer matrix is strictly positive forMa5,1.
~Thus, forM,2 it is sufficient to take e.g.,a550.5.) In this
case, only close-to-unity eigenvalues@4,10,12,16,17# may
lead to significant anomalous contributions. We propos
method to reduce the density of such eigenvalues in dyna
cal simulations. The method consists of a modification of
pseudo-fermion~Pauli-Villars! part of the action, and it
might be effective already for modest values ofNs . The
main side effect of the modified action is a small renorm
ization of the coupling constant.

This paper is organized as follows. Domain-wall fermio
with a variable lattice spacing for the fifth coordinate a
e

n

he
ct
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reviewed in Sec. II. The~first quantized! transfer matrix is
introduced in Sec. III. The case of a complex transfer ma
is discussed in Sec. IV. The modified pseudo-fermion act
is introduced and discussed in Sec. V. Our conclusions
given in Sec. VI, and some technical details are relegate
two appendices.

II. DOMAIN-WALL FERMIONS WITH A
VARIABLE s-SPACING

Allowing for a variable lattice spacinga5 for the fifth
coordinate@15#, the domain-wall fermion matrix is
DF5S a5D21 PR 0 0 . . . 0 0 2ma5PL

PL a5D21 PR 0 . . . 0 0 0

0 PL a5D21 PR . . . 0 0 0

A A A A � A A A

0 0 0 0 . . . PL a5D21 PR

2ma5PR 0 0 0 . . . 0 PL a5D21

D . ~2.1!
ies,
-

e-
ger

er

d
de,

zero
l

The four-dimensional lattice spacinga is set to unity. The
above matrix structure corresponds to the fifth coordinats,
which we assume to take the valuess51,2, . . . ,Ns . Each
entry is a four-dimensional matrix.PR,L5 1

2 (16g5) denote
chiral projectors, andD is the Wilson-Dirac operator

D5S M2W C

2C† M2WD , ~2.2!

where

Cxy5
1

2 (
m

@dx1m̂,yUxm2dx2m̂,yUym
† #sm ~2.3!

Wxy54dxy2
1

2 (
m

@dx1m̂,yUxm1dx2m̂,yUym
† #. ~2.4!

The matricesC andW correspond to the kinetic and Wilso
term respectively. We also define

Bxy5~12Ma5!dxy1a5Wxy . ~2.5!

(B is proportional to the identity matrix in spinor space. T
latter may be either two-by-two or four-by-four; the corre
meaning can be inferred from the context.!

Assume momentarily a semi-infinite range for t
s-coordinate. For sin(pm)50, m51, . . . ,4, the free-field
equation has a right-handed homogeneous solution

cR
0~s;pm!5B0

s~pm!5@11a5„W0~pm!2M …#s, ~2.6!
where the subscript zero denotes free-field quantit
W0(pm)5(m„12cos(pm)…, and at the corners of the Bril
louin zoneW0(pm) takes the values 0,2, . . . ,8. Theabove
homogeneous solution is a zero mode~i.e., it is normaliz-
able! provided

21,11a5„W0~pm!2M …,1. ~2.7!

We depart from the original domain-wall framework by r
placing the constraint on the lower bound with the stron
one

0,12Ma5 . ~2.8!

SinceW is a positive matrix, this implies

0,11a5„spec~W!2M …. ~2.9!

The last condition ensures the strictpositivity of B. The
upper-bound constraint in Eq.~2.7! is simply

W0~pm!2M,0, ~2.10!

which is evidently independent ofa5 . For 0,M,2 there is
a single zero mode atpm50. If we increaseM while decreas-
ing a5 to maintain the constraint~2.8!, new zero modes will
appear atM52,4,6,8, while all the zero modes from small
values ofM will remain in the spectrum.

