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Set of sum rules for anomalous gauge boson couplings
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The dependence of the differential cross section for on-shellW-pair production on the anomalous trilinear
gauge couplings invariant underC and P is examined. It is shown that the contributions of the anomalous
magnetic moments of theW boson due to the photon and theZ can be individually projected out by means of
two appropriately constructed polynomials. The remaining four anomalous couplings are shown to satisfy a set
of model-independent sum rules. Specific models which predict special relations among the anomalous cou-
plings are then studied, in particular, the composite model of Brodsky and Hiller and linear and non-linear
effective Lagrangian approaches. The relations predicted by these models, when combined with the aforemen-
tioned sum rules, give rise to definite predictions, particular to each model. These predictions can be used, at
least in principle, in order to exclude or constrain such models. Finally, we present an elementary discussion of
the statistical properties of the proposed observables.
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I. INTRODUCTION

The possibility of probing directly non-Abelian vertices
the experiments at the CERN Large Electron Positron c
lider LEP2 through the processe1e2→W1W2 @1–3#, as
well as the Fermilab Tevatron@4# and the Next Linear Col-
lider ~NLC!, has motivated extensive study of anomalo
gauge boson couplings. The general methodology for qu
tifying the effects of such couplings on physical amplitud
was presented some time ago in the classic papers of G
ers and Gounaris@5# and Hagiwaraet al. @6#. The central
idea is to parametrize the most general three-gauge-b
vertex allowed by Lorentz invariance in terms of unknow
form factors, compute the theoretical predictions of relev
physical amplitudes using this vertex, and then attemp
extract information about the structure of these form fact
by comparing these theoretical predictions with the exp
mental data. In practice one usually obtains experime
lower bounds on the size of these form factors by carry
out a multi-parameter fit to the data@7#. This type of analysis
becomes considerably more complicated if one takes
account the fact that the two producedW are not stable, bu
decay subsequently through a variety of channels. The c
plexity of this problem necessitates a detailed amplitu
analysis for the processe1e2→W1W2; several studies
based on a variety of methods, such as helicity amplit
techniques@8#, have been carried out, and a plethora
complementary observables, such as integrated cross
tions, angular distributions, polarized cross sections,W den-
sity matrices, and polarization asymmetries, have been
posed@9#.

It would clearly be useful to relate directly some of th
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anomalous form factors to experimentally measurable qu
tities. In addition, it is important to establish a variety
ways for testing experimentally some of the characteris
predictions of models which give rise to such anomalo
form factors. To that end in this paper we present a stu
complementary to that of Ref.@6#. In particular, we compute
the differential cross section for the processe1e2

→W1W2, under the assumptions that~i! the anomalous
form factors used to parametrize the non-Abelian vertex
isfy separatelythe discrete symmetriesC, P, and T. This
assumption, which is often employed in the literature,
duces the number of possible form factors from 14 down
6. ~ii ! The size of the anomalous couplings is small co
pared to unity, so that we may keep only effects linear
them. And~iii ! the twoW’s are strictly on shell; i.e., we do
not consider the effect of their subsequent decays. Then,
lowing a method developed in Ref.@10#, a system of four
independent algebraic equations for the six unknown ano
lous form factors is derived. It turns out that one can so
directly two of these equations and obtainexplicit expres-
sions for the two form factors traditionally associated w
the photon andZ anomalous magnetic moments of theW in
terms of the differential cross section. These two express
are completely model independent; therefore they can s
as a testing ground for confronting the predictions of diffe
ent models for the anomalous magnetic moments with
periment. The two remaining equations constitute a se
model-independent sum rules@11# for the other four un-
known form factors.

To demonstrate with specific examples the potential u
fulness of such sum rules for testing the viability of mode
predicting anomalous couplings, or at least for constrain
them, we first study the composite model proposed by Br
sky and Hiller ~BH! @12#. This model predicts certain rela
tions between the anomalous form factors; if these relati
are fed into the two remaining equations mentioned abo
©1999 The American Physical Society02-1
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the system turns out to be over-constrained, thus leadin
two independent predictions. These predictions are partic
to this composite model, and could, at least in principle,
confronted with experiment. Next we turn to an approa
based on a gauge invariant, effective Lagrangian@13–17#,
which also provides relations among the various anoma
form factors; in particular all form factors are expressed
terms of the three free parameters of the effective Lagra
ian. When these relations are combined with the two afo
mentioned equations as before, one constraint emer
which constitutes a particular prediction of this effective L
grangian approach.

The paper is organized as follows: In Sec. II we brie
review the general form of the three-gauge-boson vertex
define the anomalous form factors which parametrize the
viation of the couplings from the standard model~SM! tree-
level values. In Sec. III we compute under the three assu
tions mentioned above, the analytic dependence of
theoretical cross section on these form factors, and show
to derive expressions for the anomalous magnetic mome
as well as the two sum rules. In Sec. IV we study so
aspects of the BH model, and translate its predictions at
level of experimental cross sections. In Sec. V the effec
Lagrangian approach is outlined both for a linear and n
linear realizations of the symmetry and its predictions
expressed in terms of experimental cross sections. In Sec
we present an elementary discussion of the statistical p
erties of the proposed observables. Finally in Sec. VII
summarize our results.

II. ANOMALOUS COUPLINGS

In this section we give a brief review of the anomalo
gauge-boson couplings and establish notation. The SM th
gauge-boson vertexVmWa

2Wb
1 involving a neutral gauge bo

sonV5g,Z coupled to a conserved current~massless exter
nal fermions in the case of theZ boson! and two on-shell
W’s is given by@18#

Gmab
V,0 ~q,2p1 ,2p2!5gVGmab

0 ~q,2p1 ,2p2!, ~2.1!

with

Gmab
0 ~q,2p1 ,2p2!5~p22p1!mgab12~qbgma2qagbm!,

~2.2!

wheregg5gsw , gZ5gcw , g is theSU(2)L gauge coupling,
andsw

2 512cw
2 is sine of the weak mixing angle.Gmab

0 sat-
isfies the following elementary Ward identity:

qmGmab
0 ~q,2p1 ,2p2!5@p2

22p1
2#gab . ~2.3!

Assuming that the twoW’s are on shell, i.e.,p1
25p2

25MW
2 ,

we have from Eq.~2.3! that

qmGmab
0 ~q,2p1 ,2p2!50. ~2.4!

