
PHYSICAL REVIEW D, VOLUME 59, 054505
Speeding up finite step-size updating of full QCD on the lattice

M. Hasenbusch*
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We propose various improvements of finite step-size updating for full QCD on the lattice that might turn
finite step-size updating into a viable alternative to the hybrid Monte Carlo algorithm. These improvements are
noise reduction of the noisy estimator of the fermion determinant, unbiased inclusion of the hopping parameter
expansion and a multi-level Metropolis scheme. First numerical tests are performed for the 2 dimensional
Schwinger model with two flavors of Wilson fermions and for QCD with two flavors of Wilson fermions and
Schrödinger functional boundary conditions.@S0556-2821~99!04105-3#
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I. INTRODUCTION

The incorporation of fermionic degrees of freedom in t
simulation of lattice QCD is a long standing problem.
present the hybrid Monte Carlo algorithm@1# is the state of
the art algorithm for the simulation of full QCD on the la
tice. Most of QCD simulations up to now were performed
the so-called quenched approximation where the fermion
terminant is approximated by a constant factor. Simulati
of 2-flavor QCD on lattices of a size that might just allow
physically meaningful interpretation were performed just
cently @2–5#.

Extremely large autocorrelation times of the topologic
charge have been observed in hybrid Monte Carlo sim
tions of QCD with staggered fermions@6#. One might ask
whether the small step size of the hybrid Monte Carlo crea
particular problems in switching the topological sector. T
authors of Ref.@7# found that the topological charge is in
deed the slowest mode in the hybrid Monte Carlo simulat
of QCD with Wilson fermions. However, the integrated a
tocorrelation time of the topological charge is only larger
a small factor than that of other quantities. Nevertheless
seems desirable to have a finite step-size updating algor
as a complement of the hybrid Monte Carlo algorithm.

Formally the multi-boson approach of Lu¨scher@8# allows
for a finite-step-size updating of the gauge field. However
the chiral limit the number of bosonic fields has to be
creased. These fields amount to a large ‘‘force’’ on the ga
field and allow only small changes in a single update st
See Refs.@9–11#.

In fact the first proposal for a practical QCD algorithm b
Weingarten and Petcher@12# in 1981 is a finite step-size
algorithm. Since the update of a single link~or a fixed small
number of links! requires the evaluation of the inverse of t
fermion matrix applied to a vector, the CPU time requir
for a full sweep over the lattice increases withVolume2 even
at fixedb andk.

For that reason this algorithm and variants of it@13–16#
~and many more references! were abandoned when the h
brid Monte Carlo algorithm@1# was introduced in 1987
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which has a volume dependence likeVolume5/4 for fixed b
andk.

In this paper we will demonstrate how finite step-size
gorithms can be speeded up by a large~order 100! factor.
Still progress is needed to overcome theVolume2 increase of
the CPU time, such that the algorithm becomes an alterna
to the hybrid Monte Carlo algorithm in present day simu
tions.

The paper is organized as follows. In Sec. II we will di
cuss the action to be simulated. Here we shall explain h
the hopping parameter expansion can be incorporated
the simulation in an unbiased form. Next we show how t
variance of the noisy estimator of the fermion determin
can be reduced. The major novelty of the simulation is
use of a sequence of approximations of the exact action
multi-level Metropolis scheme~Sec. III!. In Sec. IV we will
present first numerical tests of the methods proposed. Th
tests are performed with the two flavor 2D Schwinger mo
with Wilson action and two-flavor QCD with Wilson actio
and Schro¨dinger functional boundary conditions. In Sec.
we compare our method with related approaches. Finally
give a short outlook on possible improvements of the me
ods discussed.

II. THE ACTION TO BE SIMULATED

In order to perform numerical simulations the Grassma
variables in the path-integral formulation of QCD are in ge
eral integrated out. What remains is a Boltzmann factor t
only depends on the gauge degrees of freedom. For exam
in the case of two flavors of mass-degenerate fermions
obtain

Z5E D@U#exp~2SG@U# !detM†M , ~1!

whereSG@U# is the gauge action andM the fermion matrix
in its non-Hermitian form.

For reasonably large lattice sizes the problem still rema
intractable in this form since the evaluation of the determ
nant requires of the orderVolume3 operations.

A way out of the problem was proposed by Weingart
and Petcher who use the identity
©1999 The American Physical Society05-1
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M. HASENBUSCH PHYSICAL REVIEW D 59 054505
detM†M}E D@h#D@h†#exp~2uM 21hu2! ~2!

to introduce auxiliary bosonic degrees of freedom:

Z5E D@U#D@h#D@h†#exp~2SG@U#2uM 21hu2!. ~3!

This reduces the calculation of the action to a problem wh
takes of the orderVolumeoperations at the price of a nois
estimate of the fermion matrix. Note that the hybrid Mon
Carlo algorithm is also based on this action.

In the following we will use the hopping parameter e
pansion to evaluate part of the fermion determinant n
noisy while the remainder is treated in a similar fashion
Weingarten and Petcher treat the full fermion matrix.

A. Making use of the hopping parameter expansion

Let us start the discussion with the effective weight
two flavors of degenerate fermions

detM†M5detM†detM5exp~ tr ln M†1tr ln M !. ~4!

M can be written as

M512kH ~5!

~in the red-black preconditioned case we have to replack
by k2). lnM can now be written as a Taylor series ink:

ln M52kH2
1

2
k2H22

1

3
k3H3

••• . ~6!

In the following we use the firstk terms explicitly as action
for our updates of the link variables while the remaining p
is dealt with stochastically.

We define

ln M̃5 ln M1 (
n51

k
1

n
knHn ~7!

or equivalently

M̃5M expS (
n51

k
1

n
knHnD . ~8!