Assuming 0,M,2, on a finite lattice the right-hande
part of the quark field corresponds to the above zero mo
whereas the left-handed part corresponds to another
mode located near thes5Ns boundary. Both at the tree leve
and in perturbation theory, form50 there is a small mixing
6-2
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REDUCING CHIRAL SYMMETRY VIOLATIONS IN . . . PHYSICAL REVIEW D 59 054506
between the two chiral modes that vanishes exponent
with Ns @6,8,9,4#. The parameterm in Eq. ~2.1! is related to
the bare quark mass. An easy way to see this is to invoke
free domain-wall Hamiltonian. Form50, the eigenvalues
E(pk) of helicity eigenstates are given byE2

5(k51
3 sin2(pk). For mÞ0 we find using first-order pertur

bation theory thatE(0)5mq where

mq5mMa5~22Ma5!, ~2.11!

generalizing the result of Ref.@8#.

III. PROPAGATORS AND TRANSFER MATRICES

The familiar relationD5g5D†g5 , valid for the Wilson-
Dirac operator, generalizes in the case of domain-wall fer
ons to

DF5Rg5 DF
† Rg5 , ~3.1!

whereRss85ds,Ns112s8 @10#. Equation ~3.1! implies rela-

tions between second-order operators:DF
†DF5(Rg5DF)2

5Rg5(DFDF
†)Rg5 . We also note thatRg5DF is Hermit-

ian. For definiteness we will focus on the operatorDFDF
† .

One has

DFDF
†5g5B1/2Vg5B1/2, ~3.2!

where explicitly

V5S X11 21 0 0 . . . 0 0 X21

21 Y 21 0 . . . 0 0 0

0 21 Y 21 . . . 0 0 0

A A A A � A A A

0 0 0 0 . . . 21 Y 21

X12 0 0 0 . . . 0 21 X22

D
~3.3!

and

Y521a5
2g5B21/2DD†g5B21/2 ~3.4!

X115Y1PLB21
„~ma5!221… ~3.5!

X225Y1PRB21
„~ma5!221… ~3.6!

X125X215ma5 . ~3.7!

The B61/2 factors have been introduced for later conv
nience. Thanks to our insistence on the strict positivity ofB,
these factors are strictly positive too. An interesting obser
tion is that

Y5T̃1T̃21, ~3.8!

where

T̃5S B211a5
2B21/2CC†B21/2 a5B21/2CB1/2

a5B1/2C†B21/2 B
D . ~3.9!
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The basic properties of thetransfer matrix T̃follow from

T̃5K†K, ~3.10!

where

K5S B21/2 0

a5C†B21/2 B1/2D , K†5S B21/2 a5B21/2C

0 B1/2 D ,

~3.11!

which imply that T̃ is strictly positive, bounded, and ha
detT̃51.

The first-quantized transfer matrix usually encountered
the context of domain-wall fermions isT5KK†. Evidently,
T and T̃ have the same spectrum, and~up to normalization!
the eigenvectors ofT are obtained from those ofT̃ by mul-
tiplication with K. The appearance ofT̃ instead ofT is due to
a technical reason that we explain later.

Equations~3.4! and~3.8! imply that an eigenvalue ofT̃ is
equal to onei f f the Hermitian operatorg5D has a zero
mode. The last condition implies det (D)50, an equation
which defines a measure-zero subset of the gauge field
figuration space. In the rest of this section we will assu
that det (D)Þ0, and hence that no eigenvalue ofT̃ is exactly
equal to one.

We now turn to the construction of the domain-wa
propagatorGF5DF

21 . Using Eq.~3.2! one has

GF5DF
†g5B21/2Gg5B21/2, ~3.12!

whereG5V21. Our task is to find an explicit representatio
for G. We begin by writing the spectral decomposition

T̃5(
i

uv i&l i^v i u. ~3.13!

For each eigenvalue, we defineqi5min(li ,li
21). We now

construct a new matrix

Q5(
i

uv i&qi^v i u, ~3.14!

with the property 0,spec(Q),1. Next we consider the
infinite-size matrixV` constructed from the translationall
invariant part ofV, extended to the range2`,s,s8,`.
The inverseG`5V`

21 is

G`~s,s8!5(
i

uv i&qi
us2s8u f ~qi !^v i u ~3.15!

