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Speeding up finite step-size updating of full QCD on the lattice
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We propose various improvements of finite step-size updating for full QCD on the lattice that might turn
finite step-size updating into a viable alternative to the hybrid Monte Carlo algorithm. These improvements are
noise reduction of the noisy estimator of the fermion determinant, unbiased inclusion of the hopping parameter
expansion and a multi-level Metropolis scheme. First numerical tests are performed for the 2 dimensional
Schwinger model with two flavors of Wilson fermions and for QCD with two flavors of Wilson fermions and
Schralinger functional boundary conditionsS0556-282(199)04105-3

PACS numbsds): 12.38.Gc, 02.70.Lq, 11.15.Ha

l. INTRODUCTION which has a volume dependence livelume’ for fixed B
and k.

The incorporation of fermionic degrees of freedom in the In this paper we will demonstrate how finite step-size al-
simulation of lattice QCD is a long standing problem. At gorithms can be speeded up by a lafgeder 100 factor.
present the hybrid Monte Carlo algorithit] is the state of ~ Still progress is needed to overcome Weumé increase of
the art algorithm for the simulation of full QCD on the lat- the CPU time, such that the algorithm becomes an alternative
tice. Most of QCD simulations up to now were performed into the hybrid Monte Carlo algorithm in present day simula-
the so-called quenched approximation where the fermion ddlons. _ _ o
terminant is approximated by a constant factor. Simulations TN€ Paper is organized as follows. In Sec. Il we will dis-
of 2-flavor QCD on lattices of a size that might just allow a CUSS the action to be S|mulated.. Here we s_hall explain hpw
physically meaningful interpretation were performed just re-the h.Ome:q pgrameter expansion can be incorporated into
the simulation in an unbiased form. Next we show how the
cently[2-5]. . . i ; ;

variance of the noisy estimator of the fermion determinant

Extremely large autocorrelz_itlon t|r_nes of the tOpOIO.glcalcan be reduced. The major novelty of the simulation is the
charge have been observed in hybrid Monte Carlo simula-

tions of QCD with staggered fermior]. One might ask use of a sequence of approximations of the exact action in a

- ) multi-level Metropolis scheméSec. Il)). In Sec. IV we will
whether the small step size of the hybrid Monte Carlo Createﬁresent first numerical tests of the methods proposed. These

particular problems in switching the topological sector. Theagis are performed with the two flavor 2D Schwinger model
authors of Ref[7] found that the topological charge is in- ith Wwilson action and two-flavor QCD with Wilson action
deed the slowest mode in the hybrid Monte Carlo simulatiorhng Schdinger functional boundary conditions. In Sec. V
of QCD with Wilson fermions. However, the integrated au-e compare our method with related approaches. Finally we
tocorrelation time of the topological charge is only larger bygive a short outlook on possible improvements of the meth-
a small factor than that of other quantities. Nevertheless, ibds discussed.
seems desirable to have a finite step-size updating algorithm
as a complement of the hybrid Monte Carlo algorithm.
Formally the multi-boson approach of scher[8] allows

for a finite-step-size updating of the gauge field. However, in  |n order to perform numerical simulations the Grassmann
the chiral limit the number of bosonic fields has to be in-variables in the path-integral formulation of QCD are in gen-
creased. These fields amount to a large “force” on the gaugeral integrated out. What remains is a Boltzmann factor that
field and allow only small changes in a single update steponly depends on the gauge degrees of freedom. For example

See Refs[9-11]. in the case of two flavors of mass-degenerate fermions we
In fact the first proposal for a practical QCD algorithm by obtain

Weingarten and Petchgd2] in 1981 is a finite step-size
algorithm. Since the update of a single lifdr a fixed small
number of link$ requires the evaluation of the inverse of the 7= J’ D[UJexp(— Sg[U])detM ™, (1)
fermion matrix applied to a vector, the CPU time required
for a full sweep over the lattice increases withlumé even
at fixed 8 and «. whereSg[U] is the gauge action and the fermion matrix
For that reason this algorithm and variants of1i8—16¢ in its non-Hermitian form.
(and many more referengewere abandoned when the hy-  For reasonably large lattice sizes the problem still remains
brid Monte Carlo algorithm[1] was introduced in 1987 intractable in this form since the evaluation of the determi-
nant requires of the ordarfolumé operations.
A way out of the problem was proposed by Weingarten
*Email address: hasenbus@physik.hu-berlin.de and Petcher who use the identity

Il. THE ACTION TO BE SIMULATED
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B. Reducing noise by using roots of the fermion matrix

t t M -1.(2
detM'™™ OCJ DL 71D 7" Jexp(—[M~*7[*) @ Here we consider as noise the fluctuations of

to introduce auxiliary bosonic degrees of freedom: IM(U) ™ y|?+trinM(U) +H.c. (10

_ with varyingU for a fixed noise vectof;. The motivation for
Z:f DLUIDL 71D ”T]exq_SG[U]_W %), @ reduciné]/ tr?e noise of the estimator of the fermion determi-
nant is to obtain larger Metropolis acceptance rates for a
This reduces the calculation of the action to a problem whictgiven proposal or to allow for a larger change of the gauge
takes of the ordeWolumeoperations at the price of a noisy field within one proposal at a sustained acceptance rate. A
estimate of the fermion matrix. Note that the hybrid Monte natural idea to reduce the noise is to use the average obtained
Carlo algorithm is also based on this action. from several noise vectorg rather than using a single noise
In the following we will use the hopping parameter ex- vector. Below we will discuss how this can be achieved in a
pansion to evaluate part of the fermion determinant nonconsistent way.
noisy while the remainder is treated in a similar fashion as The fermionic determinant can be rewritten as
Weingarten and Petcher treat the full fermion matrix.