So we arrive at the action

S@U,h#5SG@U#1tr(
n51

k
1

n
knH@U#n1H.c.1uM̃ @U#21hu2.

~9!

In the following section we will give a noise reduced r
placement ofuM̃ 21hu2 which will lead to the action which is
simulated at the end.
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B. Reducing noise by using roots of the fermion matrix

Here we consider as noise the fluctuations of

uM ~U !21hu21tr lnM ~U !1H.c. ~10!

with varyingU for a fixed noise vectorh. The motivation for
reducing the noise of the estimator of the fermion deter
nant is to obtain larger Metropolis acceptance rates fo
given proposal or to allow for a larger change of the gau
field within one proposal at a sustained acceptance rate
natural idea to reduce the noise is to use the average obta
from several noise vectorsh i rather than using a single nois
vector. Below we will discuss how this can be achieved in
consistent way.

The fermionic determinant can be rewritten as

detM†M5detM†detM5~detM1/r†!r~detM1/r !r

5~detM1/r†M1/r !r ~11!

which allows us to rewrite each of the factors separately
an integral over auxiliary bosonic variables:

~detM1/r †
M1/r !r}E D@h1#D@h1

†#•••D@h r #D@h r
†#

3expS 2(
i 51

r

uM 21/rh i u2D . ~12!

The M1/r andM 21/r are computed as Taylor series inkH.
In the limit r→` the noise is completely eliminated. I

this limit the integrand gives, up to a factor that does n
depend on the gauge field, the fermion determinant.

Note that for complexx in a unit circle around 1 we have

lim
r→`

r @~12x!1/r21#52 lim
r→`

r @~12x!21/r21#5 ln~12x!.

~13!

This can be easily shown: With exp(x̃)ª12x we get

r @~12x!1/r21#5r @exp~ x̃/r !21#5 x̃1O~1/r !. ~14!

Equilibrium h i for a given gauge field are given by

h i5M 81/rx i5x i1
1

r
ln M 8x i1O~1/r 2! ~15!

where thex i have a Gaussian distribution. HereM 8 is the
fermion matrix of a fixed reference gauge fieldU8. Note that
in the Monte Carlo simulation updates of the gauge fie
and the noise vectors alternate. Hence one might think ofU8
as the gauge field for which theh i were updated before.

We obtain, for the integrand of Eq.~12!,
5-2
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expS 2(
i 51

r

uM 21/rh i u2D
5expF2(

i 51

r US 12
1

r
ln M Dh i1O~1/r 2!U2G

5expF2(
i 51

r US 12
1

r
ln M Dx i1

1

r
ln M 8x i1O~1/r 2!U2G .

~16!

With

lim
r→`

1

r (i 51

r

x i
† ln Mx i5tr ln M , ~17!

we arrive at the result

lim
r→`

expS 2(
i 51

r

uM 21/rh i u2D 5const~M 8!3detM†M .

~18!

Finally we arrived at the action~up to red-black precon
ditioning! which is used for the simulations:

S5SG1 (
n51

k
1

n
kn ~ trHn1H.c.!1(

i 51

r

uM̃ 21/rh i u2. ~19!

The parameters that characterize the action are the ord
the hopping parameter expansionk and the rootr of the
modified fermion matrixM̃ .

The price to pay for the noise reduction is to deal with
larger number of noise vectorsh i . How the benefit com-
pares with the extra cost will be studied numerically in S
IV A 1.

III. HIERARCHY OF ACCEPTANCE STEPS

The novel feature of our updating scheme is that a
quence of approximations

S1 ,S2 , . . . ,Sl5S ~20!

of the full action is used. This sequence of actions is or
nized such that the actions become better approximation
the full action while at the same time the computational
fort to compute them increases.

For the action above the sequence of approximation
realized in a rather trivial way:

The first approximation is given by the gauge action p
the ‘‘hopping part’’ of the fermion action

S15SG1 (
n51

k
1

n
kn ~ trHn1H.c.!, ~21!

while better approximations are given by the truncation
the Taylor series ofM̃ 21/rh i at a finite ordert.
05450
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Hence the sequence of actions is characterized by a
quence of truncation orders

t2,t3,•••,t l5 ‘ ‘ ` ’ ’ ~22!

where ‘‘` ’ ’ means that the series is truncated at an ord
such that the sum of the remaining terms is below a giv
~small! bound.

We should note that the auxiliary fieldh can be updated
in a global heat-bath step

h j5M̃1/rx j ~23!

wherex j has a Gaussian distribution. Therefore we will u
date theh j just once for every update cycle. In the followin
discussion of the update of the gauge fieldU we therefore
assume a fixedh j .

A. Simplest case:l 52

Let us first discuss the algorithm for the simplest ca
which is given byl 52. Such two-step decompositions of th
action are actually in common use.

For the simplicity of discussion we assumer 51 andk
50. First a number of link updates are performed w
Cabibbo-Marinari @17# updating or micro-canonical over
relaxation@18,19# such that the whole update sequence
spects detailed balance with respect to the pure gauge ac
~For a detailed discussion see below.! This way a proposal
U8 for the full action is generated. The proposalU8 is ac-
cepted with the probability given by

A~U8,U !5min@1,exp~2s2@U8#1s2@U# !# ~24!

with s25S22S1 and

2s2@U8#1s2@U#52uM ~U8!21hu21uM ~U !21hu2.
~25!

It is easy to see that this algorithm satisfies detailed b
ance with respect to the actionS2:

For UÞU8 we get the following:
Case 1: s2@U8#>s2@U#. For the update ofU to U8 we

obtain

P2~U8,U !5P1~U8,U !exp~2s2@U8#1s2@U# !, ~26!

whereP2(U8,U) andP1(U8,U) are the probabilities to up
date fromU to U8 at level 2 and level 1 respectively. For th
update ofU8 to U we get

P2~U,U8!5P1~U,U8!. ~27!

