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Heavy flavor decays, OPE, and duality in the two-dimensional ’t Hooft model
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The ’t Hooft model~two-dimensional QCD in the limit of a large number of colors! is used as a laboratory
for exploring various aspects of heavy quark expansion in the nonleptonic and semileptonic decays of heavy
flavors. We perform a complete operator analysis and construct the operator product expansion~OPE! up to
termsO(1/mQ

4 ), inclusively. The OPE-based predictions for the inclusive widths are then confronted with the
‘‘phenomenological’’ results, obtained by summation of all open exclusive decay channels, one by one. The
summation is carried out analytically, by virtue of the ’t Hooft equation. The two alternative expressions for the
total widths match. We comment on the recent claim in the literature of a 1/mQ correction to the total width
which would be in clear conflict with the OPE result. The issue of duality violations both in the simplified
setting of the ’t Hooft model and in actual QCD is discussed. The amplitude of oscillating terms is estimated.
@S0556-2821~99!05503-4#

PACS number~s!: 12.38.Aw, 12.39.Hg, 13.35.Dx
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I. OVERVIEW

The development of heavy quark theory started in
1980s has essentially been completed. While at the e
stages the main emphasis was placed on the symmetr
pects~the so-called heavy quark symmetry!, the present~ma-
ture! stage deals with dynamical aspects. A formalism ba
on Wilson’s operator product expansion~OPE! @1# has been
developed and applied to many cases of practical interes
particular to inclusive decays of heavy flavor hadrons. T
theory of such decays is at a rather advanced stage now~see
@2# and references therein!. Calculations we could not eve
dream of several years ago have become possible.

The decays of heavy flavor hadronsHQ are shaped by
nonperturbative dynamics. While QCD at large distance
not yet solved, considerable progress has been achieve
this problem. The width of an inclusive transitionHQ→ f is
expressed through an OPE. The nonperturbative effects
then parametrized through expectation values of various
cal operatorsOi built from the quark and/or gluon fields
Observable quantities, such as semileptonic and nonlept
widths of heavy hadronsHQ , are then given by

GHQ
5

1

MHQ

(
i

Im ci~m!^HQuOi~m!uHQ&, ~1!

whereci are the OPE coefficients, andm stands for a nor-
malization point separating out soft contributions@which are
lumped into the matrix elements^HQuOi(m)uHQ&# from the
hard ones~which belong to the coefficient functionsci).

There are many subtle and interrelated issues, both
ceptual and technical, associated with the operator pro
expansion in QCD.

*Permanent address.
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~1! Equation ~1! represents an expansion in powers
1/mQ with mQ being theQ quark mass and the coefficientsci

scaling like (1/mQ)di22 for an operator with dimensiondi .
In GHQ

there are two sources for contributions depending

powers of 1/mQ , namely higher-dimensionaloperatorsand
higher-order terms in the expansion of theirexpectation val-
ues. In addition every coefficientci is a series in the running
coupling as(mQ)}1/logmQ , of which only a few terms are
known for a given coefficientci . This immediately raises a
grave concern: how can we retain terms suppressed by p
ers of 1/mQ without a complete summation of the paramet
cally larger powers of 1/logmQ in the leading coefficient?

~2! Although the normalization pointm conceptually rep-
resents a straightforward ‘‘book-keeping’’ device for sep
rating hard and soft contributions, it is technically difficult
actually carry out such a program since no user-friendly d
nition of what is soft and hard exists in QCD. So far, the v
majority of all discussions related to the introduction ofm
are conducted in a hand-waving manner.

~3! It is quite conceivable that there arehard nonpertur-
bative contributions in the coefficient functions:ci

nonpert

;(LQCD/mQ)d with d being some positive number. Th
possible size of such contributions is essentially unknown
related problem is the convergence~or divergence! of the
perturbative series for the coefficient functionsci .

~4! Truncating the series~1! at some finite order intro-
duces an error estimated by so-called exponential ter
which in Euclidean domain appear as expressions of the
exp@2(mQ /LQCD)k#. In order to obtainGHQ

we analytically
continue from the Euclidean domain, where the OPE is w
defined and the coefficientsci are real, to the Minkowski
domain where they acquire an imaginary part. Such anal
continuation is implicit in Eq.~1! and is based on the as
sumption of smoothness. Under analytic continuation the
ponential terms convert themselves intooscillating terms of
the type cos@(mQ /LQCD)k# @3#; the expansion~1! does not
©1999 The American Physical Society11-1
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account for them. It can thus be understood on gen
grounds that duality violation is described—or at lea
modeled—by oscillating expressions. To which degree th
are suppressed by powers of 1/mQ depends on details of th
strong interactions and the specifics of the process.

All these questions are circumvented in the so-cal
practical versionof OPE @4# routinely used so far in al
instances when there is need in numerical predictions. T
version is admittedly approximate, however. The questi
formulated above are legitimate; they deserve to attract th
rists’ attention, and continue to cause confusion in the lite
ture. They have to be addressed also because they are e
ing as a major source of the uncertainties in quantita
predictions; these problems have specifically been suspe
to underlie phenomenological difficulties encountered
cently, e.g., a relatively short lifetime ofb-flavored baryons
and a relatively small semileptonic branching ratio
b-flavored mesons.

We find it useful and instructive to study all these issu
in models that while retaining basic features of QCD—m
notably quark confinement—are simpler without bei
trivial and can be solved dynamically. QCD defined in o
time and one space dimension—hereafter referred to as11
QCD—is especially suitable for this purpose: with the Co
lomb potential necessarily growing linearly in two dime
sions, quark confinement is built in. Likewise the theory
superrenormalizable, i.e., very simple in the ultraviolet d
main. There are no logarithmically divergent ‘‘tails’’ in th
Feynman graphs. As a result, the book-keeping of O
~separation of the hard and soft parts! becomes simple, and
all subtle aspects in the construction of the OPE can be s
ied in a transparent environment.

In particular, the perturbative contributions in the coef
cients ci become an expansion ing2/mQ

2 ~where g is the
gauge coupling in 111 QCD!. They are thus power
suppressed in the same way as the higher-dimensional o
tors; the first problem formulated above therefore does
arise here. Without the logarithmic UV tails the second pro
lem becomes tractable. Concerning the third problem i
easy to see that in 111 QCD nonperturbative correction
cannot generate power suppressed terms in the coeffic
ci . For the leading operatorQ̄Q we will find its coefficient
function to all orders of perturbation theory~in the limit of
Nc→`), demonstrating the convergence of the perturba
series. At the same time, the divergence of the conden
expansion in high orders will become manifest indirect
through the occurrence of oscillating terms inGHQ

, which

appear with suppression factor (1/mQ)9 in the case at hand
Thus all the four problems formulated above will be an
swered.

We will perform our explicit calculations for 111 QCD
in the limit of a large number of colorsNc—the famous
’t Hooft model @5–7#. For Nc→` only planar diagrams con
tribute in QCD; 111 QCD has the additional special featu
that one can choose a gauge such that there are no g
self-interactions. Then only planar ladder diagrams have
be considered, and we have an exactly solvable theory in
hands. All hadronic matrix elements of interest are theref
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calculable. This enables us to describe every given transi
in two complementary ways: we can confront the OPE-ba
expression with a ‘‘phenomenological’’ representation f
the same process obtained by saturating the rate by exclu
hadronic channels.

We want to take advantage of these unique features of
‘t Hooft model to illustrate all crucial elements of heav
quark theory and the theory of inclusive heavy flavor dec
in particular. One should keep in mind that heavy qua
theory, as we know it now, is merely an adaptation of t
general OPE-based approach. Some of the questions t
discussed below can therefore be actually formulated i
wider setting.

The ’t Hooft model has been exploited as a theoreti
laboratory for testing various analytic QCD methods in a
plied problems before. Heavy quark symmetry and hea
flavor decays were analyzed in Refs.@8–10#. The model was
used recently for discussing general aspects of OPE~conver-
gence of the OPE series, exponential terms violating dua
and so on! @11,12#.

In Ref. @10# heavy flavor inclusive widths were calculate
numerically, by adding the exclusive channels one by one
was found that the inclusive widthGHQ

approaches its

asymptotic~partonic! value, and the sum over the exclusiv
hadronic states converges rapidly. At the same time, sm
deviations from the asymptotic value observed in the
merical analysis@10# were claimed to be a signal of 1/mQ

corrections in the total width, in contradiction with the OP
based result.

In this work we treat the very same problem, inclusi
heavy flavor decays in 111 QCD,analytically. We first de-
velop a technique perfectly parallel to that in fou
dimensional QCD@2#. It includes such elements as a com
plete operator analysis and the construction of the transi
operator. Unlike four-dimensional QCD, the coefficie
functions for the leading operator are exactly calculable~in
the limit Nc→`). Moreover, all relevant expectation value
of the local operators involved in the problem are calcula
too. We get a complete prediction through order 1/mQ

4 .
Then we carry out a ‘‘hadronic calculation’’ of the sam

width, by saturating all open decay modes, using the ’t Ho
equation@5#. By comparing the phenomenological represe
tation of the total width with the OPE-based formula, we a
able to identify, term-by-term, the subsequent terms of
heavy quark expansion. The situation actually turns out to
simpler than one could expecta priori:

~1! In the 1/mQ expansion for the inclusive width correc
tions of the order (1/mQ)2, (1/mQ)3 and (1/mQ)4 to the par-
ton width come only from the leading operatorQ̄Q, i.e.,
from the expansions of its OPE coefficientcQ̄Q and its ex-
pectation valuê HQuQ̄QuHQ&. Operators of higher dimen
sion contribute to the total width first at order (1/mQ)5.

~2! The perturbative series ing2/mQ
2 for the OPE coeffi-

cient of the operatorQ̄Q is completely defined by the one
loop renormalization of heavy quark mass. The result can
formulated in terms of the light-cone gauge formalism as
absence of renormalization.
1-2
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HEAVY FLAVOR DECAYS, OPE, AND DUALITY IN . . . PHYSICAL REVIEW D 59 054011
These results are based on a general operator analysi
the ‘‘phenomenological’’ side, we use a sum rule, which i
consequence of the ’t Hooft equation, to show that the to
width is determined by a quantity coinciding with the matr
element of thecQ̄QQ̄Q term in the OPE expansion~1!,
through order (1/mQ)4. Thus, we observe aperfect match
between the expression derived from the OPE and from a
ing up all relevant hadronic channels up to high order pow
corrections.

After testing the validity of OPE, we exploit results ob
tained en route in order to discuss the issue of oscillatin
contributions related to the high-order tails in the OPE se
that are factorially divergent. Due to the simplicity of th
model we can estimate them reliably. A nonmonotono
duality-violating component of the width for largemQ is
suppressed by high power of 1/mQ which we determined.
Implications of our analysis for real QCD are briefly di
cussed.