detM ™M =detM TdetM = (detM )" (detM )"

A. Making use of the hopping parameter expansion
9 pping p p =(detM 1/rTM 1/r)r (11)

Let us start the discussion with the effective weight for

two flavors of degenerate fermions . .
which allows us to rewrite each of the factors separately as

detM™™ =detM 'detM =exp(trinMT+trlnM). (4)  an integral over auxiliary bosonic variables:

M can be written as s
(detM " Ml’r)“CXJ D[ 7:1D[ %11 - - D[ 7 1D[ /]

M=1—«xH (5)
;
_ -1 |2
(in the red-black preconditioned case we have to replace Xexp( 21 M~ ) (12)
by «2). InM can now be written as a Taylor series&n
1 1 The MY andM ~*" are computed as Taylor series .
INM=—«kH— EKZHZ— §K3H3. . (6) In the limit r— the noise is completely eliminated. In

this limit the integrand gives, up to a factor that does not
depend on the gauge field, the fermion determinant.

In the following we use the first terms explicitly as action  Note that for complex in a unit circle around 1 we have
for our updates of the link variables while the remaining part

is dealt with stochastically. _ " _ iy
We define Imr[(1-x)""—=1]=—=Ilimr[(1—%x) " —=1]=In(1—X).

r—o r—o

k (13

- 1
INnM=InM+ Y =x"H" ) -
n=1n This can be easily shown: With ex){=1—x we get

or equivalentl
q Y r[(1—x)" —1]=r[expx/r)—1]=x+0O(1/f). (14)

k
- 1
M=M exp( zfl ﬁKan) ' ®) Equilibrium #»; for a given gauge field are given by

So we arrive at the action o 1 . )
ﬁi:M Xi:Xi+ FlnM X|+O(1/r ) (15)
k

1 ~
U, 7]=Se[U]+tr>, =«x"H[U]"+H.c+|M[U] 7|2
n=1N where they; have a Gaussian distribution. Heké’ is the

(9 fermion matrix of a fixed reference gauge fiéld. Note that
in the Monte Carlo simulation updates of the gauge fields
In the following section we will give a noise reduced re- and the noise vectors alternate. Hence one might think’of
placement of|\~/l ~19]2 which will lead to the action which is as the gauge field for which thg, were updated before.
simulated at the end. We obtain, for the integrand of E@12),
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r Hence the sequence of actions is characterized by a se-
exp — > M~ Yy? quence of truncation orders
=1
<tzg<<---<t=" " (22)

2
} where “‘«’” means that the series is truncated at an order
such that the sum of the remaining terms is below a given
(smal) bound.
We should note that the auxiliary fielg can be updated
in a global heat-bath step

1
(1—FInM)7]i+O(1/r2)

2

1 1
(1—F|n M)Xi+FInM’Xi+O(1/r2)

(10 7= M MXj (23
With . L .
wherex; has a Gaussian distribution. Therefore we will up-
1.t date thez; just once for every update cycle. In the following
Iim—z XiT INMy;=trinM, (17 discussion of the update of the gauge fieldve therefore
r—om! 1=1 assume a fixedy; .
we arrive at the result A. Simplest case:l =2

Let us first discuss the algorithm for the simplest case
which is given byl = 2. Such two-step decompositions of the
action are actually in common use.

(18) For the simplicity of discussion we assume1 andk
=0. First a number of link updates are performed with
Finally we arrived at the actiofup to red-black precon- Cabibbo-Marinari[17] updating or micro-canonical over-
ditioning) which is used for the simulations: relaxation[18,19 such that the whole update sequence re-
spects detailed balance with respect to the pure gauge action.
k 1 r (For a detailed discussion see belpwhis way a proposal
S=Sg+ >, —k"(trH"+H.c)+ >, [M~ Y 5|2 (19 U’ for the full action is generated. The proposal is ac-
n=1n =1 cepted with the probability given by

r
lim exp( -> |M‘1/’7;i|2> =constM’) x detM ™.
=1

r—oo

The parameters that characterize the action are the order of AU U)=min[lexd —s,[U']+s,[U])] (24
the hopping parameter expansiénand the rootr of the .
modified fermion matrixM . with 5,=$,~$, and

The price to pay for the noise reduction is to deal with a  —s,[U’]+s,[U]=—|M(U") 192+ |M(U) 152
larger number of noise vectorg;. How the benefit com-

pares with the extra cost will be studied numerically in Sec. ) ] ) o )
VAL It is easy to see that this algorithm satisfies detailed bal-

ance with respect to the actic:

ForU+#U' we get the following:

Case 1: s[U']=s,[U]. For the update o) to U' we
The novel feature of our updating scheme is that a seobtain

quence of approximations P,(U",U)=P4(U",U)exp —s,[U']+s,[U]), (26)

Ill. HHERARCHY OF ACCEPTANCE STEPS

S, S=S (20 whereP,(U',U) andP,;(U’,U) are the probabilities to up-
L . _ . date fromU to U’ at level 2 and level 1 respectively. For the
of the full action is used. This sequence of actions is orga; date ofU’ to U we get
nized such that the actions become better approximations gfo

the full action while at the same time the computational ef- P,(U,U")=P;(U,U"). (27)
fort to compute them increases.

