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The 't Hooft model(two-dimensional QCD in the limit of a large number of coloisused as a laboratory
for exploring various aspects of heavy quark expansion in the nonleptonic and semileptonic decays of heavy
flavors. We perform a complete operator analysis and construct the operator product exgaR&oap to
termsO(l/m‘é), inclusively. The OPE-based predictions for the inclusive widths are then confronted with the
“phenomenological” results, obtained by summation of all open exclusive decay channels, one by one. The
summation is carried out analytically, by virtue of the 't Hooft equation. The two alternative expressions for the
total widths match. We comment on the recent claim in the literature ofng tbrrection to the total width
which would be in clear conflict with the OPE result. The issue of duality violations both in the simplified
setting of the 't Hooft model and in actual QCD is discussed. The amplitude of oscillating terms is estimated.
[S0556-282(99)05503-4

PACS numbdrs): 12.38.Aw, 12.39.Hg, 13.35.Dx

I. OVERVIEW (1) Equation (1) represents an expansion in powers of
1/mq with mg being theQ quark mass and the coefficiers
The development of heavy quark theory started in thescaling like (1ing)%~2 for an operator with dimensiod; .
1980s has essentially been completed. While at the earlyn T',, there are two sources for contributions depending on
staq{esththe ma||r|1 t(ajrﬂphass Waks placed on the symmetry g5 ers of g, namely higher-dimensionalperatorsand
pects(the so-calle heavy quar symmeirthe prese_n(ma- Qigher-order terms in the expansion of thexpectation val-
ture) stage deals with dynamical aspects. A formalism base o - . n .
: . : ues In addition every coefficient; is a series in the running
on Wilson’s operator product expansi¢@PE [1] has been i Y £ which onl fow t
developed and applied to many cases of practical interest, i pupling “5(m_Q) 0dTg, of which only a 1ew terms are
nown for a given coefficient; . This immediately raises a

particular to inclusive decays of heavy flavor hadrons. Th X
theory of such decays is at a rather advanced stage(sesy 9rave concern: how can we retain terms suppressed by pow-

[2] and references therginCalculations we could not even €rs of 1mg without a complete summation of the parametri-
dream of several years ago have become possible. cally larger powers of 1/lagy, in the leading coefficient?

The decays of heavy flavor hadrohk, are shaped by ~ (2) Although the normalization point conceptually rep-
nonperturbative dynamics. While QCD at large distances i§€Sents a straightforward “book-keeping” device for sepa-
not yet solved, considerable progress has been achieved fiating hard and soft contributions, itis technically qllfﬂcult to
this problem. The width of an inclusive transiti¢h,—f is ~ actually carry out such a program since no user-friendly defi-
expressed through an OPE. The nonperturbative effects afition of what is soft and hard exists in QCD. So far, the vast
then parametrized through expectation values of various lomajority of all discussions related to the introduction of
cal operators®; built from the quark and/or gluon fields. aré conducted in a hand-waving manner.

Observable quantities, such as semileptonic and nonleptonic (3) It is quite conceivable that there ahard norpertur-

widths of heavy hadronslo, are then given by bative contributions in the coefficient functions]®"Pe"
~(AQCD/mQ)‘5 with & being some positive number. The
1 possible size of such contributions is essentially unknown. A
FHQz M—Z Imci(u)(HolOi(1)|Hg), (1) related problem is the convergenter divergencg of the
H~ i

Q perturbative series for the coefficient functions
(4) Truncating the serie¢l) at some finite order intro-
wherec; are the OPE coefficients, and stands for a nor- duces an error estimated by so-called exponential terms,
malization point separating out soft contributidmehich are ~ which in Euclidean domain appear as expressions of the type
lumped into the matrix element$ o| O;(1)|Hg)] from the exf{ —(Mg/Aqcp)*]. In order to obtainl’y , we analytically
hard onegwhich belong to the coefficient functiors). continue from the Euclidean domain, where the OPE is well
There are many subtle and interrelated issues, both conlefined and the coefficients are real, to the Minkowski
ceptual and technical, associated with the operator produciomain where they acquire an imaginary part. Such analytic
expansion in QCD. continuation is implicit in Eq.(1) and is based on the as-
sumption of smoothness. Under analytic continuation the ex-
ponential terms convert themselves imscillating terms of
*Permanent address. the type coB(mQ/AQCD)k] [3]; the expansior{l) does not
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account for them. It can thus be understood on generatalculable. This enables us to describe every given transition
grounds that duality violation is described—or at leastin two complementary ways: we can confront the OPE-based
modeled—Dby oscillating expressions. To which degree thosexpression with a “phenomenological” representation for
are suppressed by powers ofrly depends on details of the the same process obtained by saturating the rate by exclusive
strong interactions and the specifics of the process. hadronic channels.

All these questions are circumvented in the so-called We want to take advantage of these unique features of the
practical versionof OPE [4] routinely used so far in all ‘t Hooft model to illustrate all crucial elements of heavy
instances when there is need in numerical predictions. Thiguark theory and the theory of inclusive heavy flavor decays
version is admittedly approximate, however. The questiongn particular. One should keep in mind that heavy quark
formulated above are legitimate; they deserve to attract thedheory, as we know it now, is merely an adaptation of the
rists’ attention, and continue to cause confusion in the literageneral OPE-based approach. Some of the questions to be
ture. They have to be addressed also because they are emedgscussed below can therefore be actually formulated in a
ing as a major source of the uncertainties in quantitativevider setting.
predictions; these problems have specifically been suspected The 't Hooft model has been exploited as a theoretical
to underlie phenomenological difficulties encountered redaboratory for testing various analytic QCD methods in ap-
cently, e.g., a relatively short lifetime dfflavored baryons plied problems before. Heavy quark symmetry and heavy
and a relatively small semileptonic branching ratio offlavor decays were analyzed in R€i8-10. The model was
b-flavored mesons. used recently for discussing general aspects of @BRver-

We find it useful and instructive to study all these issuesgence of the OPE series, exponential terms violating duality,
in models that while retaining basic features of QCD—mostand so oh[11,17].
notably quark confinement—are simpler without being |n Ref.[10] heavy flavor inclusive widths were calculated
trivial and can be solved dynamically. QCD defined in onenumerically, by adding the exclusive channels one by one. It
time and one space dimension—hereafter referred totds 1 \yas found that the inclusive Widtﬂ"HQ approaches its

QCD—is especially suitable for this purpose: with the Cou'asymptotic(partoni(j value, and the sum over the exclusive

lomb potential necessarily growing linearly in two dimen- . . i

. . . o . . ._hadronic states converges rapidly. At the same time, small

sions, quark confinement is built in. Likewise the theory is’,” " = ) :
deviations from the asymptotic value observed in the nu-

superrenormalizable, i.e., very simple in the ultraviolet do-"~"" | Vsid10 laimed to b ianal of i
main. There are no logarithmically divergent “tails” in the Merical analysig10] were claimed to be a signal ofrig

Feynman graphs. As a result, the book-keeping of opgorrections in the total width, in contradiction with the OPE-
(separation of the hard and soft patecomes simple, and based result. _ _
all subtle aspects in the construction of the OPE can be stud- " this work we treat the very same problem, inclusive
ied in a transparent environment. heavy flavor decays in11 QCD, analytically. We first de-

In particular, the perturbative contributions in the coeffi-Velop @ technique perfectly parallel to that in four-
cients ¢, become an expansion ig?/m? (whereg is the dimensional QCO2]. It includes such elements as a com-
gauge coupling in 1 QCD) TheyQ are thus power- plete operator analysis and the construction of the transition

suppressed in the same way as the higher-dimensional ope perator. fUnllhkeI fo(LjJ_r-d|menS|onaI QCD, ;[he izoelffll;lent
tors; the first problem formulated above therefore does nofnctions for the leading operator are exactly calculdbie

arise here. Without the logarithmic UV tails the second prob-t e limit Nc—c2). Moreover, all relevant expectation values

lem becomes tractable. Concerning the third problem it iof the local operators involvgd i.n the problem are calculable
easy to see that in11 QCD nonperturbative corrections ©©0: We get a complete prediction through ordeng/

cannot generate power suppressed terms in the coefficients(;rﬂeg we carry out“a “had(;onic calc(;llation’_’ of trr:e,Sﬁmef
¢c; . For the leading operatdpQ we will find its coefficient width, by saturating all open decay modes, using the 't Hooft

: . . L equation[5]. By comparing the phenomenological represen-
I\llmflo(c);] tc(i)ezrirllloars?reartsi’n()f tﬁirtgégsgtr)ne;hceeog? t:]h; “gr]tlfjrot:ativ étation of the total width with the OPE-based formula, we are
N ’ 9 9 b ble to identify, term-by-term, the subsequent terms of the

SEries. .At t_he same time, th_e divergence Of. the ?Or?densa eeavy quark expansion. The situation actually turns out to be
expansion in high orders will become manifest indirectly,

o . simpler than one could expeatpriori:
through the occurrence of oscillating termsF@Q, which (1) In the 1mg expansion for the inclusive width correc-

appear with suppression factor |(|1€5)9 in the case at hand. tjgns of the order (17‘1Q)2. (1/mQ)3 and (1mQ)4 to the par-
Thus all the four problems formulated above will be an- . . — .
ton width come only from the leading operatQQ, i.e.,

swered. : . e ;
We will perform our explicit calculations for41 QCD from the expansions of its OPE coefficierio and its ex-

in the limit of a large number of colorsl—the famous ~Pectation valugHg|QQ|Hg). Operators of h|gher5d|men—

