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Yang-Mills analogues of the Immirzi ambiguity
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We show that the somewhat controversial ‘‘Immirzi ambiguity’’ of the Ashtekar-like formulation of canoni-
cal quantum gravity has strong similarities with other ambiguities that appear in Yang-Mills theories, such as
the u ambiguity. This clarifies the role of the ambiguities. We also discuss other ambiguities in the Maxwell
case, and the implications for the loop quantization of these theories.@S0556-2821~99!01004-8#
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I. INTRODUCTION

Several new insights into the canonical quantization
general relativity have been acquired using Ashtekar-
variables@1#. Originally, this consisted in basing the theo
on a canonical pair formed by a set of~densitized! triadsẼi

a ,
and a~complex! SU~2! connectionAa

i [Ga
i 1 iK a

i , whereGa
i

is the spin connection compatible with the triads andKa
i

5KabE
bi, whereKab is the extrinsic curvature. In terms o

these variables, the constraints of the theory became a Y
Mills-like Gauss law, plus expressions for the tradition
vector and Hamiltonian constraints

DaẼi
a50, ~1!

Ẽi
aFab

i 50, ~2!

e i jk Ẽi
aẼj

bFab
k 50. ~3!

It was noted by Barbero@2# that a reasonably simila
structure could be achieved in terms of a one-parameter f
ily of variables. If one considers a connection of the fo
Aa

i 5Ga
i 1bKa

i , with b an arbitrary complex number, it ca
be shown that the vector and Gauss-law constraints re
exactly the same form as Eqs.~1!,~2!, provided one rescale
the triads by an overall 1/b factor. The form of the Hamil-
tonian constraint changes. Immirzi@3# noted that the avail-
ability of this one-parameter family of connections led
apparently puzzling results. Because of the complexity of
Hamiltonian constraint~3!, a significant portion of the work
on canonical quantum gravity has up to now concentrated
‘‘kinematics.’’ This refers to the study of features that on
depend on the structure of the Gauss law and vector c
straints~1!,~2!. Examples of this kind of work are the quan
tization of area and volume@4,5#. These results have a dire
impact on more attractive ‘‘physical’’ issues such as the
cent attempts to compute black hole entropy in nonpertu
0556-2821/99/59~4!/047505~4!/$15.00 59 0475
f
e

g-
l

-

in

e

n

n-

-
a-

tive quantum gravity@6–8#. What Immirzi noticed is that in
spite of the fact that different values ofb leave the con-
straints~1!,~2! invariant, the spectra of certain quantum o
erators depend onb. An example of this property is the are
operator, whose spectra in terms of spin network states
pends on an overallb factor. Rovelli and Thiemann@9#

noted that the different conjugate pairs (Ẽi
a ,Aa

i ) constructed
with different b differed by a canonical transformation
However, this canonical transformation was not being u
tarily implemented in the quantum theory. Thus, the chan
in the spectra of physical operators. The fact that the cha
in spectra had direct impact in ‘‘observable’’ computation
such as the entropy of a black hole, motivates trying to
derstand better the role that theb parameter has in canonica
quantum gravity. The purpose of this paper is to discuss t
We will note that the role of theb parameter in canonica
quantum gravity is analogous in various senses to that of
u parameter that describes the different sectors associate
the topological structure of large gauge transformations
Yang-Mills theory. In particular we will notice that loop rep
resentations appear only capture one such ‘‘sector’’ at a ti

The organization of this paper is as follows. In the ne
section we discuss the Immirzi ambiguity, in Sec. III w
draw a parallel with theu ambiguity of Yang-Mills theories
and in Sec. IV we study the case of Maxwell theory.

II. THE IMMIRZI AMBIGUITY

In the gravitational case, the Immirzi ambiguity arises a
canonical transformation that is not implemented unitarily
the quantum theory in terms of the loop representation
such case one is using a basis of states~diffeomorphism in-
variant functions of loops! that is invariant under smal
gauge and diffeomorphism transformations. If one wri
Barbero’s Hamiltonian in terms of loops it would beb de-
pendent and the physical quantities, such as the area, are
b dependent. To emphasize the analogy with the Yang-M
case, let us write the action for general relativity in a Pala
©1999 The American Physical Society05-1
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form in terms of tetrads, but also add to it a term that va
ishes on-shell, as suggested in Ref.@10#:

S5
1

2E Tr~S`R!2
1

b
Tr~S`* R!, ~4!

whereS5e`e, ea
I being a tetrad andRab

IJ is the curvature
associated with the spin connection compatible with the
rad. * Rab

IJ [eKL
IJ Rab

IJ . It is well known that the added term
vanishes on-shell, this was the key idea that launched
original Ashtekar new variables~which are obtained taking
b5 i ), allowing us to use a complex action to describe a r
theory without adding new equations since the imagin
part of the action is topological in nature. If one performs
canonical decomposition of this action, the canonically c
jugate pair is given by a densitized triadẼi

a , playing the
analogous role to the electric field in a Yang-Mills theo
and a connectionAa

i 5Ga
i 1bKa

i .
The Gauss law and the vector constraint are notb depen-

dent ~strictly speaking, this means that one can always fi
linear combinations of these constraints that areb indepen-
dent!. This is suggested at the level of the action by the f
that the action is diffeomorphism and gauge independent
all values ofb. The Hamiltonian constraint, however, isb
dependent:

H5e i jk Ẽi
aẼj

bFab
k 22~11b2!Ẽi

[aẼj
b]Ka

i Kb
j 50, ~5!

whereKa
i 5(Aa

i 2Ga
i )/b is related to the extrinsic curvature

The b dependence of the Hamiltonian shows that the
sulting physics of quantum gravity will beb dependent in
general. Therefore, one could fix the value of the param
b ‘‘experimentally.’’ What is more surprising, is that phys
cal quantities that do not have to do with the Hamiltonia
also end up beingb dependent. A typical example is the ar
operator. If one considers a surfaceSand computes the quan
tum operator in the loop representation for the area of s
surface one finds that in the basis of spin networks the
erator is given by@8#

ÂuG&58pb l Planck
2 (

p
Aj p~ j p11!, ~6!

where j p are the valences of thep lines of the spin network
that cross the surfaceS.

The fact that the Immirzi parameter appears multipl
times Newton’s constant in Eq.~6! has sometimes been su
gested as a proof of the unobservability ofb, just having the
role of rescaling Newton’s constant. The ultimate proof
this will be when more observable consequences of
theory are worked out in a detailed way. However, it appe
unlikely that b will always appear multiplying Newton’s
constant. For instance, one could follow the proposal of R
elli and Smolin @11# to introduce a scalar field as a tim
variable in gravity. In such a context, the resulting Ham
tonian is integral of the square root of Eq.~5!, and is an
observable. The explicit presence ofb2 in the Hamiltonian
suggests that the spectrum of the operator will beb ~and not
bG) dependent.
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It is also worthwhile mentioning that the Immirzi amb
guity in gravity does not change if one couples the theory
matter. If one considers non-Fermionic matter, there is
contribution to the~gravitational! Gauss law and the contri
butions to the vector constraint do not involve the connect
and therefore areb independent. For Fermions, there is
contribution to the Gauss law proportional toc†c, but the
gravitational part of it isb independent. For the vector con
straint, the gravitational part and the Fermionic piece areb
dependent, but one can see that the portion depending ob
is proportional to the Gauss law.

The rather surprising features of the ambituity raise
question of what the nature of it is and if similar ambiguiti
are present in other theories. As we mentioned in the In
duction, these ambiguities correspond to canonical trans
mations that are not being unitarily implemented in the qu
tum theory. We also may add that the transformatio
preserve the form of the ‘‘kinematical’’ constraints of th
theory. We will see in the following sections that simila
ambiguities may arise in gauge theories. From studying th
behavior we can learn suitable lessons for the Immirzi a
biguity in gravity.

III. THE SU „2… YANG-MILLS CASE

Let us briefly recall theu ambiguity in Yang-Mills theory
~for a more complete discussion see Refs.@12,13#!. If one
starts from the Yang-Mills action,S5(1/4g2)Tr@*F`* F#
and performs a canonical formulation of the theory, one fin
that the quantum Gauss law constraint ensures invarianc
the wave function under gauge transformations connec
with the identity. Wave functions in general are not invaria
under large gauge transformations, characterized by a w

ing numbern. We denote byV̂n the generator of large gaug

transformationsV̂nC@A#5C@g•A•g211g]g21#, whereg
is the gauge transformation matrix for a gauge transform

tion with winding numbern. V̂n is a unitary operator tha
commutes with the Hamiltonian of the theory.