5Qus2s8u f ~Q!, ~3.16!

where f 21(q)5q212q.0. Equations~3.3! and~3.8! imply
(sV`(s9,s)G`(s,s8)50 for s9Þs8, while the correct nor-
malization fors95s8 is ensured by the presence off (Q).
Since it was constructed usingQ ~and notT̃),G`(s,s8) van-
ishes for largeus2s8u.
6-3
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YIGAL SHAMIR PHYSICAL REVIEW D 59 054506
Returning to the finite-s case, we now have, for 1<s,s8
<Ns ,

G~s,s8!5G`~s,s8!1H11~s,s8!1H22~s,s8!1H12~s,s8!

1H21~s,s8!, ~3.17!

where

H11~s,s8!5QsA11Qs8

H22~s,s8!5QNs112sA22QNs112s8

~3.18!

H12~s,s8!5QsA12QNs112s8

H21~s,s8!5QNs112sA21Qs8.

The four-dimensional matricesA66 solve a system of linea
equations given in Appendix A, and have a convergentNs

→` limit. Hermiticity of G implies A215A12
† .

The physical significance of the above construction is
following. In a fixed gauge-field backgroundU5$Uxm% one
has GF(s,s8;U)5^c(s)c̄(s8)&U . Suppose that we projec
c̄(s8), the anti-fermion field on a givens8-slice, onto the
~four-dimensional! stateg5B1/2v i wherev i is an eigenvector
of T̃. Using Eqs.~3.12! and ~3.17!, each term in the corre
sponding projection of ^c(s)c̄(s8)&U must have an

s8-dependence given by eitherl i
1s8 or l i

2s8 (l i is the cor-
responding eigenvalue!. The s8-dependence will involve no
other eigenvalue ofT̃. A similar statement can be made fo
the c-field. To this end, we writeGF5(DF

†DF)21DF
† and

use Eq.~3.1! to relate (DF
†DF)21 to (DFDF

†)21. This repro-
duces a key feature of the second-quantized transfer m
formalism @11,10#, but now in the Lagrangian formalism
which is directly related to the manner one simulates fer
onic correlation functions.

We end this section with two technical comments. In t
second-quantized transfer matrix formalism one can de
s-dependent operators viaâL,R(s)5T̂sâL,RT̂2s, where T̂ is
the second-quantized version ofT @defined by T̂

5exp„â† log(T)â…, whereâ and â† are creation and annihi
lation anti-commuting operators#. As noted in Ref.@10# @see
Eq. ~A9! there# using the transfer matrixT̂ implies that the
operatorsâR(s) andâL(s) are identified with the Grassman
variablescR(s) andcL(s21) respectively. In other words
related Grassmann variables and operators do not alw
have the sames-coordinate. On the other hand, if one us
the second-quantized version ofT̃, then related Grassman
variables and operators do have the sames-coordinate in all
cases. This explains the appearance ofT̃ instead ofT in the
expressions for the domain-wall propagator.

Our last comment concerns the new overlap formalis
Dropping all terms of ordera5

2 and higher inT̃ one has
05450
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T̃;S 11a5~M2W! a5C

a5C† 12a5~M2W!
D . ~3.19!

If we now take the limita5→0 while keeping the produc
a5Ns5Ls fixed, we haveT̃Ns(a5)→exp(g5DLs). This repro-
duces the result of Ref.@15#. Recognizing thatg5D is the
new overlap’s Hamiltonian, we see that both the old and
new overlap formulas for QCD can be recovered as suita
limits of domain-wall fermions.

IV. COMPLEX TRANSFER MATRIX

In this section we discuss what happens ifMa5.1, start-
ing with the free-field case. Since@B0 ,C0#50, one can lump
togetherB0

61/2 factors, so that onlyB0
61 will occur in the

equations that defineV0 and Y0 @cf. Eqs. ~3.2! and ~3.4!#.
One has

Y0~pm!5B0
21~pm!F11B0

2~pm!1(
m

sin2~pm!G . ~4.1!

Note that the sign ofY0(pm) is determined by the sign o
B0(pm), and that eitherY0(pm).2 or Y0(pm),22. The
eigenvaluesT̃0(pm) are all real, and have the same sign
B0(pm) @cf. Eq. ~3.8!#. Therefore, the free-field propagato
exhibits sign oscillations, but otherwise everything sta
pretty much the same as in theMa5,1 case.

