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We compute the decay rates dreenergy distributions oB mesons into the final staté+ X, whereH can
be any one of th&wave orP-wave charmonia, at next-to-leading order in the strong coupling. We find that
a significant fraction of the observedd, ' and y, must be produced througifpairs in a color octet state
and should therefore be accompanied by more than one light hadron. At the same time we obtain stringent
constraints on some of the long-distance parameters for color octet prodyi&(5Eh6-282199)01003-9

PACS numbsd(s): 13.25.Hw, 12.38.Bx, 14.40.Gx

[. INTRODUCTION predictive power lies in the fact that these parameters are
independent of the particular charmonium production pro-
ExclusiveB decays provide us with important information cess and hence are constrained by other charmonium produc-
on the structure of the Cabibbo-Kobayashi-Mask&®@&M)  tion processes.
matrix. However, the theoretical calculation of absolute Because charmonia pass as non-relativistic systems, Eq.
branching fractions is complicated by the fact that a rathe(1.1) involves an expansion in? and thec?[n] configura-
detailed knowledge of strong interaction effects is requiredtions that appear in lower orders of this expansion can be
The theoretical situation with regard to strong interactionysefully classified by?S*L{®), whereS, L andJ refer to
dynamics improves as one considers more m_cluswe fmaépin, orbital angular momentum and total angular momen-
states. At leading order idqcp/m,, wheremy is theb  tym respectively. In additio@=1,8 refers to a color singlet

quark mass and\qcp is the strong interaction scale, the or g color octet configuration. In the present work we calcu-
totally inclusiveB decay rate can be computed completely injate the short-distance coefficients for

perturbation theory. However, it is not necessary that the
process be totally inclusive. A semi-inclusive dedy-H nef3gl® 118 3p(l) 3p(8) 1p(18 12
+X can also be treated perturbatively in part, provided the = {*87. 15" PPy Py P (1.2
formation of the hadroid proceeds through a short-distance

process. This is the case Hfis a charmonium state, because &t Neéxt-to-leading ordefNLO) in as. As we discuss later,
the production of a charm-quank? pair requires energies we believe that these terms in the velocity expansion are

. sufficient to reliably predicfto about 25%, barring radiative
T s o 1 GOECtons ) e Gecay e 1020
marized by the factorization formu[aj The elusivelP, stateh, as a function of the long-distance
parameter¢©"[n]). We find that, given the present uncer-
tainties in the long-distance parameters, the experimentally
I'(B—H+X)= 2 C(bacz[n]+x)((9“[n]), (1.1 observed branching fractid@] for J/« and¢’ can easily be
n accounted for at NLO. However, we find it difficult to ac-
o ) ] count for the observeg.; and x., branching fractions si-
which is valid up to power corrections of ord&Gep/Myc- multaneously, because the expansion of the color singlet
(To this accuracy it is JUSt'f'ﬁd to treat tiiemeson as a free  contripution iny.; production turns out to be untrustworthy
b quark) The parameter6O"[n]), defined in[1], are sen- 4t NLO. The NLO corrections typically enhance the decay
sitive to the charmonium bound state scales of onderand  rate by about20—-50% in the color octet channels and lead
mev®, wherev is the typical charm quark velocity in the to hounds on the long-distance parameters, which should be
charmonium bound state. Wittf~0.25 forJ/ ¢ we consider  yseful for the phenomenology of other charmonium produc-
these scales to be too small to be treated perturbatively. Ofion processes. We also compute weights of the charmonium
the other hand, the coefficient functio®b—cc[n]+x) energy distribution, which yield additional information. The
describe the production of(a_:configurationn at short dis- Shape of the energy distribution itSElf, however, is difficult to
tances and can be expanded in the Strong Coup{g@g) at predict, because it is distorted by the motilon Ofmark .in -
a scaleu of order 2n,. We have expressed the decay rate inthe B meson and the energy taken away in the hadronization
terms of several non-perturbative parametg?é'[n]). The of a cc staten. This distortion averages out in weighted
sums, as long as the weights are sufficiently smooth.
We then compare the inclusive calculation fibhy+ X
*Permanent address: Dipartimento di Fisica del’'Universital ~ with the sum of the measured decay rates Joy+K and
Sez. INFN, Pisa, Italy. J/y+K*. The comparison suggests a significant fraction of
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multi-body decays, consistent with the energy spectrum ob-

served by CLEQ2]. A substantial contribution from multi- Heﬁ:% vgbch[%c[l](ﬂ)ol(,uﬂC[S](M)(’)S(M)
body decays is also reassuring from the point of view of V2455

validity of the theoretical calculation. Factorization implies 6

that acc staten hadronizes into a/¢ plus light hadrons —V?thqE Ci(M)Oi(M)] (2.1)
independent of the remaining decay process up to corrections =3

of order Agcp/mp . If nrefers to a color octet state, the )

conversion into charmonium requires the emission of at leagtontain the “current-current” operators

one gluon. Although color reconnections with the spectator _ _

quark in theB meson must eventually occur, we expect a O1=[cy,(1—ys)c][by*(1—ys)a], 2.2
charmonium produced through a color octet state to be _ _

accompanied by more than one light hadron more often than Og=[cTAy, (1—ys)cl[bTAy*(1-y5)q], (2.3

for a color singletc state. Since we find that a large fraction . .
of the total decay rate is from color octet intermediate state<2d the QCD penguin operatafl_g. (See the review Ref.
we also expect a large fraction of multi-body final states!10] for their precise definition. For the decaysB
This evidence also suggests to us that the energy released-ncharmoniumt X it is convenient to choose a Fierz version
the B meson decay into charmonium is already large enouglof the current-current operators such that tteepair at the
for an inclusive treatment to be applicable. weak decay vertex is either in a color singlet or a color octet
Inclusive production ofSwave charmonia has been con- state. The coefficient functions are related to the uSuaby
sidered in Refs[3,4] in the color singlet model and at lead-

ing order(LO). In addition, the color singlet production of Cry(u)=2C (n)—C_(u), (2.9
the P-wave statey;; was computed in Ref5]. (At LO the
statesy.o andy., are not producediThe color singlet model Craj(n)=C(p)+C_(n). (2.9

is contained in Eq(1.1) as the term where the quantum ] o )
numbers ofn match those of the charmonium state. For 1ne NLO Wilson coefficient€.. (1) have been computed in

P-wave charmonia the color singlet model does not coinciddt€fs:[11,13. With the conventions of Ref12]
with the non-relativistic limitv—0 and is generally incon-

sistent. The authors of Reff6] noted that the contribution as(My) 1+ as(p) B )
from cc[®S{®)] is leading order inv for y.; and that as(p) 4m T

cc[*S{®)] is leading order foth,. They computed the rel-
evant short-distance coefficients to LOdq. In the case of
J/ys, the short-distance coefficients of[n] states withn
=3g(® 158 3p®) are strongly enhanced as a consequencevith
of the particular structure of the weak effective Lagrangian
that mediated quark decay. These production channels have ’y(f)ﬁl Y(il)

to be taken into account although the corresponding long- == 2—,82_2_/30' 2.7
distance matrix elements are suppressed by a factor of 0

The relevant coefficient functions were computed in REJ. 371

again at LO inag. Referencd8] adds a study od/ s polar- B.i=—(*x11+«-.), (2.8
ization effects. The only NLO calculation of charmonium 6

production inB decay is due to Bergstmo and Ernstrm [9],
who computed the contribution of the color singR8, in-

Y Q1(280)
Ci ( M) = (

as(My) —as(u)
x| 1+ T(Esi—Jt)) (2.6

and the one-loop and two-loop anomalous dimensions

termediatecc state toJ/¢ production. We repeated their y9=+2(3%1), (2.9
calculation and comment on it later on.

The paper is organized as follows: In Sec. Il we introduce 371
notation and discuss the structure of important contributions Y%= 5 | ~21EgNi— 280k~ | (2.10

to a given charmonium state. Section Il provides some de-

tails on the calculation related to the handling of ultravioletThe quantityx. is scheme-dependent and depends in par-
and infrared divergences at intermediate stages. Section I\cylar on the treatment ofs. In the “naive dimensional
contains our main results. We present expressions for thggylarization” (NDR) scheme,x. =0; in the 't Hooft—
decay rates in numerical form and a comparison with existy/g|tman (HV) scheme, k. =74 In the HV scheme the
ing experimental data. Analytic results for the decay rategrrent-current operators, implied by the convention used in
and energy distributions are collected in two appendixes foRefs [10,12, are not minimally subtracted. If one computes
reference. Section V contains our conclusions. the low energy matrix elements of the weak Hamiltonian in
the modified minimal subtractiofMS) scheme, as we will
do below, one has to apply an additional finite renormaliza-
The terms of interest in th&AB=1 effective weak Hamil- tion. This amounts to multiplying the coefficier®@s. (u) by
tonian a factor of 1I-4a4(u)/(37), or, equivalently, to an addi-

Il. PRELIMINARIES
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and = 4m2/mb The operators?™[n] are defined as in
Ref.[1]. The LO term is multiplied b)C (17 if nis a color
singlet state and by: g1 If nis a color octet state. We also
used the fact tha|t\/cs| +|Veql?~1 to high accuracy. The
functionsf[n] andg;[ n] will be given later. The LO contri-
bution is multiplied by a correction termip[n] due to the
penguin operators in Eq(2.1). Likewise, we write the
quarkonium energy distribution as

b éf ? c
d, s
§ ~. dI'[n]
ax =To| Clygf[N1(7)(1+ 8p[n]) S(1+ 7—X)
FIG. 1. One-loop virtual corrections tn)—>c€q. Wave function

renormalizations are not shown. as(u)
+ —— (Cfygiln](7.%)+2C(1)Crg gl n1(7.%)

O

tional contribution tox.. in the HV scheme. No additional
renormalization is required in the NDR scheme. At NLO the
strong coupling is given by

(O"[nYy, (2.15

C&95[n1(7,X))

where x=2P- pb/mﬁ. Note that to leading order in
Agcp/m, we do not distinguish the quark mass from the
meson mass. To the order in the velocity expansion consid-
(2.19 ered in this paper, we can also identify the momentum of the

guarkonium with the momentu®® of the cc pair. (The ki-
nematic effect of distinguishing the two is discussed in Ref.
[13].) Hence,x can also be identified with2, /Mg, where

(2.12 Ey is the quarkonium energy in tf& meson rest frame and
Mg the B meson mass.

