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Taming the penguin contributions in the Bd
0
„t…˜p1p2 CP asymmetry:

Observables and minimal theoretical input

Jérôme Charles*
Laboratoire de Physique The´orique et Hautes E´ nergies, Universite´ de Paris-Sud, Baˆtiment 210, F-91405 Orsay Cedex, France
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Penguin contributions, being non-negligible in general, can hide the information on the Cabibbo-Kobayashi-
Maskawa anglea coming from the measurement of the time-dependentBd

0(t)→p1p2 CP asymmetry. Nev-
ertheless, we show that this information can be summarized in a set of simple equations, expressinga as a
multivalued function of a single theoretically unknown parameter, which conveniently can be chosen as a
well-defined ratio of penguin to tree amplitudes. Using these exact analytic expressions, free of any assumption
other than the standard model, and some reasonable hypotheses to constrain the modulus of the penguin
amplitude, we derive several new upper bounds on the penguin-induced shiftu2a22aeffu, generalizing the
recent result of Grossman and Quinn. These bounds depend on the average branching ratios of some decays
(p0,p0,K0K0,K6p7) particularly sensitive to the penguin contributions. On the other hand, with further and
less conservative approximations, we show that the knowledge of theB6→Kp6 branching ratio alone gives
sufficient information to extract the free parameter without the need of other measurements, and without
knowing uVtdu or uVubu. More generally, knowing the modulus of the penguin amplitude with an accuracy of
;30% might result in an extraction ofa competitive with the experimentally more difficult isospin analysis.
We also show that our framework allows us to recover most of the previous approaches in a transparent and
simple way, and in some cases to improve them. In addition we discuss in detail the problem of the various
kinds of discrete ambiguities.@S0556-2821~99!01903-7#

PACS number~s!: 13.25.Hw, 11.30.Er
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I. INTRODUCTION

In the near future, several collaborations—BABAR,
BELLE, the Collider Detector at Fermilab~CDF!, CLEO,
DESY HERA-B—will hopefully make the first measure
ments ofCP violation in theBd system@1#. The most impor-
tant consequences concerning the standard model~SM! will
be the determination of the unitarity triangle~UT!. However,
if the measurement of the UT angle sin 2b seems to be
straightforward from both experimental and theoreti
points of view thanks to the very cleanB→J/cKS decay, the
extraction ofa from the standard modeB→p1p2 is still an
open problem.1 Since it has been pointed out that QCD a
mixed QCD–electroweak radiative corrections~called ‘‘pen-
guin’’ corrections! induce potentially large theoretical unce
tainties on this angle@2#, many papers have been devoted
this subject@3#.

In a pioneering paper@4#, Gronau and London hav
shown that the knowledge of theB(B̄)→p1p2,p0p0,
p6p0 branching ratios leads to the determination of the g
onic penguin effects, assuming isospin symmetry and
glecting electroweak penguin contributions. Then, with t
information and the usual mixing-inducedCP asymmetry it
is possible to geta up to discrete ambiguities. The ma
drawback of this interesting method is the expected sm
ness of theB→p0p0 branching ratio (102721026) due to
color suppression. This fact, combined with the detect
efficiency of the final state and the needed tagging of

*Email address: charles@qcd.th.u-psud.fr
1Throughout this paper,B stands for aBd meson.
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flavor of the B meson, constitutes a difficult challenge
e1e2 B factories and an almost impossible task for futu
hadronic machines–the CERN Large Hadron Collid
~LHC!, BTeV.

Then it was realized by Silva and Wolfenstein@5# that by
extending the flavor symmetry to SU~3! one can gain further
information on penguin effects, the key point being theKp
modes where the ratio penguin to tree matrix elements
certainly greater than 1. Considering the crudeness of
assumptions made in the original paper in addition to SU~3!,
the method has been extended until a high level of soph
cation by several authors@6#. As a consequence, it is no
clear to what extent such complicated geometrical const
tions, plagued by multiple discrete ambiguities, are sensi
to a and to the unavoidable theoretical assumptions. The
fore these strategies will give conservative results only wh
a better understanding of nonleptonicB decays is available
In addition, two simpler SU~3! approaches concerninga
have been proposed by Buras and Fleischer@7# and Fleischer
and Mannel@8# respectively, which will be discussed i
more detail below.

One can also use a model—usually factorization—to
timate the penguin amplitude, and then compute the dif
ence betweena at the input andaeff at the output, as Aleksan
et al. @9# and Ciuchiniet al. @10# did, or directly get a model-
dependenta as was proposed by Marrocchesi and Pav2

@11#. Thus, after having hunted@12#, trapped@13#, and made

2Actually we will see that the Marrocchesi-Paver method@11# is
essentially the same as the Fleischer-Mannel@8# one, although the
theoretical input is different.
©1999 The American Physical Society07-1
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the zoology@8# of the penguin diagram, it is time to begi
taming it. To accomplish this task, we first remark that m
of the authors cited above have computed the observabl
branching ratio andCP asymmetries—as functions of th
theoretical parameters—QCD matrix elements and CK
factors, including the anglea. We will follow the opposite
way, and show that it is indeed a fruitful approach. Althou
fully equivalent to the ‘‘traditional’’ one, it leads to a ver
important and simple new result: it is possible to expr
independently of any model,3 and in an exact and simple wa
all the theoretical parameters, including the anglea, as func-
tions of the experimentally accessible observables and
only one real theoretical unknown. The latter can be cho
as, e.g.,uP/Tu, the ratio of ‘‘penguin’’ to ‘‘tree’’ amplitudes
~which are unambiguously defined below!. It is also possible
to use as the unknown a pure QCD quantity, free of a
dependence with respect touVtdu or uVub* u contrary to the
parameteruP/Tu; in the latter case, we give polynomia
equations directly expressed in the~r,h! plane. We have ex-
ploited these exact analytic expressions to derive several
and simple results and to recover some of the previous
proaches. The main points of this paper are the following

Using the exact parametrization in terms ofuP/Tu, it is
possible to represent the information given by the tim
dependentCP asymmetry in the (uP/Tu,2a) plane. Of course
without any further assumption on the magnitude ofuP/Tu
there is no way to constraina. But this (uP/Tu,2a) plot
provides a nice transparent presentation of experime
data, where our ignorance of the strong interactions is
egated to a single parameter.

As soon as one is interested in quantifying the size of
penguin diagram–and indeed we are,sin 2a is not a good
parameter.One should simply use 2a instead. Actually us-
ing sin 2a rather than 2a is not wrong, but one loses half o
the information as we will see in detail below. This is a
ready true at the level of the parametrization in terms
uP/Tu, and this is also true for all the methods allowing us
remove the penguin effects, which give generically 2a rather
than sin 2a, up to discrete ambiguities. To make clear th
point which up to now has remained confused, we will tre
explicitly the example of the Gronau-London isospin ana
sis. On the contrary, the observables depend only on 2a or
equivalently on tana, and thus thea→p1a ambiguity is
always present@14#.

Bounding the magnitude of the penguin amplitude allo
directly to bound the shift of the CKM anglea from the
directly observableaeff . This can be done using informatio
from decays particularly sensitive to the penguin contrib
tions. For example, assuming SU~2! isospin symmetry and
neglecting electroweak penguin diagrams we are able to
rive two bounds depending on BR(B→p0p0), one of which
being the Grossman-Quinn bound@15# while the other is

3In this paper, ‘‘model independent’’ means not relying on a p
ticular hadronic model which describes nonperturbative physics
the contrary, we will assume that the SM holds for the parame
zation ofCP asymmetries and amplitudes.
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new. Assuming the larger SU~3! symmetry, we obtain two
new bounds depending on BR(B→K0K0) and l2BR(B
→K6p7), respectively, which, not surprisingly, may b
more constraining than the SU~2! ones, and which need
some, but not all, the usual assumptions concerning the
glect of annihilation and/or electroweak penguin diagram
As far as the branching ratios of the penguin-sensitive mo
are concerned, these bounds do not need flavor tagging
are still valid when only an upper limit on the branchin
ratios is available. In addition, they can be slightly modifi
to be used when the actual value of the directCP asymmetry
in the B→p1p2 channel is not available, as it is show
below. Depending on the actual values of the branching
tios, the theoretical error ona constrained by these bound
could be as large as;30° or as small as;10°. In particular,
the most recent CLEO analyses of thep1p2 and K6p7

modes@16# allow us to give, for the first time, the following
numerical bound:

u2a22aeffu<D, with 25°,D,59° ~1!

assuming rather weak hypotheses in the SU~3! limit ~see Sec.
V B! and BR(B→p1p2).0.431025 in addition to the
CLEO data.

Finally, after having stressed that only one hadronic
rameter has to be estimated by the theory in order to gea,
we give one new explicit example: assuming SU~3! and ne-
glecting annihilation and electroweak penguin diagrams,
show that BR(B6→Kp6) gives sufficient information to
solve a degree-four polynomial equation in the~r,h! plane,
the roots of which can be represented as curves in this pl
Contrary to the Fleischer-Mannel proposal@8#, ours does not
need the knowledge ofuVtdu or uVubu, and requires only the
measurement of BR(B6→Kp6) in addition to the usual
time-dependentB→p1p2 time-dependentCP asymmetry.
Alternatively, the knowledge of the modulus of the pengu
amplitude~or the ratio of penguin to tree matrix element!
with an uncertainty of;30% should provide a rather goo
estimation ofa. This kind of strategy, although affected b
potentially large theoretical uncertainties, may be necess
when the more conservative bounds are too weak to be re
useful in testing the SM.

The paper is organized as follows: in Sec. II, we summ
rize the main results of this work—this section should be
immediate use for the reader not interested by the deve
ment. In Sec. III we fix our notations in writing the gener
parametrization of the amplitudes. With the help of the
cent CLEO measurements of nonleptonic charmlessB de-
cays, we give some rough orders of magnitude of the
pected penguin pollution. Then we derive the equatio
giving the theoretical parameters, includinga, as functions
of the observables and the theoretical unknown, treated
as a free parameter, and latter eventually constrained u
reasonable hypotheses. For example, in Sec. IV we s
how to use in our framework the information coming fro
the B→p0p0 and B6→p6p0 decays, to obtain the
Grossman-Quinn bound and a new similar isospin bound
Sec. V we exhibit two new bounds, based on the SU~3! as-
sumption, which may be more stringent than the two isos

-
n
i-
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TAMING THE PENGUIN CONTRIBUTIONS IN THE . . . PHYSICAL REVIEW D 59 054007
bounds. Then in Sec. VI we discuss an explicit exam
where the theoretical unknown is actually estimated rat
than bounded. A reasonable knowledge ofa can be expected
even if one allows a sizeable violation of the theoretical
sumptions. In Sec. VII we discuss how to incorporate a
improve some of the previous approaches in our langua
and clarify some points which have been mistreated in
literature, in particular the problem of the discrete ambig
ities. Our conclusion is that although the penguin-induc
error ona is expected to be quite large in theB→p1p2

channel, it should be under the control of the theory. The
fore the generalization of the methods presented here to o
channels is very desirable to get more constraints ona.

This paper has two technical appendixes. The first one~A!
explains how we got the values of the observables from
naive calculation, in order to numerically illustrate our pu
pose before experimental data is available and the sec
one~B!, following Grossman and Quinn@15#, shows explic-
itly the existence of bounds which are independent of
measurement of the directCP asymmetry.

II. SUMMARY

A. Exact model-independent results

Defining the standard modelB→p1p2 amplitudes

A~B0→p1p2!5VudVub* M ~u!1VtdVtb* M ~ t !

5e1 igT1e2 ibP, ~2!

A~B0→p1p2!5Vud* VubM
~u!1Vtd* VtbM ~ t !

5e2 igT1e1 ibP, ~3!

the time-dependentB0(t)→p1p2 CP asymmetry

aCP~ t !5adir cosDmt2A12adir
2 sin 2aeff sinDmt, ~4!

and the averageB, B̄→ f , f̄ branching ratio

Bf , f̄5
1

2
@BR~B→ f !1BR~B̄→ f̄ !#, ~5!

we prove in the following that the standard model predi
very simple relations betweena and uP/Tu, uPu, uTu and d
5Arg(PT* ), respectively, these relations depending only
the observablesBp1p2, adir , and 2aeff and being completely
free of any assumption on hadronic physics:
05400
e
r

-
d
e,
e
-
d

-
er

a

nd

e

s

n

cos~2a22aeff!