For the action above the sequence of approximations i$aking the ratio and using the fact thag satisfies detailed

realized in a rather trivial way: balance with respect t8, we get
The first approximation is given by the gauge action plus P,(U".U)
. . ; . : (U, ,
the “hopping part” of the fermion action , —exp(—S,[U']+S,[U])
k PZ(U ’ U )
1
$i1=Set 2, Sx"(trH"+H.C), (22) X exp(— (U’ ]+5,[U])

=exp(—S,[U'1+ S U]). 28
while better approximations are given by the truncation of H=SIUT+S[U)) (29
the Taylor series oM ~" ; at a finite ordett. Case 2. glU']<s,[U] works just analogously.
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B. Generalization to|>2 equal probability its exact reversgee for example Ref.
The generalization tb>2 is done recursively. Given an [11]). This symmetrization restores detailed balance. Let as

update algorithmJ P;_; that satisfies detailed balance with prove the statement fo.r' a sequence of two updates. :
respect to an actio _, we construct an algorithra P, that The update probability of the symmetrized composite of

satisfies detailed balance with respect to the acianThis ~ the two updatep, andp; is given by
process is iterated until we reach the exact action of the

model. P(U",U)%f dU’[p;(U",U")p,y(U’,U)
We use the algorithn P;_; that satisfies detailed bal-
ance with respect to the actidh_, in order to construct a +p,(U”,U")py(U",U)]. (31)
proposal. Starting from a configuratidth we apply the el-
ementary update step bfP; _,m;_; times to obtain the pro- Now for any intermediate configuratidd’ we have

posalU’. The composition of the elementary update steps
has to be done in such a way that detailed balance is main- p1(U",U")pa(U",U)+p(U",U")p(U’,U)

tained for the whole sequend@ discussion of this point is / r / r

given below) The proposalU’ is then accepted with the P1(U,U")pa(U7, U +pa(U, Uy (U7, U

probability =exd —S(U")+S(U")]exd —S(U")+S(U)]
Ai(U,,U):min[l,eXﬁ_Si[U,]‘FSi[U])] (29) :eXF[_S(U’I)+S(U)], (32)

with =S-S5 ;. where we have used thpt andp, satisfy detailed balance.

Let us try to give an intuitive argument why such a Se-gjncq that ratio is identical for any intermediate configura-

quence of levels could be of advantage: Changes of thg,, U’, the ratio of the integral over thg' takes the same
gauge field are done on level 1 of the algorithm. The “only” value as for each of the individuél’. Hence detailed bal-

thing that happens at subsequent levels is that part of the%qlce is satisfied for the whole sequence
updates at level 1 are rejected. One might imagine the levels '

i>1 as a set of filters that are used subsequently. The poten-
tial advantage of the set of filters compared to a single filter
is that the expensive filters (arge have to be applied less As first tests of the algorithm proposed above we simu-
frequently because the cheaper filters of the low levels altated the(1+1)-dimensional 2-flavor Schwinger model with

IV. NUMERICAL RESULTS

ready give a quite good preselection. Wilson fermions and3+ 1)-dimensional 2-flavor QCD with
Wilson fermions and with Schedinger-functional boundary
C. Composing updates conditions. In both cases we performed most of the simula-

II‘ions at one set of parameters. The sets of parameters were
chosen such that we could compare our results with the lit-
erature[20] in the case of the Schwinger model and with
results obtained within the ALPHA Collaborati¢81,22 in

the case of QCD. The aim of this numerical study is to obtain
a first impression of the effectiveness of our new proposals

. compared to the hybrid Monte Carlo and multi-boson algo-
However, one should note that a sequencédiferend rithms. Since it is very likely that further substantial im-

updating steps which individually satisfy detailed balance in rovements of the algorithm can be found, we think that it is

general does not satisfies detailed balance as a whole. THYE : X
. i . : not the time yet to systematically study the dependence of
statement in particular applies to sweeping through the lat;

tice with a Cabibbo-Marinari or over-relaxation update in amgo[r)erformance of the algorithm on all parameters of the
given order. Y:
In simulations of the pure gauge theory this does not pose
a problem since the sequence still satisfies the weaker and
sufficient condition of stability: We simulate the two-flavor two dimensional lattice
Schwinger model with Wilson fermions. The gauge part of

eXF[—S(U,)]:J DUP(U’,U)eXF[—S(U)] (30) the action is given by

Next we have to discuss how the updates with the actio
S, should look in detail. The basic building blocks in the
case of QCD will be the well known Cabibbo-Marinari heat-
bath updat¢17] and the micro-canonical over-relaxation up-
date[18,19. Both algorithms satisfy detailed balance when
applied to a single subgroup of a given link variable.

A. Schwinger model in 2 dimensions

However, the basic building blocks of our algorithm have to Se=—B2 ReUpjagx. (33
satisfy detailed balance. The simplest composition that does *
satisfy detailed balance is to select the link and the sub-groughere
randomly for each link update.

_For performance reasons however it is desirable to stay Uplagx=Yx U+ (1.0.2Ux+ (0.9.1Ux2: (34)
with a regular pattern of sweeping through the lattice. A
simple way to achieve this is to choose with probability 1/2where the link variablesJ, , are elements ofJ(1). The
either a given sequence of elementary update steps or wifiermion matrix can be written as
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M=1—kH. (35 2 D Schwinger model
The hopping part of the fermion matrix is given by 10
_ —ah
sz [5x—[;,,y(1+'yM)Ux—[L,M'*'5x+;},y(1_7ﬂ)ux,y,]a 08 ::12 i
K’ (36) o—er=1,np

where in two dimensions we choose thenatrices as

%
. o

As for other algorithms preconditioning improves the perfor- 0.2 “\"AM
mance of our algorithm considerably. A simple version of
preconditioning is the so-called red-black preconditioning.
The sites of the lattice are decomposed in even and odd sites 90 5

acceptance

30 40
Then the fermion matrix can be written in the from number of links
leo — kHeo FIG. 1. Acceptance rates as function of the number of link vari-
M= ) (38 ables that are updated in for the proposal. For details see the text.
—kHoe 150

For the fermion determinant the identity we performed in a single simulation between 200 and 1000
sequences of update cycles, where in each sequence the num-

detM =de(1ee— k2HegHoo) (399  ber of updated links for one proposal runs from 1 to some

maximal number. The acceptance rates are collected during

holds. Hence the original problem is reduced by half in thethe run.
dimension(of the fermion determinantThe bosonic field; The simulations are all performed on ax.66 lattice. We
which is used for the stochastic estimate of the fermion detested the cases of no preconditioning andl, and red-
terminant resides only on even sites. The red-black precorplack preconditioning in combination with=1, 2, 4 and
ditioned fermion matrix is given by 8. Our results are given in Fig. 1. We made no effort to

a2 compute error bars. The errors should be roughly of the size

Mee=lee™ x"HecHoe. 40 of the fluctuations of the curves.

