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Supersymmetry is used to derive conditions on higher derivative terms in the effective action of type 11B
supergravity. Using these conditions, we are able to prove earlier conjectures that certain modular invariant
interactions of order ¢')°® relative to the Einstein-Hilbert term are proportional to eigenfunctions of the
Laplace operator on the fundamental domain of23L). We also discuss how these arguments generalize to
terms of higher order im’, as well as to compactifications of supergravji$0556-282(99)05102-4

PACS numbds): 11.25.Mj, 04.65+e

[. INTRODUCTION Ideally, it would be possible to describe the theory in a
manner that is independent of the background. The moduli of
Despite the intense interest in the structure of M theoryan arbitrary compactification would then emerge from com-
the general constraints imposed by supersymmetry have nppnents of the tensor bosonic fields. However, in practice it
been systematically investigated. At low energies in eleveris only feasible to define the effective action with respect to
dimensions, M theory should be well approximated bya given moduli space. The simplest example with substantial
eleven-dimensional supergravityl]. However, eleven- structure is the Poincarévariant ten-dimensional back-
dimensional supergravity is not a consistent quantum theorground appropriate to the type 1IB superstring, which has
and new ingredients are needed which modify the ultraviolemoduli space SL(Z)/U(1). Thetype IIB string arises by
properties of the theory. While eventually we hope to have @ompactifying M theory on &2, where the volume of the
microscopic formulation of M theory, it is interesting to un- torus is taken to zerpt]. The complex structure of the torus
ravel the extent to which its structure is constrained simplybecomes the complex coupling=C©+ie~% of the 1IB
by general symmetry principles. For example, the cancellatheory, whereC®) is the Ramond-Ramond (R) scalar
tion of chiral gauge and gravitational anomalies induced orand ¢ is the dilaton.
the five-brane leads immediately to a term in the effective The type 1IB effective action is expressed as an expansion
action of the form in powers ofa’ with the classical theory defined by an ‘ac-
tion’ S© of order (@')~* [5-8]. It is well-known that the
self-duality constraint on the five-form field strength in the
f CDOXg(R), 1.y type IIB theory presents an obstacle to actually writing a
globally defined covariant actidr5®). However, the analy-
sis in our paper will actually only involve the field equations.
where Xg is an eightform constructed from curvatures, andWe will use terminology appropriate for a theory with an
C® is the three form tensor fielt2,3]. This term is eighth action, but merely as a shorthand method of packaging these
order in derivatives compared to classical terms in the effecequations. We could avoid this problem by compactifying
tive action which are second order. As usual, the order in @he type IIB theory on a circle. The classical moduli space
momentum expansion counts the number of derivatives plugiould then be SL(Z)/U(1)XR.
twice the number of fermions. Clearly, we can generate The supersymmetry transformations on an arbitrary field
many more terms needed for a supersymmetric effective ac¥ will be expressed as the series
tion by acting with the lowest order supersymmetry transfor-
mations on these higher derivative terms. Some of these
terms have been deduced from duality arguments. Further- S Y¥=(894a" 8P+ --+(a)"6M+-- )V, (1.2
more, as soon as there are eight derivative terms in the ef-
fective action, there will be sixth order modifications to the
classical supersymmetry transformations. The action is the
no longer invariant under supersymmetry unless we add yet
higher order terms to the effective action.

While the effective action has the following expansion:

S=SO+a'SV+-- -+ (a")"SM+---. (1.3
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A factor of (') "% has been absorbed into the definitiorSof (a=1, ...,16) is a&complex S@9,1) Weyl spinor. This term

and S(M. was discussed in Ref15] where it was argued that
In principle, the action can be constructed by a Noether
procedure which imposes the conditions f(12-12 . 7y = p124(00) (1.7
! A S " The modular covariant derivativ® will be defined in the
mE:O ()T | 2, (') s”=o, (1.4 next section. This means thaf2~12 should also be an

eigenfunction of the Laplace operator, but it now transforms

order by order ina’. There are nm=1 or n=2 terms at with the nontrivial holomorphic and anti-holomorphic modu-
tree-level or one-loop, and these terms are not expected #8" Weights indicated by the superscripts.
appear at all in Eq(1.3). Therefore, the first corrections are ~ More generally, there are many other termsSid) that
the terms of order ¢’)° relative to S®. These terms are are related to th&®* term by supersymmetry at the linearized
eighth order in derivatives. level[15,16. The moduli dependence of these terms is pack-

In practice, building the complete effective action from aged into a variety of modular forms{"~*)(7,7). In Sec.
scratch using this Noether method is extremely complicatedf, we will review how linearized supersymmetry leads to the
even for a low number of derivatives. However, we will existence of all the terms i&® once the presence of tte
show in this paper that the exact form of special classes of Merm is assumed. However, linearized supersymmetry is cer-
theory or type IIB interactions can be uniquely determined intainly not powerful enough to determine the moduli depen-
this manner. A similar analysis has recently been used tdent coefficients "~
obtain powerful constraints on maximally supersymmetric In Sec. Ill, we will use the full nonlinear supersymmetry
Yang-Mills theorieg[10]. The lesson to be drawn from that to determine the nonholomorphic modular forms. This re-
analysis is that the constraints imposed by supersymmetrguires a detailed analysis of the lowest order supersymmetry
are most easily exhibited by studying the variation of termgransformations which generally mix all the terms $.
in the effective action with the maximal number of fermionic We will make a judicious choice of terms to consider in
fields. order to encounter minimal complications. Not surprisingly

Among other issues, one of our aims will be to establishas in the cases of Reff10], it turns out that the terms with
the validity of some conjectured higher derivative interac-the maximal number of fermions are the appropriate ones for
tions in the effective action. An example of such a term is thethis purpose. The particular terms we will consider are
interaction,f Vg f®9(r,7)R*, whereR* is a particular con- (127 12\ 16 and (11~ 1D\ 15* where the latter is a piece of
traction of four Weyl curvaturel1]. The SL(2,Z) symmetry  the A*4G term. Our notation and conventions are explained
of the IIB theory requires that®%)(+,7) be a modular func- in Appendix A—a hat on a field strength indicates that it
tion of the complex scalar field and its complex conjugate, includes certain fermion bilinears in its definition in order to
7. It was noted in Ref[11] that f°? is an eigenfunction of make it “supercovariant.”