5
1

A12adir
2 F12~12A12adir

2 cos 2aeff!UPTU
2G , ~6!

uPu25
Bp1p2

12cos 2a
@12A12adir

2 cos~2a22aeff!#, ~7!

uTu25
Bp1p2

12cos 2a
@12A12adir

2 cos 2aeff#, ~8!

tand5
adir tana

12A12adir
2 @cos 2aeff1tana sin 2aeff#

. ~9!

Rather thanuP/Tu, uPu, anduTu which incorporate, respec
tively, a uVtd /Vub* u, uVtdu, anduVub* u factor, one may prefer to
write Eqs. ~6!–~8! in terms of uM (t)/M (u)u, uM (t)u, and
uM (u)u, respectively@see the definition~2!#. As uVtdu and
uVub* u depend also on the UT, it is not possible to expre
such relations as functions ofa alone; instead we use th
Wolfenstein parametrization and find three polynomial eq
tions in the~r,h! plane. With the definitions of the following
combinations of observables:

Dc[A12adir
2 cos 2aeff , Ds[A12adir

2 sin 2aeff ,
~10!

and the theoretical parametersuM (t)u and uM (u)u normalized
to ABp1p2/ulVcbu

RP

RT
5UM ~ t !

M ~u!U2

, RP[ulVcbu2
uM ~ t !u2

Bp1p2
,

RT[ulVcbu2
uM ~u!u2

Bp1p2
, ~11!

one has two degree-four polynoms depending, respectiv
on RP /RT andRP
7-3
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~12Dc!S 12
RP

RT
D r412~12Dc!S 12

RP

RT
D r2h21~12Dc!S 12

RP

RT
Dh4

22~12Dc!S 122
RP

RT
D r322Dsr

2h22~12Dc!S 122
RP

RT
D rh222Dsh

3

1~12Dc!S 126
RP

RT
D r212Dsrh1F11Dc22~12Dc!

RP

RT
Gh2

1~12Dc!
RP

RT
~4r21!50, ~12!

~12Dc!r
412~12Dc2RP!r2h21~12Dc22RP!h4

22~12Dc!r
322Dsr

2h22~12Dc22RP!rh222Dsh
3

1~12Dc!r
212Dsrh1~11Dc22RP!h250, ~13!
m
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and one linear equation depending onRT ~the 6 sign being
related to a discrete ambiguity!

A12Dc~r21!6A2RT211Dch50. ~14!

Equations~12!–~14! are another way of writing Eqs.~6!–~8!
by replacing, respectively,uP/Tu, uPu, and uTu by the ratios
RP /RT , RP , andRT : the advantage is that the latter para
eters do not depend on the badly known Cabibbo-Kobaya
Maskawa~CKM! matrix elementsuVtdu and uVub* u.

B. Phenomenological applications

It has become standard in theCP literature to use severa
phenomenological assumptions, some of which can be v
good while some others can be strongly violated. As a res
it is often not easy for the reader to know exactly whi
approximations are used by the authors, and thus to mak
own opinion about the accuracy of these theoretical pre
dices. In this paper, we will try to state clearly what kind
05400
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hypotheses we use in addition to the SM; some of the res
that we derive rely on a few reasonable assumptions cho
in the list below.

Assumption 1,uP/Tu,1. This very conservative boun
should be distinguished from the small penguin expansio

Assumption 2, SU~2! isospin symmetry of the strong in
teractions.

Assumption 3, SU~3! flavor symmetry of the strong inter
actions.

Assumption 4, neglect of the OZI-suppressed annihilat
penguin diagrams~see Fig. 4!.

Assumption 5, neglect of the electroweak penguin con
butions.

Assumption 6, neglect of theVusVub* contributions to the
B1→K0p1 amplitude.

Upper Bounds.We have found several quantities boun
ing the shift of the true 2a from the experimentally acces
sible 2aeff , among which Eq.~16! is the Grossman-Quinn
bound@15#, while the others are new.
if sin 2aeff.0, 0,2a,2p22 arcsin~sin 2aeff!,

if sin 2aeff,0, 22 arcsin~sin 2aeff!,2a,2p @assuming 1#, ~15!

u2a22aeffu<arccosF 1

A12adir
2 S 122

Bp0p0

Bp6p0
D G @assuming 2 and 5#, ~16!

u2a22aeffu<arccosF 1

A12adir
2 S 124

Bp0p0

Bp1p2
D G @assuming 2 and 5#, ~17!

u2a22aeffu<arccosF 1

A12adir
2 S 122

BK0K0

Bp1p2
D G @assuming 3 and 5#, ~18!
7-4
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u2a22aeffu<arccosF 1

A12adir
2 S 122l2

BK6p7

Bp1p2
D G @assuming 3 and 4#. ~19!
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Following Grossman and Quinn@15# we show that, under
the same hypotheses, the above upper bounds still hold if
replaces in Eqs.~15!–~19! adir by zero and 2aeff by 2āeff
where the latter effective angle is defined by

sgn~cos 2āeff![sgn~cos 2a!,

sin 2āeff[A12adir
2 sin 2aeff . ~20!

For example, one has the bound

u2a22āeffu<arccosS 122l2
BK6p7

Bp1p2
D @assuming 3 and 4#,

~21!

and so on. Although these bounds onu2a22āeffu are weaker
than the ones onu2a22aeffu, they have the advantage th
they do not depend on the measurement ofadir : indeed, the
angle 2āeff is accessible~up to a twofold ambiguity! from
the sinDmt term only @see Eqs.~4! and ~20!#. Therefore the
experimental uncertainty should be smaller for 2āeff than for
2aeff . In addition to these upper bounds, we derive alower
bound onu2a22aeffu in Sec. V D, to which we refer the
reader for more details.

Determination ofa. We propose a new method for th
extraction ofa—up to discrete ambiguities, which improve
the Fleischer-Mannel proposal@8#.

The idea~often used in the literature! is to estimate the
modulus of the penguin contribution with the help of t
B6→Kp6 decay. We avoid the problem of knowinguVtdu
by using directly the polynomial equation~13! in the ~r,h!
plane, with the theoretical parameterRP given by

RP5l2
BKp6

Bp1p2
@assuming 3, 4, 5, and 6#. ~22!

This typically leads to draw four allowed curves in the~r,h!
plane, which in the limitRP→0, reduce to the two circles
representing the no-penguin solution sin 2a5sin 2aeff .

III. THEORETICAL FRAMEWORK

A. Standard model parametrization of the amplitudes

The aim of this section is to recall some already kno
results and to fix the notation used in this paper. The tim
dependent rate for an oscillating stateB0(t) which has been
tagged as aB0 meson at timet50 is given by~for simplicity
the e2Gt and constant phase space factors are omi
below4!

4Tiny differences between phase space of the various chan
discussed in this paper are neglected.
05400
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G„B0~ t !→p1p2
…5

uAu21uĀu2

2
1

uAu22uĀu2

2
cosDmt

2ImS q

p
ĀA* D sinDmt, ~23!

where

A[A~B0→p1p2!, Ā[A~B0→p1p2!, ~24!

and q/p5exp(22ib) in the Wolfenstein phase convention
which provides an expansion of the CKM matrix in powe
of l[uVusu;0.22 @17#. With this convention, one has

b5Arg~2Vtd* !, g5Arg~2Vub* !, Arg~Vts!5O~l2!,
~25!

while the other CKM matrix elements are real~up to highly
suppressedln terms! and the anglea is given bya5p2b
2g. Defining

Bp1p2[
1

2
@BR~B0→p1p2!1BR~B0→p1p2!#,

~26!

adir[
uAu22uĀu2

uAu21uĀu2
, ~27!

2aeff[ArgS q

p
ĀA* D , ~28!

the rate~23! becomes

G@B0~ t !→p1p2#5Bp1p2@11adir cosDmt

2A12adir
2 sin 2aeff sinDmt#.

~29!

The time-dependentCP asymmetry reads

aCP~ t ![
G@B0~ t !→p1p2#2G@B0~ t !→p1p2#

G@B0~ t !→p1p2#1G@B0~ t !→p1p2#

5adir cosDmt2A12adir
2 sin 2aeff sinDmt.

~30!
els
7-5
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We may define another effective angle by5

sgn~cos 2āeff![sgn~cos 2a!,

sin 2āeff[A12adir
2 sin 2aeff ~31!

such as

aCP~ t !5adir cosDmt2sin 2āeff sinDmt. ~32!

adir is the direct CP asymmetry, while sin 2āeff

5A12adir
2 sin 2aeff is the mixing-inducedCP asymmetry. In

the absence of penguin amplitudes, one hasadir50 and
sin 2āeff5sin 2aeff5sin 2a. The experiment allows the mea
surement of three fully model-independent observables,
is CP invariant (Bp1p2), while the two others areCP asym-
metries (adir and sin 2aeff or adir and sin 2āeff).

It has often been assumed in the literature that the do
nant penguin amplitude is the top-mediated one, with
consequence that this amplitude is proportional toVtdVtb* .
This assumption has received a lot of attention rece
@18,19#. In any case, theu-penguin contributions which ar
proportional toVudVub* ~as well as other contributions suc
as exchange diagrams! can be incorporated in the definitio
of the ‘‘tree’’ amplitude. Contributions proportional t
VcdVcb* —‘‘charming penguin contributions’’@19#—can be
rewritten, by CKM unitarity (VcdVcb* 52VudVub* 2VtdVtb* ),
in terms of the two other combinations. Thus, just from t
weak phase structure of the SM, we may write theB0

→p1p2 physical amplitude as

A5VudVub* M ~u!1VtdVtb* M ~ t !

[e1 igTp1p21e2 ibPp1p2 ~33!

and similarly for the other 2p channels6

Ap0p0[A~B0→p0p0![
1

&
~e1 igTp0p01e2 ibPp0p0!,

~34!

Ap1p0[A~B1→p1p0![
1

&
~e1 igTp1p01e2 ibPp1p0!.

~35!

Let us stress that there isabsolutely no approximationin
writing Eq. ~33!–~35!: Tpp and Ppp are CP-conserving
complex quantities, defined by the weak phase that t
carry, and they incorporate all possible SM topologies s
as tree, penguin, electroweak penguin diagrams, etc. In
sense, many~not all, however! of the methods proposed pre
viously for the extraction ofa in the top-dominance assump

5As the sign of cos 2āeff is not observable, it can be defined arb
trarily. However, the exact definition is important for the derivati
of the bounds~see Appendix B!.

6Note thatPp1p0 comes from electroweak penguin contribution
and/or from isospin symmetry breaking.
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tion are in fact still valid if the latter hypothesis is relaxed7

The CP-conjugate channels are obtained by reversing
sign of the weak phases:

Āpp5e2 igTpp1e1 ibPpp . ~36!

As said above, neglecting penguin diagrams (Ppp50) gives

2aeff5ArgS q

p
Tp1p2Tp1p2* e22igD52a. ~37!

From now on we will denote in the whole paper

Tp1p2[T, Pp1p2[P, ~38!

and we will call theT and Pamplitudes ‘‘tree’’ and ‘‘pen-
guin’’ respectively, althoughT gets contributions fromu-
andc-penguin diagrams.8

In this paper, we will also consider theB→K0K0, B
→K6p7, andB6→Kp6 decays. For the former, we adop
the following parametrization:

A~B0→K0K0!5VudVub* M
KK̄

~u!
1VtdVtb* M

KK̄

~ t !

[e1 igTKK̄1e2 ibPKK̄ , ~39!

while for the latter it is convenient to expand on the CK
basis (VusVub* ,VcsVcb* ) ~recall that VcsVcb* is real in the
Wolfenstein convention!:

A~B0→K1p2!5VusVub* MK1p2
~u!

1VcsVcb* MK1p2
~c!

[e1 igTK1p21PK1p2, ~40!

A~B1→K0p1![e1 igTK0p11PK0p1. ~41!

As far as theB→K0K0 amplitude is concerned, we hav
used the notationTKK̄ to make apparent the resemblan
with the other channels; however, it should be stressed
this decay is a pure penguin process. ActuallyTKK̄ represents
the contribution of the long-distanceu- and c-penguin dia-
grams@21#.

Let us repeat that Eqs.~33!–~36! and~39!–~41! rely only
on the standard model.

B. General bounds

Similarly to Eq. ~26!, we will denote byBf , f̄ the CP-
conserving average branching ratio

Bf , f̄5
1

2
@BR~B→ f !1BR~B̄→ f̄ !#. ~42!

7Of course, numerical estimates of quantities such asuP/Tu may
be greatly modified by charming penguin diagrams@18,19#.

