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The dependence of the differential cross section for on-8Niglhir production on the anomalous trilinear
gauge couplings invariant und€r and P is examined. It is shown that the contributions of the anomalous
magnetic moments of thé/ boson due to the photon and tAecan be individually projected out by means of
two appropriately constructed polynomials. The remaining four anomalous couplings are shown to satisfy a set
of model-independent sum rules. Specific models which predict special relations among the anomalous cou-
plings are then studied, in particular, the composite model of Brodsky and Hiller and linear and non-linear
effective Lagrangian approaches. The relations predicted by these models, when combined with the aforemen-
tioned sum rules, give rise to definite predictions, particular to each model. These predictions can be used, at
least in principle, in order to exclude or constrain such models. Finally, we present an elementary discussion of
the statistical properties of the proposed observables.
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PACS numbeps): 14.70.Fm, 11.55.Hx, 12.60.Rc, 13.40.Gp

I. INTRODUCTION anomalous form factors to experimentally measurable quan-
tities. In addition, it is important to establish a variety of
The possibility of probing directly non-Abelian vertices in ways for testing experimentally some of the characteristic
the experiments at the CERN Large Electron Positron colpredictions of models which give rise to such anomalous
lider LEP2 through the process'e” —W*"W~ [1-3], as form factors. To that end in this paper we present a study
well as the Fermilab Tevatro@] and the Next Linear Col- complementary to that of R&f6]. In particular, we compute
lider (NLC), has motivated extensive study of anomalousthe differential cross section for the process e~
gauge boson couplings. The general methodology for quan-W*W~, under the assumptions théf the anomalous
tifying the effects of such couplings on physical amplitudesform factors used to parametrize the non-Abelian vertex sat-
was presented some time ago in the classic papers of Gaelgfy separatelythe discrete symmetrie§, P, and T. This
ers and Gounari§5] and Hagiwaraet al. [6]. The central assumption, which is often employed in the literature, re-
idea is to parametrize the most general three-gauge-bosatuces the number of possible form factors from 14 down to
vertex allowed by Lorentz invariance in terms of unknown®. (i) The size of the anomalous couplings is small com-
form factors, compute the theoretical predictions of relevanpared to unity, so that we may keep only effects linear in
physical amplitudes using this vertex, and then attempt tehem. And(iii) the twoWs are strictly on shell; i.e., we do
extract information about the structure of these form factorsot consider the effect of their subsequent decays. Then, fol-
by comparing these theoretical predictions with the experifowing a method developed in Rgf10], a system of four
mental data. In practice one usually obtains experimentahdependent algebraic equations for the six unknown anoma-
lower bounds on the size of these form factors by carryindous form factors is derived. It turns out that one can solve
out a multi-parameter fit to the daftd]. This type of analysis directly two of these equations and obtarplicit expres-
becomes considerably more complicated if one takes intgions for the two form factors traditionally associated with
account the fact that the two produc@fare not stable, but the photon and anomalous magnetic moments of #&in
decay subsequently through a variety of channels. The comerms of the differential cross section. These two expressions
plexity of this problem necessitates a detailed amplitudeare completely model independent; therefore they can serve
analysis for the procese™e” —W"W~; several studies as a testing ground for confronting the predictions of differ-
based on a variety of methods, such as helicity amplitudent models for the anomalous magnetic moments with ex-
techniques[8], have been carried out, and a plethora ofperiment. The two remaining equations constitute a set of
complementary observables, such as integrated cross samodel-independent sum ruld41] for the other four un-
tions, angular distributions, polarized cross sectidfisien-  known form factors.
sity matrices, and polarization asymmetries, have been pro- To demonstrate with specific examples the potential use-
posed[9]. fulness of such sum rules for testing the viability of models
It would clearly be useful to relate directly some of the predicting anomalous couplings, or at least for constraining
them, we first study the composite model proposed by Brod-
sky and Hiller(BH) [12]. This model predicts certain rela-
*Email address: Joannis.Papavassiliou@cern.ch tions between the anomalous form factors; if these relations
"Email address: Kostas.Philippides@durham.ac.uk are fed into the two remaining equations mentioned above,
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the system turns out to be over-constrained, thus leading tfact all one has to do is to choose to work in the axial or
two independent predictions. These predictions are particulgslanar gaugg19] instead of the usual renormalizablB,|

to this composite model, and could, at least in principle, beyaugeg20]. In that case, the bare photon propagat§t(q)
confronted with experiment. Next we turn to an approachappearing in graph() assumes the form

based on a gauge invariant, effective Lagrandia®—17,

which also provides relations among the various anomalous g+ 7"q*| 1 9“q”
form factors; in particular all form factors are expressed in AgY(Q)=|gH'— —— |5+ 2_2 . (2.5
terms of the three free parameters of the effective Lagrang- 79 q (79)

ian. When these relations are combined with the two afore-

mentioned equations as before, one constraint emergeghe four-vectory, in the above expressions is a gauge-

which constitutes a particular prediction of this effective La-fixing parameter; therefore, physical quantities such as

grangian approach. Smatrix elements should be independentigf. Evidently,
The paper is organized as follows: In Sec. Il we brieflyeven though ally-dependent terms proportional t¢* and

review the general form of the three-gauge-boson vertex ang“q” will vanish when contracted with the conserved cur-

define the anomalous form factors which parametrize the deent, then-dependent term proportional t§' can only can-

viation of the couplings from the standard mod8M) tree-  cel if the Ward identity of Eq(2.4) holds.