The NLO QCD corrections involve the one-loop virtual We.now discuss which |ntermgd|at£c states should b_e
taken into account for the production of a given quarkonium
gluon correction td:)ecc[n]+q and the real gluon correc-
tion b—ccn]+q+g, where thecc pair is projected on one 37y 4/': At leading order in the velocity expansion the
of the states in Eq(1.2). The corresponding diagrams are spin-triplet Swave charmonium states are produced directly

shown in Figs. 1 and 2, respectively. The decay rate into #om a cc pair with the same quantum numbers, ire.
qguarkonium can be written as the sum of partial decay rates 38(1). At order v* relative to this color singlet contribu-

through one of the intermediatec statesn. At next-to- . . —
leading order the partial decay rates take the form tion, a s can materialize through the color ociet states
n=3s{® 158 3p® where the subscript ” implies a

sum overJ=0,1,2. The suppression factof follows from

. [l_ﬁlln[lnwzméw)]

s( )=
S Bon(w NS BAIN(u N Gep)

with

2
Bo=11-3n;, p1=102-5n

I'[n]= I“O[C[l gf[(N](7)(1+6p[n]) the counting rules for the multipole transitions for soft glu-
ons that convert the stateinto the s meson1]. The leading
s(,U«) order color singlet contribution is proportional(ﬂfl] , while
——(Cfy;91[n1(%) +2C1;Cig;92[N1(7) the color octet terms are proportional ®fg, . Because the

weak effective Hamiltonian favors the production of color
octetcc pairs by a large factor

C[28193[n](77))}<OH[n]>1 (2.13
Clay/ Cy~15, (2.1

where the color octet contributions must be included, since their
suppression by“4~1/15 (for J/¢) can easily be compen-
(2.14 ~ sated.(The numbers serve only as order of magnitude esti-

0 216m(2my) mates of the relative importance of the color singlet and the

e

_Gl2:|vbc|2mg

c

ol

< & =<

FIG. 2. Real gluon corrections tm—>c?q.

d,s
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color octet contributiong According to the velocity counting divergences in the diagrams of Fig. 1 cancel against the UV
rules, there is a correction of ordef to the color singlet divergences in diagram@ot shown in the figupewith the
contribution related to the derivative opera®;(®S*)) as insertion of the one-loop counterterm f6Y, g. We combine
defined in Ref.[1]. Because it is multiplied by the small the diagram with its counterterm diagram before projecting

coefficientCp;; , and because we will find that the color sin- o 5 particularcc staten, and before taking the two-particle
glet contribution is indeed a small contribution to the total phase space integral. This has the advantages that it avoids

production cross section, we do not consider this additionglyending the projection td dimensions and that the phase
correction in what follows. Similar derivative operators con—Space integral can also be done in four dimensions.

tribute to the color octet channels. We do not take them into The finite part of the virtual gluon correction depends on

a_lccour:ct, tzjecaéjsg r\]Neh d? not tak(:f.'r.'t(:éfcohm other COMetre prescription for handlings in d dimensions. This has to
tions of order * with the large coefficienCig; . Hence, even o ¢posen consistently with the one used to define the opera-
after including the NLO correction i, there remains an 5,5 ), o in Ref. [12]. The prescription consists of a defini-
uncertainty of ordew”~25% in the theoretical prediction, jon of 5, and its anti-commutation property, together with a
assuming that the long-distance matrix elements were acCiyqice of “evanescent operators.” The evanescent operators
rately known. , _ , . are implicitly defined by specifying the order (where d

1.: The same discussion applies to the spin-singlet State:4_2€) terms of the following products of Dirac matrices:
The color singlet contribution involves="S{". At relative
order v*, 7, can be produced through the color octat YpYal 1n®VpYal = (16+4Xge) T @, +Ex, (3.1
statesn="15{?) 35{® 1p(®).

Xo: At leading order in the velocity expansion, bath
=3p® and n=3s® contribute to the production of the
spin-triplet P-wave statd6]. Because the partial production
rate through the’S{®) state is already multiplied by the large [Here we definedl’,=7,(1— ys).] The renormalization
coefficientC[Zg], it is not necessary to go to higher orders in conventions of Refd.12,15 correspond to
the velocity expansion. Note that, because of\theA struc-

ture of the weak vertex, ac pair cannot be produced in

LLypYa® VoVl =(4+4Yge) I',01 ,+Ey, (3.2

w=

I.®9,Yal uVav,=(4+4Zge) T, 0T ,+E;. (3.3

NDR scheme: Xypr=—1 Ynor=ZnDrR= —2,

a 3Po,2 angular momentum state at LO in,. (3.4
h.: The same discussion as for tlye; states applies to HV scheme: Xpv=—1 Yuqy=Zuy=0.
the spin-singlefP-wave state. In this case we take into ac- (3.5

countn="1P{") andn=15® at NLO in as. Owing to the

V— A structure of the weak vertex,ca?pair cannot be pro-
duced in a'P; angular momentum state at LO in,.

In the HV scheme, vertex diagrams are treated differently in
Refs.[12] and[15]. As a consequence, as already mentioned
above, in the HV scheme one has to multiply the coefficients
Il. OUTLINE OF THE CALCULATION C.(u) defined in Refs.[10,12 by the factor 1
) o —4ag(u)/(3), while this factor is already included in the
The Feynman diagrams shown in Figs. 1 and 2 are progefinition of Ref.[15]. We checked that our final result is
jected onto a color and angular momentum state as specifi§dentical in the NDR and HV schemes up to terms beyond
in Eq.(1.2. The _virtual corrections co_ntain uItravioIé;JV). NLO accuracy, if we use the expressions @r(u) of Sec.
divergences, which can be absorbed into a renormalization qf including the additional factor just mentioned in the HV
the operatorgD, g in the weak effective Hamiltoniaf2.1).  gcheme.
The virtual corrections contain infraredR) divergences,  The coefficient functions quoted in Sec. Il refer to a Fierz
which cancel against IR divergences in the real correctionsyersjon of the weak Hamiltonian different from E@.1) and
In addition, the real corrections contain IR divergences dugrjerz transformations do not commute with renormalization
to the emission of soft gluons from tleeor ¢ lines, which do  in general. If we use the standard Fierz version rather than
not cancel with IR divergences in the virtual correction, if the singlet-octet form quoted in E.1), this interchanges

the cc pair is projected on &-wave state. These IR diver- Yr andZg in the results quoted in Appendix A3. However,
gences can be factorized and absorbed into a renormalizatigince in both schemes we used one ¥ias- Zg, either of the
of the non-perturbative matrix elemegt®"[n]). In the fol-  two Fierz versions can be used.
lowing we provide some details on the UV and IR regular- The NLO calculation fom=>3S{") has already been done
ization, which are specific of the present calculation. Morein Ref.[9] in the HV scheme. We find that our result for the
details on the strategy of a next-to-leading order calculatioriunctions gi[3S(11)] defined in Eq.(2.13 and given in the
can be found in Ref[14], which deals with quarkonium Appendix agrees with the result of R€®]. Nevertheless our
decay and total quarkonium production cross sections imesult for the contribution of this channel to the decay rate,
fixed-target collisions. given byC?; f[3S{M](#) + NLO terms, differs from the one
given in Ref.[9], because the authors of R¢fl] used the
coefficient functions of Ref[12], but did not correct them
The UV divergences are regulated dimensionally and théor alternatively, the low energy matrix elemerlty the fac-
IR divergences are regulated with a gluon mass. The UMor 1—4ag(u)/(37). As explained above with the conven-

A. UV regularization and the treatment of 5
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with the IR regulator used for the evaluation of the partonic
process on the left-hand side of E§.6). The result ifcom-
pare with the Appendix of Ref1] and with Ref[14], where
other IR regulators are used

)\2
"2

: : (O3S g =2 Ins + -
FIG. 3. Perturbative corrections to the NRQCD operator matrix 4w Mm 3
elements. A shaded circle denotes an insertion that specifies the

angular momentum and color of tlm@;_pair. The vertical line im- ( N2 1

sl(-3)

tions of Ref.[12] this additional factor is necessary in the ><<@pert,o(3p ))/m2
HV scheme to obtain a scheme-independent result. 1 0 ¢

(—48)(05 3Py))/m;,
o
plies that the diagram is “cut.” Symmetric diagrams are not shown. <O§e”’1(351))52ﬁ In—+ 2
o

_ pert,g 3 2
B. IR regularization and NRQCD factorization +(=20(0% (t PO)VmC}’ 3.9

The real and virtual corrections individually have double-
logarithmic IR divergences, which we regulate by a gluon .., o A% 1 16
mass. However, after adding all contributions to the partonic<ol A SO)>B_E In§+ 3\ 3
processb—cc+ X, the IR divergences do not cancel com-
pletely. The remaining IR divergences are associated only (OB Py))mE,
with emission from thec and ¢ quark. This is a necessary
(but not sufficient requirement for their factorization into pert 1 _as 21 32
nonrelativistic QCDINRQCD) matrix elements as discussed (Og SO)>B_E In? + 3\ 27
in detail in Ref.[1].