't Hooft model[5—7]. For N.— o only planar diagrams con- S!ON contribute to th_e total .Wld.th f|rsét at order i4)°. .
tribute in QCD; 11 QCD has the additional special feature ~ (2) The perturbative series ig?/mj for the OPE coeffi-
that one can choose a gauge such that there are no gluarent of the operatoQQ is completely defined by the one-
self-interactions. Then only planar ladder diagrams have téoop renormalization of heavy quark mass. The result can be
be considered, and we have an exactly solvable theory in odormulated in terms of the light-cone gauge formalism as the
hands. All hadronic matrix elements of interest are thereforabsence of renormalization.
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These results are based on a general operator analysis. On 9°
the “phenomenological” side, we use a sum rule, which is a ,32:5( N¢
consequence of the 't Hooft equation, to show that the total

width is determined by a quantity coinciding with the matrix

element of thecgoQQ term in the OPE expansiofi),

1
_—) with lim B?=finite. (€)
Ne

NC~>:x:
This dimensionful quantity 3, which—in contrast to

m;,—provides an intrinsic mass unit for the 't Hooft model,

through order (Ihg)*. Thus, we observe gerfect match o e seen as the analo of four-dimensional QCD
between the expression derived from the OPE and from adcf- We need at least twog[:ggers denoted @yand q S/gvith '

ing up all relevant hadronic channels up to high order powe;nassest and mg, respectively, to realize heavy flavor

corrections. o ;
, - : transitions . For quark masses we impose
After testing the validity of OPE, we exploit results ob- Q=4 g P
tained en routein order to discuss the issue of oscillating Mo—Mg> 8, (4

contributions related to the high-order tails in the OPE series
that are factorially divergent. Due to the simplicity of the where bothm,#0 andm,=0 are allowed for. Conditio4)
model we can estimate them reliably. A nonmonotonousyuarantees that the inclusive methods of R2f.are appli-
duality-violating component of the width for largmg is  cable since it makes the energy reldasethe weak decay
suppressed by high power ofnl4 which we determined. large relative to the intrinsic scaj@. We will actually em-
Implications of our analysis for real QCD are briefly dis- ploy the dimensionless ratjs/mq as our expansion param-
cussed. eter.

The remainder of the paper is organized as follows: after Next we need to introduce a flavor-changing weak inter-
formulating the problem in Sec. Il we construct the OPE andaction; we choose it to be of the current-current form:

calculate the coefficients in Sec. Ill; after establishing the
match between the OPE-based result for the inclusive width v G _ _
and the sum rules for the same width resulting from the Cweak=—ﬁ(qyﬂQ)(¢a7“lﬁb)- ()

't Hooft equation through order (li‘dQ)4 in Sec. IV, we dis-
cuss an appearance of oscillating terms in the orden&)ﬁ
and the duality violations they cause in Sec. V; in the sam
section we discussed along similar lines a possible pattern q
the violation of the local duality for decays in 3 dimen-
sions; in Sec. VI we comment on the pap#@] and analyze
effects due to nonvanishing masses of light quarks; Sec. VI
presents a general discussion and conclusions.

Here G is an analog of the Fermi coupling constant; it is
imensionless in two dimensions. The fielglg, can be ei-
er the light quark or the lepton fields to describe nonlep-
tonic or semileptonic decays, respectively. Ir1 dimen-
ions the axial current reduces to the vector one. The most
Zeneral current-current interaction contains an additional
term where the vector currents are contracted via the anti-
symmetrice,,, instead ofg,,, . For the total width—our main
Il. PRELIMINARIES focus here—such an additional term is of no importance. The
product of scalar densities, on the other hand, is inequivalent
to that of vector densities; we will briefly discuss it, but
mainly focus on the/ XV interaction(5).
For N.—co factorization holds; i.e., the transition ampli-

tude can be written as the product of matrix elements of the

1 currentsay#Q andanﬂlpb. For the inclusive widths which
Lyoq=— _2Ga G2 +2 G (iD—m) i, are discussed below the property of factorization can be ex-

We start by formulating the problem and introducing our
notation and conventions.

In two-dimensional QCD the Lagrangian looks superfi-
cially the same as in four dimensions

wy sy pressed as follows:
iD,=id,+AT? (2 MHQFHQzlmJ d2xi(HQ|T{£WeaR(x)£Jveak(O)}|HQ>

T? denote generators of SN() in the fundamental repre- o v

sentation,G2, the gluon field strength tensor ang the =G| d™XImlL,,(x) ImT#*(x), ©®
quark field { is a flavor index with a masam; ;g the gauge

coupling constant. wherell ,,(x) andT ,,(x) are defined as

One has to keep the following_peculiarities in mirgl: . .
carries dimension of mass as dogg. The field strength IT,,,(X) =1(0| T{tha(X) ¥, ¥(X) ¥(0) ¥, #a(0)}0), (7)

Gf‘w on the other hand has dimensiM? in our normaliza- . .

tion, just as in four-dimensional QCD. With the theory being TH(x)=1(Hg| T{a(x) ¥*Q(x)Q(0) v,a(0)}|Hg). (8)
superrenormalizable n@nfinite) renormalization is needed;

observables like the total widt[THQ can be expressed in

f[erms of theba_re massesn; .and bare COUp!in_g g app.earing 11t can hardly be overemphasized that it is the size of the energy
in the Lagrangian. Anticipating the lar@é limit we will use  release rather than iy that controls the reliability of the expan-
a parametep instead ofg where sion in four dimensions as well.
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Yy
;

i FIG. 2. Transition operator in the leading order. The wavy line
FIG. 1. Polarization operator for lepton current. of masslessp field substitutes the propagation of lepton pair.
In other words, the problem is formulated as the inclusive
decay of the heavy quar® into a lighter quarkqg plus a
sterile bosonp. More exactly, we deal with the decays of a
Q containing hadrorH into a g containing final hadronic
stateX, plus ¢.
Let us pause here for two remark$). The fact that the
eraction vertex of the massless fieldinvolves €*”, see
Eq. (10), is most obvious whew, ,, are quark fields. For in
this case¢ is the pion, as mentioned above, and the pion is

coupled to the vector current,y, i, obviously through
€"*”. The case of the leptonic fields, , is indistinguishable;
therefore, the coupling o is the samef(ii) To keep the
analysis to be presented below as clean and transparent as
possible we want to be free of annihilation and Pauli inter-
ference contributions to the total widtfat least through
O(l/m‘é)]. This is readily achieved by assuming throughout
the paper that the spectator light quayd in Hg is distinct
from q.
e In the leading approximation the transition operator is de-
_ 2y, Aigx N termined by the diagram of Fig. 2, where the wavy line cor-
H‘“’(Q)_f AL, (x) = 77( q? ‘“’)' © responds to thep quantum. A straightforward calculation
yields for the transition operator

This factorization follows from the fact that at,— there

is no communication betweef,y,, ¢, andqy“Q currents:
any gluon exchange brings in a suppression factuﬁ 1/

The only difference between the semileptonic and nonlep
tonic widths resides il ,,(x), in the first casey, are lep-
tonic fields while in the second case they are the quark field§nt
At m,=0 we get one and the sarhg, ,(x) (up to the overall
normalization factomN.) as we will show shortly. For this
reason am, =0 the distinction between the nonleptonic and
semileptonic cases is actually immaterial. if,#0 quark
and lepton polarization tensoidd ,,(x) become different.
This difference is proportional to powers of,. It will be
discussed in Sec. VI. For the time being we will trgés as
massless leptons.

The one-loop graph determinird,, is depicted in Fig.

1. For a massless fermian we get the well-known expres-
sion

This expression obtained from a one-loop graph is known to y 2 5
be exact. Ifiy is a lepton field, this statement is trivial. Jfis $.-cC 00: 2Imc =T _ G mg—mg (11)
the quark field all gluon insertions inside the loop automati- 07 Qe Q"R 4y mg '
cally vanish due to special properties of the two-dimensional
y matrices? Thus, atm,=0 the only distinction between wherel' is the decay width for a free quark Q as evaluated
a,p being quark rather than lepton fields is an overall factorin the parton model. This parton expression will serve as
N, on the right-hand side of Eq9). reference in analyzing the (h4)" corrections to the total
A remarkable feature of Eq9) is the occurrence of the width I".
pole atq®=0, which is specific for the vector interaction.

This means that a pair of massless leptons produced by tqﬁ OPERATOR PRODUCT EXPANSION FOR INCLUSIVE
vector current is equivalent to one massless boson, whose’

L . . WIDTHS
coupling is proportional to its momentuq), . In the case of
the quark fields, it is knowf6] from the early days of the A. Catalog of operators
't Hooft model that the vector curreny,y"y, produces  The 1, expansion for inclusive widths of heavy flavor
from the vacuum only one massless meson, the pion. This igadrons is constructed from the Lorentz invariant weak tran-

readily seen by inspecting the 't Hooft equatids. sition operatof13]
For all computational purposes the vector currgpy* i,

in Eq. (5) can thus be substituted bey”am/ﬁ where ¢ T :j d2iTI L rroon= Yo
denotes a pseudoscalar massless noninteracting field, (Q=Q) XIT{LuealX) Lheal 0} =25 €(1) l((li;)

The local operator®; are ordered according to their dimen-

sions. The leading one iIQQ with dimensiondgo=1.

