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Supersymmetry constraints on type IIB supergravity
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Supersymmetry is used to derive conditions on higher derivative terms in the effective action of type IIB
supergravity. Using these conditions, we are able to prove earlier conjectures that certain modular invariant
interactions of order (a8)3 relative to the Einstein-Hilbert term are proportional to eigenfunctions of the
Laplace operator on the fundamental domain of SL~2,Z!. We also discuss how these arguments generalize to
terms of higher order ina8, as well as to compactifications of supergravity.@S0556-2821~99!05102-4#
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I. INTRODUCTION

Despite the intense interest in the structure of M theo
the general constraints imposed by supersymmetry have
been systematically investigated. At low energies in ele
dimensions, M theory should be well approximated
eleven-dimensional supergravity@1#. However, eleven-
dimensional supergravity is not a consistent quantum the
and new ingredients are needed which modify the ultravio
properties of the theory. While eventually we hope to hav
microscopic formulation of M theory, it is interesting to un
ravel the extent to which its structure is constrained sim
by general symmetry principles. For example, the cance
tion of chiral gauge and gravitational anomalies induced
the five-brane leads immediately to a term in the effect
action of the form

E C~3!∧X8~R!, ~1.1!

whereX8 is an eightform constructed from curvatures, a
C(3) is the three form tensor field@2,3#. This term is eighth
order in derivatives compared to classical terms in the ef
tive action which are second order. As usual, the order
momentum expansion counts the number of derivatives
twice the number of fermions. Clearly, we can gener
many more terms needed for a supersymmetric effective
tion by acting with the lowest order supersymmetry transf
mations on these higher derivative terms. Some of th
terms have been deduced from duality arguments. Furt
more, as soon as there are eight derivative terms in the
fective action, there will be sixth order modifications to t
classical supersymmetry transformations. The action is t
no longer invariant under supersymmetry unless we add
higher order terms to the effective action.
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Ideally, it would be possible to describe the theory in
manner that is independent of the background. The modu
an arbitrary compactification would then emerge from co
ponents of the tensor bosonic fields. However, in practic
is only feasible to define the effective action with respect
a given moduli space. The simplest example with substan
structure is the Poincare´ invariant ten-dimensional back
ground appropriate to the type IIB superstring, which h
moduli space SL(2,R)/U(1). The type IIB string arises by
compactifying M theory on aT2, where the volume of the
torus is taken to zero@4#. The complex structure of the toru
becomes the complex couplingt5C(0)1 ie2f of the IIB
theory, whereC(0) is the Ramond-Ramond (R̂R) scalar
andf is the dilaton.

The type IIB effective action is expressed as an expans
in powers ofa8 with the classical theory defined by an ‘a
tion’ S(0) of order (a8)24 @5–8#. It is well-known that the
self-duality constraint on the five-form field strength in th
type IIB theory presents an obstacle to actually writing
globally defined covariant action1 S(0). However, the analy-
sis in our paper will actually only involve the field equation
We will use terminology appropriate for a theory with a
action, but merely as a shorthand method of packaging th
equations. We could avoid this problem by compactifyi
the type IIB theory on a circle. The classical moduli spa
would then be SL(2,R)/U(1)3R.

The supersymmetry transformations on an arbitrary fi
C will be expressed as the series

deC5~d~0!1a8d~1!1¯1~a8!nd~n!1¯ !C, ~1.2!

while the effective action has the following expansion:

S5S~0!1a8S~1!1¯1~a8!nS~n!1¯ . ~1.3!

1This issue has been thoroughly discussed in Ref.@9#.
©1999 The American Physical Society06-1
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A factor of (a8)24 has been absorbed into the definition oS
andS(n).

In principle, the action can be constructed by a Noet
procedure which imposes the conditions

S (
m50

r

~a8!md~m!D (
n50

r

~a8!nS~n!50, ~1.4!

order by order ina8. There are non51 or n52 terms at
tree-level or one-loop, and these terms are not expecte
appear at all in Eq.~1.3!. Therefore, the first corrections ar
the terms of order (a8)3 relative to S(0). These terms are
eighth order in derivatives.

In practice, building the complete effective action fro
scratch using this Noether method is extremely complica
even for a low number of derivatives. However, we w
show in this paper that the exact form of special classes o
theory or type IIB interactions can be uniquely determined
this manner. A similar analysis has recently been used
obtain powerful constraints on maximally supersymme
Yang-Mills theories@10#. The lesson to be drawn from tha
analysis is that the constraints imposed by supersymm
are most easily exhibited by studying the variation of ter
in the effective action with the maximal number of fermion
fields.

Among other issues, one of our aims will be to establ
the validity of some conjectured higher derivative intera
tions in the effective action. An example of such a term is
interaction,*Ag f (0,0)(t,t̄)R4, whereR4 is a particular con-
traction of four Weyl curvatures@11#. The SL~2,Z! symmetry
of the IIB theory requires thatf (0,0)(t,t̄) be a modular func-
tion of the complex scalar fieldt and its complex conjugate
t̄. It was noted in Ref.@11# that f (0,0) is an eigenfunction of
the Laplace operator on the SL~2,Z! moduli space with ei-
genvalue3

4,

¹2f ~0,0![4t2
2 ]

]t

]

]t̄
f ~0,0!5

3

4
f ~0,0!. ~1.5!

This equation has the solution~see, for example, Ref.@12#!,

f ~0,0!5 (
~m,n!Þ~0,0!

t2
3/2

um1ntu3 , ~1.6!

which is the unique solution, up to an arbitrary overall co
stant factor, for a choice of asymptotic behavior near
boundaryt2→` of the fundamental domain of SL~2,Z!. The
asymptotic behavior is determined by the weak coupling
pansion off (0,0), wheret25e2f is large, which possesses
tree-level and one-loop term but no other perturbative c
rections. In addition, there are an infinite number
D-instanton corrections.2 Another term of the same order
the sixteen dilatino term,f (12,212)l16, where the dilatinola

2Some supplementary evidence for the expression~1.6!, based on
linearized supersymmetry, is given in Refs.@13,14#.
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(a51, . . . ,16) is acomplex SO~9,1! Weyl spinor. This term
was discussed in Ref.@15# where it was argued that

f ~12,212!~t,t̄ !5D12f ~0,0!. ~1.7!