The remainder of the paper is organized as follows: a
formulating the problem in Sec. II we construct the OPE a
calculate the coefficients in Sec. III; after establishing
match between the OPE-based result for the inclusive w
and the sum rules for the same width resulting from
’t Hooft equation through order (1/mQ)4 in Sec. IV, we dis-
cuss an appearance of oscillating terms in the order (1/mQ)9

and the duality violations they cause in Sec. V; in the sa
section we discussed along similar lines a possible patter
the violation of the local duality fort decays in 113 dimen-
sions; in Sec. VI we comment on the paper@10# and analyze
effects due to nonvanishing masses of light quarks; Sec.
presents a general discussion and conclusions.

II. PRELIMINARIES

We start by formulating the problem and introducing o
notation and conventions.

In two-dimensional QCD the Lagrangian looks supe
cially the same as in four dimensions

L11152
1

4g2
Gmn

a Gmn
a 1( c̄ i~ iD” 2mi !c i ,

iD m5 i ]m1Am
a Ta; ~2!

Ta denote generators of SU(Nc) in the fundamental repre
sentation,Gmn

a the gluon field strength tensor andc i the
quark field (i is a flavor index! with a massmi ;g the gauge
coupling constant.

One has to keep the following peculiarities in mind:g

carries dimension of mass as doesc̄c. The field strength
Gmn

a on the other hand has dimensionM2 in our normaliza-
tion, just as in four-dimensional QCD. With the theory bei
superrenormalizable no~infinite! renormalization is needed
observables like the total widthGHQ

can be expressed i

terms of thebare massesmi andbare couplingg appearing
in the Lagrangian. Anticipating the largeNc limit we will use
a parameterb instead ofg where
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g2

2pS Nc2
1

Nc
D with lim

Nc→`

b25finite. ~3!

This dimensionful quantity b, which—in contrast to
mi—provides an intrinsic mass unit for the ’t Hooft mode
can be seen as the analog ofLQCD of four-dimensional QCD.

We need at least two quarks denoted byQ and q with
massesmQ and mq , respectively, to realize heavy flavo
transitionsQ→q. For quark masses we impose

mQ2mq@b, ~4!

where bothmqÞ0 andmq50 are allowed for. Condition~4!
guarantees that the inclusive methods of Ref.@2# are appli-
cable since it makes the energy release1 in the weak decay
large relative to the intrinsic scaleb. We will actually em-
ploy the dimensionless ratiob/mQ as our expansion param
eter.

Next we need to introduce a flavor-changing weak int
action; we choose it to be of the current-current form:

Lweak
V 52

G

A2
~ q̄gmQ!~ c̄agmcb!. ~5!

Here G is an analog of the Fermi coupling constant; it
dimensionless in two dimensions. The fieldsca,b can be ei-
ther the light quark or the lepton fields to describe nonle
tonic or semileptonic decays, respectively. In 111 dimen-
sions the axial current reduces to the vector one. The m
general current-current interaction contains an additio
term where the vector currents are contracted via the a
symmetricemn instead ofgmn . For the total width—our main
focus here—such an additional term is of no importance. T
product of scalar densities, on the other hand, is inequiva
to that of vector densities; we will briefly discuss it, b
mainly focus on theV3V interaction~5!.

For Nc→` factorization holds; i.e., the transition ampl
tude can be written as the product of matrix elements of
currentsq̄gmQ andc̄agmcb . For the inclusive widths which
are discussed below the property of factorization can be
pressed as follows:

MHQ
GHQ

5ImE d2xi^HQuT$Lweak~x!Lweak
† ~0!%uHQ&

5G2E d2x ImPmn~x! ImTmn~x!, ~6!

wherePmn(x) andTmn(x) are defined as

Pmn~x!5 i ^0uT$c̄a~x!gmcb~x!c̄b~0!gnca~0!%u0&, ~7!

Tmn~x!5 i ^HQuT$q̄~x!gmQ~x!Q̄~0!gnq~0!%uHQ&. ~8!

1It can hardly be overemphasized that it is the size of the ene
release rather than ofmQ that controls the reliability of the expan
sion in four dimensions as well.
1-3
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This factorization follows from the fact that atNc→` there
is no communication betweenc̄agmcb and q̄gmQ currents:
any gluon exchange brings in a suppression factor 1/Nc

2 .
The only difference between the semileptonic and nonl

tonic widths resides inPmn(x), in the first caseca are lep-
tonic fields while in the second case they are the quark fie
At mc50 we get one and the samePmn(x) ~up to the overall
normalization factorNc) as we will show shortly. For this
reason atmc50 the distinction between the nonleptonic a
semileptonic cases is actually immaterial. AtmcÞ0 quark
and lepton polarization tensorsPmn(x) become different.
This difference is proportional to powers ofmc . It will be
discussed in Sec. VI. For the time being we will treatc ’s as
massless leptons.

The one-loop graph determiningPmn is depicted in Fig.
1. For a massless fermionc we get the well-known expres
sion

Pmn~q!5E d2xeiqxPmn~x!52
1

pS qmqn

q2
2gmnD . ~9!

This expression obtained from a one-loop graph is known
be exact. Ifc is a lepton field, this statement is trivial. Ifc is
the quark field all gluon insertions inside the loop automa
cally vanish due to special properties of the two-dimensio
g matrices.2 Thus, atmc50 the only distinction between
ca,b being quark rather than lepton fields is an overall fac
Nc on the right-hand side of Eq.~9!.

A remarkable feature of Eq.~9! is the occurrence of the
pole at q250, which is specific for the vector interaction
This means that a pair of massless leptons produced by
vector current is equivalent to one massless boson, wh
coupling is proportional to its momentumqm . In the case of
the quark fields, it is known@6# from the early days of the
’t Hooft model that the vector currentc̄agmcb produces
from the vacuum only one massless meson, the pion. Th
readily seen by inspecting the ’t Hooft equation@5#.

For all computational purposes the vector currentc̄agmcb

in Eq. ~5! can thus be substituted byemn]nf/Ap wheref
denotes a pseudoscalar massless noninteracting field,

L̃weak
V 52

G

A2p
q̄gmQemn]nf. ~10!

2Namely, one uses the fact thatgagmga50 and any odd numbe
of g matrices reduces to one.

FIG. 1. Polarization operator for lepton current.
05401
-

s.

o

-
l

r

he
se

is

In other words, the problem is formulated as the inclus
decay of the heavy quarkQ into a lighter quarkq plus a
sterile bosonf. More exactly, we deal with the decays of
Q containing hadronHQ into a q containing final hadronic
stateXq plus f.

Let us pause here for two remarks.~i! The fact that the
interaction vertex of the massless fieldf involves emn, see
Eq. ~10!, is most obvious whenca,b are quark fields. For in
this casef is the pion, as mentioned above, and the pion
coupled to the vector currentc̄agmcb obviously through
emn. The case of the leptonic fieldsca,b is indistinguishable;
therefore, the coupling off is the same.~ii ! To keep the
analysis to be presented below as clean and transpare
possible we want to be free of annihilation and Pauli int
ference contributions to the total width@at least through
O(1/mQ

4 )#. This is readily achieved by assuming througho
the paper that the spectator light quarkqsp in HQ is distinct
from q.

In the leading approximation the transition operator is d
termined by the diagram of Fig. 2, where the wavy line c
responds to thef quantum. A straightforward calculatio
yields for the transition operator

T̂05cQ̄Q
0

Q̄Q; 2 ImcQ̄Q
0

5GQ5
G2

4p
•

mQ
2 2mq

2

mQ
, ~11!

whereGQ is the decay width for a free quark Q as evaluat
in the parton model. This parton expression will serve
reference in analyzing the (1/mQ)n corrections to the tota
width G.

III. OPERATOR PRODUCT EXPANSION FOR INCLUSIVE
WIDTHS

A. Catalog of operators

The 1/mQ expansion for inclusive widths of heavy flavo
hadrons is constructed from the Lorentz invariant weak tr
sition operator@13#

T̂~Q→Q!5E d2xiT$Lweak~x!Lweak
† ~0!%5( ci~m!Oi~m!.

~12!

The local operatorsOi are ordered according to their dimen
sions. The leading one isQ̄Q with dimension dQ̄Q51.
Higher operators have dimensionsdi.1. By dimensional
counting the corresponding coefficients are proportiona
(1/mQ)(di22). The ratio of the coefficientsci /cQ̄Q is propor-
tional to mQ

2di1dQ̄Q .

FIG. 2. Transition operator in the leading order. The wavy li
of masslessf field substitutes the propagation of lepton pair.
1-4
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The coefficientsci are determined in perturbation theo
as a series inb2/mQ

2 . It is crucial that these coefficients ar
saturated by the domain of virtual momenta;mQ and are
infrared stable by construction.~All infrared contributions
reside in the matrix elements of the operatorsOi .) At this
point we should mention a drastic distinction between fo
and two-dimensional QCD. In four dimensions the expa
sion parameter for the coefficients is the running coupl
as(mQ); nonperturbative contributions to the coefficien
coming from distances;1/mQ could in principle show up in
the form exp(2C/as(mQ));(LQCD/mQ)d where d is some
unknown positive index, not necessarily integer. In tw
dimensional QCD such terms cannot appear: an analog o
exponential term above would be exp(2CmQ

2 /b2).
A note concerning the choice of the normalization po

m: we will imply that

mQ@m@b. ~13!

In this range there is no real dependence onm, so we will
suppress the argumentm both in the coefficient functions an
operators.

The coefficient functions are not the only source of amQ
dependence. The matrix elements of the operatorsOi contain
an implicit mQ dependence too.~We recall that in our for-
malism, unlike HQET@14#, the fields of which the operator
Oi are built are the standard Heisenberg operators, ra
than asymptotic inmQ .) In particular, for the leading opera
tor Q̄Q we have the following relation:

E d2xQ̄Q5E d2xH Q̄g0Q1Q̄

pmpm1
i

2
smnGmn

2mQ
2

QJ ,

~14!

wherepm5 iD m2gm0mQ and the integration overx allows
us to omit terms which are total derivatives.

In the rest frame of the hadronHQ the expectation value
of Q̄g0Q counts the number ofQ quarks,

1

2MHQ

^HQuQ̄g0QuHQ&51. ~15!

The factor 1/2MHQ
will be present in all matrix elements;

corresponds to a relativistic normalization of the states,

^HQ~pW 8!uHQ~pW !&52EHQ
d~pW 82pW !. ~16!