Most of our tests are done for the single parameter set . Fifty percent acceptance is reached for no preconditioning

B=2.5 andx=0.26. This set was chosen to compare ourVith r=1 at about 2 links updated, while for precondition-
' e ing, with r=1, 50% acceptance is obtained for about 4-5

results for Wilson loops of various sizes with those recently"9: .
given by Irving and Sextofi20]. One simulation was per- links updated. We should note that this amounts to a perfor-

formed atB=2.5 andx=0.266 to see the effects of going mance advantage of preconditioning by a factor of 4-5 since
closer tox ' ' the computation of the action requires only half of the op-
-

As elementary updates at level 1 we took updates of ran€rations that are needed in the non-preconditioned case.
With preconditioning and =2, 4, 8 we obtain 50% ac-

domly selected link variables. These link variables are up- X ) .
dated by a heat bath which was implemented by a multi-hifeptance with about 9, 20 and 40 links updated. Since the

Metropolis update. As the criterion to stop the Taylor serieéwmer'cal eff_ort of computing the action grows linearlyrin
of M~ 5. we used there is no direct performance gain by using the roots of the

fermion matrix.

t |2 However, as we will see later it is quite useful that a
|CtH 77|| . .
- <1078, (41 larger number of links can be updated in one update pro-
M*l/r 2 . . .
| 7il posal. The roots might also allow for a simple version of

parallelization: The application dfl could be done indepen-
, dently by one processor for each of the.
is evaluated up to order We should note of course that the acceptance rate as a
function of r is bounded by the acceptance rate that is ob-
tained with the exactly evaluated fermion determinant. Ref-
In a first set of numerical experiments we studied theerencd 23] however suggests that for lattices of the size that
effect of preconditioning and noise reduction on acceptancee consider here even for full sweeps over the lattice rea-
rates. In order to keep thingsonceptually simple we used sonable acceptance rates are obtained when the fermion de-
only a two-step decompositio £€2) for these studies and terminant is evaluated exactly. We produced almost indepen-
made no use of the hopping parameter expansion. dent configurations by updating 6400 linfghich is several
In order to obtain the acceptance rate as a function of thimes the number of links of the latticen one proposal. We
number of link variables that are updated in a single proposabbtained an acceptance rate of @239

wherec, is the Taylor coefficient of the orderandM ~ ,

1. Testing noise reduction
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2. Exploiting the hopping parameter expansion TABLE I. Cycle parameters for the simulations of the 2D
chwinger model aB=2.5, xk=0.26 on a 1& 16 lattice. For de-

In a second set of nhumerical experiments we studied the
ails see the text.

inclusion of the hopping parameter expansion to orkler
=2 andk=4. Again only a two-step decompositioh=2)
of the action is used. We performed the test wital and

Run Level t; m Accepted

r=4. 1 1 120 120
Forr=1 on the 1616 lattice and preconditioning we 2 120.57) 1 58.25)
find 50% acceptance fde=4 at about 30 links updated, for 2 1 220 2640
k=2 at about 13 links updated. F&=0 we found already 2 14 12 993.6.7)
above 4-5 links. This means that the performance is in- 3 124.6839) 1 782.76.9
creased by a factor more than 6 by using the hopping param- 3 1 120 4200
eter expansion up to the ordie=4. 2 6 5  2192.75.0)
For r=4 on the 16& 16 lattice and preconditioning we 3 25 7  1333.65.6
find 50% acceptance fde=4 at about 95 links updated, for 4 125.3%35) 1 1249.87.3
k=2 at about 50 links updated. F=0 we found already 4 1 230 4600
above 20 links. 2 3 1 2775.27.6
Hence the performance of the algorithm is more then 3 18 20 1318.07.3)
doubled whenk=2 is used instead ok=0 and becomes 4 125.7140) 1 1119.28.6)

four-fold for k=4.
We did not investigate the inclusion of higher orders of

the hopp"?g paramet(_er expansion in_to the algorithm. The o110 or 20 cycles. In a step of the optimization we propose
der k=4 is accomplished by a shift of th8 t0 8'=8  gma|| random changes of theandm, to obtain a new pro-

+ 16K4. ’ ’ ! ’ o
Since higher orders of the hopping parameter expansioﬁoSalti andm; . The Pl of thetj andmy is computed by

require new terms in the gauge action, there will be a trades o 2ding Over 10 or 20 cycles. If the P1 of the new param-

H !
off between the evaluation of these terms and a larger num(?terS is larger than the old ong.andm are replaced by,

ber of links that can be updated with actiGy at a given andm/ . Typically we performed 200 steps in this procedure.
acceptance rate. Fortunately it turns out that the performance does not depend

very sharply on the parameters of the cycle.