The modular covariant derivativeD will be defined in the
next section. This means thatf (12,212) should also be an
eigenfunction of the Laplace operator, but it now transfor
with the nontrivial holomorphic and anti-holomorphic mod
lar weights indicated by the superscripts.

More generally, there are many other terms inS(3) that
are related to theR4 term by supersymmetry at the linearize
level @15,16#. The moduli dependence of these terms is pa
aged into a variety of modular forms,f (w,2w)(t,t̄). In Sec.
II, we will review how linearized supersymmetry leads to t
existence of all the terms inS(3) once the presence of theR4

term is assumed. However, linearized supersymmetry is
tainly not powerful enough to determine the moduli depe
dent coefficientsf (w,2w).

In Sec. III, we will use the full nonlinear supersymmet
to determine the nonholomorphic modular forms. This
quires a detailed analysis of the lowest order supersymm
transformations which generally mix all the terms inS(3).
We will make a judicious choice of terms to consider
order to encounter minimal complications. Not surprising
as in the cases of Ref.@10#, it turns out that the terms with
the maximal number of fermions are the appropriate ones
this purpose. The particular terms we will consider a
f (12,212)l16 and f (11,211)l15cm* , where the latter is a piece o

the l14Ĝ term. Our notation and conventions are explain
in Appendix A—a hat on a field strength indicates that
includes certain fermion bilinears in its definition in order
make it ‘‘supercovariant.’’

In addition, we will be forced to consider terms arisin
from O@(a8)3# supersymmetry transformations acting on t
classical action. These terms fromS(0) mix under a super-
symmetry variation with the relevant terms inS(3). For our
particular purpose, it will be important to consider al2l* 2

term in the IIB action that has not to our knowledge be
given explicitly in the literature. The form of this term, in
cluding its precise normalization, is determined by sup
symmetry in Appendix B. By requiring invariance of th
action at order (a8)3 together with closure of the supersym
metry algebra, we will be able to determine certain mod
cations to the supersymmetry transformations, encoded
d (3), as well as the precise coefficients of the terms inS(3)

under investigation. As usual, the supersymmetry alge
only closes with the use of the equations of motion.

In particular, we will find that the coefficientsf (11,211)

and f (12,212) do indeed satisfy the appropriate Laplace eq
tions, proving the earlier conjectures about these mod
forms. Furthermore, once these functions have been de
mined the other terms inS(3) that are related to these b
linearized supersymmetry, including theR4 term, follow
without the need for detailed analysis.

There have also been generalizations of theR4 conjecture
to an infinite series of higher order terms in the type I
effective action@17,18#. In Sec. IV we outline how our tech
6-2
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SUPERSYMMETRY CONSTRAINTS ON TYPE IIB . . . PHYSICAL REVIEW D 59 046006
nique can be extended to determine the coefficients of s
of these higher derivative interactions. We demonstrate h
the constraints imposed by supersymmetry on these hi
derivative interactions can be obtained but we do not ca
through the detailed calculation, which would be reasona
complicated. It would be very interesting to extend th
analysis to compactified supergravity to prove and gene
ize, for example, conjectures similar to those in Ref.@19#.

II. HIGHER ORDER TERMS IN THE TYPE IIB
EFFECTIVE ACTION

A. Linearized supersymmetry and terms of order „a8…3

The existence of a large number of interactions in the
theory that are related to theR4 interaction can be motivate
very simply by using linearized supersymmetry. This can
implemented by packaging the physical fields or their fi
strengths into a constrained superfieldF(x,u), where ua

(a51, . . . ,16) is acomplex Grassmann coordinate th
transforms as a Weyl spinor of SO~9,1!. This superfield sat-
isfies the constraints

D̄F50, D̄4F̄505D4F, ~2.1!

where the first constraint is a chirality condition that ensu
that F is independent ofu* . The last two constraints imply
that the components ofF satisfy the free field equations. Th
superfield terminates after theu8 term and has a componen
expansion that takes the form3

F5t1 i ū* l1Ĝmnrū* gmnru1¯

1Rmsntū* gmnruū* gst
ru

1]mF̂5nrstvū* gmnruū* gstvu1¯1u8]4t̄.

~2.2!

The symbolĜmnr , m,n,r50, . . . ,9,denotes the ‘‘superco
variant’’ combination ofG and fermion bilinears defined in
Appendix A, whereGmnr and Gmnr* are complex combina
tions of the field strengths of the R̂R ~Ramond-Ramond!
and NŜ NS ~Neveu-Schwarz–Neveu-Schwarz! two-form
potentials. The four-theta terms areR, the Weyl curvature,
and F5r1¯r5

, which is the field strength of the fourth-ran

R^R potential. The gamma matrices with world indices a
defined bygm5em

mgm, where m50, . . . ,9 is the SO~9,1!
tangent-space index andem

m is the inverse zehnbein. A barre

Weyl spinor, such asū, is defined by

ūa[ub* ~g0!ba . ~2.3!

3We are using the usual convention thatgm1¯mp is the antisym-
metrized product ofp gamma matrices, normalized so th
gm1¯mp[gm1

¯gmp whenm1Þ¯Þmp .
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We have been sketchy about the precise coefficients in
~2.2! since their values will not concern us. The interactio
that will be of interest in the next section are those that a
by integrating a function ofF over the sixteen component
of u. In Einstein frame, this leads to interaction terms of t
following form:

S~3!5~a8!3E d10xd16u deteF@F#1c.c.