From relation~14! the matrix element ofQ̄Q is therefore
unity, up to a quadratic correction:

1

2MHQ

^HQuQ̄QuHQ&511OS 1

mQ
2 D . ~17!

Moreover relation~14! provides an operator form for 1/mQ
2

corrections. They come fromQ̄pmpmQ/2mQ
2 which equals

Q̄D1
2Q/2mQ

2 up to 1/mQ
4 corrections. Notice, that the operat
05401
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Q̄D1
2Q is Lorentz noncovariant and cannot enter directly in

the OPE for the total width but, as we see, enters indire
through the matrix element of the operatorQ̄Q.

Equation~14! contains also the ‘‘chromomagnetic’’ op
erator and it looks as if this operator contributes to 1/mQ

2

corrections. It is not, however, the case. Indeed, this oper
can be rewritten as follows:

OG5
i

2
Q̄smnGmnQ5

i

2
Q̄g5emnGmnQ

5
i

4
Q̄g5emnGmn~12g0!Q1

i

4
Q̄~12g0!g5emnGmnQ,

~18!

where the relationsmn5g5emn is used. Taking advantage o
the non-relativistic equations of motion to replace
2g0)Q by (1/mQ)g1iD 1Q we get~up to total derivatives!

OG52
1

2mQ
Q̄~DmGmn!gnQ1OS 1

mQ
2 D

5
g2

2mQ
Q̄gmtaQ(

q
q̄gmtaq1OS 1

mQ
2 D , ~19!

whereta stand for the generators of the color group SU(Nc).
Thus, the operatorOG reduces to a four-fermion operato
O4q with coefficientg2/mQ .

The absence of operators with the gluon field stren
tensor Gmn in the OPE is a specific feature of two
dimensional QCD. The physical reason for the reducibility
the gluonic operators is the absence of real gluons in
dimensions. A particular consequence of Eq.~19! is that in
Eq. ~14! the chromomagnetic operator generates 1/mQ

3 terms
only.

Thus we come to the following representation for the m
trix element of the leading operatorQ̄Q:

^HQuQ̄QuHQ&
2MHQ

512
1

2mQ
2

^HQuQ̄~2D1
2!QuHQ&

2MHQ

1
g2

2mQ
3

^HQuQ̄gmtaQ(
q

q̄gmtaquHQ&

2MHQ

1OS 1

mQ
4 D . ~20!

Let us proceed further with the operator analysis. The fi
subleading operator is the dimension-two four-fermion o
erator of the type

O4q5Q̄G1Qq̄G2q, ~21!

whereG1,2 denote color and spinor matrices. This is in d
tinction with 113 QCD where the first subleading operat
1-5
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wasQ̄smnGmnQ. On dimensional grounds the operatorO4q ,
if present, could produce alinear 1/mQ correction in the total
decay width. To this end the corresponding coefficient m
arise in zeroth order in the couplingg2 ~see the diagram in
Fig. 3!.

For the V3V weak coupling of Lagrangian~10! this
graph vanishes identically in the imaginary part, Imc4q
50, provided the leptons are massless, see discussion in
II. ~If the fields propagating in the loop are massive, t
operatorO4q appears. The corresponding modifications
considered in Sec. VI.!

However, in the case of a scalar-scalar weak interactio
the form

Lweak
S 52

GS

A2
~ q̄Q!~ c̄acb! ~22!

the graph of Fig. 3 is not zero, and gives the following co
tribution to the transition operator:

Im TS5
GS

2

4
~Q̄q!~ q̄Q!. ~23!

With this contribution the total width takes the form~we put
mq50 for simplicity!:

GHQ

S 5
GS

2mQ

16p S 11
4p

mQ

^HQu~Q̄q!~ q̄Q!uHQ&

^HQuQ̄QuHQ&
D . ~24!

Let us emphasize that, unlike four-dimensional QC
where no operator can induce a 1/mQ contribution to the total
width @15,16#, this can happen in two dimensions. The va
ishing of Im c4q for theV3V weak Lagrangian in the lead
ing order is a specific dynamical feature of this particu
Lorentz structure of the weak interaction. Note at this po
that the argumentation presented in Ref.@15# was not suffi-
cient to prove the absence of 1/mQ corrections in real QCD,
see the discussion in Sec. V A.

In Sec. III B 3 we will show that Imc4q vanishes not
only in the leading order in strong coupling but also in t
order g2. The first nonvanishing contribution to Imc4q

comes in the orderg4 what leads to 1/mQ
5 corrections to the

width.
Next in the list comes the dimension-three operator c

taining six quark fields:

~Q̄G1Q!~ q̄aG2qb!~qcG3qd!.

Along the same line of reasoning as for four-fermion ope
tors we show that six-fermion operators appear only in

FIG. 3. Four-fermion operators in the leading order.
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orderg6. It therefore contributes in order 1/mQ
8 . For multi-

fermion operators every extraq̄q pair brings in an extra
1/mQ

3 suppression.

In summary: to a quite high accuracy the operatorQ̄Q is
the only one to contribute.

B. Calculating coefficients

1. Light-cone gauge and nonrenormalization theorem

The calculations are most conveniently done in the lig
cone gauge. This technology can be traced back to the
neering work of ’t Hooft@5#, and has been well studied in th
literature. In this formalism the energy-momentum vector
described by

p65
1

A2
~E6p!, ~25!

so that the mass-shell condition becomesp252p1p25m2.
Let us write down the Lagrangian of the model in th

light-cone formalism:

L5(
i

x i
†F i ]12

mi
2

2i ]2
Gx i

1
g2

2 S (
i

x i
†tax i D 1

]2
2 S (

k
xk

†taxkD . ~26!

In this formalism two-component quarkqi fields are ex-
pressed via the one-component fermionic fieldsx i ,

qi5
1

21/4S x i

mi

A2i ]2

x i
D ~27!

~in the basis whereg55g0g1 is diagonal!. With the gauge
fixed by A250, theA1 component is expressed in terms
the quark fields.

The weak interaction~10! takes the form:

L̃weak
V 52

G

A2p
H xq

†xQ]1f

2
mqmQ

2 F 1

i ]2
xqG†F 1

i ]2
xQG]2fJ . ~28!

A remarkable simplification occurs due tof carrying
lightlike momentumqm : q252q1q250. We can satisfy
this condition by choosing the ‘‘spatial’’ component of th
momentumq250, i.e., ]2f50. ~This means that thef
quantum is a left-mover.! Thus, on thef ‘‘mass shell’’ the
second term~containing]2f) in Eq. ~28! vanishes and the
weakQqf coupling takes a simple form,

L̃weak
V 52

G

A2p
xq

†xQ]1f. ~29!
1-6
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Here we come to a very important point. In the ’t Hoo
model nonrenormalization theorem for flavor nondiago
currents atq250 arises:all corrections to the weak vertex a
this point vanish. In the light-cone formalism the kinematic
point q250 looks analogous to the zero recoil point in fou
dimensional heavy quark theory. The analogy is a superfi
one, however.3 In 113 QCD flavor nondiagonal currents a
the zero recoil are renormalized by radiative and power c
rections.

To prove the theorem let us consider the gluon correcti
to the weak coupling~29!. To orderg2 the relevant graphs
are depicted in Fig. 4.

The Feynman rules can be read off from Eqs.~26!, ~29!.
In particular, the weakQqf vertex is

V52 i
G

A2p
q1 . ~30!

The graph 4~a! gives rise to the following expression:

DV5V• i
b2

4pE d2k
1

k2
2

3
1

~pq1k!12
mq

22 i e

2~pq1k!2

•

1

~pQ1k!12
mQ

2 2 i e

2~pQ1k!2

.

~31!

The integration overk1 can easily be performed by the res
due method. It is clear then that the integration overk1

produces a nonzero result only in the case of opposite s
of (pq1k)2 and (pQ1k)2 ~the poles should be on the di
ferent sides of the integration path!. For q25(pQ2pq)2

50 these signs are certainly the same, (pq1k)25(pQ
1k)2 , and there is no correction to the vertex.

To finish up with theg2 correction to the weak coupling
we need to add graphs~b! and ~c! of Fig. 4 containing the
self-energiesSQ andSq of Q andq quarks.

SQ~p1 ,p2!52 i
b2

4pE d2k
1

k2
2
•

1

p11k12
mQ

2 2 i e

2~p21k2!

.

~32!

3In particular, for heavy-to-heavy transitions atq250 there is no
dominance of the ground state production in the ’t Hooft mode

FIG. 4. Radiative corrections to the weak couplingQqf.
Dashed lines denote the gluons.
05401
l

l

al

r-

s

ns

The integration contains a single pole only as a function
k1 . Unlike the previously considered vertex correctio
though, the integration overk1 gives a nonzero result be
cause the integral over the large semicircle in the comp
plane of k1 does not vanish. The integration overk2 re-
quires an infrared regularization.4 Following ’t Hooft @5# we
define the integration in Eq.~32! by putting a symmetric
ultraviolet cutoffK for the k1 integration, and a symmetric
infrared cutoffl for the k2 integration,

uk1u,K, uk2u.l. ~33!

Then atup1u!K the result forS is

SQ~p1 ,p2!5F b2

2p2
2

b2

2l
e~p2!Gu~ up2u2l!. ~34!

The independence ofS on p1 means that noZ factor ap-
pears. The first term corresponds to a shift in the qu
masses,

mQ
2→mQ

2 2b2, mq
2→mq

22b2. ~35!

The second term produces a~noncovariant! shift in the ref-
erence point for the light-cone energy on mass shell,

p15
mQ

2 2b2

2p2
1

b2

2l
~p2.l!. ~36!

This shift produces no effect on the widths. One-loop rad
tive corrections thus do not affectQqf transitions besides
the mass shift given by Eq.~35!.

Moreover, it stays true for higher loops as well within th
’t Hooft model. For in the limitNc→` there are no fermion
loop insertions into the gluon propagators. Then the hig
loop corrections to the vertex, as well as to the self-ener
vanish in the way discussed above since the integration o
k1 yields zero.

Notice that the nonrenormalization theorem we der
within the ’t Hooft model is a stronger statement than the o
about zero recoil in four-dimensional QCD where radiati
and power corrections break the nonrenormalization of fla
nondiagonal currents.

2. The leading coefficient cQ̄Q

Now it is simple to account for higher orders in the coe
ficient cQ̄Q of the leading operatorQ̄Q. To zeroth order in
g2 this coefficient was determined in Sec. II, see Fig. 2 a
Eq. ~11!. As just discussed higher loop corrections mere
shift the quark masses, Eq.~35!, and therefore we get the
coefficientcQ̄Q in all orders,

4OPE ensures that the dependence on the infrared regulariz
disappears in the width as long as it is the same at all stages o
calculation.
1-7
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2 ImcQ̄Q5
G2

4p
•

mQ
2 2mq

2

AmQ
2 2b2

. ~37!