In addition to these IR divergences related to soft gluon X (O IP,))/m?2
emission, the last diagram in Fig. 1 exhibits the well-known
Coulomb divergence, when the relative momentum ofdhe
andc is set to zero. We regularize this divergence by keep-

ing the relative momentum finite in the integrals, which i
would otherwise give rise to the Coulomb singularity. (A denotes the gluon magsNote that if one breaks up the

In order to extract the short-distance pdrfsn] [see Eq. 3P term into terms with differend, one should replace
2.13] of the partonic decay, we write
(23] ofthe p g (O8Py)) — LA (OFFPy))

T'(b—can]+X)=> T[mIOPTm]), (3.6 +(O05 3P + (O T3P)) 1.
3.9

20

T

<Ogert,(tlpl)>/m(2:

where(OP*Tm]) denotes the NRQCD matrix element for a
perturbativecc pair in the state. At NLO one has to calcu-
late the left-hand side an@P*{m]) to NLO.

The diagrams that contribute theg correction to
(OP*Im]) are shown in Fig. 3. For the first diagrato-
gether with its complex conjugateve obtain

Using these results and solving fiBfn] we find the IR finite
short-distance coefficients for eaahcollected in Appendix
A3.

C. Difficulties with the color singlet channels

) The LO contributions to the color singlet channég®,
(OPY ]y, =(OP Y n])- Aln]a 2™ 37 StV and 3P{Y are proportional to the small and strongly
A S v ’ . .. 2
scale dependent coefficied;;(«). One would therefore
expect the NLO contribution to be particularly important for
these channels. However, the strict NLO calculation leads to

=—1/(2N.)=—1/6 if nis a color octet state and is the 5 hegative, and therefore meaningless decay rate into these
relative velocity of the two quarksThe superscript O refers  cpannels and to the conclusion that a reliable result can only

to a matrix element at tree level, 1 denotes a one-loop conse ghtained at next-to-next-to-leading order. This problem
tribution.) This renders the short-distance coefficients free of, 55 already identified and discussed in Réf. (For the

the Coulomb singularity. _ remainder of this section it is assumed that the reader has
The other two diagramgcalled collectively “B”) to-  gnsulted Ref[9] for more details.

gether with their symmetry partners are UV and IR diver-  ~qdider the three next-to-leading order tergnsn Eq.
gent. We define the NRQCD matrix elements in the MS(2.13. Despite its large coefficier@f, the g term, which

scheme and denote their renormalization scalébbifhe IR comes only from a real correction, turns out to be numeri-
divergence is regulated with a gluon mass to be consisterally very small(see the tables in the following section

where A[n]=Cg=4/3, if n is a color singlet stateA[n]

054003-5
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Both g, andg, (at u=m,) are large and negative, agd in  without theg,-term (improved; (c) the same a&), but with
particular, which comes with the larger coefficient g; included(total). For theS-wave color singlet channel&)
2C;1;Cig, drives the decay rate negative. and(c) yield a negative rate. They are therefore meaningless.
The authors of Refl9] suggested treating the decay pro- Option (b) yields a positive result of a magnitude similar to
cess in a simultaneous expansionainandC,;/Cg;. This  the result of Refs[9,16]. It may be considered as an order-
implies that one should add to the term of ordeC;,;Cg) of-magnitude estimate for the color singlet contribution, but
all terms of ordera2Cly; , because they also count as NLO it may well be uncertain by 100%. For ti@{" channel all
in this rearranged expansion. On the other hand, the terrthree options give negative partial rates. However, since this
aSC[zl] (which involvesg,) should be neglected as being of channel mixes with3S(18) and only the sum of the two is
higher order. The authors of RéR] did not actually calcu- physical, a negative partial rate is not unphysical by itself.
late all terms of ordetrZCfy; , but estimated them by adding

ag(p)\? , gan]? 31
A (8] f[n] (3.10 In this section we present our results for the branching
fractions of B decay into charmonium and moments of the
to Eq.(2.13. This estimate can be motivated as follows: thequarkonium energy distributions in numerical form. The ana-
virtual contribution tog, is given by the first four diagrams lytic expressions that enter Eq&.13 and (2.195 are col-
in Fig. 1 times theglcomplex conjugatedree amplitude. All  lected in the appendixes for reference.

two-particle[cc]q cuts to theaZCf;; term are given by the

square of the first four diagrams in Fig. 1. Hence, ignoring A. Branching ratios for B decay into charmonium

the real contribution, one may argue thgd[n]%/f[n] is

close(but not equalto the two-particle contributions to the

aﬁC[zg term. We normalize our calculation to the theoretical expression
In Ref. [16] the square of the one-loop amplitude with a for the inclusive semileptonic decay rate

[cc]q final state is computed exactly and argued to provide a ) -
better estimate than the original one of Ré&f], because one th _GF|VbC| my 1- 8724875 78— 2479
leaves out only real contributions to the coefficient of ~SL°  1go.3 ( G n2)m(2),
aﬁC[ZB], which are argued to be phase-space suppressed. 4.2
However, we find that for thé P{") channel the virtual con-

tributions alone are IR divergent. Therefore, the real correcwherez=m./m, and

tion that cancels this divergence cannot be argued to be

small. In our opinion this also calls into question the assump- 2a4(my)| 3 31,
tion that the real contributions are numerically small for the m(2)=1- 37 2T\
Swave channels. For this reason we choose to follow with a

minor modification the procedure of R¢8], which adds an  represents an excellent approximatid7] for the one-loop
IR finite term by construction, sincg, is IR finite. The  QCD correction factor(The complete analytic result can be
minor modification is the following: the third and fourth dia- found in Ref.[18].) For any particular quarkonium staké
grams in Fig. 1 have imaginary parts, which contribute to theye obtain the branching fraction in the fotm

real part of the square of the amplitu¢end hence to the

coefficient of a5Cf)). The remnants of these imaginary Br(B—H + X)

parts after multiplying the one-loop amplitude by the com-

IV. RESULTS AND DISCUSSION

Io(O"[n])

1. General discussion of NLO corrections

(1-2)?| (4.2

plex conjugate of the tree amplitude can easily be restored H 2
from the In(1-7) term [and the Lj(#) term in the case of _NE (O7[n])| Crugfn](7)(1+ de[n])
3p{M] in the results presented in Appendix A 3. If we call »
the restored imaginary part g3, then we use Eq(3.10, +0‘s H c2 n £2CC n
with g2 replaced byg?-+ (Im g,)2. ypm (Ci1791[n](7) 111Ce192LN1(7)
We wish to emphasize two points: first, the discussed
modifications of the color singlet channels are certaidy +C[28193[n](77))}- (4.3
hoc and should be regarded with great caution. Second, the

effect on the decay rate into a particular quarkonium state is
not severely affected by this uncertainty, because it is domilhe overall factor is given by
nated by color octet contributions, whose short-distance co-
efficients can be computed reliably at NLO as we shall see.

In order to gain a numerical understanding of the impor- *Whenn is a P-wave state{O"[n]) should be understood as
tance of the various terms involved in the color singlet chan{O"[n])/mZ in the following formula, so that all matrix elements
nels, we consider in the following three computationalhave mass dimension 3. Furthermore, in the case=0tP{®) which
schemes for the decay rat@) the (strict) NLO calculation;  refers to thecc state 3P® summed oved=0,1,2, the NRQCD
(b) the NLO calculation with the ternt3.10 added, but matrix elemen{©"[n]) is chosen to bé® £ (3Pg))/m2.
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TABLE I. Comparison of LO and NLO for the decay rate intoa  TABLE Il. The same quantity as in Table | for various treat-
cc pair in staten and the dependence on the factorization sgale ~ments of the color singlet chann@br which the LO short distance
The dimensionless overall facté{ ©"[n]) is not included. Quark coefficient, i.e.f[n], is non-vanishing Penguin contribution not
massesm,=4.8 GeVm,=1.5 GeV. Penguin contribution not in- included.

cluded.
n u 1 3g 3p®

n LO NLO
plGev 25 5 10 25 5 0 o oo o o
(b 0.0453 0.201 0.407 —0.219 —0.426 —0.554 10 0.407 0.242 0.484
3g(b) 0.0269 0.119 0.242 —0.119 -0.250 -0.334
3p( 0 0 0 -0660 —0.481 -0.377 25 —-0.219 -0.119 —0.654
3p® 0.0537 0.238 0.484 —0.654 —0.738 —0.794  NLO 5 —0.426 —0.250 —0.738
3p(b 0 0 0 —0.534 -0.389 —0.305 10 —0.554 —-0.334 —0.794
p@® 0 0 0 —-102 -0741 -058

25 0.0951 0.034 -0.392
1888) 8.72 8.01 751 12.6 11.1 10.2 Impr 5 0.058 0.0259 —0.280
35®) 518 475 446 770 680  6.18 10 0.0706 00402 —0.176
3p® 31.1 285 268 383 34.5 317
1p(® 0 0 0  -195 -153 —130 25 0.0283 —-0.0138 —0.455

Tot 5 —0.0984 —0.0862 —0.427
10 —-0.159 -0.124 -0.391
Lo _
N= Brg’ipﬁ =3.0x107% GeV 3, (4.4 +0.08% [2].2 The LO prediction is uncertain by a factor of
SL about 10 for all color singlet channels, as can be seen from

Table I. As also seen from this table, the scale uncertainty is
reduced to a factor 2—3 at NLO. However, the NLO correc-
tion term renders the partial decay rates negative, as already
entioned in Sec. Il C.
The situation can be somewhat improved by adding the
ﬁstimate(B.lO) for the ordemﬁ NNLO term with the large

where we used Bf’=10.4% and, as given by Eq(2.14).
The charm and bottom pole masses are taken to be 1.5 a
4.8 GeV, respectively. This yieldg=0.39, which we use
unless otherwise mentioned. The sensitivity of the charmo

nium production cross sections to the quark mass values wi . . .
P g coefficientCfy;, while treating thea,Cf;; term as formally

be discussed below. . . Ul
We first examine the impact of the next-to-leading order®f Nigher order in a double expansion iy and Cpy;/Cigy

correction and the dependence on the factorization seale [9). The addition of Eq(3.10 also reduces the factorization