The above elementary Ward identities are crucial for
gauge invariance of the processf 1 f 2→W1W2 evenif the
external fermionic current is conserved. To appreciate
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fact all one has to do is to choose to work in the axial
planar gauge@19# instead of the usual renormalizable (Rj)
gauges@20#. In that case, the bare photon propagatorD0

mn(q)
appearing in graph 1~a! assumes the form

D0
mn~q!5Fgmn2

hmqn1hnqm

hq
G 1

q2
1h2

qmqn

~hq!2
. ~2.5!

The four-vectorhm in the above expressions is a gaug
fixing parameter; therefore, physical quantities such
S-matrix elements should be independent ofhm . Evidently,
even though allh-dependent terms proportional toqm and
qmqn will vanish when contracted with the conserved cu
rent, theh-dependent term proportional toqn can only can-
cel if the Ward identity of Eq.~2.4! holds.

The most general parametrization of the trilinear gau
vertex consistent with Lorentz invariance is given in terms
14 form factorsf i

V @5,6#:

Gmab
V ~q,2p1 ,2p2!

5~11 f 1
V!~p22p1!mgab12~11 f 3

V!~qbgma2qagbm!

2 f 2
Vqaqb~p22p1!m/2MW

2 2 i f 4
V~qbgma1qagbm!

1 i f 5
Vemabr~p22p1!r

1 f 6
Vemabrqr1 f 7

V~p22p1!meabrsqr~p22p1!s /MW
2 .

~2.6!

The first three form factorsf i , i 51,2,3, preserveC andP
separately.f 5 respectsCP but violates bothC and P. The
rest of the form factors violateCP: f 4 is P even butC odd,
while f 6 and f 7 are C even andP odd. Note the slight dif-
ference in notation compared to Ref.@6#; we have chosen to
write the vertex in a way such that the form factorsf i

V ex-
press exactly the deviations of the couplings from their S
tree level values. Indeed, by comparing Eq.~2.6! with Eq.
~2.2! we see that all form factorsf i

V are normalized to be
zero at the tree level. The above form factors receive n
zero contributions of orderO(a) from one-loop quantum
corrections within the SM@21,22#; in fact, f 4

V , f 5
V , f 6

V , and
f 7

V receive contributions from one-loop fermionic diagram
only @6#. The contributions to thef i

V obtained from super-
symmetric@23# and other extensions of the SM@24#, as well
as composite models@25#, have been studied extensively
the recent literature. In what follows we will treat thef i

V as if
they were small with respect to unity, but not necessarily
orderO(a).

It is possible to impose constraints on the form of thef i
V

by resorting to various physical and field-theoretical cons
erations. For example, if one requires thatGmab

g satisfy the
Ward identity of Eq.~2.4!, namelyqmGmab

g 50, in order for
the cancellation of the gauge-dependent terms stemm
from the tree-level photon propagator of Eq.~2.5! to go
through as before, thef 4 and f 5 terms in thegW1W2 vertex
Gmab

g need to be replaced by
2-2
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SET OF SUM RULES FOR ANOMALOUS GAUGE BOSON . . . PHYSICAL REVIEW D 59 053002
2 i f 4
g@qbgma1qagbm22qmqaqb/q2#1 i f 5

g@emabr~p22p1!r

2qmeabrsqr~p22p1!s /q2#. ~2.7!

Analyticity at q250 provides us then with the constrai
f 4

g(q250)5 f 5
g(q250)50. In addition, fixing the electric

charge of theW6 to be61 imposes the additional constrai
f 1

g(q250)50.
If the form factorsf i

V are kept arbitrary, the vertex of Eq
~2.6! leads to cross sections which grossly violate unitar
because the subtle cancellations enforced by the tree-
couplings of the SM are now distorted@26,27#. Unitarity can
only be restored if the form factorsf i(q

2) fall sufficiently
fast with increasingq2. In fact in analyzing the effects o
anomalous couplings in hadron colliders that probe a w
range ofq2 a behavior of the following form is assumed:

f i~q2!5
f i

0

~11q2/L2!2
. ~2.8!

The exact form of the form factors depends on the unde
ing dynamics that generate them and determine the scalL.
Tree level unitarity then provides order of magnitude e
mates for the productf i

0L @28,31#.

III. W PAIR PRODUCTION
WITH ANOMALOUS FORM FACTORS

We now proceed to calculate the process

e2~k1 ,s1!e1~k2 ,s2!→W2~p1 ,l1!W1~p2 ,l2! ~3.1!

using the non-standard vertex of Eq.~2.6! and keeping only
terms linear in the anomalous couplingsf i

V . For the rest of
this paper we restrict ourselves only to the form factors t
separately respect the discreteC, P, andT symmetries. The
electrons are considered massless, andsi , l i label respec-
tively the initial electron’s and positron’s spins and the p
larizations of the finalW’s. The relevant kinematical vari
ables in the center-of-mass frame are

s5~k11k2!25~p11p2!2,

t5~k12p1!25~p22k2!252
s

4
~11b222b cosu!,

~3.2!

where

b5A12
4MW

2

s
~3.3!

is the velocity of theW’s, and u is the angle between th
incoming electron and the outgoingW2.

The S-matrix element for this process is given by

i ^W1W2uTue1e2&

5 i ea* ~p1 ,l1!eb* ~p2 ,l2!v̄~k2 ,s2!Tabu~k1 ,s1!, ~3.4!
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where the amplitudeTab is the sum of the graphs of Fig. 1
If we now write the vertex of Eq.~2.6! as a sum of the
standard vertex of Eq.~2.2! and a non-standard piece, i.e.,

Gmab
V ~q,2p1 ,2p2![Gmab

V,0 ~q,2p1 ,2p2!

1dGmab
V ~q,2p1 ,2p2!, ~3.5!

then Tab consists of the standard partTab
0 and a non-

standard partdTab , which originates from thes-channel
graphs only, i.e.,

Tab5Tab
0 1dTab . ~3.6!

The two terms are given explicitly by

Tab
0 5 ig2F sw

2 gm
1

s
1gm~v2ag5!

1

s2MZ
2GGmab

0

2 i
g2

2
gbPL

1

k” 12p” 1

gaPL ~3.7!

and

dTab5 ig2sw
2 gm

1

s
dGmab

g 1gm~v2ag5!
1

s2MZ
2

dGmab
Z .

~3.8!

In the above equationsPL5(12g5)/2 is the left chirality
projector andv51/42sw

2 , a51/4 are respectively the vector
and axial couplings of the electron with theZ.