Higher operators have dimensions>1. By dimensional

counting the corresponding coefficients are proportional to
2Namely, one uses the fact thaty*y,=0 and any odd number (1/mQ)(di*2;)c.j;I'h7e ratio of the coefficients; /cqq is propor-

of y matrices reduces to one. tional to mg QQ

~ G —
[’vvveak: - Eq ')’,qu'U'VO-'vd’- (10
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The c_oefficizentszni are determined in perturbation theory QDZQ is Lorentz noncovariant and cannot enter directly into
as a series ifB“/mg. It is crucial that these coefficients are the OPE for the total width but, as we see, enters indirectly
saturated by the domain of virtual momentan, and are through the matrix element of the opera@Q.
infrared stable by constructiorfAll infrared contributions Equation(14) contains also the “chromomagnetic” op-
reside in the matrix elements of the operatGls) At this g a0 and it looks as if this operator contributes tmé/

point we s_hould_mentlon a drastic d's.t'nCt'O_n between four'corrections. It is not, however, the case. Indeed, this operator
and two-dimensional QCD. In four dimensions the expan-

X - . . - "can be rewritten as follows:
sion parameter for the coefficients is the running coupling
as(Mmg); nonperturbative contributions to the coefficients i i
coming from distances- 1/mq could in principle show up in OG=§Q0“VGWQ= zng,e/”GWQ
the form exp(—C/aS(mQ))~(AQCD/mQ)5 where § is some
unknown positive index, not necessarily integer. In two- i i—
dimensional QCD such terms cannot appear: an analog of the = 7Q75€*"G,,(1~ Y))Q+ 21— %) vs€*"G,.,Q,
exponential term above would be exn()né/,@z).
A note concerning the choice of the normalization point (18

: we will imply that . . .
p- WE ply tha where the relationr*”= y5e*” is used. Taking advantage of

Mo > B. (13)  the non-relativistic equations of motion to replace (1
—9°)Q by (1img) y'iD;Q we get(up to total derivatives
In this range there is no real dependencewgnso we will

suppress the argumeptboth in the coefficient functions and 1 — , 1
operators. Oc= - HQ(DMGMV)’Y Q+0O ey

The coefficient functions are not the only source ahg Q Q
dependence. The matrix elements of the operafbiontain 92 _ . 1
an implicit mg dependence todWe recall that in our for- :ﬁQyﬁtan qy“taq+(’)( —2) (19
malism, unlike HQET[14], the fields of which the operators Q a Mg

O, are built are the standard Heisenberg operators, ratherh a for th fth |
than asymptotic img,.) In particular, for the leading opera- WNeret stand for the generators of the color group Sk
tor aQ we have the following relation: Thus, the operato@g reduces to a four-fermion operator

Oaq With coefficientg?/mg .
The absence of operators with the gluon field strength

i
m, T+ EUWG“V tensor G,, in the OPE is a specific feature of two-
J' d2x6Q=f d2x| Qy,Q+Q Q dimensional QCD. The physical reason for the reducibility of
mé ' the gluonic operators is the absence of real gluons in two

(14  dimensions. A particular consequence of Etp) is that in

) ] . Eq. (14) the chromomagnetic operator generatee%lterms
where 7, =iD ,—g,0mMq and the integration ovex allows  qpy,

us to (r)]mit terrfns whicfh ﬁrehto(tjal deri\r/]atives. . I Thus we come to the following representation for the ma-
In the rest frame of the hadrdrq the expectation value . oo o o6 o leading operatQoO:

of 670Q counts the number ap quarks,

(HolQQIHg) _ 1 (HolQ(-D)QIHg)

1 _
2MHQ<HQ|Q70Q|HQ>:1 (15) ZMHQ Zmé ZMHQ
The factor 1/My,  will be present in all matrix elements; it , (HolQy,.2Q2 ar“t2q|Hg)
corresponds to a relativistic normalization of the states, + 9 d
2mg, 2My,
(Ho(p")[Ho(p))=2Ey 8(p’ —p). (16) L
. ) — +0 —4> . (20)
From relation(14) the matrix element oRQ is therefore mg

unity, up to a quadratic correction:
Let us proceed further with the operator analysis. The first
1 _ 1 subleading operator is the dimension-two four-fermion op-
m(HQ|QQ|HQ>:1+0 eyl (17 erator of the type
Q Q

Moreover relation(14) provides an operator form formé O4q=QI'1Qal0, 2D

corrections. They come fro@w, m*Q/2mg which equals  whereT, , denote color and spinor matrices. This is in dis-
QD%Q/Zmé up to 1/mg corrections. Notice, that the operator tinction with 1+3 QCD where the first subleading operator
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orderg®. It therefore contributes in orderrm%. For multi-
fermion operators every extrqq pair brings in an extra
1/mg, suppression.

In summary: to a quite high accuracy the oper@® is
the only one to contribute.

FIG. 3. Four-fermion operators in the leading order.
B. Calculating coefficients

WaSQUWGwQ' On dimehsional grounds th_e Opera‘@{q' 1. Light-cone gauge and nonrenormalization theorem
if present, could producelaear 1/mq correction in the total

decay width. To this end the corresponding coefficient mus}: Or-:—ehZ;SéceuI?L?Qieirﬁng}8;;08;:%3?;2’6%08:0? tt:?h"egg;)-
2:53'” zeroth order in the couplirgs’ (see the diagram in neering work of 't Hooff 5], and has been well studied in the

For the VXV weak coupling of Lagrangiari10) this literature. In this formalism the energy-momentum vector is

graph vanishes identically in the imaginary part, kg, described by

=0, provided the leptons are massless, see discussion in Sec. 1

Il. (If the fields propagating in the loop are massive, the p*=——=(E*p), (25)
operatorQ,, appears. The corresponding modifications are V2

considered in Sec. V.

However, in the case of a scalar-scalar weak interaction 030 that the mass-shell condition beconés-2p .. p_=m?.
the form Let us write down the Lagrangian of the model in the

light-cone formalism:
Gg — —
Lo~ = (AQ) (Yathy) (22 Lo
V2 EZEi Xi| 10+ = 50| Xi

the graph of Fig. 3 is not zero, and gives the following con- 2
tribution to the transition operator: + g9
2

1
> Xty ) a_z( ; Xltaxk) - (26)

i
2

S — —
ImTs=—--(Qq)(qQ). (23 |n this formalism two-component quarl; fields are ex-
pressed via the one-component fermionic fields
With this contribution the total width takes the fortwe put

my="0 for simplicity): 1 Xi
== a=>g _m (27
G&m 47 (H H 214 i
s _ s'Q 1+ m < Q|(QQ)(QQ)| Q> . (24) \/Ei(?_ Xi

"o 16m My (Ho/QQIHg)

(in the basis whereys=%y! is diagonal. With the gauge
Let us emphasize that, unlike four-dimensional QCDfixed byA_=0, theA, component is expressed in terms of
where no operator can induce ani contribution to the total  the quark fields.
width [15,16), this can happen in two dimensions. The van-  The weak interactiori10) takes the form:
ishing of Im ¢, for the VX'V weak Lagrangian in the lead-

ing order is a specific dynamical feature of this particular _ G
Lorentz structure of the weak interaction. Note at this point L‘)’veak= - —[ XEXQ‘9+¢
that the argumentation presented in Hd5] was not suffi- V2w

s

cient to prove the absence ofni4 corrections in real QCD, m.mal 1
see the discussion in Sec. V A. -3 Q{.—Xq

In Sec. 11 B3 we will show that Imc,, vanishes not 2 [id-
only in the leading order in strong coupling but also in the
order g2. The first nonvanishing contribution to Iy,
comes in the ordeg* what leads to 17‘1% corrections to the
width.

Next in the list comes the dimension-three operator con
taining six quark fields:

1
= XQ} g ¢>] . (29

A remarkable simplification occurs due i carrying
lightlike momentumgq,, : 0°=29.,q_=0. We can satisfy
this condition by choosing the “spatial” component of the
momentumq_=0, i.e., d_¢=0. (This means that thep
qguantum is a left-mover.Thus, on thep “mass shell” the
second tern{containingd_ ¢) in Eq. (28) vanishes and the

Q! a. weak coupling takes a simple form,
(QI'1Q)(9al’295)(AcI'304) - Qq¢ coupling p

. . . - G
Along the same line of reasoning as for four-fermion opera- Y == —xIxods b (29)
tors we show that six-fermion operators appear only in the weak™ o XaX Q7
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The integration contains a single pole only as a function of
k, . Unlike the previously considered vertex correction,
though, the integration ovet, gives a nonzero result be-
cause the integral over the large semicircle in the complex
a b c plane ofk, does not vanish. The integration ovier re-
quires an infrared regularizatidriFollowing 't Hooft [5] we
define the integration in Eq32) by putting a symmetric
ultraviolet cutoffK for the k. integration, and a symmetric
infrared cutoff\ for the k_ integration,

FIG. 4. Radiative corrections to the weak coupliqdqe.
Dashed lines denote the gluons.

Here we come to a very important point. In the 't Hooft
model nonrenormalization theorem for flavor nondiagonal
currents at]_ =0 arisesall corrections to the weak vertex at ke <K, [k_[>\. (33
this point vanish. In the light-cone formalism the kinematical
pointg_ =0 looks analogous to the zero recoil point in four- Then at|p.|<K the result forX is
dimensional heavy quark theory. The analogy is a superficial
one, howevet.In 1+3 QCD flavor nondiagonal currents at
the zero recoil are renormalized by radiative and power cor- 2o(p+ ’p):[Zp oy €(P-)
rections. -

To prove the theorem let us consider the gluon correction
to the weak coupling29). To orderg? the relevant graphs
are depicted in Fig. 4.

2 2
olp-|=N). (34

Fhe independence & on p, means that n& factor ap-
pears. The first term corresponds to a shift in the quark

The Feynman rules can be read off from E5), (29). masses,
In particular, the wealQq¢ vertex is
my—mg— B2, mi—mi— B2 (35)
G
V=—-i—q,. (30 The second term produces(moncovariant shift in the ref-
V2w erence point for the light-cone energy on mass shell,
The graph 4a) gives rise to the following expression: m2— 2 B2
pi=——t o (P->N). (36)
BZ 1 p—
m Kk This shift produces no effect on the widths. One-loop radia-
tive corrections thus do not affeQq¢ transitions besides
% 1 ) 1 the mass shift given by E@35).
‘ mg— ie ‘ mé— ie ° Moreover, it stays true for higher loops as well within the
(Pg+ )+_2(|Oq+ 7~ (Potk)e— 2(po+K)_ 't Hooft model. For in the limitN,— c there are no fermion

loop insertions into the gluon propagators. Then the higher
(31) loop corrections to the vertex, as well as to the self-energy,

vanish in the way discussed above since the integration over
The integration ovek,. can easily be performed by the resi- |, yields zero.
due method. It is clear then that the integration oker ~ Notice that the nonrenormalization theorem we derive
produces a nonzero result only in the case of opposite Signgithin the 't Hooft model is a stronger statement than the one
of (pq+k) - and (po+k) (the poles should be on the dif- apout zero recoil in four-dimensional QCD where radiative
ferent sides of the integration pathFor g_=(po—Pg)-  and power corrections break the nonrenormalization of flavor

=0 these signs are certainly the sam@q<k)-=(Po  nondiagonal currents.
+k)_, and there is no correction to the vertex.

