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Penguin contributions, being non-negligible in general, can hide the information on the Cabibbo-Kobayashi-
Maskawa angler coming from the measurement of the time-dependgt) — 77~ CP asymmetry. Nev-
ertheless, we show that this information can be summarized in a set of simple equations, expressiag
multivalued function of a single theoretically unknown parameter, which conveniently can be chosen as a
well-defined ratio of penguin to tree amplitudes. Using these exact analytic expressions, free of any assumption
other than the standard model, and some reasonable hypotheses to constrain the modulus of the penguin
amplitude, we derive several new upper bounds on the penguin-induced2shift2 a4, generalizing the
recent result of Grossman and Quinn. These bounds depend on the average branching ratios of some decays
(70, 7% K°KO K* ™) particularly sensitive to the penguin contributions. On the other hand, with further and
less conservative approximations, we show that the knowledge @&theK = branching ratio alone gives
sufficient information to extract the free parameter without the need of other measurements, and without
knowing |V4| or |Vyp|. More generally, knowing the modulus of the penguin amplitude with an accuracy of
~30% might result in an extraction @f competitive with the experimentally more difficult isospin analysis.

We also show that our framework allows us to recover most of the previous approaches in a transparent and
simple way, and in some cases to improve them. In addition we discuss in detail the problem of the various
kinds of discrete ambiguitie$S0556-282(199)01903-1

PACS numbds): 13.25.Hw, 11.30.Er

I. INTRODUCTION flavor of the B meson, constitutes a difficult challenge to
e*e” B factories and an almost impossible task for future
In the near future, several collaborationsABAR, hadronic machines—the CERN Large Hadron Collider
BELLE, the Collider Detector at FermilalCDF), CLEO, (LHC), BTeV.
DESY HERA-B—will hopefully make the first measure-  Then it was realized by Silva and Wolfenst¢5] that by
ments ofCP violation in theBy system{1]. The most impor-  extending the flavor symmetry to $8) one can gain further
tant consequences concerning the standard m&hé) will information on penguin effects, the key point being Ke
be the determination of the unitarity triandldT). However, modes where the ratio penguin to tree matrix elements is
if the measurement of the UT angle si@ Zeems to be certainly greater than 1. Considering the crudeness of the
straightforward from both experimental and theoreticalassumptions made in the original paper in addition t¢33U
points of view thanks to the very cle@—J/ /K decay, the the method has been extended until a high level of sophisti-
extraction ofa from the standard mode— ="~ is stillan  cation by several authof$]. As a consequence, it is not
open problent. Since it has been pointed out that QCD andclear to what extent such complicated geometrical construc-
mixed QCD-electroweak radiative correctidiealled “pen-  tions, plagued by multiple discrete ambiguities, are sensitive
guin” corrections induce potentially large theoretical uncer- to « and to the unavoidable theoretical assumptions. There-
tainties on this anglg2], many papers have been devoted tofore these strategies will give conservative results only when
this subject3]. a better understanding of nonleptofdadecays is available.
In a pioneering papef4], Gronau and London have In addition, two simpler S(B) approaches concerning
shown that the knowledge of th&(B)— =" x ,#%#°  have been proposed by Buras and Fleis¢fiand Fleischer
7+ branching ratios leads to the determination of the glu-2nd Mannel[8] respectively, which will be discussed in
onic penguin effects, assuming isospin symmetry and nehore detail below. o
glecting electroweak penguin contributions. Then, with this One can also use a model—usually factorization—to es-
information and the usual mixing-induc&P asymmetry it timate the penguin amplitude, and then compute the differ-
is possible to getr up to discrete ambiguities. The main €nce betweer at the input andr« at the output, as Aleksan

drawback of this interesting method is the expected small€t al-[9] and Ciuchiniet al.[10] did, or directly get a model-
ness of theB— 7%7° branching ratio (10°—10°) due to  dependenta as was proposed by Marrocchesi and Paver

color suppression. This fact, combined with the detectiort11]- Thus, after having hunted 2], trapped 13], and made
efficiency of the final state and the needed tagging of the

2Actually we will see that the Marrocchesi-Paver methiad] is
*Email address: charles@qcd.th.u-psud.fr essentially the same as the Fleischer-MarB¢bne, although the
Throughout this papeB stands for &84 meson. theoretical input is different.
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the zoology[8] of the penguin diagram, it is time to begin new. Assuming the larger §B) symmetry, we obtain two
taming it. To accomplish this task, we first remark that mostnew bounds depending on BR{K°K® and \2BR(B
of the authors cited above have computed the observables—K=7*), respectively, which, not surprisingly, may be
branching ratio andCP asymmetries—as functions of the more constraining than the $2) ones, and which need
theoretical parameters—QCD matrix elements and CKMsome, but not all, the usual assumptions concerning the ne-
factors, including the angle. We will follow the opposite  glect of annihilation and/or electroweak penguin diagrams.
way, and show that it is indeed a fruitful approach. AlthoughAs far as the branching ratios of the penguin-sensitive modes
fully equivalent to the “traditional” one, it leads to a very are concerned, these bounds do not need flavor tagging and
important and simple new result: it is possible to expres@re still valid when only an upper limit on the branching
independently of any mod&land in an exact and simple way ratios is available. In addition, they can b_e slightly modified
all the theoretical parameters, including the anglas func- (0 be used W+he[‘ the actual value of the di@Btasymmetry
tions of the experimentally accessible observables and df the B—" 7~ channel is not available, as it is shown
only one real theoretical unknown. The latter can be choseHeIOW' Depe”d'ﬂg on the actual valges of the branching ra-
as, €.9.|P/T|, the ratio of “penguin” to “tree” amplitudes tios, the theoretical err(o)r oa constrained lzy these_bounds

. . ' . . could be as large as30° or as small as-10°. In particular,
(which are unambiguously defined belpwt is also possible

) the most recent CLEO analyses of theé 7~ and K=z *
to use as the unknown a pure QCD quantity, free of any . o .
. . modes[16] allow us to give, for the first time, the following
dependence with respect {&,4| or |V}, contrary to the

. i numerical bound:
parameter|P/T|; in the latter case, we give polynomial

equations directly expressed in thez) plane. We have ex- |2a—2aeq<A, with 25°<A<59° @
ploited these exact analytic expressions to derive several new

and simple results and to recover some of the previous aRissuming rather weak hypotheses in théBUmit (see Sec.
proaches. The main points of this paper are the following. VB) and BRB— 7" 7 )>0.4x10"5 in addition to the
Using the exact parametrization in terms|8/T|, itis | EQ data.

possible to represent th_e information given by the time- Finally, after having stressed that only one hadronic pa-
dependenCP asymmetry in the|P/T|,22) plane. Of course  rameter has to be estimated by the theory in order toaget
without any further assumption on the magnitude|RfT|  \ve give one new explicit example: assuming(Stand ne-
there is no way to constraie. But this (P/T|.2a) plot  glecting annihilation and electroweak penguin diagrams, we
provides a nice transparent presentation of experimentahow that BRB*—K*) gives sufficient information to
data, where our ignorance of the strong interactions is relgglye a degree-four polynomial equation in tier) plane,
egated to a single parameter. o _ the roots of which can be represented as curves in this plane.
As soon as one is interested in quantifying the size of thesontrary to the Fleischer-Mannel propo8), ours does not
penguin diagram—and indeed we asi) 2« is not @ good  peeq the knowledge 44| or [V, and requires only the
parameter.One should simply usec2instead. Actually us-  easurement of BR> —K=>) in addition to the usual
ing sin 2 rather than & is not wrong, but one loses half of time-dependenB— 7"~ time-dependenCP asymmetry.
the information as we will see in detail _bek_)w. _Thls is al- Alternatively, the knowledge of the modulus of the penguin
ready true at the level of the parametrization in terms Ofympjityde (or the ratio of penguin to tree matrix elements
|P/T|, and this is also true for aI_I the_methods_allowmg US ©with an uncertainty of~30% should provide a rather good
remove the penguin effects, which give genericaliyrather  estimation ofa. This kind of strategy, although affected by
than sin 2y, up to discrete ambiguities. To make clear this hstentially large theoretical uncertainties, may be necessary

point which up to now has remained confused, we will trealyhen the more conservative bounds are too weak to be really
explicitly the example of the Gronau-London isospin analy-sefy| in testing the SM.

sis. On the contrary, the observables depend only @2 The paper is organized as follows: in Sec. Il, we summa-
equivalently on tam, and thus thex— 7+« ambiguity i rjze the main results of this work—this section should be of
always presentl4]. immediate use for the reader not interested by the develop-

~ Bounding the magnitude of the penguin amplitude allowsment, |n Sec. 11l we fix our notations in writing the general
directly to bound the shift of the CKM angle from the  narametrization of the amplitudes. With the help of the re-
directly observableres. This can be done using information cent CLEO measurements of nonleptonic charmBsse-
from decays particularly sensitive to the penguin contribucays we give some rough orders of magnitude of the ex-
tions. For example, assuming & isospin symmetry and pected penguin pollution. Then we derive the equations
neglecting electroweak penguin diagrams we are able to dgjiving the theoretical parameters, includiag as functions
rive two bounds depending on BR( 7%7°), one of which  of the observables and the theoretical unknown, treated first
being the Grossman-Quinn bourd5] while the other is a5 a free parameter, and latter eventually constrained under
reasonable hypotheses. For example, in Sec. IV we show
how to use in our framework the information coming from
3In this paper, “model independent” means not relying on a par-the B—a%7° and B*—x*#° decays, to obtain the
ticular hadronic model which describes nonperturbative physics. Ofsrossman-Quinn bound and a new similar isospin bound. In
the contrary, we will assume that the SM holds for the parametriSec. V we exhibit two new bounds, based on thg3ds-
zation of CP asymmetries and amplitudes. sumption, which may be more stringent than the two isospin
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bounds. Then in Sec. VI we discuss an explicit examplecog2a— 2 a)
where the theoretical unknown is actually estimated rather
than bounded. A reasonable knowledgerafan be expected
even if one allows a sizeable violation of the theoretical as-  _ 1
sumptions. In Sec. VIl we discuss how to incorporate and Vi-aj,
improve some of the previous approaches in our language,
and clarify some points which have been mistreated in the
literature, in particular the problem of the discrete ambigu-
ities. Our conclusion is that although the penguin-induced
error ona is expected to be quite large in tlBe— 7" 7~ 2_ /
channel, it shoullod be under th?a controsljJ of the theory. There-lp| 1- cos2a[1 1-ag, cog2a—2ac)], (7
fore the generalization of the methods presented here to other
channels is very desirable to get more constraintg.on
This paper has two technical appendixes. The first(@ne
explains how we got the values of the observables from a
naive calculation, in order to numerically illustrate our pur- |T|?= - COSZa[l V1—ag, cos 2], (8)
pose before experimental data is available and the second
one (B), following Grossman and Quini5], shows explic-
itly the existence of bounds which are independent of the
measurement of the dire@P asymmetry.