Defining the W polarization tensor as Qmn(k)
[(em(k)en* (k)52gmn1kmkn /MW

2 , the modulus squared
of the matrix element averaged over initial state spin
summed over the final polarizations, and to first order in t
deviations is given by

(
s1 ,s2

(
l1 ,l2

u^e1e2uTuW1W2&u2

5 (
s1 ,s2

~ v̄Tm8n8u!* Qm8m~p1!Qn8n~p2!~ v̄Tmnu!

5 (
s1 ,s2

~ v̄Tm8n8
0 u!* Qm8m~p1!Qn8n~p2!~ v̄Tmn

0 u!

12 (
s1 ,s2

Re@~ v̄Tm8n8
0 u!* Qm8m~p1!Qn8n~p2!

3~ v̄dTmnu!#. ~3.9!

FIG. 1. The three diagrams which contribute to the proce
e1e2→W1W2 at the tree level in the case of massless electron
2-3
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The unpolarized differential cross section in the center-
mass frame is given by

ds

dV
5

1

256p2

b

s (
s1 ,s2

(
l1 ,l2

u^e1e2uTuW1W2&u2,

~3.10!

and consists of a standard and an anomalous contributio

ds

dV
5

ds0

dV
1

dsan

dV
, ~3.11!

given by

ds0

dV
5

1

256p2

b

s (
s1 ,s2

~ v̄Tm8n8
0 u!* Qm8m~p1!Qn8n~p2!

3~ v̄Tmn
0 u! ~3.12!

and

dsan

dV
5

1

128p2

b

s (
s1 ,s2

Re@~ v̄Tm8n8
0 u!* Qm8m~p1!Qn8n~p2!

3~ v̄dTmnu!#, ~3.13!

respectively. The SM cross sectionds0/dV in Eq. ~3.12! has
been calculated in Ref.@29#; we do not report it here. We
next turn to the computation of the non-standard part of
cross sectiondsan/dV. We define the variables

x5cosu, z5
11b2

2b
, ~3.14!

in terms of which the Mandelstam variablet, defined in Eq.
~3.2!, becomes

t52
s

4
~11b222bx!52

sb

2
~z2x!. ~3.15!

Then, a straightforward calculation yields

~z2x!
dsan

dV
5

1

128p2
g4

b

s (
i 51

4

s i~s!Pi~x,s!. ~3.16!

The functionsPi(x,s) are polynomials inx of maximum
degree 3, given by

P1~x,s!5z2x,

P2~x,s!5~z2x!~12x2!,

P3~x,s!512x2,

P4~x,s!512bx. ~3.17!

In Eq. ~3.16! the terms proportional toP1 and P2 origi-
nate from the square of thes-channel graphs, whereas th
terms proportional toP3 and P4 from the interference be
05300
f-

e

tween thes-channel graphs and thet-channel graph. Notice
that there is no contribution todsan/dV originating from the
square of thet-channel graph; this is so because all su
contributions are absorbed into the standard part, since
couplings of the neutral gauge bosons to fermions are
sumed to be exactly those of the SM.

The functionss i(s) are linear combinations of the variou
deviation form factors. Specifically,

s1~s!5A1f 3
g1A2f 3

Z ,

s2~s!5A3f 1
g1A4f 1

Z1A5f 3
g1A6f 3

Z1A7f 2
g1A8f 2

Z ,

s3~s!5A9f 1
g1A10f 1

Z2hA9f 2
g2hA10f 2

Z ,

s4~s!5A11f 3
g1A12f 3

Z , ~3.18!

where h5s/4MW
2 . The explicit closed expressions for th

coefficientsAi are given below. Setting

y5
s

s2MZ
2

1

cw
2

,

r 5a21v2, ~3.19!

we have

A1528sw
2 @yv~4cw

2 21!14sw
2 #,

A2528ycw
2 @yr~4cw

2 21!14sw
2 v#,

A35b2sw
2 @2~322h!~yvcw

2 1sw
2 !2~112h!yv#,

A45b2ycw
2 @2~322h!~yrcw

2 1vsw
2 !2~112h!yr#

A5524b2hsw
2 @yv~2cw

2 21!12sw
2 #

A6524b2hycw
2 @yr~2cw

2 21!12vsw
2 #,

A7522b2hsw
2 @2~11h!~yvcw

2 1sw
2 !2hyv#,

A8522b2hycw
2 @2~11h!~yrcw

2 1vsw
2 !2hyr#,

A952bsw
2 ,

A1052~a1v !bycw
2 ,

A1154sw
2 b21,

A1254y~a1v !cw
2 b21. ~3.20!

The values of the coefficientsAi(s) for some typical
LEP2 energies are shown in Table I. Notice that the coe
cientsAi appearing within each of the four equations in Eq
~3.18! are of the same order of magnitude, and theref
none of them can be neglected.
2-4
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The polynomialsPi(x) are linearly independent; indeed
their Wronskian is given by

W~Pi !5
24MW

2

s
, ~3.21!

which can be zero only ifs→`.
It is important to emphasize at this point that in our ca

the quantity (z2x)(dsan/dV) appearing on the right han
side of Eq.~3.16! is more suitable as an experimental obse
able than (dsan/dV) itself @10#. The reason is that this quan
tity is the sum of a finite number of linearly independe
polynomials. Instead, an expansion of (dsan/dV) in terms
of polynomials inx would necessitate an infinite number
them, because of the presence of the term (z2x)21. This
fact would in turn complicate the inversion of such a re
tion, i.e., the determination of the quantitiess i , which con-
tain the dependence on thef i

V . We next proceed to carry thi
inversion for the quantity (z2x)(dsan/dV).

To accomplish this one must construct a set of four ot
polynomials,P̃i(x), which are orthonormal to thePi(x); i.e.,
they satisfy

E
21

1

P̃i~x,s!Pj~x,s!dx5d i j . ~3.22!

These polynomials are

P̃1~x,s!5
h

2
~3b115x215bx2235x3!,

P̃2~x,s!5
35

8
~23x15x3!,

P̃3~x,s!5
5

8
~3121zx29x2235zx3!,

P̃4~x,s!5
h

2
~23215zx115x2135zx3!.

~3.23!

TABLE I. The coefficientsAi as a function ofAs.