. . scale dependence further, because it contains exactly the
for each intermediat&c state separately. We neglect the

. it . double logarithmic correction?C%;In?(mg/«?), which is re-
penguin contribution for this purpose. In Table | we show the uiL:ed to ?:anlcel tlhe large Iscalse ([jsé eﬁdeﬁdézviz;t Ieellst’jin
branching fractions excluding the dimensionless normalizal : g ) P & 9

tion factor \{OH[n]) for three values ofx at LO and at order inag. In Table 1l we display the result for the partial

NLO. To evaluate the LO expression we also use the Wilsorgecay rates into the color singlet channel, which is obtained

coefficients at LO and one-loop running of the strong coun this way (denoted Impr in the tabjeand for comparison

pling with Ach%D such thatag(M)=0.119 both in LO and again the LO and NLO result. The improvement can and

NLO. This is a large effect for the color singlet channel should be done only for those color singlet channels that
since  Cpy;(My)=0.55, Cgy(My)=2.14 (in the NDR have non-vanishing LO contributions. The last three rows of

Table 1l show the results that are obtained if we add back the
schemg but Ckl?(mb) =0.41, C[LS?(mb).zz'lg' I g term in Eq.(4.3) to the improved treatment. ThESC[Zl]gl
We now observe that the color singlet contributions ACerm is sizeable and negative and therefore reintroduces a
iﬁ’q eépDecte(tj,. er;ormougl%/wsa(?le .dep:ar:dsr;t t?\t L?j'. ITh rge scale dependence. The same improvement that is ap-
wa\i fT:c:;zne en;(ten( thle( olziz;illf re Sye <C(;J,¢(eg;?)>'a pligd to the LO Q[lef t(_arm is neceasszary for thg, term,
—9|R(0)|2/(2) up to corrections of ordem‘% Using which would require going _to order;Cig; . One may argue
I3 - \ : ' that unless this is done, it is preferable to leave gheerm
(077(°%))=1.16 GeV [19], we obtain out entirely. Therefore we shall use the “improved” version
(Impr in Table 1) as our default option later. While the result

Br(B—J/¢+X)=(0.09-0.84% (color singlet, LO
(4.5 Note that we denote by BB— J/+x) the direct production of
J/, excluding radiative decays int® s from higher-mass char-
monium states. The same convention applies to all other charmo-
to be compared with the measured branching fractthB0  nium statesH.
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TABLE Ill. Numerical values for the LO and NLO functiofsIDR schemgthat enter the branching ratio
Br(B—J/+X) according to Eq.(4.3) for my=4.8 GeVm,=1.5 GeV. The estimate for the penguin
correctiondp is obtained with the parameters detailed in Appendix A 2. The table applies without modifica-

tion to ¢'.

n f op 91 92 93

3g(b 0.661 -0.004 -205 —8.46+ 2.65 In(r/u?) 0.162

3g(® 0.992 —-0.09 0.486 —6.35+1.98 Infré/u?) 32.0-3.97 Inri/u?)
15(® 1.67 0.009 0.556 —11.2+3.34 In(r/ 1?) 50.2— 6.68 Infrg/u?)
3p® 5.95 0.009 -129 —36.6+11.9 In(ng/u?) 121-23.8 Inri/?)

is certainly not accurate, we believe that this is the best wéhreshold. We keep the dependence on the factorization scale
can do to the color singlet channel without making arbitraryof the weak Hamiltonianu, but put the NRQCD factoriza-
modifications. We note that fal/ ¢ this gives a color singlet tion scale equal to 2. At the scalem,=4.8 GeV we also
contribution to the branching fraction, which is close to thehave ag(my)=0.22 andC;;(m,)=0.55, Cig(m,)=2.14.
lower limit in Eq. (4.5 and also compatible with the esti- The tables also include the penguin correction fader
mates of Refs[9,16]. It seems safe to conclude that color ~ We find that the dependence on the quark masses changes
singlet production alone is not sufficient to explain the meadittle when going from LO to NLO(for thosen for which the
sured branching fraction. LO term is non-zerp The quark mass dependence is reason-
The partial rates in the four relevant color octet channelsably well estimated by that of the ratio
are shown in the lower part of Table I. In this case we find
that the perturbative expansion is very well behaved. The 2, 2.9
NLO short-distance coefficients are larger by 20%—50% than r= (1—4me/my)
the LO coefficients and the scale dependence is very moder- m2mcfy(me/my)
ate. The scale dependence is not reduced from LO to NLO.
This is due to the fact that the LO coefficients depend only , .
on the scale-insensitiv€g;, while there are sizeable coef- \évherkefl(_z) is the treed-ler\]/el phase space fa?tor in round
ficients of the highly scale-dependent combinati@pg Cg; rackets n Eq(4.1) and the NRQ+CD matrix elements are
and C[21] at NLO. The numerical enhancement of the Short_assumed fixed. If we varyn; by 100 MeV andm, by

distance coefficients in the color octet channels, which isizo0 MeV around our “standard” values and add the

evident from Table I, is sufficient to account for the mea—igf))/araﬁe \_/arlatlogs In ngarg' Wle flnglrak\_/arla_ltloncoﬁabout h

suredJ/ branching fraction, as already noted in R¢#&8]. £ o4r%a_t|ve to the standard value. Taking ITItO aCCOIl.th at

The positive NLO correction reinforces this trend. OtBay g. (4. ) IS approzqmate, we assign an overall normalization

production processes suggest that the long-distance parancertalnty of 20% due to quark masses.

eters in the color octet channels are of the order a few times

1072 Ge\R. (This will be made more precise sopiThis 2. B—>#(nS)+X

leads to typical branching fractions of order 0.5%. We now turn to a more specific discussionBoflecay into
For our standard value of the quark massesy, ( the spin-tripletSwave states)/ys and ¢', denoted collec-

=4.8 GeV,m.=1.5 GeV), the numerical values for the tively by (nS) or just . For quick reference we give the

functions that enter EC(43) are given in Tables llI-VIII fBI’ branching ratio in Comp|ete|y numerical form f(p;: my

all of the six (known) charmonium states below tHeD =4.8 GeV andn,=1.5 GeV®

(4.6

TABLE IV. Numerical values for the LO and NLO functioSIDR schemgthat enter the branching ratio
Br(B— 7.+ X) according to Eq(4.3) for m,=4.8 GeV,m.=1.5 GeV. The estimate for the penguin cor-
rection §p is obtained with the parameters detailed in Appendix A 2.

n f op g1 g2 O3

1gb 1.11 0.07 —28.6 —15.0+ 4.46 Inrg/u?) 0.185

15(8) 1.67 0.009 0.556 —11.2+3.34 In(rg/ u?) 50.2—6.68 Infrg/u?)
35(®) 0.992 -0.09 0.486 —6.35+1.98 In(né/ 1) 32.0-3.97 Intrg/u?)
p® 0 0 -28.2 0 —17.4

3In this equation and those of the following ones that are similar in form, all numbers are given in units of
GeV 3,
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TABLE V. Numerical values for the LO and NLO functiofDR schemgthat enter the branching ratio
Br(B— x¢o+X) according to Eq(4.3) for my,=4.8 GeV, m.=1.5 GeV. The estimate for the penguin
correctiondp is obtained with the parameters detailed in Appendix A 2.

n f Sp 91 92 J3
Py 0 0 0 0 -6.11
3p® 0.992 —0.09 0.486 —6.35+1.98 Infrg/u?) 32.0-3.97 Intg/u?)
Br{B— (nS)+X] With the other parameters fixed, the branching ratiosBBr(
—J/y+X)=(0.80+0.08)% and BrB—'+X)=(0.34
—0.741 +0.05)% measured by CLEO are reproduced by
=< 0.0754 —2(O¥(3 U3
—0. M Py = 4.1
%P 061102 Gev® (). @1
3.10 . I
+0.342(0§(*Sy)) +—5(O§(3Py)) | (4.7 If we allow the color singlet contribution to vary between
mc zero and twice the value assumed above, include the above

variation of{ 0 §(3S,)) as well as the experimental error, and

The penguin correction is mcluded. For the coeff_|C|ent of theadd all variations linearly, we obtain the allowed range
color singlet operator we display the result obtained accord-

ing to the procedures NLO, Improved and Total in Table 1. (0.4-2.3X10°2 Ge\®  (J/4h)
As discussed earlier, we use the second efimproved in MY (1SP ,3p58>)=[ L, )
the following. ' (0.0-1.0x10°2 GeV® (y').

