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Quark-hadron duality in the ’t Hooft model for meson weak decays:
Different quark diagram topologies
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Richard F. Lebed†
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We compare the effects of different quark diagram topologies on the weak hadronic width of heavy-light
mesons in the largeNc limit. We enumerate the various topologies and show that the only one dominant~or
even comparable! in powers of Nc to the noninteracting spectator ‘‘tree’’ diagram is the ‘‘annihilation’’
diagram, in which the valence quark-antiquark pair annihilates weakly. We compute the amplitude for this
diagram in the ’t Hooft model~QCD in 111 spacetime dimensions with a large number of colorsNc) at the
hadronic level and compare to the Born term partonic level. We find that quark-hadron duality is not well
satisfied, even after the application of a smearing procedure to the hadronic result. A number of interesting
subtleties absent from the tree diagram case arise in the annihilation diagram case, and are described in detail.
@S0556-2821~99!03305-6#
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I. DESCRIPTION OF THE PROBLEM

The notorious difficulty of computing strong interactio
quantities from first principles leads directly to a multitude
models, methods, and approximations. QCD lore dicta
that inclusive rates, i.e., those for which we do not inqu
about any details of the final hadronic state, are given
good approximation by the corresponding rate in a theor
cal world of unconfined, perturbative final-state quarks. T
lore, known as ‘‘quark-hadron duality’’@1# is seldom shown
to follow from first principles. In some cases, such as the r
of e1e2→hadrons, an operator product expansion@2# can
be used to demonstrate the lore for quantities in which
averages over the energy of the final-state hadronic sys
This is the so-called ‘‘global’’ duality@3#, in contrast with
duality for unaveraged quantities, or ‘‘local’’ duality.

Quark-hadron duality applied to decays of heavy mes
@4,5# permits the computation of many important quantitie
such as meson lifetimes, hadronic branching fractions,
the average number of charm quarks perb quark decay. One
must note that the duality used here is of the ‘‘local’’ varie
and therefore less likely to be valid. Indeed, the sizea
deviations between theoretical predictions utilizing this fo
of duality and experiment for lifetimes, branching fractio
and charm countings suggest that either there are large
rections to duality, or worse, that the duality lore simply do
not apply in this context.

In this paper we study whether duality holds for annihi
tion decays of heavy mesons in a highly simplified b
soluble strongly interacting theory; in a previous paper@6#
we explored this issue for spectator decays of heavy mes
We also investigate the validity of duality in the interferen
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between spectator and annihilation decays.
To inquire about duality in a model, one must require th

the model exhibits permanent quark confinement a
asymptotic freedom; the former is necessary for a mean
ful definition of purely hadronic properties, while the latter
believed to be the main ingredient of duality. The ’t Hoo
model is a good candidate: It satisfies these requirements
behaves, in many other respects, much like the real world
strong interactions.

Perhaps still the most straightforward and frequently u
model of strong interactions is the constituent quark mod
in which hadrons are envisioned as consisting of confin
but otherwise weakly interacting valence quarks. Althou
deep inelastic scattering experiments clearly show that
true structure of a hadron incorporates a much more com
cated brew of gluons and sea quarks, the undeniable suc
of the quark model in predicting hadronic spectra or enum
ating decay modes still leads researchers to apply
scheme immediately when approaching a new hadronic
tem.

The asymptotically free parton result, i.e., the result of
valence quark model dressed with perturbative QCD corr
tions, is also the leading term in an operator product exp
sion @2# ~OPE!, in those cases where an OPE is known
exist, such as deep inelastic lepton-hadron scattering@7# and
e1e2 annihilation@8#, as well as semileptonic processes i
volving heavy quarks@9#. One feature held in common b
these processes is the presence of a large mass or e
scale, which provides the inverse expansion parameter o
OPE; consequently, it is tempting to suppose that other p
cesses with large scales also possess OPEs. Such is the
for the nonleptonic decays ofB mesons, where an OPE i
powers of 1/mb is purported to exist@10#.

As of the time of this writing, measurements of many
these exclusive channels at CLEO and LEP are being
formed. Apart from the intrinsic value of such informatio
nonleptonicB decays are expected to provide valuable
©1999 The American Physical Society22-1



hi

u
id
t

l

on
ca
to
-
r
a
th
ca

i
a
-
C

p
re
ig
e
ts

s
y

-
iffi-
r
b-

nc-

nly
a

-

the
ore

n-

of
u-

re-

nt of
by
ut

ion
n-

the
of

s we
ese

our
d

h
k-
d-
ned
ing
rge,
the

di

-
o

f
ons

BENJAMÍN GRINSTEIN AND RICHARD F. LEBED PHYSICAL REVIEW D59 054022
sights into QCD, magnitudes of Cabibbo-Kobayas
Maskawa~CKM! elements, andCP violation; consequently,
understanding these decays has become the focus of m
recent theoretical work. But the theoretical situation is w
open, precisely because no part of the decay is free of
complications of strong interaction physics.

When applied to aB̄ meson, the lore of quark mode
calculations or the expansion of Refs.@5, 10# declares that
the inclusive decay width should be dominated by the~color-
unsuppressed! ‘‘tree’’ diagram T ~Fig. 1!, in which the b
quark decays to a lighter flavor by emission of aW2, par-
ticularly asmb→`. The daughter quark of theb then com-
bines with the spectator antiquark to form one mes
whereas the quark-antiquark pair from the nonleptonic de
of the W form another. The above process assumes fac
ization, which means that theW system and daughter
spectator systems are regarded as non-interacting afte
initial weak vertex. One very interesting comparison that c
be made at this point is between the width obtained by
sum of such diagrams in Fig. 1 regarded as hadronic de
and the corresponding free quark decay.

Of course, such a diagram is but one possibility, even
the simple quark model. For example, the spectator antiqu
and the antiquark from theW2 decay may trade places be
fore hadronization, the ‘‘color-suppressed’’ tree diagram
~Fig. 2!. Such an amplitude is suppressed by a factor ofNc ,
the number of QCD color charges, compared to the T am
tude, since theW is a color singlet; thus, the color indices a
automatically suitable for creating colorless mesons in F
1, but require rearrangement in Fig. 2. Of course, in a r
meson there may be additional dynamical enhancemen
suppressions, and moreover, the exchange ofany number of
gluons and color charge between the quarks on oppo
sides of theW line may completely muddle the hierarch
based on largeNc counting.

FIG. 1. The~color-unsuppressed! ‘‘tree’’ ~T! parton diagram for
the decay of one meson into two mesons. Ovals indicate the bin
of partons into hadrons.

FIG. 2. The ‘‘color-suppressed’’~C! parton diagram for the de
cay of one meson into two mesons. Ovals indicate the binding
partons into hadrons.
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Likewise, the ‘‘annihilation’’ amplitude A~Fig. 3!, in
which the valence quark-antiquark pair of theB̄ annihilate to
a W ~quantum numbers permitting!, is assumed to be sup
pressed compared to the T amplitude because of the d
culty of theb quark and the antiquark ‘‘finding’’ each othe
in the meson in order to annihilate. Quantitatively, this pro
ability is proportional to the square of the meson wave fu
tion at vanishing quark separation,uc(0)u2} f B

2 ~the van
Royen-Weisskopf relation@11#!. To compare this probability
with that of the T diagram, one then argues that the o
remaining dimensionful quantity that can be used to form
probability is mB , so that the relative probability of an an
nihilation to a tree process isf B

2/mB
2<O(0.2%).