level values. In Sec. Ill we compute under the three assump- The most general parametrization of the trilinear gauge

tions mentioned above, the analytic dependence of theertex consistent with Lorentz invariance is given in terms of

theoretical cross section on these form factors, and show how4 form factorsf) [5,6]:

to derive expressions for the anomalous magnetic moments,

as well as the two sum rules. In Sec. IV we study somerV (g _p. —p,)

aspects of the BH model, and translate its predictions at the“*”

level of experimental cross sections. In Sec. V the effective v v

Lagrangian approach is outlined both for a linear and non- — (1T T1)(P2=P1) ,9apt2(1+f3) (09,0~ Aapu)

linear realizations of the symmetry and its predictions are  _ ;v _ 2 _ eV

expressed in terms of experimental cross sections. In Sec. VI 120a0p(P2Pa)w/2Miy~ 114(A50 0+ Aalpy)

we present an elementary discussion of the statistical prop- +if¥e“”‘ﬁp(p2— P,

erties of the proposed observables. Finally in Sec. VII we

summarize our results. + g et Prg,+ 1Y (py— p1) ,€PP70,(P2— P1) o /M-

(2.6
Il. ANOMALOUS COUPLINGS

In this section we give a brief review of the anomalous The flrlstfthree formif:a;tgrs ’ .'71’2'3b' prréser\éepar]lfth
gauge-boson couplings and establish notation. The SM thre§SParatelyfs respects b but V'(_) ates bothC andP. The
gauge-boson vertex,, W, W}, involving a neutral gauge bo- rest of the form factors violat€ P: f, is P even butC odd,

sonV=1v,Z coupled to a conserved curregimassless exter- g?gﬁcfg iﬁnr?oft;t?orr&: So?%/egrgg(tj; g%g] ’\\/Iv(geh;r\]/i ilr;gors]tegn;o
nal fermions in the case of th# boson and two on-shell P =

e i (i write the vertex in a way such that the form factdysex-
Ws is given by[18] press exactly the deviations of the couplings from their SM
VO (4 —p. —pa)= 0 —p. — tree level values. Indeed, by comparing Ef-6) with Eq.
Puap(@=PL = P2) =0l ap(@ —PL —P2), - (21 (2.2 we see that all form factors’ are normalized to be
with zero at the tree level. The above form factors receive non-
zero contributions of orde®(a) from one-loop quantum
I 50, = P1.—P2) = (P2 P1) G+ 2(0p9 0~ Ualp) corrections within the SM21,22; in fact, f, f¥, f¢, and
(2.2 f\7/ receive contributions from one-loop fermionic diagrams
only [6]. The contributions to thé\ obtained from super-
symmetric[23] and other extensions of the S[@4], as well
as composite mode[®5], have been studied extensively in
the recent literature. In what follows we will treat thé as if
they were small with respect to unity, but not necessarily of

whereg,=gs,, 92=9¢,, g is theSU(2)_ gauge coupling,
ands;,=1—cj, is sine of the weak mixing angld),, ; sat-
isfies the following elementary Ward identity:

9T 50, —P1, —P2) =[P3—PZ1G0s. (2.3

orderO(a).
Assuming that the twd\'s are on shell, i.e.p?=p2=M3 It is possible to impose constraints on the form of ﬂ?fe
we have from Eq(2.3) that ’ e W by resorting to various physical and field-theoretical consid-
erations. For example, if one requires thgf, ; satisfy the
qurgaﬁ(q,_ P1,—P,)=0. (2.9 Ward identity of Eq.(2.4), namelyq“l“lymﬁzo, in order for

the cancellation of the gauge-dependent terms stemming
The above elementary Ward identities are crucial for thérom the tree-level photon propagator of E@.5 to go
gauge invariance of the procetsf~—W'™W~ evenif the  through as before, th, andfs terms in theyW "W~ vertex
external fermionic current is conserved. To appreciate thid’) ,; need to be replaced by
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— 3105900t alp.— 2079°0P1Q%]+if L €**PP(p2— Py), clua) - Wolen )
—q~e*#7q"(pa— p1) o/ 4°]. (2.7) y z

Analyticity at =0 provides us then with the constraint
f2(9°=0)=f2(q?=0)=0. In addition, fixing the electric et(ka,s2)  WH(paha)

charge of theV* to be = 1 imposes the additional constraint (a) (b) (c)
fi(g?=0)=0. _ _ _

If the form factorsf} are kept arbitrary, the vertex of Eq. __ F'G- 1. The three diagrams which contribute to the process
(2.6) leads to cross sections which grossly violate unitarity, s & —~W W atthe tree level in the case of massless electrons.
because the subtle cancellations enforced by the tree-level . wB :
couplings of the SM are now distort¢@6,27). Ur?/itarity can Where the am_phtudé’ # is the sum of the graphs of Fig. 1.
only be restored if the form factor§(q?) fall sufficiently If we now write the vertex of Eq(2.) as a sum of _the
fast with increasingg?. In fact in analyzing the effects of standard vertex of Eq2.2) and a non-standard piece, i.e.,
anomalous couplings in hadron colliders that probe a wide
range ofg? a behavior of the following form is assumed:

V,0

Y .5(q,—p1,—P2)=T"04(d,—p1,— P2)
+ 5F;\iaﬁ(ql —P1,— p2)! (35)

1
fi(qz):m- (2.8 then T*# consists of the standard paf,, and a non-
g standard partsT,z, which originates from thes-channel
The exact form of the form factors depends on the underlygraphs only, i.e.,
ing dynamics that generate them and determine the gcale
Tree level unitarity then provides order of magnitude esti-
mates for the produdi’A [28,31.

0

_ 70
Toup=TOs+ 0T up. (3.6

The two terms are given explicitly by

ll. W PAIR PRODUCTION o _. o2 ut B 1 0
WITH ANOMALOUS FORM FACTORS Tap=197 Sy g+ 7" (v a”S)S_—Mg Uag
We now proceed to calculate the process 2
_ _ —i—ygP v.P (3.7
e (K1,51)€" (K2,5) =W (P, A )W' (P2, h2) (3.0) 2 P k-, "

using the non-standard vertex of E.6) and keeping only and
terms linear in the anomalous couplingys. For the rest of .0 1 1 .
this paper we restrict ourselves only to the form factors that 0Tap=19"S\y" <0l Lapt v*(v _aVS)W Ol g
separately respect the discr&e P, andT symmetries. The z 3.9
electrons are considered massless, and\; label respec- '
tively the initial electron’s and positron’s spins and the po-in the above equationB, =(1—ys)/2 is the left chirality
larizations of the finaW's. The relevant kinematical vari- nrgjector and) = 1/4— s, a=1/4 are respectively the vector
ables in the center-of-mass frame are and axial couplings of the electron with tle