the Laplace operator on the &.,7) moduli space with ei- In addition, we will be forced to consider terms arising
genvalues, from O[ (a')®] supersymmetry transformations acting on the
classical action. These terms fro8”) mix under a super-
P 3 symmetry variation with the relevant terms $%). For our
sz(0~0)547-§z_ &—?f(o'o)zzf(o’o)- (1.5  particular purpose, it will be important to considen 2\ *?2

term in the IIB action that has not to our knowledge been

This equation has the solutideee, for example, Ref12]), given explicitly in the literature. The form of this term, in-
cluding its precise normalization, is determined by super-

32 symmetry in Appendix B. By requiring invariance of the
£00.0— 2 . (1.6) action at order ¢')2 together with closure of the supersym-
(mmZ00 |m+n7®’ metry algebra, we will be able to determine certain modifi-

o ] ) ] cations to the supersymmetry transformations, encoded in
which is the unique solution, up to an arbitrary overall con-53), as well as the precise coefficients of the termSH

stant factor, for a choice of asymptotic.behavior near thg,nder investigation. As usual, the supersymmetry algebra
boundaryr,— of the fundamental domain of $27). The  only closes with the use of the equations of motion.
asymptotic behavior is determined by the weak coupling ex- |, particular, we will find that the coefficientsL~ 1D
pansion off 0, wherer,=e~ ¢ is large, which POSSesses & 4ndf(12-12) go indeed satisfy the appropriate Laplace equa-
tree-level and one-loop term but no other perturbative corgions, proving the earlier conjectures about these modular

rections. In addition, there are an infinite number oftyms "Furthermore, once these functions have been deter-
D-instanton correctionsAnother term of the same order is mined the other terms IS that are related to these by

: oo 12,-12)y 16 Hati ; . . :
the sixteen dilatino term )\'%, where the dilatino® linearized supersymmetry, including tie* term, follow

without the need for detailed analysis.
There have also been generalizations offfeconjecture
2Some supplementary evidence for the expresélo), based on  to an infinite series of higher order terms in the type 11B
linearized supersymmetry, is given in Reff$3,14. effective action17,18. In Sec. IV we outline how our tech-
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nigue can be extended to determine the coefficients of somé&/e have been sketchy about the precise coefficients in Eqg.
of these higher derivative interactions. We demonstrate ho¥2.2) since their values will not concern us. The interactions
the constraints imposed by supersymmetry on these highe¢hat will be of interest in the next section are those that arise
derivative interactions can be obtained but we do not carrnpy integrating a function ofb over the sixteen components
through the detailed calculation, which would be reasonablyf 6. In Einstein frame, this leads to interaction terms of the
complicated. It would be very interesting to extend thisfollowing form:

analysis to compactified supergravity to prove and general-

ize, for example, conjectures similar to those in R&f].

8(3)=(a’)3f d'%d*®e deteF[ @] +c.c.
Il. HIGHER ORDER TERMS IN THE TYPE IIB
EFFECTIVE ACTION —( a')3f 1% dete(f(lz'_ 12) 16, $(11-10&) 145 ...

A. Linearized supersymmetry and terms of order(a’)®

The existence of a large number of interactions in the 11B +f@8GEL... 4 fO0RAL ... 4 §(~1212) +16)
theory that are related to tif* interaction can be motivated
very simply by using linearized supersymmetry. This can be
implemented by packaging the physical fields or their field
strengths into a constrained superfigldx, §), where 62

(2.9

where dee=dete;f is the determinant of the zehnbein. The

(a=1,...,16) is acomplex Grassmann coordinate that SH(2.%) syr‘(nmet)ry of the IIB theory requires that all the
. "ew ;
transforms as a Weyl spinor of $@1). This superfield sat- functions, f*~")(7,7), are modular forms with holomor-
isfies the constraints phic and antiholomorphic weights as indicated in the super-
scripts. Many terms have been hidden in the ellipsis in Eq.
_ _ (2.4).
D®=0, D*®=0=D"D, (2.7) We will mainly consider the first two terms in parentheses

on the right-hand-side of Eq2.4) where we are using the
where the first constraint is a chirality condition that ensuregrecise notation

that ® is independent ob*. The last two constraints imply
that the components db satisfy the free field equations. The
superfield terminates after thé# term and has a component 1

r = a...\a
expansion that takes the fofm (Ma,ywags r! €ay g A 2.5

Y A T so that
D=7+ 0*N+G,,, 0% y*"0+ -
0k UVP gk AOT
+R“”V70 ! i 7 ”0 Rlﬁziea.na )\al...)\alfi, (2.6)
+ (9,“'&511;10'7ka prag* YOO+t 08(94? 16! " e

The symboléwp, w,v,p=0,...,9,denotes the “superco- " 0 s
variant” combination ofG and fermion bilinears defined in ~ GA"=G ., ("7 )a 2, (A Da ¢

Appendix A, whereG,,,,, and wap are complex combina- 1

tions of the field strengths of thedR (Ramond-Ramond = -G 1vp 0 € N3N . (2.
and NSNS (Neveu-Schwarz—Neveu-Schwarawo-form 141 Crrol VY Dasgay€arayg e (2
potentials. The four-theta terms aRe the Weyl curvature,

and Fs which is the field strength of the fourth-rank Later we will make use of the simple identities
1 5

R®R potential. The gamma matrices with world indices are
defined byy*=eky™ wherem=0,...,9 is the S@,1) (A1) NS = (A 19), 85— (A 19), 88,
tangent-space index am, is the inverse zehnbein. A barred

Weyl spinor, such ag, is defined by (A15) 00— 52)\16'

0= 0% (Y")ba- 23
a Thi T e (N)15\a=16118, 2.9
and
3We are using the usual convention thatt #» is the antisym-
metrized product ofp gamma matrices, normalized so that
YR TH= eyt when g # - F g (M aph A g =N 8acOna— Saddic)- (2.9
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B. Modular covariance v2 _45 D
. . . . . . (Hw— = —w=1"w
The various coefficient functions in the effective action
are (w,w) forms, wherew refers to the holomorphic modular =47 i i__2|w i +—=]—w(w+1)
weight andW to the anti-holomorphic modular weight. A 297 dr ar '
nonholomorphic modular fors ™" transforms as
P =VZ ,—2w. 2.17)

FWW_ W) (¢t d)Y(c7+d)", (2.10
under the SI2,7) transformation taking
ar+b 01
T ortd (@13

Equation(2.10 describes aJ(1) transformation whemv=
—W.
The modular covariant derivative

(2.12

mapsF™¥ into FW+2%) while the antiholomorphic covari-
ant derivativeD;,= D, mapsF ™) into F":W*2)_ |t is more