8Be careful to note that our definition of ‘‘tree’’ and ‘‘penguin’
amplitudes, relying onCP phases, is slightly different from the on
used in Refs.@12, 20#, although the consequence is the same: th
so-defined amplitudes are unambiguous and physical quantitie
7-6
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For example,

BKp65
1

2
@BR~B1→K0p1!1BR~B2→K0p2!# ~43!

and so on.
From the discussion in Sec. III A, it is clear that the S

predicts eachB0→ f decay amplitude as the sum of tw
terms carrying two differentCP-violating phasesf1 , f2 :

A~B0→ f !5e1 if1M11e1 if2M2 ,

A~B0→ f̄ !5h f~e2 if1M11e2 if2M2!, ~44!

whereM1 andM2 , although complex numbers, areCP con-
serving and the signh f depends on theCP of the final state,
e.g.,h f(p

1p2)51. Thus the average branching ratio~42!
writes

Bf , f̄5uM1u21uM2u212 Re~M1M2* !cos~f12f2!.
~45!

Note that we express the amplitudes squared in ‘‘units
two-body branching ratio.’’ For fixed values ofM2 and f1
2f2 , Bf , f̄ as a function ofM1 takes its minimal value when
M152M2 cos(f12f2), in which case Bf , f̄ umin
5uM2u2 sin2(f12f2). Interverting the roˆles of M1 and M2 ,
we obtain the following~exact! general bounds:

uM1u2 sin2~f12f2!<Bf , f̄ ,

uM2u2 sin2~f12f2!<Bf , f̄ . ~46!

Such inequalities have been previously employed for
demonstration of the so-called Fleischer-Mannel bound@22#.
We will use Eq.~46! extensively throughout this paper.

C. Orders of magnitude

The recently updated CLEO analyses ofB decays into
two light pseudoscalars give precious information on
various quantities discussed in this paper@16#:

Bp1p2,0.8431025 @90% C.L.#,

BK6p75~1.460.360.2!31025, ~47!

BKp65~1.460.560.2!31025.

Thanks to this experimental information, it is possible
derive a crude lower bound for the ratiouP/Tu. Indeed, from
Eqs.~33! and ~46! we have

uTu2 sin2 a<Bp1p2. ~48!

Furthermore, while thepp penguin amplitude is propor
tional to VtdVtb* , the Kp penguin amplitude is proportiona
to VcsVcb* @see Eqs.~33! and ~40!, ~41!#. Thus we have

uPu;UVtd

Vcb*
U3ABs, ~49!
05400
f

e

e

whereBs is a typical scale of theB→Kp branching ratios,
assuming that these channels are dominated by the Q
penguin diagrams, and that the QCD part of the peng
matrix elements are of the same order forpp andKp. Thus
we obtain

UPTU*lusinguA Bs

Bp1p2
, ~50!

where we have useduVtd /Vcbu5l sing/sina.
Numerically, from the current SM constraints on the~r,h!

parameters@23#, we haveusingu*0.6. The CLEO data~47!
suggestBs /Bp1p2*1/0.84 which gives

UPTU*0.14. ~51!

Note that contrary to some claims, factorization gives ty
cally uP/Tu;0.15 @9# and is not ruled out by the CLEO dat
yet, although it is only marginally compatible.

Although this calculation is only illustrative, it is clea
that the penguin contributions pose a serious problem for
extraction of a from the CP asymmetry. More complete
analyses show that the ratiouP/Tu can easily be;30% or
even 40%@19#. Therefore one can not avoid to define the
retical procedures allowing us to reduce the penguin-indu
uncertainty, or at least to control it. This is the subject of t
present paper.

Let us add here one comment on the size of the directCP
asymmetry. With a ratiouP/Tu of orderO~20–30%!, it is
straightforward to show that a strong phase Arg(PT* ) of
orderO~10°–20°! is sufficient to generate a directCP asym-
metry of orderO~10%! ~see Appendix A!. While perturba-
tive calculations of such phases predict in general very sm
values@24#, it is likely that nonperturbative effects will con
siderably enhance these final state interactions9 ~FSI! @25#.
Thus we expect that sin 2aeff andadir will be measured with
comparable statistical accuracy@26#.

At this stage, we refer the reader to Appendix A, whe
we calculate the relevant parameters and observables
naive way, in order to numerically illustrate the phenomen
logical results that we derive below.

D. Some exact one-parameter results

Let us first consider only theB0(t)→p1p2 rate, Eq.
~29!. As pointed out above, there are three observables:
average branching ratio and theCP asymmetries

Bp1p2, adir , and sin 2aeff . ~52!

From sin 2aeff , one gets 2aeff up to a twofold discrete am
biguity. While the vanishing of the penguin amplitudeP im-

9Note also that in theNc→` limit, since u- and c-penguin dia-
grams can contribute, such phases betweenT andP amplitudes are
in principleO~1!. Indeed as a perturbative calculation suggests@18#,
the real and imaginary parts of the long-distance penguin diagr
are of the same order.
7-7
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plies 2aeff52a, the SM description of the rate~29! involves
four parameters, three of which areCP conserving while the
fourth is theCP-violating anglea @see Eqs.~33! and ~36!#,
namely,

uTu, uPu, d5Arg~PT* !, and a, ~53!

one overall phase being irrelevant, and after the use ofq/p
5exp(22ib). Thus the presence of the penguin amplitu
forbids the measurement ofa, the number of parameters be
ing greater than the number of observables. However, as
will see, it is possible to expressa in terms of the three
observables and of one of the four parameters. The latter
be chosen as eitheruP/Tu, uPu, uTu, or d.

From Eqs.~33! and ~36!, we deduce

2~2i sina!P5e2 igA2eigĀ, ~54!

~2i sina!T5eibA2e2 ibĀ, ~55!

that can be rewritten as

~2i sina!P5eibFeiaA2e2 ia
q

p
ĀG , ~56!

~2i sina!T5eibFA2
q

p
ĀG . ~57!

Calculating the ratiouP/Tu2 from Eqs.~56!, ~57! and using
the definitions~27!, ~28! we obtain the very important, al
though very simple, equation

cos~2a22aeff!

5
1

A12adir
2 F12~12A12adir

2 cos 2aeff!UPTU
2G .
~58!

Thus Eq.~58! defines 2a as a four-valued function ofuP/Tu:
indeed, 2aeff is known up to a twofold discrete ambiguity
while Eq. ~58! also contains a twofold discrete ambiguity
long as 2a is concerned, because of the cosine function. N
that these two discrete ambiguities are of a different nat
the 2aeff→p22aeff ambiguity is inherent toCP-eigenstate
analyses, while the 2a22aeff→2(2a22aeff) ambiguity is
generated by the penguin contributions. One can also v
the latter ambiguity by saying that the no-penguin solut
2a52aeff appears as a double root of the general cos
equation ~58!, which degeneracy is lifted by the pengu
contributions.

Let us add here one comment on the discrete ambig
generated by gettinga from 2a, that is thea→p1a ambi-
guity. From Eqs.~26!–~28!, ~33!, ~36!, and~53! one sees tha
the three observablesBp1p2, adir , and 2aeff are invariant
under the transformationa→p1a, d→p1d. Thus these
observables depend only on 2a and 2d, or equivalently on
tana and tand. Without any further assumption on the stron
phase, thea→p1a ambiguity is irreducible@14#, the signs
of sina and sind being related by the equation
05400
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sgn~sina!3sgn~sind!5sgn~adir!. ~59!

As far as the SM is accepted, the latter ambiguity is not a r
problem because the constraints on the UT select only on
the two ambiguous solutions—we already know that 0,a
,p becauseh is positive@23#—and moreover because the
solutions cannot merge as they are separated byp. This is
not the case, obviously, for the ambiguity 2aeff→p22aeff .
In the following we will always express our results in term
of 2a and 2d, or tana and tand.

It is also possible to derive very simple relations expre
ing the parametersuPu, uTu, and tand as functions ofuP/Tu, or
equivalently, as functions of 2a which is itself a function of
uP/Tu through Eq.~58!. Indeed, from Eqs.~26!–~28!, ~53!,
and ~56!, ~57! we get10

uPu25
Bp1p2

12cos 2a
@12A12adir

2 cos~2a22aeff!#, ~60!

uTu25
Bp1p2

12cos 2a
@12A12adir

2 cos 2aeff#, ~61!

tand5
adir tana

12A12adir
2 @cos 2aeff1tana sin 2aeff#

.

~62!

Note the following important point: Eq.~60! @Eq. ~61!# gives
2a as a four-valued function ofuPu ~uTu!, and Eq.~62! gives
2a as a bivalued function of 2d; this feature puts the param
etersuP/Tu, uPu, uTu, and 2d on an equal footing: each of thes
is candidate to be the single theoretical input.

Let us discuss the no-penguin limit of Eqs.~58! and~60!–
~62!: uPu→0 ~and thusadir→0). In this limit, Eqs.~58! and
~60! reduce simply to 2a52aeff , as they should. Equation
~61! reduces touTu25Bp1p2 independently ofa, also as
expected. Finally Eq.~62! becomes indefinite in this limit,
becaused itself becomes indefinite. Note the important poi
that the parametersuP/Tu anduPu measure directly the size o
the penguin diagram and thus of the shiftu2a22aeffu while
the parametersuTu andd carry only poor information on the
size of the penguin diagram~for example, the no-penguin
relation uTu25Bp1p2 can still be verified with a nonvanish
ing uPu, for particular values of the parameters!.

Last, we stress that Eqs.~58!–~62! are fully equivalent to
the original Eqs.~33! and ~36! together with the definitions
~26!–~28! and ~53!. They are exact relations between th

10The fact that only the weak anglea is present in Eqs.~58! and
~60!–~62! originates from the peculiar SM prediction that th
B0-B0 mixing is dominated by the top loop, just cancelling theCP
phase of the penguin contribution defined by Eq.~33!, and is not
related to the dominance~or not! of the top in penguin loops. This
is obviously not the case, e.g., for the decayB→KSp0 where both
a andb enter in the game.
7-8



o
su
en

a
e
o
l-

e

ur

in

s
bu
m

is

pl
.

es

o
th

t

s
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theoretical parameters taken two by two, depending only
the observables. The most obvious application of this re
is the modelization of the theoretical error induced by p
guin effects on the CKM angle. For example, the reader m
choose his favorite model or his favorite assumptions to
timate uP/Tu as well as its associated error. This range
values of uP/Tu propagates into four cleanly defined, a
though model dependent, discrete solutions for 2a and their
theoretical errors, thanks to Eq.~58!. The same can be don
using, insteaduP/Tu and Eq.~58!, the parametersuPu and Eq.
~60!, or uTu and Eq.~61!, or 2d and Eq.~62!.11 As the model
is used to calculate only one real quantity, this proced
should be safer than the ones proposed in, e.g., Refs.@9# and
@10#. We will give practical examples of this strategy
Secs. VI and VII.

Another application, which is more conservative but le
informative, is to use channels where the penguin contri
tions may be dominant and, when related by a flavor sy
metry to the parameteruPu, can help to bound the shiftu2a
22aeffu. This is the case forB→p0p0, K0K0 andK6p7, as
explained in Secs. IV and V. But before that, we shall ins
now on the model-independent features of Eqs.~58! and
~60!–~62!.

E. Plotting the CP asymmetry in the „zP/Tz,2a… plane

From ucos(2a22aeff)u<1 and from Eq.~58! the following
allowed interval foruP/Tu2 is obtained:

12A12adir
2

12A12adir
2 cos 2aeff

<UPTU
2

<
11A12adir

2

12A12adir
2 cos 2aeff

.

~63!

The lower bound onuP/Tu2 is induced by the directCP
asymmetry—it becomes trivial in the limitadir→0; indeed,
if the latter is nonzero, then a nonvanishing penguin am
tude follows. As the sign of cos 2aeff is not observable, Eq
~63! actually defines two different intervals foruP/Tu, one
for the branch corresponding to cos 2aeff.0 and the other for
the branch corresponding to cos 2aeff,0.

Assumingadir and sin 2aeff have been measured, Eq.~58!
allows us to plot 2a as a function ofuP/Tu varying in the
interval ~63!: in Fig. 1 we represent the two distinct branch
corresponding to the two possible signs for cos 2aeff . Fur-
thermore, the three remaining equations~60!–~62! together
with 2a given by Fig. 1 allows us to representuPu/ABp1p2,
uTu/ABp1p2, and 2d as functions ofuP/Tu ~Fig. 2!. Let us
summarize the main properties and virtues of Eqs.~58! and
~60!–~62! and of Figs. 1 and 2.