1—(1—y1—aj3, cos 2uen)

P2

agirtana
tans= 5 . : 9

A. Exact model-independent results

Defining the standard mod&— 7" 7~ amplitudes
Rather tharjP/T|, |P|, and|T| which incorporate, respec-
tively, a|Vig/Vl, [Vigl, and| V| factor, one may prefer to

ABY— 7 7 7) =V, VM W+ VigVEM Y write Egs. (6)—(8) in terms 0f|M(t)/M(“)| IM®], and
IM(“], respectively[see the definition2)]. As |V,4 and
=et"T+e AP, (2) |V}, depend also on the UT, it is not possible to express

such relations as functions af alone; instead we use the

Wolfenstein parametrization and find three polynomial equa-

tions in the(p,7) plane. With the definitions of the following
A(B— 7 ) = VEV oM@+ VEV M combinations of observables:

=e "T+etiBp, (3

= — 32 = — 32 s
the time-dependerB®(t)— =" 7~ CP asymmetry D= V1~2g €S Zerr, D=1 ad"smzae“’(lo)

acp(t)=ag, cosAmt—y1—aj, sin 2a.sSinAmt, (4)
and the theoretical parametétd | and|M™)| normalized

t0 VB« ,—/|\Vgy)
and the averagB, B—f, f branching ratio
Rp M2 | (t)|
R_:‘W » Rp= |)\Vcb|2 o
:—[BR(B—>f)+BR(B—>f)] (5) T Bt
M2
Rr=\Ver|*g—— (11)

we prove in the following that the standard model predicts

very simple relations betweea and |P/T|, |P|, [T| and &

=Arg(PT*), respectively, these relations depending only on

the observableB .+ .-, aqi;, and 2xq and being completely one has two degree-four polynoms depending, respectively,
free of any assumption on hadronic physics: on Rp /Rt andRp

054007-3



JEROME CHARLES PHYSICAL REVIEW D 59 054007

R R R
(1-Do)| 1 o | p*+2(1-Dg)| 1- o | p29?+(1-Dg)| 1— 5= | n*
Ry Ry Ry

R R
~2(1-Dg)[ 1-2 57| p3~2Dp?p—2(1-D,)| 1-2 5 | pp?>— 2D’
Ry Ry

Re| , Re|
+(1-Dg)| 1-6—=-|p?+2Dgpn+|1+Dc—2(1-Dy) = |7
Ry Ry
Re
+(1-Do) 5 (4p=1)=0, (12
T

(1-Dg)p*+2(1-D—Rp)p®7°+(1-D¢—2Rp) 7*
—2(1-D¢)p®~2D¢p?p—2(1—~ D~ 2Rp) p7*~2Dsn°
+(1-Dy)p2+2Dgpy+(1+D.—2Rp) =0, (13

and one linear equation depending Rf (the + sign being  hypotheses we use in addition to the SM; some of the results
related to a discrete ambigujty that we derive rely on a few reasonable assumptions chosen
in the list below.
V1=D¢(p—1)= y2R;—1+D7=0. (14 Assumption 1,|P/T|<1. This very conservative bound
should be distinguished from the small penguin expansion.
Assumption 2, S(P) isospin symmetry of the strong in-

Equationg(12)—(14) are another way of writing Eq$6)—(8)
by replacing, respectivelyfP/T|, |P|, and|T| by the ratios ;
Rp/Rt, Rp, andRy: the advantage is that the latter param-teraCt'onS' . .
eters do not depend on the badly known Cabibbo-Kobayashi- Assumption 3, S(B) flavor symmetry of the strong inter-

. * actions.
Maskawa(CKM) matrix element$Vyq| and|V{,). Assumption 4, neglect of the OZI-suppressed annihilation

) o penguin diagramsgsee Fig. 4.
B. Phenomenological applications Assumption 5, neglect of the electroweak penguin contri-
It has become standard in ti&P literature to use several butions.

phenomenological assumptions, some of which can be very Assumption 6, neglect of the .V}, contributions to the
good while some others can be strongly violated. As a resulB* — K%z " amplitude.
it is often not easy for the reader to know exactly which Upper BoundsWe have found several quantities bound-
approximations are used by the authors, and thus to make hisg the shift of the true @ from the experimentally acces-
own opinion about the accuracy of these theoretical prejusible 2a.+, among which Eq(16) is the Grossman-Quinn
dices. In this paper, we will try to state clearly what kind of bound[15], while the others are new.

if sin2ax>0, 0<2a<27—2 arcsinsin 2a.y),

if sin2aer<0, —2 arcsifsin2aq4)<2a<27 [assuming 1, (15

1 B.0,0 )
|2a—2aeﬁ|sarcco%\/1ﬁ 1_28 0) [assuming 2 and 15 (16)
_adir s
1 B ;0,0 .
|2a—2aeﬁ|sarcco.;ﬁ 1_46 . ) [assuming 2 and 5 (17
L V4~ Qgir mem /]
1 Byoia \ |
|2a—2aeﬁ|sarcco.;W 1—28K+K ) [assuming 3 and 5 (18
L ~ CSdir L
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1
|2a— 24| <arcco —2( 1-2)\?2
V1—ag;

Following Grossman and Quifdi5] we show that, under
the same hypotheses, the above upper bounds still hold if one T'(B°(t)— 7" 7 7)

replaces in Eqs(15)—(19) agyi by zero and 2« by 2aq
where the latter effective angle is defined by

sgn(cos Zuqg) =sgn(cos 2),

sin 2agg=+1— adzir SiN 2agg; -
For example, one has the bound

KE 7+

|2a—2§eﬁ|sarcco%1—2)\28 [assuming 3 and ¢

(21)

’7T+7T

and so on. Although these bounds|@a— 24 are weaker

than the ones oo —2a.g|, they have the advantage that

they do not depend on the measuremenagf: indeed, the
angle 2. is accessiblgup to a twofold ambiguity from
the sinAmt term only[see Eqs(4) and(20)]. Therefore the
experimental uncertainty should be smaller far,g than for
2aq4. In addition to these upper bounds, we deriviower

bound on|2a—2a.q| in Sec. VD, to which we refer the

reader for more details.

Determination ofe. We propose a new method for the
extraction ofa—up to discrete ambiguities, which improves

the Fleischer-Mannel propos@].

The idea(often used in the literatuyds to estimate the
modulus of the penguin contribution with the help of the

B*—K=* decay. We avoid the problem of knowinyg|
by using directly the polynomial equatiqd3) in the (p,7)
plane, with the theoretical parametp given by

By
Bﬂ+ﬂ7

Rp=A\2 [assuming 3, 4, 5, and]6 (22

This typically leads to draw four allowed curves in tfg7)

plane, which in the limitR,— 0, reduce to the two circles

representing the no-penguin solution sirF2Sin 2o .

Ill. THEORETICAL FRAMEWORK

A. Standard model parametrization of the amplitudes

The aim of this section is to recall some already known

PHYSICAL REVIEW D 59 054007

B, Eg
BK ) [assuming 3 and §4 (19
ata~
|
CIAPHAR JAPTAR
st osAmt
d— ).
—Im EAA sinAmt, (23
(200  Wwhere
A=AB’—7*77), A=AB’-x'7), (29

and g/p=exp(=2iB) in the Wolfenstein phase convention,
which provides an expansion of the CKM matrix in powers

of A=|V,J~0.22[17]. With this convention, one has

Arg(Vis) =O(\?),
(29

B=Arg(—Viy), vy=Arg(—Vy),

while the other CKM matrix elements are reab to highly
suppressed" term9 and the anglev is given bya==7—8
— 7. Defining

results and to fix the notation used in this paper. The time- _
dependent rate for an oscillating st&&(t) which has been The time-depender€P asymmetry reads

tagged as 8° meson at time=0 is given by(for simplicity

the e ™ and constant phase space factors are omitted

below')

“Tiny differences between phase space of the various channels

discussed in this paper are neglected.

1 _
BﬂﬂrT,—EE[BR(BO*MT*—’IT_)'FBR(BO*WIT_F’IT_)],
(26)
|AI2—|AJ?
e — 27
|A[Z+|A[2
q__
2acgy=Arg| JAA* |, (28)
the rate(23) becomes
I'[B°(t)—=" 7 ]=B,+,-[1+a4, cosAmt
—\1-aj, sin 2agsinAmt].
(29
T[BYt)— 7 7w ]-T[BY(t)— 7" 7]
acp(t)= — — -
I'[Bt)— =7 ]+T[B°(t)— o7 ]
= ag, CoSAmt—/1—a3, sin 2aq¢SinAmt.
(30
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We may define another effective angle’by tion are in fact still valid if the latter hypothesis is relaxed.
. The CP-conjugate channels are obtained by reversing the
SgN(COS 2uefr) =SQr(COS 2x), sign of the weak phases:
sin 2ag= v 1— a3, Sin 20 31) A . =e T __+etibp__. (36)
such as As said above, neglecting penguin diagrams.{=0) gives
acp(t)=ag, cosAmt—sin 2azSinAmt. (32

2= Arg ETwﬂfom,ef2i7 =2a. (37)
aqr is the direct CP asymmetry, while sin@. P
=\/1—ad2irsin 205 IS the mixing-inducedCP asymmetry. In
the absence of penguin amplitudes, one bhgs=0 and
Sin 2e=SiN 20 =Ssin 2o. The experiment allows the mea- T,+.-=T, P+, =P, (38)
surement of three fully model-independent observables, one
is CPinvariant (8,+,-), while the two others ar€P asym-  and we will call theT and Pamplitudes “tree” and “pen-
metries Qg and sin 2 OF g and sin 2vey). guin” respectively, althoughT gets contributions fromu-

It has often been assumed in the literature that the domiand c-penguin diagram®.

nant penguin amplitude is the top-mediated one, with the | this paper, we will also consider thB—K°K?, B

consequence that this amplitude is proportionaVtgVy, . —K*7*, andB*—K«~ decays. For the former, we adopt
This assumption has received a lot of attention recentlghe following parametrization:
[18,19. In any case, th&-penguin contributions which are

From now on we will denote in the whole paper

proportional toV,4V;, (as well as other contributions such A(BO— KK =V 4V¥,M LUKLJFthVTbM:(UE
as exchange diagramsan be incorporated in the definition . '
of the “tree” amplitude. Contributions proportional to =e""Tyx+e "PPyk, (39

V. 4¢Vap—"‘charming penguin contributions'{19}—can be

rewritten, by CKM unitarity ¥/oqVZ,=—VyqVi,—VigVs),  While for the latter it is convenient to expand on the CKM

in terms of the two other combinations. Thus, just from thebasis ¥usVip,VesVe,) (recall thatVeVg, is real in the

weak phase structure of the SM, we may write B8  Wolfenstein convention
— ot~ physical amplitude as w ©
A(BO‘)K+7T_):VUS :bM +VcsV:bM

— * (u) * np () Kom™ K
A VUdVUbM +thVIbM Ee+inK+'n'_+ PK+7T_1 (40)
=e""T +,-+e PP+ - (33
. AB* =Koz M)=e " Tyo,++ Pyoy+. (41)
and similarly for the other 2 channel®
As far as theB—K°K® amplitude is concerned, we have
used the notationTk to make apparent the resemblance
with the other channels; however, it should be stressed that
(34)  this decay is a pure penguin process. Actudliy represents
the contribution of the long-distanae and c-penguin dia-
grams[21].

1 ) )
A 0,0=A(B— 7070)= —2<e*"Tﬂoﬁo+e*'ﬁPﬁo,To),

1 : .
A+ 0=AB" =7 7%)=—(e""T + ote PP _+ o). Let us repeat that Eq$33)—(36) and(39)—(41) rely only
V2 on the standard model.
(39
Let us stress that there mbsolutely no approximatioin B. General bounds

writing Eq. (33)-(35): T,, and P, are CP-conserving Similarly to Eq. (26), we will denote byB;; the CP-
complex quantities, defined by the weak phase that the¥onserving average branching ratio

carry, and they incorporate all possible SM topologies such
as tree, penguin, electroweak penguin diagrams, etc. In this
sense, manynot all, however of the methods proposed pre-
viously for the extraction ofr in the top-dominance assump-

Bf,f*:%[BR(Bﬁf )+BR(B—f)]. (42

Of course, numerical estimates of quantities suchP43| may

5As the sign of cos @y is not observable, it can be defined arbi- be greatly modified by charming penguin diagrgh8,19.
trarily. However, the exact definition is important for the derivation °Be careful to note that our definition of “tree” and “penguin”

of the boundgsee Appendix B amplitudes, relying oi€P phases, is slightly different from the one
5Note thatP -0 comes from electroweak penguin contributions, used in Refs[12, 20, although the consequence is the same: these
and/or from isospin symmetry breaking. so-defined amplitudes are unambiguous and physical quantities.
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For example, where BB, is a typical scale of th®— K branching ratios,
1 assuming that these channels are dominated by the QCD
= ¥ 0_+ - 0._- penguin diagrams, and that the QCD part of the penguin

By Z[BR(B —KIm)FBRBT KT )] (43 matrix elements are of the same order far andK . Thus

we obtain
and so on.

From the discussion in Sec. lll A, it is clear that the SM P . Bs
predicts eachB®—f decay amplitude as the sum of two T =\|[siny| B (50)

terms carrying two differen€P-violating phasesp;, ¢,:

where we have useld/,q/Vp| =\ siny/sina.