Now consider a\y,—w) form that is an eigenfunction of
the Laplace operath(z,)W with eigenvalueo, ,

V(Z_)WF<W’—W):4DW7157W|:(W,—W): UWF(W,—W)_

(2.18
Applying D_,, to this equation gives
V(2+)W_1F(W—l,—w+l): O'WF(W_l’_W+l). (219)
It is also easy to see that
V(Zi)W71F(wfl,fw+l)
=4Dyy 5Dy FY VD,
=(oy+2w—2)FW-L-wrD), (2.20

convenient for our purposes to define the covariant deriva-

tives
i Jd . w — — Ja W
D,=7D=i TZE'_IE , w=1D=—I TZ&_7+IE ,
(2.13

which change the (1) charge ofF by two units

DWF(W,W):F(W+1,\7V*1), BWF(W,W): F(W*l,\i\ﬂrl)_

(2.14

where FW-L-wtl=p_ FW.-W)  Repeating this form
steps gives

2 -m,—w+
V(*)wfmF(W m, —w-+m)

:4Dw—m—15—w+m+1F(W7m’7W+m)r

N
The Laplace operator on the fundamental domain of (*V

SL(2,7) is defined to be

3 9
ZE 2:4 2~ 7
Vo=V AT o

(2.19

when acting on(0,00 forms. More generally, we shall be

interested in the Laplacian acting ow,(—w) forms. There
are two such Laplacians which are defined by

V(Z—)w:4Dw7157w

J N J 1
W|— T —| —W(W—
dr It ( ),

(2.16

and

=(0y,+2mw—m?—m)FW-m-wtm (2.21
Similarly,
2 mF(w—m,warm)
=(oy,+2mw—2w—m?+m)FW-m-w+m, (2.22

This relation between eigenvalue equations will be useful in
analyzing the equations that are satisfied by the modular
forms that enter ir5®).

An indication of why this is so comes from various dual-
ity arguments that relate type Il string theories and M theory.
Firstly, it was argued in Ref$11,20 that the functionf (%0
should satisfy(1.5), in which case it should be an eigenfunc-
tion of the VS on the fundamental domain &L(2,7Z) with
eigenvalue 3/4. Furthermore, in R¢L5] it was argued that
the nonholomorphic modular forms that arise as coefficients
in S® are related to each other by applying covariant deriva-
tives. For example, it was suggested that

“We are using a more uniform notation for the modular forms here
than in Ref[11].
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{12712 = (-, D)% (00=p12f(00=p ,...D,D,f 0. dualities, our purpose is to prove that E8.24) and related
(2.23 conditions follow directly from a rather simple application of
supersymmetry.
Using this relation and Eq.2.21) for the casem=w, and
assuming thaf(®? indeed satisfies Eq1.5), leads to the IIl. DETERMINING TERMS IN  S® USING
eigenvalue equation th&t*?~12) is expected to satisfy SUPERSYMMETRY

We now proceed to a precise determination of the modu-
f(12-12 (2.24 lar forms that enter into Eq2.4). This starts by selecting
two specific terms in the effective Lagrangian at ordef)¢,

B 3

In the next section we will prove, using supersymmetry
alone, thatf (1>~ 12 does satisfy this equation. L3P =dete(f > (7, DA+ fH- (2 7HGAY. (3.0
The solution to the Laplace equatidf.5 with eigen-
value o=2 is unique if we assume thdf®® has a power OuUr notation is chosen so tha ()"~ *[d'&L("M=S". we
law behavior near the boundary of the fundamental domaiiVill show that these are related by a subset of the supersym-
of SL(Z,Z) which agrees with the known tree-level and One_metry transformations that do not mix with any of the other

loop contributions. More generally, let us denote a solutiorf€rms at this order. We will also take into account terms from
of the scalar Laplace equation with eigenvatwe s(s—1)  the variation of the lowest order acti@® that can mix with

>1 py E(7) [12], the variations of Eq(3.1).
We will only need to consider those terms@that are
V2E.=s(s—1)E,. (2.2 bilinear in the fermions. After using the identity
We can expresEg(7) in terms of the nonholomorphic wvp 0 14,7 — — 144 O\ 15
Eisenstein series (Y7 ab(M) an( ¥ ¥ wp) A Yy N
=148 yr g (3.2
1
Es(7)= 573 > Imr+n|7%, (2.26  where we have used the fact that,y*"*= —72y*, the rel-
(m,n)=1

evant terms in.{¥) can be expressed as

where(m,n denotes the greatest common divisomoéndn.

The eigenfunction&(r) are singled out by their power law (¥ =dete(f(12~ 12\ 16— 3. 144f (11~ WOy )+ -0).
behavior near the boundary of the moduli space, which (3.3
agrees with the known tree-level and perturbative contribu- R

tions to the interactions that we are considering. It followsThe ellipsis represents other termsGnwhich do not affect
from Eq.(2.23 that f*>~ 12 is also determined uniquely by the subsequent argument.

its Laplace equatior{2.24 if the presence of a tree-level First consider the lowest order supersymmetry transfor-
term is assumed. While the arguments leading to(B®4  mation of Eq.(3.3) into detex'®)%e. From Eq.(3.3 we
were motivated in prior work rather indirectly by various have

5§_O)Lg_3): 5(0>(dete)f(12’_12)7\16+ detef(lZ,—lZ)é(O)()\lfi)

a
—3Xx144 deb(a_r fALT D SO (N Byp g ) + f LTI SO\ By )

1 —
=i dete| @ y g 271N 2 (N9 o(7#7 €) oy M 12 24+ 6 144D 1y f LI (NI 4yt

= —i dete(e* y* ¢ )N18(8F 12712+ 6 144D 1 f (117 1Y), (3.9

where we have only kept terms proportional)\t66¢/f; e. In  whether there could also be a contribution of the same form
passing from the first to the second line in this equation, weas Eq.(3.4) arising from a @')36®) variation of the fields in
have made use of the standai@® supersymmetry transfor- the lowest order actio®®). However, it is easy to see by
mations summarized in Appendix A. It is important to checkinspection that no term withlez//:; can arise from the varia-
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tion of any terni in S(®. This means that we must require This condition is consistent with the modular weights as-

8L =0, which implies that signed to the function§™:~",
In order to find another condition relating*?>~*? and
D fL-1D_ _ 4 12 3.5 f(11-1D we now consider the term in the variation of Eq.
1 3x 144 ' ' (3.3 that is proportional to dei\*6\* *. This term is

(12-12)

SPOLYP = dete( SOTTAIE fI2TIANISSOI\ — 35 144f (AL ID\IE5O) () )

+ ..