5~a8!3E d10x dete~ f ~12,212!l161 f ~11,211!Ĝl141¯

1 f ~8,28!Ĝ81¯1 f ~0,0!R41¯1 f ~212,12!l* 16!,

~2.4!

where dete5detem
m is the determinant of the zehnbein. Th

SL~2,Z! symmetry of the IIB theory requires that all th
functions, f (w,2w)(t,t̄), are modular forms with holomor
phic and antiholomorphic weights as indicated in the sup
scripts. Many terms have been hidden in the ellipsis in
~2.4!.

We will mainly consider the first two terms in parenthes
on the right-hand-side of Eq.~2.4! where we are using the
precise notation

~l r !ar 11¯a16
[

1

r !
ea1¯a16

la1
¯lar, ~2.5!

so that

l165
1

16!
ea1¯a16

la1
¯la16, ~2.6!

and

Ĝl14[Ĝmnr~gmnrg0!a15a16
~l14!a15a16

,

5
1

14!
Ĝmnr~gmnrg0!a15a16

ea1¯a16
la1

¯la14
. ~2.7!

Later we will make use of the simple identities

~l14!abl
c5~l15!bda

c2~l15!adb
c ,

~l15!alb5da
bl16,

~l!a
15la516l16, ~2.8!

and

~l14!ablcld5l16~dacdbd2daddbc!. ~2.9!
6-3
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B. Modular covariance

The various coefficient functions in the effective acti
are (w,ŵ) forms, wherew refers to the holomorphic modula
weight andŵ to the anti-holomorphic modular weight. A
nonholomorphic modular formF (w,ŵ) transforms as

F ~w,ŵ!→F ~w,ŵ!~ct1d!w~ct̄1d!ŵ, ~2.10!

under the SL~2,Z! transformation taking

t→
at1b

ct1d
. ~2.11!

Equation~2.10! describes aU(1) transformation whenŵ5
2w.

The modular covariant derivative

Dw5 i S ]

]t
2 i

w

2t2
D ~2.12!

mapsF (w,ŵ into F (w12,ŵ) while the antiholomorphic covari
ant derivativeD̄ŵ5D̄ŵ

* mapsF (w,ŵ) into F (w,ŵ12). It is more
convenient for our purposes to define the covariant der
tives

Dw5t2D5 i S t2

]

]t
2 i

w

2 D , D̄ŵ5t2D̄52 i S t2

]

]t̄
1 i

ŵ

2 D ,

~2.13!

which change the U~1! charge ofF by two units

DwF ~w,ŵ!5F ~w11,ŵ21!, D̄ŵF ~w,ŵ!5F ~w21,ŵ11!.
~2.14!

The Laplace operator on the fundamental domain
SL~2,Z! is defined to be

¹0
2[¹254t2

2 ]

]t

]

]t̄
, ~2.15!

when acting on~0,0! forms. More generally, we shall b
interested in the Laplacian acting on (w,2w) forms. There
are two such Laplacians which are defined by

¹~2 !w
2 54Dw21D̄2w

54t2
2 ]

]t

]

]t̄
22iwS ]

]t
1

]

]t̄ D2w~w21!,

~2.16!

and
04600
-
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¹~1 !w
2 54D̄2w21Dw

54t2
2 ]

]t

]

]t̄
22iwS ]

]t
1

]

]t̄ D2w~w11!,

5¹~2 !w
2 22w. ~2.17!

Now consider a (w,2w) form that is an eigenfunction o
the Laplace operator¹ (2)w

2 with eigenvaluesw ,

¹~2 !w
2 F ~w,2w!54Dw21D̄2wF ~w,2w!5swF ~w,2w!.

~2.18!

Applying D̄2w to this equation gives

¹~1 !w21
2 F ~w21,2w11!5swF ~w21,2w11!. ~2.19!

It is also easy to see that

¹~2 !w21
2 F ~w21,2w11!

54Dw22D̄2w11F ~w21,2w11!,

5~sw12w22!F ~w21,2w11!, ~2.20!

where F (w21,2w11)5D̄2wF (w,2w). Repeating this form
steps gives

¹~2 !w2m
2 F ~w2m,2w1m!

54Dw2m21D̄2w1m11F ~w2m,2w1m!,

5~sw12mw2m22m!F ~w2m,2w1m!. ~2.21!

Similarly,

¹~1 !w2m
2 F ~w2m,2w1m!

5~sw12mw22w2m21m!F ~w2m,2w1m!. ~2.22!

This relation between eigenvalue equations will be usefu
analyzing the equations that are satisfied by the mod
forms that enter inS(3).

An indication of why this is so comes from various dua
ity arguments that relate type II string theories and M theo
Firstly, it was argued in Refs.@11,20# that the functionf (0,0)

should satisfy~1.5!, in which case it should be an eigenfun
tion of the ¹0

2 on the fundamental domain ofSL(2,Z) with
eigenvalue 3/4. Furthermore, in Ref.@15# it was argued that
the nonholomorphic modular forms that arise as coefficie
in S(3) are related to each other by applying covariant deri
tives. For example, it was suggested that4

4We are using a more uniform notation for the modular forms h
than in Ref.@11#.
6-4
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f ~12,212!5~t2D!12f ~0,0!5D12f ~0,0![D11¯D1D0f ~0,0!.
~2.23!

Using this relation and Eq.~2.21! for the casem5w, and
assuming thatf (0,0) indeed satisfies Eq.~1.5!, leads to the
eigenvalue equation thatf (12,212) is expected to satisfy

¹~2 !12
2 f ~12,212!5S 21321

3

4D f ~12,212!. ~2.24!

In the next section we will prove, using supersymme
alone, thatf (12,212) does satisfy this equation.

The solution to the Laplace equation~1.5! with eigen-
value s5 3

4 is unique if we assume thatf (0,0) has a power
law behavior near the boundary of the fundamental dom
of SL~2,Z! which agrees with the known tree-level and on
loop contributions. More generally, let us denote a solut
of the scalar Laplace equation with eigenvalues5s(s21)
. 1

4 by Es(t) @12#,

¹2Es5s~s21!Es . ~2.25!