The situation is different in the interacting theory, whe
@B,C#Þ0. WhenMa5.1, B has both positive and negativ
eigenvalues, andB1/2 has both real and imaginary eigenva
ues. Consequently, the transfer matrixT̃ is no longer Hermit-
ian. @Equation ~3.10! still holds if the samedefinition of
B61/2 is used in the expressions forK andK†, cf. Eq.~3.11!,
even thoughB1/2 is no longer Hermitian. Of course,K† does
not stand for the Hermitian conjugate ofK in this case.#

While det(DF) is always real due to Eq.~3.1!, it is not
necessarily positive forMa5.1. In particular det (DF) may
occasionally vanish.~This is not true forMa5,1 and m
.0, see Appendix A.! The propagator exists except on th
measure-zero subset defined by det (DF)50, and can be con-
structed using the same technique as in Sec. III. The ma
Q is now defined as follows. Letyi denote an~in general
complex! eigenvalue ofY. For yi that does not belong to th
closed interval@22,2# on the real axis, we defineqi to be the
solution ofqi1qi

215yi obeyinguqi u,1. ForyiP(22,2) the
roots obeyuqi u51 while qiÞqi

21 . In this case we arbitrarily
pick one of the roots. Finally, we disregard gauge-field co
figurations leading to anyyi562, hencef (qi) exists.~This
amounts to ignoring another measure-zero set; see also
last paragraph of Appendix A.! The rest of the construction
is the same as before.

Again, as discussed in Sec. III, the dependence of
propagator ons and s8 is governed by the~now complex!
eigenvalues and eigenvectors of the transfer matrixT̃.
Hence, slowly decreasing anomalous effects may now a
from eigenvalues lying anywhere close to the unit circle.
6-4
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REDUCING CHIRAL SYMMETRY VIOLATIONS IN . . . PHYSICAL REVIEW D 59 054506
When Ma5.1, both B21/2 and T̃ are unbounded. The
possibility thatT̃ may have very large eigenvalues is, ho
ever, not worrisome. The latter correspond to very small
genvalues ofQ, and so they lead to very short-range cor
lations in thes-direction.

Of special significance is the chiral Ward identity th
governs the pion mass. For anya5 and M, the anomalous
term in the pion-mass Ward identity is positive when t
number of equal-mass dynamical flavors is even, as we
in the quenched case~see Appendix B of Ref.@10#!. Thus,
the anomalous contributions to this particular Ward ident
coming from all~real or complex! eigenvalues of the transfe
matrix, always add up.

Because of Eqs.~3.4! and ~3.8!, close-to-unity eigenval-
ues of the non-HermitianT̃ should still correspond to ap
proximate zero modes of the Hermitian operatorg5D. The
latter have been extensively studied recently@4,16,3#. To
date, however, no information exists on the distribution
eigenvalue in all the rest of the complex plane. In particu
it is not known how many eigenvalues are located near
unit circleawayfrom the point one on the positive real axi
Therefore it is also not known how much of the anomalo
effect observed in numerical simulations@1–4# is due to~ap-
proximate! zero modes ofg5D. The above issues clearl
deserve a more detailed study.

V. A MODIFIED PSEUDO-FERMION ACTION

In the rest of this paper we impose the conditionMa5
,1, and alongside with it the strict positivity of the transf
matrix. For simplicity we also restrict the discussion to
,M,2. As discussed in the Introduction, the troubleso
eigenvalues of the transfer matrix are now the ones clos
unity. In this section we propose a method to reduce
density of close-to-unity eigenvalues in a dynamical simu
tion by modifying thepseudo-fermion~also known as Pauli-
Villars! part of the action.

Let us first recall why a domain-wall fermion action mu
be accompanied by a pseudo-fermion action. From the p
of view of the gauge field, the domain-wall action introdu
Ns ‘‘flavors’’ of four-dimensional Dirac fermions. For 0
,M,2, only one Dirac fermion is light~and is identified
with a quark field!. The otherNs21 Dirac fields haveO(1)
masses. If their number was kept fixed, we could sim
ignore them in the continuum limit. The chiral limit, how
ever, requiresNs→`. If this limit is taken at fixed value of
the bare couplingg, the Ns-dependent contribution of th
heavy ‘‘flavors’’ must be subtracted.