— NN 15
= —2i detex"%(er*) —|(72a—?—6|)f<12’12>+3>< 144x o fH71

_ 15
= —2i deten & ex*)( D_,f1% 124+ 3x% 144 — fOL-1D ) 4o (3.6

where we have made explicit only the terms containing _ L _
A1O\* €* in the second line. lf d'% dete yDX, (3.10
In this case, there is another contribution of the same form

as 8L that arises from theq')3s®) variation of terms  and its coefficient is determined by the() charge for\.

in the lowest order IIB Lagrangiah(® (recall that we are The normalization of the second term can be extracted from
really using the action as a shorthand for the 1B equations ofhe gravitino field equatiofEq. (4.12) of Ref. [7]), but is
motion). Even though the complete set of interactions in thealso determined by the supersymmetry considerations in Ap-
classical theory is not tabulated explicitly in the literatlite  pendix B. The value o€ deduced in Appendix B is

is implicit in the superspace formulatid®]), it is easy to

convince oneself that the only possible term that can vary 3
into 6L is a term of the form c=~Tog (3.11
c — N Of course, the arbitrary Newton coupling has been set equal
o__ = LUpy &\ * , y pling q
L1 6 R 3.7 to a particular value in defining the absolute normalization of

the action, but this value cancels out of all that follows.
which is the unique tensor structure containki\*2. The We can now see thai(lo) can vary into the same form as
coefficientc has been left free in this formula, but it is de- &”L{® if we assume a variation of* of the form
termined by the lowest order supersymmetry transforma-

tions. It is determined in Appendix B by considering the . 1 14 o
mixing of L{®) with SONF =~ g'g(ﬂﬂ(h )ed VPV ) dc Y vp€ ) as
(3.12
3 _
0 _>; _ _ . .
Ly" =51 deter y“AQ, (3.8 whereg(r,7) is a function to be determined. We will show

momentarily that there must be such a term in the variation
of \* if the supersymmetry algebra is to close. Substituting

and
in Eq. (3.7) gives a contribution

LY =i detex y*y“y%P,,. (3.9 o @ 26, _
SWLY = 36! deteg(r,7)\ y* Y p1oops

The termL(zo) is the connection part of the Dirac action for

the dilatino X e* ()\14)Cd( ,yplpzp3,y0)dcfk 7uvp)\

= —480x 16ic deteg(7, )\ *%(er*). (3.13
The only relevant terms are those involving only fermionic fields
since bosonic fields vary into derivatives. The only fermion inter-Some of these manipulations make use of the gamma matrix
actions that could vary into the required form would be terms suctidentities listed in Appendix A 1. Comparing with E(B.6)
as AA\* lp;,)\eup;,._., which are excluded from the classical we see that in order for the total contributiondb, to van-
theory since they violate (1) charge conservation. ish at order @')3, there must be a linear relation between
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the functiong and the functiong =19 and D _ ,,f (12712, (68— 8 5PN

3
_ 15 =&D N~ giley er=(1-2)]y, 7D\
D_,f*27124+ 3% 144x > f(11-1D4 240x 16cg=0.

1
(314) _ 9_6|[EzryPlpr?;el—(1(—)2)]’yp1p2p3'yMDM)\*1

A further constraint on these functions is obtained by re- (3.15
quiring the supersymmetry algebra to close which requiregyhere
the use of the fermionic equations of motion as well as the .
equation forFs. In fact, these equations of motion were §'=—-2Imeyy"e;. (3.16

determined in the classical theory by requiring clqsure of therpe first term on the right-hand-side is of the form expected
superalgebra for the low-energy type 1B theory in R&fl.  ¢o; the commutator of two supersymmetry transformations.
Another important feature of supergravity theories such ashe remaining terms are proportional to the lowest-order
this is that the algebra need only close up to a fieldyerm jn then* equation of motion. Many other terms that we
dependent local symmetry transformation. In the case ajj|l not need also contribute to the fuli commutator to com-
hand, the important fact is that the commutator of two superplete the low-energy\* field equation on the right-hand
symmetry transformationjss; , 5,] gives the usual transport side, as well as generating local transformationa of
terme,y*€,D , together with a supersymmetry transforma-  The higher order terms ih(® modify the equations of
tion §; and terms that vanish by the equations of motion. Thenotion and this should also be apparent by considering the
supersymmetry parameteris field dependent. closure of the algebra. Therefore, we now consider terms that

We will consider closure of the supersymmetry transfor-enter at order ') from the commutator of & with a
mations on the field* . First, keeping only the terms linear §®). More precisely, we shall consider terms in the commu-
in \ derivatives, we findas in Eq.(4.5 of Ref.[7]) tator involving onlye> andeq,

1 Jd 45
(3)_ «(3) . . Y
(€8s =85 05 =~ 5( Frmal g) I9(ET NN ed ¥ ) ac Vyurp€3 )

d . 45
725~ g9

+ ST, (3.17)

28
- _ 15
483288?\b i

3_ 1_
g 62’}/”“61( ’}//.L)ba_{— 9_6627MVP€1( Y#Vp)ba

=32D 1197\t§5

3_ 1_
g E2’}/”“(51( Vﬂ)ba+ 9_6627Mvp61( ’Y,U,Vp)ba

In passing from the first to the second equation, we have In writing Eq. (3.17), we have taken pains to express the
used once more the Fierz identity and various gamma matrikight-hand side as a sum of precisely the same tensor struc-
identities given in Appendix A1l. In the last line, we have tures that appear on the right-hand side of 83415. Com-
separated a term bining Egs.(3.15 and(3.17 (including the powers ofx’)
we see that in order for the right-hand side of the commuta-
1 ) . £ )
SnF = —i Zg(?{?\)(NM)cd( YiP40) €S )a tor to vanish thex* field equation must be of the form
(3.18 iy“DMA*—(a’)332Dllg)\15+---=0, (3.20

which is to be identified with a supersymmetry transforma-where the ellipsis indicates terms with different structure that
tion of the form(3.12 with a particular field-dependent co- we have not considered. This equation has to be identified
efficient with the appropriate sum of terms in the* equation of
motion that is obtained by varying the action with respect to
\. At the same order i’ this is given by

e= (@, (3.19

i YD, \* —(a')3f127 1\ ...=0, (3.2
This is unambiguously identified by the fact that it is needed
in order to change th& in the previous lines to th§ which ~ where we have only made explicit the term that is propor-
is contained inD ;. This is correlated with the fact that the tional to A\°. Comparing Eqgs(3.20 and (3.21) gives the
function g transforms with weight{11, —11). relation
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32D,,g=f12712, (3.22 It should, of course, also be true that the expressions for
all the coefficientsf(®~P) in Eq. (2.4) also emerge from a
Substituting Eq(3.22 into Eq. (3.5 gives more detailed application of the Noether procedure that con-

siders all the possible mixing of terms 81*) with arbitrary

3x144 ( U(1) charges.