We can expressEs(t) in terms of the nonholomorphic
Eisenstein series

Es~t!5
1

2
t2

s (
~m,n!51

umt1nu22s, ~2.26!

where~m,n! denotes the greatest common divisor ofm andn.
The eigenfunctionsEs(t) are singled out by their power law
behavior near the boundary of the moduli space, wh
agrees with the known tree-level and perturbative contri
tions to the interactions that we are considering. It follo
from Eq. ~2.23! that f (12,212) is also determined uniquely b
its Laplace equation~2.24! if the presence of a tree-leve
term is assumed. While the arguments leading to Eq.~2.24!
were motivated in prior work rather indirectly by variou
w
-
ck

04600
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dualities, our purpose is to prove that Eq.~2.24! and related
conditions follow directly from a rather simple application
supersymmetry.

III. DETERMINING TERMS IN S„3… USING
SUPERSYMMETRY

We now proceed to a precise determination of the mo
lar forms that enter into Eq.~2.4!. This starts by selecting
two specific terms in the effective Lagrangian at order (a8)3,

L1
~3!5dete„f ~12,212!~t,t̄ !l161 f ~11,211!~t,t̄ !Ĝl14

…. ~3.1!

Our notation is chosen so that (a8)n24*d10xL(n)5S(n). We
will show that these are related by a subset of the supers
metry transformations that do not mix with any of the oth
terms at this order. We will also take into account terms fro
the variation of the lowest order actionS(0) that can mix with
the variations of Eq.~3.1!.

We will only need to consider those terms inĜ that are
bilinear in the fermions. After using the identity

~gmnrg0!ab~l!ab
14~ c̄mgnrl!52144c̄mgmg0l15

5144l15gmcm* , ~3.2!

where we have used the fact thatgnrgmnr5272gm, the rel-
evant terms inL1

(3) can be expressed as

L1
~3!5dete„f ~12,212!l1623•144f ~11,211!~l15gmcm* !1¯….

~3.3!

The ellipsis represents other terms inĜ which do not affect
the subsequent argument.

First consider the lowest order supersymmetry trans
mation of Eq. ~3.3! into detel16cm* e. From Eq. ~3.3! we
have
d1
~0!L1

~3!5d~0!~dete! f ~12,212!l161dete f~12,212!d~0!~l16!

233144 deteS ]

]t
f ~11,211!d~0!t~l15gmcm* !1 f ~11,211!d~0!~l15gmcm* ! D

5 i deteS ē* gmcm* f ~12,212!l161
1

8
~l15!a~gmnre!ac̄ [mgnr]l f ~12,212!163144iD 11f

~11,211!~l15!a~gmcm* !aē* l D
52 i dete~ ē* gmcm* !l16~8 f ~12,212!163144D11f

~11,211!!, ~3.4!
rm

y
-

where we have only kept terms proportional tol16cm* e. In
passing from the first to the second line in this equation,
have made use of the standardd (0) supersymmetry transfor
mations summarized in Appendix A. It is important to che
e
whether there could also be a contribution of the same fo
as Eq.~3.4! arising from a (a8)3d (3) variation of the fields in
the lowest order actionS(0). However, it is easy to see b
inspection that no term withl16cm* can arise from the varia
6-5
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tion of any term5 in S(0). This means that we must requir
d1

(0)L1
(3)50, which implies that

D11f
~11,211!52

4

33144
f ~12,212!. ~3.5!
in

r

s o
th

ar

-
a
e

r

lds
er
uc
al
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This condition is consistent with the modular weights a
signed to the functionsf (w,2w).

In order to find another condition relatingf (12,212) and
f (11,211), we now consider the term in the variation of E
~3.3! that is proportional to detel16l* e* . This term is
d2
~0!L1

~3!5deteS ] f ~12,212!

]t̄
d~0!t̄l161 f ~12,212!l15d~0!l233144f ~11,211!l15d~0!~gmcm* ! D

522i detel16~ ēl* !F2 i S t2

]

]t̄
26i D f ~12,212!1331443

15

2
f ~11,211!G1¯

522i detel16~ ēl* !S D̄212f
~12,212!1331443

15

2
f ~11,211!D1¯ , ~3.6!
om

Ap-

ual
of

s

ion
ing
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n

where we have made explicit only the terms contain
l16l* e* in the second line.

In this case, there is another contribution of the same fo
asd2

(0)L1
(3) that arises from the (a8)3d (3) variation of terms

in the lowest order IIB LagrangianL (0) ~recall that we are
really using the action as a shorthand for the IIB equation
motion!. Even though the complete set of interactions in
classical theory is not tabulated explicitly in the literature~it
is implicit in the superspace formulation@8#!, it is easy to
convince oneself that the only possible term that can v
into d2

(0)L1
(3) is a term of the form

L1
~0!52

c

6
detel̄gmnrl* l̄* gmnrl, ~3.7!

which is the unique tensor structure containingl2l* 2. The
coefficientc has been left free in this formula, but it is de
termined by the lowest order supersymmetry transform
tions. It is determined in Appendix B by considering th
mixing of L1

(0) with

L2
~0!5

3

2
i detel̄gmlQm ~3.8!

and

L3
~0!5 i detel̄gmgvcm* Pv . ~3.9!

The termL2
(0) is the connection part of the Dirac action fo

the dilatino

5The only relevant terms are those involving only fermionic fie
since bosonic fields vary into derivatives. The only fermion int
actions that could vary into the required form would be terms s
as l2l* cm* ,l3cm* ,..., which are excluded from the classic
theory since they violate U~1! charge conservation.
g

m

f
e

y

-

i E d10x detel̄gDl, ~3.10!

and its coefficient is determined by the U~1! charge forl.
The normalization of the second term can be extracted fr
the gravitino field equation~Eq. ~4.12! of Ref. @7#!, but is
also determined by the supersymmetry considerations in
pendix B. The value ofc deduced in Appendix B is

c52
3

128
. ~3.11!

Of course, the arbitrary Newton coupling has been set eq
to a particular value in defining the absolute normalization
the action, but this value cancels out of all that follows.