The color singlet matrix element is computed from the (4.12
wave functions at the origin obtained with the Buchie

Tye potential as given in Ref19]; It is interesting to compare the central valydsll) and the

upper limits with other determinations of the parameter
O|R(0))Z [1.16 GeV (I/) ML(AS® ,2P®). The central values are about a factor of 3
(0Y(3s)))= 2—=[0 76 GeV? , (4.8 smaller than the central values obtained for
7 : eV (¥). M¥ (1S, 2P®)) from ¢ production at the Tevatron collider
The color octet matrix elemext) §”(381)> is rather well de- @t moderate transverse momenti2,22. As emphasized in

termined by directy production at large transverse momen- Ref.[22] the Tevatron collider extraction is very sensitive to
L= various effects that affect the transverse momentum distribu-
tum in pp collisions[20-22. We use the valugl2]

tion. Indeed, Refs[23,24] quote smaller values compatible

1.06<10°2 GeV®  (J/y), with,. or smaller than_ the _cent.ral values above_. '_I'he total pro-
(0¥(3s))= , W3 ) (4.9  duction cross section in fixed target collisions probes
0.44x10°° GeV"  (¢'). MZ(*s® 2P®) (assuming the validity of NRQCD factor-

There is an uncertainty of a factor 2 in each direction of the'zat'on’ W,h'Ch may b.e controversjalGiven that a dlfferen'g
combination of matrix elements enters, the values obtained

central value associated with these numbers. With the nunf: ) . :
ber quoted the'S® channel contributes 0.21% to tddy Ref. [25] are certainly consistent with the above central

) . . . value. In view of the uncertainties involved in charmonium
branching fraction and 0.09% to t branching fraction. . C .
The othegr tWo color octet matrix er}gments aregnot yet WeIIproduc:t|on in hadron collisions, we believe that the above

. . 8 8 . .
determined. In Fig. 4 we show théy branching fraction as UPPEr limit on ME ('S, °P§) is the most strmgelnt one
a function of the renormalization scalefor various values ~SXISting at present. We note that small valueg@f(*S,))
of Mi,sbl(ls((:)B) SPSB)) where and((’)g’( Py)) seem to be preferred by the non-observation

of a significant color octet contribution in the energy spec-
K trum of inelasticJ/« photoproduction{26,7,27 (see, how-
ME(ISY PP =(04(*S)) +—(O4(PPy)). (4.10  ever, the discussion in Rdfl3]). We conclude that the mea-
me suredJ/ and ¢’ branching fractions can be accounted for

TABLE VI. Numerical values for the LO and NLO functiofSIDR schemgthat enter the branching ratio
Br(B— x¢,+X) according to Eq(4.3) for my,=4.8 GeV, m.=1.5 GeV. The estimate for the penguin
correctiondp is obtained with the parameters detailed in Appendix A 2.

n f Op 01 92 s
3p® 1.32 0.07 -26.8 —16.3+5.29 Innf/?) —4.04
s®) 0.992 -0.09 0.486 —6.35+1.98 In(rf/u?) 32.0-3.97 Inrj/?)
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TABLE VII. Numerical values for the LO and NLO function®DR schemgthat enter the branching
ratio Br(B— x.,+ X) according to Eq(4.3) for m,=4.8 GeV,m.=1.5 GeV. The estimate for the penguin
correctiondp is obtained with the parameters detailed in Appendix A 2.

n f Sp 91 92 J3
3pg) 0 0 0 0 —4.94
3g(® 0.992 -0.09 0.486 —6.35+1.98 Infr&/1?) 32.0-3.97 Intrd/u?)

with values of the NRQCD long-distance parameters consisNote that these relations are consistent with the renormaliza-
tent with previously available values. tion group equations for the matrix elements that follow from
Eq. (3.8. Since we do not know(O3’('Sy)) and
(Og"”(3Po)> separately, we assume that between one half
Presently, only an experimental upper boundB# 7.  and all ofM¥,(*S{® 2P®)) is due to( O Y¥(1Sy)). With the

+X)<0.9% [2] exists on 7. production. For the same central value from Eq(4.11) this leads to the estimate
choice of input parameters as above, we have

3. B— .+ X

Br(B=7c+X) Br(B— 776+ X)~ (0.3 0.5)%. 4.19
-1.19
— —2/ ) (1 7,1
=) 9250 110 (01°(750))+0.3420,4°("S)) We emphasize that this estimate is crude and depends sensi-
—0.210 tively on the validity of the relation$4.14). This estimate is
below theJ/ branching fraction, but with the increase in
0.240 ST ; . .
+0_195{<@gc(331)>_ > <@gc(lpl)> ) (4.13  statistics since the previous analy2$, a branchmg fraction
mg in the above range may perhaps be reached with the CLEO
detector.

The LO term is enhanced by about 10% because of the pen-
guin correction.
There is at present no information on thg color octet 4. B—xc+X

matrix elements from other,. production processes. The  Color octet effects in charmonium production were in fact
color octet matrix elements are non-zero because soft gluogpnsidered for the first time foy, production inB decay[6].
emission connects the color octet state to the physical The authors showed that the observgd signal can be ex-

charmonium state. The soft gluon emission amplitude can bﬁlained by the production of a€[38(18)] state followed by a

multipole expande_d, Supposing that the Zcharactenstlc MOSoft dipole transition(Recall that at LO in the color singlet
mentum of the emitted gluons is of ordagv <, smaller than

i . model, and are not producegl.The LO production
the characteristic momentumcv of the charm quarks in the X°°_3 (é()cz _ P 4 P .
charmonium rest frame. Up to corrections of orgér spin  through acc[“S;™] pair corresponds to the IR sensitive con-

elements. In addition to the familiar spin symmetry relationOur NLO calculation adds to those the “hard” contributions

<Oi/¢(351)>:3<(9 7e(1Sy)) for the color singlet wave func- at orderag in the color singlet and the color octet channels.
! With my=4.8 GeV,m.=1.5 GeV andu=m, as usual we

tion, we find ]
obtain
1
(0g(*S0)) =3(05"(°s),
—0.0148 Xco(3
(02(3S))=(03(Sy)), (4.19 BB Koot X) = (037 Po)
(OF(P)=3(0F“(Py)). +0.19505°CS). “.19

TABLE VIII. Numerical values for the LO and NLO function®dNDR schemgthat enter the branching
ratio Br(B—h.+X) according to Eq(4.3) for my;=4.8 GeV,m.=1.5 GeV. The estimate for the penguin
correctiondp is obtained with the parameters detailed in Appendix A 2.

n f Op 01 92 93
p® 0 0 0 0 -9.41
15 1.67 0.009 0.556 —11.2+3.34 Inrg/ u?) 50.2—6.68 Infrd/u?)
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s [ mental result with a reasonable choice of matrix elements.
§ o With most reasonable choices one obtaing.a production
; , cross section larger than the cross sectionfgr. If we take
S \ the color singlet matrix element from the BuchieuTye
o | potential modél[19]
= 12 3
m -
, ¥ (OP(3Py))/mi=4.8x10"2 Ge\?,  (4.23
I . |
and adjust
0.8
oo ¥/w (0F°(3s)))=(4.5-6.5X107° GeV®  (4.29
04 |- to reproduce the measurgd, branching fraction, we obtain
e
02 — Br(B— xc1+X)=(0.15-0.27%, (4.29
o b = S—— which is below the measurement. We conclude that the ex-
1 (GeV) pansion inag is not well behaved enough fé-wave char-

) ) ) monium production inB decay, at least to next-to-leading
. FIG. 4. TheJ/4 branching fraction as afunctl%n of rgenofma" order, to arrive at quantitative relations. The problem is
|1zg_t|20nG S\(,:sal?rﬁ Lor_ vanolu Z Vgluﬁs Ofwglc(:ll_sé(;'gpg ) in caused to a large extent by the fact that the leading order
eV". The horizontal band shows the measurement, | singlet contribution toy.; production, which would
[2] and the dashed curve shows the color singlet contribution alonehave been expected to enhange production relative tg
c2
production, is turned negativ@r very smal] at NLO.

—2.14 —2 In addition, the color singlet contributions are also nega-
Br(B— y. +X)=4 —0.783 —2((9’1(01(3P1)) t@ve for Xc0 and_Xcg, which have no_leading order contribu—_
—1.21 me tion. This requires large cancellations between a negative
' color singlet contribution and a positive color octet contribu-
+ 0.195((9;“(381)), (4.17p  tion. Thesg cgncellations may be considered an artifact of the
MS factorization scheme, which appears unnatural from this
~0.0120 point of view.
Br(B— xcot X) =——5—(O;2(°P,)) Because of this unsatisfactory situation, we find it difficult
me to predict they.o branching fraction better than the naive
expectation of one fifth of thg., branching fraction. Note
Xc2(3 c
+0.19504%(°Sy)) (4.18 that we consider the prediction for the, state less reliable
to be compared with the measuremejrks
Br(B— xcy+ X)=(0.37+0.09%, (4.19 “From y. decays one obtains insteaf){(3Py))/mZ=3.1
X102 Ge\ [28]. F.M. has repeated the analysis[@8] incorpo-
Br(B— xc+X)=(0.25+0.10%. (4.20 rating the corrected NLO correction to the color singlet decay chan-

nel together with the NLO correction to the color ocf&; decay
Owing to the spin symmetry relations, valid up to higherchannel [14]. The result is (OY°(*Py))/mZ=(3.2+0.4)

order corrections in?, X102 Ge\?, where the error comes from the fivith x?/d.o.f.
=1.6) and a variation of the renormalization scale betwagm@and

(OF9(3P,))=(23+1)(O;*°(®Py)), (4.2)  2m,. Using the central value we obta{i®}(%S;))=(3.5-5.6)
X102 Ge\ instead of Eq(4.24 and ay.; branching fraction of

(0F(351))=(23+1)(0§*(3s))), (4.22  Br(B—yxci+X)=(0.13-0.25)% to be compared with E¢4.25.

°This value can be compared with(O}°(3S;))=3.2
only two of the six above parameters are independent. Th& 103 Ge\® obtained in Ref. [21] and (O}®(®S)))=8.1
color singlet contribution is always negative. However, sincex10-2 Ge\® obtained in Ref[29] from y.; production at the
the two matrix elements involved mix under renormalizationTevatron collider. The difference in the two values is supp$asti
each short-distance coefficient depends on an arbitrary cofio be due to the fact that the calculation in REZ1] does not
vention to separate the two contributiorfVe used the include a negative contribution due to color-singlet fragmentation,
modified minimal subtractionM|S) schemd.Hence a nega- which is related in part to a renormalization @ §°(3S,)). Be-
tive partial rate is not unphysical. cause our calculation includes the NLO correction in the color-
Due to the near-proportionality of Eq&t.16), (4.17), we  singlet channelwhich is also negative our value in Eq.(4.24

find, however, that it is very difficult to reproduce the experi- should be compared with the value of REZ9].
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than for thex., state, so that the range for the color octet TABLE IX. Coefficients of NRQCD matrix elements in GeV

matrix element obtained in Eq4.24 may not be totally for the moments of thé/ momentum distribution. Ln denotes the

unreasonable. moment with the weight functioz", Sn the moment with the
weight function (1-2)".