These are absolutelyexact results, relying only on the
SM, and provide a nice representation of what kind
model-independent information can be obtained from
measurement of the time-dependentB0(t)→p1p2 CP
asymmetry only. The (uP/Tu,2a) plot may be used to presen

11Note that the extraction ofa from Eq.~62! would require a very
accurate and unlikely knowledge ofd.
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FIG. 1. The CKM angle 2a as a function ofuP/Tu obtained from
Eq. ~58!, for adir50.12 and sin 2aeff50.58 ~see Appendix A for a
description of this numerical example!. The solid curve correspond
to cos 2aeff,0 and the dashed one to cos 2aeff.0. Note thatuP/Tu
varies in the range~63! which depends on the sign of cos 2aeff . For
a given value ofuP/Tu, there are in general four solutions for 2a.

FIG. 2. TheuPu, uTu amplitudes and the strong phase 2d respec-
tively as functions ofuP/Tu obtained from Eqs.~58! and~60!–~62!,
for the numerical exampleadir50.12 and sin 2aeff50.58 ~see Ap-
pendix A!. The solid curves correspond to cos 2aeff,0 and the
dashed ones to cos 2aeff.0. Note thatuPu and uTu diverge when
2a→0, uP/Tu→1 because theCP asymmetriesadir and sin 2aeff are
kept fixed:uPu anduTu have to be very large to produceCP violation
with a smallCP phasea.
7-9
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JÉRÔME CHARLES PHYSICAL REVIEW D 59 054007
the experimental results which hopefully will be availab
from B factories in the next years.

Figure 1 shows that the linear approximation inuP/Tu,
which is used in some papers@27,8# is indeed very good for
uP/Tu&1 as far as 2a22aeff is concerned. However, Eqs
~58! and ~60!–~62! expanded to first order inuP/Tu give
expressions which are not particularly simpler, and thus
more convenient to keep the exact formulas.

Equations~58! and ~60!–~62! are not invariant under the
transformationa→p/22a. This does not properly mea
that thea→p/22a ambiguity is lifted: the souvenir of this
ambiguity lives in the invariance of Eqs.~58! and~60!–~62!
under aeff→p/22aeff because the sign of cos 2aeff is not
known. This means, however, thatsin 2a is not a good pa-
rameter: indeed the penguin effect is not the same for
solutions corresponding to cos 2aeff.0 than for the others
corresponding to cos 2aeff,0, as Fig. 1 clearly shows. In
particular, the solutions corresponding to cos 2aeff,0 are
more affected by the penguin uncertainty which is import
information.12 As long as the penguin effect is not stron
enough to change the sign of cos 2aeff /cos 2a, we actually
expect cos 2aeff,0 from the current SM constraints on th
UT @23#. To be illustrative, let us plot sin 2a as a function of
uP/Tu using Eq.~58! and compare with 2a as a function of
uP/Tu ~Fig. 3!. Obviously, four curves in the (uP/Tu,sin 2a)
plane gives half as less information than four curves in
(uP/Tu,2a) plane. If we reconstruct theuP/Tu→2a curves
from the uP/Tu→sin 2a ones, we will get eight curves
among which four are ‘‘wrong’’ solutions~Fig. 3!. We dis-
cuss further this point in Sec. VII A, with the explicit ex
ample of the Gronau-London construction. We conclude t
one should not express the penguin effect in terms
sin 2a2sin 2aeff as it is sometimes done in the literatu
@10,11#.

Bounding the absolute magnitude of the penguin am
tude directly allows us to bound the shiftu2a22aeffu ~and
vice versa! thanks to Eq.~58! or Eq. ~60!. For example, the
very conservative estimateuP/Tu,1 ~assumption 1! leads to
the simple bound

cos~2a22aeff!.cos 2aeff . ~64!

Of course, this bound does not allow a precise measurem
of a. Nevertheless, with only a very weak assumption
provides an allowed interval for 2a ~we have taken into ac
count that the sign of cos 2aeff is not known!:

if sin 2aeff.0, 0,2a,2p22 arcsin~sin 2aeff!,

if sin 2aeff,0, 22 arcsin~sin 2aeff!,2a,2p

@assuming 1#. ~65!

As explained in Appendix B, this bound implies a weak
one, obtained by replacing above 2aeff by 2āeff where the
latter effective angle is defined by Eq.~31!. The only advan-

12This has already been noticed by Gronau in Ref.@27#.
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tage in using 2āeff instead of 2aeff is that the former angle
follows directly~up to a twofold ambiguity! from the sinDmt
term in the time-dependentCP asymmetry~32! indepen-
dently of adir ; thus the experimental uncertainty on 2āeff is
expected to be smaller than on 2aeff . For the numerical ex-
ample that we have chosen~Appendix A!, sin 2aeff50.58, we
obtain from the bound~65! 0,2a,290 °, which is of
course not very informative.

F. Exact one-parameter polynoms in the„r,h… plane

For evaluation by hadronic models, or by using pheno
enological assumptions such as in Sec. VI, the theoret
parametersuP/Tu, uPu, and uTu may be not suitable as the
depend on QCD matrix elements timesuVtd /Vub* u, uVtdu, and
uVub* u, respectively. Indeed the latterCP-conserving CKM
factors are badly known, therefore they would introduce
additional uncertainty in combination with the theoretic
model-induced error for the estimation of the QCD part
the matrix elements. In the literature, this problem has b
solved by scanning the whole allowed domain for~r,h! @9#,
by simply assuming that such CKM factors would be know
from other measurements@8#, or by expressinguVtd /Vub* u as
a function ofa andb, the latter angle being determined fro
future CP measurements in theB→J/CKS channel@11#.

We think, however, that it is more convenient and mo
transparent to decouple the different and intricated proble

FIG. 3. ~a! sin 2a as a function ofuP/Tu obtained from Eq.~58!,
for the numerical exampleadir50.12 and sin 2aeff50.58 ~see Ap-
pendix A!. The two branches corresponding to the two possi
signs for cos 2aeff are not degenerate.~b! 2a as a function ofuP/Tu
obtained by computing arcsin(sin 2a) and p2arcsin(sin 2a): the
comparison with Fig. 1 shows that the dashed curves are wr
solutions.
7-10
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related to the determination of the UT. Fortunately, such
attitude is simple to handle, thanks to the CKM mechani
which predicts strong relations betweenCP-violating and
CP-conserving quantities: indeed the SM says thata, uVtdu,
and uVub* u are functions13 of ~r,h! @17#:

a5ArgS 2
12r2 ih

r1 ih D , ~66!

uVtdu5luVcbu3u12r2 ihu, ~67!

uVub* u5luVcbu3ur1 ihu. ~68!

The above relations, inserted in Eqs.~58!, ~60!, and ~61!,
permit us to reexpress the latter as equations in the~r,h!
variables, depending on the theoretical parame
uM (t)u/uM (u)u, uM (t)u, and uM (u)u, respectively. Indeed we
define the following combinations of observables:
s

ng

t
s

f t

05400
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Dc[A12adir
2 cos 2aeff , Ds[A12adir

2 sin 2aeff , ~69!

and we introduce uM (t)u and uM (u)u, normalized to
ABp1p2/ulVcbu @recall their definition~33!, and that the am-
plitudes squared are in ‘‘units of two-body branching ratio#

RP

RT
5UM ~ t !

M ~u!U2

, RP[ulVcbu2
uM ~ t !u2

Bp1p2
,

RT[ulVcbu2
uM ~u!u2

Bp1p2
. ~70!

Then Eqs.~58! and ~60! are, respectively, equivalent to th
following degree-four polynomial equations, the first d
pending onRP /RT only and the second onRP only:
~12Dc!S 12
RP

RT
D r412~12Dc!S 12

RP

RT
D r2h21~12Dc!S 12

RP

RT
Dh422~12Dc!S 122

RP

RT
D r322Dsr

2h

22~12Dc!S 122
RP

RT
D rh222Dsh

31~12Dc!S 126
RP

RT
D r212Dsrh1F11Dc22~12Dc!

RP

RT
Gh2

1~12Dc!
RP

RT
~4r21!50, ~71!

~12Dc!r
412~12Dc2RP!r2h21~12Dc22RP!h422~12Dc!r

322Dsr
2h

22~12Dc22RP!rh222Dsh
31~12Dc!r

212Dsrh1~11Dc22RP!h250. ~72!
ady

e
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When M (t)50 ~the no-penguin case:RP50 and thus
adir50), Eqs.~71! and ~72! reduce to

@12cos 2aeff#F S r2
1

2D 2

1S h2
sin 2aeff

2~12cos 2aeff!
D 2

2
1

2~12cos 2aeff!
G2

50, ~73!

which is the equation squared of a circle. This circle is ju
as expected, the one defined by 2a5Arg@2(12r2 ih)/(r
1 ih)#52aeff and can be obtained geometrically, by usi
the definition of the UT and solving the equation 2a5Cst.
Actually, the sign of cos 2aeff is not known and we get in fac
two circles. WhenM (t)Þ0, each of these two circles split
into two curves—this splitting is reminiscent of the 2a
22aeff→2(2a22aeff) ambiguity of Eqs.~58! and ~60!: the
no-penguin case, the circle, appears as a double root o

13For simplicity, we neglect the uncertainty onVcb , and take
Vud5Vtb51.
t,

he

general case—a degree-four polynomial equation, as alre
noticed above when discussing Eq.~58!.

Likewise Eq. ~61! is equivalent to the following linear
equation, depending onRT only:

A12Dc~r21!6A2RT211Dch50. ~74!

The 6 sign is reminiscent of the 2a→22a ambiguity of
Eq. ~61!. As the parameterRT does not know much about th
size of the penguin parameter, the no-penguin limit of E
~74! is not particularly interesting.

The important feature of Eqs.~71!–~74! is that the param-
etersRP /RT , RP , andRT—defined by Eqs.~33! and~70!—
are pure QCD quantities timesulVcbu2/Bp1p2, i.e., they can
be expressed as matrix elements of the weak effec
Hamiltonian times known factors.

Thus the reader may choose a pure hadronic mode
estimateRP /RT , RP , or RT , and report it in Eqs.~71!, ~72!,
or ~74!, respectively, then getting a polynomial equation t
roots of which represented as curves, summarize the dom
in the ~r,h! plane which is allowed by the measurement
the time-dependentB→pp CP asymmetry. Some example
of this strategy are given in Sec. VI, where we use so
7-11
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JÉRÔME CHARLES PHYSICAL REVIEW D 59 054007
phenomenological assumptions to estimateRP , and in Sec.
VII, where we suggest to improve the proposals of Fleisc
and Mannel@8# and Marrocchesi and Paver@11# by solving
the problem directly in the~r,h! plane.

IV. USING ISOSPIN RELATED DECAYS

In this section, we will assume SU~2! isospin symmetry of
the strong interactions~assumption 2!. It is well known that
this flavor symmetry is indeed very good; in any case,
violation of SU~2! should be completely negligible compare
to the theoretical errors discussed in this paper.
As the effective weak Hamiltonian is a linear combination
DI 51/2 andDI 53/2 operators, one has the triangular re
tions @remember the notation~33!–~35! and ~38!, and see
Refs.@4, 13##

Tp1p05T1Tp0p0, Pp1p05P1Pp0p0. ~75!

As the QCD-penguin amplitudes are pureDI 51/2 ampli-
tudes, thePp1p0 amplitude come only from electrowea
penguin contributions. Thus we definePEW5Pp1p0 to get

A~B0→p1p2!5eigT1e2 ibP, ~76!

A~B0→p0p0!5
1

&
@eigTp0p01e2 ib~PEW2P!#,

~77!

A~B1→p1p0!5
1

&
@eig~T1Tp0p0!1e2 ibPEW#.

~78!

The second assumption we will make here is neglec
the electroweak penguin contributions inB→p1p2, p6p0,
p0p0 ~assumption 5!. That is, PEW50 in Eqs. ~76!–~78!.
The problem with this approximation arrives when consid
ing B→p0p0, where, on naive grounds~short distance co-
efficients and factorization of the matrix elements!, the elec-
troweak penguin contribution, which is here color allowed
not particularly negligible. However, the repercussion on
extraction ofa is expected to be negligible@28,29#, and in
any case smaller than the gluonic penguin effects. See
the discussion in Sec. VII B.