One can express the domain-wall fermion determinan

det~DF!5mF
Ns3~finite factor!. ~5.1!

The ‘‘finite factor,’’ which accounts for the quark field, has
convergentNs→` limit. The bulk termmF

Ns is the~undesir-
able! contribution of theO(Ns) massive ‘‘flavors.’’ Explicit
expressions for both terms were first derived in the tran
matrix formulation@11,10#, and more recently by direct ma
05450
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nipulations of determinants@18#. The latter technique will
also be used below. Explicitly,

mF5 )
l i.1

l i , ~5.2!

where the product is over the greater-than-one eigenvalue
T̃, cf. Eq.~3.9!. As expected, the bulk term is independent
the choice of boundary conditions in thes-direction~i.e., it is
independent ofm). One way to cancel the bulk contributio
is to introduce a five-dimensional boson fieldfxs , having
the same spin and internal indices as the domain-wall fer
ons, on a lattice whose fifth coordinate ranges only from 1
N5Ns/2. We will refer tofxs as the pseudo-fermion field
The pseudo-fermion action is

Spf
unmodified5 (

xs,ys8
fxs

† ~DpfDpf
† !xs,ys8fys8 . ~5.3!

A common choice isDpf5DF(ma551). Exceptingma5
521, in fact, anyO(1) value forma5 will do. When inte-
grating over both fermions and pseudo-fermions the b
terms cancel out, leaving a convergentNs→` result that has
the same long-distance behavior in four dimensions as
finite factor in Eq.~5.1!. ~Another option is to use a first
order pseudo-fermion action. When the transfer matrix ha
gap, the bulk term of the first-order action converges faste
the fermionic bulk term@4#. This advantage disappears if th
gap is small.!

As mentioned above, forMa5,1 chiral symmetry viola-
tions should arise from close-to-unity eigenvalues of
transfer matrix. Actually, in the free-field case the spectr
has a gap. This follows from Eqs.~3.4! and ~3.8!, and the
fact that

D0D0
†~pm!5„M2W0~pm!…21(

m
sin2~pm!.0. ~5.4!

Since the Brillouin zone is compact, the (M -dependent!
minimal eigenvalue ofD0D0

† is strictly positive. Now, the
eigenvalues ofDD† are gauge-invariant continuous fun
tions of the link variables. SinceD0D0

† has a gap in the
free-field case, one expects thatDD† too should have a
~somewhat smaller! gap if the local plaquette action

Px5 (
m,n

Re tr~12UxmUx1m̂,nUx1 n̂,m
†

Uxn
† !, ~5.5!

is very small everywhere. In other words, zero modes
DD† should arise only ifPx exceeds anO(1) constant
c0(M ).0 at least forsome lattice sites. Hence, if one is
sufficiently close to the continuum limit andM is not too
close to the critical points 0 or 2, these zero modes should
suppressed by the plaquette action. In the context of dom
wall fermions we can therefore regard these zero mode
lattice artefacts.@See Refs.@16,17# for related work. The ex-
istence of ac0(M ).0 can be tested numerically. A proo
6-5
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YIGAL SHAMIR PHYSICAL REVIEW D 59 054506
thatc0(M ).0 is desirable, but one should keep in mind th
rigorous inequalities may underestimate the value
c0(M ).]

For b;6, one is probably not close enough to the co
tinuum limit to effectively suppress the zero modes ofDD†

by the plaquette action alone. The above consideration le
us to propose a modified pseudo-fermion action

Spf5 (
xs,ys8

fxs
† ~DpfDpf

† !xs,ys8fys81(
xs

fxs
† ~c1Px!

nfxs ,

~5.6!

wherec1 is a continuous parameter andn is a positive inte-
ger. Assumingc0(M ) is known, a reasonable choice isc1

;c0
21(M ). The choice ofn is discussed later. The idea b

hind the modified pseudo-fermion action is to suppress
selective way those gauge-field configurations suppor
close-to-unity eigenvalues. The aim is to achieve this s
pression in~dynamical-fermion! simulations with not too
large Ns and at presently accessible values ofb. As ex-
plained below, the main side effect of the modified action
expected to be a small renormalization of the coupling c
stant.