5. B—h+X

M t (04Cs 04cs o4* O4(CPg))/m?2
Finally, we consider the production of tHe, stateh,, oment (01(°S)) (95(S)) (O5(Soh) (Os(Po))/me

which will probably be difficult to measure. With the usual 0 75104 2.0x10°! 3.4x10? 1.06
choice of parameters, L1 51x10°% 1.9x10°! 3.3x10°* 9.8x10!
L2 3.3x10% 1.8x10°! 3.2x10! 9.2x10?
—0.0228 L3 17104 1.7x10! 3.1x10!  87x10!
Br(B—he+X)=———(O1%(*P1))+0.342 0 (*Sp)).
me S1 24x10°*% 8.7x10° 1.4x102%  7.9x102
426 o 541075 1.6x10°3 2.3x10°%  1.6x10°2
. . h S3 24x10°° 58x10“4 7.5x10%  6.1x10°°
We use the spin symmetry relat|on((’)1°(1P1)>
=3(0}°(°Py)) for the derivative of the wave function at
the origin(squaregl and the spin symmetry relation transitionn— charmonium, but do not take into account the
he 1 oo 3 kinematic effect of the soft gluon emission, which becomes
(0g%(*%))=3(0g™(°Sy)) (427 important near the upper endpoint of the charmonium mo-

mentum distributiori13]. Because the maximdl ¢y momen-
for the color octet matrix element. With the value of the tuminB decay is on|y about 2 GeV, this effect is expected to
color Singlet matrix element as quoted above and the C0|Obe at least as important as tbauark motion, especia”y in
octet matrix element in the rangd.24 we obtain the esti- view of the large fraction of color octet production. No at-
mate tempt has been made so far to take this effect into account in
a realistic model for the spectrum. Both effects are also re-
Br(B—he+X)~(0.13-0.34%. (4.28 lated to the fact that the phase space boundaries in the par-
tonic calculation depend on the quark masses rather than the
B meson,J/¢ andK masses.
In this paper neither of the two effects will be modeled.
O(Pne expects them to be suppressed by powersfp/m, ¢
andv? provided a smooth average of the momentum distri-

The given range hinges on the estim@te27), which follows
from the statistical factor 3 for the EiS,—!P; transition
and another factor 3 for the final state willk-1, provided
we assume a spin-independent overlap integral in terms
polor singlet and color octet wave functlgns_s Then takmgbution (like the integration to the total widihs taken. We
into account the fact that the definition 00 5%°(°S,)) does  afine

not include an average over the three initial polarizations, we

obtain the relative factor 9/33. Note again that Eq4.27) is 1 1 dI'(B—¢+X)

consistent with Eq(3.8). Br(y,W)= J; dz Wz) s dz

1+7 dI'[n N
| . . -3 ot [ e ”),
We briefly address quarkonium momentum distributions. n 2y dx 1-7
We restrict ourselves to thBwave statesd/« and ', first (4.29
because data exist at present only for these sf&fpand

second, because the theoretical prediction appears to be most > e .
reliable for theSwave states. P bp wherez=|p,|/|p, may andI'g is the totalB decay rate. The
e — . . variable x is the energy fraction, defined together with
The energy distributions of thec pair in the partonic dr'[n]/dx in Eq. (2.15. [The functionsg,[n](7,x) that en-

processb—cc[n]+q+g are collected in Appendix B. The ter there can be found in Appendix JBFinally W(z) is a
partonic energy/momentum distributions are distributions insmooth weight on the momentum distribution.

the mathematical sense and cannot be used to predict the |n Table IX we give the coefficients in front of the
physical momentum spectrum. Two effects lead to a smeaNRQCD matrix elements in Eq4.29 for the weight func-
ing of the partonic energy/momentum distribution: tions " (Ln) and (1-2)" (Sn) up to n=3. Forn=0 we

() Theb quark has a residual motion in tleemeson and  recover the inclusive branching fractfori4.7). The first
does not decay at rest. This leads to an energy smearing of

orderA, whereA is the QCD scale. FdB decay into char-

monium this “Fermi motion” effect has already been mod- étnhe precise implementation is done as follows: For the

eled in Ref.[30], and more recently in Ref31]. S-function term in Eq.(B1) we use the improved prescription for
(b) The second effect is related to the fact that charmoyne color singlet channel. For the second term on the right-hand side

nium production through color octetc[n] states requires of Eq. (B1) we use the strict NLO approximation. This is reason-

the emission of soft gluons with energy of ordeg?~A. able, because the negative contributions that necessitate the im-

The NRQCD matrix elements measure the probability for theprovement are mainly associated with virtual corrections.

B. Quarkonium momentum distributions

054003-12



QCD ANALYSIS OF INCLUSIVEB DECAY INTO CHARMONIUM PHYSICAL REVIEW D 59 054003

weight function increasingly weights the endpoint region asjecay than a color singletc pair and therefore we consider

n increases. Therefore, one cannot takiarge without en-  the observation of a large fraction of multi-body decays as
hancing higher order terms in the velocity expangibd] not  sypporting evidence for the color octet picture. The fact that
taken into account here. The second Welght function Welghtﬁ']e sum of the two two-body modes above is |arger than the
the small-momentum tail. The moments decrease rapidlypoorly predicted inclusive color singlet branching fraction
with n, because, as expected, the spectrum favors a largg approximately 0.1% suggests that the NLO calculation
momentum of thej. The LO order and NLO virtual contri- ynderestimates this contributiogAnother possibility is that
butions do not contribute to the Sn moments. These momentome fraction of the large color octet partial rate does in fact
are directly sensitive to hard gluon radiation. end up in two-body modes.

The momentum spectrum measured by CLIPis given The large fraction of three body decays is significant in
in the CLEO rest frame rather than tBeest frame. With the another respect. The NRQCD approach assumes “local
improved statistics that should be available now, it will beparton_hadron dua”ty,” which is often discussed in connec-
interesting to see whether one can obtain additional informaﬁon with the inclusive non_|eptonic decays Bfmesons. A
tion on charmonium production by comparing averages otruycial consequence of “local parton-hadron duality” is that
the momentum spectrum with the above predictions. For exthe effect of color reconnections to the spectator quarks are
ample, one may think of using the Sn moments to determingmall (power-suppressedeven though color reconnections
the parameteré0 §('Sp)) and(O§(*P)) separately. must occur in every single decay. The same assumption un-
derlies the NRQCD factorization approach to inclusive char-
monium production. The assumption is usually justified by
the presence of a large energy release into the final state and

It is interesting to compare qualitative features of the the-many decay modes to be averaged over. Since the energy
oretical result for inclusive charmonium production with the release in decays into charmonium is not particularly large,
sum of the most important exclusive two-body decay chanthe existence of a sufficient fraction of decays with addi-
nels containing charmonium. We discuss odlys because tional pions suggests that the total decay rate provides
only limited experimental information exists for the other enough averaging for an approximate cancellation of non-
charmonium states. factorizable effects.

There exist only two two-body modes of any importance.

Their branching fractions are measured to[ 82]

C. Comparison with exclusive two-body modes

V. CONCLUSION

(0.099-0.010% W ted vsis of inclusiBed into th
Br(B—J/ -+ K)= (4.30 e presented an analysis of inclusiBedecay into the

(0.089+0.012% known charmonium states at next-to-leading order in the
' ' ’ strong coupling and accounting for the most important color
singlet and color octet production mechanisms. We find that

(0.147£0.027% radiative corrections make the color singlet contributions
Br(B—J/y+K*)= negative, an effect already observed in Rél.for the color
(0.135-£0.018%, singlet contribution tal/ s production and explained by the

(4.31 suppression of color singlet production at leading order due
to the particular structure of the weak effective Hamiltonian.
The problem is particularly serious fat.; production. As a
consequence, the appealing theoretical patternyfgrpro-

where the upper line in both Eg&t.30 and(4.3)) refers to
B~ and the lower one t®°. The combined branching frac-

; o i ) i ;
:Irc;r;ti?)fn %?%uéag'gsog(y's 'If'ire 2?2%2: ()'?;llljasrlvg f?;iggz'g? duction at leading ord€6] becomes obscured quantitatively
three-bod ﬁwodeé i ;I'So confirmed by the brc?ad ener disqt next-to-leading order, although the qualitative requirement

Lo y y 9Y 915t an additional color octet component is not put into ques-
tribution measured by CLE(2].

There is no clear association of the color singlet contribu—tlon' In general, we find it difficult to make a quantitative

. . : . . : . prediction for any of the fouP-wave states.
tion with the inclusive branching fraction with the above The situation is more satisfactory f&wave production,

two-body modes. A color singletc pair can radiate a hard anq in particular ford/y production, for which we confirm
gluon and end up as a three-body mode. Likewise, the sothe earlier conclusion that the color singlet contribution is
gluon that is necessarily emitted fromca pair in a color  about a factor 5—-10 below the observed production rate. The
octet state can be reabsorbed by the light quarks and comext-to-leading order corrections to the color octet channels
bine to the kaon. This process depends on the spectator light
guark in theB meson and would therefore seem to violate the—
factorization hypothesis of the NRQCD approach. However, “we use the term “non-factorizable” in the sense of NRQCD
factorization requires only that such spectator dependendgctorization. In the literature on two-body decays Bfmesons
cancels out to first approximatioin Agcp/Mep) in the  non-factorizable usually refers to any virtual gluon correctibe-
average over all decay modes. _ low the scalem,) that connects thb or s quark to thec or ¢ quark.
Nevertheless it is natural to expect that@pair in a color  These non-factorizable contributions are included in the inclusive
octet state finds itself more often hadronizing in a multi-bodyNRQCD calculation, see Fig. 1.
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computed in this paper are positive and of order 20%—50%. 9
Assuming that these channels make up for the missing con- sy 1(n) = 5(1- 7)?, (A5)
tribution, we adjust a certain combination of NRQCD matrix

elements to reproduce the experimental branching fraction.