To finish up with theg? correction to the weak coupling 2. The leading coefficient go
we need to add graph®) and (c) of Fig. 4 containing the

self-energies o and3, of Q andq quarks Now it is simple to account for higher orders in the coef-
q :

ficient cgq of the leading operato@Q. To zeroth order in

2 1 1 g? this coefficient was determined in Sec. II, see Fig. 2 and
2o(ps,po)=—i —f dzk—z- —. Eqg. (12). As just discussed higher loop corrections merely
4m k2 _ Mmgle shift the quark masses, E(5), and therefore we get the
pyt+ky————
O 2(po+ko) coefficientcgg in all orders,
(32

“OPE ensures that the dependence on the infrared regularization
3In particular, for heavy-to-heavy transitionscat=0 there is no  disappears in the width as long as it is the same at all stages of the
dominance of the ground state production in the 't Hooft model. calculation.
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t ]
2 Imcg, —GZ —mé—mg (37 @ o < w <
00=7—" i 9.} l
g g2 I o o
Combining this result with Eq20) and with the suppression ? P
of the four-fermion operators, see Sec. Ill B 3, we conclude FIG. 5. Four-fermion operators ig? order.
that (i) there is no Iihg corrections in the total width, much
in the same way as in actual QCR5,16); (ii) corrections 3. Four-fermion and multifermion operators
2 3 4 . .
1/mg,1img and 1fmg to the total width are associated ex-  aq giscussed above for the current-current weak interac-

clusively with the operatoQQ. tions four-fermion operators do not arise to zeroth order in
In Sec. IV we will prove a stronger statement: irrespectivethe strong coupling. Diagrams generating four-fermion op-

of the explicit form of these corrections, the hadronic satuerators in theg? order are shown in Fig. 5.

ration yields exactly the same result for the total width as the The light-cone gauge turns out to be again a convenient

contribution ofcaQaQ in OPE. tool to use. Let us start for illustration with the simple one-
The expressio37) for coq refers to a low normalization loop diagram of Fig. 2. Feynman rules in the light-cone

point, B<u<mgq. In order to calculate the matrix element gauge, see Sec. |l B'1, lead to the following expression:

of QQ overHg we will need to expresQQ in terms ofyq . 2

It goes without saying that the operat@f) must be taken at Imif d?ks(2k  k_) + — . (4
the same normalization point. Then, the resulting series in K. — My~ 1€

2/m% cancels against a similar expansion coming from the (P—k)+ 2(po—Kk) -

ope@toraQ; there is noB depende_nce in the product

CooQQ. Thjs can be seen by revyritir@Q in terms of the
unrenormalized one-component figlg) and massng :

Here 8(2k . k_) appears from the cut of thé propagator,
the cutting of theq quark propagator done by the taking an
imaginary part. The integration ov&r is immediate due to
thek_ =0 root of delta functior{the other rootk, =0, gives

— mQ . . .
QQ:XEFXQ- (39) the same contribution, so just a factor 2
m2
In evolving down tow, higher orders lead to the substitution Imi f dkiky 2 e 7 (Po)+— Z—q}
2 - . . . q € (pQ)_
Mmo— \/sz — B7 in this relation as well. With the quark mass (Po—K)+— 5
substitution being the only effect of the radiative corrections (Po)- 42)
we have
5 It means that the term
508 a_ oot 1
2 |mCQQQQ:E(mQ—mq)XQIXQ. (39 R A g
To=constyq|id, — 277 |XQ (43

The statement that the produngaQ is renormalization ) - ) ,
group invariant is trivial, of course. A nontrivial part of the @Ppears in the transition operator. In the zeroth order in the 't

result is encoded in E439), which is valid to all orders ig. ~ H0oft coupling the equation of motion for the, field is
One could obtain this result by doing calculations at oA

>mq when the mass of th€ quark coincides with its 7+ XQ=Mg/(210-)xq- (44)
bare” value mq, atu=mo, or atu<mg, When a non- |, yhe rest framéd_—p_=mq/+2, and we reproduce Eg.
logarithmic evolution of theQQ operator and its coefficient (17).

functions must be taken into account, the outcome is the | et us now apply the same technique to the loop part in
same, see Eq39). To make contact with the 't Hooft equa- Fig. 5(p) in the limit of vanishing gluon momentum. Inte-

tion (i.e., to calculateQQ in terms of the 't Hooft wave grating overk_ we get

function defined for bare quantitiewe will need Eq.(39) at

the ultraviolet cutoff. Note that it can be conveniently rewrit- ) 1
(Po—K) 4 —5——
B . Mo QM 2(pg)-
2 Imcg =r —Xo- 40
2eQR=Toxe ig_XQ 40 It produces the term
In Sec. IVB we will find the matrix element of T1=constybA | xo (46)

Xg(mQ/i d_) xq and show that the corresponding expression - _ _
for the total width coincides with the one obtained throughin the transition operator, with the same overall factor as in
the hadronic saturation. Eq. (43). Summing uply andT, results in the substitution of
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FIG. 6. Four-fermion operators ig* order.

id, byiD,=id,+A, . Inthis order the equation of motion
(44) also should be modified by the same substitution. Th

net result is that no change in OPE coefficients is producepa

by the loop in Fig. %).

Note that it is true not only for vanishing momentum of
gluon field but for any soft field as well, in other words,
terms with derivatives oA, do not appear in the transition
operator in one-loop ord¢l7]. Note also that if extra gluons
are emitted from the loop we get zero for the diagram. In
deed, it increases the power in the integrand of (B§) and

PHYSICAL REVIEW D 59 054011

(2) There is no Ith, contribution in OPE as long as the
weak interactions are of thé XV type.
(3) Through order lﬁg only a single operator contrib-

utes,QQ.

(4) The leading correction- O(l/mé) enters through the
expectation value (M HQ)(HQ|X5(lei(9,)XQ|HQ>.

The second part of Eq48) has been written in terms of
the light-cone operators to provide a way of rewriting the
matrix element in terms of the 't Hooft wave function of the
adronHqg. The OPE result for the inclusive width can be
ecast in terms of the sum over exclusive hadronic channels.
This will be proven next.

IV. MATCH BETWEEN OPE-BASED EXPRESSIONS
AND HADRONIC SATURATION

A. Exclusive widths via the 't Hooft wave function

the integral over the large semicircle in the complex plane of With 1+1 QCD describing manifestly confining dynam-
k. vanishes. It is the reason why diagrams of the type of Fig/CS: ItS Spectrum consists of mesonic quark-antiquark bound

5(b) give no rise to multifermion operators.

To finish up with multifermion operators we need to ac-

count for diagrams of the type given in Figiah The Feyn-
man expression for this diagram after integrating dveris

i [ dk,k ! !
'm'f o m2=ie]? [(po—pq) T’
(pQ—k)+——2(pQ)7
:%_ (47)
[(Po—Pg) -]

It is simple to check then that the diagrarf@bcancels out

against similar diagrams where the gluon exchange is be-
tweenqg and Q quarks. In case of extra gluon insertions in
one loop(relevant for six-fermion and higher dimension op-

erator$ we get a vanishing result right away.

Thus, we proved that four-fermion and multifermion op-
erators do not arise at the level of one loop. They show up af,
the level of the second loop; see Fig. 6 for four-fermiontive|y

operator. The dimensional counting reveals then that fou
fermion operators give m% correction to the total width.

C. OPE representation for inclusive width

Putting everything together we get the OPE representatio

for the inclusive width:

_— G? ma—mj [(Ho|QQIHg) 1 )
o= il
o Am ymi-p7  2Mu, mg
m
t'Q
<HQ XQjy XQ HQ> ( 1 )
2MHQ mg,

We have thus obtained a very simple result.
(1) The partonic expressiolig represents the asymptotic
term for mg—ce.

states. In theN.— o limit these mesons are stable in regard
to strong decays. The masses and the light-cone wave func-
tions ¢(x) (with xe[0,1] meaning a portion of momentum
carried by the quapkof these mesons can be determined as
eigenfunctions and eigenvalues of the 't Hooft equation. In
particular, the initial statélo=[Qg;p] is the ground state in
the sector with the heavy qua€kand the spectator antiquark

asp. Its wave functioncpHQ satisfies the following equation:

2 2
sp_:8

2 2
1-x

X

2 _
MHQ‘PHQ(X)— QDHQ(X)

-,

wheremg, denotes the mass of the spectator antiquark and
the integral is understood in the principal value prescription.
The solutions to the equation are singulaxat0 andx=1
here their behavior is given k" and (1—x)"1, respec-
with vy, ; defined by the following conditions:

QDHQ(Y)
(y—x?'

dy (49

r-
2 2
™Yo m. p_ﬁ

_ Y1 _
tamr Yo

tanmy,

S

ﬂZ

mg— B2
——

(50

The massed,, and wave functionsp,, of final mesonsh,,

= [qasp]n are defined by the same 't Hooft equation witk,
substituted bym,:

mi— g% mi— B L on(y)
2 _ q sp _ p2 n
M{en(X)= X + 1—x en(X)—B J'O dy(y—x)z'
(51)
The functionse, form a complete basis, i.e.,
2 en(X)@n(y)=8(x-y). (52)
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Let us find out now how an exclusive width, of Hq
—h,¢ decay is expressed via wave functioqznaQ,@n of

initial and final mesons,

1 G 2

r,= . h ! H
n ZMHQ (MaQ_Mﬁ)‘< n¢|\/ﬂXqXQ¢Q+| Q>

2 M2 2
G2 MHQ M“’V<hn|X£XQ|HQ>

ZE MHQ { \/EMHQ

(53

where the factor 11‘(/IﬁQ—Mﬁ) is the Lorentz invariant

phase spac@.IPS) of the two-particle final state and for the
matrix element we have used E(9) in the kinematics
where the¢ momentumg,, is

q-=0, (M —MD). (54)

1
q+= \/EMHQ

It is simple then to write the matrix eIementijQ in terms
of the 't Hooft wave functions,

G2 MﬁQ—Mﬁ 2
4 MHQ

r, (59

1
f dX@n(X) @1, (X)
0

B. Sum rules

Using the completeness conditiB2) we can derive sum

rules for these partial widths by weighing them with powers

of ME'Q— M2. The first one is

47TMHQ§ r, i fl 2
= dXen(X X
G2 = M|2_| —Mﬁ &5 0 an( )()DHQ( )
Q
1
=f dxe? (x)=1. (56)
0 Q

Note that the sum runs ovall statesh, including those
unaccessible in the real decays ldf,, i.e., with masses
M,> MHQ. These transitions are still measurable by the pro

cess of inelastic lepton scattering off thi&, meson. This

PHYSICAL REVIEW D 59 054011

4’7TMH * ]_dX
Q 2 2 -n 2
O3, T (mgmd) [ eh 00, (69
AmMy ldx
Q 2 M2 2| 2T 2
2 2 To(ME = M) = (mg—mp) 2 2 -
(59)

The second and third sum rules differ from the first one in
two aspects: they depend on the quark massgsand m,
explicitly and the integral over the wave function is not fixed
by a normalization condition; it can, however, be calculated
in the 't Hooft model. One should note that while the inte-
grand @E'Q(x)/x2~x*32’mé is singular atx=0, it is still in-
tegrable, sinc$2/mé< 1. Note also that expanding the sec-
ond sum rule(58) in 1/mg to the linear order we reproduce
the corresponding sum rule of R¢L.8].