We can now see thatL1
(0) can vary into the same form a

d2
(0)L1

(3) if we assume a variation ofl* of the form

d~3!la* 52
1

6
ig~t,t̄ !~l14!cd~gmnrg0!dc~gmnre* !a ,

~3.12!

whereg(t,t̄) is a function to be determined. We will show
momentarily that there must be such a term in the variat
of l* if the supersymmetry algebra is to close. Substitut
in Eq. ~3.7! gives a contribution

d~3!L1
~0!5

2c

36
i deteg~t,t̄ !l̄gmnrgr1r2r3

3e* ~l14!cd~gr1r2r3g0!dcl̄* gmnrl

52480316ic deteg~t,t̄ !l16~ ēl* !. ~3.13!

Some of these manipulations make use of the gamma m
identities listed in Appendix A 1. Comparing with Eq.~3.6!
we see that in order for the total contribution todL1 to van-
ish at order (a8)3, there must be a linear relation betwee

-
h
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the functiong and the functionsf (11,211) and D̄212f
(12,212),

D̄212f
~12,212!1331443

15

2
f ~11,211!1240316cg50.

~3.14!

A further constraint on these functions is obtained by
quiring the supersymmetry algebra to close which requ
the use of the fermionic equations of motion as well as
equation forF5 . In fact, these equations of motion we
determined in the classical theory by requiring closure of
superalgebra for the low-energy type IIB theory in Ref.@7#.
Another important feature of supergravity theories such
this is that the algebra need only close up to a fie
dependent local symmetry transformation. In the case
hand, the important fact is that the commutator of two sup
symmetry transformations@d1 ,d2# gives the usual transpor
term ē2gme2Dm together with a supersymmetry transform
tion dê and terms that vanish by the equations of motion. T
supersymmetry parameterê is field dependent.

We will consider closure of the supersymmetry transf
mations on the fieldl* . First, keeping only the terms linea
in l derivatives, we find~as in Eq.~4.5! of Ref. @7#!
av
tr
e

a
-

e

e

04600
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s
-
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~d1
~0!d2

~0!2d2
~0!d1

~0!!l*

5jmDml* 2
3

8
i @ ē2gre12~1↔2!#grgmDml*

2
1

96
i @ ē2gr1r2r3e12~1↔2!#gr1r2r3

gmDml* ,

~3.15!

where

jm522 Im ē2gme1 . ~3.16!

The first term on the right-hand-side is of the form expec
for the commutator of two supersymmetry transformatio
The remaining terms are proportional to the lowest-or
term in thel* equation of motion. Many other terms that w
will not need also contribute to the full commutator to com
plete the low-energyl* field equation on the right-hand
side, as well as generating local transformations ofl* .

The higher order terms inL (3) modify the equations of
motion and this should also be apparent by considering
closure of the algebra. Therefore, we now consider terms
enter at order (a8)3 from the commutator of ad (0) with a
d (3). More precisely, we shall consider terms in the comm
tator involving onlye2* ande1 ,
~ee1

~0!de
2*

~3!
2de

2*
~3!de1

~0!!la* 52
1

3 S t2

]

]t
2 i

45

8 D ig~ ē1* l!~l14!cd~gmnrg0!dc~gmnre2* !a

5
2

48

8

3
288lb

15i F3

8
ē2gme1~gm!ba1

1

96
ē2gmnre1~gmnr!baG S t2

]

]t
2 i

45

8 Dg

532D11glb
15F3

8
ē2gme1~gm!ba1

1

96
ē2gmnre1~gmnr!baG1dêl* . ~3.17!
he
truc-

ta-

hat
fied

to

or-
In passing from the first to the second equation, we h
used once more the Fierz identity and various gamma ma
identities given in Appendix A 1. In the last line, we hav
separated a term

dêl* 52 i
1

24
g~ ē1* l!~l14!cd~gmnrg0!dc~gmnre2* !a ,

~3.18!

which is to be identified with a supersymmetry transform
tion of the form~3.12! with a particular field-dependent co
efficient

ê5
i

4
e2* ~ ē1* l!. ~3.19!

This is unambiguously identified by the fact that it is need
in order to change the45

8 in the previous lines to the44
8 which

is contained inD11. This is correlated with the fact that th
function g transforms with weight~11, 211!.
e
ix

-

d

In writing Eq. ~3.17!, we have taken pains to express t
right-hand side as a sum of precisely the same tensor s
tures that appear on the right-hand side of Eq.~3.15!. Com-
bining Eqs.~3.15! and ~3.17! ~including the powers ofa8)
we see that in order for the right-hand side of the commu
tor to vanish thel* field equation must be of the form

igmDml* 2~a8!332D11gl151¯50, ~3.20!

where the ellipsis indicates terms with different structure t
we have not considered. This equation has to be identi
with the appropriate sum of terms in thel* equation of
motion that is obtained by varying the action with respect
l. At the same order ina8 this is given by

igmDml* 2~a8!3f ~12,212!l151¯50, ~3.21!

where we have only made explicit the term that is prop
tional to l15. Comparing Eqs.~3.20! and ~3.21! gives the
relation
6-7
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32D11g5 f ~12,212!. ~3.22!

Substituting Eq.~3.22! into Eq. ~3.5! gives

g52
33144

128
f ~11,211!. ~3.23!

There is no ambiguity in this relation betweeng and f (11,211)

because there is no solution toD11g50. Substituting Eq.
~3.23! into Eq. ~3.14! using the valuec52 3

128 gives

D̄212f
~12,212!533144S 2

15

2
1

45

64D f ~11,211!. ~3.24!

The two simultaneous first-order differential equations~3.24!
and~3.5! are simply reduced to the independent second-o
equations

¹~2 !12
2 f ~12,212!54D11D̄212f

~12,212!5S 21321
3

4D f ~12,212!,

~3.25!

¹~1 !11
2 f ~11,211![4D̄212D11f

~11,211!5S 21321
3

4D f ~11,211!.