Nevertheless, other concerns lead one to believe that
annihilation and other non-spectator diagrams may be m
important than one would naively expect. For, if no
interacting spectator diagrams dominate decays ofb hadrons,
how then does one explain the fact that the lifetime ofB̄
mesons is greater than that ofLb baryons by 30% or more
@12#? One possible explanation is that the naive estimate
the previous paragraph fails to include potentially large n
merical coefficients. This point of view has been voiced
cently in Ref.@13#, which recalls the old observation@5,14#
that the annihilation width has a phase space enhanceme
16p2 compared to the tree width. One obtains this result
application of perturbative unitarity of the S-matrix to a c
across loop diagrams@Figs. 4~a,b!#. Since the diagram giving
rise to the tree width requires an additional loop integrat
compared to that for the annihilation width, the latter is e
hanced by a relative factor of 16p2 ~multiplied by the origi-
nal factor f B

2/mB
2).

But is such an effect genuine? As soon as one includes
gluon lines necessary to bind real mesons, the counting
loops no longer leads to an obvious enhancement, unles
impose another hierarchy to suppress the effects of th
exchanged gluons. The difficulty originates, as always, in
inability to take into account the multitude of gluons an
virtual quarks involved in the strong coupling of mesons.

A question similar in spirit is that of the sense in whic
the partonic annihilation diagram Fig. 3 exhibits quar
hadron duality with its corresponding sum of exclusive ha
ronic channels. Just as it is expected that the width obtai
from the tree diagram Fig. 1 approaches its correspond
sum of exclusives as the heavy quark mass becomes la
one may study whether this is true for processes in which

ng

f

FIG. 3. The ‘‘annihilation’’ ~A! parton diagram for the decay o
one meson into two mesons. Ovals indicate the binding of part
into hadrons.
2-2
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QUARK-HADRON DUALITY IN THE ’t HOOFT MODEL . . . PHYSICAL REVIEW D 59 054022
quantum numbers of the quarks are such that an annihila
diagram but not a tree diagram is permitted.

Unfortunately, the determination of definitive solutions
these questions requires one to have in hand exact solu
of QCD, and so is currently out of reach.

However, there does exist a simpler universe in wh
QCD can be solved exactly, so that we may consider
problem of meson decays in either quark or hadron langu
As ’t Hooft showed long ago@15#, the Green functions o
QCD in one spatial and one time dimension (111) in the
limit of Nc→` are completely calculable. Despite the
large modifications from our universe, the ’t Hooft mod
remains a nontrivial theory that possesses the attractive
ture of realizing confinement by binding quark-antiqua
pairs into color-singlet mesons~and more generally, forbid
ding colored states@16#!, as well as asymptotic freedom an
the many phenomenological results of large-Nc QCD @17#
common to ourNc53 universe, such as dominance of sc
tering amplitudes by diagrams with a minimum of mes
states, OZI suppression, the absence of exotics, and o
@18#.

In this paper we consider the analogue ofB̄ weak nonlep-
tonic decays in 111, where ‘‘B̄’’ means a meson with a
heavy quark~‘‘ b’’ ! of massM and a light antiquark of mas
m; ‘‘heavy’’ and ‘‘light’’ quark are terms made more precis
in Sec. III. We studied the question of quark-hadron dua
for the tree diagram in Ref.@6#, in which it was shown that
agreement between the two pictures asM→` occurred in a
subtle and surprising manner with such high precision t
the discrepancy between the two yielded a remarkable re
a correction to the Born term partonic limit well-fit numer
cally by a term of relative order 1/M . Encouraged by this
result, we ask what may be learned from other topologie
Feynman diagrams. We study in detail the annihilation d
gram and compare the total width with that obtained fro
the parton model. Our motivation, as before, is the hope

FIG. 4. ~a! Diagram giving rise to the ‘‘tree’’ amplitude o
Fig. 1 upon a vertical cut through the center~application of unitar-
ity!. The vertex blobs indicateW exchange. ~b! Diagram giving
rise to the ‘‘annihilation’’ amplitude of Fig. 3 upon a vertical cu
through the center~application of unitarity!. The vertex blobs indi-
cateW exchange. Strongly producedqq̄ pairs are not drawn here
for simplicity.
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the results from a soluble theory quite similar to real QCD
some respects and quite different in others may shed ligh
the full four-dimensional problem.

The paper is organized as follows. We begin in Sec
with an enumeration of the various quark diagram topolog
and study the scaling of each in the largeNc limit. This
classification is independent of the number of spacetime
mensions. We find that, in the decays of interest, naiveNc
power counting at the diagram level is subtle and deser
special discussion. The annihilation diagram emerges as
dominant topology and is the one whose computation is s
ied in the subsequent portion of the paper. In Sec. III,
briefly review the more arcane features of 111 dimensional
physics and the ’t Hooft model that are particularly releva
to the subsequent calculations. Section IV exhibits the a
braic results of the inclusive parton-level calculation
widths, from both a naive tree-level diagram and an analy
based on loop diagrams as in Fig. 4~b!, the latter being re-
lated closely to the corresponding OPE-like expansion.
Sec. V, we present the results of the width calculat
through exclusive hadronic channels in the ’t Hooft mod
Section VI gives our numerical results and a discussion
their implications, and Sec. VII concludes. A short Append
discusses the van Royen–Weisskopf relation in arbitrary
mensions.

II. QUARK DIAGRAM TOPOLOGIES AND LARGE Nc

In order to obtain Green functions for exclusive decays
the ’t Hooft model, one must first decide which diagrams a
present at leading order inNc . As is well known,n-meson
couplings in largeNc appear with a suppression facto
Nc

(12n/2) , and therefore the leading meson decay diagra
are those producing only two final-state mesons. Howe
for some diagram topologies there is the possibility of dir
oscillation of theB̄ meson into a single highly excited meso
of the same mass. Such resonant production poses an i
esting problem of largeNc counting, as we discuss below.

Next, we consider the relevant diagrams in terms
quarks, gluons, and electroweak bosons, in order to co
factors ofNc appearing in these diagrams. To lowest order
electroweak coupling, a single gauge boson is requir
moreover, since we require the decay of a quark, the bo
must be a flavor-changingW rather than ag or Z. It is
convenient to classify all possible diagram topologies
cording to six classes given by Ref.@19#, since these accoun
for all possible diagrams including only one electrowe
gauge boson. The categories include the color-unsuppre
tree diagram T~Fig. 1!, the color-suppressed tree diagram
~Fig. 2!, the annihilation diagram A~Fig. 3!, the electroweak
‘‘exchange’’ diagram E@Fig. 5~a!#, the ‘‘penguin’’ diagram
P @Fig. 5~b!#, and the ‘‘penguin annihilation’’ diagram PA
@Fig. 5~c!#. For the P diagram exhibited in Fig. 5~b! it should
be noted that the gluon may instead attach directly to
spectator antiquark, in which case production of an ad
tional quark-antiquark pair is not required. Similarly, the P
topology includes diagrams in which the intermediate g
connects to a single final-stateqq̄ pair. Although these dia-
grams were originally exhibited in the context of qua
2-3
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BENJAMÍN GRINSTEIN AND RICHARD F. LEBED PHYSICAL REVIEW D59 054022
model calculations, they suit our purposes since the inclus
of each additional meson, quark-antiquark pair, or exter
gluon is accompanied by suppressions in the amplitude
orders 1/ANc, 1/Nc and 1/ANc, respectively. Furthermore
diagrams with internal gluons are either nonplanar and he
suppressed by powers of 1/Nc