Combining this result with Eq.~20! and with the suppressio
of the four-fermion operators, see Sec. III B 3, we conclu
that ~i! there is no 1/mQ corrections in the total width, much
in the same way as in actual QCD@15,16#; ~ii ! corrections
1/mQ

2 ,1/mQ
3 and 1/mQ

4 to the total width are associated e

clusively with the operatorQ̄Q.
In Sec. IV we will prove a stronger statement: irrespect

of the explicit form of these corrections, the hadronic sa
ration yields exactly the same result for the total width as
contribution ofcQ̄QQ̄Q in OPE.

The expression~37! for cQ̄Q refers to a low normalization
point, b!m!mQ . In order to calculate the matrix eleme
of Q̄Q overHQ we will need to expressQ̄Q in terms ofxQ .
It goes without saying that the operatorQ̄Q must be taken a
the same normalization point. Then, the resulting series
b2/mQ

2 cancels against a similar expansion coming from

operator Q̄Q; there is nob dependence in the produc
cQ̄QQ̄Q. This can be seen by rewritingQ̄Q in terms of the
unrenormalized one-component fieldxQ and massmQ :

Q̄Q5xQ
† mQ

i ]2
xQ . ~38!

In evolving down tom, higher orders lead to the substitutio
mQ→AmQ

2 2b2 in this relation as well. With the quark mas
substitution being the only effect of the radiative correctio
we have

2 ImcQ̄QQ̄Q5
G2

4p
~mQ

2 2mq
2!xQ

† 1

i ]2
xQ . ~39!

The statement that the productcQ̄QQ̄Q is renormalization
group invariant is trivial, of course. A nontrivial part of th
result is encoded in Eq.~39!, which is valid to all orders ing.
One could obtain this result by doing calculations atm
@mQ when the mass of theQ quark coincides with its
‘‘bare’’ value mQ , at m5mQ , or at m!mQ , when a non-
logarithmic evolution of theQ̄Q operator and its coefficien
functions must be taken into account, the outcome is
same, see Eq.~39!. To make contact with the ’t Hooft equa
tion ~i.e., to calculateQ̄Q in terms of the ’t Hooft wave
function defined for bare quantities! we will need Eq.~39! at
the ultraviolet cutoff. Note that it can be conveniently rewr
ten as

2 ImcQ̄QQ̄Q5GQxQ
† mQ

i ]2
xQ . ~40!

In Sec. IV B we will find the matrix element o
xQ

† (mQ / i ]2)xQ and show that the corresponding express
for the total width coincides with the one obtained throu
the hadronic saturation.
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3. Four-fermion and multifermion operators

As discussed above for the current-current weak inter
tions four-fermion operators do not arise to zeroth order
the strong coupling. Diagrams generating four-fermion o
erators in theg2 order are shown in Fig. 5.

The light-cone gauge turns out to be again a conven
tool to use. Let us start for illustration with the simple on
loop diagram of Fig. 2. Feynman rules in the light-co
gauge, see Sec. III B 1, lead to the following expression:

Im i E d2kd~2k1k2!
k1

2

~pQ2k!12
mq

22 i e

2~pQ2k!2

. ~41!

Here d(2k1k2) appears from the cut of thef propagator,
the cutting of theq quark propagator done by the taking a
imaginary part. The integration overk2 is immediate due to
thek250 root of delta function~the other root,k150, gives
the same contribution, so just a factor 2!

Im i E dk1k1

1

~pQ2k!12
mq

22 i e

2~pQ!2

5pF ~pQ!12
mq

2

2~pQ!2
G .

~42!

It means that the term

T̂05constxQ
† F i ]12

mq
2

2i ]2
GxQ ~43!

appears in the transition operator. In the zeroth order in th
Hooft coupling the equation of motion for thexQ field is

]1xQ5mQ
2 /~2i ]2!xQ . ~44!

In the rest framei ]2→p25mQ /A2, and we reproduce Eq
~11!.

Let us now apply the same technique to the loop par
Fig. 5~b! in the limit of vanishing gluon momentum. Inte
grating overk2 we get

Im i E dk1k1

1

F ~pQ2k!12
mq

22 i e

2~pQ!2
G2 5p. ~45!

It produces the term

T̂15constxQ
† A1xQ ~46!

in the transition operator, with the same overall factor as
Eq. ~43!. Summing upT̂0 andT̂1 results in the substitution o

FIG. 5. Four-fermion operators ing2 order.
1-8
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i ]1 by iD 15 i ]11A1 . In this order the equation of motio
~44! also should be modified by the same substitution. T
net result is that no change in OPE coefficients is produ
by the loop in Fig. 5~b!.

Note that it is true not only for vanishing momentum
gluon field but for any soft field as well, in other word
terms with derivatives ofAm do not appear in the transitio
operator in one-loop order@17#. Note also that if extra gluons
are emitted from the loop we get zero for the diagram.
deed, it increases the power in the integrand of Eq.~45! and
the integral over the large semicircle in the complex plane
k1 vanishes. It is the reason why diagrams of the type of F
5~b! give no rise to multifermion operators.

To finish up with multifermion operators we need to a
count for diagrams of the type given in Fig. 5~a!. The Feyn-
man expression for this diagram after integrating overk2 is

Im i E dk1k1

1

F ~pQ2k!12
mq

22 i e

2~pQ!2
G2

1

@~pQ2pq!2#2

5
p

@~pQ2pq!2#2
. ~47!

It is simple to check then that the diagram 5~a! cancels out
against similar diagrams where the gluon exchange is
tweenq and Q quarks. In case of extra gluon insertions
one loop~relevant for six-fermion and higher dimension o
erators! we get a vanishing result right away.

Thus, we proved that four-fermion and multifermion o
erators do not arise at the level of one loop. They show u
the level of the second loop; see Fig. 6 for four-fermi
operator. The dimensional counting reveals then that fo
fermion operators give 1/mQ

5 correction to the total width.

C. OPE representation for inclusive width

Putting everything together we get the OPE representa
for the inclusive width:

GHQ
5

G2

4p

mQ
2 2mq

2

AmQ
2 2b2F ^HQuQ̄QuHQ&

2MHQ

1OS 1

mQ
5 D G

5GQF K HQUxQ
† mQ

i ]2
xQUHQL

2MHQ

1OS 1

mQ
5 D G . ~48!

We have thus obtained a very simple result.
~1! The partonic expressionGQ represents the asymptot

term for mQ→`.

FIG. 6. Four-fermion operators ing4 order.
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~2! There is no 1/mQ contribution in OPE as long as th
weak interactions are of theV3V type.

~3! Through order 1/mQ
4 only a single operator contrib

utes,Q̄Q.
~4! The leading correction;O(1/mQ

2 ) enters through the
expectation value (1/MHQ

)^HQuxQ
† (mQ / i ]2)xQuHQ&.

The second part of Eq.~48! has been written in terms o
the light-cone operators to provide a way of rewriting t
matrix element in terms of the ’t Hooft wave function of th
hadronHQ . The OPE result for the inclusive width can b
recast in terms of the sum over exclusive hadronic chann
This will be proven next.

IV. MATCH BETWEEN OPE-BASED EXPRESSIONS
AND HADRONIC SATURATION

A. Exclusive widths via the ’t Hooft wave function

With 111 QCD describing manifestly confining dynam
ics, its spectrum consists of mesonic quark-antiquark bo
states. In theNc→` limit these mesons are stable in rega
to strong decays. The masses and the light-cone wave f
tions w(x) ~with xe@0,1# meaning a portion of momentum
carried by the quark! of these mesons can be determined
eigenfunctions and eigenvalues of the ’t Hooft equation.
particular, the initial stateHQ5@Qq̄sp# is the ground state in
the sector with the heavy quarkQ and the spectator antiquar
q̄sp . Its wave functionwHQ

satisfies the following equation

MHQ

2 wHQ
~x!5FmQ

2 2b2

x
1

msp
2 2b2

12x GwHQ
~x!

2b2E
0

1

dy
wHQ

~y!

~y2x!2
, ~49!

wheremsp denotes the mass of the spectator antiquark
the integral is understood in the principal value prescripti
The solutions to the equation are singular atx50 andx51
where their behavior is given byxg0 and (12x)g1, respec-
tively, with g0,1 defined by the following conditions:

pg0

tanpg0
52

mQ
2 2b2

b2
,

pg1

tanpg1
52

msp
2 2b2

b2
. ~50!

The massesMn and wave functionswn of final mesonshn

5@qq̄sp#n are defined by the same ’t Hooft equation withmQ
substituted bymq :

Mn
2wn~x!5Fmq

22b2

x
1

msp
2 2b2

12x Gwn~x!2b2E
0

1

dy
wn~y!

~y2x!2
.

~51!

The functionswn form a complete basis, i.e.,

(
n

wn~x!wn~y!5d~x2y!. ~52!
1-9
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Let us find out now how an exclusive widthGn of HQ
→hnf decay is expressed via wave functionswHQ

,wn of
initial and final mesons,

Gn5
1

2MHQ

•

1

~MHQ

2 2Mn
2!
U^hnfu

G

A2p
xq

†xQfq1uHQ&U2

5
G2

4p

MHQ

2 2Mn
2

MHQ
F ^hnuxq

†xQuHQ&

A2MHQ

G 2

, ~53!

where the factor 1/(MHQ

2 2Mn
2) is the Lorentz invariant

phase space~LIPS! of the two-particle final state and for th
matrix element we have used Eq.~29! in the kinematics
where thef momentumqm is

q250, q15
1

A2MHQ

~MHQ

2 2Mn
2!. ~54!

It is simple then to write the matrix element ofxq
†xQ in terms

of the ’t Hooft wave functions,

Gn5
G2

4p

MHQ

2 2Mn
2

MHQ

U E
0

1

dxwn~x!wHQ
~x!U2

. ~55!

B. Sum rules

Using the completeness condition~52! we can derive sum
rules for these partial widths by weighing them with powe
of MHQ

2 2Mn
2 . The first one is

4pMHQ

G2 (
n50

`
Gn

MHQ

2 2Mn
2

5 (
n50

` U E
0

1

dxwn~x!wHQ
~x!U2

5E
0

1

dxwHQ

2 ~x!51. ~56!

Note that the sum runs overall stateshn including those
unaccessible in the real decays ofHQ , i.e., with masses
Mn.MHQ

. These transitions are still measurable by the p

cess of inelastic lepton scattering off theHQ meson. This
sum rule is an analog of the first Bjorken sum rule and w
discussed in@18#.