As in Eq.~3.2!, the pseudo-fermion matrix defined by E
~5.6! can be written asg5B1/2Vpfg5B1/2. The explicit expres-
sion for Vpf is the same as the right-hand side~RHS! of Eq.
~3.3! except for the replacement

Y→Ypf~c1!5Y1B21/2~c1P!nB21/2, ~5.7!

whereP stands for the diagonal matrixdxyPx . ~Similar re-
placements are made in the definitions ofX11 and X22 .
For ma551 one hasYpf5X11

pf 5X22
pf .)

An expression for det (Vpf) can be written for evenN
using the general formulas of Ref.@18#, see Appendix B
below. The result is

det~Vpf!5det~R22PTpf
NP21R1!, ~5.8!

where

R25S 1 0

Ypf2X22
pf 2X12

D ~5.9!

R15S 2X21 Ypf2X11
pf

0 1
D ~5.10!

Tpf5S Qpf 0

0 Qpf
21D ~5.11!

P5S 1 Qpf

Qpf 1 D , P215~12Qpf
2 !21S 1 2Qpf

2Qpf 1 D .

~5.12!

As before, the matrixQpf is defined byQpf1Qpf
215Ypf and

the condition 0,spec(Qpf),1. One has
05450
t
f

-

ds

a
g
-

s
-

PTpf
2 P215S 21 Ypf

2Ypf Ypf
2 21D . ~5.13!

Note that the RHS of the last equation is a function ofYpf
only.

For largeN, Qpf
N vanishes whereasQpf

2N grows unbound-
edly. Like Eq. ~5.1!, one can express det (Vpf) as mpf

N(c1)
times a finite factor, where

mpf~c1!5det„Qpf
21~c1!…. ~5.14!

@See Eq.~B7! for the finite factor.# For Ns52N, the total
bulk factor coming from the integration over both fermio
and pseudo-fermions is

S mF
2

mpf~c1!
D N

. ~5.15!

In the unmodified case,c150, using Eq.~5.2! and det (T̃)
51 one hasmpf(0)5mF

2 , showing that the bulk factors in
deed cancel each other.

We now discuss how the bulk factor is modified forc1
.0. Since the plaquette term is positive, thec1-derivative of
the eigenvalues ofYpf is always positive, and the
c1-derivative of the eigenvalues ofQpf is always negative.
ThereforemF

2/mpf(c1) is a decreasing function ofc1 .

Let us now assume thatT̃ ~or Q) has an eigenvalue ver
close to one. ForM;1.7, the support of the correspondin
eigenvector should consist of very few lattice sites@16#.
Moreover, as discussed earlierPx is likely O(1) on those
sites. Asc1 is varied from zero to its chosen value, we th
expect anO(1) change in the corresponding eigenvalue
Qpf(c1). We will argue below that there should be only
small change in the product of all eigenvalues which arenot
close to unity. Consequently, theO(1) change in what used
to be a close-to-unity eigenvalue implies anO(1) reduction
in the magnitude ofmF

2/mpf(c1). This, in turn, should sup-
press the Boltzmann weight of the corresponding gauge-fi
configuration already for modest values ofNs @cf. Eq.
~5.15!#.

Eigenvalues of the transfer matrix not too close to un
are typically not localized, and it is plausible that the effe
of the modified action on them can be accounted for
perturbation theory. It is easy to see that the leading per
bative effect of the modified action is to renormalize t
coupling constant as

1

g2→
1

g21nc1
n(

s
^P x

n21fxs
† fxs&. ~5.16!

Since the free transfer matrix has a gap, the perturba
value of^fxs

† fxs& at any finite order, and in any gauge-fie
background, is regular.~This is true even if the associate
exact transfer matrix has a unit eigenvalue. In other word
singularity in the propagator cannot develop if we sum
Born series only up to a finite order.! Now, the expectation
value on the RHS of Eq.~5.16! involves n or more loops.
Therefore the resulting change in 1/g2 should be of order
6-6
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REDUCING CHIRAL SYMMETRY VIOLATIONS IN . . . PHYSICAL REVIEW D 59 054506
Nsa
n. Since in practicea;0.1, if we take for examplen

54 this effect may be at the level of 1% or less, whenNs is
in the range of 10 to 100. Thus, the leading side-effect of
modified action seems to be an innocuous, relatively sm
change in the bare coupling.