The sum rules above provide us with detailed information
on the saturation of the sums over the final hadronic state.
The quantity

47TMHQ

L'y
G? MaQ—Mﬁ

Wi, (60)

can be interpreted as a normalized probability of producing
the staten. Indeed=w,=1 according to the first sum rule
(56). Then the sum rulé58) implies

1dx
(i M=) [ Fef 0. @
If both massesng, andm,, are smaller or of the order ¢8
we conclude that

2\ _ 1_ 2 2
(M7)= X 1)mg+O(B%)~Bmg. (62
Here we have anticipated the result fdrx) from Eq. (71)
in the next subsection, in conjunction with E0). The
reason for(Mﬁ)~BmQ is clear on the physical grounds: in
the partonic approximation the final state is formed by the
quarkqg with the momentunmg/2 and by the spectator an-

tiquark gsp with the momentum of ordes.
The sum rule(59) [after subtracting the square of the

sum rule is an analog of the first Bjorken sum rule and was;econd sum rulés8)] determines the dispersion

discussed if18].
To get the next sum rules let us multiply Eqt9) by
on(x) and Eq.(51) by (pHQ(X), respectively. After integrat-

ing overx and subtracting we find

2

(M3

2 1
Q_ M n) fO dX(Pn(X)q’HQ(X)

1dx

)fo 7¢n(x)¢>HQ(X)-

Two more sum rules then arise:

2
q

(57)

— 2
=(mg—m

(63

4 2\2 1 1
<Mn>_<Mn> :<;> _<

X

|~y

What about higher moments? It is not difficult to see that
the next onezﬁfzol"n(MﬁQ—Mﬁ)z, is a divergent sum be-
causegoﬁQ(x)/x3 would no longer be integrable. It defines
the asymptotics of ', at largen,

1
|

W . (64)
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Let us recall[5] that Mﬁ:wzﬂzn for high excitations,n An expansion of the 't Hooft equation inrhj, (after a sub-
>1. We will see in the next subsection that the asymptoticstitution of the new variabjeand the virial theorem lead to
(64) matches the contribution of the four-fermion operatorsthe following relation for the meson mass:

in OPE.

Mi 0 g (1
Q
C. Matching > =1+ Zm———2+(9( —3) (70

Armed with exact sum rule&6), (58), (59) we are well
prepared to verify a perfect match between the OPE resulthere averaging is over thég meson wave functiomp(t).
and the expression obtained by summing over hadronic finghs compared with Refl.19] we have added a;z/mé term.
states. From the second sum r{&8) we have for the total |ts origin is simple: it accounts for the renormalization of the

semileptonic widthl“HQ the following relation: heavy quark mass. Note thé)~ 8 providedm,=<S.
, 2 5 We also need a similar expansion for the integral entering
G mg—mg (1dx Eq. (67),
L e R S WS B L
Q 4w My o X "Q Mp>My
© e dx , () (1) 1
The second term is actually positiyE , defined by Eq(53) fo 7‘PHQ(X)_ 1+m_Q * F +o ﬁ ' (71)
is negative atl\/ln>MHq]. Using Eq.(64) its size can be © ©
estimated Substituting Eqs(70), (71) in Eq. (67) we have
1 Iy 1 1
- o —-. (66) 21+ (B2 (D)) +0| =|. (72
Mn>MHQ n mg FQ Zmé B < > <> m?é

Thus we have derived from the 't Hooft equation the fol- This expansion should be compared with the operator repre-

lowing result for the inclusive width: sentation(20). The 1, expansion ot5oQQ produces the
same Jﬂhé term; the part< 32 comes from the expansion of

mo (1dx 1 .
Iy =Tg _Qf —‘Pﬁ x)+0| =1 . (67) Coo; See Eq.(37). , _ _
Q MHQ o X '@ mg Note that without the3< term the correction to 1 is nega-
tive, i.e.,

This expression coincides with the OPE result of &®) as

seen by rewriting the matrix element in E48) in terms of FHQ B?

the ground state wave functiapy () + —1<—. (73
QY I'q 2mg

<HQ|X;5.m—Q)(Q|HQ> One more comment aboutrﬂ?2 terms. In the OPE ap-
19— _ Mg 1d_X 2 (%) (69) proach they are due to the four-fermion operators generated
ZMHQ MHQ 0 X PH\ by the graph in Fig. 6. Although the corresponding OPE
coefficients are not calculated, the consideration above
where, besides normalization factors, we have used also trghows that the contribution of the four-fermion operators is
substitutioni ¢ - —xMy /2. dual to the sum of", with M ,> MHQ for final state mesons,

This completes the proof of the perfect matching betweern.€., channels kinematically inaccessible in the decay.
OPE and the hadronic saturation through the ordm‘él/
Let us stress that the matrix eleméd6B) given by the inte- V. VIOLATIONS OF DUALITY
gral over the ground state wave function is implicitly,
dependent; its leading term is 1 followed byngj and higher
terms(see the discussion in Sec. 1) An the 't Hooft model Having established a perfect match between the OPE pre-
one can, of course, evaluate the matrix element explicitlydiction for the total width and the result of the saturation by
although it is not relevant to our main objective—probing theexclusive decay modes, througﬁ(l/m“Q), we must now
quark-hadron duality. turn to the issue of where the OPE-based prediction is sup-

The absence of i, corrections was demonstrated in posed to fail. The failure usually goes under the name of
Sec. Il A by operator methods. Let us show now that the“duality violations,” a topic under intense scrutiny in the
same statement can be derived from the 't Hooft equation asurrent literature. The definition of what duality violation is
well. To this end we use the approach of Ref8] to the varies from publication to publication. Quite often, the re-
heavy quark limit, generalizing it to includermﬁ’2 correc-  searchers in the field stick to a vague notion of deviations
tions. Instead ok, the appropriate variable for the large mass*of certain rates for processes involving hadrons from the

A. Global and local duality

limit is underlying partonic rates.” This is, for instance, the conven-
tion of Ref.[10] where duality is understood as the coinci-
t=(1-x)Mg, @(X)=+yVMmge(t). (69 dence with the parton-model prediction. If so, any nonper-
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turbative contribution to the given rate would be interpretedsence of Ihg corrections. Nevertheless, the statement of
as a “duality violation,” which does not make much sense toabsence of such corrections in the total semileptonic widths
us. can certainly be justified by the procedure described above

We must precisely define what is meant by duality and itsfor the nonleptonic widths. Thus, we see that the theoretical
violations. Assume that a certain process is amenable to Cadtatus of all these processeste~ annihilation, semilep-
culations within OPE. This means that an appropriate Euclidionic and nonleptonic decays of heavy flavors—is basically
ean quantity can be chosen, and the OPE series can be cGfiz same.
structeq. This se_ries presents the quantity of interest as an By performing an appropriate expansion of the dispersion
expansion in an inverse large parameter, e.Q?1r LE.  integral we obtain sum rules relating certain moments of the
The very same quantity can be expressed as a dispersi@paginary part of transition amplitude to matrix elements of
integral over the imaginary part defined in Minkowski space.consecutive terms in the OPE series constructed in the Eu-
In e"e” annihilation the imaginary part coincides with clidean domain. The predictions obtained in this way will be
R(e"e™), in the transition amplitudes for heavy flavors the referred to agjlobal duality Taken at their face value, they
imaginary part reduces to semileptonic spectral densities, etgre exact, to the extent we can calculate the coefficient func-

In order to treat the nonleptonic decays in the same veifions and matrix elements of the operators involved in OPE.
one can introduce a spurion in the weak vertex, carrying ao additional assumptions are made. The predictions ob-
momentuma. In other words, let us substitute the weak La- tained in this way are consequences of fundamental QCD.
grangian by Therefore, it does not make any sense to speak about viola-

tions of the global duality. One can only speak of the preci-
Lueal X) = S(X) Lueal X). (74 sion of calcglation of thg coefficient fuzctigns and detFe)rmi-
nation of the matrix elements.