In a first set of experiments we checked the dependence of
the performance on the number of levels. We simulated a
Finally for r=4, k=4 fixed and red-black precondition- 16X 16 lattice at3=2.5 and«=0.26. The truncation orders

ing we studied the performance of update cycles Witt?. t; and the number of application®, are summarized in
The first question that arises is how many levels oneTable I.
should choose and how one should optimize the parameters The t; refer to the expansion of the red-black precondi-
t; [truncation order of Eq(22)] andm; of the cycle, where tioned fermion matrix. Hence the corresponding order in the
m; is the number of updates with the updat®; at leveli to hopping parameter expansion i§ 2The truncation order of
generate the proposal for the accept/reject step of level the last level is determined by the truncation criterion, Eq.
+1 (see Sec. Il B. (41). In addition in the last column we give the total number
The most direct criterion to judge the quality of an algo- of link updates per cycle that are accepted at a given level.
rithm is the product of the square of the statistical error of theAt the first level this is just the total number of link updates
observable that is measured multiplied with the CPU timeper cycle. The number given for the last level is the number
needed to obtain the result. However, this criterion requiresf link updates that eventually is accepted in one cycle.
one to perform full simulations for each parameter set to be The statistics of the first runl£2) was 20000 cycles,
tested. Therefore one would like to have a more practicahere the first 2000 are discarded in the analysis. The statis-
method to estimate the performance of a given cycle. Itics of the other 3 runsl&2) was 10000 cycles each, and
seems very natural to assume that the autocorrelation timébe first 500 cycles are discarded.
are proportional to the number of links that have been up- In Table Il we summarize the autocorrelation times of the
dated within one cycle. On the other hand the major part ofVilson loops of sizes X1 up to 5<5. In addition we give
the CPU time is spent with the multiplication of the off- in the second column the performance index of the run. And
diagonal part of the fermion matrid on a vector. Both these in the last column we give the autocorrelation time of the
numbers can be determined with reasonable accuracy frowrdert,,at which the Taylor series ofl 1", is truncated.
rather short rungorder 10 cycles Therefore we take the This number should be strongly correlated with the small
ratio of accepted link updates divided by the numbeiHof eigenvalues oMM™. Comparing the four runs we observe
times vector applications as performance ind&) of a  that a larger number of accepted link updates per cycle in-
cycle. deed corresponds to a smaller autocorrelation time. How-
We made a first attempt to perform the optimization of theever, comparing runs 1 and 2 we see that the number of
cycle parameters automatically. We start from a guess for thaccepted link updates increases by a factor of 13.4 but auto-
parameters; andm; . The Pl is computed by averaging over correlation times only decrease by a factor of about 7.

3. Using a sequence of actions with-P
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TABLE II. Performance indeXPl) and autocorrelation times from simulations of the 2D Schwinger
model at3=2.5 andk=0.26 on a 1& 16 lattice.

Run Pl Tix1 Tox2 T3x3 Tax4 T5x5 Tstop
1 0.06436) 7.6(6) 9.6(8) 10.59) 8.37) 5.6(5) 7.1(5)
2 0.4815) 1.277) 1.41(8) 1.397) 1.268) 1.01(5)
3 0.5233) 0.733) 0.81(4) 0.81(4) 0.864) 0.724) 0.775)
4 0.5765) 1.005) 1.166) 1.146) 0.985) 0.905) 0.9210

Comparing the performance index we see an improvethe most expensive discussed in this segtimok about 7
ment by a factor of 7.5 from the two-level scheme to thedays of CPU on a 200 MHz Pentium Pro PC. The parameters
three-level scheme. Going further to four levels one gain®f the cycle are given in Table VII. We see that the number
about 20% in performance. Here one should note that thef terms to computéM ~ 7, increases by a factor of 2.28
imperfection of the optimization of the cycle parameters is acompared withx=0.26.
source of uncertainty. In Table VIl we give the autocorrelation times of Wilson

In Table Il we give the results for Wilson loops of the loops and the autocorrelation time of the truncation order of
size IX1 up to 5x5 summed over the lattice. In the first the Taylor series at the final level. In the first column we give
line we give for comparison the corresponding results of Refthe performance index. The performance index degrades by a
[20] which were obtained with the hybrid Monte Carlo algo- factor of 2.77 compared with our best cycle fer0.26 and
rithm. The results are consistent with each other. L=232. This means that in addition to the larger costs for

Next we tested the dependence of the performance on thevaluatingM ~ " 7;; there is a small degradation of the per-
lattice size. Therefore we simulated theX322 lattice at3  formance due to reduced acceptance rates.
=2.5 and«=0.26 withr =4. We tested two different cycles In Table IX we give the results for Wilson loops of size
with |=5. The parameters of the runs are summarized illX1 up to 5x5. In particular the values of the large loops
Table IV. In Table V we give the Pl and the autocorrelationare considerably larger than far=0.26.
times of the measured observables. The performance index is
slightly better than fot.=16. However, we should note that
we still have to take into account th&olumedependence of
the cost to applyH on a vector. Therefore we find essentially
the expected/olumé dependence of the cost at fixgdand We simulated the standard Wilson gauge action with two
« of the algorithm. flavors of mass-degenerate Wilson fermions. We performed

The results for Wilson loops of sizeXi1 up to 5x5 are  runs at3==8.3 andx=0.1386~«. on a & lattice. We ap-
summarized in Table VI. The results of our runs are consisplied Schralinger functional boundary conditiof25-28.
tent. However, there is some mismatch with the data of RefThe gauge fields at the boundaries are chosen as specified in
[20]. In particular the value for the 22 Wilson loop is by ~ Ref.[26] with ¢;=1.0. The boundary conditions for the fer-
4.7 standard deviations smaller than the combined resulions are taken as specified in RE28] with 6= /5.