As ~GeV! 161 172 180 192 200

A1 21.79 21.78 21.77 21.77 21.76
A2 23.25 22.91 22.73 22.53 22.42
A3 2.2031023 7.4031022 0.123 0.191 0.235
A4 3.6831023 11.031022 0.169 0.239 0.279
A5 21.7031023 26.1831022 20.108 20.181 20.232
A6 21.8331023 26.0331022 20.0991 20.154 20.190
A7 21.7931023 26.9431022 20.127 20.228 20.306
A8 23.2431023 211.131022 20.187 20.303 20.385
A9 21.4131022 27.9831022 20.101 20.122 20.133
A10 22.5631022 213.731022 20.167 20.195 20.208
A11 14.2 2.51 1.99 1.64 1.50
A12 25.8 4.31 3.30 2.61 2.34
05300
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Notice thatP̃2(x) is proportional to the third Legendre poly
nomial.

Thus, thes i are given by

s i5F64ps

g4b
G E

21

1

dx~z2x!S dsan

dx
D P̃i~x,s!, ~3.24!

where the trivialdf integration has been carried out.
If we assume that the experimental valuedsexpt/dV for

the differential cross section of the above process has b
measured, and that all new physics is parametrized by n
standard trilinear vector couplings, then we have that

dsexpt
an

dV
5

dsexpt

dV
2

ds0

dV
. ~3.25!

Therefore, the experimental values fors i are given by

s i
expt5F64ps

g4b
G E

21

1

dx~z2x!S dsexpt

dx
2

ds0

dx
D P̃i~x,s!.

~3.26!

The fact that one can extract, at least in principle, exp
mental information for the quantitiess i motivates the study
of the system of equations given in Eq.~3.18!. Of course,
since Eq.~3.18! constitutes a system of four equations for s
unknown quantities, we do not expect to determine all dev
tion form factorsf i

V individually. We can easily do so how
ever for two of them; indeed the first and fourth equations
Eqs. ~3.18! constitute a separate system of two equatio
with two unknowns,f 3

g and f 3
Z , which can be solved exactly

f 3
g5g1s11g4s4 ,

f 3
Z5z1s11z4s4 , ~3.27!

where

g152
a1v

2sw
4

1

@y~124cw
2 !14#

,

g452
1

sw
4

b@yr~4cw
2 21!14sw

2 v#

@y~124cw
2 !14#

,

z15
1

2sw
2 cw

2

1

y@y~124cw
2 !14#

,

z45
1

sw
2 cw

2

b@yv~4cw
2 21!14sw

2 #

y@y~124cw
2 !14#

.

~3.28!

Thus, the measurement of the two observabless1 and s4
directly determines the deviations from their SM values,
the magnetic dipole form factorsGM

g andGM
Z of theW due to

the photon and theZ respectively:
2-5
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GM
g ~s!5

e

2MW

@21 f 3
g#5

e

2MW

@21g1s11g4s4#,

GM
Z ~s!5

e

2MW

cw

sw

@21 f 3
Z#5

e

2MW

cw

sw

@21z1s11z4s4#.

~3.29!

We are not aware of the existence in the literature
similar simple expressions relating directly the anomalo
magnetic moments to theunpolarizeddifferential cross sec-
tion with two on-shellW bosons.

The remaining two equations provide two constraints
tween four of the six non-standard form factors. In particu

a1s11s21a4s45A3f 1
g1A4f 1

Z1A7f 2
g1A8f 2

Z ,

s35A9f 1
g1A10f 1

Z2hA9f 2
g2hA10f 2

Z ,
~3.30!

where

a152
b2h

2

y~122cw
2 !12

y~124cw
2 !14

,

a452
2ab3hy

y~124cw
2 !14

, ~3.31!

and we have used thata2v5sw
2 . The above equations ca

be cast in the equivalent form of two sum rules@11#

E
21

1

dx~z2x!S dsexpt

dx
2

ds0

dx
D H~x,s!

5A3f 1
g1A4f 1

Z1A7f 2
g1A8f 2

Z ,

E
21

1

dx~z2x!S dsexpt

dx
2

ds0

dx
D P̃3~x,s!

5A9f 1
g1A10f 1

Z2hA9f 2
g2hA10f 2

Z , ~3.32!

where

H~x,s!5a1P̃1~x,s!1 P̃2~x,s!1a4P̃4~x,s!. ~3.33!

The analysis and the results presented thus far are m
independent since no assumptions have been made abo
dynamical mechanism which gives rise to the anomal
couplings. It would be interesting to examine how the abo
results could be used for testing the validity of specific mo
els which predict the generation of such couplings. We w
discuss some of these issues in the next section, in the
text of a composite model for theW.

IV. PREDICTIONS OF A COMPOSITE MODEL

In this section we examine the predictions at the leve
experimental cross sections of a model of compositen
proposed by Brodsky and Hiller@12#. In this model theW is
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considered a bound state of two, in general different, fer
ons. The two fermions are held together by the exchang
a gauge boson of massl. The results presented have be
calculated in the one-boson exchange approximation~Fig.
2!; as explained in Ref.@12# the model becomes gauge in
variant in the collinear approximation.

The matrix element (Gh,h8
V )m5^p2 ,h8uJV

mup1 ,h& of the
currentJV

m between the momentum and helicity eigensta
up1 ,h& andup2 ,h8& is written in terms of three-form factors1

as follows:

~Gh,h8
V

!m52G1
V~q2!~e8* •e!~p22p1!m

2G2
V~q2!@~e8* •q!em2~e•q!e8m* #

1G3
V~q2!/2MW

2 ~e8* •q!~e•q!~p22p1!m

~4.1!

wheree[eh ande8[eh8 are the initial and final polarization
vectors.

The kinematical form factorsG1
V , G2

V , andG3
V are related

to the photonic (V5g) or weak (V5Z) chargeGC
V , mag-

netic dipoleGM
V , and electric quadrupleGQ

V form factors of
the W through the relations

GC
V5G1

V1
2h

3
GQ

V ,

GM
V 5G2

V ,

GQ
V5G1

V2G2
V1~11h!G3

V .
~4.2!

As was shown in Ref.@12#, this model predicts the fol-
lowing ratios for photon form factors:

GC
g :GM

g :GQ
g 5S 12

2

3
h D :2:21 ~4.3!

1We use the same notation as in Ref.@12#, except for the labelling
of the four-momenta, where we have setp8→p2 andp→2p1.

FIG. 2. The composite model in the one-boson exchange
proximation.
2-6
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which, in the notation of Eq.~1!, translates into

f 2
g50, f 1

g5 f 3
g . ~4.4!

Notice that the above ratios, which have been derived us
the non-trivial dynamics of this composite model, coinci
with the corresponding ratios satisfied by the tree-level
values ofGC , GM , andGQ .