The first of these equations is the same as Eq.~2.24!. There-
fore, the modular formf (12,212) is uniquely determined to be
the function suggested in Ref.@15# if we assume that
f (12,212) has a tree-level and one-loop contribution at we
coupling. This function can be expressed asD12f (0,0) where
f (0,0) satisfies the Laplace equation~2.24! with eigenvalue34
~the proof that this function is actually the coefficient of t
R4 term will follow from the argument in the next para
graph!. Similarly, the second equation in Eq.~3.25! gives a
unique expression for the modular formf (11,211).

Having determinedf (12,212) and f (11,211) we would now
like to determine the remaining terms in Eq.~2.4! of the
same order but lower U~1! charge, such asR4. A simple way
to determine these terms is to consider the constraints on
coefficient functions that follow from linearized supersym
metry and then to impose the requirement that the effec
action be SL~2,Z! invariant. Linearized supersymmetry, d
scribed in Sec. II, is valid to leading order in (t2)21. We
saw that in that approximation the terms in Eq.~2.4! are
expressed as an integral of a function of the superfieldF@F#
over one-half of superspace. Furthermore, it was argue
Ref. @15# that the linearized approximation is exact for t
leading chargeK D-instanton contributions to the coefficien
functions f (p,2p). These can be extracted by choosi
F@F#5e2p iKF and agree with the expectation that the co
ficients are related by

f ~p,2p!5Dp21¯D0f ~0,0!. ~3.26!

Only the Abelian pieces of the covariant derivatives aff
the argument to leading order in (t2)21 which does not build
in the required modular invariance. The modular covari
expressions are reproduced by using the fully modular co
riant derivatives in Eq.~3.26!.
04600
er
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It should, of course, also be true that the expressions
all the coefficientsf (p,2p) in Eq. ~2.4! also emerge from a
more detailed application of the Noether procedure that c
siders all the possible mixing of terms inS(3) with arbitrary
U~1! charges.

IV. COMMENTS ON HIGHER DERIVATIVE
INTERACTIONS

A. Some general comments

More speculative extensions of theR4 conjecture have
been suggested in Refs.@18,17,21#. For example, interactions
of the form

~a8!24 (
g,ĝ51

`

(
p5222g

2g22

~a8!2g12ĝ21E d10x dete

3F5
4ĝ24G2g221pG* 2g222p

3@ f g1ĝ21
~p,2p! ~t,t̄ !R41¯1 f g1ĝ21

~121p,2122p!~t,t̄ !l16#,

~4.1!

arose6 Refs. @17,21#. The caseg5ĝ51 corresponds to the
terms that we considered in the earlier sections. The mod
functionsf g

(q,2q) are expected to be given by the generaliz
Eisenstein series

f g
~q,2q!5 (

~m,n!Þ~0,0!

t2
g11/2

~m1nt!g11/21q~m1nt̄ !g11/22q .

~4.2!

Note that forq50, these coefficient functions are propo
tional to Eg11/2(t), where Es was defined in Eq.~2.26!.
Expanding Eq.~4.2! for small coupling (t2→`) leads, as in
the caseg51, to two power-behaved terms that are to
identified with perturbative terms in string theory. These c
respond to a tree-level term and ag-loop term. In fact, the
cases5 3

2 is the physical lower bound ons since in that case
the loop term is of the lowest possible genusg51. The
agreement of the perturbative behavior of Eq.~4.2! with the
known perturbative contributions to Eq.~4.1! computed in
Ref. @22# is a primary motivation for the form of these coe
ficient functions. The perturbative contributions were co
puted in a topological formalism further studied in Ref.@23#.
As in the caseg51, there are no higher order perturbativ
corrections but there is an infinite series ofD-instanton cor-
rections. The conjectured functionsf g

(q,2q) in Eq. ~4.2! are
again eigenfunctions of the Laplace operator acting onq,
2q) forms, as in theg51 case. Now, however, the eigen
value depends ong. For example,

4t2
2]t]t̄ f g

~0,0!5S 1

4
1

g

2D f g
~0,0! . ~4.3!

6More precisely, the interactions suggested in Refs.@17,21# only
included theR4 terms in this expression.
6-8
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From the perspective of superspace, the status of te
with g1ĝ.3 is quite different from the terms we consider
in Sec. III for whichg1ĝ52. Those terms could be writte
as integrals over12 the on-shell superspace, which is d
scribed in terms of a superspace with a single Weyl SO~9,1!
spinor. For this reason, we could have anticipated the
that they satisfied very constraining nonrenormalization c
ditions. Cases in whichg1ĝ53 @terms of order (a8)5 rela-
tive to the Einstein-Hilbert term# appear to be similarly spe
cial since, by dimensional analysis, they correspond
integrals over 3

4 of the on-shell superspace, i.e., over
Grassmann spinor components. Since there is no cova
description of SO~9,1! spinors with 24 components, there
no obviously simple superspace description of such ter
However, as we will see in the next subsection an analysi
the supersymmetry transformations similar to the preced
one is likely to determine the form of theseO@(a8)5# terms
and provide further motivation for the conjectured terms
Eq. ~4.1! at this order.

B. An outline of how terms in S„5… are constrained

We will not present a detailed analysis of terms inS(5) but
rather, we will give a schematic outline of how supersymm
try constrains at least some of these terms. Consequently
will not be concerned about the exact normalizations or t
sor structures that arise in the various terms.

We will consider interactions inS(5) with ĝ51 and g
52, which are terms of order (a8)5 relative to the Einstein-
Hilbert term. An important consideration is that the absen
of (a8) and (a8)2 corrections to the effective action~the
absence ofS(1) andS(2) terms! means that the supersymm
try transformations have modifications that begin w
(a8)3d (3). These transformations do not mix any of th
lower order terms inS(0)1S(3) with the terms inS(5). We
therefore only need to considerS(0)1(a8)5S(5) and d (0)

1(a8)5d (5).
In complete analogy to our earlier analysis, we will beg

by considering the term inL (5) of modular weight~14,214!,

L1
~5!5detel16Ĝ4f 2

~14,214!~t,t̄ !, ~4.4!

recalling thatĜ is the supercovariant extension ofG contain-
ing fermion bilinears. The tensor structure is hidden in
abbreviationĜ4 which should read

tm1¯m12
Ĝm1m2m3

¯Ĝm10m11m12, ~4.5!

for a tensor structuret which we will not specify here bu
would be determined in a more complete treatment.