In the framework of these two assumptions, Gronau a
London have shown that the knowledge of theB(B̄)
→p1p2, p0p0, p6p0 branching ratios in addition to th
time-dependentB0(t)→p1p2 CP asymmetry leads to the
clean extraction ofa, up to discrete ambiguities. In Se
VII A, we reexpress the Gronau-London isospin analysis
our language. In particular, we clarify the problem of t
discrete ambiguities, which up to now has remained c
fused in the literature.

Unfortunately, it is well known that the isospin stud
might be experimentally difficult to carry out, if theB
→p0p0 mode is as rare as expected because of color
pression. Therefore alternative methods have to be de
oped.
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Two upper bounds onu2a22aeffu from B→p0p0. In
Ref. @15# Grossman and Quinn have derived an interest
bound on the shiftu2a22aeffu @Eq. ~2.12! of their paper#
which takes in our notation the simple following form:

u2a22aeffu<arccosS 122
Bp0p0

Bp6p0
D . ~79!

This bound derives from the isospin relations~76!–~78! and
from the geometry of the Gronau-London triangle~see Refs.
@4, 13#! when the electroweak penguin amplitude, i.e.,PEW,
is neglected. The physical meaning of this bound is simp
the B→p0p0 branching ratio cannot vanish exactly unle
both the tree and the penguin amplitudes inp0p0 vanish, in
which case 2a52aeff in p1p2.

As explained in Ref.@15#, this bound is useful when the
B→p0p0 rate is too low, in which case only the averag
branching ratioBp0p0 ~that can be obtained fromuntagged
events only!, or even only an upper bound on this quantity,
available. Thus, either theB→p0p0 channel is strong
enough to allow a full isospin analysis, or the rate is inde
very small and bounds the penguin-induced error ona.

It is not difficult to derive the bound~79! in an analytical
way, different from the geometrical approach of Ref.@15#;
here we give only the main line of the demonstration. N
glecting the electroweak penguin contribution (PEW50) in
Eqs.~76!–~78! we can form the ratioBp0p0 /Bp6p0 and con-
sider it as a function of the complex parameterTp1p0. Mini-
mizing this ratio with respect to the latter parameter gives
inequality

uPu2 sin2 a<
Bp0p0

Bp6p0
3Bp1p2. ~80!

Then 2a is constrained thanks to Eq.~60!:

u2a22aeffu<arccosF 1

A12adir
2 S 122

Bp0p0

Bp6p0
D G

[assuming 2 and 5]. ~81!

As 0<adir<1, the above bound is slightly more stringe
than the bound~79!, and reduce to the latter whenadir50.

Under the same isospin symmetry and neglect of e
troweak penguin hypotheses, it is straightforward to der
another similar bound, not given in the original paper@15#.
Indeed, using the general bounds~46! for the penguin ampli-
tude in Eq.~34! gives simply

uPu2 sin2 a<2Bp0p0, ~82!

where the factor 2 is related to a Clebsch-Gordan coeffici
i.e., to the wave function of thep0 meson and the Bose
symmetry. Once again we use Eq.~60! to get

u2a22aeffu<arccosF 1

A12adir
2 S 124

Bp0p0

Bp1p2
D G

[assuming 2 and 5]. ~83!
7-12
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To what extent the Grossman-Quinn bound~81! is better
than the bound~83! or vice versa depends on the actual v
ues of the branching ratios 2Bp6p0 vs Bp1p2: in fact, ne-
glecting penguin and color-suppressed contributions wo
lead to the equality 2Bp6p05Bp1p2, while the factorization
assumption, predicting a constructive interference betw
the color-allowed and color-suppressed contributions in
B6→p6p0 channel, tends to favor Eq.~81! compared to
Eq. ~83!.14 A technical advantage of the bound~83! over Eq.
~81! is that it does not require the measurement ofBp6p0,
which may be less well measured thanBp1p2 because of the
necessaryp0 detection, and because it is expected t
Bp6p0,Bp1p2. Note in passing that the Grossman-Qui
bound follows from the isospin constraints on both tree a
penguin amplitudes, while our bound comes only from
isospin constraints on the penguin amplitude. Of cours
can be checked that the two bounds are fully compatible
the sense that when the bound~81! is saturated then the
bound~83! is automatically satisfied and vice versa.

As shown by Grossman and Quinn@15#, and as redemon
strated for consistency in Appendix B, the above boun
imply weaker ones, obtained by replacingadir by zero and
2aeff by 2āeff where 2āeff is defined by Eq.~31!. Thus we
have

u2a22āeffu<arccosS 122
Bp0p0

Bp6p0
D , ~84!

u2a22āeffu<arccosS 124
Bp0p0

Bp1p2
D @assuming 2 and 5#.

~85!

As already stressed, the advantage in using 2āeff instead of
2aeff is that the former angle follows directly~up to a two-
fold ambiguity! from the sinDmt term in the time-dependen
CP asymmetry~32! independently ofadir , and thus does no
require the measurement of the latter.

V. USING SU„3… RELATED DECAYS

In this section we will assume a larger flavor symmet
namely, SU~3! flavor symmetry of the strong interaction
~assumption 3!. One could argue that such an assumpt
should not be too bad in energetic two-body decays,
though we know that a typical SU~3! breaking quantity is
u f K2 f pu/ f p;23% . Actually, our present knowledge do
not permit a reliable quantitative estimate of such a symm
try breaking inB decays, especially for the penguin amp
tudes that we are interested in. In any case, our underst
ing of this problem is expected to improve with bo
theoretical and experimental progress.

14Grossman and Quinn give another bound depending on
Bp0p0 /Bp6p0 andBp0p0 /Bp1p2 @Eq. ~2.15! of their paper@15##. As
it is more complicated and presumably numerically similar, we
not report it here.
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A. An upper bound on z2a22aeffz from B˜K0K0

Very similarly to the isospin analysis and theB→p0p0

case, it is possible to derive a bound onu2a22aeffu depend-
ing on BR(B→K0K0). Indeed Buras and Fleischer@7# have
proposed a SU~3! analysis which relies on the measureme
of the time-dependentCP asymmetry in theB→K0K0 chan-
nel to disentangle the penguin effects inB→p1p2 ~see Sec.
VII C !. However, theB→K0K0 channel is a pureb→d pen-
guin process, and its rate is presumably rather sm
(1027– 1026). Nevertheless, due to the bounds~46!, BK0K0

cannot vanish unless bothTK0K0 and PK0K0 vanish in Eq.
~39!. Thus eitherBK0K0 is large enough to do the Buras
Fleischer analysis, or it is vanishingly small and one expe
that u2a22aeffu is constrained byBK0K0 thanks to the SU~3!
symmetry. Similarly to the case ofp0p0, an upper bound on
BK0K0 is sufficient to get constraints ona.

In addition to the SU~3! flavor symmetry introduced
above, we need the following assumption.

Neglect of the electroweak penguin contributions inB
→p1p2, K0K0 ~assumption 5!. In Ref. @7#, Buras and
Fleischer argue that this approximation is better than
equivalent in the Gronau-London construction. Indeed, in
latter case the electroweak penguin contribution is color
lowed, while in the present case it is color suppressed. H
ever, one has to remember that FSI effects may invalidate
notion of color suppression@30#.

Within the above assumptions, we have

uPu5uPK0K0u. ~86!

Then we repeat the demonstration given above for theB
→p0p0 channel to obtain from Eqs.~39!, ~46!, and~60!

u2a22aeffu<arccosF 1

A12adir
2 S 122

BK0K0

Bp1p2
D G

[assuming 3 and 5]. ~87!

Likewise~Appendix B!, under the same hypotheses there i
bound independent ofadir , using the angle 2āeff :

u2a22āeffu<arccosS 122
BK0K0

Bp1p2
D @assuming 3 and 5#.

~88!

Hence, analogously to the isospin analysis and the bou
~81! and~83!, our bounds~87!, ~88! may be useful when the
B→K0K0 channel is too rare to achieve the full Bura
Fleischer analysis, and thus only the value ofBK0K0 , or even
an upper limit on this branching ratio, is available.

B. An upper bound on z2a22aeffz from B˜K6p7

It has been known for a long time that theB→Kp decays
can help the extraction ofa from the time-dependentB
→pp CP asymmetry by constraining the penguin amp
tudes@5#. Indeed, the latter are doubly Cabibbo enhanced
the ratiouVcsVcb* /(VusVub* )u with respect to the tree in thes
Kp decays. However, in addition to the unavoidable SU~3!

th
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assumption, people are often led to neglect annihilation
grams and/or electroweak penguin and/oru, c-penguin am-
plitudes and/or final state interaction~FSI! in expressing the
B→pp amplitudes in terms of theB→Kp ones@5,6#. Such
ill-defined approximations have been questioned in the
cent literature @30,31# in connection with the so-called
Fleischer-Mannel bound on sin2 g @22#. Here, however, in
addition to SU~3!, we will only use the following approxi-
mation in comparing Eqs.~33! and ~40!.

Neglect of the Okubo-Zweig-Iizuka-~OZI-! suppressed
annihilation penguin diagrams~assumption 4!. The topology
of these diagrams is represented in Fig. 4. We will need
neglect these diagrams only for theP amplitude, i.e., when
the quark in the loop is at or ac @recall Eq.~33!#. When the
flavor in the loop ist, the suppression is perturbative, due
a linear combination of short-distance Wilson coefficie
which is ;as

2(mb); on the contrary, the same diagram wi
a c quark is nonperturbatively suppressed by the OZI r
@10#. In addition these diagrams are usually expected to
suppressed by the annihilation topology. Thus they are p
ably very small and negligible compared to the SU~3!-
induced theoretical error.

In particular,we do not neglect the electroweak pengu
amplitude as it produces the same contribution inB
→K6p7 and B→p1p2, assuming SU~3! and neglecting
OZI-suppressed penguin diagrams. Then we get simply f
Eqs.~33!, ~38!, and~40!

uPu5UVtdVtb*

VcsVcb*
U3uPK1p2u5l

sing

sina
uPK1p2u, ~89!

where the geometry of the UT has been used in writ
uVtd /Vcb* u. From Eqs.~40! and ~46!, we get the following
bound onuPK1p2u:

FIG. 4. ~a! OZI-suppressed annihilation penguin diagram. T
diagram is OZI suppressed and is neglected within assumptio
because it does not contribute toB→K6p7. ~b! Non-OZI-
suppressed annihilation penguin diagram. This diagram is not
suppressed, although it has annihilation topology.It is not neglected
within Assumption 4 because it contributes to bothB→p1p2 and
B→K6p7.
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uPK1p2u2 sin2 g<BK6p7. ~90!

Combining it with Eqs.~60! and ~89! we obtain15

u2a22aeffu<arccosF 1

A12adir
2 S 122l2

BK6p7

Bp1p2
D G

[assuming 3 and 4]. ~91!

Thus this bound is a quantitative realization of the we
known fact that the penguin amplitude inpp is l suppressed
with respect to the penguin amplitude inKp: if
l2BK6p7 /Bp1p2 is not too large, this means that the pe
guin amplitude cannot be too large inB→pp. Note that
similarly to theB→p0p0 andB→K0K0 channels,we have
not assumed penguin dominance in B→Kp, although of
course the bound should be more interesting when the p
guin amplitude really dominates in the latter decay.

From the experimental point of view, the bound that w
have found in Eq.~91! should be considerably less affecte
by statistical uncertainties than the bounds~81!, ~83!, and
~87!. Indeed, rather than measuring the branching ratio
very rare decays such asB→p0p0 or B→K0K0, the use of
the bound~91! needs to knowBK6p7 which isO(1025). For
this reason the CLEO data~47! already help to give a very
interesting and nontrivial estimation of the right-hand si
~RHS! of Eq. ~91!. Indeed, Eq.~91! imply u2a22aeffu
<arccos(122l2BK6p7 /Bp1p2) and from Eq.~47! we have
0.8131025,BK6p7,2.031025 and Bp1p2,0.8431025

at 90% C.L. Assuming furthermore 0.431025

,Bp1p2—otherwise the study ofCP violation in the pp
channel would be very difficult, independently of pengu
amplitudes—we obtain the bound

u2a22aeffu<D, with 25°,D,59°. ~92!

Thus, although these data indicate that the extraction oa
will not be an easy task, they are still compatible with
relatively small penguin-induced theoretical error. We wou
like to stress also that to our knowledge, this is the first ti
that a numerical upper bound on the theoretical error ona is
given rather model independently, with only mild theoretic
assumptions and before the experimental value ofaeff is
available by itself. It is expected that experiment will give
accurate determination of the RHS of Eq.~91! quite soon.
Unless we are unlucky andBp1p2 is much smaller than
expected, the theoretical error ona constrained by the bound
~91! should not exceed;30° while it can be as small a
;10°. In comparison, the current knowledge ofa is roughly
40°,a,140°.16

Finally one has again a bound independent ofadir where
2āeff is involved:

15This is a somewhat miraculous feature of the SM: sing cancels
between Eqs.~89! and ~90!.