To get the next sum rules let us multiply Eq.~49! by
wn(x) and Eq.~51! by wHQ

(x), respectively. After integrat-
ing overx and subtracting we find

~MHQ

2 2Mn
2!E

0

1

dxwn~x!wHQ
~x!

5~mQ
2 2mq

2!E
0

1dx

x
wn~x!wHQ

~x!. ~57!

Two more sum rules then arise:
05401
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4pMHQ

G2 (
n50

`

Gn5~mQ
2 2mq

2!E
0

1dx

x
wHQ

2 ~x!, ~58!

4pMHQ

G2 (
n50

`

Gn~MHQ

2 2Mn
2!5~mQ

2 2mq
2!2E

0

1dx

x2
wHQ

2 ~x!.

~59!

The second and third sum rules differ from the first one
two aspects: they depend on the quark massesmQ and mq
explicitly and the integral over the wave function is not fixe
by a normalization condition; it can, however, be calcula
in the ’t Hooft model. One should note that while the int

grandwHQ

2 (x)/x2;x2b2/mQ
2

is singular atx50, it is still in-

tegrable, sinceb2/mQ
2 !1. Note also that expanding the se

ond sum rule~58! in 1/mQ to the linear order we reproduc
the corresponding sum rule of Ref.@18#.

The sum rules above provide us with detailed informat
on the saturation of the sums over the final hadronic st
The quantity

wn5
4pMHQ

G2

Gn

MHQ

2 2Mn
2

~60!

can be interpreted as a normalized probability of produc
the staten. Indeed(wn51 according to the first sum rule
~56!. Then the sum rule~58! implies

^MHQ

2 2Mn
2&5~mQ

2 2mq
2!E

0

1dx

x
wHQ

2 ~x!. ~61!

If both massesmsp andmq are smaller or of the order ofb
we conclude that

^Mn
2&5 K 1

x
21L mQ

2 1O~b2!;bmQ . ~62!

Here we have anticipated the result for^1/x& from Eq. ~71!
in the next subsection, in conjunction with Eq.~70!. The
reason for̂ Mn

2&;bmQ is clear on the physical grounds: i
the partonic approximation the final state is formed by
quarkq with the momentummQ/2 and by the spectator an
tiquark q̄sp with the momentum of orderb.

The sum rule~59! @after subtracting the square of th
second sum rule~58!# determines the dispersion

^Mn
4&2^Mn

2&25K 1

x2L 2 K 1

xL 2

;^Mn
2&2. ~63!

What about higher moments? It is not difficult to see th
the next one,(n50

` Gn(MHQ

2 2Mn
2)2, is a divergent sum be

causewHQ

2 (x)/x3 would no longer be integrable. It define

the asymptotics ofGn at largen,

Gn}
1

Mn
6

. ~64!
1-10
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Let us recall@5# that Mn
25p2b2n for high excitations,n

@1. We will see in the next subsection that the asympto
~64! matches the contribution of the four-fermion operato
in OPE.

C. Matching

Armed with exact sum rules~56!, ~58!, ~59! we are well
prepared to verify a perfect match between the OPE re
and the expression obtained by summing over hadronic fi
states. From the second sum rule~58! we have for the total
semileptonic widthGHQ

the following relation:

GHQ
5

G2

4p
•

mQ
2 2mq

2

MHQ

E
0

1dx

x
wHQ

2 ~x!2 (
Mn.MHQ

Gn . ~65!

The second term is actually positive@Gn defined by Eq.~53!
is negative atMn.MHQ

#. Using Eq. ~64! its size can be
estimated

2 (
Mn.MHQ

Gn}
1

mQ
4

. ~66!

Thus we have derived from the ’t Hooft equation the fo
lowing result for the inclusive width:

GHQ
5GQF mQ

MHQ

E
0

1dx

x
wHQ

2 ~x!1OS 1

mQ
5 D G . ~67!

This expression coincides with the OPE result of Eq.~48! as
seen by rewriting the matrix element in Eq.~48! in terms of
the ground state wave functionwHQ

(x),

^HQuxQ
† mQ

i ]2
xQuHQ&

2MHQ

5
mQ

MHQ

E
0

1dx

x
wHQ

2 ~x!, ~68!

where, besides normalization factors, we have used also
substitutioni ]2→xMHQ

/A2.
This completes the proof of the perfect matching betwe

OPE and the hadronic saturation through the order 1/mQ
4 .

Let us stress that the matrix element~68! given by the inte-
gral over the ground state wave function is implicitlymQ

dependent; its leading term is 1 followed by 1/mQ
2 and higher

terms~see the discussion in Sec. III A!. In the ’t Hooft model
one can, of course, evaluate the matrix element explic
although it is not relevant to our main objective—probing t
quark-hadron duality.

The absence of 1/mQ corrections was demonstrated
Sec. III A by operator methods. Let us show now that
same statement can be derived from the ’t Hooft equation
well. To this end we use the approach of Ref.@18# to the
heavy quark limit, generalizing it to include 1/mQ

2 correc-
tions. Instead ofx, the appropriate variable for the large ma
limit is

t5~12x!mQ , w~x!5AmQf~ t !. ~69!
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An expansion of the ’t Hooft equation in 1/mQ ~after a sub-
stitution of the new variable! and the virial theorem lead to
the following relation for the meson mass:

MHQ

2

mQ
2

5112
^t&
mQ

2
b2

mQ
2

1OS 1

mQ
3 D , ~70!

where averaging is over theHQ meson wave functionf(t).
As compared with Ref.@19# we have added ab2/mQ

2 term.
Its origin is simple: it accounts for the renormalization of t
heavy quark mass. Note that^t&;b providedmsp&b.

We also need a similar expansion for the integral enter
Eq. ~67!,

E
0

1dx

x
wHQ

2 ~x!511
^t&
mQ

1
^t2&

mQ
2

1OS 1

mQ
3 D . ~71!

Substituting Eqs.~70!, ~71! in Eq. ~67! we have

GHQ

GQ
511

1

2mQ
2 ~b22^t2&1^t&2!1OS 1

mQ
3 D . ~72!

This expansion should be compared with the operator re
sentation~20!. The 1/mQ expansion ofcQ̄QQ̄Q produces the
same 1/mQ

2 term; the part}b2 comes from the expansion o
cQ̄Q ; see Eq.~37!.

Note that without theb2 term the correction to 1 is nega
tive, i.e.,

GHQ

GQ
21,

b2

2mQ
2

. ~73!

One more comment about 1/mQ
5 terms. In the OPE ap-

proach they are due to the four-fermion operators gener
by the graph in Fig. 6. Although the corresponding OP
coefficients are not calculated, the consideration ab
shows that the contribution of the four-fermion operators
dual to the sum ofGn with Mn.MHQ

for final state mesons
i.e., channels kinematically inaccessible in the decay.

V. VIOLATIONS OF DUALITY

A. Global and local duality

Having established a perfect match between the OPE
diction for the total width and the result of the saturation
exclusive decay modes, throughO(1/mQ

4 ), we must now
turn to the issue of where the OPE-based prediction is s
posed to fail. The failure usually goes under the name
‘‘duality violations,’’ a topic under intense scrutiny in th
current literature. The definition of what duality violation
varies from publication to publication. Quite often, the r
searchers in the field stick to a vague notion of deviatio
‘‘of certain rates for processes involving hadrons from t
underlying partonic rates.’’ This is, for instance, the conve
tion of Ref. @10# where duality is understood as the coinc
dence with the parton-model prediction. If so, any nonp
1-11
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turbative contribution to the given rate would be interpre
as a ‘‘duality violation,’’ which does not make much sense
us.

We must precisely define what is meant by duality and
violations. Assume that a certain process is amenable to
culations within OPE. This means that an appropriate Euc
ean quantity can be chosen, and the OPE series can be
structed. This series presents the quantity of interest a
expansion in an inverse large parameter, e.g., 1/Q2 or 1/E.
The very same quantity can be expressed as a dispe
integral over the imaginary part defined in Minkowski spa
In e1e2 annihilation the imaginary part coincides wit
R(e1e2), in the transition amplitudes for heavy flavors th
imaginary part reduces to semileptonic spectral densities,

In order to treat the nonleptonic decays in the same v
one can introduce a spurion in the weak vertex, carryin
momentumq. In other words, let us substitute the weak L
grangian by

Lweak~x!→S~x!Lweak~x!, ~74!

whereS(x) is a spurion field. Now let us consider the fo
ward amplitudeA(s) of the process

S~q!1HQ~p!→ light hadrons→S~q!1HQ~p! ~75!

as a function ofs5(p1q)2. This variables plays the same
role ass5q2 in e1e2 annihilation. The total nonleptonic
width is given by ImA at s5MHQ

2 . We are free to conside

ImA(s) in the complexs plane where it has two cuts: ats
.0 and ats,22MHQ

2 12q2 ~the second cut is due tou

channel!. Choosing a reference points0 far away from both
cuts but closer to the first one we can expressA(s0) as a
dispersion integral over the discontinuity across the cuts.
the other hand at the very same points0 one can apply the
operator product expansion for calculatingA(s0) in terms of
matrix elements of local operators,^HQuOi uHQ&. This gives
sum rules which allow us to determine ImA(s) at larges, in
particular, ats5MHQ

2 . This is fully analogous to what on

does ine1e2 annihilation forR(s). In both cases smooth
ness is assumed~of course, ine1e2 annihilation all positive
values ofs are accessible and one can check this assump
while in the case of nonleptonic decaysMHQ

is fixed!. Need-
less to say that the total semileptonic widths can be trea
along the same lines, the only difference is the presenc
leptons in the intermediate states.

In the semileptonic decays OPE allows to predict, ad
tionally, various distributions in the lepton momenta. This
probably, the reason why it is usually claimed that the sta
of duality is more solid in the semileptonic decays. To sh
that it is not the case let us consider the semileptonic dec
with the light quark in the final state. The OPE-based pred
tions for the spectral distributions are valid almost eve
where; they fail only in the end-point domain@15#. For this
reason the total semileptonic widths cannot be obtained
integrating over the spectrum if we want a prediction wh
includes the linear in 1/mQ corrections; this is why the argu
mentation in Ref.@15# was not sufficient to prove the ab
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sence of 1/mQ corrections. Nevertheless, the statement
absence of such corrections in the total semileptonic wid
can certainly be justified by the procedure described ab
for the nonleptonic widths. Thus, we see that the theoret
status of all these processes—e1e2 annihilation, semilep-
tonic and nonleptonic decays of heavy flavors—is basica
the same.