However, no analogous ratios for the form factorsGC
Z ,

GM
Z , andGQ

Z were derived in Ref.@12#, because their analy
sis had focused on the photon form factors only. In w
follows we will address this issue in some detail. In partic
lar we will study how the anomalous gauge boson coupli
predicted by this model are affected by the coupling of
neutral gauge bosonsV (V5g,Z) to the fermions, which
make up the compositeW.

The most general coupling of theith fermion (i 51,2)
allowed by Lorentz invariance is given by

Gm
V,i5gmF1

V,i1smnqnF2
V,i1gmg5F3

V,i1smnqng5F4
V,i ,

~4.5!

wheresmn5( i /2) @gm ,gn#. Note thatF1
V,i and F3

V,i are di-
mensionless quantities, whereasF2

V,i and F4
V,i have dimen-

sions of inverse mass. To determine the effect of this gen
fermion-boson coupling on the anomalous trilinear gauge
son couplings we must repeat the calculation presente
Ref. @12#, keeping the general form forGm

V,i given on the left
hand side of Eq.~4.5!, instead of only the term proportiona
to gm .

From Ref.@12# we know that

~Gh,h8
V

!m;
1

s

1

~s24l2!
(

i 51,2
@~Ahh8

V,i
!m1~Bhh8

V,i
!m#,

~4.6!

with

~Ahh8
V,i

!m5TrH gnx̄Jh8g
nFp” 22

1

2
~p” 12M !GGm

V,ixJhJ ,

~Bhh8
V,i

!m52TrH x̄Jh8Gm
V,iFp” 11

1

2
~p” 22M !GgnxJhgnJ ,

~4.7!

whereM is the mass of the compositeW, and the spin wave
functions are given by

x1h5
21

A2
e” h~p”2M !, x005

1

A2
g5~p”2M !. ~4.8!

If we define the quantity

F̃ j
V5(

i
F j

V,i , j 51,2,3,4, ~4.9!
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we find in the limit where the massM of the compositeW
and the massesm1 andm2 of the constituent fermions satisf
M5m11m2 (x15x25y15y251/2 in the notation of@12#!:

f 1
V5F̃1

V2
2s

M
F̃2

V21,

f 2
V524MF̃2

V ,

f 3
V5F̃1

V2S s14M2

2M
D F̃2

V21,

f 4
V50,

f 5
V52 i F̃ 3

V1 i S s

2M D F̃4
V ,

f 6
V54MF̃4

V ,

f 7
V52MF̃4

V . ~4.10!

In deriving these results we have made use of the ident
listed in Eq.~A3! and Eq.~A4! in the Appendix of Ref.@6#.
We see that the presence ofF̃2

V distorts the compositenes

condition, whereasF̃3
V and F̃4

V do not enter in the definition
of f 1

V , f 2
V and f 3

V .
Having established the above results we will now purs

two different possibilities:~i! We will assume that the com
positeness condition holds for the photonic form facto
only, i.e., F̃2

g50 but F̃2
ZÞ0. ~ii ! We will assume that the

compositeness condition holds for both the photonic anZ

form factors, i.e.,F̃2
g5F̃2

Z50.
In the first case, using Eq.~4.4!, which we assume to be

true, we obtain from Eq.~3.27! and Eq.~3.30! the following
system of two equations for the two remaining unknow
form factorsf 1

Z , f 2
Z :

~a12A3g1!s11s21~a42A3g4!s4

5A4f 1
Z1A8f 2

Z ,

2A9g1s11s22A9g4s4

5A10f 1
Z2hA10f 2

Z . ~4.11!

This yields the solutions

f 1
Z5s1~g1b12ha1A10!/D12s2hA10/D12s3A8 /D1

1s4~g4b12ha4A10!/D1 ,

f 2
Z5s1~g1b22a1A10!/D12s2A10/D11s3A4 /D1

1s4~g4b22a4A10!/D1 , ~4.12!

with

b15hA10A31A8A9 ,

b25A10A32A4A9 ,
2-7
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D15~a1v !b3hy2cw
4 @yr~2cw

2 21!12vsw
2 #.

~4.13!

Thus, assuming that the couplings ofW to the photon
obey their tree-level SM relations one can extract all
remaining of theC andP conserving anomalous form facto
directly from the differential cross section.

In the second possibility of interest, using the fact th
because of the compositeness conditionsf 2

V50, Eq. ~3.30!
reduces to

a1s11s21a4s45A3f 1
g1A4f 1

Z ,

s35A9f 1
g1A10f 1

Z .
~4.14!

Then, sincef 1
V5 f 3

V , we can substitute into Eq.~4.14! the
solutions forf 3

V from Eq. ~3.27! to arrive at

s21c1s11c2s450,

s31c3s450, ~4.15!

where

c15
1

8
b2

2~322h!~12ycw
2 !1~122h!y

4~12ycw
2 !1y

,

c252
a

2
b3y

~116h!

4~12ycw
2 !1y

,

c35
b2

4
. ~4.16!

Using Eq.~4.16! and assuming Eq.~3.25! we obtain the
following two predictions:

E
21

1

dx~z2x!S dsexpt

dx
2

ds0

dx
D Hi~x,s!50, i 51,2,

~4.17!

whereH1 andH2 are polynomials inx of maximum degree
3, given by

H15 P̃21c1P̃11c2P̃4 ,

H25 P̃31c3P̃4 . ~4.18!

V. PREDICTIONS OF AN EFFECTIVE
LAGRANGIAN APPROACH

We now turn our attention to an effective Lagrangian a
proach to anomalous gauge couplings based onSU(2)L
3U(1)Y gauge invariance. In such an approach the de
tions of the gauge couplings arise from gauge invariant
non-standard interaction terms of dimensiond.4, between
gauge bosons and the Higgs field@13–17#. Such terms are
assumed to originate from an as yet unknown underly
05300
e
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theory at a new-physics mass scaleL. Thus, the correspond
ing strengths of these interactions will be suppressed by
tors (L)42d.

In order for all form factors of the vertex of Eq.~2.6! to
be generated one must consider a host of operators of dim
sion d up to 12; in such a scenario no constraints can
obtained among the various form factors. If on the oth
hand the new-physics mass scaleL is assumed to be large
e.g., L>1 TeV, a low energy approximation where on
operators of dimension 6 are retained will lead to relatio
among the various otherwise unrelated form factors of
vertex. Such relations were first derived by imposing glo
SU(2) symmetry on the phenomenological Lagrangian t
generates the vertex of Eq.~2.6! @13,30#. In fact, the precise
nature of these relations depends on whether a linear or
linear realization of the symmetry is adopted. For a relativ
light Higgs the new physics is described by a linear reali
tion of the symmetry, while for a sufficiently heavy one
non-linear realization is required.