16We stress that although there are presently very weak c
straints on sin 2a @23#, this is not the case fora itself.
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u2a22āeffu<arccosS 122l2
BK6p7

Bp1p2
D @assuming 3 and 4#.

~93!

Let us note in passing that the inequality~90!, together
with the assumptionuPK1p2u25BR(B6→Kp6)[BKp6

~that we will use in Sec. VI!, leads to the Fleischer-Manne
bound on sin2 g @22#. However, the bound~90! is exact in-
dependently of the assumptionuPK1p2u25BKp6.

C. Upper bounds onz2a22aeffz: numerical examples

In Appendix A, we define a typical set of parameters
the quantities involved in the channels that we are intere
in. This set of parameters, compatible with the CLEO d
~47!, allows us to compute the various observables~branch-
ing ratios andCP asymmetries!, and in particular to estimate
numerically the bounds we have derived until now.

u2a22aeffu<arccosF 1

A12adir
2 S 122

Bp0p0

Bp6p0
D G533.4°,

~94!

u2a22aeffu<arccosF 1

A12adir
2 S 124

Bp0p0

Bp1p2
D G540.3°,

~95!

u2a22aeffu<arccosF 1

A12adir
2 S 122

BK0K0

Bp1p2
D G527.1°,

~96!

u2a22aeffu<arccosF 1

A12adir
2 S 122l2

BK6p7

Bp1p2
D G529.9°.

~97!

The true value being 2a22aeff5126.7° ~Appendix A!, the
bound ~96! is very close to be saturated for this set of p
rameters. Note also that the bounds~94!–~97! are numeri-
cally close, which just follows from our set of paramete
and needs not be true in general. As said above, it may
pen in practice that the experiment gives only an up
bound on the suppressed channelsBp0p0 and BK0K0 , in
which case the bound~97! will certainly be more informative
as BK6p7 is already measured and hopefully the ra
BK6p7 /Bp1p2 will be known with high accuracy very soon

In any case and for illustrative purposes, we will exam
the case of the boundu2a22aeffu<30°, which is in the ball-
park of Eqs.~94!–~97!. In Fig. 5 we show the constraints o
such a bound in the (uP/Tu,2a) plane, and in the~r,h! plane.
The latter are obtained by plotting the circle defined bya
5Cst, which equation is@see also Eq.~73!#:

S r2
1

2D 2

1S h2
sin 2a

2~12cos 2a! D
2

5
1

2~12cos 2a!
. ~98!

We let 2a vary in the interval@2aeff230°,2aeff130°# that is
consistent with the bound.
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Thus the bounds~94!–~97! should give important and
rather safe information on the angle 2a as it is apparent on
Fig. 5. Even if the penguin-induced error ona may be large,
it is bounded by theoretical arguments, which is already
important statement in view of the possible tests of the c
sistency of the SM.

D. A lower bound on z2a22aeffz from B˜K6p7

It is clear from the examples in Sec. V C that a low
bound onu2a22aeffu would be a valuable information: i
would permit us to eliminate some region around 2a
52aeff and to get four separate intervals for 2a ~see Fig. 1!
instead of the two big ones represented on Fig. 5. Thus
may look for a lower bound on the absolute magnitude of
penguin amplitude. However, without any further theoreti
assumptions~see Sec. VI!, such a lower bound cannot b
obtained using branching ratios only~for example the bound
discussed in Sec. III C is not theoretically justified!. Con-
versely, using directCP asymmetry in theB6→K6p7 de-
cay, it is possible to get a lower bound onuPu, as well as a
slightly improved upper bound with respect to the bou
~91!. The idea is the following: if a directCP asymmetry in
the B→K6p7 channel is detected, then it proves that th

FIG. 5. ~a! The boundu2a22aeffu<D in the (uP/Tu,2a) plane,
obtained as explained in the text, for the numerical exampleadir

50.12, sin 2aeff50.58 ~see Appendix A! andD530° ~solid curves
limited by the small dashes!. ~b! The same bound in the~r,h! plane,
obtained by plotting the circle~98! for 2a varying in the interval
@2aeff2D,2aeff1D#. There are two families of circles correspon
ing to the two possible signs for cos 2aeff . In the background is
shown a crude representation of the early-1998 allowed dom
@32#.
7-15



th
e
if

ing
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mode is fed by both tree and penguin contributions. As
latter are related by SU~3! to the penguin contributions in th
B→p1p2 channel, and thus to the penguin-induced sh
u2a22aeffu, one gets a lower bound on this quantity.17

Analogously to the derivation of Eq.~60!, we get from
Eq. ~40!

2uPK1p2u2 sin2 g5@12A12@adir
Kp#2 cosz#BK6p7, ~99!

where the directCP asymmetry
-

a-

e
x
ra

t

m

cu

ud
-

n
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adir

Kp5
BR~B0→K1p2!2BR~B0→K2p1!

BR~B0→K1p2!1BR~B0→K2p1!
~100!

should be relatively easy to measure for this self-tagg
mode, andz is a useful short-hand for the phase

z52g2Arg@A~B0→K1p2!A* ~B0→K2p1!#. ~101!

Then, the inequalityucoszu<1 together with Eqs.~89! and
~99! imply
l2~12A12@adir
Kp#2!BK6p7<2uPu2 sin2 a<l2~11A12@adir

Kp#2!BK6p7 ~102!

and from Eq.~60!

u2a22aeffu<arccosH 1

A12adir
2 F12l2~11A12@adir

Kp#2!
BK6p7

Bp1p2
G J , ~103!

arccosH 1

A12adir
2 F12l2~12A12@adir

Kp#2!
BK6p7

Bp1p2
G J <u2a22aeffu @assuming 3 and 4#. ~104!

Note that if

l2$12A12@adir
Kp#2%BK6p7<~12A12adir

2 !Bp1p2 ~105!
u-

ec.

uin

al-
-
r-

d
t

due
the SU~3! lower bound in Eq.~102! is useless as it is auto
matically verified thanks to Eq.~58! and the~exact! bound
~63!. Thus this lower bound is only useful in the configur
tion where the directCP asymmetry is very small in theB
→p1p2 channel (adir→0) but large in theB→K6p7 one
~it becomes trivial in the limitadir

Kp→0), in which case the
inequality ~105! is not verified. As an example, it can b
checked that the set of parameters defined in Appendi
verifies Eq.~105!. However, keeping the same branching
tios and choosing the parameters such asadir50 and adir

Kp

50.5, the bound~104! is not trivial:

8°<u2a22aeffu, ~106!

while the bound~103! represents only a tiny improvemen
over Eq.~91!.

Actually, one easily obtains similar lower bounds fro
the two previously studied channels, namely,B→p0p0, B
→K0K0. However, the experimental detection of directCP
violation in these suppressed channels may be a diffi

17Note that a nonvanishing directCP asymmetry in thep1p2

channel already gives a lower bound on the penguin amplit
through Eq.~63!. However, the saturation of the latter bound im
plies only 2a52aeff . Thus one should look for a lower bound o
the penguin amplitude that has to be stronger than Eq.~63!.
A
-

lt

task. Should it be feasible, one may do the full Grona
London and/or Buras-Fleischer analyses~see Sec. VII!.

VI. USING THE B6
˜Kp6 DECAY TO DETERMINE RP

WITH FURTHER ASSUMPTIONS

In this section, in addition to the hypothesis made in S
V B ~assumptions 3 and 4!, we will assume more specifically
that the two following approximations hold~to an accuracy
to be determined! in Eqs.~40!, ~41!.

Isospin symmetry and neglect of electroweak peng
contributions in B→K6p7,Kp6 ~assumptions 2 and 5!.
Note that the isospin symmetry is a consequence of the
ready assumed larger SU~3! symmetry. Neglecting the elec
troweak penguin contribution, which is here colo
suppressed@28#, we are allowed to writePK1p252PK0p1

@13#.
Neglect of theVusVub* contribution to theB1→K0p1

amplitude~assumption 6!. That is,TK0p150. Using a dia-
grammatic decomposition of the amplitude, we haveTK0p1

5uVusVub* u(Ma1Mu2Mt) and PK0p15uVcsVcb* u(Mc

2Mt), where Ma is the tree annihilation amplitude an
Mu(Mc ,Mt) is theu- (c-,t-) penguin amplitude. Note tha
TK0p1 is suppressed byuVusVub* u/uVcsVcb* u;231022 com-
pared to the dominant amplitudePK0p1. Thus we have pre-
sumably uVusVub* uuMu2Mtu!uVcsVcb* uuMc2Mtu, and it is
often assumed that annihilation processes are negligible
to form-factor suppression@6#, which then lead touTK0p1u
!uPK0p1u.

e
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TAMING THE PENGUIN CONTRIBUTIONS IN THE . . . PHYSICAL REVIEW D 59 054007
It is clear that assumption 6 is on weaker grounds than
others made until now.18 Accepting it nevertheless, one
lead to many applications@6,8# among which the most recen
one is the Fleischer-Mannel bound@22#

sin2 g<
BK6p7

BKp6
. ~107!

The latter has been recently questioned@31#. The problem is
that FSI effects may invalidate the notion of color suppr
sion for the electroweak penguin amplitude, thus leading
PK1p2Þ2PK0p1 @30#. Furthermore, the same effects m
enhance annihilation diagrams, involving a significa
VusVub* contribution toB1→K0p1 and a possibly measur
able directCP asymmetry in this channel@31#. We will not
discuss this subject here. Rather we stress as previous
thors that theB→KK̄ decays may help in constraining th
FSI effects@20,34#. In particular, the very easy to detectB
→K1K2 mode is fed only by annihilations diagrams. CLE
has already given an interesting bound on its branching r
@16#:

BK1K2,0.2431025 @90% C.L.#. ~108!

Thus, either the FSI effects are non-negligible and theK1K2

final state should be detected very soon, or they are eve
ally out of reach of experiment and a stringent bound
BK1K2 should be obtained@34#. As claimed by the authors o
Refs.@31#, FSI effects may easily invalidate the bound~107!;
indeed, to get a significant constraint ong, we need the ratio
BK6p7 /BKp6 to be sufficiently less than 119 in order to be
not too much affected by a reasonable theoretical uncerta
induced by the neglect of electroweak penguin and annih
tion contributions. On the contrary, for the case that we
interested in, namely, the extraction ofa, we do not need
BK6p7 /BKp6<1, and we will see that even in the presen
of a sizeable violation of the above assumptions, we can
interesting information in the~r,h! plane. In other words ou
method concerninga is useful whatever the values of th
branching ratios are. However, the Fleischer-Mannel bo
is not affected by SU~3! breaking, while our method is. Not
also that Fleischer@20# and Gronau@34# have proposed very
recently extensive methods which may help to control F
and electroweak penguin effects for the extraction ofg.

Returning to the problem ofa, we use the above hypoth
eses to write uPK1p2u5uPK0p1u5uA(B1→K0p1)u
5uA(B2→K0p2)u and thus@recall the notations~33!, ~38!,
~40!, ~41!#

18In particular, it implies a nontrivial relation between FSI phas
@33#.

19Note that the most recent CLEO analyses@16# give
BK6p7 /BKp6;1; thus the bound~107! becomes useless, even n
glecting the theoretical uncertainties associated with it.
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RP[ulVcbu2
uM ~ t !u2

Bp1p2

5l2
BKp6

Bp1p2
@assuming 3, 4, 5, and 6#. ~109!

The above determination ofRP can be used to insert in
Eq. ~72!. Of course, the readers who do not agree with
assumptions leading to Eq.~109! can use their own model to
estimateRP . Thus the method described here is very ge
eral, and is in any case weakly model dependent as it
pends on only one estimated parameter. The results sh
below in the ~r,h! plane are quite typical of what can b
obtained with such a method.