A(B'—f)=e*""1M +e"%2M,, Numerically, from the current SM constraints on tper)
. , , parameter$23], we have|siny|=0.6. The CLEO dat#47)
A(BY—f)=ni(e”' 1M +e™ ?2M,), (44)  suggest/B,+,.-=1/0.84 which gives
whereM, andM,, although complex numbers, a@® con- P
serving and the sigm; depends on th€P of the final state, 7/=0-14. (52)

e.g., n{(m"m~)=+. Thus the average branching rati4®)

writes Note that contrary to some claims, factorization gives typi-
. ) ’ N cally |P/T|~0.15[9] and is not ruled out by the CLEO data
B 1= [My|*+[Mg|*+ 2 REM M3 )cod by — ¢2). yet, although it is only marginally compatible.
(45 Although this calculation is only illustrative, it is clear

Note that we express the amplitudes squared in “units 0fhat the penguin contributions pose a serious problem for the

two-body branching ratio.” For fixed values &1, and ¢, extraction of @ from the CP asymmetry. ‘More coznplete

— ¢», B; 7 as a function oM 4 takes its minimal value when analyses show that the ratje/T| can ea5|!y be”3(.)/° or

M= — Mz cos—¢), in  which case Bl even 40%919]. Thereforg one can not avoid to def!ne_ theo-

=[M,2sin(,— &,). Interverting the tes of M, and'Mz retical procedures allowing us to reduqe Fhe pengqln—mduced

we obtain the followingexaci general bounds: ' uncertainty, or at least to control it. This is the subject of the
present paper.

IM4|2SiP(by— o) <Bs 7, Let us add here one comment on the size of the ditétt
' asymmetry. With a ratigP/T| of order O(20—-30%, it is
IM |2 sir(py— o) <DBs 7. (46) straightforward to show that a strong phase AT{) of

order@(10°-209 is sufficient to generate a direCfP asym-
Such inequalities have been previously employed for thenetry of orderO(10%) (see Appendix A While perturba-
demonstration of the so-called Fleischer-Mannel bo@#].  tive calculations of such phases predict in general very small

We will use Eq.(46) extensively throughout this paper. values[24], it is likely that nonperturbative effects will con-
siderably enhance these final state interactidf$|) [25].
C. Orders of magnitude Thus we expect that sin2; andag;, will be measured with

comparable statistical accuraf36].

At this stage, we refer the reader to Appendix A, where
e calculate the relevant parameters and observables in a
naive way, in order to numerically illustrate the phenomeno-
B, -<0.84x10°5 [90% C.L], logical results that we derive below.

The recently updated CLEO analyses Bfdecays into
two light pseudoscalars give precious information on the

. s . P W
various quantities discussed in this paps]:

B+ ,==(1.4£0.320.2) X 10" °, (47 D. Some exact one-parameter results

Let us first consider only th&°(t)— ="' =7 rate, Eq.
(29). As pointed out above, there are three observables: the
average branching ratio and tkd#° asymmetries

Byy+=(1.4+0.5+0.2) X 10 °.

Thanks to this experimental information, it is possible to
derive a crude lower bound for the rafi®/T|. Indeed, from B+ -, ag,, and sin2ve. (52)
Egs.(33) and(46) we have T '

From sin 2y, One gets 2.4 up to a twofold discrete am-

2 .
|TI? sif a<By-. (48 piguity. While the vanishing of the penguin amplitutém-

Furthermore, while thersw penguin amplitude is propor-

tional to V 4V}, , the Kar penguin amplitude is proportional

to V.V, [see Egs(33) and(40), (41)]. Thus we have ®Note also that in théN.—o limit, since u- and c-penguin dia-
grams can contribute, such phases betweandP amplitudes are
in principle O(1). Indeed as a perturbative calculation suggeks$

X B, (49) the real and imaginary parts of the long-distance penguin diagrams
are of the same order.

td
*

P~ |
Vcb
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plies 2a.4=2a, the SM description of the rat®9) involves
four parameters, three of which ag# conserving while the
fourth is theCP-violating anglea [see Eqs(33) and (36)],
namely,

IT|, |P|, 6=Arg(PT*), and «, (59

one overall phase being irrelevant, and after the usa/pf

PHYSICAL REVIEW D 59 054007

sgrn(sina) X sgr(sin &) = sgnagjr) - (59

As far as the SM is accepted, the latter ambiguity is not a real
problem because the constraints on the UT select only one of
the two ambiguous solutions—we already know that &
<1 becausey is positive[23]—and moreover because these
solutions cannot merge as they are separatedr.byhis is

=exp(—2iB). Thus the presence of the penguin amplitudenot the case, obviously, for the ambiguityrg— 7—2ay; .
forbids the measurement af the number of parameters be- In the following we will always express our results in terms
ing greater than the number of observables. However, as wef 2« and 25, or tana and tand.

will see, it is possible to express in terms of the three

It is also possible to derive very simple relations express-

observables and of one of the four parameters. The latter cang the parameter®|, |T|, and tans as functions of P/T|, or

be chosen as eith¢P/T|, |P|, |T|, or &.
From Egs.(33) and(36), we deduce

—(2i sina)P=e""7"A—e7A, (54)
(2i sina)T=€'PA—e 1AA, (55)
that can be rewritten as
(2i sina)P=¢'A e‘“A—e““SK}, (56)
(2i sina)T=¢€'#| A— gK . (57)

Calculating the ratidP/T|? from Egs.(56), (57) and using
the definitions(27), (28) we obtain the very important, al-
though very simple, equation

P T

?
(58)

coq2a—2aeg)

1

V1= a‘gir

1-(1-+1—ag, cos 2ueg)

Thus Eq.(58) defines 2 as a four-valued function ¢P/T|:

equivalently, as functions of@which is itself a function of
|P/T| through Eq.(58). Indeed, from Eqs(26)—(28), (53),
and(56), (57) we get®

B7T+7T7
|P|2: m[l— \/1—adircos{2a—2aeﬁ)], (60)

B’ﬂ+777
|T|2=m[1—vl—a§ir<¢052ﬁ¥eﬁ], (61)
adirtana
tano= = - .
1-1- ag; [ COS 2orgt+ tana Sin 2argf]
(62)

Note the following important point: E460) [Eq. (61)] gives
2a as a four-valued function dP| (|T|), and Eq.(62) gives
2a as a bivalued function of & this feature puts the param-
eters|P/T|, |P|, |T|, and 25 on an equal footing: each of these
is candidate to be the single theoretical input.

Let us discuss the no-penguin limit of E¢S8) and(60)—
(62): |P|—0 (and thusag;—0). In this limit, Egs.(58) and
(60) reduce simply to 2=2a.¢, as they should. Equation
(61) reduces to|T|?=8,+,- independently ofa, also as

indeed, 2v.;; is known up to a twofold discrete ambiguity, expected. Finally Eq(62) becomes indefinite in this limit,
while Eq.(58) also contains a twofold discrete ambiguity as because’ itself becomes indefinite. Note the important point
long as 2v is concerned, because of the cosine function. Notéhat the parametet®/T| and|P| measure directly the size of
that these two discrete ambiguities are of a different naturethe penguin diagram and thus of the sh#ftx— 2 g while

the 2a.4—7—2a.¢ ambiguity is inherent taCP-eigenstate
analyses, while the @—2aq— —(2a—2a,s) ambiguity is

the parameterfl| and & carry only poor information on the
size of the penguin diagrartfor example, the no-penguin

generated by the penguin contributions. One can also viewelation|T|?= B+~ can still be verified with a nonvanish-
the latter ambiguity by saying that the no-penguin solutioning |P|, for particular values of the parameters

2a=2a.; appears as a double root of the general cosine Last, we stress that Eq&8)—(62) are fully equivalent to

equation (58), which degeneracy is lifted by the penguin the original Eqs(33) and (36) together with the definitions

contributions.

(26)—(28) and (53). They are exact relations between the

Let us add here one comment on the discrete ambiguity

generated by getting from 2«, that is thea— 7+ o ambi-

guity. From Eqs(26)—(28), (33), (36), and(53) one sees that
the three observable8_ + .-, ay,, and 2u.4 are invariant
under the transformation— 7+ «, 6— 7+ 8. Thus these
observables depend only orrand 25, or equivalently on

1%The fact that only the weak angleis present in Eqs(58) and
(60)—(62) originates from the peculiar SM prediction that the
BO-BY mixing is dominated by the top loop, just cancelling B
phase of the penguin contribution defined by E2B), and is not

tana and tans. Without any further assumption on the strong related to the dominand@r nob of the top in penguin loops. This

phase, thexr— 7+ a ambiguity is irreducibld 14], the signs
of sina and siné being related by the equation

is obviously not the case, e.g., for the de@y:Kg7® where both
a and B enter in the game.
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theoretical parameters taken two by two, depending only on

the observables. The most obvious application of this result 200

is the modelization of the theoretical error induced by pen- 200 e 200 < 0

guin effects on the CKM angle. For example, the reader may 2o (deg.) i

choose his favorite model or his favorite assumptions to es- 100] N on 2oy > 0

timate |P/T| as well as its associated error. This range of

values of |P/T| propagates into four cleanly defined, al- 0 5 5 2.5 3

though model dependent, discrete solutions feraid their S |P/T
theoretical errors, thanks to E(:8). The same can be done -100 T

using, insteadP/T| and Eq.(58), the parameter#| and Eq.

(60), or |T| and Eq.(61), or 26 and Eq.(62).!* As the model FIG. 1. The CKM angle @ as a function of P/T| obtained from

is used to calculate only one real quantity, this procedurdg. (58), for ay,=0.12 and sin 2.+=0.58 (see Appendix A for a

should be safer than the ones proposed in, e.g., Rfand  description of this numerical exampl&he solid curve corresponds

[10]. We will give practical examples of this strategy in to cos Zv4<0 and the dashed one to cag.g>0. Note that|P/T]|

Secs. VI and VII. varies in the rangé63) which depends on the sign of cos.g . For
Another application, which is more conservative but lessa given value of P/T|, there are in general four solutions fos.2

informative, is to use channels where the penguin contribu-

tions may be dominant and, when related by a flavor sym-

metry to the parametdP|, can help to bound the shif2a

—2ag|. This is the case foB— w70, K°K® andK =7+, as

explained in Secs. IV and V. But before that, we shall insist

now on the model-independent features of E@S) and

(60)—(62). |P|

VIOCB )

E. Plotting the CP asymmetry in the (JP/T|,2a) plane

From |cos(2v—2a.s)|<1 and from Eq(58) the following
allowed interval for| P/T|? is obtained:

2 1++1-aj,
=

1-1-aj, <‘P

1-y1-a5,cos2n |T| 1—+1—aj,cos ey
(63) 4
The lower bound or{P/T|? is induced by the direcCP 17| 3
asymmetry—it becomes trivial in the liméty,—0; indeed, V10 By r- 5
if the latter is nonzero, then a nonvanishing penguin ampli-
tude follows. As the sign of cos2y is not observable, Eq. 1]
(63) actually defines two different intervals foP/T|, one
for the branch corresponding to cag.2>0 and the other for 0 5
the branch corresponding to cas.2<0. |P/T|
Assumingag;, and sin 2y have been measured, E§9)
allows us to plot 2 as a function of P/T| varying in the 150
interval (63): in Fig. 1 we represent the two distinct branches 100
corresponding to the two possible signs for cag2 Fur- 26 (deg.)
thermore, the three remaining equatideg)—(62) together 50
with 2a given by Fig. 1 allows us to represé|/\/B,+ -, 0
|T|/NB,+,-, and 25 as functions of P/T| (Fig. 2). Let us -50 |P/T|
summarize the main properties and virtues of E§8) and 100
(60)—(62) and of Figs. 1 and 2.
These are absolutelgxact results, relying only on the 150