We consider first a linear realization of the Higgs sect
The basic ingredients of anSU(2)L3U(1)Y gauge invariant
Lagrangian are the Higgs fieldF, its covariant derivative
DmF, and the non-Abelian field strengthsBmn and Wmn of
theU(1)Y andSU(2)L gauge fields, respectively. If one im
poses the additional requirement of separateC andP invari-
ance, there are three operators of dimension 6 that can in
trilinear gauge couplings. They are described by the effec
Lagrangian

L e f f
d565 ig

aBf

Mw
2 ~Dm!†Bmn~Dn!1 ig

aWf

Mw
2 ~Dm!†t•Wmn~Dn!

1g
aW

6Mw
2

Wn
m
•~Wr

n3Wm
r !, ~5.1!

whereg andg8 are theSU(2)L andU(1)Y gauge couplings,
respectively.

The part of the above Lagrangian describing the s
interactions of the gauge bosons is obtained by replacing
Higgs field with its vacuum expectation value,FT

→(0,u/A2). Explicitly

L e f f
WWV5 igVH g1

V~Wmn
1 W2m2W1mWmn

2 !Vn1kVWm
1Wn

2Vmn

1
lV

Mw
2

Wm
1nWn

2rVr
mJ . ~5.2!

In the SM the couplingsg1
V , kV andlV have the values

g1
V5kV51, lV50, and are directly related to the charg

magnetic dipole, and electric quadruple moments of theW.
Here g1

g is fixed to 1 by electromagnetic gauge invarianc
while the rest of the couplings are parametrized by the av
able free parameters of the effective LagrangianaWf , aBf ,
andaW according to

Dg1
Z5aWf /cw

2 ,
2-8
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Dkg5aWf1aBf ,

DkZ5aWf2
sw

2

cw
2

aBf ,

lg5aW ,

lZ5aW . ~5.3!

Since no operators containing derivatives of the formhnVm

~or hnWa for off-shell W’s! are present in Eq.~5.2!, the
resulting form factors will be strictly constants, independe
of s. Nevertheless they must scale asMW

2 /L2. The additional
requirement of tree level unitarity imposes bounds on
products of thea i with the scaleL @28,31#.

The relations of Eq.~5.3! constitute the constraints pre
dicted by this model for the anomalous gauge couplin
They may also be found in the literature in the followin
form:

DkZ5Dg1
Z2

sw
2

cw
2

Dkg ,

lg5lZ . ~5.4!

In order to translate them into relations among thef i form
factors, we must use that@6#

f 1
V5Dg1

V1
s

2mw
2

lV ,

f 2
V52lV ,

2 f 3
V5Dg1

V1DkV1lV . ~5.5!

Then Eq. ~5.3! gives rise to the following constraints o
f 2

g , f 3
g , and f 1

Z :

f 1
g5h f 2

g ,

f 2
Z5 f 2

g ,

sw
2 f 3

g1cw
2 f 3

Z5cw
2 f 1

Z1r f 2
g , ~5.6!

wherer52hcw
2 2 1

2 .
We now return to the system of Eq.~3.30! and determine

what the relations given above imply for thes i observables.
Feeding the first two relations of Eq.~5.6! into the system of
equations~3.30! the latter can now be solved for the tw
unknown quantitiesf 1

Z and f 2
g :

a1s11s21a4s45~hA31A71A8! f 2
g1A4f 1

Z ,

s35h~A92A10! f 2
g1A10f 1

Z .
~5.7!

Defining

B15hA31A71A8 ,
05300
t
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B25h~A92A10!,

D5B1A102B2A4 , ~5.8!

we obtain the solution

f 2
g52@a1A10s11A10s22A4s31a4A10s4#D21,

f 1
Z52@a1B2s11B2s22B1s31a4B2s4#D21.

~5.9!

Finally, substituting the above solutions and the solutions
f 3

g , f 3
Z from Eq.~3.27! into the constraint of the third relation

of Eq. ~5.6! the latter assumes the following form in terms
the s i observables:

h1s11h2s21h3s31h4s450, ~5.10!

where

h15D~sw
2 g11c2z1!1a1~cw

2 B22rA10!,

h25cw
2 B22rA10,

h352cw
2 B11rA4 ,

h45D~sw
2 g41c2z4!1a4~cw

2 B22rA10!.
~5.11!

Equation~5.10! constitutes the prediction of this approach;
can be cast in the alternative form

E
21

1

dx~z2x!S dsexpt

dx
2

ds0

dx
D H3~x,s!50, ~5.12!

with

H3~x,s!5h1P̃11h2P̃21h3P̃31h4P̃4 . ~5.13!

A particular case of the linear realization of the symme
is the so called Hagiwara-Ishihara-Szalapski-Zeppen
~HISZ! scenario, proposed in Ref.@15#, where the third op-
erator ~usually denotedOWWW) in Eq. ~5.1! is missing.
Equivalently, one setsaW50 or lV50 in Eq.~5.2!. Then the
relations imposed on the anomalous couplings become

f 1
g5 f 2

g5 f 2
Z50 , ~5.14!

sw
2 f 3

g1cw
2 f 3

Z5cw
2 f 1

Z , ~5.15!

and Eq.~3.30! transforms to the over-constrained system

a1s11s21a4s45A4f 1
Z ,

s35A10f 1
Z . ~5.16!

This provides the solution

f 1
Z5

s3

A10

~5.17!
2-9
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and the additional constraint

a1A10s11A10s22A4s31a4A10s450. ~5.18!

Evidently in this case where the electric charge form fac
has been strictly set to 1 while, at the same timef 2

Z50, s3

measures directly the weak charge of theW.
The initial constraint of Eq.~5.15! in terms of thes i reads

~sw
2 g11cw

2 z1!s12
cw

2

A10

s31~sw
2 g41cw

2 z4!s450.

~5.19!

Both constraints can be cast in the equivalent form

E
21

1

dx~z2x!S dsexpt

dx
2

ds0

dx
D Hi~x,s!50, i 54,5

~5.20!

with

H4~x,s!5a1A10P̃11A10P̃22A4P̃31a4A10P̃4 ,

H5~x,s!5~sw
2 g11cw

2 z1!P̃12
cw

2

A10

P̃31~sw
2 g41cw

2 z4!P̃4 .

