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Imaginary chemical potential and finite fermion density on the lattice
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~Received 7 August 1998; published 29 January 1999!

Standard lattice fermion algorithms run into the well-known sign problem with a real chemical potential. In
this paper we investigate the possibility of using animaginary chemical potential and argue that it has
advantages over other methods, particularly for probing the physics at finite temperature as well as density. As
a feasibility study, we present numerical results for the partition function of the two-dimensional Hubbard
model with an imaginary chemical potential. We also note that systems with a net imbalance of isospin may be
simulated using a real chemical potential that couples toI 3 without suffering from the sign problem.
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I. INTRODUCTION

The behavior of fermions in the presence of a chem
potential is relevant to condensed matter physics~Hubbard
model away from half-filling! and particle physics~high
quark density systems such as the early universe, neu
stars, and heavy-ion collisions!. Furthermore, a remarkabl
rich phase structure has been conjectured for QCD at fi
temperature and density@1,2#.

The only reliable nonperturbative approach to QCD is n
merical Monte Carlo evaluation of the functional integr
using a lattice regulator. Unfortunately, standard Mo
Carlo methods become inapplicable at finite quark dens
since in the presence of a real chemical potential the mea
is no longer positive. One approach to this problem is
‘‘Glasgow method’’ @3#, in which the partition function is
expanded in powers ofebm, and the coefficients are evalu
ated by the Monte Carlo method using an ensemble of c
figurations weighted by them50 action. Simulations using
this method have so far given unphysical results; namely,
lattice starts to fill with baryons at a chemical potential w
below the expected value of one-third the baryon mass
seems plausible that this happens because them50 en-
semble does not overlap sufficiently with the finite-dens
states of interest, and so the true effects of quark loops
only be seen at exponentially large statistics@3#.

In this paper we look at an alternative: evaluating t
partition function at animaginary chemical potential, for
which the measure remains positive and standard Mo
Carlo methods apply. The canonical partition functions c
then be obtained by a Fourier transform@4,5#. Since the
dominant source of errors is now the Fourier transform rat
than the poor overlap of the measure, it seems worthwhil
explore the imaginary chemical potential as an alternative
the Glasgow method.

An outline of the paper is as follows. We give criteria th
a theory should satisfy in order for Monte Carlo simulatio
at finite density to be feasible. We describe a toy mo
where even-odd effects become visible. We find some in
esting examples~e.g., QCD at finite isospin density! where
lattice simulations are possible. As a feasibility study,
perform Monte Carlo simulations for the two-dimension
Hubbard model with imaginary chemical potential and fi
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that it is indeed possible to obtain the canonical partit
functions at low particle number. At the rather high tempe
ture and low interaction strength that we study, we see
sign of electron pairing.

II. CHEMICAL POTENTIAL AND POSITIVITY
OF THE MEASURE

Consider a generic system of fermionsc and bosonsf,
where the fermion Lagrange density isc̄M (f)c. On inte-
grating out the fermions, the partition function becomes

Z5E Df e2Sbos~f! detM ~f!. ~2.1!

In order to perform Monte Carlo simulations, it is necessa
that the measure be non-negative; so we have either to
strict ourselves to the cases where detM>0 or to treat detM
as an observable. The latter option is usually not viable
detM tends to be a rapidly varying function off. We will
discuss it again at the end of this section.

To guarantee that the measure is positive, we must g
erally have an even number of flavors, for each of wh
detM is real ~but not necessarily positive!. One situation
where detM is real is when there exists an invertible oper
tor P such that

M†5PM P21. ~2.2!

For a Wilson lattice fermion at zero chemical potential, th
relation holds, withP5g5 , so any even number of flavor
can be simulated by the Monte Carlo method. With a r
chemical potential, Eq.~2.2! breaks down, but with an imagi
nary chemical potential it is valid, and again simulations a
possible for an even number of flavors.

There are more exotic situations where Eq.~2.2! holds.
For example, consider two-flavor QCD with a finite dens
of isospin. In this caseM has a block-diagonal structure

M ~m!5S L~m!

0
0

L~2m! D , ~2.3!
©1999 The American Physical Society02-1
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wherem is the chemical potential for the isospin andL(m) is
a Dirac operator for one flavor with chemical potentialm.
Here L(m) satisfiesL(m)†5g5L(2m)g5 ; hence, Eq.~2.2!
is satisfied by setting

P5S 0
g5

g5

0 D . ~2.4!

Here detM(m)5udetL(m)u2>0. More generally, conside
QCD with Nf flavors. It has a global vectorlike symmetr
G5U(1)B3SU(Nf), where U(1)B is the baryon number
One may consider a nonzero chemical potential couple
any generatorT of G. Then Eq.~2.2! is satisfied for some
choice ofP if and only if the nonzero eigenvalues ofT come
in pairsl,2l. Thus detM is real for QCD at nonzero isospi
density but not for nonzero hypercharge density or bar
number density.

Another case where detM is real even in the presence o
the chemical potential is when there exists an invertible
eratorQ such that

M* 5QMQ21. ~2.5!

