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Imaginary chemical potential and finite fermion density on the lattice
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Standard lattice fermion algorithms run into the well-known sign problem with a real chemical potential. In
this paper we investigate the possibility of using iamaginary chemical potential and argue that it has
advantages over other methods, particularly for probing the physics at finite temperature as well as density. As
a feasibility study, we present numerical results for the partition function of the two-dimensional Hubbard
model with an imaginary chemical potential. We also note that systems with a net imbalance of isospin may be
simulated using a real chemical potential that coupled stavithout suffering from the sign problem.
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[. INTRODUCTION that it is indeed possible to obtain the canonical partition
functions at low particle number. At the rather high tempera-
The behavior of fermions in the presence of a chemicature and low interaction strength that we study, we see no
potential is relevant to condensed matter physidabbard ~ sign of electron pairing.
model away from half-filling and particle physicghigh

quark density systems such as the early universe, neutron || ~LEMICAL POTENTIAL AND POSITIVITY

stars, and heavy-ion collisionsFurthermore, a remarkably OF THE MEASURE

rich phase structure has been conjectured for QCD at finite

temperature and densify,2]. Consider a generic system of fermioisand bosonsp,

The only reliable nonperturbative approach to QCD is nuwhere the fermion Lagrange density 4aV (). On inte-
merical Monte Carlo evaluation of the functional integral grating out the fermions, the partition function becomes
using a lattice regulator. Unfortunately, standard Monte
Carlo methods become inapplicable at finite quark density,
since in the presence of a real chemical potential the measure 7= J Do e~ Sbod ¢) detM (). (2.2
is no longer positive. One approach to this problem is the
“Glasgow method” [3], in which the partition function is
expanded in powers @®*, and the coefficients are evalu- In order to perform Monte Carlo simulations, it is necessary
ated by the Monte Carlo method using an ensemble of corthat the measure be non-negative; so we have either to re-
figurations weighted by the=0 action. Simulations using Strict ourselves to the cases where Met0 or to treat deM
this method have so far given unphysical results; namely, th@s an observable. The latter option is usually not viable, as
lattice starts to fill with baryons at a chemical potential well detM tends to be a rapidly varying function of. We will
below the expected value of one-third the baryon mass. Igiscuss it again at the end of this section.
seems plausible that this happens becausethed en- To guarantee that the measure is positive, we must gen-
semble does not overlap sufficiently with the finite-densityerally have an even number of flavors, for each of which
states of interest, and so the true effects of quark loops willetM is real (but not necessarily positiyeOne situation
only be seen at exponentially large statis{i8s where deM is real is when there exists an invertible opera-

In this paper we look at an alternative: evaluating thetor P such that
partition function at animaginary chemical potential, for
which the measure remains positive and standard Monte Mf=PMP L. (2.2
Carlo methods apply. The canonical partition functions can
then be obtained by a Fourier transfof#,5]. Since the . : . . . )
dominant source of errors is now the Fourier transform rathe'r:Or a Wilson Iatt|_ce fermion at zero chemical potential, this

; . relation holds, withP=ys, so any even number of flavors
than the poor overlap of the measure, it seems worthwhile t%an be simulated by the Monte Carlo method. With a real

explore the imaginary chemical potential as an alternative t%hemical potential, Eq2.2) breaks down, but with an imagi-
the Glasgow method.

An outline of the paper is as follows. We give criteria that nary chemical potential it is valid, and again simulations are

a theory should satisfy in order for Monte Carlo simulationspoﬁ_iglri fg:earr]ng\r/:r]ngtrigb;;u(gtifcI;\;O\r;Here E2.2 holds

at finite density to be feasible. We describe a toy mode‘: . . e -
o - . or example, consider two-flavor QCD with a finite density

where even-odd effects become visible. We find some mter(—)f isospin. In this cast has a block-diagonal structure

esting examplesge.g., QCD at finite isospin densjtyvhere pin. 9

lattice simulations are possible. As a feasibility study, we

perform Monte Carlo simulations for the two-dimensional M( ):(L(M) 0 ) 2.3

Hubbard model with imaginary chemical potential and find K 0 L(—w))’ :
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whereu is the chemical potential for the isospin anflw) is  In principle, one can comput&(i v) on a lattice as a function
a Dirac operator for one flavor with chemical potential  of v and then use E(3.2) to obtain the canonical partition
Here L (u) satisfiesL(u)™=7ysL(—u)ys; hence, Eq(2.2)  function. In practice, this method can work only for low
is satisfied by setting enoughN, because for larghl the integrand in Eg(3.2) is a
rapidly oscillating function, and the error of the numerical
integration will grow exponentially wittN. The method fails
completely in the thermodynamic limiH— . This need not
discourage us, however, because in lattice simulations one is
Here deM(w)=|detL(w)[>>0. More generally, consider always working in a finite and rather small volume. The real
QCD with Ns flavors. It has a global vectorlike symmetry question is how high we can pus before the numerical
G=U(1)gXSU(Ns), where U(1} is the baryon number. integration in Eq(3.2) becomes undoable. We will consider
One may consider a nonzero chemical potential coupled tthe two-dimensional Hubbard model as a testing ground for
any generatoll of G. Then Eq.(2.2) is satisfied for some this approach. Related work has been performed in [Rf.
choice ofP if and only if the nonzero eigenvalues 8fcome  but without using the freedom to simulate at anysee be-
in pairs\,—A\. Thus deM is real for QCD at nonzero isospin low).
density but not for nonzero hypercharge density or baryon Having a positive measure is not the end of the story. In
number density. practice, we want to be able to use importance sampling to
Another case where dbt is real even in the presence of calculateZ(iv) with reasonable accuracy. To this end we
the chemical potential is when there exists an invertible oprewrite Z(iv) in the following form:
eratorQ such that