~5.21!

In the very heavy Higgs boson case~or equivalently if the
Higgs boson is absent!, where the symmetry is realized non
linearly, the Higgs doublet is replaced by a unitary mat
U[exp(iv•t/v), where thev i are the would-be Goldston
bosons, and the appropriate matrix form of the covariant
rivative is implied. It is easy to see that the sum rule obtain
in this case assumes again the simple form of Eq.~5.20!.
Indeed, naive dimensional analysis@32# suggests that thelV
couplings are suppressed by additional powers of the
physics scale (MW

4 /L4) and are expected to be negligib
with respect toDg1

V andDkV . Thus they are set to zero an
there remain again three free parametersDg1

Z , Dkg and
DkZ . Accordingly, for thef i we obtain the relation of Eq
~5.14!, but not the second relation of Eq.~5.15!, and the
constraint becomes simply

E
21

1

dx~z2x!S dsexpt

dx
2

ds0

dx
D H4~x,s!50. ~5.22!

VI. STATISTICAL PROPERTIES
OF THE s i OBSERVABLES

In this section we present an elementary discussion of
statistical properties of the observables proposed. In part
lar we study the covariance matrix and correlation functio
for the s i observables and the error propagation to the fo
factors f i . This discussion is meant to provide a rough id
about the feasibility of the proposed measurements, e
cially in connection with the ongoing LEP2 experiments.
general, the most important sources of error come from
resolution in the reconstruction of theW and from the back-
05300
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grounds in the selected sample; a more detailed error an
sis based on real experimental data is underway@33#.

The following analysis is based on the maximum like
hood method@34#. A probability densityp(x) may be con-
structed by means of the differential cross sectionds/dx and
the total cross sections, where

s5E
21

1

dxS ds

dxD , ~6.1!

by setting

p~x!5
1

sS ds

dxD . ~6.2!

Clearly,

E
21

1

dx p~x!51. ~6.3!

We may then interpret the observabless i as the expectation
values corresponding to a set of local observableOi(x) given
by

Oi~x!5F64pss

g4b
G ~z2x!P̃i~x,s!, ~6.4!

i.e.,

s i5E
21

1

dx p~x!Oi~x!. ~6.5!

If we adopt this interpretation, then the correlation mat
Vi j of the s i observables is given by

Vi j 5E
21

1

dx p~x!@Oi~x!2s i #@Oj~x!2s j #

5E
21

1

dx p~x!Oi~x!Oj~x!2F E
21

1

dx p~x!Oi~x!G
3F E

21

1

dx p~x!Oj~x!G ~6.6!

and the correlation function by

r i j 5
Vi j

~Vii Vj j !
1/2

. ~6.7!

Some typical values of the above quantities for differe
values of the center of mass energyAs are shown in Table II.
The values fors andds/dx we use when computingVi j and
r i j are those of the SM in the absence of the anomal
coupling, i.e.,ds0/dx and s0 given in Ref. @29#; this as-
sumes implicitly that the experimental data are well d
scribed by the SM@35#. We have usedMW580 GeV and
MZ591 GeV.
2-10
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TABLE II. The covariance matrixVi j and the correlation coefficientsr i j as a function of the center-of-mass energyAs ~in GeV!.

As 165 170 175 180 185 190 195 200 250 300 400 500

V11 645 329 227 178 151 134 123 116 127 203 581 148
V22 695 346 230 173 140 117 101 90 47 37 32 31
V33 3181 898 448 282 201 155 126 107 48 38 33 33
V44 2974 867 452 299 226 185 161 146 139 218 611 153
V12 2561 2283 2192 2148 2122 2105 294 286 263 268 298 2148
V13 1190 451 266 188 147 122 106 96 70 78 122 192
V14 21367 2522 2311 2224 2178 2152 2136 2126 2130 2209 2594 21508
V23 21446 2530 2301 2205 2153 2122 2102 288 242 233 228 228
V24 1175 440 256 179 139 114 99 88 61 65 96 147
V34 22612 2759 2391 2255 2189 2151 2128 2113 275 282 2125 2194
r12 20.837 20.838 20.840 20.841 20.842 20.842 20.841 20.841 20.815 20.782 20.731 20.700
r13 0.831 0.830 0.832 0.836 0.841 0.847 0.852 0.859 0.895 0.901 0.886 0.
r14 20.987 20.978 20.971 20.968 20.966 20.966 20.966 20.967 20.982 20.992 20.998 20.999
r23 20.972 20.952 20.937 20.924 20.915 20.908 20.902 20.898 20.880 20.878 20.880 20.883
r24 0.817 0.804 0.794 0.788 0.782 0.778 0.775 0.772 0.750 0.732 0.702 0.
r34 20.849 20.806 20.870 20.879 20.886 20.893 20.898 20.902 20.915 20.907 20.885 20.868
o
r

rg
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ed

rgy

he
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on
The symmetric 232 correlation matrixFi j ( i , j 5Z,g)
for f 3

g and f 3
Z is given in terms of the 232 correlation matrix

V̂i j of s1 ands4 by @35,36#

Fi j 5N21~LV̂LT! i j ~6.8!

where N is the number of observed events, andL115g1,
L125g4, L215z1, L225z4 @g1, g4, z1, andz4 are given in
Eq. ~3.28!# whereas the entries of the matrixV̂i j are given by
V̂115V11, V̂125V̂215V14 and V̂225V44. Finally, the super-
script T means ‘‘transposed.’’ Some characteristic values
the Fi j and the corresponding errors obtained from it a
shown in Table III as a function of the center-of-mass ene
As ~in GeV!.

The following points are worth mentioning:
~a! From Table II we see that the observabless i display a

rather high degree of correlation~anti-correlation!. We notice
also that the~anti-!correlation does not change significant
as a function ofAs.

~b! The high anti-correlation betweens1 and s4 carries
over to f 3

g and f 3
Z ; indeed, as shown in Table III, the tw

deviation form factors are almost completely anti-correlat
~c! The~absolute! values of the entries ofVi j andFi j vary

significantly as functions ofAs. The minimum value for all
05300
f
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.