Defining the W polarization tensor asQ,,(k)
=Ye,(K) €5 (K)=—g,,+k,k,/MG, the modulus squared
S of the matrix element averaged over initial state spins,
t=(ky—p1)2=(po—ky)?=— Z(1+,82— 23 cosb), summed over the final polarizations, and to first order in the

deviations is given by

s=(k;+ky)?=(p1+p2)?,

(3.2
wnere S 3 lete Twiw )
$1,82 M1sAp
ZAVES N N
A=\ 1"~ 33 =3 T, Q“(p)Q" (P2 (0T,0)
192
is the velocity of theW'’s, and ¢ is the angle between the — 0 . ', —
incoming electron and the outgoiy ™. :szs (0T, W*Q* #(p) Q" "(P2) (v T, u)
The S-matrix element for this process is given by 12
i(W'W~[Tle*e™) t22 RE(vT), , )*Q* “(p) Q" "(py)
192
:iGZ(ply)\l)fz(pzy)\z)v_(kz,Sz)TaBU(klysl), (3.9 X(v_éTMVu)]. (3.9
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The unpolarized differential cross section in the center-oftween thes-channel graphs and thiechannel graph. Notice

mass frame is given by that there is no contribution we2"/dQ) originating from the
square of thet-channel graph; this is so because all such
d_‘T_ 1 E +a— AN |2 contributions are absorbed into the standard part, since the
= > [efer|TIwrw)P?, : :
dQ 25672 S sps, AT couplings of the neutral gauge bosons to fermions are as-

(3.10 sumed to be exactly those of the SM.

The functionso;(s) are linear combinations of the various
and consists of a standard and an anomalous contribution geviation form factors. Specifically,

do _ di.;. do™ (3.11) a1(8)=Asf]+ A3,
d2 do do '
02(8) =Agf I+ At i+ At I+ Agf5+ AL F T+ Agf5,
given by
do® 1 03(S) =Agf I+ Asof T — nAgf I — nALf3,
—:——2 Ty, W*Q* “(p)Q" " (py)
dQ 25672 Ssi%, ' ? Ta(8)=Agsf I+ Assf 2, (3.19
X(vTp,\) (312 where y=s/4M2,. The explicit closed expressions for the
and coefficientsA; are given below. Setting
do?" 1 s 1

0 128772g5125 R T, W)* Q' #(P1)Q” " (p2) Y emz e

X(v 6T ,,u)], (3.13 r=a?+v? (3.19

respectively. The SM cross sectidn®/dQ in Eq.(3.12 has  we have

been calculated in Ref29]; we do not report it here. We

next turn to the computation of the non-standard part of the ~ A;=—8s2[yv(4c2—1)+4s2],
cross sectioma?"/d(). We define the variables

A,=—8yci[yr(4cs—1)+4siv],

142
X=cos#, z= , (3.149 9 2 s 2
2B As=pB sy 2(3=2n)(yvey+sy) — (1+2n)yv],
in terms of which the Mandelstam variakiledefined in Eq. As= B2y C[2(3—27)(yre2+vsd)— (1+27)yr]

(3.2, becomes
s sg =—4p%ysi[yv(2c—1)+2s]]
t=— Z(1+,82—2Bx)= -5 (z=x%). (3.19
Ae=—4p°nycolyr(2¢5,—1)+2vs}],
Then, a straightforward calculation yields
A7=—2B%nsi[2(1+ ) (yuch+s5) — myv],

o1 4P P, 3.1
10 aed s & CPixs). (316 Ag=— 2827y c2[2(1+ 7)(yred +vs2) - pyr],

(z=X)
The functionsP;(x,s) are polynomials inx of maximum Agz—ﬁsﬁ,,
degree 3, given by

PL(X,8)=2X As=—(a+v)Bycy,

a2 -1
Pa(X,8)=(z—x)(1-x?), Au=4sub
P3(x,5)=1—x?, A=4dy(a+v)cip L. (3.20
P4(x,s)=1- Bx. (3.17 The values of the coefficientd,(s) for some typical
LEP2 energies are shown in Table I. Notice that the coeffi-
In Eqg. (3.16 the terms proportional t®#, and P, origi-  cientsA; appearing within each of the four equations in Egs.

nate from the square of thechannel graphs, whereas the (3.18 are of the same order of magnitude, and therefore
terms proportional td®5; and P, from the interference be- none of them can be neglected.
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TABLE I. The coefficientsA; as a function ofy's. Notice thatP,(x) is proportional to the third Legendre poly-

nomial.

Vs (GeV) 161 172 180 192 200 Thus, theo, are given by
A -1.79 -178  —-1.77 -1.77 —-1.76 64 doan
_ _ _ _ _ S| (1 g -
A, 3.2573 2.9172 2.73 2.53 —2.42 o= J' dx(z—x) P.(xs), (3.2
Az 2.20x 10 7.40<10 0.123 0.191 0.235 g4ﬂ -1 dx
A, 3.68x10°% 11.0x10°2 0.169 0.239 0.279
Ag —1.70x10°% —6.18<10° 2 —0.108 —0.181 —0.232  where the triviald¢ integration has been carried out.
A; —1.83x10°% —6.03x10°2 —0.0991 —0.154 —0.190 If we assume that the experimental valde®*PYdQ for
A, —1.79x10°3 —6.94x10 2 —0.127 —0.228 —0.306 the differential cross section of the above process has been
As  —3.24x10°% —11.1x102 —0.187 —0.303 —0.3g5  Measured, and that all new physics is parametrized by non-
A, —141x102 —7.98<10°2 —0.101 —0.122 —0.133  Standard trilinear vector couplings, then we have that
A —256x10°2 —13.7X10°2 —0.167 —0.195 —0.208 an 0
Ay, 14.2 251 199 164 150 doexpt_ doexpr  dor (3.25
A, 25.8 4.31 330 261 234 do do do ’

_ ) ) ) Therefore, the experimental values for are given by
The polynomialsP;(x) are linearly independent; indeed,
their Wronskian is given by 64ms] r1 do®Pt  do®\
2 f dx(z—x) — — | Pi(x,s).
g*'p /-1 dx dx