2 , or planar and produce a dia
gram at most of the same order inNc as the diagram ob
tained when all such gluons are removed. Thus, the sim
diagrams displayed in the figures are representatives of t
with the leading behavior inNc for each possible topology

The electroweak gauge boson does not carry color cha
and so the possible diagrams fall into two categories: th
in which the boson connects two otherwise disjoint co
loops, and those in which the boson begins and ends
quarks already connected by gluons and therefore with
single color loop structure. Clearly, the former diagra
boast one extra color loop, and thus dominate the latter b
factor of Nc . The former set consists only of the T and
diagrams, whereas the latter set includes C, E, P, and
diagrams. Only for T and A diagrams does the amplitu
factorize into a product of a decay constant and the ma
element of a current between two mesons. Finally, formin
color-singlet meson for the one initial and two final meso
brings in a factor ofNc

23/2 for each amplitude, and so we fin
that the amplitude is}Nc

11/2 for T and A,}Nc
21/2 for C, E,

and P, and}Nc
23/2 for PA. Widths are obtained by squarin

FIG. 5. ~a! Electroweak ‘‘exchange’’~E! parton diagram. ~b!
‘‘Penguin’’ ~P! parton diagram. ~c! ‘‘Penguin annihilation’’ ~PA!
parton diagram. Since the initial and final states are color sing
the intermediate state actually requires at least two gluons; h
ever, the archetype presented here exhibits the sameNc counting.
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the amplitudes and folding in phase space as usual, w
adds no powers ofNc since meson masses and mome
scale asNc

0 . For reasons that will presently become tran
parent, let us refer to the above as ‘‘naive’’Nc power count-
ing.

Suppose, however, that a given diagram topology perm
a resonant flavor-changing transition into asinglemeson, to
which we may assign the label ‘‘one-meson decay.’’ Su
diagrams clearly dominate over those of the correspond
two-meson decay by a factor ofANc in amplitude. There-
fore, ’t Hooft model~or indeed any largeNc) studies of the
two-meson decay mode for such diagrams appear doo
since the ’t Hooft model presents results only for behavio
leading order inNc .

Nevertheless, the one-meson decay is a very stra
physical process. For such a transition to occur on shell,
final-state light-quark meson must have precisely the sa
mass as the initial heavy-light meson. The weak decay w
as a function ofM to lowest order inNc is then a series of
delta function spikes~since the strong decay widths of th
light quark mesons scale as 1/Nc), with a nonzero value if
and only if M is tuned just right to produce such a ligh
quark meson. In this picture, a continuum width appears o
at relative order (1/ANc)

251/Nc , when two-body decays ar
permitted.

Clearly, this is an unsatisfactory physical picture. It im
plies that the leading behavior of the weak decay wid
scales asNc

n for some integern if M is tuned to certain
special values, but scales asNc

n21 otherwise. The simple
largeNc diagram counting appears to have failed us.

Fortunately, it is not difficult to develop a useful and co
sistent physical interpretation for such situations. The sal
point is to considerNc very large but still finite, so that
strong widths of light-quark mesons are not strictly ze
indeed, the usualNc counting shows that theirO(1/Nc)
strong widths are exactly what one obtains from strong
cays into two lighter mesons. Thus, the one-meson dec
may be interpreted as intermediate states in the decay o
initial heavy-light meson through a single resonance into
final two-meson state.

Effectively, in this picture one integrates out the on
particle decay resonant channels, which dominate the n
resonant two-particle weak decay widths byNc

1 , from the
hadronic Lagrangian. However, unitarity demands that
extra power ofNc must appear somewhere in the remaini
degrees of freedom, and this is accomplished through Br
Wigner resonances appearing in the two-meson continuu
points where the mass of the initial heavy-light meson a
light-light resonance are equal. The single meson dec
have thus achieved the same interpretation as ther peak in
the pp continuum.

Despite this natural interpretation, it is important to s
explicitly that it supports the correct largeNc counting. Let
us suppose that a certain class of diagrams gives a n
one-meson weak decay width of orderNc

n for certain special
choices ofM . The equivalent resonant two-meson decay d
gram has a naive amplitude of orderNc

(n21)/2 @and hence a

s,
-

2-4
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QUARK-HADRON DUALITY IN THE ’t HOOFT MODEL . . . PHYSICAL REVIEW D 59 054022
naive width O(Nc
(n21))#, and includes a propagator of th

form1

i

m0
22mp

21 impGp
, ~2.1!

where the initial meson has massm0 , and the resonance
labeled byp, has massmp and strong widthGp5O(1/Nc).
Unlessm0

2 is very close tomp
2 , the propagator isO(Nc

0) and
the naive largeNc counting is maintained. However, whe
m0

25mp
2 the previously suppressed factorGp becomes domi-

nant and promotes the propagator to a quantity of orderNc
1 .

The question becomes, how much area lies under this B
Wigner? To answer this, we note that the relevant quantit
the width is the propagator squared. Since the peak is v
tall and narrow, the rest of the invariant amplitude var
little over the width of the peak, and thus may be treated
an overall constant. We may then extend the limits of
integral inm0

2 from the immediateO(1/Nc) neighborhood of
mp

2 to all valuesm0
2P(2`,1`). Noting that

E
2`

1`

dm0
2 1

~m0
22mp

2!21mp
2Gp

2 5
p

mpGp
5O~Nc

1!, ~2.2!

the total weak width becomesO(Nc
n), and we see that the

large Nc counting and unitarity are preserved, exactly
claimed. More precisely, if the productf (m0

2) of the invari-
ant amplitude~except for the propagator!, phase space an
whatever measure we choose for the integration overm0

2 is a
smooth function in the neighborhood ofmp , then

E
2`

1`

dm0
2

f ~m0
2!

~m0
22mp

2!21mp
2Gp

2 '
p f ~mp

2!

mpGp
5O~Nc

1!.

~2.3!

It follows that theNc counting for two-meson decay dia
grams must be modified when it is possible within the top
ogy class to have a final state consisting of a sole co
singletqq̄ pair. The A and E diagrams, and those subsets
P and PA diagrams singled out above, satisfy these crite
In such cases, the width is promoted by one power ofNc
over the result of naive power counting. We obtain fina
the largeNc hierarchy for diagram topologies summarized
Table I.