Vi j is reached at about 300 GeV. At that point the error inf 3
g

and f 3
Z , namely eg and ez respectively, are a factor of 2

smaller than the corresponding error in the LEP2 ene
range~165–200 GeV!. After reaching their minimum value
the errors increase monotonically with increasingAs. To get
a rough estimate of the error for LEP2 energies, forAs
5190 GeV we haveeg50.85, ez50.6 for N55000, and
eg50.6, ez50.4 for N510000.

~d! From Table I we observe that below 180 GeV t
~absolute! values of the coefficientsAi ( i 53, . . .,10) which
enter in the right hand side of the equations fors2 ands3 in
Eq. ~3.18! are significantly smaller than the coefficientsA1,
A2 and A11, A12, entering in the equations fors1 and s4
respectively. Given that the errors ins2 ands3, i.e., (V22)

1/2

and (V33)
1/2, appear to be comparable to those fors1 ands4,

i.e., (V11)
1/2 and (V44)

1/2, one would tend to conclude tha
the efficiency of the two sum rules in Eq.~3.18! may be
degraded considerably. This issue needs further invest
tion; in particular one should study~i! whether the above
conclusion persists a more realistic error analysis based
real experimental data and~ii ! if so, whether further experi-
mental inputs, e.g., studying theW decay angular distribu-
tions, may ameliorate the situation.

~e! By observing Table I we see that the ratioA1 /A2 has
a significant dependence onAs; it grows from 0.55 atAs
60
9

TABLE III. The coefficientsFi j , the correlation factorr, and the corresponding errors@eg5(Fgg)1/2, ez5(Fzz)
1/2# as a function ofAs.

The numbers for theFi j are to be divided byN and the number for theeg , ez by AN.

As 165 170 175 180 185 190 195 200 250 300 400 500

Fgg 91105 20060 10134 6500 4655 3560 2846 2349 813 625 1352 39
Fzz 33272 8709 4761 3211 2393 1894 1560 1323 538 421 871 260
Fgz 254652 213141 26920 24556 23330 22591 22103 21760 2659 2511 21083 23112
r 20.992 20.994 20.996 20.997 20.998 20.998 20.998 20.998 20.997 20.995 20.997 20.999
eg 302 142 101 81 68 60 53 48 29 25 37 63
ez 182 93 69 57 49 44 39 36 23 21 30 51
2-11
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TABLE IV. The dependence of the anglef on As.

As ~GeV! 165 170 175 180 185 190 195 200
f ~deg! 231.1 233.1 234.3 235.1 235.7 236.2 236.3 236.9
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5161 GeV to 0.73 atAs5161 GeV. This energy depen
dence suggests that one could extract the two form factorf 3

g

and f 3
Z from s1 alone, by combining the experiments at d

ferent energies and byassumingthat f 3
g and f 3

Z are energy
independent. This approach seems to be complementa
measuringf 3

g and f 3
Z at each energy using the system of E

~3.27!. One way of establishing this it to consider the cov
riant ellipses of constant likelihood in the two-dimension
space off 3

g and f 3
Z , given by@37#

15S 1

12r2D F S f 3
g

eg
D 2

1S f 3
Z

ez
D 2

22rS f 3
g

eg
D S f 3

Z

ez
D G ~6.9!

or, equivalently,

~ f 3
Z!5

ez

eg

$r~ f 3
g!6~12r2!1/2@eg

22~ f 3
g!2#1/2%. ~6.10!

The ellipse is centered around~0,0! because we have as
sumed for simplicity that the average values off 3

g and f 3
Z are

zero, and is rather elongated due to the high value ofr. Its
principal axes make an anglef relative to the coordinate
system, given by

tan 2f5
2regez

eg
22ez

2
. ~6.11!

The dependence of the anglef on As is shown in Table IV.
Evidently the dependence off on As is very mild; thus

one expects to find~with 68.3% probability! the values off 3
g

and f 3
Z in the interior of the~very slowly! rotating ellipse,

regardless of the energy.
We hasten to emphasize that the above arguments

suggestive at best; a more detailed analysis using actua
perimental data~and error analysis techniques! is needed in
order to determine the feasibility of the proposed measu
ments, especially in the LEP2 context.

VII. CONCLUSIONS

In this paper we have presented a set of sum rules rela
the anomalous gauge boson couplings to the unpolarized
ferential cross section of the processe1e2→W1W2. These
sum rules involve only those anomalous couplings wh
separately conserveC and P, and have been derived und
the assumption that the producedW bosons are strictly on
shell. For this case we have defined four observables, ca
s i , i 51,2,3,4, which are linear combinations of the dev
tions of the trilinear gauge couplings from their SM value
Thes i observables can be extracted from the experiment
measured differential cross section by~i! subtracting out the
05300
to
.
-
l

re
x-

e-

ng
if-

h

ed
-
.
ly

known tree-level value of the differential cross section in t
absence of anomalous couplings;~ii ! multiplying the remain-
der by the angular dependence of thet-channel propagator
the latter is also an experimentally known quantity, since
only depends on the center-of-mass energys, and scattering
angleu; ~iii ! convoluting the resulting expressions with fo
appropriately constructed polynomials in cosu of maximum
degree 3.

The role of these observables is twofold: On the one ha
two of these observables, namelys1 ands4, represent direct
measurements of the magnetic momentsGM

g andGM
Z of the

W, while the other two constitute model independent co
straints~sum rules! between the remaining anomalous co
plings. Thus, the two magnetic moments of theW boson can
be separatelydetermined from the measurement of the u
polarized differential cross section. On the other hand, th
observables are useful for testing dynamical models wh
predict sizable anomalous couplings. This is a direct con
quence of the fact that some of those models predicts c
straints between the anomalous couplings, which, in tu
can be directly translated to relations among thes i observ-
ables. We have demonstrated this possibility in the con
of a composite model, and a model based on an effec
gauge-invariant Lagrangian.

Although we have restricted our discussion to couplin
that respectC and P, this method can be followed step b
step also in the case where the trilinear vertex assume
most general form. Of course, the system of equations
would correspond to Eq.~3.18! will be modified; in particu-
lar, it is not clear whether one would still be able to isola
GM

g andGM
Z , as happened in the simpler case we have c

sidered here.
It would be interesting to determine how the analysis a

results presented here are modified by the off-shellness
fects of theW. This next step may be necessary in view
the fact that the cross section for on-shellW pair production
will not be measured with sufficient accuracy at LEP2. Su
an analysis is complicated not only due to the large num
of additional tree-level Feynman diagrams contributing
the processe1e2→WW→4 f , but also by the fact that the
~off-shell! W’s may be resonant@2#. Calculations in this di-
rection are already in progress.
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