24M
W(P;)= . (3.2 (3.26

o_iexpt:

_ _ The fact that one can extract, at least in principle, experi-
which can be zero only i§— 2. mental information for the quantities; motivates the study

It is important to emphasize at this point that in our casegf the system of equations given in E®.18. Of course,
the quantity ¢—x)(do®"/d(2) appearing on the right hand since Eq(3.18 constitutes a system of four equations for six
side of Eq.(3.16) is more suitable as an experimental observ-ynknown quantities, we do not expect to determine all devia-
able than §o*"/dQ2) itself[10]. The reason is that this quan- tjon form factorsf” individually. We can easily do so how-
ity is the sum of a finite number of linearly independent oyer for two of them; indeed the first and fourth equations in

polynomials. Instead, an expansion afo*"/d(1) in terms  Eqg (3.18 constitute a separate system of two equations
of polynomials inx would necessitate an infinite number of | v two unknownsf2 andfZ . which can be solved exactly:
them, because of the presence of the temm X) 1. This "3 '

fact would in turn complicate the inversion of such a rela-
tion, i.e., the determination of the quantities, which con-
tain the dependence on tlﬁ}é. We next proceed to carry this
inversion for the quantity—x)(do?"/dQ).
To accomplish this one must construct a set of four otheghere

polynomials,P;(x), which are orthonormal to the;(x); i.e.,
they satisfy a+tv 1

ne- 2st [y(1-4c2)+4]’

fl=v101% 404,

f§=210'1+240'4, (327)

fl f’i(x,s)Pj(x,s)dx= dij - (3.22
- _iﬁ[yr(4c3v—1)+4s§vv]

These polynomials are sﬁ, [y(1_4cgv)+4]

BL(x.5)= g(sm 15¢— 158x%— 35¢3), 1 1
Z1= ,
2822 yly(1—4c2) +4]

35 5
Pa(x,9)= 5 (= 3x+5x%), 1 Blyv(4ci—1)+4s2]

24:
- 5 sach  YIly(1—4ch)+4]
P3(x,s)= g (8+21zx~ 9x?—35zx3), (3.28

Thus, the measurement of the two observalatgsand o4

directly determines the deviations from their SM values, of

the magnetic dipole form facto3}, andG§; of theW due to
(3.23  the photon and th& respectively:

Pu(x,5)= g(—3—152x+ 15x2+ 352xC%).
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e e
Gl(s)=——[2+1Y]= ——[2+ y101+ y404], a4
M 2MW[ 3] ZMW[ Y101+ ¥404]
z1P1 - h1p2
z € w2z & Cw " )m IC
Gu(s)=———[2+15]= —— —[2+210,+2404]. z2pt %pe
2My Sy w Sw

(3.29

We are not aware of the existence in the literature of )Z IC

similar simple expressions relating directly the anomalous
magnetic moments to thenpolarizeddifferential cross sec-
tion with two on-shellW bosons.

The remaining two equations provide two constraints be-

tween four of the six non-standard form factors. In partiCUIarproiilriétizénThe composite model in the one-boson exchange ap-

a101+ 0o+ a,04=Agf ]+ AsfE+ A F )+ Agf3,
T T ST e e T e considered a bound state of two, in general different, fermi-
03=Agf I+ Arof2— pAgfI— nA1of2, ons. The two fermions are held together by the exchange of
(3.30 a gauge boson of mass The results presented have been
calculated in the one-boson exchange approximatfeg.

where 2); as explained in Refl12] the model becomes gauge in-
) 5 variant in the collinear approximation.
1:_,3 7 y(1—2Cw)+2’ The matrix element nyh,)#=(p2,h’|‘](}|pl,h) of the
2 y(l-4ci)+4 currentJ{ between the momentum and helicity eigenstates
|p1,h) and|p,,h’) is written in terms of three-form factdrs
2aB3 as follows:
as=— & (33])

— 2 !
y(1-4c,)+4 (Ghp)u="—GY(0?)(e"* - ) (P2~ P2,

and we have used that-v=s2. The above equations can —GY(9?)[(e'* - e e *
be cast in the equivalent form of two sum ru[dd] 2( @)™ Qe (e-q)e,]

+GY(q2)/2M3(€'* -q) (e A)(Pa—P1)

1 do®*Pt  dg?
J dx(z—x) ——|H(x,s) 4.1
-1 dx dx
heree=e, ande’ = ¢, are the initial and final polarization
= AT+ ALFE+ Asf L+ AgfZ, Vootore M ande =en i inal porarizatl
. expt 40 The kinematical form factor&) , Gy , andG} are related
J dx(z—X) — di I~33(x s) to the photonic Y= 1v) or weak (V=Z) chargeGY., mag-
-1 dx netic dipoleGy, , and electric quadrupl@\é form factors of
the W through the relations
=Agf I+ AsofT— nAgTI— A, (3.32 J
27
where G\C/= G\l/Jr ?GV ,
H(x,s)=a;P1(X,S) +Py(x,5) +a4P4(x,s). (3.33
Gy =Gy,
The analysis and the results presented thus far are model
indepe_ndent since no assu_mptio_ns haye been made about the Gg=G\1/—G\2/+(1+ 77)(3\3/_
dynamical mechanism which gives rise to the anomalous 4.2

couplings. It would be interesting to examine how the above

results could be used for testing the validity of specific mod-  As was shown in Ref[12], this model predicts the fol-
els which predict the generation of such couplings. We willjgwing ratios for photon form factors:

discuss some of these issues in the next section, in the con-
text of a composite model for thé/.