B. Two flavor QCD with Schradinger functional
boundary conditions

from our simulations. Note that our result for the>322 The Schrdinger functional boundary conditions and the
lattice is consistent with the results obtained for the<16  particular set of parameters were chosen in order to compare
lattice. the performance of the algorithm with that of the hybrid

Finally we performed one run on a 832 lattice atg Monte Carlo and non-Hermitian versions of the multi-boson
=2.5 andk=0.266 in order to check the dependence of thealgorithm which are benchmarked by the ALPHA Collabo-
performance onc. Note that for8=2.5«.~0.272 from in-
terpolating the results given in Table 1 of R¢R4]. The TABLE IV. Cycle parameters for the simulations of the 2D
simulation consists of 9000 cycles. The first 500 cycles weréchwinger model 38=2.5, k=0.26 on a 3X 32 lattice.
discarded from the data analysis. The simulati@hich was

Run Level ti m, Accepted

TABLE Ill. Results for Wilson loops of size X1 up to 5x5 1 1 200 12000
for =2.5, k=0.26 andL=16. The results are summed over the 2 5 1 506112)
lattice. 3 20 10 308110
4 45 6 277810

Run W W. W. W, W,

u 1x1 2x2 3x3 4x4 5x5 5 124.4819) 1 274911)

[20] 201.52) 105.26) 40.57) 12.96) 3.64) 2 1 150 32400
1 201.6114) 105.4845 41.2061) 13.6350) 4.34(36) 2 7 6 1436921)
2 201.578) 104.9924) 40.61300 13.3427) 3.9721) 3 20 6 826020)
3 201.516) 105.3219) 41.0823) 13.6322) 4.1918 4 45 6 718423
4 201.607) 105.3523) 41.2928) 13.7424) 4.2920) 5 124.2814) 1 710424)
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TABLE V. Performance indeXPI) and autocorrelation times TABLE VII. Cycle parameters for the simulations of the 2D

from the simulations a8=2.5 and«x=0.26 on a 3X 32 lattice. Schwinger model aB=2.5 and«=0.266 on a 3X 32 lattice.

Run PI Tix1  Tax2  Tax3  Taxa  Tsxs5  Tstop Level t m, Accepted
1 0.6043) 0.896) 1.057) 1.138) 1.026) 0.695) 0.976) 1 150 32400

2 0.7033) 0.602) 0.633) 0.633) 0.583) 0.522) 0.592) 2 6 1 1165423)

3 16 6 735519

4 40 6 507816)

ration at these parameters. This benchmark is a preparation 5 80 6 437719

of a study of the running coupling in the presence of dynami- 6 283.51.5) 1 427422

cal fermions. Note thg8=8.3 is considerably larger than the
B values typically used for spectroscopy.

As observables we have implemented the plaquette, the,.heq to that point are updated as explained below. The 8
inverse of the running coupling™2 andv (for the defini-  |ink is kept fixed in order to avoid updating of gauge degrees
tions of these quantities see REZ6]). In addition we com-  of freedom. We sweep 5 times over the 7 links, where the
puted the autocorrelation time of the number of iterationssingle link variable is updated by a Cabibbo-Marinari heat-
needed for convergence of the Taylor series. This numbegath update. The order of sweeping through the 7 links is
should be closely related to the smallest eigenvalues ofgain symmetrized.

MMT. Since the links in time direction at the boundariesO

Biased by the results of the previous section we used redand t=T do not couple to the fermions, updates of these
black preconditioning and the hopping parameter expansiolinks come almost for free. Therefore we performed a lexi-
to orderk=4 for our simulations. To this order the hopping cographic sweep with over-relaxation updating over all links

parameter expansion leads to a shiftdn in time direction at the boundaries after half of the point
o updates are performed. Also here the sequence of the updat-
AB=96«". (42 ing is symmetrized. Note that most of the specifications of

the details of the update are taked hoc.

For our QCD simulations we tried to do better than randomly The second scheme that we tested, which will in the fol-
selecting the links to be updated at level 1 of the updatéowing be referred to as “block update,” is characterized as
cycle. We sweep through sub-blocks of a certain size in afollows. First a sub-block of sizeis selected. The position
ordered way. Here one should note that for fixed auxiliaryin the spatial directions is chosen randomly with an uniform
bosonic fields»n the actionS, is not gauge invariant. As a distribution. In temporal direction the block is either attached
consequence even proposals that consist of pure gauge tramg-thet=0 or thet=T boundary; i.e., the block runs either
formations would have an acceptance rate smaller than onffomt=1 tot=4 or fromt=4 tot=7 (with equal probabil-
Therefore we fixed the gauge for the elemenias; level 1 ity for the two cases
updates of the gauge field. In order to avoid updating gauge degrees of freedom, only

As elementary link updates we used Cabibbo-Marinarispatial links and temporal links at the boundaries0 and
heat-bath updating and micro-canonical over-relaxation. IR=T are updated.
the case of a Cabibbo-Marinari update we performed a se- The update sequence for a given sub-block is the follow-
quence of 55U(2)-subgroup heat-bath updates where theing: First a sweep in lexicographic order with a Cabibbo-
subgroups are given by the (1,2), (2,3), (1,3), (2,3), (1,2)Marinari update through the spatial links of the sub-block is
components of th&U(3) matrix. Also in the case of over- performed. Then there are 8 over-relaxation sweeps over the
relaxation we updated in a sequence33f(2) subgroups. spatial links of the sub-block and the temporal links of the
The sequence is given by the (1,2), (2,3), (1,3) componentsub-block at the boundary. Finally there is a heat-bath sweep

of the SU(3) matrix. over all temporal boundary links. With probability 1/2 the
We tested two different update schemes for the update aéxact reverse of this sequence is performed in order to satisfy
the actionS; . detailed balance. Note that in addition to the order of the

In our first update scheme, which will in the following be links also the order of the subgroups taken for the overrelax-
referred to as “point-update,” we choose with uniform prob- ation updates has to be reversed.
ability a lattice point with B<t<T. Then 7 of the links at- In addition to the runs with dynamical fermions we per-
formed simulations with the pure gauge action using the two
TABLE VI. Results for Wilson loops of sizext1 upto 5x5 at  updating schemes discussed above. The idea is that the
B=2.5, k=0.26 on a 3X 32 lattice.