In short, we believe that perturbation theory can be trus
for the collective contribution of all eigenvalues,except
when there are close-to-unity ones. Since the perturba
effect should be small, anO(1) change inmpf(c1) should
take place only when there are close-to-unity eigenvalu
and this change works in the direction of suppressing
Boltzmann weight of the corresponding gauge-field confi
rations.

The above arguments, while plausible, are heuristic. O
question that can be settled by an explicit~perturbative! cal-
culation is whether the loop integrals in̂P x

n21fxs
† fxs&,

while regular, happen to produce large numerical factors
calculation of this expectation value is also necessary in
der to be able to compare results at different values ofc1 ,
while maintaining a fixed value of the effective bare co
pling @cf. the RHS of Eq.~5.16!#.

Last we discuss how theNs→` limit may be taken with
the modified action. Evidently, if all other parameter we
kept fixed, then in the limitNs→` the perturbative effects
induced by the modified pseudo-fermion action would ev
tually run out of control. While the strictNs→` limit is not
very useful for practical purposes, it is legitimate to a
whether, in principle, the modified action has a sensibleNs
→` limit.

If we allow bothNs andn to grow, the limit may in fact
depend on the ratio of these two numbers. As an exam
one option is to take the limitn→` before the limit Ns
→`. Sendingn to infinity has the following effect. For
c1Px,1, the limit of (c1Px)

n is zero. Hence, the modifica
tion vanishes ifc1Px,1 for all x. If, on the other hand,
c1Px.1 even for a single site, the norm of (c1Px)

n will
blow up, and along with it some of the eigenvalues ofQpf

21 .
In summary, in the limitn→` the bulk factormF

2/mpf(c1) is
unchanged ifc1Px,1 for all x, whereas it vanishes ifc1Px
.1 for any lattice site. Therefore, the limitn→` amounts to
imposing the constraintc1Px,1 on the gauge-field configu
ration space. While this constraint should not change
continuum limit, throwing out all configurations with som
c1Px.1 in a completely unselective manner could slo
down simulations. As argued above, for moderate value
Ns and relatively small values ofn, the modified action may
do a good job in suppressing only those gauge-field confi
rations supporting close-to-unity eigenvalues, leading t
minimal ‘‘waste’’ of configurations.

VI. CONCLUSIONS

In this paper we have studied potential sources for
anomalous term in chiral Ward identities. For conventio
domain-wall fermions (a551) the transfer matrix is com
plex if M.1. As discussed in Sec. IV, in the numerical wo
of Refs.@1–4# slowly-suppressed chiral symmetry violation
could therefore arise not only from eigenvalues which
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close to one, but in fact from eigenvalues in the vicinity
the entire unit circle.

For a550.5 and 0,M,2 the transfer matrix will be
strictly positive. The first question that has to be addres
numerically is whether the favorable range for a single lig
quark is stillM;1.7, as in thea551 case@1,3#. The range
M;1.7 seems reasonable also from the point of view of
new overlap formulation@16#. Since the new overlap in
volves a continuouss-coordinate limit, it is plausible that the
best value ofM may be rather insensitive toa5 .

For fixed 1,M,2, asa5 is decreased from 1 to 0.5 a
eigenvalues must flow towards the positive real axis. D
pending on the flow pattern, the number of close-to-one
genvalues ata550.5 could be quite different from the origi
nal number of eigenvalues close to the unit circle. Hence,
transition froma551 to a550.5 could by itself have a sig
nificant effect on the anomalous term. Finally, once t
above issues are resolved, one can proceed to test wh
the modified pseudo-fermion action is useful in further
ducing lattice-artifact violations of chiral symmetries at pre
ently accessible values ofNs .

ACKNOWLEDGMENTS

I thank the participants of the RIKEN BNL Researc
Center workshop on ‘‘Fermion Frontiers in Vector Lattic
Gauge Theories,’’ at Brookhaven National Laboratory,
extensive discussions that motivated this work. Especial
would like to thank the organizers for creating this uniq
opportunity to exchange ideas on the subject. This work
supported in part by the Israel Science Foundation.