Taking the ratio and using the fact thatP1 satisfies detailed
balance with respect toS1 we get

P2~U8,U !

P2~U,U8!
5exp~2S1@U8#1S1@U# !

3exp~2s2@U8#1s2@U# !

5exp~2S2@U8#1S2@U# !. ~28!

Case 2. s2@U8#,s2@U# works just analogously.
5-3
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M. HASENBUSCH PHYSICAL REVIEW D 59 054505
B. Generalization to l>2

The generalization tol .2 is done recursively. Given a
update algorithmUPi 21 that satisfies detailed balance wi
respect to an actionSi 21 we construct an algorithmUPi that
satisfies detailed balance with respect to the actionSi . This
process is iterated until we reach the exact action of
model.

We use the algorithmUPi 21 that satisfies detailed ba
ance with respect to the actionSi 21 in order to construct a
proposal. Starting from a configurationU we apply the el-
ementary update step ofUPi 21mi 21 times to obtain the pro-
posalU8. The composition of the elementary update ste
has to be done in such a way that detailed balance is m
tained for the whole sequence.~A discussion of this point is
given below.! The proposalU8 is then accepted with the
probability

Ai~U8,U !5min@1,exp~2si@U8#1si@U# !# ~29!

with si5Si2Si 21 .
Let us try to give an intuitive argument why such a s

quence of levels could be of advantage. Changes of
gauge field are done on level 1 of the algorithm. The ‘‘only
thing that happens at subsequent levels is that part of t
updates at level 1 are rejected. One might imagine the le
i .1 as a set of filters that are used subsequently. The po
tial advantage of the set of filters compared to a single fi
is that the expensive filters (i large! have to be applied les
frequently because the cheaper filters of the low levels
ready give a quite good preselection.

C. Composing updates

Next we have to discuss how the updates with the ac
S1 should look in detail. The basic building blocks in th
case of QCD will be the well known Cabibbo-Marinari hea
bath update@17# and the micro-canonical over-relaxation u
date@18,19#. Both algorithms satisfy detailed balance wh
applied to a single subgroup of a given link variable.

However, one should note that a sequence of~different!
updating steps which individually satisfy detailed balance
general does not satisfies detailed balance as a whole.
statement in particular applies to sweeping through the
tice with a Cabibbo-Marinari or over-relaxation update in
given order.

In simulations of the pure gauge theory this does not p
a problem since the sequence still satisfies the weaker
sufficient condition of stability:

exp@2S~U8!#5E DUP~U8,U !exp@2S~U !#. ~30!

However, the basic building blocks of our algorithm have
satisfy detailed balance. The simplest composition that d
satisfy detailed balance is to select the link and the sub-gr
randomly for each link update.

For performance reasons however it is desirable to s
with a regular pattern of sweeping through the lattice.
simple way to achieve this is to choose with probability 1
either a given sequence of elementary update steps or
05450
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equal probability its exact reverse~see for example Ref
@11#!. This symmetrization restores detailed balance. Let
prove the statement for a sequence of two updates.

The update probability of the symmetrized composite
the two updatesp1 andp2 is given by

P~U9,U !5
1

2E dU8@p1~U9,U8!p2~U8,U !

1p2~U9,U8!p1~U8,U !#. ~31!

Now for any intermediate configurationU8 we have

p1~U9,U8!p2~U8,U !1p2~U9,U8!p1~U8,U !

p1~U,U8!p2~U8,U9!1p2~U,U8!p1~U8,U9!

5exp@2S~U9!1S~U8!#exp@2S~U8!1S~U !#

5exp@2S~U9!1S~U !#, ~32!

where we have used thatp1 andp2 satisfy detailed balance
Since that ratio is identical for any intermediate configu
tion U8, the ratio of the integral over theU8 takes the same
value as for each of the individualU8. Hence detailed bal-
ance is satisfied for the whole sequence.

IV. NUMERICAL RESULTS

As first tests of the algorithm proposed above we sim
lated the~111!-dimensional 2-flavor Schwinger model wit
Wilson fermions and~311!-dimensional 2-flavor QCD with
Wilson fermions and with Schro¨dinger-functional boundary
conditions. In both cases we performed most of the simu
tions at one set of parameters. The sets of parameters
chosen such that we could compare our results with the
erature@20# in the case of the Schwinger model and wi
results obtained within the ALPHA Collaboration@21,22# in
the case of QCD. The aim of this numerical study is to obt
a first impression of the effectiveness of our new propos
compared to the hybrid Monte Carlo and multi-boson alg
rithms. Since it is very likely that further substantial im
provements of the algorithm can be found, we think that i
not the time yet to systematically study the dependence
the performance of the algorithm on all parameters of
theory.

A. Schwinger model in 2 dimensions

We simulate the two-flavor two dimensional lattic
Schwinger model with Wilson fermions. The gauge part
the action is given by

SG52b(
x

ReUplaq,x , ~33!

where

Uplaq,x5Ux,1Ux1~1,0!,2Ūx1~0,1!,1Ūx,2 , ~34!

where the link variablesUx,m are elements ofU(1). The
fermion matrix can be written as
5-4
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M512kH. ~35!

The hopping part of the fermion matrix is given by

H5(
m

@dx2m̂,y~11gm!Ux2m̂,m1dx1m̂,y~12gm!Ūx,m#,

~36!

where in two dimensions we choose theg-matrices as

g15S 0 1

1 0D , g25S 1 0

0 21D . ~37!

As for other algorithms preconditioning improves the perf
mance of our algorithm considerably. A simple version
preconditioning is the so-called red-black preconditionin
The sites of the lattice are decomposed in even and odd s
Then the fermion matrix can be written in the from

M5S 1ee 2kHeo

2kHoe 1oo
D . ~38!