We see that the A diagram actually dominates over th
diagram studied in Ref.@6# by one power ofNc , precisely
because resonant intermediates enhance the former an
the latter. However, in order for both diagrams to appear
single process, certain restrictions on the flavors of quark
the mesons must be imposed. This assignment must be
formed with some care, because in the general case one
have to deal with the statistics of identical mesons. In or

1In the narrow width approximation, which is automatically sat
fied in largeNc QCD, it does not matter whethermp or m0 is chosen
as the coefficient ofGp in the propagator. We have found that th
statement is empirically true in our numerical simulations.
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to base our conclusions on as simple a system as possib
the present work we have chosen flavors so that such id
tical final-state mesons do not occur. In terms of the label
the T diagram of Fig. 6~a! and the A diagram of 6~b!, we
choose parton 1 to be the heavy quark ‘‘b’’ of mass M ,
partons 3 and 4 to refer to identical light quarks, and 2,
(54), and 5 to be quarks degenerate with massm but of
different flavors. In terms perhaps more familiar, this mea
that a ‘‘B̄’’ meson with flavor content (bū) decays to two
‘‘pion’’ excitations with flavors (u8ū) and (dū8), where the
u, d, and hypotheticalu8 quarks are degenerate in mas
Similar assignments may be used to permit certain topo
gies and forbid others.

III. THE ’t HOOFT MODEL AND ANNIHILATION
DIAGRAMS

A review of the application of the ’t Hooft model and
description of the interesting physical peculiarities of 111
dimensions appears in Ref.@6#. Here we reprise only those

FIG. 6. ~a! Diagram for ‘‘tree’’ ~T! meson exclusive decay
Numbers indicate quark labels used in the text~except0, which

refers to the ground-state ‘‘B̄’’ meson!, while letters indicate the
eigenvalue index of meson resonances. One can also con
contact-type diagrams, in which the point labeled byn is not
coupled to a resonance.~b! Diagram for ‘‘annihilation’’ ~A! me-
son exclusive decay. Numbers indicate quark labels used in the

~except 0, which refers to the ground-state ‘‘B̄’’ meson!, while
letters indicate the eigenvalue index of meson resonances. One
also consider contact-type diagrams, in which the point labeled bp
is not coupled to a resonance.

TABLE I. Large Nc dependence of two-body meson dec
widths from all quark diagram topologies. A subscriptR indicates
that the counting is enhanced byNc

1 relative to naive counting by
the presence of resonant intermediate states.

Nc
2 Nc

1 Nc
0 Nc

21 Nc
22

AR T PR ,ER C PAR
2-5
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BENJAMÍN GRINSTEIN AND RICHARD F. LEBED PHYSICAL REVIEW D59 054022
properties essential to understanding the exceptional fea
of our results presented below.

The ’t Hooft model is defined as SU(Nc) Yang-Mills
theory in 111 spacetime dimensions with both adjoint~glu-
on! and fundamental~quark! degrees of freedom in the limi
of infinite group rankNc21. This definition leads to a theor
in which those Feynman diagrams with leading depende
in Nc may be summed explicitly to give closed-form expre
sions that are numerically, if not analytically, soluble. T
archetype of these expressions is the solution for the t
point irreducible Green function, the ’t Hooft equation:

mn
2fn

Mm̄~x!5S MR
2

x
1

mR
2

12xDfn
Mm̄~x!

2E
0

1

dyfn
Mm̄~y!Pr

1

~y2x!2 , ~3.1!

where fn is the nth meson eigenfunction for a quark
antiquark pair of massesM , m, while m is the meson mas
eigenvalue,x is the fraction of the meson momentum carri
by the quark in light-cone coordinates, andR indicates quark
mass renormalization:

ma
2→ma,R

2 [ma
22g2Nc /2p. ~3.2!

Note that gauge couplings in 111 dimensions have units o
(mass)1, and recall the usual ’t Hooft scaling of the stron
coupling g}1/ANc. From Eq. ~3.2! it then follows that
g2Nc /2p serves as the natural unit of mass in the ’t Ho
model, and this redefinition has already been used in
~3.1!. Indeed, this scale serves much the same purpose
11 asLQCD in 311, in that heavy quark scaling propertie
set in for quark masses a few timesgANc/2p @20–22#.

Meson wave function solutions to the ’t Hooft equatio
are either pseudoscalars or scalars, since rotations do
exist in one spatial dimension except in the residual form
spatial inversion.

That three-point ’t Hooft model Green functions may
expressed in terms of two-point functions was first shown
Einhorn @23#, with various generalizations demonstrated
Grinstein and Mende@21,22#. The method@24# of numeri-
cally solving the ’t Hooft equation is discussed in Sec. V
and described in detail in@6#.

The most remarkable characteristic distinct to 111 phys-
ics exhibited by these calculations is that two-particle ph
space actually becomes singular as 1/upu when the threshold
upu50 is approached, whereupu is the c.m. spatial momen
tum of either outgoing meson. Nevertheless, these turn ou
be rather weak square root singularities in the heavy qu
massM and therefore have pronounced effects on the wi
only at points over a relatively small measure inM . The
corresponding familiar 311 expression, on the other han
is proportional toupu1 and thus vanishes at threshold.

Of much greater numerical relevance in any number
dimensions are the Breit-Wigner lineshapes produced
resonant intermediate states. As discussed in Sec. II,
resonances enhance the width by a full factor ofNc

1 for the A
but not the T diagram, and therefore were not an issue
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Ref. @6#. Since explicit factors ofNc no longer appear simply
as a single overall coefficient in the width, one must choo
a particular value forNc in order to obtain numerical results
Quark-hadron duality should then be studied by takingNc as
large as numerically feasible; we return to a discussion
this point in Sec. VI.

IV. PARTONIC WIDTHS

The computation of the inclusive width for the decay of
heavy-light meson via the annihilation diagram at the Bo
level is fairly straightforward, and may be accomplish
through two complementary approaches, each of which
its own advantages.

The quark Hamiltonian used for this calculation is giv
by

H5GDmn@ q̄2gm~cV1cAg5!b#@ q̄5gn~cV1cAg5!q2#,
~4.1!

where

Dmn5gmn1j~p!pmpn ~4.2!

is the tensor structure of the weak interaction propaga
with momentum transferp. If one adopts notation analogou
to that of the standard model, then in unitary gauge, such
charged Higgs bosons become irrelevant,

j521/MW
2 . ~4.3!

Similarly,

G52&GF

MW
2

MW
2 2p2 V21V25* , ~4.4!

whereGF /&5g2
2/8MW

2 as usual. To complete the analog
in the usualV2A theory one would havecV52cA51/2,
but we leave these as free parameters.

The partonic calculation of the width must incorporate t
annihilation of the initial meson as well as the production
final-state free quarks. Rather than decomposing the in
meson into a quark-antiquark pair free but correlated in s
a way as to guarantee the desired total quantum numbers
include the full meson coupling through

^0ucVVm1cAAmun&5~cVemn1cAgmn! f npn , ~4.5!

whereVm5q̄gmq, Am5q̄gmg5q5emnVn , e01511 and f n
is the decay constant of mesonn5even. Forn odd, cV and
cA on the right-hand side~RHS! are exchanged. In the ’
Hooft model

f n5ANc

p
cn[ANc

p E
0

1

dxfn~x!. ~4.6!

For the case of mesons made of equal-mass quarks,f n odd
vanishes, since thenfn(x) is odd aboutx51/2.

The first computational approach evaluates the amplit
directly obtained from the diagram Fig. 3, where the qua
antiquark pair created by the weak current is represented
2-6
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free spinors, and the on-shell process hasp25m0
2. Using the

Dirac equation and the 111 identitygmg55emngn , one ob-
tains

MA522ANc

p
Gc0m@cV

22cA
2~11jm0

2!#@ ū5g5v2#.