Examples of this sort are afforded by models with fou
fermion interactions, such as the Hubbard model and
Gross-Neveu model. ThereM is a real operator, and so detM
is real too. Other examples are gauge theories with ‘‘quar
in the real or pseudoreal representation of the gauge gr
Thus detM is real for SU~2! with quarks in the fundamenta
representation or for SU~3! with quarks in the adjoint, even
when the chemical potential is nonzero.

In some cases with detM real, but not positive, it appear
that one can perform simulations by treating the sign
detM as an observable. The Hubbard model can be treate
this way far below half-filling@6#. This is also the case fo
the Gross-Neveu model with a nonzero chemical poten
@7#. Reference@7# further argues that detM is non-negative
for most of the configurations; so one can simply repla
detM with udetMu. In QCD the phase of the determina
contains important physical information, but calculatio
have been performed without it@8#.

III. IMAGINARY CHEMICAL POTENTIAL

The fact that the fermion determinant for QCD is real
the presence of an imaginary chemical potentialm5 in
makes this an attractive option for exploring finite quark de
sity. Simulations with an imaginary chemical potential a
more or less equivalent to simulating a canonical ensem
Indeed, the partition function for the imaginary chemical p
tential,

Z~ in!5Tr e2bĤeibnN̂, ~3.1!

which is a periodic function ofn with period 2p/b, is the
Fourier transform of the canonical partition function

Z~N!5
b

2p E
0

2p/b

dn Z~ in!e2 ibnN. ~3.2!
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In principle, one can computeZ( in) on a lattice as a function
of n and then use Eq.~3.2! to obtain the canonical partition
function. In practice, this method can work only for lo
enoughN, because for largeN the integrand in Eq.~3.2! is a
rapidly oscillating function, and the error of the numeric
integration will grow exponentially withN. The method fails
completely in the thermodynamic limitN→`. This need not
discourage us, however, because in lattice simulations on
always working in a finite and rather small volume. The re
question is how high we can pushN before the numerica
integration in Eq.~3.2! becomes undoable. We will conside
the two-dimensional Hubbard model as a testing ground
this approach. Related work has been performed in Ref.@4#,
but without using the freedom to simulate at anyn ~see be-
low!.

Having a positive measure is not the end of the story.
practice, we want to be able to use importance sampling
calculateZ( in) with reasonable accuracy. To this end w
rewrite Z( in) in the following form:

Z~ in!

Z~ in0!
5E Df e2SbosdetM ~ in0!

detM ~ in!

detM ~ in0!
. ~3.3!

Now we treat the ratio of determinants as an observa
and the rest as the measure. In the case of a real chem
potential, one would have to taken050, and in this en-
semble the ratio of determinants would reach its corr
value only at very high statistics, through important but ra
fluctuations as the mismatched measure occasion
sampled the regions where the integrand is large. For
imaginary chemical potential, however, the fluctuations c
be made arbitrarily small by choosingn0 close ton.

We can therefore use Eq.~3.3! to calculate the partition
function for a range ofn around a reference valuen0 and
cover the rangen50¯2p/b with a set of ‘‘patches’’ each
centered on a differentn0 . We can use as many patches
are required; so the measure will always overlap arbitra
well with the observables.

Some qualitative features of the system can be infer
from the knowledge ofZ( in) alone, without performing the
Fourier transform. For example, consider a model of int
acting fermions on a lattice~the example of the Hubbard
model will be discussed further below!. At some filling frac-
tion the system may undergo a phase transition to a B
superconducting phase. In that phase, the system wil
populated with Cooper pair; so the partition function will b
dominated by sectors in which the charge is a multiple o
This will be clearly visible inZ( in), which will not only be
periodic with period 2p/b, but acquire a significant subha
monic at period 2p/~2b!. This would be a signal that fo
some range of densities the energy of the system has a m
mum when the number of electrons is a multiple of 2.

This can be illustrated by a simple toy model containing
fermion with massM f and charge 1, and a boson with ma
Mb and charge 2. If we makeMb less thanM f , then, assum-
ing some very weak charge-conserving interactions that
tablish equilibrium, states of even charge will be favored

The free energy is the sum of the fermion and bos
contributions,
2-2
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FIG. 1. Free energy as a function of imaginary chemical potentialn ~left! and logarithm of the canonical partition function as a functi
of particle number~right! for our illustrative toy model~3.4!, with b510, bMb51, andbM f55.
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F~m,T!5F fermion~M f ,m,T!1Fboson~Mb,2m,T!, ~3.4!

whereF fermion andFbosonare the free energies of free ferm
ons and bosons, respectively,

F
boson
fermion~M ,m,T!5E d3p

~2p!3 6 ln@162 cosh~bm!e2bE~p!

1e2 ibE~p!#,

E~p!25p21M2. ~3.5!