G%:G,(,l:(%:(l——n):z:—l 4.3
IV. PREDICTIONS OF A COMPOSITE MODEL

In this section we examine the predictions at the level of
experimental cross sections of a model of compositeness'we use the same notation as in Haf2], except for the labelling
proposed by Brodsky and Hill¢d.2]. In this model theVis  of the four-momenta, where we have gét—-p, andp— —p;.
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which, in the notation of Eq(1), translates into

PHYSICAL REVIEW D 59 053002

we find in the limit where the maddl of the compositéV/

and the massan; andm, of the constituent fermions satisfy
f1=0, fI=f]. (4.4  M=m+m, (X;=X,=Y;=Y,=1/2 in the notation of12]):

Notice that the above ratios, which have been derived using
the non-trivial dynamics of this composite model, coincide
with the corresponding ratios satisfied by the tree-level SM

2s_
fy= FV——FV 1,

values ofG¢, Gy, andGg. fy=—4MF3,

However, no analogous ratios for the form fact@$§, 5
Gy, - andG§ were derived in Ref[12], because their analy- FV_EV_ s+4aM BEV_1
sis had focused on the photon form factors only. In what S 2M 2 =
follows we will address this issue in some detail. In particu-
lar we will study how the anomalous gauge boson couplings fX:O,
predicted by this model are affected by the coupling of the
neutral gauge bosong (V=1v,Z) to the fermions, which -~y .| S ),,

: fy=—iFy+i| s—|F)

make up the composité/. 5 3 oM/ 4

The most general coupling of thigh fermion (=1,2)
allowed by Lorentz invariance is given by fY=4aMEY,

L e M A R CL R T fY=2MEY. (4.10

(4.9
In deriving these results we have made use of the identities
whereo,,=(i/2)[v,,7,]. Note thatF}"' andFy" are di- listed in Eq.(A3) and Eq.(A4) in the Appendix of Ref[6].
menS|onIess guantities, Whereﬁg' and FV' have dimen- We see that the presence ~k'a§ distorts the compositeness
sions of inverse mass. To determine the effect of this generglondition, wherea&y andF} do not enter in the definition
fermion-boson coupling on the anomalous trilinear gauge bogs £V Y andfY.
son couplings we must repeat the calculation presented in Havmg establlshed the above results we will now pursue
Ref.[12], keeping the general form fdt)" given on the left o gifferent possibilities(i) We will assume that the com-
Pand side of Eq(4.5), instead of only the term proportional positeness condition holds for the photonic form factors
O Yu- only, i.e., FJ=0 but FZ+0. (i) We will assume that the
From Ref.[12] we know that compositenzess conditi%)n holds for both the photonic Znd
form factors, i.e.FJ=F5=0.
(GY. ).~ E g s [(Av,i ) +(BY) ] In the first case, using E¢4.4), which we assume to be
NUEC s (g—4N2)ifT o e TR true, we obtain from Eq(3.27 and Eq.(3.30 the following
(4.6) system of two equations for the two remaining unknown
form factorsf?, f5:

with
(a1=Azy1)ort ot (84— Azys) oy
i f _ z z
(Ani)u=Tr [ VoXow ¥ {b - —(m M) F,V;'xjh], = At + A,
—Agy101+ 02— Agy40,
. _ . 1 _ z z
(Bpi) = —Tr( Xan T e+ (P2 M)} VVXJWV] : =A1of 71— 7ALf7. (4.1
(4.7 This yields the solutions
zZ_ _ _ _
whereM is the mass of the composi#, and the spin wave f1=01(y101= 781A10)/D1~ 02 7A10/D1~ 03As /Dy

functions are given by +04(yab1— 784A10)/ D1,

_1é (p—M) 1 (B—M) 8 f5=01(yibo—a1A10/D1—0,A10/D1+03A4/D4
X1ih= "= €nlP— v XooT = Vs\P— . .
V2 V2 +04(vaby—8,A10/D1, (4.12

If we define the quantity with
b= 7A10A3+ AgAg,

F/=2 F'. j=1234, 49

LT =A1A3= AsAo,
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D,=(a+v)B°® WZCC‘V[W(ZC&F 1)+ 2vsﬁ,]. theory at a new-physics mass scaleThus, the correspond-
(4.13 ing strengths of these interactions will be suppressed by fac-
tors (A)* 9.
Thus, assuming that the couplings ¥f to the photon In order for all form factors of the vertex of E.6) to

obey their tree-level SM relations one can extract all thepe generated one must consider a host of operators of dimen-
remaining of theC andP conserving anomalous form factors sion d up to 12; in such a scenario no constraints can be
directly from the differential cross section. obtained among the various form factors. If on the other
In the second possibility of interest, using the fact that,hand the new-physics mass scaleis assumed to be large,
because of the compositeness conditicbﬁso, Eq. (3.30 e.g.,A=1 TeV, a low energy approximation where only

reduces to operators of dimension 6 are retained will lead to relations
. among the various otherwise unrelated form factors of the
a101+ ot as04=Asf{+AfY, vertex. Such relations were first derived by imposing global
SU(2) symmetry on the phenomenological Lagrangian that
o3=Agf{+Af]. generates the vertex of E(.6) [13,30. In fact, the precise

(4.14 nature of these relations depends on whether a linear or non-
. VeV . . linear realization of the symmetry is adopted. For a relatively
Then, smceflv=f , We can substitute into Ed4.14 the o1 Higgs the new physics is described by a linear realiza-
solutions forf; from Eq. (3.27) to arrive at tion of the symmetry, while for a sufficiently heavy one a
non-linear realization is required.
We consider first a linear realization of the Higgs sector.
4.15 The basic ingredients of @U(2), X U(1)y gauge invariant
' Lagrangian are the Higgs fiel®, its covariant derivative

0'2+ C]_O'l"' 020'4:0,

0'3+ C30'4:0,

where D,®, and the non-Abelian field strengtii,, andW ,,, of
theU(1)y andSU(2), gauge fields, respectively. If one im-
1 ,2(3-29)(1-ycy)+(1-2n)y poses the additional requirement of sepatt&nd P invari-
Ci1= 3 > , ance, there are three operators of dimension 6 that can induce
4(1-ycy)ty trilinear gauge couplings. They are described by the effective
Lagrangian
a ., (1+67)
02: -

SBY—————,
27 41—y + s .« o«
(oyanry Li=ig- 5 (D,)'B(D,)+ig—5(D,) ' W"(D,)

Bz w w
C3= Z (41@ aw
Using Eq.(4.16 and assuming Eq3.25 we obtain the v
following two predictions whereg andg’ are theSU(2), andU(1)y gauge couplings,
respectively.
1 q do®*Pt  dg® Y —0 =12 The part of the above Lagrangian describing the self-
. X(z=X) dx  dx i(x,8)=0, 1=12, interactions of the gauge bosons is obtained by replacing the