~4.7!

The width is given by

G5
1

4m0
2upu

uM Au2. ~4.8!

Including a factorNc for outgoing quarks and 1/ANc for
normalizing them into a color singlet, one obtains

Gpart5Nc
2G2@cV

22cA
2~11jm0

2!#2
2m2c0

2

pAm0
224m2

. ~4.9!

It is interesting to note that the rate vanishes in the limit
massless light quarks. This follows trivially from the obse
vation that in them→0 chiral limit both vector and axial-
vector currents~of light quarks! are conserved. Since fo
large Nc the A amplitude factorizes, one must contract t
vector index in Eq.~4.5! with that of the current producing
the quarks. Contraction withpm corresponds to taking th
divergence of the currents, while contraction withemnpn cor-
responds to first exchanging the role of vector and ax
vector currents, and then taking the divergence. Incidenta
this argument also applies in 311 dimensions.

Since the decay constantf 0}c0 scales as 1/AM
@11,21,25# andm0}M asM→`, the asymptoticM behavior
of the annihilation diagram widthGpart is 1/M2. This is to be
contrasted with the tree diagram asymptotic width@6#, which
grows asM1.

The second computational approach evaluates the w
by calculating the loop integral in Fig. 4~b! and then using
unitarity to cut the diagram and reveal the on-shell result
the present case, the first diagram has external qu
antiquark pair 1,2 and internal quark-antiquark pair 5,2.

Standard techniques show that the inclusive width to
final statesX in D spacetime dimensions is given by

G~B̄→X!5
1

M
Im i E dDx^B̄uTH †~x!H~0!uB̄&,

~4.10!

so that one requires only~one-half of! the discontinuity in
the imaginary part of the loop diagram, which begins at v
ues of energy where on-shell intermediate states appear.
factorized four-quark operator inH is used to annihilate and
create aB̄ meson, as is again quantified by Eq.~4.5!, leaving
a vacuum amplitude of the product of two currents. Su
factorization is a consequence of largeNc . Retaining only
the internal quarks and their couplings to the weak curre
one obtains for the diagram
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S 2
iNc

p D ~cVgm
r1cAem

r!~cVgn
s1cAen

s!~grs2prps/p2!

3F12
4m2

p2

1

A4m2/p221
tan21

1

A4m2/p221
G . ~4.11!

The discontinuity of the bracketed quantity across the cut
p2>4m2 is given by

4m2

p2

1

A124m2/p2
. ~4.12!

The external couplings and weak current propagators
given by

2G2f 0
2ptpv@cVek

t1cAgk
t#@cVel

v1cAgl
v#@gmk1jpmpk#

3@gnl1jpnpl#. ~4.13!

Substituting into Eq.~4.10! the expression~4.13! contracted
with Eq. ~4.11! using the discontinuity in Eq.~4.12!, and
finally replacing f 0 using Eq.~4.6!, one again obtains the
partonic rate~4.9!. In all subsequent expressions we takej
50 @except when its position in the hadronic calculation
indicated; see Eq.~5.2!#, corresponding toMW→`.

Once this computation is phrased in terms of the vacu
amplitude of the product of two currents, one is tempted
replace the product of two currents by an OPE. Howev
this procedure is poorly justified, if at all, since the mome
tum across the currents,p, is neither in the deep Euclidea
region~where the OPE is systematic! nor is it integrated over
a region in such a way that the contour of integration can
deformed so that it lies~mostly! in the deep Euclidean re
gion. The physical quantity of interest is the rate at a giv
heavy meson mass, so thatp25m0

2 is timelike. One can,
however, consider integrating the rate over the variablep2.
Then, as in the more familiar case ofe1e2→hadrons, the
contour can be deformed and the integral is dominated by
leading term in the OPE. Putting aside the question of ph
cal utility of this exercise~in reality, unfortunately, we can
not vary the mass of theB̄ meson!, in the ’t Hooft model it
has long been known@16,23# that this leading order OPE
result is reproduced by the sum over intermediate reson
states; for clarity, we demonstrate this result in the curr
notation below. LargeNc counting dictates that only singl
intermediate states contribute. If global duality~that is, in-
cluding integration overp2) is operative in the rate for anni
hilation decays, it must be through some nontrivial interp
between these resonances and the inclusion of widths by
ternal meson propagators in the exclusive rates, as discu
in Sec. II.

In the ’t Hooft model one may explicitly check duality fo
the vacuum amplitude of the product of two currents in t
limit of p2 large and in any complex direction except alo
the positive real axis~where meson poles occur!. In fact, this
limit was considered first by Callan, Coote, and Gross@16#,
with a number of refinements by Einhorn@23#, but it is in-
structive to see how the calculation proceeds when arbit
2-7
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combinations of vectorlike currents are included. Defini
p̃m5emnpn and usingemken

k52gmn, the p2@m2 limit of
the loop expression~4.11! reads

S 2
iNc

p D H ~cV
22cA

2 !gmn2
1

p2 ~cV
2pmpn1cA

2 p̃mp̃n!

2
cVcA

p2 ~pmp̃n1 p̃mpn!J . ~4.14!

On the other hand, the hadronic vertex is defined by
~4.5!, and so the loop written in terms of resonance con
butions reads

~cVem
t1cAgm

t!~cVen
v1cAgn

v!ptpv(
n

i f n
2

p22mn
2 .

~4.15!

~Recall thatf n odd50 in this calculation.! As p2→complex
`, the sum becomes

i

p2 (
n

f n
25

iNc

pp2 (
n

cn
25

iNc

pp2 , ~4.16!

which uses the definition~4.6! and the completeness relatio

(
n

fn~x!fn~y!5d~x2y!. ~4.17!

In this limit, Eq. ~4.15! contracts to

S 1
iNc

p D H cV
2 p̃mp̃n

p2 1cA
2 pmpn

p2 1
cVcA

p2 ~ p̃mpn1pmp̃n!J .

~4.18!

To see that Eqs.~4.14! and ~4.18! are equal requires one t
recognize the following~equivalent! tensor identities, which
hold in 111:

pmpn2p2gmn5 p̃mp̃n,

p̃mp̃n1p2gmn5pmpn. ~4.19!

It goes without saying that a demonstration of the valid
of an OPE for hadronic widths in the real world of fou
dimensions and three colors would be much more subtle
one loses some simplifying elements such as factorizatio

If it nevertheless can be shown that the nonleptonic
pansion admits a well-defined OPE, then the diagrams
Fig. 4~b! enter as effective four-quark operators of the fo

OA5b̄Gmq2q̄2Gmb, ~4.20!

where Gm represents the vectorlike (Vm and Am) Lorentz
structures. In contrast, the T diagram arises from cutting
loop diagram of Fig. 4~a!, and enters the effective OP
through the leading operatorOT5b̄b. Since fermion fields in
D spacetime dimensions have engineering dimens
M (D21)/2, by naive power counting the A diagram width
111 might be expected to be only 1/M suppressed com
05402
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pared to that of the T diagram. Schematically, the OPE-l
expression for the width reads

G~B̄→X!;GF
2M2D24H ^B̄ub̄buB̄&1¯1

1

MD21

3 ^B̄ub̄Gmq2q̄2GmbuB̄&1¯J ,

~4.21!

where the ellipses indicate subleading terms for both th
and A contributions, and numerous overall coefficients
well as perturbative short-distance corrections have b
suppressed for simplicity. The overall mass factor is obtain
by noting that the mass dimension ofGF is M22D, while the
B̄ bra and ket are normalized to 2M particles per unit vol-
ume and thus have mass dimensionM (12D/2). Each term in
the braces has dimensionM1.