By performing an appropriate expansion of the dispers
integral we obtain sum rules relating certain moments of
imaginary part of transition amplitude to matrix elements
consecutive terms in the OPE series constructed in the
clidean domain. The predictions obtained in this way will
referred to asglobal duality. Taken at their face value, the
are exact, to the extent we can calculate the coefficient fu
tions and matrix elements of the operators involved in OP
No additional assumptions are made. The predictions
tained in this way are consequences of fundamental Q
Therefore, it does not make any sense to speak about v
tions of the global duality. One can only speak of the pre
sion of calculation of the coefficient functions and determ
nation of the matrix elements.

Unfortunately the termglobal duality is often used in a
loose and ambiguous sense. It is applied indiscriminantly
integrals over the spectral densities with the weight functio
chosenad hoc. Our definition is narrower: it refers only to
those specific integrals which emerge from the dispers
representation.

The notion of local duality on the other hand require
further assumptions. Assume that we want to predict ima
nary parts~spectral densities! point by point, at large ener
gies~or q2). If one assumes that the spectral densities at
given energy are smooth, then from the moment integrals
can certainly predict the densities themselves. This amo
to an analytic continuation of the OPE series~truncated in a
certain way!, term by term from the Euclidean to Minkowsk
domain, with the subsequent calculation of the imagin
parts of each individual term in the series. The predict
obtained in this way is evidently a smooth function of t
parameters. We then compare this prediction with the qu
tity measured in terms of hadronic contributions. The diffe
ence between the OPE-based smooth result and the ex
mental hadronic measurement is referred to as theduality
violation meaning the violation oflocal duality.

By its nature the OPE results are series in pow
of LQCD/E and do not account for terms lik
exp@2(E/LQCD)k# ~in the Euclidean domain!. Although such
terms are due to large distances, a signal of their appear
could show up in the short distance OPE series in the form
a factorial divergence of the series in higher dimensions. T
situation is reminiscent of that in the perturbative expansi
The divergentas series~e.g., due to infrared renormalons!
give rise to terms exp(2C/as) although such terms can ap
pear even in the absence of renormalons~for instance, as the
quark condensate!.

In other words, the OPE construction accounts prope
for short distance singularities while the exponential ter
are due to large distances being nonsingular at short
tances. Thus, the duality violation is something we do
see in the~truncated! OPE series. The duality-violating term
1-12
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HEAVY FLAVOR DECAYS, OPE, AND DUALITY IN . . . PHYSICAL REVIEW D 59 054011
are exponential in the Euclidean domain and oscillating~like
sin@(E/LQCD)k#) in the Minkowski domain.

From this standpoint there is no distinction between, s
the totale1e2 annihilation cross section or the semilepton
rates of heavy flavors, on the one hand, and the nonlept
rates of heavy flavors, on the other. Sometimes it is claim
that the former processes are ‘‘pure’’ while the latter a
‘‘impure;’’ it is even asserted that ‘‘duality follows from
OPE in the first case while it has no theoretical justificat
in the second case.’’ We assert that a duality violat
exponential-oscillating component, associated with the
glected tails of OPE, is present in all processes, and the
physically meaningful question is its magnitude, as a fu
tion of large parameters~e.g., a momentum transfer ormQ)
and specific details of the process under consideration.

B. Oscillating terms in ’t Hooft model

The appearance of duality violations in the form of osc
lating terms is evident in the ’t Hooft model where the spe
tral density is formed by zero-width discrete states. Inde
each time a new decay channel opensdGHQ

/dmQ experi-

ences a jump (GHQ
is continuous! , so that immediately

above thresholddGHQ
/dmQ is larger than the smooth OP

curve, in the middle between two successive threshold
crosses the smooth prediction, and immediately below
next thresholddGHQ

/dmQ is lower than the OPE-based e
pectation.

The amplitude of oscillations can be estimated as follo
Let us present the total widthGHQ

as

GHQ
5 (

n50

n5`

Gn2 (
Mn.MHQ

Gn. ~76!

Widths Gn are exclusive widths of two-body decays,HQ

→f1hn , wherehn is the nth excitedqq̄sp state with the
mass Mn . For Mn.MHQ

widths Gn are not, of course

physical ones forHQ decays but they are well defined. W
have used this presentation in Sec. IV C where it was sho
that the first term can be related to the wave function ofHQ

state on one hand and to the matrix element ofQ̄Q operator
on the other. It is clear that the first term in Eq.~76! is a
smooth function ofmQ and contains no nonanalytic terms w
are going after; they are in the second one.

Thus we need to to knowGn for Mn in the vicinity of
MHQ

. For Mn@MHQ
we found in Sec. IV B thatGn

}Mn
26 , see Eq.~64!. To extrapolate to the vicinity ofMHQ

we account for the threshold factor,Gn}(MHQ

2 2Mn
2)/Mn

8 .

The coefficient in this dependence can be fixed by duality
the second term in Eq.~76! to four-fermion operatorsO4q ,
discussed in Sec. IV C,

2 (
Mn.MHQ

Gn5c4q

^HQuO4quHQ&
2MHQ

. ~77!
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We did not calculate coefficientsc4q but we found that up to
numerical factor

c4q;
G2

2p

b4

mQ
4

. ~78!

Assuming msp , mq&b we estimate^HQuO4quHQ&/2MHQ

;b. Then our model forGn in the rangeMn*MHQ
is

Gn53pG2b7
MHQ

2 2Mn
2

Mn
8

. ~79!

The sum in Eq.~77! was approximated by the integral usin
Mn

25p2b2n.
Now we can evaluate the sum~77! with the better accu-

racy accounting for small nonanalytical terms. The result

2 (
Mn.MHQ

Gn5DG OPE1DG osc,

DG OPE5
G2b

2p F S b

MHQ
D 4

1
p4

2 S b

MHQ
D 8G ,

DG osc5
3

2
p3G2bS b

MHQ
D 8Fx~12x!2

1

6G , ~80!

where

x5fractional part ofS MHQ

2

p2b2D , xP@0,1!. ~81!

The smooth partDG OPEin Eq. ~80! is given by same OPE
term of Eq.~77! we discussed above plus higher in the pow
of 1/mQ corrections . The partDG osc, nonanalytic inMHQ

2 ,

oscillates with periodp2b2, see its plot in Fig. 7.
The amplitude of oscillation is

UDG osc

GQ
U

max

;
3p4

2 S b

MHQ
D 9

. ~82!

Note that the derivatived(DG osc)/dmQ contains discontinui-
ties at thresholds, the amplitude of oscillations is larger
the derivative,

Ud~DG! osc/dmQ

dGQ /dmQ
U

max

;12p2S b

MHQ
D 7

. ~83!

The oscillations under discussion cannot be produced
any truncated OPE series; they are not seen in the OPE. T
the estimate~82! gives the actual scale of the expected du
ity violations in the problem at hand. Of course, this estim
is obtained within a specific model forGn . The gross fea-
tures of the result are independent of the model, howe
They are determined only by the fact that the resonan
have zero widths.
1-13
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FIG. 7. Oscillations in GHQ
. The ratio

DG osc/G2b is presented as a function o
MHQ

2 /p2b2.
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It should be noted that the limitNc→` presents a sce
nario which maximizes duality violations. In this limit th
thresholds open ‘‘abruptly,’’ right at the position of the res
nances, since the resonance widths vanish. In the real w
of finite Nc the highly excited states have finite widths, a
this effect, on its own, smears the hadron-saturated c
sections dynamically. If in the zero width approximation t
oscillating duality violating component is suppressed only
powers of a large parameter (1/mQ in the case at hand!,
switching on finite widths will further suppress the oscilla
ing component exponentially; see Sec. V D and Ref.@12# for
further details.

C. Lessons

From the considerations above we conclude that~i! oscil-
lating terms violating local duality are definitely present
the total decay rate~considered as a function ofmQ), ~ii !
amplitude of oscillations is;O(1/mQ

9 ), i.e., strongly sup-
pressed, and~iii ! if we could average overmQ in a suffi-
ciently large interval the power suppression of the osci
tions would turn into exponential suppression~in actual
QCD, with Nc53, the finite resonance widths do a simil
job!. Then it is perfectly legitimate to consider the OP
based predictions beyond 1/mQ

9 .
With this understanding in mind we now turn to the d

cussion of duality violations in actual four-dimension
QCD.

D. t decays in 113 dimensions

Let us discuss a quantity of practical interest in 113 di-
mensions along similar lines, namely the normalized h
ronic t width Rt :

Rt[
G~t2→nt1hadrons!

G~t2→nte
2n̄e!

. ~84!

It can be expressed in terms of spectral densitiesrV andrA
in the vector and axial-vector channels, respectively,

Rt5E
0

M t
2 ds

M t
2S 12

s

M t
2D 2S 112

s

M t
2D @rV~s!1rA~s!#

5
I 0~M t

2!

M t
2

23
I 2~M t

2!

M t
6

12
I 3~M t

2!

M t
8

, ~85!
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where the momentsI n are defined as

I n~M !5E
0

M2

dssn@rV~s!1rA~s!#. ~86!

While t decays represent a simpler dynamical problem th
the weak decays of heavy flavor hadrons we have to simp
it further still before we can arrive at some definite conc
sions. To estimate the oscillating contribution toRt which
constitutes duality violation that cannot be seen in a tr
cated OPE we consider the limiting cases ofM t and Nc
large. We will show that, adopting the resonance model m
tivated by two-dimensional QCD, forNc→` andM t large,
yet finite, the duality violation inRt scales as 1/M t

6 ; for
M t→` with Nc large, though finite, the oscillating term i
suppressed exponentially.

Our consideration will be admittedly illustrative. On
should not take literally the numbers we will obtain for ma
reasons: first of all thet mass is not much larger than th
spacing between the resonances; second,Nc is not large
enough to warrant the zero width approximation. Still w
believe that the consideration is instructive in a qualitat
aspect.

For largeNc the spectrum of 113 QCD is expected to
consist of an infinite comb of narrow resonances—in co
plete analogy to the ’t Hooft model@20#. To keep the closes
parallel to it we further assume that the high excitations i
given channel~e.g., the vector channel! are equally spaced in
m2. This agrees with the general expectation of a stringl
realization of confinement leading to asymptotically line
Regge trajectories. The masses of the excited states in,
ther channel are then given5 by mn

25mr
212n/a8 @21#, with

a8 being the slope of the Regge trajectory~for a review see
@22#!. Experimentally one finds 2/a8.2 GeV2. For large
values of s the spectral densities for both the vector a
axial-vector channels will approach the form:

5In other, less QCD-friendly scenarios, one obtains insteadmn
2

5mr
21n/a8. The distinctions between these two scenarios are

relevant for our discussion.
1-14
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FIG. 8. Oscillations in Rt . The plot of
dRosc/Rt

0 is presented as a function ofM t
2/s2.
a
ar
an

ta

en
ly

er

-

in

l
ny
-

ht
rV~s!5rA~s!5Nc•(
n51

`

dS s

s2
2nD ; s25

2

a8
, ~87!

where a special notations2 is introduced for 2/a8. Equation
~87! is clearly not expected to hold at moderate and sm
values ofs where the vector and axial-vector channels
drastically different and the resonances are not equidist
However, details of the spectral densities at smalls play no
role in duality violation.