(4.17) Higgs field with its vacuum expectation valuep’
—(0,u/\2). Explicitly
whereH, andH, are polynomials irx of maximum degree

3, given by
L oWV= igv| gy (W, W™ E—W*HEW V7 + kW W, VA
H1:ﬁ2+C1ﬁ1+C2§4,
- ~ AN
H2: P3+ 03P4. (418) + WWM Wv le; . (52)
w
V. PREDICTIONS OF AN EFFECTIVE In the SM the couplinggy , xy and\, have the values

LAGRANGIAN APPROACH g\1’= ky=1, A\y=0, and are directly related to the charge,

We now turn our attention to an effective Lagrangian ap-magnetic dipole, and electric quadruple moments ofwhe
proach to anomalous gauge couplings basedSas(2), Hereg? is fixed to 1 by electromagnetic gauge invariance,
X U(1)y gauge invariance. In such an approach the deviawhile the rest of the couplings are parametrized by the avail-
tions of the gauge couplings arise from gauge invariant bu@ble free parameters of the effective Lagrangigfy, agg,
non-standard interaction terms of dimensibr 4, between anday, according to
gauge bosons and the Higgs figltB—17. Such terms are 5 )
assumed to originate from an as yet unknown underlying Agr=awg/cy,
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AKy: aw¢+ aB¢, B2: 77(A9_A10)!
s2 A=B1A10—BrA,, (5.9
Akz=awy= — @By, . .
Cw we obtain the solution
Ny=aw, f3=—[a1A1001+ A1002— AgoztagAs004]A T,
)\Z:aW‘ (53) f%: _[a1820'1+ 82(72_810'3+ 34520'4]A_1.

Since no operators containing derivatives of the fartv* 69
(or O"W* for off-shell W's) are present in Eq(5.2), the  Finally, substituting the above solutions and the solutions for
resulting form factors will be strictly constants, independentf}, £ from Eq.(3.27) into the constraint of the third relation
of s. Nevertheless they must scaleM§,/A2. The additional  of Eq. (5.6) the latter assumes the following form in terms of
requirement of tree level unitarity imposes bounds on thehe o, observables:
products of thew; with the scaleA [28,31.

The relations of Eq(5.3) constitute the constraints pre- hioy+hyo,+hzoz+hyo4=0, (5.10
dicted by this model for the anomalous gauge couplings.
They may also be found in the literature in the following Where

form:
hy=A(sgy1+¢%21) +as(csBo— pAs),
s2
Arz=Agi~ 5 Ak, h,=ciB2—pAs,
CW
hy=—c2B;+ pAy,,
A=Az (5.4) S whrn i

A2 2 2
. : = + + - :
In order to translate them into relations among theorm Na=A(SyyatC"24) +a4(CuB2~ pAL)

factors, we must use thié] (5.1

Equation(5.10 constitutes the prediction of this approach; it
can be cast in the alternative form

S
fY:AgY+ 2m2 )\Vy
1 do®*Pt  dg?
J dx(z—x) -—
-1

W

Hi(x,5)=0, (5.1
fa=2\y, dx  dx (%) (512
2f4=Agy+Aky+\y. (5.5  with
Then Eq. (5.3 gives rise to the following constraints on Ha(x,5)=h,P;+h,P,+hgPs+h,P,. (5.13
3,13, andff:
A particular case of the linear realization of the symmetry
f1=nt3, is the so called Hagiwara-Ishihara-Szalapski-Zeppenfeld
. (HISZ) scenario, proposed in Rdfl5], where the third op-
fo=13, erator (usually denotedOyww in Eq. (5.1) is missing.
) 97 2.7 Equivalently, one seta,,=0 or\y=0 in Eq.(5.2). Then the
swfitcufs=cufi+pfs, (5.6 relations imposed on the anomalous couplings become
wherep=275c2—3. f7=f]=15=0, (5.19
We now return to the system of E(.30 and determine
what the relations given above imply for tiog observables. s2fl+cifi=c2fs, (5.15

Feeding the first two relations of E¢p.6) into the system of

equations(3.30 the latter can now be solved for the two and Eq.(3.30 transforms to the over-constrained system

unknown quantities$ and 3 .
a10'1+ O'2+a40'4:A4f11

a,01+ 0o+ a404=(nAz+ Ar+ Ag) f 1+ AL,

. 0'3:A10f§. (51@
3= 1n(Ag— A1) FI+Agof 1. _ _ .
(5.7 This provides the solution
Defining o
2= (5.17
B,= 7As+A;+Ag, A1o
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and the additional constraint grounds in the selected sample; a more detailed error analy-
sis based on real experimental data is under{/@ay.
a1A1001+ A1002 = AgoztasA1004=0.  (5.18 The following analysis is based on the maximum likeli-

hood method34]. A probability densityp(x) may be con-
'structed by means of the differential cross sectleridx and
the total cross sectionr, where

Evidently in this case where the electric charge form facto
has been strictly set to 1 while, at the same tiffe0, o5
measures directly the weak charge of thle

The initial constraint of Eq(5.15) in terms of theo; reads 1 do
U:f dx —), (6.1
c2 -1 dx
(S&V’yl‘}' C&le)Ul— _WO'3+(53V’)/4+ C5V24)0'4:0. i
Ao by setting
(5.19
. . . 1/do
Both constraints can be cast in the equivalent form p(x)= Sl axl: (6.2
1 d expt d 0
f dx(z—x) v 7 Hi(x,s)=0, i=4,5 Clearly,
-1 dx dx
5.2 1
(5-20 J dx p(x)=1. (6.3
with -1