Unfortunately the ternglobal dualityis often used in a
loose and ambiguous sense. It is applied indiscriminantly to
. integrals over the spectral densities with the weight functions

S(q)+Hq(p)—light hadrons=S(q) +Hq(pP) (79 chosenad hoc Our definition is narrower: it refers only to
those specific integrals which emerge from the dispersion
as a function o= (p+q)2. This variables plays the same representation.
role ass=g” in e"e” annihilation. The total nonleptonic ~ The notion oflocal duality on the other hand requires
width is given by ImA ats= MﬁQ- We are free to consider further assumptions. Assume that we want to predict imagi-
Im A(s) in the complexs plane where it has two cuts: at ~ nary parts(spectral densitigspoint by point, at large ener-
>0 and at3<_2ME|Q+ 202 (the second cut is due to g!es(or g?). If one assumes that the spectral deqsmes at the
channel. Choosing a reference poigg far away from both given energy are s_mooth, then from the moment m_tegrals we
cuts but closer to the first one we can expre(s,) as a can certainly predict the densities themselves. This amounts

dispersion integral over the discontinuity across the cuts. O}éoeratlgir?r\;\?legtl(t:e(r:r?]n:)ln'}I:::gr}rg];rmre]eoEpuilﬁjeg;?tgcaﬁi?«;&:ki
the other hand at the very same pasgtone can apply the X y

operator product expansion for calculatifgs,) in terms of domain, with the subsequent calculation of the imaginary

matrix elements of local operatoréH o|Oi|Ho). This gives parts of e.ach.individl.JaI term in the series. The.prediction
sum rules which allow us to deternlni(r%e LIMS()D ét larges, in obtained in this way is evidently a smooth function of the

ticul ts—=M2  This is full | to what parameters. We then compare this prediction with the quan-
particular, ats=My . This 1S Tully analogous to what one tity measured in terms of hadronic contributions. The differ-

does ine"e” annihilation forR(s). In both cases smooth- ence between the OPE-based smooth result and the experi-
ness is assume@f course, ine" e annihilation all positive  mental hadronic measurement is referred to asdiality
values ofs are accessible and one can check this assumptiofiolation meaning the violation ofocal duality.
while in the case of nonleptonic decays, , is fixed. Need- By its nature the OPE results are series in powers
less to say that the total semileptonic widths can be treatedf Agcp/E and do not account for terms like
along the same lines, the only difference is the presence cfxp:—(E/AQCD)k] (in the Euclidean domajnAlthough such
leptons in the intermediate states. terms are due to large distances, a signal of their appearance
In the semileptonic decays OPE allows to predict, addi-could show up in the short distance OPE series in the form of
tionally, various distributions in the lepton momenta. This is,a factorial divergence of the series in higher dimensions. The
probably, the reason why it is usually claimed that the statusituation is reminiscent of that in the perturbative expansion.
of duality is more solid in the semileptonic decays. To showThe divergentag series(e.g., due to infrared renormalons
that it is not the case let us consider the semileptonic decaygive rise to terms exp{Clag) although such terms can ap-
with the light quark in the final state. The OPE-based predicpear even in the absence of renormalfos instance, as the
tions for the spectral distributions are valid almost every-quark condensate
where; they fail only in the end-point domdih5]. For this In other words, the OPE construction accounts properly
reason the total semileptonic widths cannot be obtained bfor short distance singularities while the exponential terms
integrating over the spectrum if we want a prediction whichare due to large distances being nonsingular at short dis-
includes the linear in iy corrections; this is why the argu- tances. Thus, the duality violation is something we do not
mentation in Ref[15] was not sufficient to prove the ab- see in thgtruncatedl OPE series. The duality-violating terms

where S(x) is a spurion field. Now let us consider the for-
ward amplitudeA(s) of the process
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are exponential in the Euclidean domain and oscillatlik@ ~ We did not calculate coefficients,, but we found that up to
SIN(E/Aqcp)“]) in the Minkowski domain. numerical factor

From this standpoint there is no distinction between, say,
the totale™e™ annihilation cross section or the semileptonic G2 g*
rates of heavy flavors, on the one hand, and the nonleptonic Caq~ 2 (78)

X o . m

rates of heavy flavors, on the other. Sometimes it is claimed Q
that the former processes are “pure” while the latter arep
“impure;” it is even asserted that “duality follows from
OPE in the first case while it has no theoretical justification
in the second case.” We assert that a duality violating

ssuming mg,, mg=<p we estimate(HQ|(94q|HQ>/2MHQ
~ B. Then our model foll",, in the rangel\/InzMHQ is

exponential-oscillating component, associated with the ne- ) 7MﬁQ—Mﬁ
glected tails of OPE, is present in all processes, and the only I'y=37G"B e (79)
physically meaningful question is its magnitude, as a func- n

tion of large parameter&.g., a momentum transfer arg)

and specific details of the process under consideration. The sum in Bq(77) was approximated by the integral using

M r21: w?Bn.
Now we can evaluate the su(@7) with the better accu-
B. Oscillating terms in 't Hooft model racy accounting for small nonanalytical terms. The result is

The appearance of duality violations in the form of oscil-
lating terms is evident in the 't Hooft model where the spec- - 2 I',=AT OPE+ AT ©5¢
tral density is formed by zero-width discrete states. Indeed, Mn=Mng
each time a new decay channel opeimolde experi-

2 4 4 8
ences a jump EHQ is continuoug , so that immediately AT op%% ( B T B ) }
above thresholaﬂl“Hq/de is larger than the smooth OPE 27 MHQ 2 MHQ
curve, in the middle between two successive thresholds it 8
crosses the smooth preo!iction, and immediately below the AT osc:§7T3G2B B X(1—x) — E} (80)
next thresholdiT'y /dmg is lower than the OPE-based ex- 2 M, 6
pectation.
The amplitude of oscillations can be estimated as followsWhere
Let us present the total width, as
Q Mﬁ
n=co x=fractional part of > Qz , Xe[0,]). (81
Ty=2 Tom 2 T (76) B
Q n=o0 Mn>My

The smooth parAT" °PEin Eq.(80) is given by same OPE
term of Eq.(77) we discussed above plus higher in the power
Widths I',, are exclusive widths of two-body decaydq of 1/mg corrections . The parkI” °*S nonanalytic inMZQ,

—¢+h,, whereh, is the nth excitedqg, state with the  oscillates with periodr?32, see its plot in Fig. 7.

massM,. For Mn>MHQ widths T',, are not, of course, The amplitude of oscillation is

physical ones foHg decays but they are well defined. We os . 0

have used this presentation in Sec. IV C where it was shown AU g 37% g ©2
that the first term can be related to the wave functioiigf I \max 2 \ M Ho

state on one hand and to the matrix eIemerﬂSﬁJ operator
on the other. It is clear that the first term in E@6) is a  Note that the derivative(AT" °>9/dmg contains discontinui-
smooth function ofng and contains no nonanalytic terms we ties at thresholds, the amplitude of oscillations is larger for

are going after; they are in the second one. the derivative,

Thus we need to to knowW',, for M,, in the vicinity of .
My, For M>My  we found in Sec. IVB thatl, ’d(AF) osc/qu‘ 192 B @3
«M,®, see Eq(64). To extrapolate to the vicinity O, dl'g/dmg . Mug)

we account for the threshold factdf,= (M2 _—M?2)/M.
Q

The coefficient in this dependence can be fixed by duality Ogn
the second term in Eq76) to four-fermion operatorg),,,
discussed in Sec. IV C,

The oscillations under discussion cannot be produced by
y truncated OPE series; they are not seen in the OPE. Thus
the estimatdé82) gives the actual scale of the expected dual-
ity violations in the problem at hand. Of course, this estimate
is obtained within a specific model fdf,,. The gross fea-

(HolOuqlHo) tures of the result are independent of the model, however.
Fn:c4q2|v|—q. (77 They are determined only by the fact that the resonances
Mn=Mug Ho have zero widths.
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5.10°

5 10 11 12 \1'3
FIG. 7. Oscillations in FHQ. The ratio
-5.107° AT °9G2B is presented as a function of

2y _2p2
MHQ/’TT Be.
-1-1077 ¢

-1.5.1077

-2.1077

It should be noted that the liml.—o presents a sce- where the momentk, are defined as

nario which maximizes duality violations. In this limit the

thresholds open “abruptly,” right at the position of the reso- ,

nances, since the resonance widths vanish. In the real world M

of finite N, the highly excited states have finite widths, and In(M)= Jo dss'[py(s)+pa(s)]. (86)

this effect, on its own, smears the hadron-saturated cross

sections dynamically. If in the zero width approximation the

oscillating duality violating component is suppressed only byWhile = decays represent a simpler dynamical problem than

powers of a large parameter (14 in the case at hand the weak decays of heavy flavor hadrons we have to simplify

switching on finite widths will further suppress the oscillat- it further still before we can arrive at some definite conclu-

ing component exponentially; see Sec. V D and REf] for  sions. To estimate the oscillating contribution Rg which

further details. constitutes duality violation that cannot be seen in a trun-
C. Lessons cated OPE we consider the limiting casesMf and N,

large. We will show that, adopting the resonance model mo-

tivated by two-dimensional QCD, fdd.—o andM . large,

yet finite, the duality violation inR, scales as ME; for

M ,—oo with N, large, though finite, the oscillating term is

From the considerations above we conclude thabscil-
lating terms violating local duality are definitely present in
the total decay ratéconsidered as a function afg), (ii)
amplitude of oscillations is%’)(l/mgQ), i.e., strongly sup- .
pressed, andiii) if we could average ovemg in a suffi- suppressed _expon_entlall_y. . . .
ciently large interval the power suppression of the oscilla- Our con5|der_at|on will be adm|tted|y_|||ustre_1t|ve. One
tions would turn into exponential suppressi¢im actual should not take literally the numbers we will obtain for many

QCD, with N,=3, the finite resonance widths do a similar reasons: first of all the- mass is not much larger than the
) (o] L . . .

job). Then it is perfectly legitimate to consider the OPE-SPacind between the resonances; secdidis not large

based predictions beyond ]Z' enough to warrant the zero width approximation. Still we

With this understanding in mind we now tum to the dis- gggz\étta that the consideration is instructive in a qualitative
gugglon of duality violations in actual four-dimensional For largeN, the spectrum of 23 QCD is expected to
' consist of an infinite comb of narrow resonances—in com-
D. 7 decays in #3 dimensions plete analogy to the 't Hooft modgR0]. To keep the closest
parallel to it we further assume that the high excitations in a
given channele.qg., the vector channedre equally spaced in
m?. This agrees with the general expectation of a stringlike
realization of confinement leading to asymptotically linear
I'(7~ —v_+hadrong Regge trajectories. The masses of the excited states in, say,
R,= T(r —ve vy (84) theg chanrr:el allre thefn rg];ivérby mﬁzmi:ﬁZf;/a’ [21], with
. - a’' being the slope of the Regge trajectdfgr a review see
It can be expressed in terms of spectral densjigsind pa [22)). Experimentally one finds & ~2 Ge\?. For large

in the vector and axial-vector channels, respectively, i
P y values ofs the spectral densities for both the vector and

Let us discuss a quantity of practical interest in3Ldi-
mensions along similar lines, namely the normalized had
ronic = width R.:

m2ds 2 s axial-vector channels will approach the form:
R=f —1l-—| | 1+2— S)+pa(s)
T Y E M f_ M 12- [pV( pA( ]
|0(M2) I2(M2) I3(M2) ®In other, less QCD-friendly scenarios, one obtains instedd
= 27 -3 GT + ST , (85) =m12,+ n/a’. The distinctions between these two scenarios are ir-
M7 M7 M7 relevant for our discussion.
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0.004}
0.002+
FIG. 8. Oscillations inR,. The plot of
/\ N\~ SRYR? is presented as a function b2/ o2,
0 v \J/ v
-0.002¢}
3 4 5 6 7 8 9 10
“ s 2 ROPE o2 1[g2\*
— — . 2__ T —
pv(8)=pa(s)=Nc n;c? o2 NrT (87) N, 1 M2 30\ m2)
0SC 0_2 3 1
where a special notatiom? is introduced for 24'. Equation =—X(1=x)(1-2x) 2 +| X3 (1-x)%~ %}
(87) is clearly not expected to hold at moderate and small ¢ T
values ofs where the vector and axial-vector channels are o2\
drastically different and the resonances are not equidistant. x| —1 (90)
However, details of the spectral densities at smadlay no M2

role in duality violation.