SM, and provide a nice representation of what kind of )
model-independent information can be obtained from the FIG- 2. ThelP|, [T| amplitudes and the strong phas&2spec-
measurement of the time-dependeB(t)— "7~ CP tively as functions of P/T| obtained from Eqs(58) and(60)—(62),

for the numerical examplay,=0.12 and sin 2.3=0.58 (see Ap-
asymmetry only. The|P/T|,2 lot may be used to present . ; dir eff
y y only |B/T].20) p y P pendix A). The solid curves correspond to cagg<0 and the

dashed ones to cosg:>0. Note that|P| and |T| diverge when

2a—0,|P/T|—1 because thEP asymmetriesy;, and sin 2 are

"Note that the extraction af from Eq.(62) would require a very  kept fixed:|P| and|T| have to be very large to produ@P violation
accurate and unlikely knowledge éf with a smallCP phasea.
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the experimental results which hopefully will be available 1
from B factories in the next years. i

Figure 1 shows that the linear approximation|RVT|, sin 2¢
which is used in some papdr27,8| is indeed very good for
|P/T|=<1 as far as &—2a.y is concerned. However, Egs.
(58 and (60)—(62) expanded to first order ihP/T| give 0
expressions which are not particularly simpler, and thus it is
more convenient to keep the exact formulas. -0.5

Equations(58) and (60)—(62) are not invariant under the
transformationa— m/2— «. This does not properly mean -1
that thea— 7/2— o ambiguity is lifted: the souvenir of this
ambiguity lives in the invariance of Eq&8) and (60)—(62)
under a4— 72— ao because the sign of cosgs is not
known. This means, however, thsih 2« is not a good pa- 3007
rameter indeed the penguin effect is not the same for the
solutions corresponding to cogZ>0 than for the others 200
corresponding to cosi24<0, as Fig. 1 clearly shows. In 2a (deg.)
particular, the solutions corresponding to cagz<0 are 100
more affected by the penguin uncertainty which is important
information!? As long as the penguin effect is not strong o
enough to change the sign of cag.g/cos 2, we actually
expect cos 2.4<0 from the current SM constraints on the -100
UT [23]. To be illustrative, let us plot sinc2as a function of
|P/T| using Eq.(58) and compare with & as a function of (b)

|P/T| (Fig. 3. Obviously, four curves in the|P/T|,sin 2) _ _ _

plane gives half as less information than four curves in the FIG. 3.(a) sin 2 as a function of P/T| obtained from Eq(58),
(|P/IT|,2a) plane. If we reconstruct theP/T|—2a curves for th.e numerical examplag,=0.12 and Sin @=0.58 (see Ap-
from the |P/T|—sin2x ones, we will get eight curves p_endlx A). The two branches corresponding to th(_e two possible
among which four are “wrong” solution¢Fig. 3. We dis-  Signs for cos 2 are not degeneratéb) 2a as a function of P/T|
cuss further this point in Sec. VIIA, with the explicit ex- °Ptained by computing arcsin(siap and = —arcsin(sin 2): the
ample of the Gronau-London construction. We conclude thagompanson with Fig. 1 shows that the dashed curves are wrong
one should not express the penguin effect in terms o olutions.

sin 2a—sin 2o as it is sometimes done in the literature tage in using Z; instead of 2v is that the former angle
[10,11. , ) ) _follows directly (up to a twofold ambiguityfrom the siPAmt
Bounding the absolute magnitude of the penguin amplizarm in the time-dependerP asymmetry(32) indepen-

tude directly allows us to bound the shifla—2ae (and  gently ofay, : thus the experimental uncertainty o is
vice versa thanks to Eq(S8) or Eq. (60). For example, the  gypected to be smaller than om2;. For the numerical ex-

very conservative estimat®/T|<1 (assumption Lleads to ample that we have choséppendix A, sin 2x.;=0.58, we
the simple bound obtain from the bound65) 0<2a<290°, which is of

COq 2 — 2 aeff) > COS 2t - (64  Course notvery informative.

Of course, this bound does not allow a precise measurement F. Exact one-parameter polynoms in the(p,») plane
of a. Nevertheless, with only a very weak assumption, it For evaluation by hadronic models, or by using phenom-

provides an allowed interval for2(we have taken into ac- enological assumptions such as in Sec. VI, the theoretical

count that the sign of cos2y is not known: parametergP/T|, |P|, and |T| may be not suitable as they
depend on QCD matrix elements tim&&,/V},|, |V, and
if sin2ae>0, 0<2a<2m—2 arcsinsin2aq), |Vil, respectively. Indeed the latt€@P-conserving CKM
factors are badly known, therefore they would introduce an
if sin2ae<0, —2arcsifsin2ayy)<2a<2w additional uncertainty in combination with the theoretical
_ model-induced error for the estimation of the QCD part of
[assuming 1. (65 the matrix elements. In the literature, this problem has been

) _ _ ) o solved by scanning the whole allowed domain forz) [9],
As explained in Appendix B, this bound implies a weakery,, simply assuming that such CKM factors would be known
one, obtained by replacing aboverg by 2aer where the ¢ other measurement8], or by expressingVi/V*,| as
latter effective angle is defined by E@1). The only advan- a function ofa@ and g, the latter angle being determined from

future CP measurements in th®— J/'V'Kg channel[11].
We think, however, that it is more convenient and more
12This has already been noticed by Gronau in RR27). transparent to decouple the different and intricated problems
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related to the determination of the UT. Fortunately, suichan  p = 1—a3, cos 2veq, Dg=+/1—a%, sin2aey, (69)
attitude is simple to handle, thanks to the CKM mechanism
which predicts strong relations betwe&P-violating and

CP-conserving quantities: indeed the SM says thafV,g), and we introduce [M®| and |[M"| normalized to
and|V¥,| are function$® of (p,7) [17]: B+ ~1|\V¢p| [recall their definition33), and that the am-
1 ) plitudes squared are in “units of two-body branching rafjio”
—p—i
a=Arg( — %) (66)
pTin Re |M®|2 2|M(t)|2
[Veal =\ Vsl X[ 1= p =7, (67) Ry || Re=Vel g 0
VE] =M Ve X [p+i7]. 68 M2
| ub| | Cb| |P 77| (68) RTE|7\Vcb|ZB —. (70)

The above relations, inserted in Eq88), (60), and (61),
permit us to reexpress the latter as equations in(the)
variables, depending on the theoretical parameter¥hen Eqs.(58) and(60) are, respectively, equivalent to the
IMOIMW], M|, and [M"|, respectively. Indeed we following degree-four polynomial equations, the first de-

define the following combinations of observables: pending onRp /Rt only and the second oRp only:
R R R R
(1-Dg)| 1 5| p*+2(1-D)| 1- =7 | p272+ (1-Do)| 1- == | 7'~ 2(1-Dg)| 1-2 == | p°~2Dgp?y
Rt Rt R: Ry

Re 2 3 Re)
—2(1-D)|1-2=|pn°—2Dsn°+(1—D¢)| 1-6=|p“+2Dpn+
Ry Ry

Re] ,
14+D—2(1-D¢) = |7
Rr

R
+<1—DC)R—:<4p—1>=o, (72)

(1-D¢)p*+2(1-D—Rp)p?#°+ (1~ D= 2Rp) 7*~2(1-D)p>~ 2Dgp’n
—2(1-D.—2Rp)p7n°— 2D >+ (1—D,)p?+2Dpn+(1+D.—2Rp) °=0. (72)

When M®=0 (the no-penguin caseR=0 and thus general case—a degree-four polynomial equation, as already
aqi=0), Egs.(71) and(72) reduce to noticed above when discussing E§8).
Likewise Eg.(61) is equivalent to the following linear

1\2 Sin 2crg¢ equation, depending oRy only:
[1_0032a6ﬁ][(p_§) 7 2(1—cose2a )
, eff V1-Dg(p—1)*2R;—1+D 7=0. (74)
1
~ 2(1-cos beﬁ)} =0, 73 The + sign is reminiscent of the #— — 2« ambiguity of

Eq.(61). As the parameteR; does not know much about the
I . . . .. . size of the penguin parameter, the no-penguin limit of Eq.
which is the equation squared of a circle. This circle is jUSt,(74) is not pgrtigularls interesting peng q

as expected, the one defined by 2Argl —(1—p—in)/(p The important feature of Eqé71)—(74) is that the param-
+in)]=2a. and can be obtained geometrically, by us'ngetersRP/RT, Re, andR;—defined by Eqs(33) and (70—

the definition pf the UT anq solving the equation%.CSt. are pure QCD quantities imésV,,|%/B,,+ .-, i.e., they can
Actually, the sign of cos is not known and we getinfact o oynressed as matrix elements of the weak effective
two circles. WherM (%0, each of these two circles splits |jamiltonian times known factors.
into two curves—this splitting is reminiscent of thew?2 Thus the reader may choose a pure hadronic model to
— 2ae——(2a—2aq) ambiguity of Eqs(58) and (60): the  egtimateR, /Ry, Rp, or Ry, and report it in Eqs(71), (72),
no-penguin case, the circle, appears as a double root of thg (74), respectively, then getting a polynomial equation the
roots of which represented as curves, summarize the domain
in the (p,7) plane which is allowed by the measurement of
BFor simplicity, we neglect the uncertainty or,, and take the time-depende— 77 CP asymmetry. Some examples
Vig= V=1 of this strategy are given in Sec. VI, where we use some
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phenomenological assumptions to estim@te and in Sec. Two upper bounds om2a—2aeq| from B—7%#°. In
VII, where we suggest to improve the proposals of FleischeRef. [15] Grossman and Quinn have derived an interesting
and Mannel8] and Marrocchesi and Pavgt1] by solving  bound on the shiff2a—2a.q [EQ. (2.12 of their pape}l

the problem directly in thép,) plane. which takes in our notation the simple following form:
B0,0
IV. USING ISOSPIN RELATED DECAYS 20— 2aer SafCCO% 1-2 BW+WO)' (79
T

In this section, we will assume $B) isospin symmetry of
the strong interactiongassumption 2 It is well known that  This bound derives from the isospin relatioi7$)—(78) and
this flavor symmetry is indeed very good; in any case, thérom the geometry of the Gronau-London triangtee Refs.
violation of SU2) should be completely negligible compared [4, 13]) when the electroweak penguin amplitude, iRy,
to the theoretical errors discussed in this paper. is neglected. The physical meaning of this bound is simple:
As the effective weak Hamiltonian is a linear combination ofthe B— #%#° branching ratio cannot vanish exactly unless

Al=1/2 andAl = 3/2 operators, one has the triangular rela-poth the tree and the penguin amplitudesritir® vanish, in
tions [remember the notatiof33)—(35 and (38), and see which case Z=2a in 7" 7 .