g=——g . (3.23

IV. COMMENTS ON HIGHER DERIVATIVE
There is no ambiguity in this relation betwegmand f (**~1% INTERACTIONS
because there is no solution @,,0=0. Substituting Eq.
(3.23 into Eq.(3.14 using the value= — 35 gives A. Some general comments
More speculative extensions of tife* conjecture have

been suggested in Ref4.8,17,2]. For example, interactions

— 15 45
(12-12)_ g I 16 N k)
D_yf 3x 144( >t &4 f - 329 fihe form
0 2g-2
The two simultaneous first-order differential equatié®24 (')~ 3 (a')25+21 | 1% dete
and(3.5) are simply reduced to the independent second-order 0521 p=5" 29
equations A
XFég_4ng_2+pG*zg_2_p
_ 3
V(2)12f(12’12):4|311D—12f(12’12):( —132+ Z) f(12-12, X[fé‘lé@l(ﬂ?}?{“—k---—k féﬂzgf[l}p)(r,?))\le],
(3.25 4.7)

_ 3
VEouf =4 Dy f = — 132+ 2D,

arosé@ Refs.[17,21]. The casegy=§=1 corresponds to the
terms that we considered in the earlier sections. The modular
The first of these equations is the same as(E@4). There- functionsféq*"” are expected to be given by the generalized
fore, the modular fornf(*2~12) js uniquely determined to be Eisenstein series
the function suggested in Refl5] if we assume that
(12712 has a tree-level and one-loop contribution at weak _ 79+ 12

. . . 0.0 fla—a— )
coupling. This function can be expressedx€f(®9) where g ~ 00 (M+n7) 9 2Fd(m np9Fl2=a
(00 satisfies the Laplace equati¢é®.24) with eigenvalug (mm= (09 4.2
(the proof that this function is actually the coefficient of the

R* term will follow from the argument in the next para- Note that forq=0, these coefficient functions are propor-
graph. Similarly, the second equation in E(3.25 gives a tjonal to Eg, 1(1), where Eq was defined in Eq(2.26.
unigue expression for the modular forff*~ 1), Expanding Eq(4.2) for small coupling ¢,— ) leads, as in
Having determined "%~ and f(*" ") we would now  the caseg=1, to two power-behaved terms that are to be
like to determine the remaining terms in E@.4) of the jdentified with perturbative terms in string theory. These cor-
same order but lower (1) charge, such aB*. A simpleway  respond to a tree-level term andgdoop term. In fact, the
to determine these terms is to consider the constraints on th&ses= 2 is the physical lower bound ossince in that case
coefficient functions that follow from linearized supersym- the loop term is of the lowest possible gengs 1. The
metry and then to impose the requirement that the effectivggreement of the perturbative behavior of E42) with the
action be S2,7) invariant. Linearized supersymmetry, de- known perturbative contributions to E¢4.1) computed in
scribed in Sec. II, is valid to leading order im~*. We  Ref.[22] is a primary motivation for the form of these coef-
saw that in that approximation the terms in E@.4) are ficient functions. The perturbative contributions were com-
expressed as an integral of a function of the superfi¢it]  puted in a topological formalism further studied in ReX3].
over one-half of superspace. Furthermore, it was argued iAs in the casey=1, there are no higher order perturbative

Ref. [15] that the linearized approximation is exact for the corrections but there is an infinite seriesfinstanton cor-
leading charg D-instanton contributions to the coefficient rections. The conjectured functioméqﬁq) in Eq. (4.2) are

functions f_(pc’p_p)- These can be extracted by choosingagain eigenfunctions of the Laplace operator acting gn (
F[®]=e?"K® and agree with the expectation that the coef-_q) forms, as in thegy=1 case. Now, however, the eigen-

ficients are related by value depends og. For example,
f(p,—p):Dp_l...DOf(O,@_ (3.26 1
a720,5.409=| ~+ J| (00 .3
. . . R 2077109 4 2/'9 )
Only the Abelian pieces of the covariant derivatives affect

the argument to leading order im) ~* which does not build

in the required modular invariance. The modular covariant

expressions are reproduced by using the fully modular cova-®More precisely, the interactions suggested in REEZ,21] only
riant derivatives in Eq(3.26. included theR* terms in this expression.

046006-8



SUPERSYMMETRY CONSTRAINTS ON TYPERB. .. PHYSICAL REVIEW D 59 046006

From the perspective of superspace, the status of terma this case, there are two other terms3f¥) that can vary
with g+ §>3 is quite different from the terms we considered into Eq.(4.6). The first is similar in structure to the term that
in Sec. Il for whichg+§=2. Those terms could be written appeared in our earlier analysis
as integrals oves the on-shell superspace, which is de-
scribed in terms of a superspace with a single Wey(%0 |_<25>=dete)\157u%é4f(213,— B 7, 4.7
spinor. For this reason, we could have anticipated the fact
that they satisfied very constraining nonrenormalization conwhich is a piece of the supercovariant combination

ditions. Cases in whicly+§=3 [terms of order.@f)5 rela-  deten4G5. The relevant supersymmetry variation gives
tive to the Einstein-Hilbert terfrappear to be similarly spe-
cial since, by dimensional analysis, they correspond to 0)y (5)_ 15 0)/ 1%\ A~4g(13-13
integrals oveE%1 of the on-shell s)lljperspac)éz, ie., oFi/er 24 8Ly =deteh 9y )(l/l”)G f (r7), (48
Grassmann spinor components. Since there is no covaria
description of S@,1) spinors with 24 components, there is
no obviously simple superspace description of such terms.
However, as we will see in the next subsection an analysis of
the supersymmetry transformations similar to the preceding
one is likely to determine the form of the€¥ (a')°] terms . L . . .
and provide further motivation for the conjectured terms in'l:he relevant part of this expression is the fernjlon bilinear in
Eq. (4.1) at this order. G* proportional toyA*. Sinces{”)y contains aGe* piece,
the variation