0 s
P= . 2.4
( ys O 24

3 2(iv) e detM(iv)
M*=QMQ L. (2.5 Z(iVO)_fD¢e OsdetM(IVo)W(ivo). (3.3

Examples of this sort are afforded by models with four- Ny we treat the ratio of determinants as an observable

fermion interactions, such as the Hubbard model and thg,q the rest as the measure. In the case of a real chemical
Gross-Neveu model. TheM is a real operator, and so dét potential, one would have to take,=0, and in this en-

is real too. Other examples are gauge theories with “quarks’semple the ratio of determinants would reach its correct

in the real or pseudoreal representation of the gauge groufgye only at very high statistics, through important but rare

Thus deM is real for SU2) with quarks in the fundamental f,cyations as the mismatched measure occasionally

representation or for SB) with quarks in the adjoint, even sampleqd the regions where the integrand is large. For an

when the chemical potential is nonzero. imaginary chemical potential, however, the fluctuations can
In some cases with d&t real, but not positive, it appears pe made arbitrarily small by choosing close tov.

that one can perform simulations by treating the sign of \ye can therefore use E3.3) to calculate the partition
detM as an observable. The Hubbard model can be treated Winction for a range ofs around a reference value, and

this way far below half-filling[6]. This is also the case for .o er the ranger=0---27/ 8 with a set of “patches” each

the Gross-Neveu model with a nonzero chemical potentia&entered on a different,. We can use as many patches as
[7]. Referencd 7] further argues that dé is non-negative  rq yequired; so the measure will always overlap arbitrarily
for most of the configurations; so one can simply replaceq| with the observables.
detM with [detM|. In QCD the phase of the determinant = gome qualitative features of the system can be inferred
contains important phy§|caI information, but calculationsg.qm the knowledge oZ(i v) alone, without performing the
have been performed without[i8]. Fourier transform. For example, consider a model of inter-
acting fermions on a latticéthe example of the Hubbard
ll. IMAGINARY CHEMICAL POTENTIAL model will be discussed further belpwAt some filling frac-
. . . ._tion the system may undergo a phase transition to a BCS
The fact that the fer_mlon_ determlnar_]t for QCD 1S r_eal Insuperconci/ucting phzlse. In gthat Shase the system will be
the presence of an imaginary chemlqal po_tenm&klv populated with Cooper pair; so the partition function will be
makes this an attractive option for exploring finite quark den'dominated by sectors in which the charge is a multiple of 2.
e‘ghis will be clearly visible inZ(iv), which will not only be
" X . ; . eriodic with period /3, but acquire a significant subhar-
Inde;ed, the partition function for the imaginary chemical PO-onic at perti))d %/(2’8)/? This w?)uld be a?signal that for
tential, some range of densities the energy of the system has a mini-
) _ B g mum when the number of electrons is a multiple of 2.
Z(iv)=Tre ""e"", 3.9) This can be illustrated by a simple toy model containing a
fermion with masdM; and charge 1, and a boson with mass
My and charge 2. If we makigl, less tharM;, then, assum-
ing some very weak charge-conserving interactions that es-
o tablish equilibrium, states of even charge will be favored.
Z(N)zﬁj ”dez(iy)e—iﬁuN_ (3.2 Th.e free energy is the sum of the fermion and boson
2m Jo contributions,

which is a periodic function ol with period 27/, is the
Fourier transform of the canonical partition function
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FIG. 1. Free energy as a function of imaginary chemical potentildft) and logarithm of the canonical partition function as a function
of particle numbecright) for our illustrative toy mode(3.4), with =10, BM,=1, andBM;=5.

F(,T)=Frermiod Mt , 1, T) + Fposof M, 21, T), (3.4)

whereF termion @Nd Fyoson@re the free energies of free fermi-
ons and bosons, respectively,

d3
Ffermior(M,/.L,T)ZfﬁiM[liz cosliu)e PEP

boson

+ efiﬁEﬂ))]’

E(p)?=p?+ M2, (3.5
The pairing of fermions into bosons is clearly visible in
Z(N) (Fig. 1, for whichp=10) and also directly itZ(iv),
which is not only periodic with period 28, but also ap-
proximately periodic with a smaller periodiZ23). This is a

signal that the energy of a system has a minimum when th
number of particles is a multiple of 2. However, to infer the

existence of an “unpairing” transition at high chemical po-
tential, a visual inspection of the plot &(i») would not

suffice:
behavior of the Fourier transform &fiv).