As before, the first supersymmetry variation of Eq.~4.4!
to consider is the one acting ont̄ given in Eq.~A21!,

d1
~0!L1

~5!522 detel16~ ēl* !Ĝ4S t2

]

]t̄
27i D f 2

~14,214!~t,t̄ !.

~4.6!
04600
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In this case, there are two other terms inS(5) that can vary
into Eq.~4.6!. The first is similar in structure to the term tha
appeared in our earlier analysis

L2
~5!5detel15gmcm* Ĝ4f 2

~13,213!~t,t̄ !, ~4.7!

which is a piece of the supercovariant combinati
detel14Ĝ5. The relevant supersymmetry variation gives

d1
~0!L2

~5!5detel15gmd~0!~cm* !Ĝ4f ~13,213!~t,t̄ !, ~4.8!

whered (0)(gmcm* ) is given in Appendix A.
The second term is a new possibility

L3
~5!5detel16Ĝ3Ĝ* f̃ 2

~13,213!~t,t̄ !. ~4.9!

The relevant part of this expression is the fermion bilinear
Ĝ* proportional tocl* . Sinced1

(0)c contains aĜe* piece,
the variation

d1
~0!L3

~5!5detel16Ĝ3~d1
~0!Ĝ* ! f̃ 2

~13,213!~t,t̄ !, ~4.10!

mixes with Eq.~4.6!.
In addition, it is necessary to consider the mixing of the

terms with terms of the classical action. The two terms t
are relevant areL1

(0) given in Eq.~3.7! andL4
(0) given by

L4
~0!5cmgnrl̄Gmnr. ~4.11!

For these terms to mix with Eq.~4.6! there need to be modi
fications to the supersymmetry transformations that take
schematic form

d~5!l* ;g1~t,t̄ !Ĝ4~l14!cd~gmnrg0!dc~gmnre* !,

d~5!cm;g2~t,t̄ !l16~Ĝ3e* !m . ~4.12!

Invariance under supersymmetry then gives a linear rela
between the functions

D̄214f 2
~14,214! , f 2

~13,213! , f̃ 2
~13,213! , g1 , g2 .

~4.13!

Additional constraints that relatef 2
(14,214) and f 2

(13,213)

can be obtained by considering a second supersymm
variation that mixesL1

(5) andL2
(5) and with no other terms a

order (a8)5. An appropriate transformation to consider is

d2
~0!L1

~5!5d2
~0!~detel16Ĝ4! f 2

~14,214!

;~detel16Ĝ4!ē* gmcm* f 2
~14,214!1¯ ~4.14!

and

d2
~0!L2

~5!52 deteS t2

]

]t
1

13

2
i D f 2

~13,213!l16ē* gmcm* Ĝ4,

~4.15!
6-9
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where we are using parts ofd (0)l from Eq. ~A24!, d (0)em
m

from Eq. ~A23! and d (0)t from Eq. ~A21!. In addition we
must consider the variation of a termL5

(0) in S(0) whereL5
(0)

takes the form

L5
~0!5c̄mgncr* Gmnr. ~4.16!

A variation of this term which mixes with Eqs.~4.14! and
~4.15! is induced by the new transformation

d~5!cm* 5g3~t,t̄ !l16Ĝmnr
3 gnre, ~4.17!

whereg3 is another function that has to be determined.
variance under supersymmetry then relatesD13f 2

(13,213) ,
f 2

(14,214) , andg3 .
The final set of constraints follow from closure of th

supersymmetry algebra onl* , c, andc* . The part of the
commutators

@de1
,de

2*
#l* , @de1

,de
2*
#cm , @de

1*
,de2

#cm* ,

~4.18!

proportional to (a8)5 gives a sufficient number of relation
to determineg1 , g2 , andg3 in terms of the coefficient func
tions inS(5). For example, identifying the right-hand-side
the commutator

@de1
,de

2*
#l* ;de1

~0!
„g1~t,t̄ !Ĝ4~l14!cd…~gmnrg0!dc~gmnre2* !

1¯ ,

;D13g1e1l15Ĝ4e2* 1g1e1Ĝ* l15Ĝ3e2*¯ ,
~4.19!

with thel* equation of motion will allow us to relateD13g1

and f 2
(14,214) as well asg1 and f̃ 2

(13,213) , by analogy with the
case we studied earlier. As with the earlier case, it is imp
tant to also subtract the variation in the reverse or
de

2*
(5)de1

(0)l* . But we also need to add the variation

(de1

(5)de
2*

(0)
2de

2*
(0)de1

(5))l* , which give a nonvanishing contribu

tion to Eq.~4.19! although there was no analogous contrib
tion in the case considered in Sec. III. Such terms have b
suppressed on the right-hand side of Eq.~4.19! but they will
give additional contributions that must be taken into accou
Likewise, the (a8)5 part of the commutator

@de1
,de

2*
#cm;g2~t,t̄ !d~0!l16~Ĝ3e2* !m1¯ ,

;g2~e1l15Ĝ4e2* !m1¯ , ~4.20!

determines thecm equation of motion and relatesg2 to
f 2

(14,214) . Lastly, g3 is constrained by considering
04600
-

r-
r
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en
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@de
1*
,de2

#cm* ;d~0!@g3~t,t̄ !l16~Ĝ3e2!m#1¯ ,

;~D̄213g3!e1* l* l16~Ĝ3e2!m1¯ ,
~4.21!

which determines thecm* equation of motion and relatesg3

and f̃ 2
(13,213) . In writing Eqs. ~4.20! and ~4.21! we have

again been symbolic and suppressed the fact that it is es
tial to include all the terms involving products ofd (0) with
d (5) in the commutators, as with Eq.~4.19!. The arguments
of this subsection demonstrate how closure of the supers
metry algebra together with a judicious choice of supersy
metry variations of the Lagrangian can completely determ
the interactions inS(5).