Refs.[4, 13]] As explained in Ref[15], this bound is useful when the
B— #%#0 rate is too low, in which case only the average
Trtg0=T+T 050, Prs0=P+P o0 (79 pranching ratioB,o,0 (that can be obtained fromntagged

] ] . events only, or even only an upper bound on this quantity, is
As the QCD-penguin amplitudes are puké¢=1/2 ampli-  gyaijlable. Thus, either thé— #°=° channel is strong
tudes, theP .0 amplitude come only from electroweak gnough to allow a full isospin analysis, or the rate is indeed
penguin contributions. Thus we defifg="P+0 0 get  yery small and bounds the penguin-induced erromon
It is not difficult to derive the bound79) in an analytical
way, different from the geometrical approach of Ref5];
here we give only the main line of the demonstration. Ne-
glecting the electroweak penguin contributioBg(y=0) in
Egs.(76)—(78) we can form the rati@ 0,0/ 5.+ 0 and con-
77 sider it as a function of the complex paramefer- 0. Mini-
mizing this ratio with respect to the latter parameter gives the
inequality

AB =7 7 )=€"T+e PP, (76)
A(B%W%O):i[eiﬁ 0,0+ € A(Pey—P)]

‘/2 =TT
A(B*—m*wo):i[eW(HT 0,0)+e PPyl

‘/2 e

B ;0,0

2 .
(79) |P|2sir? a< 3

X B+ . (80)

* -0

w1

The second assumption we will make here is neglect offhen 2v is constrained thanks to E(G0):
the electroweak penguin contributionsBr- 7+ 7, 7= 7°,
w070 (assumption b That is, Pew=0 in Egs.(76)—(78). 1 B.o.0
The problem with this approximation arrives when consider- |2a—2aeq <arcco > (1— B+ )
ing B— w°#°, where, on naive groundshort distance co- V1-ag, memd
efficients and factorization of the matrix elementbe elec-
troweak penguin contribution, which is here color allowed, is

not particularly negligible. However, the repercussion on theas 0<ay,<1, the above bound is slightly more stringent
extraction ofe is expected to be negligible28,29, and in  than the bound79), and reduce to the latter whex;, = 0.
any case small_er than the gluonic penguin effects. See also ynder the same isospin symmetry and neglect of elec-
the discussion in Sec. VIIB. _ troweak penguin hypotheses, it is straightforward to derive
In the framework of these two assumptions, Gronau angnother similar bound, not given in the original papes).
London have shown that the knowledge of tiBB) Indeed, using the general bourd$) for the penguin ampli-
— a7, 7%x° == #° branching ratios in addition to the tude in Eq.(34) gives simply
time-dependenB®(t)— 7" 7~ CP asymmetry leads to the
clean extraction ofa, up to discrete ambiguities. In Sec. |P|2 i <2800, (82
VII A, we reexpress the Gronau-London isospin analysis in ) o
our language. In particular, we clarify the problem of the Where the factor 2 is related to a Clebsch-Gordan coefficient,
discrete ambiguities, which up to now has remained coni-€., to the wave function of ther” meson and the Bose
fused in the literature. symmetry. Once again we use HGO) to get
Unfortunately, it is well known that the isospin study

[assuming 2 and 5]. (81

might be experimentally difficult to carry out, if th& 1 B 050
—m°7% mode is as rare as expected because of color sup- |26~ 2aeq <arcco 1-a2 1= Bt -
pression. Therefore alternative methods have to be devel- dr

oped. [assuming 2 and 5]. (83
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To what extent the Grossman-Quinn bou®d) is better A. An upper bound on |2a—2a.g| from B—K°K°
than the bound83) or vice versa depends on the actual val-
ues of the branching ratios3.+ .0 vs 5.+ .-: in fact, ne-
glecting penguin and color-suppressed contributions woul

lead to the equality B, ,0=B,+,-, while the factorization Rroposed a S(3) analysis which relies on the measurement
assumption, predicting a constructive interference betwee

the color-allowed and color-suppressed contributions in thé)f the t|me-depender(tPasyr_nmetry n th@f K,OKO chan-
B*— 7> #° channel, tends to favor Eq81) compared to nel to disentangle the pengign effectsﬁﬁﬂr 7 (see Sec.
Eq. (83).14 A technical advantage of the bou(gB) over Eq. V!l C). However, theB—K"K" channel is a pure—d pen-
(81) is that it does not require the measurement3gf o, ~ 9UIN_Process, and its rate is presumably rather small
which may be less well measured théip: - because of the (10" '=10""). Nevertheless, due to the boun@), Byoxo
necessarym® detection, and because it is expected tha@nnot vanish unless boffos and Pyogo vanish in Eq.
B,:0<B,.-. Note in passing that the Grossman-Quinn(39)- Thus eitherByos is large enough to do the Buras-
bound follows from the isospin constraints on both tree and '€ischer analysis, or it is vanishingly small and one expects
penguin amplitudes, while our bound comes only from thethaﬂza_z%ff|_'S constrained bBBKOK_g thanks to the S(B)
isospin constraints on the penguin amplitude. Of course BYMmMetry. Similarly to the case of°°, an upper bound on
can be checked that the two bounds are fully compatible, ifSkok? is sufficient to get constraints om

Very similarly to the isospin analysis and tBe— 7%
gase, it is possible to derive a bound |@a— 24| depend-
ing on BRB—K°K®). Indeed Buras and Fleischgf] have

the sense that when the bourl) is saturated then the [N addition to the S(B) flavor symmetry introduced
bound(83) is automatically satisfied and vice versa. above, we need the following assumption.

strated for consistency in Appendix B, the above bounds~7 7, K°K® (assumption b In Ref. [7], Buras and
imply weaker ones, obtained by replaciag, by zero and Fleischer argue that this approximation is better than its
2aq4 by 2a.s Where vy is defined by Eq(31). Thus we  equivalent in the Gronau-London construction. Indeed, in the

have latter case the electroweak penguin contribution is color al-
lowed, while in the present case it is color suppressed. How-
B oo ever, one has to remember that FSI effects may invalidate the
|2a—236ﬁ|sarcco% 1-2-_"T ) (84)  hotion of color suppressiof80].
B 70 Within the above assumptions, we have
o0 |P|=Pkoia. (86)
2a— 2y <arcco$ 1—4———| [assuming 2 and J5 . .
20— 2ae % Bt am [ g ] Then we repeat the demonstration given above for Bhe

(85  — #%%° channel to obtain from Eq$39), (46), and(60)

As already stressed, the advantage in usinggdnstead of 1 By oo
. . |2a—2a4 <arcco -
2a is that the former angle follows directiyp to a two- \/1_61(2jir Bt
fold ambiguity from the simAmtterm in the time-dependent
CP asymmetry(32) independently ofg;, and thus does not [assuming 3 and 5]. (87

require the measurement of the latter. o ) )
Likewise (Appendix B), under the same hypotheses there is a
bound independent &y, using the angle @
V. USING SU(3) RELATED DECAYS

. . . Byogo
In this section we will assume a larger flavor symmetry, |2a—ZEeﬁ|sarcco£ 1-2 %
namely, SU3) flavor symmetry of the strong interactions By a-
(assumption B One could argue that such an assumption

should not be too bad in energetic two-body decays, al- ance analogously to the isospin analysis and the bounds

though we know that a typical SB8) breaking quantity is (81) and(83), our boundg87), (88) ma:

, , y be useful when the
|fk—f4|/f,~23%. Actually, our present knowledge does B—KK channel is too rare to achieve the full Buras-
not permit a reliable quantitative estimate of such a symme:

S X . . Fleischer analysis, and thus only the valudsgtco, or even
try breaking inB decays, especially for the penguin ampli- - ! X C X
tudes that we are interested in. In any case, our understand" YPPE limit on this branching ratio, is available.
ing of this problem is expected to improve with both _
theoretical and experimental progress. B. An upper bound on [2a—2aq| from B—K* =~

It has been known for a long time that tBe—~ K7 decays
can help the extraction of from the time-dependenB
YGrossman and Quinn give another bound depending on boti> 77 CP asymmetry by constraining the penguin ampli-

B.oolB,+oandB,oo/B,+ - [Eq.(2.19 of their papef15]. As  tudes[5]. Indeed, the latter are doubly Cabibbo enhanced by

it is more complicated and presumably numerically similar, we dothe ratio|V.sVi,/(VysVip)| with respect to the tree in these
not report it here. K decays. However, in addition to the unavoidable(3U

[assuming 3 and |5
(88)
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b % T |Px+ |2 Sir? y<Bg= = (90)
B° 6‘62; Combining it with Eqs(60) and (89) we obtairt®
001
5 £ LI |2a—2a |<arcco% ! 1 2)\28K+”+)1
u — 20 < I
d d € \ 1_ad|r Bﬂ'+7T_
@
) [assuming 3 and 4]. 91
W
b % T Thus this bound is a quantitative realization of the well-
_ known fact that the penguin amplitudeirr is A suppressed
B’ with respect to the penguin amplitude iiK#: if
Se N2By .= 1B+, is not too large, this means that the pen-
_ %3 u gt guin amplitude cannot be too large B mm. Note that
d d similarly to theB— 7°#° andB—K°K® channelsye have
(b) not assumed penguin dominance in~B, although of

FIG. 4. (3) OZI-suppressed annihilation penguin diagram. This C0Urse the bound should be more interesting when the pen-
diagram is OZI suppressed and is neglected within assumption @Uin amplitude really dominates in the latter decay.
because it does not contribute ®—K*7*. (b) Non-OZI- From the experimental point of view, the bound that we
suppressed annihilation penguin diagram. This diagram is not 0zhave found in Eq(91) should be considerably less affected
suppressed, although it has annihilation topoldtig not neglected by Statistical uncertainties than the bour@4), (83), and
within Assumption 4 because it contributes to bBth»7* 7~ and  (87). Indeed, rather than measuring the branching ratio of
B—K 7", very rare decays such &— 7°7° or B— K%K, the use of

the bound91) needs to knowBy - .= which is©(10°). For

assumption, people are often led to neglect annihilation diathis reason the CLEO dai@7) already help to give a very
grams and/or electroweak penguin andfpic-penguin am- interesting and nontrivial estimation of the right-hand side
plitudes and/or final state interactiéRS|) in expressing the (RHS) of Eq. (91). Indeed, Eq.(91) imply |2a—2aeg]
B— 7o amplitudes in terms of thB— K ones[5,6]. Such  <arccos(+2\?Bg+ = /B,+,-) and from Eq.(47) we have
ill-defined approximations have been questioned in the re0.81x 10 °<By+,=<2.0x10° and B,+,-<0.84x10 °
cent literature[30,31] in connection with the so-called at 90% C.L. Assuming furthermore 040 °
Fleischer-Mannel bound on iy [22]. Here, however, in  <B_:_-—otherwise the study o€P violation in the 7
addition to SU3), we will only use the following approxi- channel would be very difficult, independently of penguin

mation in comparing Eq€33) and (40). amplitudes—we obtain the bound
Neglect of the Okubo-Zweig-lizukafOZI-) suppressed
annihilation penguin diagram{@ssumption % The topology |2a—2aqq/ <A, with 25°<A<59°, (92

of these diagrams is represented in Fig. 4. We will need to
neglect these diagrams only for tReamplitude, i.e., when Thus, although these data indicate that the extraction of
the quark in the loop is aor ac [recall Eq.(33)]. When the  will not be an easy task, they are still compatible with a
flavor in the loop i, the suppression is perturbative, due torelatively small penguin-induced theoretical error. We would
a linear combination of short-distance Wilson coefficientslike to stress also that to our knowledge, this is the first time
which is ~a2(m,); on the contrary, the same diagram with that a numerical upper bound on the theoretical errox o
a ¢ quark is nonperturbatively suppressed by the OZI rulegiven rather model independently, with only mild theoretical
[10]. In addition these diagrams are usually expected to bassumptions and before the experimental valuexgf is
suppressed by the annihilation topology. Thus they are probavailable by itself. It is expected that experiment will give an
ably very small and negligible compared to the (S)J  accurate determination of the RHS of E§1) quite soon.
induced theoretical error. Unless we are unlucky an#.+,- is much smaller than
In particular,we do not neglect the electroweak penguinexpected, the theoretical error erconstrained by the bound
amplitude as it produces the same contribution B (91) should not exceed-30° while it can be as small as
—K*7" andB—a*#7~, assuming S(B) and neglecting ~10°. In comparison, the current knowledgecofs roughly
OZl-suppressed penguin diagrams. Then we get simply frord0°< o< 140° 1
Egs.(33), (38), and(40) Finally one has again a bound independenagf where

. 2aq is involved:
siny
=N—=——|Pk+.|, (89

*
ViaVip |
’T Sina

Vcsvtb

|P|: ><|PK+

) _ ™°This is a somewhat miraculous feature of the SM:gzancels
where the geometry of the UT has been used in writinghetween Eqs(89) and (90).