However, this reasoning does not take into account
light quark mass suppression induced by taking the div
gence of the light quark current. One obtains an additio
suppressionm2/M2 as discussed above, and thus Eq.~4.21!
does indeed predictGA}1/M2 as M→` in 111, in agree-
ment with Eq.~4.9!.

An important point to note is the absence of interferen
effects between A and T amplitudes in the total width p
dicted by the OPE-like expansion, Eq.~4.21!. The diagram in
Fig. 7 would contribute to such an interference effect, bu
of order Nc

1 rather thanNc
3/2 as suggested by Table I. Th

absence of interference in the OPE method is not by it
proof of failure of the method since there could be cance
tions among the exclusive channels that effectively can
the interference effects.

V. HADRONIC WIDTHS IN THE ’t HOOFT MODEL

In Ref. @6# the amplitude for each allowed exclusive cha
nel proceeding through the T diagram of Fig. 6~a! was com-
puted in terms of various sums and overlaps of ’t Ho
model wave functions. Such an expression, Eq.~5.8! or
~5.18! in that work, represents the exact nonperturbative c
culation of the invariant amplitude within the ’t Hooft un
verse of 111 spacetime dimensions and largeNc .

The analogous calculation for the A diagram of Fig. 6~b!
is almost identical, and essentially amounts to a reassignm

FIG. 7. Feynman diagram topology for the interference betw
A and T amplitudes.
2-8
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of indices, as expected from crossing symmetry.2 The ex-
pressions in terms of form factors are very similar to tho
for the T diagram, and so we instead present only the re
for the invariant amplitude. As before,0 refers to the initial
ground state (12̄) meson, and is now directly coupled to th
flavor-changing current. The light meson at the other end
this current, labeled byp, has quantum numbers (52)̄; m as
before refers to the final-state (32)̄ meson, andk ~which is
no longer coupled to the flavor-changing current!, has quan-
tum numbers (53̄): Recall the statement in Sec. II that,
order to have both T and A diagrams, we require quark
and 4 to be identical. The kinematic variable, now defined
v[q2 /p2 , is given for this diagram by

v~p2!5
1

2 F11S mk
22mm

2

p2 D
2A122S mk

21mm
2

p2 D 1S mk
22mm

2

p2 D 2G . ~5.1!

Here we see that the relevant threshold is that of0→mk, i.e.,
p25(mk1mm)2. The meson indexp should not be confused
with its momentump2. The invariant amplitude for state
above this threshold is given by

MA5Gc0ANc

p (
p

†@~cV
22cA

2 !„11~21!p
…#

2jp2cA@~cV1cA!~21!p2~cV2cA!#‡

3
cpmp

2

~p22mp
21 impGp!

Fpkm~v0!, ~5.2!

where now the on-shell process hasp25m0
2, v0[v(p2

5m0
2), and the triple overlap is given by

Fpkm~v![F 1

12v E
0

v

dvfp
52̄~v !fk

53̄S v
v DFm

32̄S v2v

12v D
2

1

v E
v

1

dvfp
52̄~v !Fk

53̄S v
v Dfm

32̄S v2v

12v D G ,
~5.3!

where the meson-quark vertex function is defined by

Fn
Mm̄~z!5E

0

1

dyfn
Mm̄~y!Pr

1

~y2z!2 . ~5.4!

Note also the presence of the partial widthGp for light-light
mesonp strong decay into mesonsk and m. As argued in

2Sincem0
2.(mk1mm)2 for all on-shell processes, it follows thatv

defined here in Eq.~5.1! always lies in@0,1#, and one may directly
use the analogue of~5.8! in @6# rather than worrying about ‘‘back
solving’’ or ‘‘contact terms’’ as described in the previous work.
05402
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Sec. II, such an inclusion is essential to give a consis
largeNc power counting for the two-meson weak decay d
gram. Explicitly,

Gp~vp!5
2p

Ncmp
(
k,m

@~mp
2!222mp

2~mk
21mm

2 !

1~mk
22mm

2 !2#21/2uFpkm~vp!u2, ~5.5!

where, using Eq.~5.1!, vp[v(p25mp
2).

The total rateGhad for the A diagram is then obtained b
squaring Eq.~5.2!, inserting the result into Eq.~4.8!, and
summing over all allowed final statesk andm. This value is
to be compared with the Born term expression~4.9! as a test
of quark-hadron duality.

One may also consider direct numerical comparisons
tween the T diagram total hadronic rate exhibited in Fig. 4
@6# andGhad computed here; the correct procedure to follo
in this case is somewhat ambiguous, since the former ra
of order Nc

1 , while the latter integrates to orderNc
2 when

resonant contributions are taken into account. Therefore
one works only in the strict largeNc limit, the T diagram is
infinitely small compared to the A diagram. However, wh
the ’t Hooft model is of course only exactly true whenNc
→`, this limit is believed to survive the inclusion o
O(1/Nc) corrections@16#. Moreover, since numerous studie
in the literature show that the phenomenological predictio
of the largeNc expansion survive even forNc as small as 3,
we suppose that a quantitative comparison between the T
A widths has merit even for smallNc .

VI. RESULTS AND DISCUSSION

The ’t Hooft equation is solved numerically by means
the Multhopp technique@24#, by which the integral expres
sion ~3.1! is converted to an equivalent eigenvector equat
amenable to solution using computers. The results prese
here were computed with a basis set ofK5200 eigenfunc-
tions. As a check that this set is sufficiently large, the co
putation was repeated usingK550. Figure 8 shows the ratio
of the total width, solely from the annihilation topology
computed forK550 to that forK5200, in the case of~a!
Nc510, and ~b! Nc51. In both cases the ratio of th
Gaussian-smeared widths@see below, Eq.~6.2!# is also
shown, with a Gaussian width of~a! DM51.2 and~b! DM
50.4, in mass units ofgANc/2p. In either case the differ-
ence for widths is never more than 30%, while for the av
age width it is never more than 10% forM.5, and less than
5% in the regionM.10.

In all calculations we choose a single fixed value of ma
common to all the light quarks,m50.56. The range ofM
over which calculation ofGhad(M ) is feasible is limited pri-
marily by the rapidly increasing number of exclusive cha
nels open to the decay of theB̄ meson asM increases, and
the concomitant computing time required for the necess
integral overlaps. In practice, we limit our studies to t
range fromM52.28~the lightest heavy quark mass that cr
ates aB̄ with just enough mass to decay to two ground-st
light-light mesons! to M515.00~at which point almost 150
2-9
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FIG. 8. Ratio of the total width, solely from the annihilation topology, computed forK550 to that forK5200, in the case of~a! Nc

510, and~b! Nc51. In both cases the ratio of the Gaussian-smeared widths is also shown, with a Gaussian width ofDM51.2 in ~a! and
DM50.4 in ~b!. The unit of mass here and in all subsequent figures isgANc/2p.
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exclusive channels are open! in units of gANc/2p.
Incidentally, it is known that the standard Multhopp tec

nique leads to inaccurate ’t Hooft wave functions whenm
!1. In Ref. @26#, an improved version of the Multhop
method is developed, which does a much better job calcu
ing the wave functions nearx50 and 1 whenm is small.
One may question whetherm50.56 is large enough that ou
results, computed by the standard technique, are reliable
find that computing with the technique of@26# tends to
change the results by only a few parts in 104. Therefore, we
are confident in presenting numerical results below that
the standard Multhopp technique.