For the fermion determinant the identity

detM5det~1ee2k2HeoHoe! ~39!

holds. Hence the original problem is reduced by half in
dimension~of the fermion determinant!. The bosonic fieldh
which is used for the stochastic estimate of the fermion
terminant resides only on even sites. The red-black prec
ditioned fermion matrix is given by

Mee51ee2k2HeoHoe . ~40!

Most of our tests are done for the single parameter
b52.5 andk50.26. This set was chosen to compare o
results for Wilson loops of various sizes with those recen
given by Irving and Sexton@20#. One simulation was per
formed atb52.5 andk50.266 to see the effects of goin
closer tokc .

As elementary updates at level 1 we took updates of r
domly selected link variables. These link variables are
dated by a heat bath which was implemented by a multi
Metropolis update. As the criterion to stop the Taylor ser
of M 21/rh i we used

uctH
th i u2

uM 21/rh i u2
,1028, ~41!

wherect is the Taylor coefficient of the ordert andM 21/rh i
is evaluated up to ordert.

1. Testing noise reduction

In a first set of numerical experiments we studied
effect of preconditioning and noise reduction on accepta
rates. In order to keep things~conceptually! simple we used
only a two-step decomposition (l 52) for these studies an
made no use of the hopping parameter expansion.

In order to obtain the acceptance rate as a function of
number of link variables that are updated in a single propo
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we performed in a single simulation between 200 and 10
sequences of update cycles, where in each sequence the
ber of updated links for one proposal runs from 1 to so
maximal number. The acceptance rates are collected du
the run.

The simulations are all performed on a 16316 lattice. We
tested the cases of no preconditioning andr 51, and red-
black preconditioning in combination withr 51, 2, 4 and
8. Our results are given in Fig. 1. We made no effort
compute error bars. The errors should be roughly of the s
of the fluctuations of the curves.

Fifty percent acceptance is reached for no precondition
with r 51 at about 2 links updated, while for preconditio
ing, with r 51, 50% acceptance is obtained for about 4
links updated. We should note that this amounts to a per
mance advantage of preconditioning by a factor of 4–5 si
the computation of the action requires only half of the o
erations that are needed in the non-preconditioned case

With preconditioning andr 52, 4, 8 we obtain 50% ac
ceptance with about 9, 20 and 40 links updated. Since
numerical effort of computing the action grows linearly inr,
there is no direct performance gain by using the roots of
fermion matrix.

However, as we will see later it is quite useful that
larger number of links can be updated in one update p
posal. The roots might also allow for a simple version
parallelization: The application ofH could be done indepen
dently by one processor for each of theh i .

We should note of course that the acceptance rate
function of r is bounded by the acceptance rate that is
tained with the exactly evaluated fermion determinant. R
erence@23# however suggests that for lattices of the size t
we consider here even for full sweeps over the lattice r
sonable acceptance rates are obtained when the fermion
terminant is evaluated exactly. We produced almost indep
dent configurations by updating 6400 links~which is several
times the number of links of the lattice! in one proposal. We
obtained an acceptance rate of 0.39~2!.

FIG. 1. Acceptance rates as function of the number of link va
ables that are updated in for the proposal. For details see the
5-5
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M. HASENBUSCH PHYSICAL REVIEW D 59 054505
2. Exploiting the hopping parameter expansion

In a second set of numerical experiments we studied
inclusion of the hopping parameter expansion to ordek
52 andk54. Again only a two-step decomposition (l 52)
of the action is used. We performed the test withr 51 and
r 54.

For r 51 on the 16316 lattice and preconditioning w
find 50% acceptance fork54 at about 30 links updated, fo
k52 at about 13 links updated. Fork50 we found already
above 4–5 links. This means that the performance is
creased by a factor more than 6 by using the hopping par
eter expansion up to the orderk54.

For r 54 on the 16316 lattice and preconditioning w
find 50% acceptance fork54 at about 95 links updated, fo
k52 at about 50 links updated. Fork50 we found already
above 20 links.

Hence the performance of the algorithm is more th
doubled whenk52 is used instead ofk50 and becomes
four-fold for k54.

We did not investigate the inclusion of higher orders
the hopping parameter expansion into the algorithm. The
der k54 is accomplished by a shift of theb to b85b
116k4.

Since higher orders of the hopping parameter expan
require new terms in the gauge action, there will be a tra
off between the evaluation of these terms and a larger n
ber of links that can be updated with actionS1 at a given
acceptance rate.

3. Using a sequence of actions with l>2

Finally for r 54, k54 fixed and red-black precondition
ing we studied the performance of update cycles withl .2.

The first question that arises is how many levels o
should choose and how one should optimize the parame
t i @truncation order of Eq.~22!# andmi of the cycle, where
mi is the number of updates with the updateUPi at leveli to
generate the proposal for the accept/reject step of levi
11 ~see Sec. III B!.

The most direct criterion to judge the quality of an alg
rithm is the product of the square of the statistical error of
observable that is measured multiplied with the CPU ti
needed to obtain the result. However, this criterion requ
one to perform full simulations for each parameter set to
tested. Therefore one would like to have a more pract
method to estimate the performance of a given cycle
seems very natural to assume that the autocorrelation t
are proportional to the number of links that have been
dated within one cycle. On the other hand the major par
the CPU time is spent with the multiplication of the of
diagonal part of the fermion matrixH on a vector. Both these
numbers can be determined with reasonable accuracy
rather short runs~order 10 cycles!. Therefore we take the
ratio of accepted link updates divided by the number ofH
times vector applications as performance index~PI! of a
cycle.