One can therefore construct a basis of common eig

states ofV̂n and the Hamiltonian, labeled by the eigenvalu

of V̂n :

V̂nCu@A#5exp~ iun!Cu@A#, ~7!

ĤCu@A#5EuCu@A#. ~8!

We therefore see that the quantum theory contains an infi
number of disjoint sectors labeled by the continuous angleu.
If one is working in the connection representation, as
have done up to now, one is able to describe simultaneo
all the disjoint sectors. However, if one wishes to consid
the loop representation, things are different. Since the b
of Wilson loops is invariant under large gauge transform
tions, it can only give rise to functions that are invaria
under large gauge transformations, or in terms of Eq.~7!, to
the sectoru50. That is, the loop representation only ca
tures one of theu sectors of the theory@14,15#.
5-2
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BRIEF REPORTS PHYSICAL REVIEW D 59 047505
If one now considers a new action for the theory, obtain
by adding the Pontryagin topological term to the ordina
Yang-Mills action

S5
1

2g2 TrF E F`* F G1 u0

16p2 TrF E F`F G , ~9!

the classical theory is unchanged since one added a
divergence to the action. The added term only contribute
Chern-Simons type term evaluated on the boundary of
manifold, and is invariant under gauge tranformations c
nected with the identity, changing by an integer value
large gauge transformations.

If one constructs a canonical formulation starting fro
action ~9!, the resulting electric field is related to that of th
original action byE5Eorig1(u0g2/8p2)Borig whereB is the
magnetic field. The resulting theory has the same phys
predictions as the one we considered before. There is a
tionship between the description of both given byC@A#
5exp(iW@A#u0)C@A#orig , where W@A#5(21/16p2)Tr@*F
`A22/3A`A`A# is the integral of the Chern-Simon
form. The new theory has the sameu structure for the vacua
as the one originally considered, theu angles being shifted
by u0 , in the sense that

VnC@A#5exp@ i ~u2u0!n#Cu@A#, ~10!

Ĥu0
Cu@A#5EuCu@A#. ~11!

If we now consider the loop representation, the Ham
tonian of the theory isu0 dependent and so are its eigenv
ues. The loop representation still captures a singleu sector of
the theory, but now for a different value, given by the p
rameteru0 . Therefore, it is clear that the canonical transfo
mation we just introduced is not being unitarily implement
in the loop representation, since the spectra of the Ha
tonian changes.

We see that there are clear parallels~and distinctions!
between theu ambiguity and the Immirzi ambiguity. In both
cases, one finds physical quantities that depend on the a
guity. The ambiguity is ‘‘resolved experimentally’’ whe
one considers the full dynamics of the theory, since in b
cases the Hamiltonians depend on the parameters in q
tion. In both cases the ambiguities correspond to canon
transformations at a classical level.

The main difference between both ambiguities is due
the extra term in the action one adds in both cases is
different nature. In theu ambiguity it is a total divergence
This allows a deeper understanding of theu sectors as re-
lated to the topological structure of large gauge transform
tions, and the identification of the correspondingu sectors.
Such understanding is lacking in the case of the Imm
ambiguity, which is generated by a term in the action t
vanishes on shell, but is not a total divergence.

IV. MAXWELL THEORY

It has been noticed by Corichi and Krasnov@16# that free
Maxwell theory has an Immirzi-like ambiguity consisting
04750
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rescaling the electric field and vector potential by a const
e in such a way as to preserve the canonical commuta
relations. If one constructs a loop representation in terms
the connectionAa /e one can see that one can define an o
erator representing the charge enclosed by a surface
works in an analogous way as the area operator in quan
gravity. Its spectrum is rescaled by 1/e. Therefore there is a
parallel with the gravitational case, the charge playing
role of the area observable. It is worthwhile noticing, ho
ever, that the above ambiguity does not survive the coup
of the theory to matter. If one adds electric charge, Gau
law implies that one cannot rescale the electric field unl
one changes the charge in the theory. Another way of se
this is to consider the theory coupled to Fermions and bu
a loop representation. If one does so, requiring that the
lonomy with Fermions inserted at its ends be a gauge inv
ant quantity uniquely fixes thee parameter. We would there
fore like to concentrate on other types of ambiguities
Maxwell theory that would survive the inclusion of matte
As we mentioned in Sec. II, the Immirzi ambiguity in gravi
survives the inclusion of matter. Sometimes it is argued t
this ambiguity, tantamount to a rescaling of the charge, s
gests that the Immirzi ambiguity in gravity is tantamount to
rescaling of the mass~or Newton’s constant!. As we dis-
cussed in Sec. II, it is easy to construct situations where
is not the case.