However, at this stage there is still a problem in using E
~109!: it is clear that we have to give a theoretical err
associated with the above determination of the penguin
plitude. As a guess, we will simply allow relative violatio
of Eq. ~109! of the order of 30 and 60 %, respectively~at the
amplitude level!, and leave for the future any justification o
these values. Actually, as long as this error is less t
100%, the method described here is more powerful than
bounds derived in the previous sections.20

In Fig. 6 we solve Eq.~72! with the theoretical input
~109!, and with the numerical values obtained in Append
A. Note that with our set of parameters, the Fleisch
Mannel bound becomes trivial (sin2 g<1) but it does not
prevent getting useful results from Eq.~72!. Figure 6 shows
that with a reasonable 30% relative violation of the theor
ical assumptions~at the amplitude level! leading to Eq.
~109!, the time-dependentB→pp CP asymmetry defines a
small allowed domain in the~r,h! plane, much more infor-
mative than the more conservative bounds derived in
previous sections. This statement is quite general: if ther
a way to estimate the parameteruP/Tu ~or uPu or RP /RT or
RP) with an uncertainty of order;30%, then Eq.~58! @or
Eqs.~60!, ~71!, ~72!# will give rather strong constraints ona
@or on the allowed domain in the~r,h! plane#. We will see in
Secs. VII A and VII B that the isospin analysis is not mu
better in this respect because it is plagued by more disc
ambiguities. Finally we stress that from the experimen
point of view, our proposal is very favorable: in addition
the usual time-dependentB0(t)→p1p2 CP asymmetry, our
analysis requires only the measurement of theB6→Kp6

average branching ratio, which was already measured@see
Eq. ~47!#. In this sense our proposal represents an impro
ment with respect to the Fleischer-Mannel proposal@8#, be-
cause the latter needs the further knowledge ofBp6p0 and
uVtdu ~see Sec. VII D!.

VII. RECOVERING AND IMPROVING SOME
OF THE PREVIOUS APPROACHES

In this section, we will explain how to recover in ou
language the Gronau-London@4#, Buras-Fleischer @7#,

s
20Unfortunately, it is not clear if the relation~109! is good at less

than 100% relative error. Model-dependent criticisms do not pre
such a huge violation of assumption 6@31#, however, in our case we
have to take into account SU~3! breaking in Eq.~109!.
7-17
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Fleischer-Mannel@8#, and Marrocchesi-Paver@11# proposals,
and in some places we will propose improvements of th
methods.

A. The Gronau-London isospin analysis

Gronau and London have proposed a clean method to
rid of the penguin-induced shift ona @4,13# by measuring all
the B→pp branching ratios in addition to the time
dependentCP asymmetry~30!. Rather than repeating th
geometrical demonstration contained in the original pap
we give here the equivalent analytical formulas and show
isospin construction in the (uP/Tu,2a) plane.

The Gronau-London method relies on the isospin symm
try of the strong interactions: after having defined

F[Arg~Ap1p0A* !, ~110!

F̄[Arg~Āp2p0Ā* !, ~111!

simple trigonometry in Eqs.~76!–~78! gives

cosF5
1

&uAuuAp1p0u
F1

2
uAu21uAp1p0u22uAp0p0u2G ,

~112!

FIG. 6. The solutions of the degree-four polynomial equat
~72! in the ~r,h! plane for the numerical exampleadir50.12,
sin 2aeff50.58, and RP5l2BKp6 /Bp1p250.061 ~see Appendix
A!. A guess value for the relative theoretical uncertainty onRP in
Eq. ~109! is assumed, respectively, 30%~a! and 60%~b!, at the
amplitude level. There are four families of curves corresponding
the two possible signs for cos 2aeff , and to the cosine discrete am
biguity of Eq. ~60! which is hidden in the polynom~72!. In the
background is shown a crude representation of the early-1998
lowed domain@32#.
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cosF̄5
1

&uĀuuĀp2p0u
F1

2
uĀu21uĀp2p0u22uĀp0p0u2G .

~113!

Equations~112!, ~113! are not yet sufficient to trap the pen
guin amplitude. However, settingPEW50 in Eq. ~78! im-
plies Arg(q/pĀp2p0Ap1p0* )52a and thus

2a52aeff1F̄2F. ~114!

To summarize, measuring theB→pp branching ratios al-
lows us to extract the anglesF and F̄ ~up to a fourfold
discrete ambiguity which corresponds to the four possi
orientations of the Gronau-London triangle@4,13#! thanks to
Eqs.~112!, ~113!. As theCP asymmetry gives 2aeff up to a
twofold discrete ambiguity, it is possible to get 2a anduP/Tu
from Eqs.~114! and~58! up to aneightfolddiscrete ambigu-
ity, as Fig. 7 shows.

Let us show explicitly that expressing the problem
terms of sin 2a is somewhat misleading: from Fig. 7, we ca

o

al-

FIG. 7. The eight solutions of the Gronau-London isospin ana
sis, for the numerical exampleadir50.12, sin 2aeff50.58,
Bp6p0 /Bp1p250.71,Bp0p0 /Bp1p250.061 and a directCP asym-

metry in thep0p0 channel equal toadir
p0p0

50.32~see Appendix A!.
~a! In the (uP/Tu,2a) plane, the dots represent the central valu
obtained from Eqs.~112!–~114!, while the solid curves~limited by
the small dashes! represent the allowed domain when assuming t
2a is affected by a 4° uncertainty due to electroweak penguin c
tributions, as explained in the text.~b! The same allowed domain i
represented in the~r,h! plane, where it is obtained by plotting th
circle ~98! for 2a varying in the eight solution intervals. In th
background is shown a crude representation of the early-1998
lowed domain@32#.
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plot the eight solutions of the isospin analysis in t
(uP/Tu,sin 2a) plane, as showed in Fig. 8~a!. Now if we for-
get Fig. 7 and try to get the solutions in 2a from Fig. 8~a!,
we obtain the sixteen solutions of Fig. 8~b!, among which

FIG. 8. ~a! The eight solutions of the isospin analysis in t
(uP/Tu,sin 2a) plane, for the same observables as in Fig. 7.~b! The
solutions in the (uP/Tu,2a) plane obtained by computing
arcsin(sin 2a) and p2arcsin(sin 2a): the comparison with Fig. 7
shows that the crosses are wrong solutions.
e
n-

lor

05400
eight are obviously wrong. Note two important points whi
have been mistreated in the original paper@4# and to our
knowledge in the subsequent literature. First, there areeight
solutions in terms of 2a and also in terms of sin 2a.21 Sec-
ond, the isospin analysis determines 2a rather than sin 2a.

B. Defining the error due to the electroweak penguin
amplitude

One may wonder at the size of the electroweak peng
amplitude, which is neglected in the isospin analysis. Sev
authors have estimated this contribution, which turns ou
be a few percents of the dominantB→p1p2 amplitude
@28,29#. If this estimation is correct, then the correspondi
uncertainty ona may be a few degrees, which is negligib
compared to the most optimistic simulations of the statisti
uncertainty22 @26#. In any case, a simple parametrization
the electroweak penguin effects can be obtained: inde
when PEWÞ0, there are two new parameters, name
Arg(PEWT* ) and uPEWu, and one new observable which
the directCP asymmetry in theB6→p6p0 channel

adir
p6p0

5
BR~B1→p1p0!2BR~B2→p2p0!

BR~B1→p1p0!1BR~B2→p2p0!
, ~115!

which vanishes whenPEW→0. Similarly to the case of the
strong penguin amplitude, as discussed at length in this
per, it is possible to expressa as a simple function of the
observables of the Gronau-London isospin analysis, the
rect CP-asymmetry in theB6→p6p0 channel and the un
known parameteruPEWu. The same technique leading to E
~58! allows us to find
cos~2a22aeff8 !5
1

A12@adir
p6p0

#2
F12~12A12@adir

p6p0
#2 cos 2aeff8 !U PEW

Tp1p0
U2G , ~116!
ter
l-

for

or

.
ec-
where 2aeff8 is the value of 2a whenPEW50 @see Eq.~114!#

2aeff8 52aeff1F̄2F. ~117!

Thus Eqs.~116!, ~117! describe the departure from th
isospin analysis~114! due to the electroweak penguin co
tributions. As a particular case, we obtain the bound

u2a22aeff8 u<arccosF122U PEW

Tp1p0
U2G;2U PEW

Tp1p0
U ~118!

which was derived in Ref.@28#. Note that the ratio
uPEW/Tp1p0u is rather independent of the size of the co
suppression, although the impact ofuPEWu on BR(B
→p0p0) is not negligible.
Thus, whatever the way to estimate the parame
uPEW/Tp1p0u, one is led to a simple and weakly mode
dependent definition of the theoretical error ona induced by
the electroweak penguin amplitude. Using factorization
the estimation of the RHS of Eq.~118!, we find typically
u2a22aeff8 u&4°; this error has been reported in Fig. 7 f

21If, in addition, the mixing-inducedCP asymmetry in thep0p0

is measured, there are stilltwo solutions for 2a ~and thus four fora
in @0,2p#!, contrary to what is said in Refs.@4, 35#. In any case, the
measurement of this asymmetry is expected to be very difficult

22However, one should keep in mind that the effect of the el
troweak penguin amplitude on theB→p0p0 branching ratio is not
negligible in general.
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illustration. This figure shows the sensitivity of the isosp
analysis with respect to the discrete ambiguities: with
error on a as small as 2°~here this error comes from th
electroweak penguin contributions, but unfortunately th
are also the uncertainties of experimental origin which
have not considered!, the four separate solutions~for a given
sign of cos 2aeff) tends to merge quite quickly. This is nota
posteriori surprising: indeed these four solutions are se
rated because of the QCD penguin contributions, i.e.,
cause of a relatively small effect; they become degenera
the no-penguin limit. Comparison with Figs. 5 and 6 su
gests actually that the more simple approaches to contro
penguin effects described in the previous sections may
competitive with the more complete isospin analysis, unl
the observables of the latter are known with a very h
accuracy.

The main drawback of the Gronau-London analysis is
expected rarity of theB→p0p0 channel, whose branchin
ratio is expected to be about 1027– 1026. The neutral pions
are not easy to detect, and one needs to tag the flavor o
B meson in order to get separatelyuAp0p0u and uĀp0p0u, ac-
cording to Eqs.~112!, ~113!. The small number of effectively
useful events expected at ane1e2 B factory constitutes a
difficult challenge to the experimentalists while the impos
bility to detect two neutral pions in future hadronic machin
does not improve the situation. This shows the interest in
bounds~81! and ~83!.

C. The Buras-Fleischer proposal

Considering the experimental difficulties associated w
the Gronau-London analysis, Buras and Fleischer have
posed an alternative way to get rid of the penguin unc
tainty, using SU~3! and the time-dependentCP asymmetry of
the pure penguin modeB→K0K0 @7#. They argue that the
SU~3! breaking effects are of the same order as the e
troweak penguin uncertainty of the isospin analysis.

The idea is simple: similarly to theB→p1p2 decay we
define the time-dependentB→K0K0 CP asymmetry

aCP
KK̄~ t !5adir

KK̄ cosDmt2A12@adir
KK̄#2 sin 2aeff

KK̄ sinDmt,
~119!

where we have used the notation sin 2aeff
KK̄ to make apparen

the resemblance with Eq.~30!: we stress, however, that 2aeff
KK̄

reduces to 2a when theTKK̄ amplitude dominates in Eq
~39!, i.e., when the difference between theu- andc-penguin
amplitudes dominates over the difference between thet- and
c-penguin amplitudes, which is presumably an extreme c
Conversely, in the absence of long-distanceu- andc-penguin

amplitudes, we have sin 2aeff
KK̄5adir

KK̄50 @21,7#.
Thus, following Eq.~60! we find

uPK0K0u25
BK0K0

12cos 2a
@12A12@adir

KK̄#2 cos~2a22aeff
KK̄!#,

~120!
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which reduces touPK0K0u25BK0K0 if the top-penguin ampli-
tude dominates the decay.

Assuming SU~3! and neglecting the~color-suppressed!
electroweak penguin contributions, we may write

uPu5uPK0K0u. ~121!

Thus from Eqs.~60!, ~120!, and~121! we have

@12A12adir
2 cos~2a22aeff!#

2
BK0K0

Bp1p2
@12A12@adir

KK̄#2 cos~2a22aeff
KK̄!#50.

~122!

Defining the following quantity that can be written in term
of observables:

D5A12adir
2 exp~ i2aeff!2

BK0K0

Bp1p2

A12@adir
KK̄#2 exp~ i2aeff

KK̄!

[uDueiC, ~123!

FIG. 9. The eight solutions of the Buras-Fleischer analysis,

the numerical exampleadir50.12, sin 2aeff50.58, adir
KK̄50.21,

sin 2aeff
KK̄50.059, andBK0K0 /Bp1p250.058 ~see Appendix A!. ~a!