We made a first attempt to perform the optimization of t
cycle parameters automatically. We start from a guess for
parameterst i andmi . The PI is computed by averaging ov
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10 or 20 cycles. In a step of the optimization we propo
small random changes of thet i andmi to obtain a new pro-
posal t i8 and mi8 . The PI of thet i8 and mi8 is computed by
averaging over 10 or 20 cycles. If the PI of the new para
eters is larger than the old one,t i andmi are replaced byt i8
andmi8 . Typically we performed 200 steps in this procedu
Fortunately it turns out that the performance does not dep
very sharply on the parameters of the cycle.

In a first set of experiments we checked the dependenc
the performance on the number of levels. We simulate
16316 lattice atb52.5 andk50.26. The truncation order
t i and the number of applicationsmi are summarized in
Table I.

The t i refer to the expansion of the red-black precon
tioned fermion matrix. Hence the corresponding order in
hopping parameter expansion is 2t i . The truncation order of
the last level is determined by the truncation criterion, E
~41!. In addition in the last column we give the total numb
of link updates per cycle that are accepted at a given le
At the first level this is just the total number of link updat
per cycle. The number given for the last level is the num
of link updates that eventually is accepted in one cycle.

The statistics of the first run (l 52) was 20000 cycles
where the first 2000 are discarded in the analysis. The st
tics of the other 3 runs (l .2) was 10000 cycles each, an
the first 500 cycles are discarded.

In Table II we summarize the autocorrelation times of t
Wilson loops of sizes 131 up to 535. In addition we give
in the second column the performance index of the run. A
in the last column we give the autocorrelation time of t
ordertstop at which the Taylor series ofM 21/rh i is truncated.
This number should be strongly correlated with the sm
eigenvalues ofMM†. Comparing the four runs we observ
that a larger number of accepted link updates per cycle
deed corresponds to a smaller autocorrelation time. H
ever, comparing runs 1 and 2 we see that the numbe
accepted link updates increases by a factor of 13.4 but a
correlation times only decrease by a factor of about 7.

TABLE I. Cycle parameters for the simulations of the 2
Schwinger model atb52.5, k50.26 on a 16316 lattice. For de-
tails see the text.

Run Level t i mi Accepted

1 1 120 120
2 120.5~7! 1 58.2~5!

2 1 220 2640
2 14 12 993.6~5.7!
3 124.68~39! 1 782.7~6.9!

3 1 120 4200
2 6 5 2192.7~5.1!
3 25 7 1333.6~6.6!
4 125.35~35! 1 1249.8~7.3!

4 1 230 4600
2 3 1 2775.2~7.6!
3 18 20 1318.2~7.3!
4 125.71~40! 1 1119.2~8.6!
5-6
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TABLE II. Performance index~PI! and autocorrelation times from simulations of the 2D Schwin
model atb52.5 andk50.26 on a 16316 lattice.

Run PI t131 t232 t333 t434 t535 tstop

1 0.0643~6! 7.6~6! 9.6~8! 10.5~9! 8.3~7! 5.6~5! 7.1~5!

2 0.481~5! 1.27~7! 1.41~8! 1.38~7! 1.26~8! 1.01~5!

3 0.523~3! 0.73~3! 0.81~4! 0.81~4! 0.86~4! 0.72~4! 0.77~5!

4 0.576~5! 1.00~5! 1.16~6! 1.14~6! 0.98~5! 0.90~5! 0.92~10!
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Comparing the performance index we see an impro
ment by a factor of 7.5 from the two-level scheme to t
three-level scheme. Going further to four levels one ga
about 20% in performance. Here one should note that
imperfection of the optimization of the cycle parameters i
source of uncertainty.

In Table III we give the results for Wilson loops of th
size 131 up to 535 summed over the lattice. In the firs
line we give for comparison the corresponding results of R
@20# which were obtained with the hybrid Monte Carlo alg
rithm. The results are consistent with each other.

Next we tested the dependence of the performance on
lattice size. Therefore we simulated the 32332 lattice atb
52.5 andk50.26 withr 54. We tested two different cycle
with l 55. The parameters of the runs are summarized
Table IV. In Table V we give the PI and the autocorrelati
times of the measured observables. The performance ind
slightly better than forL516. However, we should note tha
we still have to take into account theVolumedependence o
the cost to applyH on a vector. Therefore we find essentia
the expectedVolume2 dependence of the cost at fixedb and
k of the algorithm.

The results for Wilson loops of size 131 up to 535 are
summarized in Table VI. The results of our runs are con
tent. However, there is some mismatch with the data of R
@20#. In particular the value for the 232 Wilson loop is by
4.7 standard deviations smaller than the combined re
from our simulations. Note that our result for the 32332
lattice is consistent with the results obtained for the 16316
lattice.

Finally we performed one run on a 32332 lattice atb
52.5 andk50.266 in order to check the dependence of
performance onk. Note that forb52.5kc'0.272 from in-
terpolating the results given in Table 1 of Ref.@24#. The
simulation consists of 9000 cycles. The first 500 cycles w
discarded from the data analysis. The simulation~which was

TABLE III. Results for Wilson loops of size 131 up to 535
for b52.5, k50.26 andL516. The results are summed over th
lattice.

Run W131 W232 W333 W434 W535

@20# 201.5~2! 105.2~6! 40.5~7! 12.9~6! 3.6~4!

1 201.61~14! 105.48~45! 41.20~61! 13.63~50! 4.34~36!

2 201.57~8! 104.99~24! 40.61~30! 13.34~27! 3.97~21!

3 201.51~6! 105.32~19! 41.08~23! 13.63~22! 4.19~18!

4 201.60~7! 105.35~23! 41.29~28! 13.74~24! 4.29~20!
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the most expensive discussed in this section! took about 7
days of CPU on a 200 MHz Pentium Pro PC. The parame
of the cycle are given in Table VII. We see that the numb
of terms to computeM 21/rh i increases by a factor of 2.2
compared withk50.26.