The pairing of fermions into bosons is clearly visible
Z(N) ~Fig. 1, for whichb510) and also directly inZ( in),
which is not only periodic with period 2p/b, but also ap-
proximately periodic with a smaller period 2p/~2b!. This is a
signal that the energy of a system has a minimum when
number of particles is a multiple of 2. However, to infer t
existence of an ‘‘unpairing’’ transition at high chemical p
tential, a visual inspection of the plot ofZ( in) would not
suffice: this information is encoded in the high-frequen
behavior of the Fourier transform ofZ( in).

IV. HUBBARD MODEL WITH IMAGINARY
CHEMICAL POTENTIAL

At densities away from half-filling, the single-flavor Hub
bard model has a real but not necessarily positive fermio
determinant@9#. Like QCD, the measure becomes positive
imaginary chemical potential. Since this model is of physi
interest and also much less computationally demanding

FIG. 2. Partition function for the 2D Hubbard model as a fun
tion of imaginary chemical potentialn, in units ofp/b. This is on a
42310 lattice, with b51.5, hopping termK51, and interaction
strengthU50.1, following the conventions of Creutz@9#.
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QCD, it is interesting to use it to study the feasibility o
performing simulations with an imaginary chemical pote
tial. In fact, the model is so simple that for this initial inve
tigation we were able to dispense with the usual hyb
Monte Carlo algorithm@9# for evaluating the fermion deter
minant and perform the whole calculation with the compu
mathematics tool ‘‘MATHEMATICA ,’’ using its ‘‘Det’’ func-
tion to calculate the fermionic determinants.

Using the formulation described above@see Eq.~3.3!#, we
calculated the partition function as a function of imagina
chemical potentialn. We used a 42310 lattice with inverse
temperatureb51.5. ~Lower statistics were also gathered o
42320, to check that temporal discretization errors were
der control.! The results are given in Fig. 2. By particle
hole symmetry,Z( in)5Z(2 in), andZ has period 2p/b; so
we only plotn50 to p/b.

Three ‘‘patches’’ were used~see Sec. III!, centered at
bn050, p/2, andp. At the temperature we study, the err
in Z( in)/Z( in0) rises rapidly withun2n0u; so it is crucial to
use multiple patches to keep the statistical errors inZ( in)
under control. In turn, via the Fourier transform, this contro
the errors inZ(N) for N.0. In contrast, Ref.@4# only used
n050, which is adequate only for the small volume, lo
temperature, and low particle number (N<2) they studied.

We then fittedZ( in) to variousAnsätzeand Fourier trans-
formed them to obtain the canonical partition functionZN
~Fig. 3!. Even using our very inefficient updating algorithm
we are easily able to get accurate results up toN56. The
error bars reflect the statistical errors in theZ( in) data. We
used fit functions of the formZ( in)5exp(2an2)3spline.

It has been suggested that at some filling fraction the
Hubbard model may exhibit superconductivity, through pa
ing of the electrons, to form Cooper pairs, which then co

-
FIG. 3. Logarithm of the canonical partition functionZN for the

2D Hubbard model, obtained by Fourier transform ofZ( in) ~Fig.
2!.
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dense. Along the lines described in Sec. III, we would exp
such pairing to manifest itself as an even-odd periodicity
ZN , leading to a characteristic extra bump inZ( in). At the
temperature and coupling that we studied, we see no s
evidence of pairing. Obviously, it would be very interesti
to explore a wider range of parameters. This method m
also be suitable for exploring the metal-insulator transit
near half-filling, where the sign problem becomes parti
larly virulent @6#. As noted in Ref.@4#, however, it will be-
come much harder to extract theZN at low temperatures
where theN50 contribution dominatesZ( in). We should
note that the Glasgow method has also been applied to
Hubbard model@10# to explore the scaling of Yang-Lee ze
ros. It would be interesting to make a systematic compari
of the relative merits of the two methods, for the Hubba
model as well as for QCD.

V. CONCLUSIONS

Let us conclude with a few remarks concerning the p
sible utility of imaginary chemical potential in QCD. A
imaginary chemical potential does not systematically bias
ensemble to large density, so that to pick out the effec
states of nonzero baryon number density one must rely
fluctuations ~which, when they occur, are appropriate
weighted by the action!. These fluctuations will occur mos
readily when the temperature is high and the gap in
baryon number channel is small. And even then one can o
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realistically hope, on the small lattices likely to be practic
to fluctuate to a few baryons. So a reasonable proced
would seem to be to start with a high temperature and w
down, looking for qualitative changes as a function of te
perature. In this way, one could realistically hope to use
methods described in this paper to study how properties
the quark-gluon plasma are affected by a net quark den
One could also study the deconfinement crossover, n
which the baryons become light, and in particular locate
critical point in theT-m plane predicted for two-flavor QCD
@2,11#. All these phenomena are of immediate interest, si
they will be explored in the next generation of heavy-i
collision experiments.

Another possibility is to work with large numbers o
quark species, close to 16, so that the theory is perturba
Then there is no mass gap to baryons, and so fluctuations
cheap, and also the contribution of interest, due to
quarks, is not swamped by gluons. In this case the canc
tions may not be so bad even with a real chemical poten
and the imaginary chemical potential approach should a
work better, since the fluctuations of interest will occur fr
quently.
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