The Breit-Wigner resonances, which become infinite
tall and narrow asNc→`, present much more severe sing
larities inGhad than the phase space singularities discusse
Sec. III. Indeed, without proper regularization they are no
integrable, and therefore no amount of averaging, or ‘‘sme
ing,’’ could produce a finite result. One must include t
O(1/Nc) strong widths of the meson resonances coupled
the weak current, as discussed in Sec. II.

The strong widths are interesting in their own right. T
exact expression for the widths is given in Eq.~5.5!. In Fig.
9 we show the results of this calculation for meson excitat
numbers from 0 to 155, along with a fit function

Gn
fit5223

0.44

p2Nc
An21. ~6.1!

When strong widths forn.155 are needed, we use the
function Gn

fit .
The coefficient in Eq.~6.1! is written in this peculiar for-

mat in order to facilitate comparison with the results of Bl
et al. @27#, whose best fit appears to be a factor 22 sma
than ours. Reference@27# works atm50, and uses an ap
proximation to the ’t Hooft wave functions and masse
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fn(x)5& cos(npx) and mn
25p2n. In an effort to under-

stand the discrepant results we have also calculated
widths for smaller masses,m50.3 andm50.1. We find that
the widths at these smaller masses are comparable to
other andlarger than the widths atm50.56 by approxi-
mately a factor of 1.5. We have also computed the wid
using the approximate wave functions and masses of R
@27# and find them to be in good agreement with our sm
mass results. To be precise, the widths computed in the m
ner of Bloket al. are slight underestimates of the exact on

FIG. 9. Meson strong decay widths in units ofgANc/2p•1/Nc

as computed via Eq.~5.5!. The smooth dashed curve is the fit fun
tion ~6.1!.
2-10
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We understand the difference to arise from the approxim
tion to the masses, which excludes decay channels clos
threshold that are allowed by the exact phase space. R
that, in 111 dimensions, channels close to threshold
greatly amplified by phase space; see Eq.~4.8!. Finally, Blok
et al. use a variant of Eq.~5.5! @see their Eq.~16!# in which
the amplitude Fpkm(vp) is replaced by @Fpkm(vp)
1Fpkm(v̂p)#/&, wherev̂p is the other root, i.e., it is given
as in Eq.~5.1! but with the opposite sign of the square roo
Since the two rootsv and v̂ correspond to different kine
matics (v↔v̂ exchanges the direction of thek andm me-
sons!, one may suspect the expression used by Bloket al. is
incorrect. The error arises from the cross term, a sort
interference between the two directions in phase space.
merically we find that the interference term is small at lar
excitation number. Therefore, although their calculation
not strictly correct, this error does not explain the large d
crepancy between our results. To summarize, we find a re
for the widths a factor of about 30.p3 larger than Ref.@27#,
even when using their expressions to calculate the width

In the present case in which strong widths can beco
important, factors ofNc no longer appear simply as an ove
all coefficient, as was the case in@6#. We are thus forced to
choose particular values ofNc in order to obtain numerica
results. The ideal, of course, is to chooseNc as large as
possible in order to approach the results of the exact ’t Ho
model. However, such a choice makes the Breit-Wign
taller, narrower, and thus harder to average overM , so that
obtaining a smooth result for comparison with the one co
puted perturbatively is more difficult. In particular, one
forced to choose the rangeDM over which the averaging
function has support to be larger and larger in order to ob
at last a smooth result forGhad

avg.
The averaging, or ‘‘smearing,’’ ofGhad(M )→Ghad

avg(M ) in
the heavy quark massM is carried out here by multiplying
Ghad(M ) at a series of pointsM0 over the range ofM by a
suitably chosen smearing function, and then normalizing
the area under this function. In practice we use a Gaussia
width DM /&:

Ghad
avg~M !5

(M0
expF2

~M2M0!2

~DM !2 GGhad~M !

(M0
expF2

~M2M0!2

~DM !2 G , ~6.2!

and the pointsM andM0 are chosen at intervals of 0.1 ma
units. It should be pointed out that this smearing produce
small spurious result at the edges of the fitting range if
function to be smeared has a nonzero derivative~apart from
noise in the function! at these points. For example, suppo
one smears a linearly decreasing function near its endp
The smearing function of course samples only points to
left of the endpoint, where the function is uniformly larg
than it is at the endpoint itself, and so the smeared resu
slightly higher than expected. One of many cures is to co
pare two curves smeared in the same way, which produ
the same spurious effect in both, and so such curves ma
compared directly.
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The main results of this paper are exhibited in Figs. 1
13, which we now discuss. Figures 10–12 show in dot
lines the total annihilation width of the ‘‘B̄’’ meson as a
function of the heavy quark massM . Widths are presented in
units ofNc

1G2(cV
22cA

2)2. The computation was carried out a
the points shown as small squares, and the dotted lines
nect between them, to guide the eye. Widths for the inter
resonances have been included, and so the plots depen

FIG. 10. Total annihilation width of the ‘‘B̄’’ meson as a func-
tion of the heavy quark massM , for Nc51 ~dotted line!. The
smeared width defined in Eq.~6.2! is shown in short dashes, an
was computed usingDM50.4. The partonic width is shown in long
dashes. Units of the widths here and below areNc

1G2(cV
22cA

2)2.

FIG. 11. As in Fig. 10, but withNc510 andDM51.2.
2-11
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BENJAMÍN GRINSTEIN AND RICHARD F. LEBED PHYSICAL REVIEW D59 054022
Nc , with Nc51, 10 and 20 for Figs. 10, 11, and 12, respe
tively. Also, in all three figures we show in short dashes
Gaussian-smeared width, takingDM50.4, 1.2 and 1.2 for
Figs. 10, 11, and 12 respectively. We see that the larger
width of the internal resonances~that is, the smallerNc), the
smoother the behavior ofGhad, so thatDM as small as 0.4 is
sufficient to smooth out theNc51 case, whereas forNc

FIG. 12. As in Fig. 10, but withNc520 andDM51.2.

FIG. 13. Log-log plot of the total annihilation width of the ‘‘B̄’’
meson as a function of the heavy quark massM , for Nc51 ~dotted
line!. The smeared width defined in Eq.~6.2! is shown in short
dashes, and was computed usingDM50.4. The partonic width is
shown in long dashes. Also shown, in dash-dot-dash, is
Gaussian-smeared result that uses the model of Eq.~6.1! for the
strong widths of the internal resonances.
05402
-
e

he

520 the larger valueDM51.2 had to be used. In each figu
the partonic width is displayed in long dashes.