TABLE VIII. Performance indeXPl) and autocorrelation times
Run Wy, Wasz Way 3 Wisa Wsy s from the simulation a3=2.5 and«x=0.266 on a 3% 32 lattice.

[20] 805.13) 415.19) 158.911) 51.2100 15.110)
1 805.7916) 419.6252) 162.1268) 52.7955 16.1340)
2 805.9%14) 420.5242) 163.8354) 54.4448) 17.1135) 0.25413) 0.804) 0.855) 0.865 0.805) 0.593) 0.9Q7)

Pl Tix1 T2x2 T3x3 Tax4 T5x5 Tstop
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TABLE IX. Results for Wilson loops of sizeX 1 up to 55 at TABLE XI. Cycle parameters of the dynamical fermion simu-
B=2.5 andk=0.266 on a 3X 32 lattice. The results are summed lation with the “point-update” scheme.
over the lattice.

Level t; m, Accepted

Waxa Waxz Wass Waxa Wexs 1 Gauge+ hopping 360 21600
810.2114) 435.2840) 182.7651) 68.5947) 25.0935) 2 4 1 884427)
3 7 1 617825)

_ _ o 4 10 10 538624

Monte Carlo dynamics of the quenched simulation is very g 24 6 467624
similar to that of the simulatiowith our algorithm of the 6 “opn 1 4548(24)

full theory. The motivation is that the elementary updates are
governed by the pure gauge action, while the fermions only

enter in the accept/reject steps. give in addition the average total number of point updates
Therefore we could obtain an estimate of the performanc%at are accepted at a given level during an update Cyc'e_ At

of the full algorithm by combining autocorrelation times of |evel 1 this is just the total number of “point updates” in one
the quenched simulation with acceptance rates of the dycycle

namical fermion simulation. Acceptance rates can be ob-

tained reasonably well from rather short runs, while reliable 21600=360X 1X1X10X6X 1. (44)

estimates of auto-correlation times require rather good statis-

tics. In order to obtain a reasonably large statistics we used trivial
parallelization. We performed 6 independent runs, where the

_ DNace first 400 cycles of each run are discarded for the data analy-
Trermions™ nquenchequuenChed 43 sis. All runs were started from an ordered configuration.

Then a small number of update sweeps with the pure gauge

wheren, is the number of point updates or block updatesaction plus theA 3 shift was performed in order to avoid

accepted in an update cycle of the dynamical fermion simuconvergence problems of the Taylor series. In total we gen-

lation and Ngyencheqis NUMber of point updates or block erated 8450 measurements that were used for the averaging.

updates which is performed per measurement in thé—he simulation took about 135 days of Pentium Pro 200

quenched simulation. MHz time, where the generation of the discarded configura-
tions is not taken into account.
1. Quenched simulations The CPU costs of an update cycle are essentially given by

the number of applications of the off-diagonal part of the
fermion matrix to a vector. For our run on average 43y5
applications ofH per cycle were performed.

S The average truncation order of the Taylor series is
98.51). The autocorrelation time of th@ver the 6 replicas

First we performed quenched simulations with the two
updating schemes discussed above.

For the point update we performed 20 000 measurement
Per measurement ¥2360 point updates are performed. For
the block update we performed 30000 measurements. P%(/erageﬁ truncation order isrqop=2.4(2). Results for the
measurement we upo_lated 16 dub-blocks. . oé)servables are given in Table XII.

In both cases the first 1000 measurements were discarded g o \ve note that the results for the observables are con-

for the evaluation of the observables and integrated autoCOLisiant with those obtained by Wolff with the multi-boson

relation tllmes which are summgrlzeq in Table X. We ObserVE'aIgorithm[Zl]. As for the quenched simulation the autocor-
that the integrated autocorrelation timewofs the largest of relation time of the plaquette is the smallest while thad is

the measured autocorrelation times. the largest. It is even considerably larger thap,. Next we
checked our hypothesis that the autocorrelation times can be
predicted from autocorrelation times of the quenched run in
First we tested the “point-updating” scheme. After some combination with acceptance rates of the dynamical fermion
preliminary testing we decided to use 6 for the approxi- simulation. The numbers of Table X have to be multiplied by
mation sequence, the root=6 and the order of the hopping 4320/4548. Then we obtain the estimatgs.s=0.673),
parameter expansido=4. The truncation order and the mul- 7, .o=2.49(12) andr, s~ 7.8(9) which are in quite good
tiplicities for each level is given in Table XI. In Table XI we agreement with the directly measured results given in Table

2. Simulations with dynamical fermions

TABLE X. Results for the average plaquettlag, the running couplingg’z, v and the corresponding
autocorrelation times of the quenched runs. For details see the text.