The contribution of any particular resonance of massMk
to Rt , according to Eq.~85!, is given by a simple polyno-
mial in 1/M t

2 @times the step functionu(M t
22Mk

2)#. There-
fore, variations of properties of resonances below a cer
fixed massm change only the regular terms of the 1/M t

2

expansion, but have no impact on the oscillatory compon
From Eq. ~85! it is clear that such variations change on
coefficients of the 1/M t

2 ,1/M t
6 and 1/M t

8 terms. It will be
clear in what follows that the formal OPE forRt exactly
reproduces these three expansion coefficients as well.

The spectral density in Eq.~87! is dual to the parton
model result; i.e., it coincides with it after averaging ov
energy,

^rV,A~s!&5Nc . ~88!

Thus, the asymptotic prediction forRt at M t
2→` is

Rt
05Nc . ~89!

The sum over resonances inRt is easily calculated ana
lytically: for the spectral density of Eq.~87! it is

Rt5Rt
OPE1dRosc,
05401
ll
e
t.

in

t.

Rt
OPE

Nc
512

s2

M t
2

1
1

30S s2

M t
2D 4

,

dRosc

Nc
52x~12x!~122x!S s2

M t
2D 3

1Fx2~12x!22
1

30G
3S s2

M t
2D 4

, ~90!

where

x5fractional part of S M t
2

s2 D , xP@0,1!.

We presented the result as a sum of two functions ofM t
2 , the

first one,Rt
OPE, is a smooth function expandable in 1/M t

2 .
The second one,dRosc, oscillates with the periods2; its
average vanishes; see the plot ofdRosc/Rt

0 in Fig. 8.
Let us show now thatRt

OPE coincides with the OPE pre-
diction in the model. Power corrections can be presented
the following way:

Rt
OPE5Nc1

Ĩ 0

M t
2

23
Ĩ 2

M t
6

12
Ĩ 3

M t
8

, ~91!

where the ‘‘condensates’’Ĩ n are

Ĩ n5E
0

`

dssn@rV~s!1rA~s!22Nc#. ~92!

This integral representations for the ‘‘condensates’’Ĩ n fol-
lows from Eqs.~85!, ~86! if one assumes that the spectra
densities approach their asymptotic limits faster than a
power of 1/s. In the model at hand, with the comblike spec
tral density, the integral representation~92! requires regular-
ization. As a regularization one can introduce the weig
factor exp(2es), taking the limite→0 at the end. With this
regularization,Rt

OPE from Eq. ~90! is reproduced.
1-15
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To justify the procedure it is instructive to make one st
back and follow more literally the original OPE procedur
Namely, our primary object of interest is the Euclidean p
larization operator

P~Q2!5
1

pE ds
rV~s!1rA~s!

s1Q2
. ~93!

The original meaning of Ĩ n is the coefficients in the
asymptotic expansion ofP(Q2) at Q2→`:

pP~Q2!522Nc ln Q21const1 (
n50

`

~21!n
Ĩ n

~Q2!n11
.

~94!

The comb of the model of Eq.~87! was considered in Ref
@3#,

pP~Q2!52Nc(
k51

`
1

~Q2/s2!1n
1const

522NcFcS Q2

s2 D 1
s2

Q2G1const, ~95!

wherec is Euler’sc function. The asymptotic expansion o
P(Q2) in the model takes the form

pP~Q2!522NcF ln
Q2

s2
1

1

2

s2

Q2
2 (

n51

`
B2n

2n S s2

Q2D 2nG1const,

~96!

whereBn stand for the Bernoulli numbers. Taking the coe
ficients of 1/Q2,1/Q6 and 1/Q8 terms from this equation we
find the consistency withRt

OPE of Eq. ~90!. ~The term 1/Q6

is absent and 1/Q8 is defined byB4521/30.)
Note that the spectral density~87! is not literally ‘‘QCD-

compatible:’’ the correspondingP(Q2) has the 1/Q2 non-
perturbative correction forbidden in QCD@4#. This can be
easily cured by adding the resonance withn50 with a half
weight, which just would amount to addingNcs

2/Q2 to
pP(Q2). Since this obviously does not changedRosc at any
value ofM t , this is inessential for us.

Let us discuss now the duality-violatingdRosc(M t
2) ~see

Fig. 8!. Its dominant component scales as 1/M t
6 . It is intrigu-

ing to note that the very same scaling law was obtained
Ref. @23# from totally different considerations invoking in
stantons. This oscillating component vanishes atM t corre-
sponding to the new thresholds, and at one point in
middle between the successive resonances; only the se
derivative ofRt has a jump at the thresholds,

1

Rt
S d

dMt
2D 2

Rt U
x51

x50

56
s2

M t
6

. ~97!

This is the consequence of the threshold factor (12s/M t
2)2

in Eq. ~85!. One power in it is just the two-body phase spa
factor upW u/M t . In 111 dimensions one would have instea
05401
.
-

in

e
nd

e

1/upW u, the threshold singularity, and the duality-violatin
component would be enhanced correspondingly.

The average ofdRosc vanishes while the amplitude o
oscillations amounts to

UdRosc

Rt
U

max

5
1

3A12
S s2

M t
2D 3

. ~98!

It is interesting that, in spite of the fact thatM t
6dRosc is given

by a polynomial between the thresholds, the whole funct
is well approximated by

2
1

3A12
S s2

M t
2D 3

sinS 2p
M t

2

s2 D . ~99!

Note that the numerical coefficient in Eq.~99! is rather
small, compared, e.g., to Eq.~97!. This suppression is relate
to the fact that the characteristic scale iss2/2p rather then
s2.

Taking our estimate of the oscillation amplitude at its fa
value and using the actual value of thet mass in Eq.~98! we
find dRosc/Rt;3%. It is clear that this is a very crude est
mate given the fact that in the actualt decays2/M t

2;2/3
and we deal with one oscillation at most.

In the real world withNc53 we expect a further suppres
sion of deviations from duality due to the nonvanishi
widths of the resonances naturally smearing out the am
tude of the oscillation. A rough estimate of this effect can
given in close analogy to Ref.@12#. Let us introduce a di-
mensionless constantB representing the width-to-mass rati

Gn

mn
5

B

Nc
„11O~1/Nc!…; ~100!

i.e., B stays finite for largeNc . One actually guesses to e
timateB;0.5. Then we infer~see@12# for details!

DRt

Rt
0

5
1

3A12
S s2

M t
2D 3

expS 2
2pBMt

2

Ncs
2 D . ~101!

The power-suppressed oscillations eventually turn into ex
nentially suppressed, although at a larger energy.

VI. NONVANISHING mc AND COMMENTS ON THE
LITERATURE

The work @10# stimulated our interest in the ’t Hoof
model as a laboratory for exploring heavy quark expansi
in inclusive decays, and the implementation of duality. T
authors of Ref.@10# compared the decay width of a heav
flavor hadron in the parton approximation with the res
obtained by summing over all exclusive transition rates
HQ→hihj . A systematic excess of the total widthGHQ

over

its parton valueGQ was observed and was fitted to be

GHQ
2GQ

GQ
;

0.15

mQ
. ~102!
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The authors interpreted this access as a violation of dua
According to our understanding~see Sec. V A! it should
rather be called breaking of OPE.

Our analytical treatment does not support such a con
sion. In particular, we have proved the absence of linea
1/mQ corrections not only by the OPE method but by t
direct analysis of the ’t Hooft equation~see Sec. IV!. Al-
though we tried to closely follow the analysis of Ref.@10#,
still there is a difference of kinematical nature. We cons
ered thec fields ~leptons or quarks! to be massless, while
mc5mqÞ0 in Ref. @10#. The choice ofmc50 allows us to
limit ourselves to the pointq250 where great simplifications
occur, in particular, only the massless pion state is produ
in thecc̄ channel. Analytic solution of the problem turns o
to be possible.

We have checked that the analytical expression for
triple overlap integral of Ref.@10# reduces atq250 to a
simple overlap integral~55! of two wave functions. The
simple structure of Eq.~55! combined with the completenes
of the wave functions is sufficient to prove a perfect ma
between OPE and hadronic saturation, at the level of 1/mQ

4 .
To make full contact between our results and those

Ref. @10# we must now consider the impact ofmcÞ0. Need-
less to say that atmcÞ0 the parton result forGQ changes,

GQ~mcÞ0!5GQ~mc50!F12
2mc

2

mQ
2

1OS mc
4

mQ
4 D G .

~103!

This effect was certainly included in the analysis of R
@10#. It is also accounted for in OPE as a change of
coefficient of the operatorQ̄Q.

The leading effect due tomcÞ0 is linear inmc , how-
ever. Thus, one can wonder whether it produces 1/mQ cor-
rections. In the next subsection we will show that the line
in mc corrections to the total width are suppressed as 1/mQ

3 .
Moreover, this is a leading effect which produces a disti
tion between semileptonic and nonleptonic total widths;
other effects which differentiate them are suppressed
1/mQ

4 . It is clear then that the 1/mQ violation of duality
claimed in Ref.@10# if it would be present in the nonleptoni
width must have been present in the semileptonic width
well.

Corrections 1/mQ
3 come also from quadratic inmc terms

in OPE. As it was mentioned above these corrections do
differentiate semileptonic and nonleptonic widths. We e
mate them in Sec. VI B. We also estimate in Sec. VI C
fects of novanishingmc for violations of local duality. Over-
all, we conclude that the OPE approach shows that
nonvanishingmc results in 1/mQ

3 corrections which are nu
merically small and cannot explain the alleged deviat
~102!.

On the hadronic saturation side we have checked that
triple overlap integral of Ref.@10# is expandable inmc , and
the leading correction is quadratic inmc,q . Assuming that
mc&b and performing ananalyticsummation of the widths
using the expressions of Ref.@10# for the amplitudes in con-
junction with the sum rules for the hadronic polarization te
05401
y.
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sor ImP(q2) similar to those in Eqs.~56!, ~58!, ~59!, we
obtained exactly the samemc

2/mQ
2 correction as in Eq.~103!.

This holds for the inclusive width smeared over a small
terval of masses as discussed in Sec. VI C. Moreover,
checked the exact matching with the OPE at the level 1/mQ

3 .