One can introduce ambiguities in Maxwell theory th
survive the inclusion of matter by consideringu ambiguities.
The discussion goes through very much as in the SU~2! case,
but with one important difference: in 311 dimensions there
are no large gauge transformations associated with the U~1!
group, so for all practical purposes the ambiguity is n
there. One can add to the action au term, but physical quan-
tities do not change their spectra. Loop representations
be built and although their appearance is different, one
see that they are unitarily related. This is accomplished
noticing that for the Abelian case one can find an express
for the Chern-Simons factor in the loop representation, b
using the connection and loop derivatives@17#, since there is
no problem with large gauge transformations.

One can construct an analogue of theu ambiguity for the
Maxwell theory in 111 dimensions, and the situation
completely analogous to the Yang-Mills case in higher
mensions, see Ref.@18#.

There is a different type of ambiguity that arises in Ma
well theory. This is slightly different from the theta ambigu
ity and has parallels with the Immirzi case. This arises fro
the fact that one can introduce more than one connection1 for
Maxwell theory. This was first noticed by Ashtekar and Ro

1For Maxwell theory one can introduce more than one connec
and also more than one electric field. This is easily seen in
analogy with the harmonic oscillator in the Bargmann represe

tion, where one can take as canonical pairs (z,z̄) with z5q1 ip, or
(q,z) or (p,z), etc. Ashtekar and Rovelli choose mixed variabl
for both the connection and the electric field in their treatment
the Maxwell theory.
5-3
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BRIEF REPORTS PHYSICAL REVIEW D 59 047505
elli @19#, by drawing an analogy with the Bargmann quan
zation. They considered as canonical variables for Maxw
theory the positive frequency connection

1Aa5
1

A2
S Aa

T~x!1 i
1

D1/2
ET

a~x!D ~12!

with T standing for transverse, andD is minus the Laplacian
operator. If we now consider a more general connection

bAa5
1

A2
S Aa

T~x!1b
1

D1/2
ET

a~x!D ~13!

we can construct a family of quantum theories. The trans
mation is clearly a canonical transformation. Yet, if one go
to the loop representation they are not necessarily im
mented unitarily, as we will immediately see.

An interesting aspect that is worthwhile pointing out
that in this context certain values ofb are preferred purely
from mathematical considerations. If one considersb real,
and one tries to construct a loop representation, one end
with the same problems as the first attempts found@20,17#.
Namely, the Fock space wavefunctions are not well imp
mented in the loop representation. This difficulty was c
cumvented by Ashtekar and Rovelli by consideringb5 i .
One can see that the problem does not arise for Im(b) non-
zero. Clearly these two representations cannot be unita
connected. It is worthwhile pointing out that this ambigu
survives the inclusion of matter, it is perfectly possible
discuss Maxwell theory coupled to Fermions in terms
these variables without fixing the value ofb.
.

ev
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V. CONCLUSIONS

In this paper we have pointed out that ambiguities sim
to the one Immirzi encountered in gravity exist in other the
ries, in particular in Yang-Mills theory. This confirms wha
was pointed out by Rovelli and Thiemann, in the sense t
one ‘‘needs two connections’’ for Immirzi-like ambiguitie
to arise. What we see is that through the addition ofu terms
one accomplishes essentially the same by having ‘‘two e
tric fields,’’ and introducing a canonical transformation th
preserves the Gauss law constraint. For Maxwell theory,
can take advantage of the simplification in Gauss’ law t
arises in the Abelian case to again introduce ‘‘two elect
fields’’ or ‘‘two connections’’~or combinations thereof!, and
end up with ambiguities. We see that for the Maxwell ca
the ambiguity can be eliminated partially in the loop rep
sentation by requiring that the Fock space structure be p
erly represented. It is worthwhile considering if a simil
selection based on purely mathematical criteria might
present in the case of quantum gravity.
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