Whel’e5(0)(‘y“¢::) is given in Appendix A.
The second term is a new possibility

LY =deten0G3G* T3 13 (7). (4.9

B. An outline of how terms in S® are constrained 5(10)L(35):dete)\16é3(5(lo)é*)~f(2137 13)(7_7) (4.10

We will not present a detailed analysis of termsSi® but
rather, we will give a schematic outline of how supersymme-mixes with Eq.(4.6).
try constrains at least some of these terms. Consequently, we In addition, it is necessary to consider the mixing of these
will not be concerned about the exact normalizations or tenterms with terms of the classical action. The two terms that

sor structures that arise in the various terms. are relevant are.{”) given in Eq.(3.7) andL{” given by
We will consider interactions ir5® with §=1 andg -
=2, which are terms of order(')® relative to the Einstein- LYY=, v, AGH"". (4.11

Hilbert term. An important consideration is that the absence

of (') and (a’)? corrections to the effective actiofthe  For these terms to mix with Eg4.6) there need to be modi-
absence o6 andS'? termg means that the supersymme- fications to the supersymmetry transformations that take the
try transformations have modifications that begin withschematic form

(a")35®. These transformations do not mix any of the

lower order terms 5%+ S®) with the terms inS®). We SN ~ gy (7 DG N (Y7 Y0) 4l Vv €*),
therefore only need to consid&®+(a’)%S® and §©
+ ’ 55(5). ~

() 5O~ Ga rINGe) . (4.12

In complete analogy to our earlier analysis, we will begin

ideri ih(®) i — . . . .
by considering the term in™ of modular weight14,~14), Invariance under supersymmetry then gives a linear relation

N _ between the functions
L{5)= deteN 19G4£ 5419 (7,7), (4.4 Hnet
A 57 141:(214,7 14) , f(213,7 13) , '}’(213,7 13) . 01, Oo.
recalling thatG is the supercovariant extension®fcontain- (4.13
ing fermion bilinears. The tensor structure is hidden in the

abbreviation&* which should read Additional constraints that relatés™ ¥ and f{*3~ 13

can be obtained by considering a second supersymmetry
. . variation that mixe4.{>) andL$> and with no other terms at
L € € ) (4.9  order (a')°. An appropriate transformation to consider is

_ _ _ 0)y (5)_ (0) 1634y £(14,-14)
for a tensor structuré which we will not specify here but 35LE" = 65" (deten G}

would be determined in a more complete treatment.
As before, the first supersymmetry variation of E4.4)
to consider is the one acting angiven in Eqg.(A21),

~(deteN'8G*ye* yryk 51 (4.19

and

8OLP) = —2 dete*®(en*)G* >

(4.9 (4.15

J g 13 R
Ty T ) 541907 7). YLy =2 dete( Tt ) fESTIINIE iy G2,

046006-9



MICHAEL B. GREEN AND SAVDEEP SETHI PHYSICAL REVIEW D569 046006

; 0) 0)am o
¥vhere we are using (%?rts @\ from Eq. (A24), 5V, [5et 8,107~ 5OLas( N Y(Ge;) ]+,
rom Eqg. (A23) and 6'"’7 from Eq. (A21). In addition we
must consider the variation of a terny” in S whereL{")
takes the form N(D713g3)6?[‘)\*)\16(é‘362),u+'”1
(4.20
LS =, 7,45 G**7. (4.16
which determines thd/; equation of motion and relateg
A variation of this term which mixes with Eq$4.14 and  and T$®* ¥, In writing Egs. (4.20 and (4.21) we have
(4.19 is induced by the new transformation again been symbolic and suppressed the fact that it is essen-
tial to include all the terms involving products &f® with
5% in the commutators, as with E¢4.19. The arguments
(4.17 . .
of this subsection demonstrate how closure of the supersym-
metry algebra together with a judicious choice of supersym-
metry variations of the Lagrangian can completely determine

8%k =ga(T NG, e,

whereg; is another function that has to be determined. In-

. (13-13)

v(alzlrilqge under supersymmetry then relai2gsf5 ' the interactions irs®.

i andgs.

2 ’ 3
The final set of constraints follow from closure of the o

supersymmetry algebra od*, ¢, and ¢*. The part of the C. Future directions

commutators It is less clear how things might work for higher deriva-
tive terms in the string effective action. The most significant
new f re, which follows simply from dimensional analy-

[6c, 8 IN*, [8..010,. [55*,552111/2, ew feature, which follows simply fro d emso al analy
2 2 1 sis, is that terms in Eq4.1) that contribute t&5'") can arise

(4.18 from integration over the whole of the superspace. We would
not generally expect these terms to be protected. More prag-
matically, at this order the Noether procedure escalates in
complexity. This is largely because at order there are
many possible term&MS(M wheren+m=p, that can mix
under supersymmetry.
In the case ofp=7, for example,5S®) can mix with
[8ey s N ~5(52)(91(T,?}G“()\l“)cd)(y’””yo)dc( Yuup€s) 5750 and 6(0)8(7): This kind of mixing certainly compli-
cates the systematics at higher orders. Nevertheless, it could
still be the case that the conjectures in R¢i8,17,2] are
correct. At least the terms in Rdfl7] were special in per-
. ~ R turbative string theory because of their relation to topological
~D15916,0 %G} +9,6,G* N\ PG365 - - amplitudes, and this could be reflected in the systematics of
(4.19  the Noether construction. Should these conjectures prove
true, they would point to some interesting and powerful im-
with the\* equation of motion will allow us to relat®139;  plications of supersymmetry that would be satisfying to un-
andf§*~ 1% as well agg; andf$™® ¥, by analogy with the derstand more deeply.
case we studied earlier. As with the earlier case, it is impor- Another avenue that would be very fruitful to explore is
tant to also subtract the variation in the reverse ordethe generalization of this analysis to compactified supergrav-
sOsO\*  But we also need to add the variations ity- The simplest example is the nine-dimensional theory
625 610) ©0) _ _ o . with moduli space SL(Z)\SL(2,R)/0O(2)XR. This can be
(5(51)553 ~ O 8&)\*, which give a nonvanishing contribu- viewed as M theory on a two-torus where the(BE) acts on
tion to Eq.(4.19 although there was no analogous contribu-the complex structure of the toré andR is its volumeV.
tion in the case considered in Sec. IIl. Such terms have beehn€ expectedR® term, given in Ref[24], is of the form
suppressed on the right-hand side of E419 but they will [V~ Y2109 Q) +272/3V]R%. New features enter the ef-
give additional contributions that must be taken into accountfective action in this case that are absent at the boundary of
Likewise, the @')® part of the commutator moduli space corresponding to ten-dimensional type 1B
theory. Notably, the toroidal compactification of the eleven-
00 16/ A3 form of Eq. (1.1) enters the action. An indirect argument
[0c,s 0100, ~ a1 T) SONIG3e3) 4, given in Ref.[24] relates this by supersymmetry to tRe
term but it should now be possible to relate these terms di-
. rectly. It has been suggested that in compactifications to
~0o(eNGre5) o0, (4.20  lower dimensions, the appropriate modular functions are
those associated with eigenfunctions of the Laplace operator
determines theys, equation of motion and relateg, to  on the U-duality moduli spacé¢49]. These are cases that can
f{14719  Lastly, g5 is constrained by considering certainly be analyzed with the tools that we have developed

proportional to ¢')° gives a sufficient number of relations
to determiney,, 9>, andgs in terms of the coefficient func-
tions inS®). For example, identifying the right-hand-side of
the commutator