The value for the matrix element is somewhat smaller than,

but within errors compatible with the magnitude suggested f12P® () =9(1— n)%(1+27). (AB)
by other quarkonium production processes. Sinceathex-

pansion appears to be well-behaved J6¢ production, we

obtain the sharpest upper bound to date on a combination of

(04(*Sy)) and(O¢(®Pg))/m2, even when we assume that 2. The penguin correction

there are no other production mechanisms. In principle, with

more accurate data appearing, weights onJhg momen-
tum distribution can also be used to determ{i®2y(1S,))

We consider only the contribution where a decay through
a QCD penguin operatdP;_g¢ interferes with the decay am-
plitude through a current-current operator. Since the penguin

4 (3 2 i i : = : e -
and(O5(°Po))/mg individually, which has so far proven to gperators have small coefficient functions, it is sufficient to
be difficult, even combining information from oth&tys pro-  aygjuate the penguin contributions in lowest ordersxin

duction processes.

The double penguin contribution is negligible in size. Since

fn]()=0 for n=2p{M, 3pM 1pm 1pE)  the penguin
contribution also vanishes in leading order for thesd-or
ACKNOWLEDGMENTS the other intermediate states, we find

We thank Gerhard Buchalla and Marco Ciuchini for help-
ful discussions on the renormalization of the weak effective S [38(1)]:23(CS+ Cs5)+Cy+Cs ~—0.004, (A7)
Hamiltonian in the HV scheme. We thank Ben Grinstein for PLt Cry R
his interest in this work and Tom Ferguson and Giancarlo
Moneti for their effort in explaining the data atiyy momen-
tum distributions to us. This work was supported in part by 3(C3—Cg)+ Cy—C
the EU Fourth Framework Program “Training and Mobility Sp[lSs]= sp[Bp V=22 =5 4 O
of Researchers,” Network “Quantum Chromodynamics and Cry
the Deep Structure of Elementary Particles,” Contract No. ~0.07 (A8)
FMRX-CT98-0194(DG 12 - MIHT) and by the DOE Grant R
No. DOE-ER-40682-145.

se@_ ,CatCo
Sp[3sP]=4—2——~ —0.09, (A9)
APPENDIX A: SHORT-DISTANCE COEFFICIENTS FOR C[8]
INTEGRATED DECAY WIDTHS

We collect the expressions that enter the integrated partial c_c
rates(2.13 in this appendix. Recalh=4mZ/m2. The scale Sors®1= 5.13pE1=a=%"_"% _0.009
wn denotes the factorization scale at which the coefficients A e Cig R
Ci1g are evaluated. We distinguish from it the renormaliza- (A10)

tion scaleu of the NRQCD matrix elemert©O"[n]).

1. Lowest order functions

Here we used unitarity of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix to relate the CKM factor of the penguin con-
tribution to the CKM factor of the current-current operator

The lowest order functionf[n](#) vanishes forn  contribution[up to a negligible error R¥Z,Vcs/(VipVis))
=3p(M 3p(H 1p() and 1P{®) . The nonvanishing ones are = —1]. For the numerical estimate we have used the leading

f3SM1(n) =(1— n*1+27),
f1SP1(7)=3(1— )2,

f*PM () =2(1— p)2(1+27),

3
f°SP1(m =5 (1= m*1+27),

logarithmic approximation for the Wilson coefficients at the
scalem,=4.8 GeV and withA o2, adjusted to reproduce
as(mz) which givesA g2p=93 MeV (for five flavors. This
implies  Cpy;(mp) =0.41, Cig(my,)=2.19, C4(m,)=0.010,
(A2) C4(my)=—0.024, C5(m,)=0.007 andCg(m,) = —0.028.

(A1)

A3
(A3) 3. Next-to-leading order functions

The next-to-leading order functions depend on the
(Ad) scheme-dependent constaXts, Yg andZg. Their values in

the NDR and HV scheme are given in Sec. Il A.
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3821)

3507 m=H (1) (1= )2 i _ _ am’
91057 1(7)=3) (=D)(1=m)(1+27) 8 Liz(n) +4In(1-n)ny—4Zg+ —

—4n(1+5)(1-29)In p—2(1-n)?*(5+4n)In(1—7)—(1-7)(1-27)(3+57), (A1)
4 m? (1— 7)(34+ 23— 517>+ 167°)
92[3s&1>]<n>=§f<1—n>2<1+2n> L B TF LT B
2(1-7)3(3— 7% (26— 19n+47%) 8(1-n)3n
+ (2= In(1—7)— 7= Inyp— 5- Inz], (A12)
4 8(1-6
9a[*S{”1(m) =57(1= 1) (1+377—87%) ( 5 Doy, (A13)
lsgl)
1a(1) _ 2l g 4’
910157 1(m) = (= 4) (1= 7)? 8 Lio() +4In(1= n)In p—4Zg+ ——|=169(1=7)in
— (D —
LB 25) a0t )2, (A14)
2 _ _ 2
LIS 1) = AL 1) 3 I+ Y X |+ 4P O
M 2—7
8(1-7)3*3-17)
+ " Tin(1-7), Al5
(2= ) (1-m) (A15)
1c(1) _4 2
93l"Sy ](7/)—5[(—1)(1—7/)(11—777+277 )—61n7n]. (Al16)
BP((Jl)
9:[°P§"1(m) =0, (A7)
92L°P§"1(m) =0, (A18)
3p(1) =1_6 _ 2 _ % _ _§ _ 2 3 _i _ o _ 2
93 "Po 1(n) =g (1= )" (1+27)| —In-—+21In(1-7) | - 5(1=127"+877)In =5 (1~ 7)(25- 13— 187°).
‘ (A19)
3P§_1)
o) 8 ) _ 47% 32
9il"P11(m=| — 3|(1=7n)*(1+2n)| 8 Liy(n) +4In(1=n)n p—4Zg+ ——| = = n(1+7)(1-2n)iny
16 8
~ 3 (L= A5+anIn(1-n)+ 5 (1= n)(5+97-67?), (A20)
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64 (1-7m) . [2(1-7p)
-]

2

—2Liy(n)—In2In(2—7n)+In2Inp—In nln(l—n)+? +

m;
3 |n_ + YR_ XR
u?

8
9:L°PYV1(m) =3 (1= n*(1+27)

16(1— 7)(3+872—105%+3 7%

3(2—7)?
87%(48— 967+ 597°—12%°) 32A1— ) p(4—21yp+179°—47n°)
XIn(1l—»n)— Inn— In2
3(2—7n)? 3(2—7)?
4(1— 5)(34+23p—37°—87°)
- , A21
32-7) (A21)
() 16 ) w? 16 )
gs[°Py ](77)=§(1—77) (1+2%) —lnm+2|n(1—n) —3(1—277)(1+277—277 )in 7y
C
8
—2—7(1— 7)(13+ 379—5677). (A22)
3P(21)
9.[*PV1(7)=0, (A23)
92[*PSY1(m) =0, (A24)

~2
GLPPET () = (1= (1t 2| — I 2I(1 ) |~ 2 (1 3072+ 2073)IN 77—~ (1~ 7)(27+ 31y~ 6172
alP2 1) =g (1= 7) "z n(1=7) |~ z5( n )N 5= 7=(1=7)( n—767n°).

C

(A25)
1P(11)
9:[*PM1(n)=0, (A26)
g2l P 1(7)=0, (A27)
16 u? 8 4
93 *PY)(m) =5 (1=m)? —In-—+2In(1= ) | = 5(1=67+127%)In y—55(1— 7)(119-857+87). (A28)
A],mC 9 27
35(18)
8(1-6 4
9:0°S”1(7) =~ (T")In 7+5(1=7)(1+377=877), (A29)
2 _ . \3(a_ .2 _N2.2
9l ()= (1~ 77)2(1+277)(3 2 Y X | + 2 P gy (BT 2 in g
pu? (2—7)? 2—7
8(1—7)%y (1— 7)(34+237p— 517+ 167°)
IR 22-7) ' (A30)
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2

m; 4 14 2
—4In— + 2 Xgt+ = Yr— 2 Zg—3IN*(2— 7) +6 In(1— 7)In(2— 7)
u? 3 3 3

3
9aL*S”1(m) =5 (1= m)*(1+27)

. w (17 [2(1—7)
+(1-75)(1+27) (29+777)L|2(77)—(7+2977)€+9(1+77)L|2(2_77)—18L|2( 5

1— 7)2(110+ 188y —2917°+ 837°
+18In2In(2—7)—18In2 Iny+2(5+47)In 7In(1— %) (1= 7 7 7)

(2-79)?
34+ 547p— 106272+ 1158,°— 4267* (1— 5)%(18+83n—747?)
XIn(1—7n)+ 62— 7) Inn— 7= In2
_ _ 2 3
. (1— 7)(5294+ 5779 — 14795,°+ 5228y )_ (A3D)
36(2— 1)
1868)
4
910" 1(7) = 8N y— 5 (1= (11 77+277), (A32)
m 6(3—7)(1—7)° 3(1— 5)(34—537+177%%)
92[1858>]<n>=3<1—n>2(3In;§+YR—xR L

(A33)

2

r®) 9 , m: 4 14 2 ,
9ol 'S (m) =5 (1= 7) —4|nP+§xR+ 3 Yr— 52Zr=3I%(2=7)+6 (1= p)in(2~7)~61In2