A. Linear in mc corrections

All effects due tomcÞ0 reside inPmn ; see Eq.~7!. The
linear in mc part in OPE forPmn is

DPmn~q!5
4mc

q2
^0uc̄cu0&S qmqn

q2
2gmnD . ~104!

It is easy to see that this effect is nothing but a shift of t
pion (f5@cc̄#0) mass from zero,

mf
2 52

4p

Nc
mc^0uc̄cu0&. ~105!

Indeed, comparing Eq.~9! and Eq. ~104! we see that the
latter is the first order term inmf

2 expansion of the pion pole
1/(q22mf

2 ) in Pmn52(1/p)(qmqn2q2gmn)/(q22mf
2 ).

Thus, in order to take into account linear inmc effects in the
transition operator all one needs to do is to calculate
decayQ→f1q with the nonvanishing pion mass. The r
sult is

DGHQ

~1!

GQ
5mf

2 2mQmq

~mQ
2 2mq

2!2
52

8p

Nc
mc^0uc̄cu0&

mQmq

~mQ
2 2mq

2!2
.

~106!

At large mQ it falls off as 1/mQ
3 . An extra suppression

mq /mQ is specific for two dimensions.
As for the numerical value of the correction~106! we will

substitutê c̄c&52Ncb/A12 in the chiral limit@11,19#. For
the value ofmc5mq50.56b adopted in Ref.@10# we get

DGHQ

~1!

GQ
52.27S b

mQ
D 3

. ~107!

B. Quadratic in mc corrections

The analysis of the previous subsection refers to the
eratorQ̄Qc̄c in the OPE for the total width. Another opera
tor generated due tomcÞ0 is the four-fermion operator o
the typeQ̄Qq̄q. It appears from the graph of Fig. 3 wit
lepton lines substituted byc lines. Calculation of this graph
is a simple exercise. The result for the corresponding cor
tion to the width can be presented in the following form:

DGHQ

~2!5Nc

G2mc
2

mQ
2

^HQuQ̄g5qq̄g5QuHQ&
2MHQ

. ~108!

Up to the factorNc the same contribution appears in th
semileptonic width. In difference with the operatorQ̄Qc̄c
1-17



x
n

lu

g

eo
on
ta
e

l

ne
es
rre

tly
t

ol

r-
he

th

f

g

and
pa-

o-
ed

ity
y
ak
i-
se
l in

I. BIGI, M. SHIFMAN, N. URALTSEV, AND A. VAINSHTEIN PHYSICAL REVIEW D 59 054011
the largeNc limit does not allow us to factorize the matri
element of Eq.~108!. We will use the factorization to get a
estimate

^HQuQ̄g5qq̄g5QuHQ&;2
1

2Nc
^0uq̄qu0&^HQuQ̄QuHQ&.

~109!

As in the previous subsection we use the chiral limit va

^q̄q&52Ncb/A12 of the VEV @11,19# and mc5mq
50.56b for the numerical estimate

DGHQ

~2!

GQ
;0.57S b

mQ
D 3

. ~110!

C. Local duality violations at mcÞ0

Here we discuss the impact of new thresholds openin
the spectral density of the vectorcgmc currents, asmQ in-
creases. Atmc50 the duality in thê c̄gmc,c̄gnc& correla-
tion function is perfect, since, due to bosonization, the th
retical expression for this correlator reduces to exactly
massless state propagation with a known coupling cons
If mcÞ0 then higher@cc̄# mesonic states appear in th
imaginary part of̂ c̄gmc,c̄gnc& with residues proportiona
to mc

2 .
To calculate the dependence of the total widthGHQ

on mQ

near thresholds, i.e., near

MHQ
5Mn

[cc̄]1Mk
[qq̄sp] , ~111!

we need to find the exclusive widthGnk(HQ→@cc̄#n

1@qq̄sp#k). We did it in Sec. V B formc50 when only the
n50 masslessf state is produced in the@cc̄# channel.

Now, the highly excited states can appear in this chan
They are pseudoscalar ones corresponding to even valu
n ~scalar states are not produced by the conserved cu

c̄gmc). Moreover, with nonvanishingMn
[cc̄] the amplitude

of transition to scalar@qq̄sp# states~odd k) is not propor-
tional to upW u. Thus, near the threshold~111! the exclusive
width of decay into the pair of the pseudoscalar@cc̄# and
the scalar@qq̄sp# is singular because the factor 1/upW u in the
phase space that explode at thresholds. Therefore, exac
threshold,Gnk is infinite. It goes without saying that it canno
coincide with the smooth OPE prediction near the thresh
These spikes are clearly visible on the plots of Ref.@10#.

To maximize the exclusive widthGnk for the decayHq

→@cc̄#n1@qq̄sp#k near the threshold~111! we choose the

range ofMn
[cc̄] and Mk

[qq̄sp] close to the corresponding pa
tonic configuration. In terms of partons we deal with t
decayQ→c1c̄1q. If we fix the square of the effective
mass ofcc̄ pair Mcc̄

2 then the momentum of the lightq is

(mQ
2 2Mcc̄

2 )/(2mQ). For hadronsMn
[cc̄] close toMcc̄

2 and
05401
e

in

-
e
nt.

l.
of
nt

at

d.

the characteristic hadronic mass squared in theqq̄sp system
is M [qq̄sp]

2
;b(mQ

2 2Mcc̄
2 )/mQ . Then, it is simple to check

that the threshold range is

MHQ
2Mn

[cc̄];b, Mk
[qq̄sp];b. ~112!

Thus, it is just a few first scalar excitations in theqq̄sp sys-

tem that are relevant. IfMn
[cc̄] and Mk

[qq̄sp] fall outside the
kinematics indicated above then the exclusive widthGnk is
additionally suppressed.

Let us recall that the bulk contribution into the total wid
is provided by the ground state in thecc̄ channel and

Mk
[qq̄sp]&AmQb. What is under discussion is a small tail o

highly excitedcc̄ states which determines the oscillatin
component.

The relevant matrix element is

^@cc̄#n@qq̄sp#ku~ q̄gmQ!~ c̄gmc!uHQ&

5^@cc̄#nuc̄gmcu0&^@qq̄sp#kuq̄gmQuHQ&. ~113!

It is easy to see that the residue^@cc̄#nuc̄gmcu0& scales as
ANcmcb/Mn

[cc̄] , while the transition amplitude

^@qq̄sp#kuq̄gmQuHQ& scales asAmQb. Assembling all fac-
tors together we find that near the threshold

Gnk~HQ→@cc̄#n1@qq̄sp#k!;G2Nc

mc
2b3

mQ
3 upW u

;GQ

mc
2b3

mQ
4 upW u

.

~114!

This equation describes both the singularity at thresholds
deviation from local duality between the thresholds. The s
tial momentumupW u is

upW u'A2Mk
[qq̄sp]~MHQ

2Mn
[cc̄]2Mk

[qq̄sp] !. ~115!

In the middle between the thresholds inMn
cc̄ the value of

upW u;(b3/mQ)1/2, and

Gnk~HQ→@cc̄#n1@qq̄sp#k!;GQ

mc
2b3/2

mQ
7/2

. ~116!

This estimate gives the amplitude of the oscillating comp
nent. It is applicable also to the threshold spikes provid
these spikes are averaged over the intervals ofMHQ

less but

comparable with the period of oscillations inMHQ
depen-

dence (;p2b2/MHQ
).

Therefore, we conclude that the violation of local dual
dies off as 1/mQ

7/2. This effect is by far the largest dualit
violating contribution. The occurrence of a relatively we
suppression is due to~a! the zero resonance width approx
mation and~b! the singular nature of the two-body pha
space in two dimensions. Both features have no paralle
actual QCD.
1-18
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In summary, we identified two leading effects that a
responsible for deviations from the parton formula—one
associated with the four-fermion operator in OPE, appea
due tomcÞ0, the second is the additional duality violatin
component that was absent atmc50. The first, inclusive
one, dies off as 1/mQ

3 ; the second~exclusive! at least as
1/mQ

7/2. We do not see any room for 1/mQ deviations, even
oscillating.

VII. DISCUSSION AND CONCLUSIONS

The situation we encounter in the ’t Hooft model is ve
instructive. The model is readily treatable, which allows o
to advance quite far in constructing the OPE series. I
super-renormalizable, thus providing an especially clean
vironment for testing various subtle aspects of OPE. T
perturbative series for the coefficient functions in the la
Nc limit converges. We find, with satisfaction, that all ge
eral statements regarding OPE are fully confirmed.

The model also clearly exhibits the breaking of local d
ality by oscillating terms. These oscillations are related to
exponential terms in the Euclidian domain and not seen
OPE. Because of zero meson widths in the largeNc limit
they are suppressed only by powers of 1/mQ which we have
determined.

We note that in the t’ Hooft model the local duality of th
OPE predictions in the inclusive heavy flavor decays~both
semileptonic and nonleptonic! holds much better than in
R(e1e2), the generally recognized classical laboratory
applications of OPE. It is in contrast to the opinion oft
expressed in the literature that OPE is not applicable in
inclusive heavy quark widths. Moreover, the numerical co
putations of Ref.@10# suggest that OPE width approaches t
~smeared! hadronic ones at a few percent level very soo
right after a few first channels are open.

In actual QCD, already the first excited states are br
enough and inconspicuous, leave alone high excitatio
When a finite resonance width is introduced, it immediat
er

,
o

s.
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l.
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leads to dynamical smearing of the spectral densities, en
ing an exponential suppression of the oscillating duality v
lating terms~see Sec. V D and Ref.@12#!. Thus, in terms of
actual QCD we are still very far from the solution of th
extremely important problem; the exercise performed gi
us some kind of an upper bound.

As previously, in actual QCD, we have to rely on mode
while estimating the exponential~oscillating! terms not seen
in OPE. The choice is not large—only two models we
suggested previously. One of them is an instanton-ba
model @23#, another is a resonance-based model@12#, close
in spirit to estimates we have presented above. T
instanton-based model is simple and predictive, but it app
ently lacks the sophistication inherent to the phenomeno
actuality. In particular, it predicts an oscillating compone
;sinmQ , rather than;sinmQ

2 as would be natural from the
resonance point of view. Thus, the ’t Hooft model teaches
that the instanton-based estimates cannot be fully true.
the other hand, the resonance-based model, which works
isfactorily in the limit of infinitely narrow resonances, doe
not give a full answer as to how strongly the oscillatin
component is suppressed when the finite resonance wi
are switched on. It is clear that further steps in develop
the existing or engineering new models are needed.

This work presents the first estimate of the duality vio
tions, from the resonance-related considerations based
1/Nc expansion, in the practically important problem of th
hadronict decays. Although not fully conclusive, the resu
are very encouraging, and call for expansion of these idea
other processes. This is an obvious task for the future.
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