IV. HUBBARD MODEL WITH IMAGINARY
CHEMICAL POTENTIAL

At densities away from half-filling, the single-flavor Hub-

bard model has a real but not necessarily positive fermioni o .
determinant9]. Like QCD, the measure becomes positive ateTOr Pars reflect the statistical errors in
imaginary chemical potential. Since this model is of physica
interest and also much less computationally demanding than

1_ A4 é T T T T
0.1 |

T
L4

0.0t
0.001

1
aab o

0.0001

1x1075 | ]
1x1076 | =

1x1 0'7 I 1 L 1 t 1]
0 0.2 0.4 0.6 0.8
nu*beta/pi

FIG. 2. Partition function for the 2D Hubbard model as a func-

tion of imaginary chemical potentiaj, in units of /8. This is on a
42x 10 lattice, with 3=1.5, hopping termK=1, and interaction
strengthU = 0.1, following the conventions of Creuf2].

this information is encoded in the high-frequency

QCD, it is interesting to use it to study the feasibility of
performing simulations with an imaginary chemical poten-
tial. In fact, the model is so simple that for this initial inves-
tigation we were able to dispense with the usual hybrid
Monte Carlo algorithnj9] for evaluating the fermion deter-
minant and perform the whole calculation with the computer
mathematics tool MATHEMATICA,” using its “Det” func-
tion to calculate the fermionic determinants.

Using the formulation described abojsee Eq(3.3)], we
calculated the partition function as a function of imaginary
chemical potentiab. We used a #x 10 lattice with inverse
temperature83=1.5. (Lower statistics were also gathered on
42x 20, to check that temporal discretization errors were un-
der control) The results are given in Fig. 2. By particle-
hole symmetryZ(iv)=Z(—iv), andZ has period 2/8; so
we only ploty=0 to 7/g.

Three “patches” were usedsee Sec. I, centered at
%VO:O, /2, and 7. At the temperature we study, the error
in Z(iv)/Z(iv) rises rapidly with v— vg|; so it is crucial to
use multiple patches to keep the statistical error& (iw)
under control. In turn, via the Fourier transform, this controls
the errors inZ(N) for N>0. In contrast, Ref[4] only used
vo=0, which is adequate only for the small volume, low
temperature, and low particle numbeéd<£2) they studied.

We then fittedZ(i v) to variousAnsadzeand Fourier trans-
formed them to obtain the canonical partition functidg
(Fig. 3). Even using our very inefficient updating algorithm,

Wwe are easily able to get accurate results uiNte6. The

th@ v) data. We

jused fit functions of the forn (i v) =exp(—ar?) Xspline.

It has been suggested that at some filling fraction the 2D
Hubbard model may exhibit superconductivity, through pair-
ing of the electrons, to form Cooper pairs, which then con-
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FIG. 3. Logarithm of the canonical partition functidy, for the

2D Hubbard model, obtained by Fourier transformZgfv) (Fig.
2).
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dense. Along the lines described in Sec. Ill, we would expectealistically hope, on the small lattices likely to be practical,
such pairing to manifest itself as an even-odd periodicity ofto fluctuate to a few baryons. So a reasonable procedure
Zy, leading to a characteristic extra bumpZgiv). At the  would seem to be to start with a high temperature and work
temperature and coupling that we studied, we see no sudtown, looking for qualitative changes as a function of tem-
evidence of pairing. Obviously, it would be very interesting perature. In this way, one could realistically hope to use the
to explore a wider range of parameters. This method mighinethods described in this paper to study how properties of
also be suitable for exploring the metal-insulator transitionthe quark-gluon plasma are affected by a net quark density.
near half-filling, where the sign problem becomes particu-One could also study the deconfinement crossover, near
larly virulent[6]. As noted in Ref[4], however, it will be-  which the baryons become light, and in particular locate the
come much harder to extract tt, at low temperatures, critical point in theT-u plane predicted for two-flavor QCD
where theN=0 contribution dominateg(i»). We should [2,11]. All these phenomena are of immediate interest, since
note that the Glasgow method has also been applied to thteey will be explored in the next generation of heavy-ion
Hubbard mode[10] to explore the scaling of Yang-Lee ze- collision experiments.

ros. It would be interesting to make a systematic comparison Another possibility is to work with large numbers of
of the relative merits of the two methods, for the Hubbardquark species, close to 16, so that the theory is perturbative.

model as well as for QCD. Then there is no mass gap to baryons, and so fluctuations are
cheap, and also the contribution of interest, due to the
V. CONCLUSIONS quarks, is not swamped by gluons. In this case the cancella-

_ ) tions may not be so bad even with a real chemical potential,
Let us conclude with a few remarks concerning the posangd the imaginary chemical potential approach should also

sible utility of imaginary chemical potential in QCD. An \york better, since the fluctuations of interest will occur fre-
imaginary chemical potential does not systematically bias thguently.

ensemble to large density, so that to pick out the effect of

states of nonzero baryon number density one must rely on ACKNOWLEDGMENTS
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