The contribution of any particular resonance of miss  where
to R,, according to Eq(85), is given by a simple polyno-
mial in 1M?2 [times the step functio®(M2—M?2)]. There- _ 2
fore, variations of properties of resonances below a certain x=fractional part of 2] xe[0,1).
fixed massu change only the regular terms of thelVﬂﬁ’
expansion, but have no impact on the oscillatory componentye presented the result as a sum of two functionsl ??f the
From Eq.(89) it is clear that such variations change only ¢« ohe ROPE is a smooth function expandable iV
coefficients of the M%,1M? and IM? terms. It will be 1o cocond onesR%° oscillates with the period?; ite
clear in what follows that the formal OPE fdR, exactly average vanishes: seé the plota®°syR? in Fig. 8. '
reproduces these three expansion coefficients as well. Let us show no,w thaR OPE coincidesfwith the OPE pre-

The spectral density in Eq87) is dual to the parton . -~ = : .
model result; i.e., it coincides with it after averaging overdICtlon In _the mo‘?'e'- Power corrections can be presented in
the following way:

2

energy,
To T, T4
ROPE=N + — —3—=+2—, (92)
(pv.a(s))=Nc. (88) T ¢ M2 M& M8
where the “condensatesl’,, are
Thus, the asymptotic prediction fét, at M2— is
T,= fo dss[py(s)+pa(s) = 2Nc]. (92

R%=N,. (89)

This integral representations for the “condensatdg”fol-
lows from Egs.(85), (86) if one assumes that the spectral
densities approach their asymptotic limits faster than any
power of 15. In the model at hand, with the comblike spec-
tral density, the integral representati(®®) requires regular-
ization. As a regularization one can introduce the weight
oPE s factor exp(-es), taking the limite—0 at the end. With this
R,=R°PE+ SRS regularizationR °FF from Eq. (90) is reproduced.

The sum over resonances Ry is easily calculated ana-
lytically: for the spectral density of Eq87) it is
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To justify the procedure it is instructive to make one stepy/|p|, the threshold singularity, and the duality-violating
back and follow more literally the original OPE procedure. component would be enhanced correspondingly.
Namely, our primary object of interest is the Euclidean po- The average ofSR° vanishes while the amplitude of

larization operator oscillations amounts to
1 S)+ S os 2\ 3
S Q RT max 3\/1—2 MT
The original ‘meaning ofl, is the coefficients in the tjs interesting that, in spite of the fact ths® SR*Cis given
asymptotic expansion dfi (Q°) at Q“—<: by a polynomial between the thresholds, the whole function
o T is well approximated by
7I1(Q?) =~ 2N, In Q%+ const- 3, (—1)”(Qzﬁ. L (a2 )
——— | —| sinl 20— |. 99
(94 NEANE o 99
The comb of the model of E¢87) was considered in Ref. i . i .
[3], Note that the numerical coefficient in E@Q9) is rather
small, compared, e.g., to E(7). This suppression is related
< 1 to the fact that the characteristic scalevi¥2 rather then
WH(QZ):ZNC erconst .
k=1(Q%0%)+n Taking our estimate of the oscillation amplitude at its face
Q2 2 value and using the actual value of thenass in Eq(98) we
=—2N | ¢ _) +Z +const, (950  find 6R**7R,~3%. It is clear that this is a very crude esti-
a?) Q? mate given the fact that in the actualdecays?/M?~2/3

. , . _ _ and we deal with one oscillation at most.
wheréezp. is Euler's ¢ function. The asymptotic expansion of |, the real world withN,= 3 we expect a further suppres-
11(Q%) in the model takes the form sion of deviations from duality due to the nonvanishing
2 1,2 * B 5\ 2n widths of the resonances naturally smearing out the ampli-
InQ—+— g _ ﬂ( g tude of the oscillation. A rough estimate of this effect can be
o 2Q% n=12n\Q? given in close analogy to Ref12]. Let us introduce a di-
(96)  mensionless constaBtrepresenting the width-to-mass ratio:

wI1(Q?%) = —2N, + const,

whereB,, stand for the Bernoulli numbers. Taking the coef- r, B

ficients of 1Q2,1/Q% and 1Q8 terms from this equation we m- N_(1+O( INe)); (100
find the consistency witlR °°F of Eq. (90). (The term 1Q° nooe

is absent and Q8 is defined byB,= —1/30.) i.e., B stays finite for largeN.. One actually guesses to es-

Note that the spectral densi(§7) is not literally “QCD-  timateB~0.5. Then we infexsee[12] for detail

compatible:” the correspondingl(Q?) has the 102 non-
3 2
p( 27BM?2
expl — .
N 2

perturbative correction forbidden in QC[2]. This can be AR 2
cO

(o
2
MT

o1
RO 312

The power-suppressed oscillations eventually turn into expo-
nentially suppressed, although at a larger energy.

easily cured by adding the resonance with 0 with a half (101

weight, which just would amount to addiny.o?/Q? to
wI1(Q?). Since this obviously does not changR°at any
value of M ., this is inessential for us.

Let us discuss now the duality-violatingR*{M?) (see
Fig. 8). Its dominant component scales aMf/. It is intrigu-
ing to note that the very same scaling law was obtained in
Ref. [23] from totally different considerations invoking in-
stantons. This oscillating component vanishedviat corre- The work [10] stimulated our interest in the 't Hooft
sponding to the new thresholds, and at one point in thenodel as a laboratory for exploring heavy quark expansions
middle between the successive resonances; only the secoirdinclusive decays, and the implementation of duality. The

VI. NONVANISHING m, AND COMMENTS ON THE
LITERATURE

derivative ofR, has a jump at the thresholds, authors of Ref[10] compared the decay width of a heavy
5 1xeo flavor hadron in the parton approximation with the result
1/ d o? obtained by summing over all exclusive transition rates for
R_T W T ZGW' 97 Ho—hih;. A systematic excess of the total wicimQ over
T x=1 T

its parton valud’q was observed and was fitted to be

This is the consequence of the threshold factor §1M 3)2 I —r
in Eq. (85). One power in it is just the two-body phase space H”'Q 0.15 (102
factor|p|/M,. In 1+1 dimensions one would have instead I'g Mg
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The authors interpreted this access as a violation of dualitysor ImIT(g?) similar to those in Eqs(56), (58), (59), we

According to our understandingsee Sec. VA it should  obtained exactly the samme’/m correction as in Eq103).

rather be called breaking of OPE. This holds for the inclusive width smeared over a small in-
Our analytical treatment does not support such a conclugeryal of masses as discussed in Sec. VI C. Moreover, we

sion. In particular, we have proved the absence of linear ihecked the exact matching with the OPE at the levedL/
1/mq corrections not only by the OPE method but by the

direct analysis of the 't Hooft equatio(see Sec. IY. Al-
though we tried to closely follow the analysis of RELQ],
still there is a difference of kinematical nature. We consid-  All effects due tom,,# 0 reside inlI
ered they fields (leptons or quarksto be massless, while linear inm, part in OPE forll ,, is
m,=mq#0 in Ref.[10]. The choice oim,=0 allows us to

A. Linear in m,, corrections
see Eq(7). The

wvs

limit ourselves to the poin>=0 where great simplifications _4am, — 4.9,

occur, in particular, only the massless pion state is produced Al (@)= 9 (Ol440) 9 “Gur|. (104

in the ¢y channel. Analytic solution of the problem turns out

to be possible. It is easy to see that this effect is nothing but a shift of the

We have checked that the analytical expression for theyon (4 =[ yy],) mass from zero,
triple overlap integral of Ref[10] reduces ag*=0 to a
simple overlap integral55) of two wave functions. The A _
simple structure of Eq(55) combined with the completeness pa=- N—m¢(0| ip|0). (109
of the wave functions is sufficient to prove a perfect match €

between OPE and hadronic saturation, at the Ievelmél/ Indeed, comparing Eq9) and Eq.(104 we see that the
To make full contact be_tween our results and those 0](atter is the first order term iﬂi expansion of the pion pole
Ref.[10] we must now consider the impact wf,# 0. Need- UG- p2) in T,,=—(Um) —o2g,.)/ (P u2)
less to say that an,+0 the parton result fof 5 changes, 4~ K oy A S
v Q Thus, in order to take into account linearrm, effects in the

transition operator all one needs to do is to calculate the
decayQ— ¢+ g with the nonvanishing pion mass. The re-

T'o(m,#0)=Tg(m,=0) decay

(103
AT} 2mem 8 — mom
This effect was certainly included in the analysis of Ref. Q_ 2 Q4 :_N_m¢<o|¢¢|o>%
c (mQ

i .
[10]. It is also accounted for in OPE as a change of the 1o ?(m3—m?)? —mi)?

coefficient of the operata@Q. (106

The leading effect due tan,#0 is linear inm,,, how-
ever. Thus, one can wonder whether it producesgléor- i o _ )
rections. In the next subsection we will show that the linear™a/Mg iS specific for two dimensions. _
in m,, corrections to the total width are suppressed mél/ As.for the numerical valug of the Cf)l‘l‘EFtld?IOG) we wil
Moreover, this is a leading effect which produces a distinc-Substitute{yy) = — N¢B/4/12 in the chiral limit[11,19. For
tion between semileptonic and nonleptonic total widths; althe value ofm,=m,=0.563 adopted in Ref[10] we get
other effects which differentiate them are suppressed as

At large mq it falls off as 1/m%. An extra suppression

1/m$. It is clear then that the fily violation of duality ATy B\3

N N —9=22 10
claimed in Ref[10] if it would be present in the nonleptonic I'o e m_Q (107)
width must have been present in the semileptonic width as
well.