We may then interpret the observablesas the expectation
values corresponding to a set of local observahle) given
2 by
2 2 D CW"’ 2 2 D
Hs(X,8)= (s y1+Cyz1)P1— A—P3+ (SwYatCyuza)Py.
10

drso

6 -
Oi(x):|: ](Z—X)Pi(x,s), (6.9
(5.2 9‘B

In the very heavy Higgs boson ca@e equivalently if the
Higgs boson is absentwhere the symmetry is realized non- '€+
linearly, the Higgs doublet is replaced by a unitary matrix L
U=exp(w- 7/v), where thew; are the would-be Goldstone O'i:f dx p(x)O;(X). (6.5
bosons, and the appropriate matrix form of the covariant de- -1
rivative is implied. It is easy to see that the sum rule obtained
in this case assumes again the simple form of GR0). If we adopt this interpretation, then the correlation matrix
Indeed, naive dimensional analy§82] suggests that the,  Vj; of the o; observables is given by
couplings are Stippressed by additional powers of the new .
physws scale I‘(/I%/A“) and are expected to be negligible Vij:j dx p(x)[0;(x) ~ 01 1[0j(X) — 7]
with respect taAg; andAk,, . Thus they are set to zero and -1
there remain again three free parametmgf, Ak, and

A k5. Accordingly, for thef; we obtain the relation of Eq. = fl dx p(x)0;(x)Oj(x) — Jl dx p(x)O;(X)
(5.14), but not the second relation of E¢.15, and the -1 -1
constraint becomes simply 1
X i .
. oo gy ﬁldx p(x)O;(x) (6.6
J dx(z—x) — ——|Hs(x,5)=0. (5.22
-1 dx dx and the correlation function by
VI. STATISTICAL PROPERTIES Vij
OF THE o OBSERVABLES Pii= T (6.7)
(ViiVi)

In this section we present an elementary discussion of the
statistical properties of the observables proposed. In particu- Some typical values of the above quantities for different
lar we study the covariance matrix and correlation functionsvalues of the center of mass energyare shown in Table Il.
for the o observables and the error propagation to the formrhe values fowr anddo/dx we use when computing;; and
factorsf;. This discussion is meant to provide a rough ideap;; are those of the SM in the absence of the anomalous
about the feasibility of the proposed measurements, espeoupling, i.e.,dc%dx and ¢° given in Ref.[29]; this as-
cially in connection with the ongoing LEP2 experiments. Insumes implicitly that the experimental data are well de-
general, the most important sources of error come from thscribed by the SM35]. We have usedM =80 GeV and
resolution in the reconstruction of ttW and from the back- M;=91 GeV.
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TABLE II. The covariance matri¥/;; and the correlation coefficienjs; as a function of the center-of-mass enexdy/(in GeV).

Js 165 170 175 180 185 190 195 200 250 300 400 500
Vi1 645 329 227 178 151 134 123 116 127 203 581 1482
Voo 695 346 230 173 140 117 101 90 47 37 32 31

Va3 3181 898 448 282 201 155 126 107 48 38 33 33
A\ 2974 867 452 299 226 185 161 146 139 218 611 1535
Vio —561 —283 —192 —148 —122 —105 —94 —86 —63 —68 —98 —148

Vi3 1190 451 266 188 147 122 106 96 70 78 122 192
Vi —1367 —522 —311 —224 —-178 —152 —136 —126 —130 —209 —594 —1508

Vo3 —1446 —530 —301 —205 —153 —-122 —102 —88 —42 -33 —28 —28

Vou 1175 440 256 179 139 114 99 88 61 65 96 147
Vaq —2612 —759 —391 —255 —189 —151 —128 —113 =75 —82 —125 —194

P12 —0.837 -0.838 -0.840 -0.841 -0.842 -0.842 -0.841 -0.841 -0815 -0.782 -0.731 -—-0.700

P13 0.831 0.830 0.832 0.836 0.841 0.847 0.852 0.859 0.895 0.901 0.886 0.870
P1a —-0.987 -0.978 -0971 -0.968 -0.966 -0.966 —0.966 -0.967 —0.982 —-0.992 -0.998 —0.999

P23 —-0.972 -0.952 -0.937 -0.924 -0915 -0.908 -0.902 -0.898 —-0.880 -—0.878 —0.880 —0.883

P2a 0.817 0.804 0.794 0.788 0.782 0.778 0.775 0.772 0.750 0.732 0.702 0.682
P3a —-0.849 -0.806 -0.870 -0.879 -0.886 —0.893 -0.898 -0.902 -0.915 -0.907 -0.885 —0.868

The symmetric X2 correlation matrixF;; (i,j=2,7y)
for f andf3 is given in terms of the X 2 correlation matrix

V;; of oy and o, by [35,36

Fii=N"3(AVAT); (6.8

where N is the number of observed events, afng;= vy,

AN15= Y4, Ao1=24, Aoo=24 [ V1, Ya,» Z1, andz, are given in
Eq. (3.28] whereas the entries of the matﬁiégj are given by
V11=Vi1, V1,=Vy=Vy, andV,,=V,,. Finally, the super-

script T means “transposed.” Some characteristic values ofg

Vj; is reached at about 300 GeV. At that point the errof}n
and f%, namely €, and €, respectively, are a factor of 2
smaller than the corresponding error in the LEP2 energy
range(165—200 GeY. After reaching their minimum value
the errors increase monotonically with increasifgy To get

a rough estimate of the error for LEP2 energies, {&
=190 GeV we havee,=0.85, €,=0.6 for N=5000, and
€,=0.6, €,=0.4 for N=10000.

(d) From Table | we observe that below 180 GeV the
(absolute values of the coefficientd,; (i=3, .. .,10) which
enter in the right hand side of the equationsdgrando in
g. (3.18 are significantly smaller than the coefficiems,

the F;; and the corresponding errors obtained from it area, andA;,, As,, entering in the equations far, and o,

shown in Table Il as a function of the center-of-mass energ
Js (in GeV).

The following points are worth mentioning:

(a) From Table Il we see that the observabiedisplay a
rather high degree of correlatiganti-correlation. We notice
also that the(anti-)correlation does not change significantly
as a function ofy/s.