+---
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here. It would be extremely interesting to see what happens follows that two complex chiral spinors of the same chiral-
in low dimensions, where the U-duality group becomes exity, \; and\,, satisfy the relations

ceptional, and for sufficiently low dimensions, infinite di-
mensional. These same techniques are also applicable to
cases with less supersymmetry. For example, compactifica-
tions of M theory on hyperKaer spaces, and toroidal com-
pactifications of the heterotic or type | strings. Undoubtedly, flyf”f’)\z:f’z‘ YRUPNE (A4)
supersymmetry will continue to yield new insights about the

nonperturbative structure of string theory and about M o _

theory. N1yPL PsN, = — N5 yPLUPSNT

N1Y*“Na=—N3 ¥ANT,
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APPENDIX A: TYPE IIB SUPERGRAVITY REVISITED N yP1P2P3Pag= g* yP1P2P3PaN*

1. Some spinor and gamma matrix identities The Fierz identity for ten-dimensional complex Weyl spinors

The spinors that enter into the 1B theory are complextan be expressed as
Weyl spinors. The gravitino and dilatino have opposite

chiralities and the supersymmetry parameter has the same ab 1 “ — wp
chirality as the gravitino. The complex conjugate of the M= = T 2Yuh1Yabt ggh2YurM1Yab
product of a pair of spinors is defined by
— oY,y A1 Yo P, A6
(Napo)* =—Nip} - (A1) 3840 27pr o5 1 Yab (A8
The conjugate of any spinor is definedfyt)\* 0. We will where\; and\, are two chiral spinors of the same chirality.
choose our metric to be spacelike and thenatrices to be An additional useful identity is
real and satisfy the Clifford algebra
Y PNIN2 Y, pha =0, (A7)
{r*. v t=29"" (A2)
) where\q, \,, and\; are three chiral spinors of the same
Nothing that chirality.
Some gamma matrix identities that are useful in proving
Yoyt=—(y*)T°, (A3)  the various relationships in the text are

tl’( ,y,uyp,yplpng,) [ 16( SP15P2 83— 25ﬁ15Z3+ 51325433551_ 55:35:?2521_’_ 5235#516!;2_ 5215?5?) ')’M'yo')/,u: _ 8’)’,, , (A8)

wov T u

7# 70’10'20'3 Yu=— 4 ’)/0'10'20'31

y/.wp YoYuvp= — 288’)/0' ' (Ag)

Mmvp —
Y Yo 0005 Vurp™ ~48Y0 0,04

7M P yvl- g y,u vp == 1470'1' ogt
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2. The fields and their supersymmetry transformations i 9T

=_
Here we will review various features of type IIB super- P#_z Ty (A16)

gravity that are useful in the body of the paper. Most of this

material can be found in Reff7] in a form that is adapted to The fermions comprise the complex chiral gravitirt@,

the field definitions in which the global symmetry is GLL) which has U1) chargeq,= %, and the dilatino\® with U(1)

and the scalar fields parametrize the coset spacehargeq,=3. These two fields have opposite chiralities. The

SU(1,D/U(1), which is the Poincaralisk. It is simple to  graviton is a Y1) and SL(2,R) singlet as is the antisymmet-

transform this to our parametrization in which the globalric fourth-rank potentialC® which has a field strengths

symmetry is SK2,R) and the scalars parametrize the coset=gc(4). As is well known, this field strength has an equa-

space SI2,R)/U(1), or the upper half plane. tion of motion that is expressed by the self-duality condition
The theory is then defined in terms of the following fields: .=« F, which cannot be obtained from a globally well-

the scalar fields can be parametrized by the frame field  gefined Lagrangian. For this reason, our considerations are

restricted to statements concerning the on-shell properties of

Vi Vl+ 1 Je it e the theory where the fields satisfy the equations of motion.
=| . = _ _ The two antisymmetric second-rank potentiég, and
2 2 . —i¢ ¢ ) ) (AlO) ) v
VioVvi) o J=2in\ e e C?) have field strength&* (NS®NS) andF? (R®R) that

N ) ) form an SL2,R) doubletF“. It is very natural to package
whereV< (a=1,2) is a SI2,R) matrix that transforms from o into the SI2,R) singlet fields

the left by the global S2,R) and from the right by the local
U(1). Note that we are using a complex basis for conve-
nience. A general transformation is then written as G=- eaBViFB, G*=—¢€,5V" FA, (A17)

which carry U1) chargesqe=+1 andgg+=—1, respec-
tively.

In a fixed U1) gauge, a global SR,R) transformation
which acts onr by

(VS V) —Ug(VEe> vEe ™), (A11)

whereU is a SL2,R) matrix andX is the U1) phase. An
appropriate choice oE fixes the gauge and eliminates the
scalar field¢. We will make the gauge choicg=0. Since
this gauge is not maintained by generic symmetry transfor- ar+b

mations, it is necessary to compensate a symmetry transfor- T rrd (A18)
mation with an appropriate local (1) transformation to

maintain the gauge. In particular, the local supersymmetry, ut o4 pe=1 induces a @) transformation on the fields
transformations require compensating loc@l ) transforma- that depends (’)n their charge. Thus, a fididwith U(1)
tions. The supersymmetry and(1) transformations ovV% chargeqq transforms as '

are given by

cr+d) %2

SOV =iV¥er* —iZ Ve, (A12) d—P
cr+d

(A19)

This choice ensures that the gauge-0 is maintained if a ) o )
local supersymmetry transformation is accompanied by dhe higher derivative terms of interest to us only repect the
U(1) transformation with parameter SL(2,7) subgroup of SI2,R) for which a,b,c,dare integers
and the continuous () symmetry is broken.
The supersymmetry of the action is naturally described in