In the (uP/Tu,2a) plane, the dots represent the central values
tained from Eqs.~123!, ~124!, while the solid curves~limited by the
small dashes! represent the allowed domain when assuming that
~121! is affected by a guess 30% relative uncertainty. Some of
solutions merge because of this theoretical error, leaving only
separate solutions.~b! The same allowed domain is represented
the ~r,h! plane, where it is obtained by plotting the circle~98! for
2a varying in the six solution intervals. In the background is sho
a crude representation of the early-1998 allowed domain@32#.
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Eq. ~122! becomes

cos~2a2C!5
1

uDu F12
BK0K0

Bp1p2
G . ~124!

As 2aeff and 2aeff
KK̄ are both measured up to a twofold di

crete ambiguity, Eq.~124! gives 2a up to an eightfold dis-
crete ambiguity. An explicit example is given in Fig. 9.

However, from the experimental point of view the stu
of this decay may be as difficult as the isospin analysis: F
it is a pureb→d penguin decay and is thus expected to
very rare (;1027– 1026) @19#. Second, the time-dependen
of the decay rate may be difficult to reconstruct because
neutral kaons decay far away from the primary vertex. T
shows the interest in the bound~87!, very symmetrically to
the case of the isospin analysis.

D. The Fleischer-Mannel and Marrocchesi-Paver methods

Fleischer and Mannel@8#, as well as Marrocchesi an
Paver@11# had already remarked that knowing the value
uP/Tu alone leads to the extraction ofa. Therefore they have
used Eq.~58! without explicitly having written it, and with-
out having noticed the complete generality of the meth
Let us briefly sketch the main points of their studies.

Fleischer and Mannel use a first-order expansion
uP/Tu. We have shown that this approximation, although n
merically good, is unnecessary: Eq.~58! is exact and not
more complicated than its first-order expansion.

Fleischer and Mannel estimateuP/Tu by assuming Eq.
~109! and neglecting the color-suppressed contributions
B6→p6p0 @8#

UPTU
2

5UVtdVtb*

VcsVcb*
U2

3
BKp6

2Bp6p0
, ~125!

while Marrocchesi and Paver use factorization to calcu
~in this caseuP/Tu is just proportional to a ratio of short
distance Wilson coefficients times a CKM factor! @11#

UPTU5 sin~a1b!

sinb
30.055. ~126!

The two above equations represent alternatives to the me
presented in Sec. VI, although in the second case it is
clear to what extent factorization can be used to calcu
uP/Tu @19#. Note that these two approaches use a sin
model-dependent input, as the method we have propose
Sec. VI.

Both Fleischer and Mannel and Marrocchesi and Pa
face the problem of knowinguVtdu or sin(a1b)/sinb. The
first two authors assume simply thatuVtd /(lVcb)u is known
from CP-conserving measurements@8#, while the second two
authors take the value ofb as it would be given by the future
measurements of theB→J/cKS CP asymmetry and obtain
an equation depending ona alone @11#. However, it is not
clear if CP-conserving measurements will giveuVtd /(lVcb)u
with enough accuracy, and using instead the value ofb un-
fortunately propagates the uncertainty and the discrete a
05400
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guities associated with the measurement ofb into the extrac-
tion of a. We have shown in Sec. III F that one can avo
these problems by directly writing easy-to-solve polynom
equations in the~r,h! plane, therefore without invoking othe
independent CKM measurements. For the Fleischer-Man
proposal one should write uP/Tu25l2u12r2 ihu2
3BKp6 /(2Bp6p0) and report this expression into Eq.~58! to
obtain an equation23 in the variables~r,h!, without the need
to know uVtd /(lVcb)u. For the Marrocchesi-Paver metho
one should simply insertRP /RT50.055 in Eq.~71! indepen-
dently of b. Thus our framework allows us to significantl
improve these proposals.

Finally we would like to stress once again the importan
of the discrete ambiguities. While they are not discussed
all by Fleischer and Mannel@8#, we believe that the treat
ment of Marrocchesi and Paver is incomplete: for a giv
value ofuP/Tu ~inferred from factorization and a given valu
for b!, they find two solutions fora between 0 andp. We
have shown in Sec. III D that there are four such solutio
which, because of the finiteness of the errors~both theoreti-
cal and experimental!, may merge among themselves.

VIII. CONCLUSION

We have shown that in the presence of penguin contri
tions, the information on the CKM anglea coming from the
measurement of the time-dependentB0(t)→p1p2 CP
asymmetry can be summarized in a set of simple equati
expressinga as a multivalued function of a single theore
cally unknown parameter. These equations, free of any
sumption besides the standard model, provide by themse
an exact model-independent interpretation of futureCP ex-
periments.

It is also possible to choose as the unknown a pure Q
quantity, in which case the above equations should be
pressed directly in the~r,h! plane, thanks to the unitarity o
the CKM matrix which predicts relations between theCP-
violating angles and theCP-conserving sides of the unitarit
triangle. Whatever the choice of the single unknown, su
as, for example, the ratio of penguin to tree matrix eleme
this unavoidable nonperturbative parameter inB→p1p2

could be compared toBK in the kaon system which allows u
to report the measurement ofeK in the~r,h! plane. However,
the ratio uP/Tu is a much more complicated quantity tha
BK , and would be very difficult to obtain from QCD funda
mental methods.

Using our analytic expressions, we have assumed s
reasonable hypotheses to constrain the free parameter. D
so we have derived several new bounds on the peng
induced shiftu2a22aeffu, generalizing the result of Gross
man and Quinn@15#. One of these bounds is determined
the ratio l2BK6p7 /Bp1p2, which should have an experi
mental value very soon.

Accepting less conservative assumptions, stronger c
straints ona can be obtained. For example, in the lim

23We have not written this equation, which is not Eq.~71!, be-
cause theBKp6 /(2Bp6p0) ratio already incorporates auVub* u factor.
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where the annihilation and electroweak penguin diagra
can be neglected, and using SU~3!, the knowledge of the
B6→Kp6 branching ratio is sufficient information to ex
tract the theoretical unknown. Assuming a reasonable 3
relative uncertainty~at the amplitude level! on the unavoid-
able hypotheses, a relatively small allowed domain in
~r,h! plane can be found, independently of any other m
surement. This method could be competitive with the f
Gronau-London isospin analysis, because the latter
plagued by twice as many discrete ambiguities. From
experimental point of view, our proposal may be much ea
to achieve. More generally, if by some other argum
knowledge of the modulus of the penguin amplitude—or
ratio of penguin to tree matrix elements—with a;30% un-
certainty can be achieved, then rather strong constraintsa
should be obtained.

However, we do not pretend that the theoretical unc
tainty on a will be small. Rather we believe that this erro
may be quite well controlled by conservative argumen
This shows the importance of generalizing our framework
other channels sensitive toa: if we are unlucky in thep1p2

channel, it may happen that we are lucky in others. As
problem of the discrete ambiguities is crucial in these ana
ses, the modes providing newCP observables are of particu
lar interest: for example, measuring directly the sign
cos 2aeff rather than determining it from the SM constrain
on the UT would be valuable information, even in the pre
ence of sizeable penguin contributions, as it would allow
to reduce the discrete ambiguities generated when expres
a as a function of the observables and of one mod
dependent input. It has been shown previously@36# that the
analysis of theB→rp→3p Dalitz plot24 actually leads to
the measurement of a kind of cos 2aeff ~which is, of course,
different fromaeff in B→pp), and we are currently study
ing the possibility of describing this interesting decay sim
larly to B→pp @37#. Likewise the angular distribution of th
decayB→LL̄ also contains terms proportional to the cosi
of an effectivea angle@38#.

It is quite clear that all the strategies proposed until n
to disentangle the penguin pollution in various channels w
give different information ona, each relying on very differ-
ent theoretical assumptions and on different observables.
framework allows us to treat all these sources of informat
in a transparent and unified way. Thus we will certainly ha
a strong cross check of the various results. If this cross ch
is successful, we may think to combine these results in o
to have a more precise knowledge ofa. However, we are
aware that combining theoretical and experimental errors
difficult problem by itself which is beyond the scope of th
present paper.
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APPENDIX A: A TYPICAL SET OF THEORETICAL
PARAMETERS

In this appendix, we define a typical set of parameters
order to compute the relevant observables. We assume
assumptions 1–6 are exact, and neglect furtherall annihila-
tion diagrams. Thus the amplitudes in Eqs.~33!–~35!, ~39!–
~41! can be written as

A~B0→p1p2!5eigT1e2 ibP, ~A1!

A~B0→p0p0!5
1

&
@eig~T2Tp1p0!2e2 ibP#, ~A2!

A~B1→p1p0!5
1

&
eigTp1p0, ~A3!

A~B0→K0K0!5PS e2 ib1UVub*

Vtd
Ueigr uD , ~A4!

A~B0→K1p2!5leigT1U Vts

lVtd
Uei ~d82d!P, ~A5!

A~B1→K0p1!5U Vts

lVtd
Uei ~d82d!P. ~A6!

Note that in the strict SU~3! limit and neglecting annihilation
diagrams,d85d.

Numerically, we takeBp1p250.7531025, which fixes
the normalization of the amplitudes and chooseT real which
fixes the origin of phases. Then we chooseuP/Tu50.25
which is a quite sizeable value~see Sec. III C! and d
5215° which is a large violation of naive factorizatio
which givesd5180°. The normalization is then given b
uTu50.82631022.5 ~in ‘‘units of two-body branching ra-
tio’’ !. We choose alsoTp1p051.25e2 i7°3uTu which takes
into account the usuala2;0.25 color-suppression factor an
some FSI phases,d85120°, andr u50.3e1 i75° which is a
ratio of long-distance over short-distance penguin matrix

-
-

TABLE I. The various average branching ratios~in units of
1025) from our set of parameters. They are consistent with CL
data~47!.

Bp1p2

~normalization! Bp0p0 Bp6p0 BK0K0 BK6p7 BKp6

0.75 0.0455 0.533 0.0433 1.075 0.94
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ements. For the CKM parameters, we havel50.2205 and
take r50.10, h50.34 which is around the center of th
early-1998 allowed domain (a585.7°) @23#. The resulting
values for the observables are summarized in Tables I an
Let us stress that these values are only indicative and tha
real numbers may be very different. Our set of parame
results from a compromise between the need to take
account various effects in a more or less realistic way and
pedagogical needs~for example, it is easier to discuss th
number of discrete solutions when they are quite well se
rated, which is often not the case in practice!. Finally we
notice that the penguin-induced shift ona is quite large for
this set of parameters: 2a22aeff5126.7°.

APPENDIX B: BOUNDS INDEPENDENT OF DIRECT CP
VIOLATION

Here our purpose is to derive bounds which are fully
dependent ofadir , and thus are not affected by the expe
mental uncertainty associated with the measurement of d
CP violation @39#. As far as the bound~16! is concerned, a
different demonstration has been given by Grossman
Quinn @15#.

Consider the bounds~16!–~19!: they all can be written as

12m

A12adir
2

<cos~2a22aeff!, ~B1!

TABLE II. The variousCP asymmetries from our set of param
eters.

adir sin 2aeff adir
p0p0

adir
K0K0

sin 2aeff
K0K0

adir
K6p7

0.117 0.579 0.317 0.209 0.0592 0.108
r,
r

g
g.,

05400
II.
he
rs
to
e

a-

-

ct

d

where m is a positive ratio of branching ratios and is e
pected to be smaller than 2~otherwise the bound is useless!.
If adir is not known, then 2aeff is not known either. Rathe
one gets from the sinDmt term in Eq.~32! the effective angle

sin 2āeff[A12adir
2 sin 2aeff . ~B2!

Sinceusin 2āeffu<usin 2aeffu one has

ucos 2aeffu<ucos 2āeffu. ~B3!

As the sign of cos 2āeff is not observable, it can be chose
arbitrarily. It is convenient to define

sign~cos 2āeff![sign~cos 2a!, ~B4!

in such a way that Eq.~B3! gives

ucos 2aeff cos 2au<ucos 2āeff cos 2au5cos 2āeff cos 2a.
~B5!

Thus Eqs.~B1! and ~B5! imply

12m<A12adir
2 cos 2aeff cos 2a1sin 2āeff sin 2a

<ucos 2aeff cos 2au1sin 2āeff sin 2a

<cos 2āeff cos 2a1sin 2āeff sin 2a

5cos~2a22āeff!, ~B6!

and we obtain the announced result, namely,

12m

A12adir
2

<cos~2a22aeff!⇒12m<cos~2a22āeff!.

~B7!

It is straightforward to demonstrate an analogous result
the bound~15!.
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