2(1—7n)
2—-7

2 _
+3(1— )| (29+ T ) Lis(7)—(7+ 297;)%+9(1+ 7;)Li2< ! 7’) -18 Li2< )+18In 22— 7)

2—19

3(1— 7)%(4+1065— 1137+ 33%°%)

—18In2Innp+2(5+47)in nln(l—n)}— > In(1—17n)
(2=m)n
17— 487+ 9072 (1— 7)(4478-6221y+ 2077y + 207°)
+ > In 7+ 22— 1) . (A34)
3P58)

We have summed ove¥=0,1,2:

,&2
(—48)In—2+96 In(1—7)
4m

C

91l*PY'1(7m)=(1-n)*(1+27) —24(1— 1272+ 87%)In 57— A(1— 7)(35+ 41— 947?),

(A35)

2

2 —
gz[SPSS)](n)=6(1—77)2(1+2n)(3 |n%+YR—xR (1~ n)

1_
7 o )—2 Li(7)—In2In(2—17)

2—n

+48n2[—u2( +Li,

772

12(1— 7)(3+8%7°—107°+37*
+In2|nn—lnnln(1—n)+?+( 7 (3+8y"— 107"+ 377)

(2=7)?
_ 67%(48—967+597°— 127°) n 77_24(1— ) (4—21n+179°— 47 n
(2—17)? (2—17)?
3(1- 7)(34+237—37*-8%°)
2—7 '

In(1— 1)

2

(A36)
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2

m 4 14 2 ,
-4 In?%— §XR+ ?YR_ §ZR_3 In (2— 77)+6 In(l

~2
gi3p?ﬂhﬁ=(l—nV(l+2m(—3®mf%5+9ﬂfﬂﬁ%1+2n)

C

[ . (2(1—77))
—n)In(2—7n) | —12(3—4%)(3+77)| Li, ﬁ —In2In(2—7%)+In2Iny

77) —(7+365— 257°—587°%) 2

+6(29+369—917°— 14%°)Li,( ) + 6(9+ 187 — 297> — 18773)Li2( 7=

30(1— 7)(14+ 67— 697>+ 587°— 135%)

+12(5+97—167°—87%%)In pIn(1—n)— > In(1—7)
(2—7n)
. 3(4—687— 159°+ 6327°— 4665* + 1067°) | 6(1— 7)(36+112p—3997°+ 269,°— 587 2
nnp— n
(2—7)? (2—1n)?
1— 7)(1078+ 851y— 37575°+ 1402,°
N (1=mn)( ] ] 7°) . (A37)
2(2—7n)
lpg.B)
~2
1p(8) 2 it 8 2 4 2
91 "Pi’1(7)=16(1—17) —|nm+2 In(1=7)|—3(1=67+1299)In —g(1-7)(119-857+87°), (A38)
C
9a[ PP 1(7) =0, (A39)
~2
1p(8) 2 s 2 2 1 2
93P 1(7n)=10(1- 7) —InF+2 In(1—7n)|— §(7—1577+307] )In 77—5(1— 7)(347— 2449+ 297°). (A40)
mC
[
APPENDIX B: SHORT-DISTANCE COEFFICIENTS FOR 33(11)

ENERGY DISTRIBUTIONS

. . - 4 7(1+ =27
At leading order inas the energy of the quarkonium is g1 eal >SiV1(X, 7)= —( - 1——(3—27]))p
fixed. A non-trivial energy distribution is generated by gluon 3 toXx
emission at NLO. The functiong;[ n](#,X), wherex is the 4(4(1—n)%(1+27)
quarkonium energy fraction as defined in the text, can be §( e +2(3+57
expressed in the form
) 2—X+p
giln](n7.x)=gi[n](n)o(1+ 7]_X)+[gi,real[n](nux)]{Bnl) —27°—X=27X) InZ—X—p’ (B4)
whereg;[n](7) is the corresponding function for the total g, ., [3S{V](x,7)=— §(1_2,7)p
integrated decay rate, given in Appendix A3. The plus- 3
distribution is defined by . §(1—377—x)|n2_x+p
1+7 1+7 3 2—X—p
J _ dX[f(X)]+t(X)=J _ AxfO)[t(x) —t(1+ )]
207 207 32 2| 2p—X—p BS5
(B2) t37 N =X+ p’ (BS)
for a test functiornt. We also introduce " 4
S, ) =2(2—x
p=\/m. B3) gS,reaI[ il 1(x,7) 3( )P
. S 16 2n—X—p
The kinematic limits onx are 2/p<x<1+7. In the + =X(1+ p—X)Ing—/———.
following we give the energy distribution functions 3 27=X+p
gi,real[n](nax): (B6)
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1Sé)l) Spgl)
28(1—7n) )
1) | _ _
Iureal "So 1%, 7) ( 1+ np—x 12)p gl,real[spél)](xin):c), (B10)
16(1—75)?
T +8(3—7n—x) -
gZ,reaI[ PB J(x,7)=0, (B11
n2_te B7)
nZ—X—p’ (
—X+tp 35(1) _8[4(1-n)(1+2p)
gz,real[lgol)](x-n):_8P+8(1+ 77—X)|n2_x_p, (B8) O3eall "Po ](Xaﬂ)—§ —1+77—X
1(26 4079+ 11x)
Jsreal *S5V1(X, 7)=(—4)(6+ 87— Tx)p 2 7 P
2n—X—p 16 2 2n—X—p
+16(1+ 7p—X)(X— 277)|nm + 3(277 +X— 17X X)|n27]—X+p.
(B9) (B12)
|
3Pgl)
8\ (7(1—7n)(1+279) 16/ 2(1— n)2(1+27) 2—X+p
3p(1) I _ = 92y
91real "PT71(X, 7) ( 3)( Trp—x  372mjpt3 Tt p—x  Totomm 2 —x=2mx|Ing—=—0,
(B13)
gZ,reaI[spgl)](X:ﬂ)
16 472 47? 2— X+p 32 279? ’ n—X—p
"3 1+n—x_(1_2”))” Tl Ty ex TS IS | T, T3 g, o, (B
4(1-n)(1+2n) 16 29—X—p
Usreal p( )](X 7)== ( — —(16+347%—23X) p—3(377+7772—2X—677X+2x2)|nm.
(B15)
3P(21)
1real P 1(X,7)=0, (B16)
92,rea|[3p(21)](xﬂ7)=0, (B17)
8(4(1-n)(1+2n) 16 2p—X—p
3p(1) _2 2 2
Y3real P2 1(X,7) =7 1+ 7—x (4=2n+X) |p+ 75(37= 57"+ 2X—27x—2X )|n Zn—X+p (B19
lpgl)
91 real PLV1(X,7)=0, (B19)
Uzreal *PEV1(X,7)=0, (B20)
8(1 —7/) 16 N—X—p
(1) _ _ _ 0 2
gSreaI[ P ](X ) 1+7] (14+x) P (277 X— pX+X )In 27— X+p' (BZ]—)
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3828)
3a(8) 2n—X—p
O1reall “S1 (X, 7)=4(2—X)p+16x(1+ 7I—X)|nm, (B22)
2—X+p 2n—X—p
3(8) - _ _ _ _ 2 l—"
Gareal S 106 1) = ~2(1=27)p+ 2(1=3p—x) Ny — — "+ 8 Iy =, (B23)
32(1-7)(1+27) 77X 2(1—7)(1+27)(5+47)
3a(8) _|_ _ = _ a2
areal °SP”'1(X, 7) ( TE— +39+687— —-|p+ 15 7—x +17+57—87%—9x
2—-X+p [181-7n)(1+27n) ) 5|, 2n=X—p
—87]X)|n2_x_p 1+7}_X —18+1877+927] +10X—2677X—10X |nm
(B24)
1868)
1a(8) 2n—X—p
1real "So 1(X,7)=—12A6+87—7X)p— 481+ 7—X)(2n—X)In5————, (B25)
n—X+p
2—x+p
Gzreal 'S5 10X )=~ 6p+6(1+ 9= )Ny — —, (B26)
96(1— 7) 105« 6(1—7)(5+47) 2—X+p
1a(8) _|_ _E1_ _ —
gB,reaI[ S 1(x,m) ( 1+ 7—x 51-60n+ 2 )p+ 1+ 7—x +51+ 37— 27X |n2_x_p
S4(1—m) ) 2| 2N X—p
+ 1+—77_X—54—677—607] +30X+9077X—30X Inm (827)
3P58)
We have summed over=0,1,2:
96(1— 7)(1+27) 2n—x—p
3p(8) _ _ _ 9.2 _ay?
O1reall“Py " 1(X, 7) ( [ 12(18+167—13x) | p+48(— 27— 8%+ 3X+ 57X 3x)m2n_x+p, (B29)
0= | 2 1o1-2p) | ot [T 113 e P
92reall "Py 1(X, 7) = [E—— (1-2n) |p [p— 21-3n—X) N x=p
4872 5|, 2n—X—p
MR ——— )ln—Zn—X-l-p' (B29)

12(11+ 115— 327?) 12(5+ 97— 167°—8%°%)

- +6(17—-47—87%—9x

areal *PY'1(X, 77)=< —24(5— 129+ X))p-i—

1+7—x 1+7n—Xx
2—X+p [(123—-4%n)(3+7n) ) ) 2np—X—p
—877x))ln2_x_p 1+’)7—X —6(18—877—717] —24X+27]X+24X ) |nm
(B30)
lpg.B)
32(1—1n) 2n—X—p
1p(8) _ _ _ v 2
O1seal PP 10X, m) = | T ~4(144) |~ 1627~ x— i xiny — L (831
Uzreal *PP1(X, 1) =0, (B32)
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20(1—7)

2np—X—p
- _ _ 2_ _ A P
- (62+367—29%) |p—4(14n+ 97~ —7xX—16px+ 7X )In277—x+p' (B33

g3,rea|[1P§18)](Xv 77) =
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