APPENDIX A: THE SECOND-ORDER PROPAGATOR

For 2<s9<Ns21, Eqs.~3.3! and ~3.8! imply

(
s

V~s9,s!G`~s,s8!2ds9,s85(
s

V~s9,s!H66~s,s8!50.

~A1!

For s951 ands95Ns there are boundary effects. The abo
expressions are not zero, and theirs8-dependence is given b
Q6s8. The linear combination that gives the propagatorG
@Eq. ~3.17!# is determined by requiring the coefficients
Q6s8 to vanish. By imposing this condition on theQ1s8 part
we obtain

CS A11

A21
D 5S Q222X11Q21

2X12Q21 D f ~Q!, ~A2!

and by imposing this condition on theQ2s8 part we obtain

CS A12

A22
D 5S 2X21Q21

Q222X22Q21D f ~Q!, ~A3!

where
6-7
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C5S X11Q2Q21X21QNs X11QNs2QNs211X21Q

X22QNs2QNs211X12Q X22Q2Q21X12QNs
D . ~A4!
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Note the C has a convergentNs→` limit. A second-
quantized transfer-matrix representation of the finite-Ns fer-
mion determinant is given in Ref.@10# @see in particular Eqs
~3.1! and ~3.10! therein#. We conclude from it that forMa5
,1 andm.0, det(DF) is ~real and! strictly positive for any
number of flavors. ThereforeDF has an inverse, and th
above equations must have a solution which obeysA21

5A12
† .

We note thatDF
21 may exist even ifT̃ has an eigenvalue

which is exactly equal to one. In this case, a possible wa
constructDF

21 is to perturb the background field so that th
eigenvalue will be only approximately equal to one, say
to O(e). The construction of Sec. III is now applicable.DF

21

for the initial background field can then be found by ca
fully removing the perturbation, keeping track of the leadi
terms ine.

APPENDIX B: THE SECOND-ORDER DETERMINANT

For evenN, we can use the formulas for the determina
of a general tridiagonal matrix, derived in the appendix
Ref. @18#, to write down an expression for det„Vpf(c1)…, cf.
Eq. ~5.8!. @Here the block entries of the tridiagonal matr
have spin indices ranging from one to four. With the repla
ment N→Ns , a similar formula holds for det (V), cf. Eq.
~3.3!.# In the notation of Ref.@18#, the present application i
defined by

a5S 21 0

Ypf 21D 5a j , j 51, . . . ,N/221, ~B1!

aN/25S 21 0

X22
pf X12

pf D , ~B2!
.

a-

05450
to
t
p

-

t
f

-

b5S 21 Ypf

0 21D 5b j , j 51, . . . ,N/221,

~B3!

bN/25S X21
pf X11

pf

0 21
D . ~B4!

With these definitions, Eq.~A.10! of Ref. @18# reads

det~Vpf!5det@a21aN/22~2a21b!N/2b21bN/2#. ~B5!

Substituting the above explicit expressions we arrive at
~5.8!. Note that (2a21b) is equal to the RHS of Eq.~5.13!.
The bulk factor of det(Vpf) can be separated as follows. W
first rewrite Eq.~5.8! as

det~Vpf!5det~12Qpf
2 !det~S22Tpf

NS1!, ~B6!

whereS65P21R6. Using Eq.~5.11! it is now easy to check
that

det~Vpf!5det~Qpf
2N!det~12Qpf

2 !detF S 1 0

0 Qpf
N DS2

2S Qpf
N 0

0 1
DS1G . ~B7!

The bulk factor det(Qpf
2N) appears explicitly in the above

equation. The other terms are by definition the finite fact
For Ma5,1 the entries ofVpf are bounded, and det(Vpf) is
finite for any finiteN. This is more easily seen using Eq
~5.8! and~5.13!. It can be checked that if an eigenvalue ofQ
approaches one, then the restriction of the RHS of Eq.~5.13!
to this eigenvalue has a finite limit. Moreover, the restricti
of PTpf

NP21 to this eigenvalue grows only linearly~not ex-
ponentially! with N.
ys.
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