It is apparent that there is a large discrepancy between
actual widths and the partonic ones. The disagreement
mains after smearing. We may now ask whether the d
agreement is a correction that decreases as a particular p
of M . Figure 13 displays the same information as Fig. 1
but in log-log format. Also shown, in dash-dot-dash, is t
Gaussian-smeared result that uses the model of Eq.~6.1! for
the strong widths of the internal resonances. Even tho
Gpart andGhad

avg achieve somewhat better relative agreemen
Nc is increased, we see thatGhad

avg is not without structure,
indicating that for this type of process the onset of t
asymptotic largeM limit is very delayed. This is similar to
what occurs for the decay constantf B ; the combination
AM f B is known to have large 1/M and 1/M2 corrections
@21#. We have refrained from displaying a plot ofL
5 log(Ghad

avg/Gpart21), which at largeM would display the
leading power correctionM 2p as the slope ofL versus
logM. The problem in doing so is that, as discussed, it
clear that even at these large values ofM the asymptotic
behavior is not in sight. It is interesting to note that t
dash-dot-dash line is smooth and its slope disagrees sha
with that of Gpart.

Finally, regarding the question of a direct comparison
T versus A widths, we remind the reader that differentNc
behavior between the two widths means that, forNc suffi-
ciently large, the A diagram dominates. However, there
two additional effects that must be taken into account. T
first is that asymptotically,GT}M but GA}1/M2; thus for
large M and Nc fixed, one expectsGA /GT!1. Much more
interesting are the true dynamical effects obtained from
exactly computed matrix elements and Breit-Wigner re
nances in the A diagram. Once the result forGT given in Fig.
4 of @6# is properly normalized,3 one still finds thatGT is
much larger thanGA , even for fairly largeNc and fairly
small M . For example, forNc510 andM55 ~see Fig. 11!
one findsGT /GA.3. It appears that, in the context of th
’t Hooft model generalized to finiteNc , one must chooseNc
exceptionally large before finding values ofM for which
GT'GA .

VII. CONCLUSIONS

We have studied the annihilation decays of heavy ‘‘B̄’’
mesons in the ’t Hooft model as a function of the hea
quark massM for fixed light quark massm. In the strict
largeNc limit the hadronic width solely due to annihilatio
decays,Ghad5G(B̄), displays resonant structure from inte
mediate light mesons. For almost all values ofM the par-
tonic width, Gpart, which displays no structure, is at stron

3In the notation of this paper, the overall coefficient of the old
figure isNcG

2(cV
22cA

2)2/p. One must divideGT by this extrap to
obtain numerical comparisons. There are also different CKM e
ments,V31V35* for T andV21V25* for A, that we take equal for com-
parison purposes.

e
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variance with the exact widthG(B̄). A comparison with a

smeared version ofG(B̄) is not possible since the resona

singularities inG(B̄) are non-integrable.
It seems plausible, however, that for large but finiteNc

and at large enoughM a smeared version ofG(B̄) may agree
with Gpart. For finite Nc the hadronic widths of the reso

nances inG(B̄) must be included and make it possible

study the smeared version ofG(B̄), Ghad
avg. Moreover, the

leading dependences onNc of Ghad
avg andGpart coincide. How-

ever, our numerical study shows that even at masses as
asM515 in units ofgANc/2p, Ghad

avg andGpart disagree sig-
nificantly. Although increasingNc improves the relative
agreement somewhat, the improvement is not strong eno
to claim the onset of asymptotic scaling, even byM515.

Our analysis does not conclusively show the breakdo
of duality for annihilation decays of heavy mesons. But
seems clear that if duality is operative asymptotically, it m
be that asymptotia is much delayed for these types of dec

Note added.As this work was being completed, a pap
by Bigi et al. @28# appeared, in which the work of Ref.@6#
was criticized. Bigiet al.make the following straightforward
observation: if the quarks labeled 4 and 5 in Fig. 6~a! are
massless, then only the ground state~massless! meson
couples to the weak current@at the 4-5 vertex in Fig. 6~a!#.
The secondary quark@‘‘3’’ in Fig. 6 ~a!# and the spectato
quark @‘‘2’’ in Fig. 6 ~a!# are still taken to be light but no
necessarily massless. In this limit the hadronic decay is
scribed exactly as the semileptonic decay: There is no
tinction between the massless 4-5 meson and a lep
neutrino pair at vanishing invariant mass. It is no surpr
that the authors of Ref.@28# then demonstrate the validity o
global duality in this massless limit: It is guaranteed by t
general analysis of semileptonic decays@9#.

The interesting case of nonzero light quark mass is trea
in Ref. @28# rather less rigorously than displayed in the de
vation of global duality in the massless case. The reason
this is, of course, that only away from zero mass does
encounter the hadronic decay difficulties in their full com
plexity. While we cannot discount the possibility that th
order 1/M violation to local duality claimed in@6# is only a
numerical artifact, or that the large mass scaling region
not yet been reached, it seems to us premature to dismis
results of@6# on the basis of the work in@28#. Assuming the
results of Ref.@6# are correct one learns that the authors
@28# have underestimated the numerical size or type of d
ity violations. This is certainly possible, for@28# gives an
estimate of duality violations based on what they claim is
leading effect without proof@see Sec.~6C! of @28##, e.g. that
the scaling estimates leading to their Eq.~114! are dominant.
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APPENDIX A: VAN ROYEN –WEISSKOPF RELATION
IN ARBITRARY DIMENSIONS

It is interesting to consider the generalization of the v
Royen–Weisskopf relation@11#, which connects the meso
decay constant to the value of the meson wave function
zero quark separation, and was therefore implicitly used
the original naive argument in Sec. I that the annihilati
diagram is suppressed compared to the tree diagram.
relation is proved using nonrelativistic constituent qua
within the meson; nevertheless, one may consider its ge
alization to arbitraryNc and D spacetime dimensions, in
which it reads

f B
25

4Ncuc~0!u2

M1m
. ~A1!

Note particularly thatD only enters this expression implic
itly in c~0!. The explicit factor ofNc from f B

2 is in fact the
source of the enhancement of the A width to the T width.
proceed, we require a model for the wave function, for wh
we choose

c~r !5R~r !Y00~V!5Ne2mrY00, ~A2!

wherem is a typical hadronic mass scale, theD-dimensional
spherical harmonic is given by

uY00~V!u25
1

*dV
5

G„~D21!/2…

2p~D21!/2 , ~A3!

andN25(2m)D21/G(D21). We then have

f B
25

4Nc

M1m

G„~D21!/2…

2p~D21!/2

~2m!D21

G~D21!
. ~A4!

Note that the mass dimension off B is MD/221, as can also be
shown directly from its definition~4.5! as a matrix element

In the context of dimensional regularization, the fact
appearing with the inclusion of each additional loop
(4p)2D/2. We must also, according to the arguments of S
I, divide out powers ofmB (5M1m in this model! to obtain
a dimensionless ratio. The relevant ratio between the A
T diagram widths in this simple model is thus given by

~4p!D/2
f B

2

mB
D22 5NcS m

M1mD D21

34DAp
G„~D21!/2…

G~D21!
.

~A5!

Removing the explicitNc and the mass ratio, the remainin
D-dependent coefficient actually reaches a maximum foD
59. We see that even this simple model—no dynamics,
even a helicity suppression factor, has been included—t
us the ratio between the A and T diagrams depends se
tively on interplay between the value ofNc , the quark
masses and interaction energies, and the number of sp
time dimensions.
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