[Vig/VE|. From Egs.(40) and (46), we get the following  '8we stress that although there are presently very weak con-
bound on|Py+ ,-|: straints on sin & [23], this is not the case fow itself.
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|2a—2ag] sarcco% 1- 2)\28K7W+ [assuming 3 and 4 290
ata
(93 2007 e
Let us note in passing that the inequal{§0), together 20 (dig_()) <
with the assumption|Py+,-|?=BR(B*—Km™)=By =+ 1ool e
(that we will use in Sec. V| leads to the Fleischer-Mannel
bound on siAy [22]. However, the bound90) is exact in- 50
dependently of the assumptidRy +,-|?= By ,+.
0
C. Upper bounds on|2a—2a.q: numerical examples
In Appendix A, we define a typical set of parameters for
the guantities involved in the channels that we are interested 1
in. This set of parameters, compatible with the CLEO data
(47), allows us to compute the various observakileanch- 0.8]
ing ratios andCP asymmetriegs and in particular to estimate
numerically the bounds we have derived until now. 0.6
U}
20— 2ay L |1 23”0”0) 33.4 N
a—2aqz|<arccos - =33.4°,
o L \/1_ aﬁir B o 0.
(94)
1 B.0,0 ]
|2a—2aeﬁ|sarccos\/_7 1-44 =40.3°, (b)
— . + -
L V1—agy o 9 FIG. 5. (@ The bound2a—2ae4|<A in the (P/T|,2a) plane,
(99 obtained as explained in the text, for the numerical exanagje
} =0.12, sin 2%;=0.58 (see Appendix AandA =30° (solid curves
1 Byoko . limited by the small dashgs(b) The same bound in thg,») plane,
|201_26’eff|$<"1rcco‘5 \/1_a2 1-2 B+ ) =27.1°, obtained by plotting the circlé98) for 2« varying in the interval
L dir ™™

(96) [2aei—A2aq4+A]. There are two families of circles correspond-
ing to the two possible signs for cogg. In the background is
shown a crude representation of the early-1998 allowed domain

1—27\28‘(”*)]:29 g, 132
B, || Y

|2a—2aeﬁ|sarcco%;

V1-—ag
(97 Thus the boundg94)—(97) should give important and

rather safe information on the angler As it is apparent on

The true value being @—2ae=+26.7° (Appendix A, the  Fig. 5. Even if the penguin-induced error ammay be large,

bound (96) is very close to be saturated for this set of pa-it is bounded by theoretical arguments, which is already an

rameters. Note also that the boun@}h—(97) are numeri-  important statement in view of the possible tests of the con-

cally close, which just follows from our set of parameterssistency of the SM.

and needs not be true in general. As said above, it may hap-

pen in practice that the experiment gives only an upper B

bound on the suppressed chann#ls_o and Byogs, in D. A lower bound on [2a—2a| from B—K*#™

which case the boun@7) will certainly be more informative It is clear from the examples in Sec. VC that a lower

as By:,= is already measured and hopefully the ratiohound on|2a—2a.q would be a valuable information: it

By = 1B+~ will be known with high accuracy very soon. would permit us to eliminate some region aroundr 2

In any case and for illustrative purposes, we will examine=24_. and to get four separate intervals fax &see Fig. 1

the case of the boun@a—2a,|<30°, which is in the ball- instead of the two big ones represented on Fig. 5. Thus one

park of Egs.(94)—(97). In Fig. 5 we show the constraints of may look for a lower bound on the absolute magnitude of the

such a bound in the P/T|,2a) plane, and in thép,7) plane.  penguin amplitude. However, without any further theoretical

The latter are obtained by plotting the circle defined ky 2 assumptiongsee Sec. V| such a lower bound cannot be

=C*, which equation i§see also Eq(73)]: obtained using branching ratios orffpr example the bound
5 ) 5 discussed in Sec. IlIC is not theoretically justifie€on-
1 o, SN 20 _ 1 98) versely, using direcEP asymmetry in theB* —K* 7" de-
P™3 7 2(1-cos2x)] 2(1—cos2x) cay, it is possible to get a lower bound (7}, as well as a

slightly improved upper bound with respect to the bound
We let 2¢ vary in the interva] 2a¢4—30°,2¢4+30°] thatis  (91). The idea is the following: if a dired€P asymmetry in
consistent with the bound. the B—K*7* channel is detected, then it proves that this
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mode is fed by both tree and penguin contributions. As the 0 . =0 S
latter are related by S@3) to the penguin contributions in the agif:BR(B —Kir) BR(B_HK ™)
B— a7~ channel, and thus to the penguin-induced shift BR(B—K"77)+BR(B° =K 7™")
|2a— 2 a4, One gets a lower bound on this quantify.

Analogously to the derivation of Eq60), we get from  should be relatively easy to measure for this self-tagging

(100

Eq. (40) mode, and. is a useful short-hand for the phase
2|Py+ - |?sil? y=[1—J1-[aK"]?cos{1Bx=»=, (99 {=2y—Arg[A(B*—K "7 )A* (B'—K 7")]. (101
Then, the inequalitycos|<1 together with Eqs(89) and
where the direcCP asymmetry (99) imply
|
A(1—1-[aK™?) B = = <2|P|?sir? a<\?(1+ J1-[aK™]?) By =+ (102

and from Eq.(60)

1 By o=
[2a—2aqg] sarcco{ \/ﬁ [l— N2(1+y1-[a§m1?) BK—H , (103
~ Air LAk

1 Bys o=
arcco%ﬁ 1-N\%(1—y1-[a5™? BK—” <|2a—2a.y [assuming 3 and 4 (104
~ Agir LAk

Note that if

A1 1-[aKTA B pr<(1—V1-a2) B+ .- (105

the SU3) lower bound in Eq(102) is useless as it is auto- task. Should it be feasible, one may do the full Gronau-
matically verified thanks to Eq58) and the(exac) bound London and/or Buras-Fleischer analygsse Sec. VIl

(63). Thus this lower bound is only useful in the configura-

tion where the direcCP asymmetry is very small in thB ~ VI. USING THE B*—Kz™ DECAY TO DETERMINE Rp

— ot 7~ channel 44— 0) but large in theB—K* 7" one WITH FURTHER ASSUMPTIONS

. . . . . . K7T . .
(it becomes trivial in the limi’—0), in which case the In this section, in addition to the hypothesis made in Sec.

inequality (109 is not verified. As an example, it can be \, g (assumptions 3 and 4we will assume more specifically

checked that the set of parameters defined in Appendix A5t the two following approximations holdo an accuracy
verifies Eq.(105. However, keeping the same branching ra-to be determinexin Egs. (40), (41).

tios and choosing the parameters suchags=0 and agy Isospin symmetry and neglect of electroweak penguin

=0.5, the bound104) is not trivial: contributions iNB—K* 7" ,K7* (assumptions 2 and)5
Note that the isospin symmetry is a consequence of the al-

8°<|2a— 2a, (106) ready assumed !arger SBJ symmetry. _Neglg:cting the elec-

troweak penguin contribution, which is here color-
suppressefi28], we are allowed to writdPy+ - = — Pgo,+

while the bound(103 represents only a tiny improvement [13].

over Eq.(92). Neglect of theV, .V}, contribution to theB* —K%r™

Actually, one easily obtains similar lower bounds from amplitude (assumption § That is, Txo,+=0. Using a dia-
the two previously studied channels, namedy;» w70, B grammatic decomposition of the amplitude, we hadye,+
—KOK?. However, the experimental detection of dir@®  =|V Vi |(Ma+M—M,) and Pgo,+=|VcVil (M
violation in these suppressed channels may be a difficult-M,), where M, is the tree annihilation amplitude and

Mu(M,My) is theu- (c-,t-) penguin amplitude. Note that
Tko,+ is suppressed bV Vi |/|V Ve ~2X 1072 com-
Note that a nonvanishing dire@P asymmetry in ther*7~  Pared to the dominant amplitud&o,+. Thus we have pre-

channel already gives a lower bound on the penguin amplitudéumamy|VusV3b||Mu_Mt|_<|_\/csV:b||Mc_Mt|- and _it. is
through Eq.(63). However, the saturation of the latter bound im- often assumed that annihilation processes are negligible due

plies only 2a=2a.,. Thus one should look for a lower bound on to form-factor suppressiof6], which then lead tdTyo,+|
the penguin amplitude that has to be stronger than(&). <|Pgos+|.
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It is clear that assumption 6 is on weaker grounds than the IM©)2
others made until no#? Accepting it nevertheless, one is RpElhvcbIZB
lead to many applicatior{$,8] among which the most recent mha
one is the Fleischer-Mannel bouh22] By -+ )
:)\ZB —— [assuming 3, 4, 5, and]6 (109
SirP y< By = 7+ (107) The above determination d&?, can be used to inse_rt in
By ot Eq. (72). Of course, the readers who do not agree with the

assumptions leading to EL09 can use their own model to

. . estimateRp. Thus the method described here is very gen-
The latter has been recently questio@tll. The problem is  o51 "and is in any case weakly model dependent as it de-
that FSI effects may invalidate the notion of color suppresyends on only one estimated parameter. The results shown
sion for the electroweak penguin amplitude, thus leading tg,g|ow in the (p,7) plane are quite typical of what can be
Pk+»-# — Pyon+ [30]. Furthermore, the same effects may gptained with such a method.

enhance annihilation diagrams, involving a significant However, at this stage there is still a problem in using Eg.
VsV, contribution toB* — K%z and a possibly measur- (109): it is clear that we have to give a theoretical error
able directCP asymmetry in this chann¢B1]. We will not  associated with the above determination of the penguin am-
discuss this subject here. Rather we stress as previous agplitude. As a guess, we will simply allow relative violation

thors that theB— KK decays may help in constraining the Of EQ. (109 of the order of 30 and 60 %, respectivest the
FSI effects[20,34. In particular, the very easy to deteBt amplitude leve), and leave for the future any justification of

_.K*K~ mode is fed only by annihilations diagrams. CLEO these values. Actually, as long as this error is less than

has already given an interesting bound on its branching rati 00%, the ’T‘eth‘?d descrlbgd here |§6r‘é10re powerful than the
[16]: ounds derived in the previous sections.

In Fig. 6 we solve Eq(72) with the theoretical input

(109, and with the numerical values obtained in Appendix

. A. Note that with our set of parameters, the Fleischer-
By+k-<0.24<10"> [90% C.L]. (108 Mannel bound becomes trivial (gip<1) but it does not
prevent getting useful results from EF.2). Figure 6 shows

Thus, either the FSI effects are non-negligible anddhi& ~ fthat with a re_asonable 30% re_Iative violation pf the theoret-
final state should be detected very soon, or they are eventifd assumptionsat the amplitude levglleading to Eq.
ally out of reach of experiment and a stringent bound o109, the time-dependerg— w7 CP asymmetry defines a
By +k- should be obtainef84]. As claimed by the authors of small allowed domain in thép, ) plane, much more infor-

Refs.[31], FSI effects may easily invalidate the boud®7): mative than the more conservative bounds derived in the
indeéd tc,) get a significant constraint grwe need the raiio previous sections. This statement is quite general: if there is

B+ .= 1Bq.+ to be sufficiently less than® in order to be & V& to estimate the parame{@/T| (or |P| or Rp/Ry or

1 1 0,
not too much affected by a reasonable theoretical uncertaintga)s_\(’\gg? ?gl)urzgg)rﬁv?ﬁyggeorgi:? gtr/oo’ntgh(ca:gnigréisr?t)s[gg

. J &or on the allowed domain in thig,7) pland. We will see in
tion contributions. On the contrary, for the case that we ar&gcs V|| A and VIIB that the isospin analysis is not much
interested in, namely, the extraction af we do not need petter in this respect because it is plagued by more discrete
By 7+ 1Bk =<1, and we will see that even in the presenceampiguities. Finally we stress that from the experimental
of a sizeable violation of the above assumptions, we can ggfoint of view, our proposal is very favorable: in addition to
interesting information in thép,7) plane. In other words our the usual time-dependeBf(t)— 7+ 7~ CP asymmetry, our
method concerningy is useful whatever the values of the analysis requires only the measurement of Bie—Kx™
branching ratios are. However, the Fleischer-Mannel boundverage branching ratio, which was already meas{ised

is not affected by SI(B) breaking, while our method is. Note Eq. (47)]. In this sense our proposal represents an improve-
also that Fleischgr20] and Gronal34] have proposed very ment with respect to the Fleischer-Mannel propdsal be-
recently extensive methods which may help to control FSkcause the latter needs the further knowledgeBpf .o and

and electroweak penguin effects for the extractionyof |V (see Sec. VIID.
Returning to the problem at, we use the above hypoth-
eses to  write |Py+,-|=|Pxo,+|=|A(BT—KO7")] VII. RECOVERING AND IMPROVING SOME
=|A(B~—K°% )| and thugrecall the notation$33), (38), OF THE PREVIOUS APPROACHES
(40), (41)] In this section, we will explain how to recover in our

language the Gronau-Londop4], Buras-Fleischer[7],

8In particular, it implies a nontrivial relation between FSI phases

[33] 20unfortunately, it is not clear if the relatiofi09) is good at less

%Note that the most recent CLEO analysg¢46] give than 100% relative error. Model-dependent criticisms do not predict
By .+ 1 Bg-+~1; thus the bound107) becomes useless, even ne- such a huge violation of assumptioh®L], however, in our case we
glecting the theoretical uncertainties associated with it. have to take into account $8) breaking in Eq(109.
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FIG. 6. The solutions of the degree-four polynomial equation (b)
(72) in the (p,n) plane for the numerical examplay,=0.12, FIG. 7. The eight solutions of the Gronau-London isospin analy-