Update Plag T g2 Ty v 7,
Point 0.739681) 0.71(3) 0.681451) 2.6213 0.07511) 8.209)
Block 0.7396381) 1.364) 0.674231) 1.524) 0.0627) 3.82)
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TABLE XII. Results for the average plaquettelag, the run- D¢ostest= 108450) +62(3). (48)
ning couplingg ™2, v and the corresponding autocorrelation times
of the dynamical fermion simulation with the “point-update”

: We conclude that the “block update” is more efficient than
scheme. For details see the text.

the “point update.”
Plag . — 5 - — , Our Dy results can be compared with the other two
P 9 9 v Y algorithms benchmarked by the ALPHA Collaboration;

0.74274618) 0.834) 0.715773) 2.4720) 0.09616) 6.99)

D¢os~90Q30) (49

XIl. The ALPHA Collaboration intends to compute the run-
ning coupling of QCD with dynamical fermions. Therefore
the comparison of the algorithms which are candidates fo
this project is based on the statistical erroigéf Within the
ALPHA Collaboration we agreed on the following cost defi-
nition:

was obtained as preliminary result by Wolff with the non-
Hermitian version of the multi-boson algorithm with re-
weighting[21] and

D¢os=460 (50)

D ¢os¢=(total number of applications &f) X errof g ~2]2. was obtained by Jansgi22] with the polynomial hybrid
(45  Monte Carlo algorithni29]. In the last case onli applica-
tions have been counted. Additional costs have not been con-
verted intoD ;.
_ We conclude that for a ‘8 system we already have
D.os= 1835150 + 181(15), 46 e S . .
cost 1150 +18X19 (46) reached similar efficiency as the multi-boson and polynomial
where the error 0D, is derived from the statistical error hybrid Monte Carlo algorithms. However, at least with the
of 74. The second contribution comes from converting thePresent implementation, we have to expect a worse scaling
updating costs at level 1. The cost of the Cabibbo_Marinarpf the effiCiency W|th the Iattice Size as f0r the multi—bOSOI’l

updates at level 1 have been converted to unitsi afppli- ~ and the hybrid Monte Carlo algorithms. Therefore further
cation and are given by the second number. progress is needed to obtain a competitive algorithm for lat-

In a similar way as for the autocorrelation times we triedtice sizes that are needed for the calculation for the rUnning
coupling or light hadron spectroscopy.

For the run with the “point update” we obtain

to estimate thé ., from the statistical error 0@‘2 in the
guenched simulation and the total acceptance in the dynami-

cal fermion simulation. We obtain V. COMPARISON WITH RELATED APPROACHES

Dcostest= 1913 95)+1899), (47 Irving and Sextorj20] use approximations of the fermion
determinant to simulate the 2D Schwinger model and QCD.
which is again in good agreement with the directly obtainedrhey try to approximate the fermion action by adding Wil-
result. son loops of different sizes and shapes to the gauge action.
Next we studied the “block-update” scheme. Here we among other things they propose to construct an exact algo-
also used=6, r =6 andk=4. The truncation orders and the rithm by generating a proposa| by using the approxima‘[e
multIpIICItleS are summarized in Table XllI. We performEd action. They have in mind a two-level Metropo”s scheme.
only a run of 100 cycles that was started from an equilibriumHowever, also in their context one could think of a sequence
configuration. The total acceptances are also given in Tablgf approximations by incorporating more and more Wilson
Xlll. On average a cycle of the update requires 4885  |oops.
applications of the off-diagonal part of the fermion matrix.  |n a recent paper Duncan, Eichten, and Tha¢Bé} pro-
The 100 measurements are not sufficient to produce reliablgose to split the fermion determinant into two parts. One part
estimates of the autocorrelation times and of the statisticak given by the product of the smallest eigenvalues. They
error of g~ 2. Therefore we only quote the estimatbg,q;: suggest that the remaining part can be expressed in terms of
small Wilson loops. In their simulation they approximated
TABLE XIII. Cycle parameters of the dynamical fermion simu- the fermion determinant just by the product of the smallest
lation with the “block-update” scheme. eigenvalues. They argue that the remaining part of the fer-
mion determinant effectively amounts tgGashift.

Level b ™ Accepted In the same spirit one could simulate withV that cor-

1 Gauge+ hopping 1 60 responds to a moderate order of the hopping-parameter ex-
2 4 1 34.35) pansion and ignore the small orders of the hopping parameter
3 8 3 25.74) expansion. _ . .

4 14 4 22.24) Thron et al. [31] estimate the fermion Qeterm|n§1nt sto-

5 25 5 20.15) chastically. Their method to reduce the noise of their estima-
6 “oo” 1 19.9(6) tor incorporates, a in this paper, the hopping parameter

expansion.
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VI. OUTLOOK ent from that discussed in this paper. In this paper the Taylor

series of the fermion matrix i is used as the basis of the

There are several directions in which progress could bé o h iah S
made. approximation scheme. One might construct approximations

; O . .
First one could try to use higher orders of the hopping-mc the action by trqncatlng/l |[11real Space, 1.€. allowing
: . only non-zero matrix element$ ), with [x—y|<d. The
parameter expansion. In the present paper we only consid. lity of th imation is th rolled
ered the hopping parameter expansion up to okee4. This quality ot the approximation IS then controlied dy
leads only to a shift in3. At orderk=6, in 4 dimensions,
Wilson loops of three different shapes contribute. These
were implemented for example in R¢B1]. Going to even
higher orders, the number of Wilson loops needed grows | would like to thank the ALPAH Collaboration for pro-
exponentially in the order. Therefore one has to look for aviding FORTRAN90 code for pure QCD with Schdinger
more efficient method to computeHf than expressing it in  functional boundary conditionéStefan Sint, Stefano Capi-
terms of Wilson loops. See Rdf32]. tani), performance data for the multi-boson and hybrid
One might find noise reduced unbiased estimators of th&lonte Carlo algorithmgUlli Wolff, Karl Janser) and finally
fermion determinant that are less CPU intensive than thostor discussions with all participants of the tuesday seminar in
discussed in Sec. II B of this paper. our group at Humboldt University, Klaus Pinn and Stefano
Finally one might look at approximation schemes differ- Vinti.
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