In Table VIII we give the autocorrelation times of Wilso
loops and the autocorrelation time of the truncation order
the Taylor series at the final level. In the first column we gi
the performance index. The performance index degrades
factor of 2.77 compared with our best cycle fork50.26 and
L532. This means that in addition to the larger costs
evaluatingM 21/rh i there is a small degradation of the pe
formance due to reduced acceptance rates.

In Table IX we give the results for Wilson loops of siz
131 up to 535. In particular the values of the large loop
are considerably larger than fork50.26.

B. Two flavor QCD with Schrödinger functional
boundary conditions

We simulated the standard Wilson gauge action with t
flavors of mass-degenerate Wilson fermions. We perform
runs atb58.3 andk50.1386'kc on a 84 lattice. We ap-
plied Schro¨dinger functional boundary conditions@25–28#.
The gauge fields at the boundaries are chosen as specifi
Ref. @26# with ct51.0. The boundary conditions for the fe
mions are taken as specified in Ref.@28# with u5p/5.

The Schro¨dinger functional boundary conditions and th
particular set of parameters were chosen in order to com
the performance of the algorithm with that of the hybr
Monte Carlo and non-Hermitian versions of the multi-bos
algorithm which are benchmarked by the ALPHA Collab

TABLE IV. Cycle parameters for the simulations of the 2
Schwinger model atb52.5, k50.26 on a 32332 lattice.

Run Level t i mi Accepted

1 1 200 12000
2 5 1 5061~12!

3 20 10 3081~10!

4 45 6 2778~10!

5 124.48~19! 1 2749~11!

2 1 150 32400
2 7 6 14369~21!

3 20 6 8260~20!

4 45 6 7184~23!

5 124.28~14! 1 7104~24!
5-7
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M. HASENBUSCH PHYSICAL REVIEW D 59 054505
ration at these parameters. This benchmark is a prepara
of a study of the running coupling in the presence of dyna
cal fermions. Note thatb58.3 is considerably larger than th
b values typically used for spectroscopy.

As observables we have implemented the plaquette,
inverse of the running couplingḡ22 and v̄ ~for the defini-
tions of these quantities see Ref.@26#!. In addition we com-
puted the autocorrelation time of the number of iteratio
needed for convergence of the Taylor series. This num
should be closely related to the smallest eigenvalues
MM†.

Biased by the results of the previous section we used
black preconditioning and the hopping parameter expan
to orderk54 for our simulations. To this order the hoppin
parameter expansion leads to a shift inb:

Db596k4. ~42!

For our QCD simulations we tried to do better than random
selecting the links to be updated at level 1 of the upd
cycle. We sweep through sub-blocks of a certain size in
ordered way. Here one should note that for fixed auxilia
bosonic fieldsh the actionSl is not gauge invariant. As a
consequence even proposals that consist of pure gauge t
formations would have an acceptance rate smaller than
Therefore we fixed the gauge for the elementary~i.e. level 1!
updates of the gauge field.

As elementary link updates we used Cabibbo-Marin
heat-bath updating and micro-canonical over-relaxation
the case of a Cabibbo-Marinari update we performed a
quence of 5SU(2)-subgroup heat-bath updates where
subgroups are given by the (1,2), (2,3), (1,3), (2,3), (1
components of theSU(3) matrix. Also in the case of over
relaxation we updated in a sequence ofSU(2) subgroups.
The sequence is given by the (1,2), (2,3), (1,3) compone
of the SU(3) matrix.

We tested two different update schemes for the updat
the actionS1 .

In our first update scheme, which will in the following b
referred to as ‘‘point-update,’’ we choose with uniform pro
ability a lattice point with 0,t,T. Then 7 of the links at-

TABLE V. Performance index~PI! and autocorrelation times
from the simulations atb52.5 andk50.26 on a 32332 lattice.

Run PI t131 t232 t333 t434 t535 tstop

1 0.604~3! 0.89~6! 1.05~7! 1.13~8! 1.02~6! 0.69~5! 0.97~6!

2 0.703~3! 0.60~2! 0.63~3! 0.63~3! 0.58~3! 0.52~2! 0.59~2!

TABLE VI. Results for Wilson loops of size 131 up to 535 at
b52.5, k50.26 on a 32332 lattice.

Run W131 W232 W333 W434 W535

@20# 805.1~3! 415.7~9! 158.9~11! 51.2~10! 15.1~10!

1 805.79~16! 419.62~52! 162.12~68! 52.79~55! 16.12~40!

2 805.95~14! 420.52~42! 163.83~54! 54.44~48! 17.11~35!
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tached to that point are updated as explained below. Theth

link is kept fixed in order to avoid updating of gauge degre
of freedom. We sweep 5 times over the 7 links, where
single link variable is updated by a Cabibbo-Marinari he
bath update. The order of sweeping through the 7 links
again symmetrized.

Since the links in time direction at the boundariest50
and t5T do not couple to the fermions, updates of the
links come almost for free. Therefore we performed a le
cographic sweep with over-relaxation updating over all lin
in time direction at the boundaries after half of the po
updates are performed. Also here the sequence of the up
ing is symmetrized. Note that most of the specifications
the details of the update are takenad hoc.

The second scheme that we tested, which will in the f
lowing be referred to as ‘‘block update,’’ is characterized
follows. First a sub-block of size 44 is selected. The position
in the spatial directions is chosen randomly with an unifo
distribution. In temporal direction the block is either attach
to the t50 or thet5T boundary; i.e., the block runs eithe
from t51 to t54 or from t54 to t57 ~with equal probabil-
ity for the two cases!.

In order to avoid updating gauge degrees of freedom, o
spatial links and temporal links at the boundariest50 and
t5T are updated.