S=Z(e\*—EN). (A13) terms of comblr‘1‘at|ons of bpsoq!c fields and fermion bilin
2 ears which are “supercovariant,” which means that they do
_ _ not contain derivatives of the supersymmetry parametar
The SL(2,R) singlet expression their transformations. These combinations are
=—ie€zVia, VP, Al4 A& s G
Qu aBT+"n (A1) G lvp=Cpuvp = 3 YN = 61U, v,
is the composite (1) connection and transforms &—Q
+d,2 under infinitesimal local (1) transformations, while p —p —E*)\
the SL(2,R) singlet expression Al '
L(2.R) singlet exp (A20)
P,u: - Eaﬁvi aluvf- ’ (Als) F5M1"'M5: F5M1‘ "M5_ Sw[ﬂlyﬂ2M3#4¢#5]
transforms with 1) chargegp=2. In the gaugep=0, the . ix N
expression foiP, takes the simple form 16" Yeymsh

046006-12



SUPERSYMMETRY CONSTRAINTS ON TYPERB. .. PHYSICAL REVIEW D 59 046006

We will now present the lowest-order supersymmetrywhere the compensating(l) transformation is given by
transformations, suitably adapted from those given in Ref.
[7] to the SL2,R) parametrization. From Eq4A12) and

: 1 1 1
(A13), it follows that 5(20)1//M:§i2 = Z10u(n) = Zig,(EN). (A2D)

80r=27m,e*\, 8V7=—27er*. (A21) By using Eqs.(A6) and (A26) extensively we may ma-
nipulate the variation ofyﬂwz into the form
It follows from the definition ofQ,, and the transformations

of randr that 3
0Oy y)a= = 7INE(EN)

59Q,=—€e\*P, +c.c. (A22)
1 —
Also, the supersymmetry transformation of the zehnbein is + 1920 (" P5€* )a(NYp pgh) Fo0e
given by
(A28)
sVel=i(ey™y, + e Y ). (A23)  where we have only kept the terms bilinearNph*. This
implies the relation
The transformation of the dilatino is given, in the fixed1)
auge, b _
Jange, Y (NSO (y %) a= — 15NN e* )+, (A29)

Oy oy w B 1o s 50 which we use in the body of the text.
OVN=liyte Pﬂ—ﬂly €G,,,+ o5\

_ . _ APPENDIX B: DETERMINATION
=iy*e*P,+ 8 Y e u o) OF THE COEFFICIENT ¢

_ — o To determine the coefficient in L{”), we need to con-
—iyre (YN + 65 N+ (A24)  sider how this term mixes with other terms under supersym-

_metry transformations. We shall, in particular, consider the
where we have only kept the terms that are needed in thgrm'in the dilatino transformatiofA24),

body of this paper in the second line. The arises from the

compensating (1) gauge transformation
P g W gaug 8ON=iy"e*P,, (B1)

which transformd{* into the form \*2P ,€*.

There are two terms which mix with{®) under this trans-

formation. One of thesd,(zo), arises from the (1) connec-
The gravitino transformation is given b P - .
9 g y tion in the kinetic term\ y“D ,\,

0, _3. B mry_ iy
52 Razilz)\azzl)\a(é)\ )—Zlha(e N). (A25)

1 ~
o — 3
589y,=D, e+ 280 Y YR g L(2°)=§| deteA y“\Q,, . (B2)

It follows from the transformation 0@, in Eq. (A22) that

1 ~ ~
vp\ _ PN * . .
367 Cum =9y G e the relevant transformation &fy is

L " = P 3
16( 7p)\ l/l'u’)/pf* 16807!31"'105)\ l/lﬂypl PSE* ) 6(0)L(20): - El dete)\ ’)’M)\ E)\* P,u . (83)

In addition toL{?, there is another term in the 1IB action
that can be deduced from the gravitino equation of motion
[Eq. (4.12 of Ref.[7]],

11/(9 _
+ 3—2{(27#7’)4-3’)/’)}/#)67\7,])\

1 1 —_
= ry9192p3—|— — ,),Plpzpa»y ) 6)\')/ A\ o

(24 M 6 #] 7T TPaPaPs LY =i detex y“y“yP,, . (B4)
The supersymmetry transformation of the gravitiGAR26)
gives the variation of. {,

1 P15 ) - 50
+9—607M’y 1 567\’ypl...p57\ + oy (¢M), (A26)
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1 _
5<°>|_<3°>=3—2i deteN y~y©

9 _
7 V¥t 37‘"7#) €°NT Y, \*

1 1 — 1 _
_ (2_4,),#»)//31/3293-{- E yplpzps,y’u) E% yP1P2P3)\* + %7# YPL T PEEX \ ¥ 7p1"'p5)\* P,

_ 1 1
12\ €* N* yON* —X(g Y@ yP1P2P3 4 3 YP1P2P3 | ¥ )\ \*

1
— H *
—32| dete Ypypops

- ﬁ))\ ’yw'ypl"'pSE*y* ‘ypl...ps)\* } P,. (B5)

An important simplification occurs when the variations - c— _
5L, and 8L, are added together by adding E4B3) Li7=—dete g A" y*" ANy, \*
and(B5). To see this it is first useful to use the fundamental

Fierz identity (A6), to write ac(— — .
=dete? NYFANT y, N
AEY’YP)\YG* = § if}/’“)f“’e*ry A 1— N
9|16 5 + E)\* YEVPNFNT N | e (B8)

1 —
+ 9_6)\ ,yw ,),P1P2P36* N 791P2P3)\

1 _
" 2a0x16"

Therefore the supersymmetry variation I6f) may be ex-
o pressed as
prPSEX ) ypl..‘psx} P,. (B6)

The sum&OL,+ 5L, contains the terms—+ 2+ 2)iA

5<O)L(0)=det68—ci N YN Ny, yO e
= —0i/8A. Substituting in Eqs(B3) and (B5) gives 1 3 #

1 —_
TGN YNy [Pyt (BY)

i
SOL,+60L,=— 3pdete

2Ny WYOEr NYN

which can be compared directly with E@7). In order for
the sum of Eqs(B7) and (B9) to vanish the coefficient
must have the value

+ %X)/plpﬂ"é‘y“’e*x* AP, .

71’192!’3
(B7)

This sum of the variations has to cancel the variation of the
termL{®) using Eq.(3.7). To see this most clearly, it is useful 3

to first manipulate.{”) using Eq.(A6) into the form =" 128 (B10)
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