Corrections Ih¢, come also from quadratic im,, terms B. Quadratic in m,, corrections

in OPE. As it was mentioned above these corrections do not The analysis of the previous subsection refers to the op-

differentiate semileptonic and nonleptonic widths. We esti-eratorQQ 4 in the OPE for the total width. Another opera-
mate them in Sec. VI B. We also estimate in Sec. VI C ef-or generated due tm,#0 is the four-fermion operator of

fects of novanishingn,, for violations of local duality. Over- the typeaQaq It appears from the graph of Fig. 3 with
al, we_c;])_nclude thallt them?fE appr_oach shhor\:vs that th?epton lines substituted by lines. Calculation of this graph
honvanishingm,, results in 1mg corrections which are nu- ;5 qimpje exercise. The result for the corresponding correc-

Eneri)cally small and cannot explain the alleged deviationyjsp, (g the width can be presented in the following form:
102).

On the hadronic saturation side we have checked that the 22 Py
triple overlap integral of Ref.10] is expandable im,,, and AT? = NCG rznw <HQ|Q725|3|qYSQ|HQ>- (108
the leading correction is quadratic m,, 5. Assuming that N Mg Hq
m, =< B and performing amnalytic summation of the widths o _
using the expressions of RéfL0] for the amplitudes in con- Up to the factorN; the same contribution appears in the
junction with the sum rules for the hadronic polarization ten-semileptonic width. In difference with the operatQQ ¢
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the IargeNC limit does not_allow us to factloriz_e the matrix the characteristic hadronic mass Squared mqﬁg} system
element of Eq(108). We will use the factorization to get an ;5 p12 ~,8(mé— sz)/mQ Then, it is simple to check
b ' !

estimate (9] _
that the threshold range is

_ _ 1 _ _ — .
(HolQ5aaysQIHo)~ — 55-(0ladl0)(Hol QQIHg). Mu,~ME~p,  M%~p. (112

109 o ) I L

(109 Thus, it is just a few first scalar excitations in tQ€s, sys-
. . . o ] [ag ;

As in the previous subsection we use the chiral limit valuetem that are relevant. ML) and M, = fall outside the

(qq)=—NB/\/12 of the VEV [11,19 and my,=m, kinematics indicated above then the exclusive wibith is

=0.5683 for the numerical estimate additionally suppressed. o _
Let us recall that the bulk contribution into the total width

AT® 3 is provided by the ground state in thﬁZ channel and

Mo _ged B lassd = m 5 | iscussion | i

T 0.5 el I (110 M, "*P=ymgpB. What is under discussion is a small tail of
Q Q highly excited sz states which determines the oscillating

o component.
C. Local duality violations at m,,#0 The relevant matrix element is
Here we discuss the impact of new thresholds opening in - _ _
the spectral density of the vectgry, i currents, asng in- ([y1nlagspll (ay,.Q) (¥ ¥)Hg)

creases. A, =0 the duality in the( Yy, ¥, Yy, ) correla-
tion function is perfect, since, due to bosonization, the theo-
retical expression for this correlator reduces to exactly one

i i R
massless state propagation with a known coupling constantt. Is easy to see that the residtfajy/]o| 4 7*¢{0) scales as

[4y] i iti i
If m,#0 then hig_her[z/%] mesonic states appear in the \/N—in%”B/_Mﬂ » While the transition _ amplitude
imaginary part of ¢y, ¢, ¢v,y) with residues proportional <[qqsp]k|q7MQ|HQ> scales asymof. Assembling all fac-

=[]l ¥y #10){[A0spld AV, QIHG). (113

to m2 tors together we find that near the threshold
-
To calculate the dependence of the total wiith onmg 203 203
. Q — — o, MyB m,B
near thresholds, i.e., near Fn(Ho—=[¢¢]n+[ddsple) ~ G Ne—Z=~To—7=-
_ — mQ|p| mQ|p|
Mi =ML+ mid%d, (111) (114)

This equation describes both the singularity at thresholds and
we need to find the exclusive Widtm‘nk(HQ_)[wZ]n deviation from local duality between the thresholds. The spa-
+[qdspli)- We did it in Sec. V B form, =0 when only the tial momentump] is
n=0 massless state is produced in they] channel. R =

Now, the highly excited states can appear in this channel. |p|~ \/ZMqusp](M Ho™ ML) — Mqusp])- (119
They are pseudoscalar ones corresponding to even values of _
n (scalar states are not produced by the conserved current |n the middle between the thresholdsNt” the value of
y*y). Moreover, with nonvanishing”) the amplitude  |p|~ (5%/mg)2, and
of transition to scalafqqsp] states(odd k) is not propor-
tional to |p|. Thus, near the threshold.11) the exclusive
width of decay into the pair of the pseudoscdldn/] and

the scalaf qqs,] is singular because the factoi ﬁJ/ in the ) ) ) ] o

phase space that explode at thresholds. Therefore, exactly BfiS estimate gives the amplitude of the oscillating compo-
threshold[",, is infinite. It goes without saying that it cannot Ne€nt. It is applicable also to the threshold spikes provided
coincide with the smooth OPE prediction near the thresholdth€se spikes are averaged over the intervals gf less but

m2ﬁ3/2

- - i

Fnk(HQ_’['vzllr/f]n+[qqsp]k)NFQW- (116
Q

These spikes are clearly visible on the plots of R&€l]. comparable with the period of oscillations MHQ depen-
To maximize the exclusive widtl',, for the decayH, dence (VWZ,BZ/MHQ)-
—[¥¥]n+[9Gsplk near the thresholdl1l) we choose the Therefore, we conclude that the violation of local duality

range ofM{¥¥1 and ML%%# close to the corresponding par- dies off as Wh()?. This effect is by far the largest duality

tonic configuration. In terms of partons we deal with theviolating contribution. The occurrence of a relatively weak
decayQ— l/ﬁLEJFQ- If we fix the square of the effective suppression is due t@) the zero resonance width approxi-

— 75 o mation and(b) the singular nature of the two-body phase
mass ofyyr pair M, ;- then the momentum of the lightis  gyace in two dimensions. Both features have no parallel in

2 _\2o [yy] 2_
(mg MW)/(ZmQ). For hadronav ;" close toMW and actual QCD.
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In summary, we identified two leading effects that areleads to dynamical smearing of the spectral densities, ensur-
responsible for deviations from the parton formula—one ising an exponential suppression of the oscillating duality vio-
associated with the four-fermion operator in OPE, appearindating terms(see Sec. V D and Ref12]). Thus, in terms of
due tom,#0, the second is the additional duality violating actual QCD we are still very far from the solution of this
component that was absent @i, =0. The first, inclusive extremely important problem; the exercise performed gives
one, dies off as ™3 ; the second(exclusive at least as us some kind of an upper bound.

1/m{?. We do not see any room forr, deviations, even As previously, in actual QCD, we have to rely on models
oscillating. while estimating the exponentiéscillating terms not seen

in OPE. The choice is not large—only two models were
suggested previously. One of them is an instanton-based
model[23], another is a resonance-based mdd&l, close

The situation we encounter in the 't Hooft model is very in spirit to estimates we have presented above. The
instructive. The model is readily treatable, which allows oneinstanton-based model is simple and predictive, but it appar-
to advance quite far in constructing the OPE series. It igntly lacks the sophistication inherent to the phenomenon in
super-renormalizable, thus providing an especially clean eractuality. In particular, it predicts an oscillating component
vironment for testing various subtle aspects of OPE. Thevsian, rather than~sinmé as would be natural from the
perturbative series for the coefficient functions in the largeresonance point of view. Thus, the 't Hooft model teaches us
N, limit converges. We find, with satisfaction, that all gen- that the instanton-based estimates cannot be fully true. On
eral statements regarding OPE are fully confirmed. the other hand, the resonance-based model, which works sat-

The model also clearly exhibits the breaking of local du-jsfactorily in the limit of infinitely narrow resonances, does
ality by oscillating terms. These oscillations are related to thewot give a full answer as to how strongly the oscillating
exponential terms in the Euclidian domain and not seen irtomponent is suppressed when the finite resonance widths
OPE. Because of zero meson widths in the lakgelimit ~ are switched on. It is clear that further steps in developing
they are suppressed only by powers ahd/which we have the existing or engineering new models are needed.
determined. This work presents the first estimate of the duality viola-

We note that in the t' Hooft model the local duality of the tions, from the resonance-related considerations based on a
OPE predictions in the inclusive heavy flavor decdysth  1/N, expansion, in the practically important problem of the
semileptonic and nonleptonidholds much better than in hadronicr decays. Although not fully conclusive, the results
R(e"e™), the generally recognized classical laboratory forare very encouraging, and call for expansion of these ideas in
applications of OPE. It is in contrast to the opinion often other processes. This is an obvious task for the future.
expressed in the literature that OPE is not applicable in the
inclusive heavy quark widths. Moreover, the numerical com-
putations of Ref[10] suggest that OPE width approaches the
(smearedl hadronic ones at a few percent level very soon, We are grateful to R. Jaffe, A. Kaidalov, and M. Voloshin
right after a few first channels are open. for useful discussions. This work was supported in part by

In actual QCD, already the first excited states are broathe DOE under the grant number DE-FG02-94ER40823, by
enough and inconspicuous, leave alone high excitationgdhe NSF under the grant number PHY96-05080, and by the
When a finite resonance width is introduced, it immediatelyRFFI under the grant number 96-15-96764.

VII. DISCUSSION AND CONCLUSIONS
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