(b) The high anti-correlation betwees, and o, carries
over tof} and f3; indeed, as shown in Table IlI, the two
deviation form factors are almost completely anti-correlated

(c) The (absolutg values of the entries of;; andF;; vary
significantly as functions of/s. The minimum value for all

TABLE Ill. The coefficientsF;; ,

Yespectively. Given that the errorsdin andos, i.e., (Vo)

and (V39 Y% appear to be comparable to thosedqrando,,
i.e., (Vi)¥2 and (V442 one would tend to conclude that
the efficiency of the two sum rules in E¢3.18 may be
degraded considerably. This issue needs further investiga-
tion; in particular one should studff) whether the above
conclusion persists a more realistic error analysis based on
real experimental data and) if so, whether further experi-
mental inputs, e.g., studying th& decay angular distribu-
tions, may ameliorate the situation.

(e) By observing Table | we see that the rafig/A, has
a significant dependence ofs; it grows from 0.55 aty/s

the correlation factop, and the corresponding errdre, = (F,)*? €,= (F,,)*?] as a function ofys.

The numbers for th&;; are to be divided byN and the number for the,,, €, by JN.

Js 165 170 175 180 185 190 195 200 250 300 400 500
Fly 91105 20060 10134 6500 4655 3560 2846 2349 813 625 1352 3960
F,, 33272 8709 4761 3211 2393 1894 1560 1323 538 421 871 2609
F,. —54652 —13141 —-6920 —4556 —3330 —2591 2103 1760 —659 —-511 —1083 —3112

p —0.992 -0.994 -0.996 -—-0.997 -0.998 -0.998 -0.998 -0.998 -0.997 -0.995 -0.997 -0.999

€, 302 142 101 81 68 60 53 48 29 25 37 63

& 182 93 69 57 49 44 39 36 23 21 30 51

053002-11



JOANNIS PAPAVASSILIOU AND KOSTAS PHILIPPIDES PHYSICAL REVIEW [39 053002

TABLE IV. The dependence of the angie on /s.

Vs (GeV) 165 170 175 180 185 190 195 200
¢ (deg —-31.1 —-33.1 —34.3 —35.1 —35.7 —36.2 —36.3 —36.9

=161 GeV to 0.73 at/s=161 GeV. This energy depen- known tree-level value of the differential cross section in the
dence suggests that one could extract the two form faéfors absence of anomalous couplings) multiplying the remain-
andf5 from o alone, by combining the experiments at dif- der by the angular dependence of thehannel propagator;
ferent energies and bgssumingthat f and f3 are energy the latter is also an experimentally known quantity, since it
independent. This approach seems to be complementary f§1ly depends on the center-of-mass enesggnd scattering

measuringf} andf§ at each energy using the system of Eq'anglea; (iif) convoluting the resulting expressions with four
riant ellipses of constant likelihood in the two-dimensionald€dree 3. .
space off ] andfZ, given by[37] The role of these observables is twofold: On the one hand,
3 3 two of these observables, namety ando 4, represent direct
y\ 2 z\ 2 v\ [ ¢Z
1 f3 f3 3\ f3 ) . .
1= = +| =] =2p|—=]|| = (6.9 W, while the other two constitute model independent con-
1-p? €y €; €,/ \ & straints(sum ruleg between the remaining anomalous cou-
plings. Thus, the two magnetic moments of iNeboson can
polarized differential cross section. On the other hand, these
z,_ & VYo (1 A2\U2r 2 eyy271 observables are useful for testing dynamical models which
() Ey{p(f3)_(1 PY) 2[67 (f)41%. (610 predict sizable anomalous couplings. This is a direct conse-
The ellipse is centered arour(®,0) because we have as- straints between the anomalous couplings, which, in turn,
sumed for simplicity that the average values§fandf5 are  can be directly translated to relations among #heobserv-
zero, and is rather elongated due to the high valup.dfs ~ ables. We have demonstrated this possibility in the context

(3.27). One way of establishing this it to consider the cova-2PPropriately constructed polynomials in gbsf maximum
measurements of the magnetic mome®{s and G, of the

or, equivalently, be separatelydetermined from the measurement of the un-
guence of the fact that some of those models predicts con-

principal axes make an angk relative to the coordinate ©Of @ composite model, and a model based on an effective

system, given by gauge-invariant Lagrangian.
Although we have restricted our discussion to couplings
2peye, that respecC and P, this method can be followed step by
tan2¢=———-7. (6.1)  step also in the case where the trilinear vertex assumes its
€& most general form. Of course, the system of equations that

. . would correspond to Eq3.18 will be modified; in particu-
The dependence of the angleon \'s is shown in Table IV. lar, it is not clear whether one would still be able to isolate

Evidently the dependence of on \'s is very mild; thus G}, andGf,, as happened in the simpler case we have con-
one expects to findwith 68.3% probability the values of }  gidered here.
and f§ in the interior of the(very slowly) rotating ellipse, It would be interesting to determine how the analysis and
regardless of the energy. results presented here are modified by the off-shellness ef-

We hasten to emphasize that the above arguments afgcts of theW. This next step may be necessary in view of
suggestive at best; a more detailed analysis using actual eie fact that the cross section for on-shipair production
perimental datdand error analysis techniqueis needed in  will not be measured with sufficient accuracy at LEP2. Such
order to determine the feasibility of the proposed measurean analysis is complicated not only due to the large number

ments, especially in the LEP2 context. of additional tree-level Feynman diagrams contributing to
the procese™e” —WW-—4f, but also by the fact that the
VIl. CONCLUSIONS (off-shell) W's may be resonari2]. Calculations in this di-

. . rection are already in progress.
In this paper we have presented a set of sum rules relating

the anomalous gauge boson couplings to the unpolarized dif-
ferential cross section of the processe™ —W*W™. These
sum rules involve only those anomalous couplings which
separately conserv€ and P, and have been derived under ~ We thank C. G. Papadopoulos for various very useful and
the assumption that the produc®d bosons are strictly on informative discussions, and E. Sanchez Alvaro and C. Palo-
shell. For this case we have defined four observables, callathares for communicating to us the interest of the L3 Col-
oi, 1=1,2,3,4, which are linear combinations of the devia-laboration in the present work. The work of J.P. was sup-
tions of the trilinear gauge couplings from their SM values.ported by Grant No. TMR-ERBFMBICT 972024. The work
The o observables can be extracted from the experimentallpf K.P. was supported by a Marie-Curie TMR grant
measured differential cross section by subtracting out the ERBFMBICT 961003.
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