Sin 20¢=0.58, andRp=\’By,+/B,+,-=0.061 (see Appendix sis, for the numerical exampleag=0.12, Sin 2;=0.58,

A). A guess value for the relative theoretical uncertaintyRpnin B,x0lB,+. -=0.71,B,0.0/B,+,-=0.061 and a direcEP asym-

Eq. (_109) is assumed, respectivelyZ _303&) and 60%(b), at thfe metry in thema© channel equal taZ,TiS’To:O.SZ(see Appendix A
amplitude Ie\{el. There are four families of curves corrgspondlng to(a) In the (P/T|,2a) plane, the dots represent the central values
the two ﬂoss'b'e sane fﬁr.coﬁgﬂ' and t‘;the cosine d'screteham' obtained from Eqs(112—(114), while the solid curveglimited by
biguity o Eq. (60) which is hidden in the po ynong72). In the the small dashgsepresent the allowed domain when assuming that
background is shown a crude representation of the early-1998 ab i< Affected by a 4° uncertainty due to electroweak penguin con-
lowed domain32]. tributions, as explained in the texb) The same allowed domain is

. . represented in thép,7) plane, where it is obtained by plotting the
Fleischer-Mann€fl8], and Marrocchesi-Pavgt 1] proposals,  cjrcle (98) for 2« varying in the eight solution intervals. In the

and in some places we will propose improvements of thesﬁackground is shown a crude representation of the early-1998 al-
methods. lowed domain32].

A. The Gronau-London isospin analysis

1 _ — _
cosd —| A2+ A, 02— |A 0,0

Gronau and London have proposed a clean method to get - ‘Q|K||Kw—w0| 2

rid of the penguin-induced shift am[4,13] by measuring all (113

the B—mm branching ratios in addition to the time-

dependentCP asymmetry(30). Rather than repeating the Equations(112), (113 are not yet sufficient to trap the pen-

geometrical demonstration contained in the original paperguin amplitude. However, settingg,=0 in Eq. (78) im-

we give here the equivalent analytical formulas and show thf)lies Arg(q/pK A%, 5)=2a and thus

isospin construction in theR/T|,2«) plane. T
The Gronau-London method relies on the isospin symme-

try of the strong interactions: after having defined 20=2aert O . (114
D=Arg(A_+ oA*), (110  To summarize, measuring tf&— 7 branching ratios al-
lows us to extract the angle® and ® (up to a fourfold
CDEArg(KfWoK*), (112) discrete ambiguity which corresponds to the four possible

orientations of the Gronau-London triangi 13]) thanks to
Egs.(112), (113. As the CP asymmetry gives 2. up to a
twofold discrete ambiguity, it is possible to gat and|P/T]|
1 from Egs.(114) and(58) up to aneightfolddiscrete ambigu-
b= Z1AZ+ A+ 02— |A 002, ity, as Fig. 7 shows. . . _
V2|A||A,+ 50| L2 Let us show explicitly that expressing the problem in
(112 terms of sin 2 is somewhat misleading: from Fig. 7, we can

simple trigonometry in Eq4.76)—(78) gives
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1 T eight are obviously wrong. Note two important points which
- P have been mistreated in the original papét and to our
0.8 - - knowledge in the subsequent literature. First, thereeayht
0.6l ¢ T solutions in terms of @ and also in terms of sin®*" Sec-
sin 2c ond, the isospin analysis determinas rather than sina.
0.4 - e k
0.2 ‘. e B. Defining the error due to the electroweak penguin
) amplitude
0 0.2 0.4 0.6 0.8 1 ) )
|P/T| One may wonder at the size of the electroweak penguin
(@) amplitude, which is neglected in the isospin analysis. Several
authors have estimated this contribution, which turns out to
250y be a few percents of the dominaBt—7* 7~ amplitude
200 [28,29. If this estimation is correct, then th_e cqrrespo_n_ding
e - uncertainty one may be a few degrees, which is negligible
150f - compared to the most optimistic simulations of the statistical
2o (deg)) S * + uncertainty? [26]. In any case, a simple parametrization of
100 the electroweak penguin effects can be obtained: indeed,
50l - when Pgy#0, there are two new parameters, namely,
+ Arg(PewT*) and|Pgyw|, and one new observable which is
0 0. the directCP asymmetry in theB*— 7= 7° channel
(b) i+ 0 - -0
+ 0o BRB"—=7"7)—-BR(B —7w 7")
FIG. 8. (a) The eight solutions of the isospin analysis in the ag, " , (115

= + +.0 = -0
(|P/T|,sin 2) plane, for the same observables as in Fighy The BR(B"—m" 7)+BR(B —7 )

solutions in the |P/T|,2a) plane obtained by computing . . o
arcsin(sin 2) and —arcsin(sin 2): the comparison with Fig. 7 Which vanishes wheiPgy— 0. Similarly to the case of the

shows that the crosses are wrong solutions. strong penguin amplitude, as discussed at length in this pa-

per, it is possible to express as a simple function of the
plot the eight solutions of the isospin analysis in theobservables of the Gronau-London isospin analysis, the di-
(IP/T|,sin 2a) plane, as showed in Fig(®. Now if we for-  rect CP-asymmetry in theB*— 7~ #° channel and the un-
get Fig. 7 and try to get the solutions im2rom Fig. 8a),  known parametefPgy|. The same technique leading to Eq.
we obtain the sixteen solutions of Fig(b® among which (58) allows us to find

1 [ +_0 PEW 2
COY2a— 2ay) = ——= 1-(1-V1-[aJ, ™ 1>cos 2l , (116
/1_[agi;7r ]2_ T+ 40
|
where v is the value of 2 whenPgy=0 [see Eq(114)] Thus, whatever the way to estimate the parameter
_ |Pew/T,+0, one is led to a simple and weakly model-
2 5= 2aegt O —O. (117 dependent definition of the theoretical error @imduced by

) the electroweak penguin amplitude. Using factorization for
Thus Egs.(116), (117) describe the departure from the the estimation of the RHS of Eq118), we find typically

isospin analysig114) due to the electroweak penguin con- |2a—2alq|<4°; this error has been reported in Fig. 7 for
tributions. As a particular case, we obtain the bound €

(118 2Yf, in addition, the mixing-induce®P asymmetry in ther®7°
Tw*wo‘ is measured, there are stilvo solutions for 2v (and thus four for

in [0,27]), contrary to what is said in Reff4, 35]. In any case, the
which was derived in Ref[28]. Note that the ratio measurement of this asymmetry is expected to be very difficult.
|Pew/T -+ 0| is rather independent of the size of the color 2*However, one should keep in mind that the effect of the elec-
suppression, although the impact ¢0Pgy| on BR(B  troweak penguin amplitude on tfBe— #°#° branching ratio is not
— %70 is not negligible. negligible in general.

Pew Z}NZ Pew ‘

[2a—2aly $arcco%1— 2‘ T
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illustration. This figure shows the sensitivity of the isospin

S . S . 2507

analysis with respect to the discrete ambiguities: with an

error ona as small as 2{here this error comes from the 200+
electroweak penguin contributions, but unfortunately there |/./*
are also the uncertainties of experimental origin which we . dl50" é.\'

have not consideredthe four separate solutioror a given o ( :%'()), P~

sign of cos 2¢) tends to merge quite quickly. This is nat ~
posteriori surprising: indeed these four solutions are sepa- -
rated because of the QCD penguin contributions, i.e., be-
cause of a relatively small effect; they become degenerate in
the no-penguin limit. Comparison with Figs. 5 and 6 sug-
gests actually that the more simple approaches to control the
penguin effects described in the previous sections may be
competitive with the more complete isospin analysis, unless
the observables of the latter are known with a very high
accuracy.

The main drawback of the Gronau-London analysis is the
expected rarity of th&— 7°7° channel, whose branching
ratio is expected to be about 160-10 . The neutral pions
are not easy to detect, and one needs to tag the flavor of the

B meson in order to get separatehy, oo and|A o0/, ac-
cording to Egs(112), (113. The small number of effectively
useful events expected at &ie~ B factory constitutes a
difficult challenge to the experimentalists while the impossi- (b)
gg@;tr?o??rtr?g:ot\\;veotﬂgust:’tilarzilgg.s'll'?]ifSUtsl:wrsv::?r:gri]:ﬁeT:scthilr??ﬁe FIG. 9. The eight solutions of the Buras-Fleischer analysis, for
bounds(81) and (83). the numerical exampleay,=0.12, sin 2;=0.58, ag =0.21,
sin 20Kk =0.059, andByogo /B, +,-=0.058 (see Appendix A ()
In the (P/T|,2«) plane, the dots represent the central values ob-
C. The Buras-Fleischer proposal tained from Eqs(123), (124), while the solid curveglimited by the
Considering the experimental difficulties associated withSmall dashesrepresent the allowed domain when assuming that Eq.
the Gronau-London analysis, Buras and Fleischer have pr¢12Y is affected by a guess 30% relative uncertainty. Some of the
posed an alternative way to get rid of the penguin uncer§°|u“°ns merge because of this theoretical error, leaving only Six
tainty, using SW3) and the time-depende@P asymmetry of separate solutiongb) The same allowed domain is represented in
' . vl the (p,7) plane, where it is obtained by plotting the cir¢@8) for
the pure pengum modB—K K™ [7]. They argue that the 2a varying in the six solution intervals. In the background is shown
SUB) breaklng_ effects a_re of the s_ame_order as_ the elecé crude representation of the early-1998 allowed dor@@h
troweak penguin uncertainty of the isospin analysis.

The idea is simple: similarIyt_othB—mr+ 7~ decay we

which reduces toPyogo|?>= Byoko if the top-penguin ampli-

define the time-dependeBt—K°K® CP asymmetry tude dominates the decay.
— — — Assuming SUW3) and neglecting thecolor-suppressed
akii(t)=akK cosAmt— \1—[akK]2 sin 2o sinAmt, electroweak penguin contributions, we may write
(119
|P|=[Pxokal. (120)
where we have used the notation sirff to make apparent 1hus from Eqs(60), (120, and(121) we have
) ) K
the resemblance with E(ﬁO).iwe stress, howeyer, tha_tzzﬁ [1-1-a2, a2, coS2a—2agy)]
reduces to @ when theTgx amplitude dominates in Eq.
(39), i.e., when the difference between theand c-penguin Byoxo [ KKz KK
amplitudes dominates over the difference betweert-taad —g 1= V1-[ag 12 cod2a—2ae)]=0.
c-penguin amplitudes, which is presumably an extreme case. T
Conversely, in the absence of long-distaneandc-penguin (122
amplitudes, we have simff=aj =0 [21,7] Defining the following quantity that can be written in terms
Thus, following Eq.(60) we find of observables:

BKO@ T

Byoo - D=\1-a% expi2aeg) — V1i-[akK]2exp(i2ak

|PK0@|2:_1—§OI;2Q[1_ ‘,1_[a§irK]2COS(2a—2a§flf<)], dir €XP( eff) [ [ d|r] o eff )
= e ,

(120 Dl (123
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Eq. (122 becomes guities associated with the measuremengafto the extrac-
tion of @. We have shown in Sec. Il F that one can avoid
these problems by directly writing easy-to-solve polynomial
equations in thép, ) plane, therefore without invoking other

B independent CKM measurements. For the Fleischer-Mannel

H 2_y2 H 2

AS 2aq; and 225K are both measured up to a twofold dis- Proposal  one should  write [P/T|*=\*[1—p—i7|
crete ambiguity, Eq(124) gives 2v up to an eightfold dis- < Bk=/(2B5=0) and report this expression into H§8) to
crete ambiguity. An explicit example is given in Fig. 9. obtain an equatidit in the variablesp, ), without the need