The update sequence for a given sub-block is the follo
ing: First a sweep in lexicographic order with a Cabibb
Marinari update through the spatial links of the sub-block
performed. Then there are 8 over-relaxation sweeps over
spatial links of the sub-block and the temporal links of t
sub-block at the boundary. Finally there is a heat-bath sw
over all temporal boundary links. With probability 1/2 th
exact reverse of this sequence is performed in order to sa
detailed balance. Note that in addition to the order of
links also the order of the subgroups taken for the overre
ation updates has to be reversed.

In addition to the runs with dynamical fermions we pe
formed simulations with the pure gauge action using the t
updating schemes discussed above. The idea is that

TABLE VII. Cycle parameters for the simulations of the 2
Schwinger model atb52.5 andk50.266 on a 32332 lattice.

Level t i mi Accepted

1 150 32400
2 6 1 11654~23!

3 16 6 7355~19!

4 40 6 5073~16!

5 80 6 4377~19!

6 283.5~1.5! 1 4270~22!

TABLE VIII. Performance index~PI! and autocorrelation times
from the simulation atb52.5 andk50.266 on a 32332 lattice.

PI t131 t232 t333 t434 t535 tstop

0.254~13! 0.80~4! 0.85~5! 0.86~5! 0.80~5! 0.59~3! 0.90~7!
5-8
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Monte Carlo dynamics of the quenched simulation is v
similar to that of the simulation~with our algorithm! of the
full theory. The motivation is that the elementary updates
governed by the pure gauge action, while the fermions o
enter in the accept/reject steps.

Therefore we could obtain an estimate of the performa
of the full algorithm by combining autocorrelation times
the quenched simulation with acceptance rates of the
namical fermion simulation. Acceptance rates can be
tained reasonably well from rather short runs, while relia
estimates of auto-correlation times require rather good st
tics.

t f ermions'
nacc

nquenched
tquenched, ~43!

wherenacc is the number of point updates or block upda
accepted in an update cycle of the dynamical fermion sim
lation and nquenched is number of point updates or bloc
updates which is performed per measurement in
quenched simulation.

1. Quenched simulations

First we performed quenched simulations with the t
updating schemes discussed above.

For the point update we performed 20 000 measureme
Per measurement 123360 point updates are performed. F
the block update we performed 30 000 measurements.
measurement we updated 16 44 sub-blocks.

In both cases the first 1000 measurements were disca
for the evaluation of the observables and integrated auto
relation times which are summarized in Table X. We obse
that the integrated autocorrelation time ofv̄ is the largest of
the measured autocorrelation times.

2. Simulations with dynamical fermions

First we tested the ‘‘point-updating’’ scheme. After som
preliminary testing we decided to usel 56 for the approxi-
mation sequence, the rootr 56 and the order of the hoppin
parameter expansionk54. The truncation order and the mu
tiplicities for each level is given in Table XI. In Table XI w

TABLE IX. Results for Wilson loops of size 131 up to 535 at
b52.5 andk50.266 on a 32332 lattice. The results are summe
over the lattice.

W131 W232 W333 W434 W535

810.21~14! 435.28~40! 182.76~51! 68.59~47! 25.09~35!
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give in addition the average total number of point upda
that are accepted at a given level during an update cycle
level 1 this is just the total number of ‘‘point updates’’ in on
cycle

21600536031313103631. ~44!

In order to obtain a reasonably large statistics we used tri
parallelization. We performed 6 independent runs, where
first 400 cycles of each run are discarded for the data an
sis. All runs were started from an ordered configuratio
Then a small number of update sweeps with the pure ga
action plus theDb shift was performed in order to avoi
convergence problems of the Taylor series. In total we g
erated 8450 measurements that were used for the avera
The simulation took about 135 days of Pentium Pro 2
MHz time, where the generation of the discarded configu
tions is not taken into account.

The CPU costs of an update cycle are essentially given
the number of applications of the off-diagonal part of t
fermion matrix to a vector. For our run on average 4075~3!
applications ofH per cycle were performed.

The average truncation order of the Taylor series
98.5~1!. The autocorrelation time of the~over the 6 replicas
averaged! truncation order iststop52.4(2). Results for the
observables are given in Table XII.

First we note that the results for the observables are c
sistent with those obtained by Wolff with the multi-boso
algorithm @21#. As for the quenched simulation the autoco
relation time of the plaquette is the smallest while that ofv̄ is
the largest. It is even considerably larger thantstop. Next we
checked our hypothesis that the autocorrelation times ca
predicted from autocorrelation times of the quenched run
combination with acceptance rates of the dynamical ferm
simulation. The numbers of Table X have to be multiplied
4320/4548. Then we obtain the estimatestp,est50.67(3),
tg,est52.49(12) andtv,est57.8(9) which are in quite good
agreement with the directly measured results given in Ta

TABLE XI. Cycle parameters of the dynamical fermion sim
lation with the ‘‘point-update’’ scheme.

Level t i mi Accepted

1 Gauge1 hopping 360 21600
2 4 1 8844~27!

3 7 1 6178~25!

4 10 10 5386~24!

5 24 6 4675~24!

6 ‘‘ ` ’’ 1 4548~24!
TABLE X. Results for the average plaquette~Plaq!, the running couplingḡ22, v̄ and the corresponding
autocorrelation times of the quenched runs. For details see the text.

Update Plaq tp ḡ22 tg v̄ tv

Point 0.73963~1! 0.71~3! 0.6814~51! 2.62~13! 0.075~11! 8.2~9!