However, from the experimental point of view the study 10 KNOW [Vig/(A\Vy)|. For the Marrocchesi-Paver method
of this decay may be as difficult as the isospin analysis: Firso"€ should simply insefp/Ry=0.055 in Eq.(71) indepen-
it is a pureb—d penguin decay and is thus expected to beQentIy of B. Thus our framework allows us to significantly
very rare (~107—10° %) [19]. Second, the time-dependence IMProve these proposals. , ,
of the decay rate may be difficult to reconstruct because the Finally we would like to stress once again the importance
neutral kaons decay far away from the primary vertex. ThiLf the discrete ambiguities. While they are not discussed at

shows the interest in the bourd7), very symmetrically to &/l by Fleischer and ManngB], we believe that the treat-
the case of the isospin analysis. ment of Marrocchesi and Paver is incomplete: for a given

value of|P/T| (inferred from factorization and a given value

for B), they find two solutions fow between 0 andr. We

have shown in Sec. IlI D that there are four such solutions
Fleischer and Mann€f8], as well as Marrocchesi and which, because of the finiteness of the err@rsth theoreti-

Paver[11] had already remarked that knowing the value ofcal and experimentglmay merge among themselves.

|P/T| alone leads to the extraction af Therefore they have

cos{2a—‘lf)=i{l— (124

Dl

D. The Fleischer-Mannel and Marrocchesi-Paver methods

used Eq(58) without explicitly having written it, and with- VIIl. CONCLUSION
out having noticed the complete generality of the method. . _ .
Let us briefly sketch the main points of their studies. We have shown that in the presence of penguin contribu-

Fleischer and Mannel use a first-order expansion irfions, the information on the CKM angte coming from the
|P/T|. We have shown that this approximation, although nu-measurement of the time-dependeBf(t)—=" =7~ CP
merically good, is unnecessary: E(8) is exact and not asymmetry can be summarized in a set of simple equations,
more complicated than its first-order expansion. expressingx as a multivalued function of a single theoreti-

Fleischer and Mannel estimat®/T| by assuming Eq. cally unknown parameter. These equations, free of any as-
(109 and neglecting the color-suppressed contributions t¢umption besides the standard model, provide by themselves

B*—#*n°[8] an exact model-independent interpretation of futGre ex-
periments.
P2 |VVi|?  Bens It is also possible to choose as the unknown a pure QCD
T = VcsV§b| 2B+ o 125 quantity, in which case the above equations should be ex-

pressed directly in thép,7) plane, thanks to the unitarity of

while Marrocchesi and Paver use factorization to calculatdh® CKM matrix which predicts relations between tGe-
(in this case|P/T| is just proportional to a ratio of short- Violating angles and theP-conserving sides of the unitarity

distance Wilson coefficients times a CKM faotpt 1] triangle. Whatever the choice of the single unknown, such
as, for example, the ratio of penguin to tree matrix elements,
P| sin(a+pB) this unavoidable nonperturbative parameterBn-z«* 7~
H =T sng x0.055. (1260 could be compared By in the kaon system which allows us

to report the measurement gf in the(p, ) plane. However,

The two above equations represent alternatives to the methd@€ ratio|P/T| is a much more complicated quantity than
presented in Sec. VI, although in the second case it is ndék - @nd would be very difficult to obtain from QCD funda-
clear to what extent factorization can be used to calculagental methods. _

|P/T| [19]. Note that these two approaches use a single USINg our analytic expressions, we have assumed some
model-dependent input, as the method we have proposed [gasonable hypotheses to constrain the free parameter. Doing
Sec. VI. so we have derived several new bounds on the penguin-

Both Fleischer and Mannel and Marrocchesi and Paveftduced shift2a—2acq|, generalizing the result of Gross-
face the problem of knowingV,4| or sin@+g)/sing. The ~Man ar_1d (gumr[ls]. One of th_ese bounds is determined _by
first two authors assume simply tHat,y/(AV.p)| is known the ratio \“Byg=,+/B,+,-, which should have an experi-
from CP-conserving measuremerig, while the second two  Mental value very soon. _
authors take the value @ as it would be given by the future ~ AACCepting less conservative assumptions, stronger con-
measurements of thB— J/yKs CP asymmetry and obtain Straints ona can be obtained. For example, in the limit
an equation depending am alone[11]. However, it is not
clear if CP-conserving measurements will gi{¥;q/(\V¢p)|
with enough accuracy, and using instead the valug ah- ZWe have not written this equation, which is not Eg1), be-
fortunately propagates the uncertainty and the discrete ambtause the3y .= /(213,+ ,0) ratio already incorporates|¥},| factor.
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where the annihilation and electroweak penguin diagrams TABLE I|. The various average branching ratids units of
can be neglected, and using &Y the knowledge of the 10°5) from our set of parameters. They are consistent with CLEO
B*— K== branching ratio is sufficient information to ex- data(47).

tract the theoretical unknown. Assuming a reasonable 30%
relative uncertaintyat the amplitude levelon the unavoid- Bt nm

able hypotheses, a relatively small allowed domain in the(normalization  Bno,o  Bpxzo  Bxogo  Bizns  Byge
(p,m) plane can be found, independently of any other mea-=
surement. This method could be competitive with the full
Gronau-London isospin analysis, because the latter is
plagued by twice as many discrete ambiguities. From th
experimental point of view, our proposal may be much easie .
to Ioachieve. I\F/)Iore generally, i? bi)/ some )(/)ther argumen Ud comments. | am also grateful to L. BOF”“'S fgr help.
knowledge of the modulus of the penguin amplitude—or the” inally I am indebted to A. Le Yaouanc, L. Oliver, O. 1&g
ratio of penguin to tree matrix elements—with~80% un- and J.-C. Raynal, without whom this work could not have

certainty can be achieved, then rather strong constraints on been achieved, for constant and stimulat.ing encouragement
should be obtained. and for a careful reading of the manuscript. Laboratoire de

However, we do not pretend that the theoretical uncerPhysique Therique et Hautes iBergies is Laboratoire as-
tainty on a will be small. Rather we believe that this error socieau CNRS URA D00063.
may be quite well controlled by conservative arguments.
This shows the importance of generalizing our framework to  APPENDIX A: A TYPICAL SET OF THEORETICAL
other channels sensitive to if we are unlucky in ther ™ 7~ PARAMETERS
channel, it may happen that we are lucky in others. As the ) . ] . .
problem of the discrete ambiguities is crucial in these analy- In this appendix, we define a typical set of parameters in
ses, the modes providing ne@P observables are of particu- order to compute the relevant observables. We assume that
lar interest: for example, measuring directly the sign ofassumptions 1-6 are exact, and neglect furgileannihila-
COS 2ni rather than determining it from the SM constraints tion diagrams. Thus the amplitudes in E¢83)—(35), (39)—
on the UT would be valuable information, even in the pres<(41) can be written as
ence of sizeable penguin contributions, as it would allow us . :
to reduce the discrete ambiguities generated when expressing A(B’— @7~ )=¢e""T+e P, (A1)
a as a function of the observables and of one model-
dependent input. It has been shown previol8l§] that the o o0 o 1., i
analysis of theB— p7— 37 Dalitz plot* actually leads to A(B —m )= 5[9 (T=Treq0)—€ '°Pl,  (A2)
the measurement of a kind of cossg (which is, of course,
different from a¢ in B— ), and we are currently study-
ing the possibility of describing this interesting decay simi-
larly to B— a1 [37]. Likewise the angular distribution of the A(B*— 7" 7%= iei T+ o, (A3)
decayB— A A also contains terms proportional to the cosine
of an effectivea angle[38].

It is quite clear that all the strategies proposed until now 0  wosH g Vi
to disentangle the penguin pollution in various channels will A(B"—=K'K)=Pl e "+ V..
give different information ony, each relying on very differ-
ent theoretical assumptions and on different observables. Our _ Vi
framework allows us to treat all these sources of information ~ A(B°—K* 7~ )=\e'"T+ Vo
in a transparent and unified way. Thus we will certainly have td
a strong cross check of the various results. If this cross check
is successful, we may think to combine these results in order A(B*—>K°w+)=‘
to have a more precise knowledge @®f However, we are
aware that combining theoretical and experimental errors is
difficult problem by itself which is beyond the scope of the

0.75 0.0455 0.533 0.0433 1.075 0.948

chune, L. Silvestrini, and S. Versilfer useful discussions

elrr u) , (A4)
td

e’ -ap, (A5)

Vis

i(5'—96)
Vg e P. (AB)

Riote that in the strict S(3) limit and neglecting annihilation

diagrams,s’ = é.
present paper. Numerically, we takel3,+,-=0.75x10"°, which fixes
ACKNOWLEDGMENTS the normalization of the amplitudes and chodseal which

fixes the origin of phases. Then we chod$/T|=0.25
| acknowledge Y. Grossman, A. Jacholkowska, F. Lewhich is a quite sizeable valuésee Sec. Il and &
Diberder, G. Martinelli, T. Nakada, S. Plaszczynski, M.-H. = —15° which is a large violation of naive factorization
which gives §=180°. The normalization is then given by
|T|=0.826x10"%" (in “units of two-body branching ra-
2Eventually theB— pm— 3 time-dependent Dalitz plot to- ti0"). We choose alsd@ ,+,0=1.25~'""X|T| which takes
gether with the isospin symmetry also allows the extraction of peninto account the usua,~0.25 color-suppression factor and
guins contributiong36]. However, such an analysis seems to re-some FSI phasesi’ = +20°, andr,=0.3"""®" which is a
quire a high statisticg37]. ratio of long-distance over short-distance penguin matrix el-
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TABLE Il. The variousCP asymmetries from our set of param- wherem is a positive ratio of branching ratios and is ex-

eters. pected to be smaller than(@therwise the bound is uselgess

: . — — — If ag, is not known, then a4 is not known either. Rather

Agir SN2t @7 " al, sin225¢  ag, " one gets from the siamtterm in Eq.(32) the effective angle
0.117 0.579 0.317 0.209 0.0592 0.108 sin 2a.4= J1— agir Sin 2agg . (B2)

Since|sin 2ag|<|sin 2a.4 one has
ements. For the CKM parameters, we have 0.2205 and
take p=0.10, »=0.34 which is around the center of the |cos 2uen| <[COS Zare|- (B3)
early-1998 allowed domaina(=85.7°) [23]. The resulting
values for the observables are summarized in Tables | and |
Let us stress that these values are only indicative and that th
real numbers may be very different. Our set of parameters SigN(€os Zu ) =sign(cos 2x), (B4)
results from a compromise between the need to take into _
account various effects in a more or less realistic way and th# such a way that E¢(B3) gives
pedagogicall needgor ex_ample, it is easier to _discuss the |COS 2 COS 20| <| COS Tty COS 20| = COS Ty COS 2.
number of discrete solutions when they are quite well sepa- (B5)
rated, which is often not the case in practicEinally we
notice that the penguin-induced shift anis quite large for Thus Egs(B1) and(B5) imply
this set of parameters:a2-2a.4=+26.7°.

s the sign of cos@ is not observable, it can be chosen
erbitrarily. It is convenient to define

1—m= /1—aj; oS 2 COS 2x + Sin 2arg; SiN 2ax

APPENDIX B: BOUND\?I(IDI\ll_iI_Erllz’OEILI\IDENT OF DIRECT CP < |COS 2t o1 COS 2a| +Sin Zag sin 2a
Here our purpose is to derive bounds which are fully in- < COS (s COS 20+ Sin Zareyy Sin 2a
dependent ok, and thus are not affected by the experi- =coq2a— 2ayy), (B6)
mental uncertainty associated with the measurement of direct _
CP violation [39]. As far as the boundl6) is concerned, a and we obtain the announced result, namely,
different demonstration has been given by Grossman and
Quinn[15]. _ T g 20— 2ay) =1 — M= o8 2a— 2auy).
Consider the boundd 6)—(19): they all can be written as ‘/1_a§.
ir (B7)

—Zscos{Za—Zaeﬁ), (B1 It is straightforward to demonstrate an analogous result for
Vi—agi the bound(15).
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