Block 0.73963~1! 1.36~4! 0.6742~31! 1.52~4! 0.062~7! 3.8~2!
5-9
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M. HASENBUSCH PHYSICAL REVIEW D 59 054505
XII. The ALPHA Collaboration intends to compute the ru
ning coupling of QCD with dynamical fermions. Therefo
the comparison of the algorithms which are candidates
this project is based on the statistical error ofḡ2. Within the
ALPHA Collaboration we agreed on the following cost de
nition:

Dcostª~ total number of applications ofH !3error@ ḡ22#2.
~45!

For the run with the ‘‘point update’’ we obtain

Dcost51835~150!1181~15!, ~46!

where the error ofDcost is derived from the statistical erro
of tg . The second contribution comes from converting t
updating costs at level 1. The cost of the Cabibbo-Marin
updates at level 1 have been converted to units ofH appli-
cation and are given by the second number.

In a similar way as for the autocorrelation times we tri
to estimate theDcost from the statistical error ofḡ22 in the
quenched simulation and the total acceptance in the dyn
cal fermion simulation. We obtain

Dcost,est51913~95!1189~9!, ~47!

which is again in good agreement with the directly obtain
result.

Next we studied the ‘‘block-update’’ scheme. Here w
also usedl 56, r 56 andk54. The truncation orders and th
multiplicities are summarized in Table XIII. We performe
only a run of 100 cycles that was started from an equilibri
configuration. The total acceptances are also given in Ta
XIII. On average a cycle of the update requires 4836~16!
applications of the off-diagonal part of the fermion matr
The 100 measurements are not sufficient to produce reli
estimates of the autocorrelation times and of the statist
error of ḡ22. Therefore we only quote the estimatedDcost:

TABLE XII. Results for the average plaquette~Plaq!, the run-

ning couplingḡ22, v̄ and the corresponding autocorrelation tim
of the dynamical fermion simulation with the ‘‘point-update
scheme. For details see the text.

Plaq tp ḡ22 tg v̄ tv

0.742746~18! 0.83~4! 0.7157~73! 2.47~20! 0.096~16! 6.9~9!

TABLE XIII. Cycle parameters of the dynamical fermion simu
lation with the ‘‘block-update’’ scheme.

Level t i mi Accepted

1 Gauge1 hopping 1 60
2 4 1 34.3~5!

3 8 3 25.7~4!

4 14 4 22.2~4!

5 25 5 20.1~5!

6 ‘‘ ` ’’ 1 19.9~6!
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Dcost,est51084~50!162~3!. ~48!

We conclude that the ‘‘block update’’ is more efficient tha
the ‘‘point update.’’

Our Dcost results can be compared with the other tw
algorithms benchmarked by the ALPHA Collaboration:

Dcost'900~30! ~49!

was obtained as preliminary result by Wolff with the no
Hermitian version of the multi-boson algorithm with re
weighting @21# and

Dcost'460 ~50!

was obtained by Jansen@22# with the polynomial hybrid
Monte Carlo algorithm@29#. In the last case onlyH applica-
tions have been counted. Additional costs have not been
verted intoDcost.

We conclude that for a 84 system we already hav
reached similar efficiency as the multi-boson and polynom
hybrid Monte Carlo algorithms. However, at least with t
present implementation, we have to expect a worse sca
of the efficiency with the lattice size as for the multi-bos
and the hybrid Monte Carlo algorithms. Therefore furth
progress is needed to obtain a competitive algorithm for
tice sizes that are needed for the calculation for the runn
coupling or light hadron spectroscopy.

V. COMPARISON WITH RELATED APPROACHES

Irving and Sexton@20# use approximations of the fermio
determinant to simulate the 2D Schwinger model and QC
They try to approximate the fermion action by adding W
son loops of different sizes and shapes to the gauge ac
Among other things they propose to construct an exact a
rithm by generating a proposal by using the approxim
action. They have in mind a two-level Metropolis schem
However, also in their context one could think of a sequen
of approximations by incorporating more and more Wils
loops.

In a recent paper Duncan, Eichten, and Thacker@30# pro-
pose to split the fermion determinant into two parts. One p
is given by the product of the smallest eigenvalues. Th
suggest that the remaining part can be expressed in term
small Wilson loops. In their simulation they approximate
the fermion determinant just by the product of the small
eigenvalues. They argue that the remaining part of the
mion determinant effectively amounts to ab-shift.

In the same spirit one could simulate with aM̃ that cor-
responds to a moderate order of the hopping-parameter
pansion and ignore the small orders of the hopping param
expansion.

Thron et al. @31# estimate the fermion determinant st
chastically. Their method to reduce the noise of their estim
tor incorporates, asM̃ in this paper, the hopping paramet
expansion.
5-10
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VI. OUTLOOK

There are several directions in which progress could
made.

First one could try to use higher orders of the hoppin
parameter expansion. In the present paper we only con
ered the hopping parameter expansion up to orderk54. This
leads only to a shift inb. At order k56, in 4 dimensions,
Wilson loops of three different shapes contribute. The
were implemented for example in Ref.@31#. Going to even
higher orders, the number of Wilson loops needed gro
exponentially in the order. Therefore one has to look fo
more efficient method to compute trHk than expressing it in
terms of Wilson loops. See Ref.@32#.

One might find noise reduced unbiased estimators of
fermion determinant that are less CPU intensive than th
discussed in Sec. II B of this paper.

Finally one might look at approximation schemes diffe
th

a,
a,

.
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ent from that discussed in this paper. In this paper the Ta
series of the fermion matrix ink is used as the basis of th
approximation scheme. One might construct approximati
of the action by truncatingM 21 in real space, i.e. allowing
only non-zero matrix elements (M 21)xy with ux2yu,d. The
quality of the approximation is then controlled byd.
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@26# M. Lüscher, R. Sommer, P. Weisz, and U. Wolff, Nucl. Phy

B413, 481 ~1994!.
@27# S. Sint, Nucl. Phys.B421, 135 ~1994!; B451, 416 ~1995!.
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