C. Future directions

It is less clear how things might work for higher deriv
tive terms in the string effective action. The most significa
new feature, which follows simply from dimensional anal
sis, is that terms in Eq.~4.1! that contribute toS(7) can arise
from integration over the whole of the superspace. We wo
not generally expect these terms to be protected. More p
matically, at this order the Noether procedure escalate
complexity. This is largely because at orderp, there are
many possible termsd (n)S(m) wheren1m5p, that can mix
under supersymmetry.

In the case ofp57, for example,d (4)S(3) can mix with
d (7)S(0) andd (0)S(7). This kind of mixing certainly compli-
cates the systematics at higher orders. Nevertheless, it c
still be the case that the conjectures in Refs.@18,17,21# are
correct. At least the terms in Ref.@17# were special in per-
turbative string theory because of their relation to topologi
amplitudes, and this could be reflected in the systematic
the Noether construction. Should these conjectures pr
true, they would point to some interesting and powerful i
plications of supersymmetry that would be satisfying to u
derstand more deeply.

Another avenue that would be very fruitful to explore
the generalization of this analysis to compactified supergr
ity. The simplest example is the nine-dimensional theo
with moduli space SL(2,Z)\SL(2,R)/O(2)3R. This can be
viewed as M theory on a two-torus where the SL~2,Z! acts on
the complex structure of the torusV andR is its volumeV.
The expectedR4 term, given in Ref.@24#, is of the form

@V21/2f (0,0)(V,V̄)12p2/3V#R4. New features enter the ef
fective action in this case that are absent at the boundar
moduli space corresponding to ten-dimensional type
theory. Notably, the toroidal compactification of the eleve
form of Eq. ~1.1! enters the action. An indirect argume
given in Ref.@24# relates this by supersymmetry to theR4

term but it should now be possible to relate these terms
rectly. It has been suggested that in compactifications
lower dimensions, the appropriate modular functions
those associated with eigenfunctions of the Laplace oper
on the U-duality moduli spaces@19#. These are cases that ca
certainly be analyzed with the tools that we have develo
6-10
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here. It would be extremely interesting to see what happ
in low dimensions, where the U-duality group becomes
ceptional, and for sufficiently low dimensions, infinite d
mensional. These same techniques are also applicab
cases with less supersymmetry. For example, compacti
tions of M theory on hyperKa¨hler spaces, and toroidal com
pactifications of the heterotic or type I strings. Undoubted
supersymmetry will continue to yield new insights about t
nonperturbative structure of string theory and about
theory.
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APPENDIX A: TYPE IIB SUPERGRAVITY REVISITED

1. Some spinor and gamma matrix identities

The spinors that enter into the IIB theory are comp
Weyl spinors. The gravitino and dilatino have oppos
chiralities and the supersymmetry parameter has the s
chirality as the gravitino. The complex conjugate of t
product of a pair of spinors is defined by

~larb!* 52la* rb* . ~A1!

The conjugate of any spinor is defined byl̄5l* g0. We will
choose our metric to be spacelike and theg matrices to be
real and satisfy the Clifford algebra

$gm,gn%52hmn. ~A2!

Nothing that

g0gm52~gm!Tg0, ~A3!
04600
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it follows that two complex chiral spinors of the same chira
ity, l1 andl2 , satisfy the relations

l̄1gml252l̄2* gml1* ,

l̄1gmnrl25l̄2* gmnrl1* , ~A4!

l̄1gr1¯r5l252l̄2* gr1¯r5l1* ,

while two chiral spinors of opposite chiralities,l ande, sat-
isfy

l̄e5 ē* l* ,

l̄gr1r2e52 ē* gr1r2l* , ~A5!

l̄gr1r2r3r4e5 ē* gr1r2r3r4l* .

The Fierz identity for ten-dimensional complex Weyl spino
can be expressed as

l1
al̄2

b52
1

16
l̄2gml1gab

m 1
1

96
l̄2gmnrl1gab

mnr

2
1

3840
l̄2gr1¯r5

l1gab
r1¯r5, ~A6!

wherel1 andl2 are two chiral spinors of the same chiralit
An additional useful identity is

gr1¯r5l1l̄2gr1¯r5
l350, ~A7!

wherel1 , l2 , andl3 are three chiral spinors of the sam
chirality.

Some gamma matrix identities that are useful in prov
the various relationships in the text are
tr~gmnrgr1r2r3!5216~dm
r1dn

r2dr
r32dm

r2dn
r1dr

r31dm
r2dn

r3dr
r12dm

r3dn
r2dr

r11dm
r3dn

r1dr
r22dm

r1dn
r3dr

r2!gmgsgm528gs , ~A8!

gmgs1s2s3
gm524gs1s2s3

,

gmgs1¯s5
gm50,

gmnrgsgmnr52288gs , ~A9!

gmnrgs1s2s3
gmnr5248gs1s2s3

,

gmnrgs1¯s5
gmnr5214gs1¯s5

.
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2. The fields and their supersymmetry transformations

Here we will review various features of type IIB supe
gravity that are useful in the body of the paper. Most of t
material can be found in Ref.@7# in a form that is adapted to
the field definitions in which the global symmetry is SU~1,1!
and the scalar fields parametrize the coset sp
SU~1,1!/U~1!, which is the Poincare´ disk. It is simple to
transform this to our parametrization in which the glob
symmetry is SL~2,R! and the scalars parametrize the co
space SL~2,R!/U~1!, or the upper half plane.

The theory is then defined in terms of the following field
the scalar fields can be parametrized by the frame field

V[S V2
1 V1

1

V2
2 V1

2 D 5
1

A22i t2
S t̄e2 if teif

e2 if eif D , ~A10!

whereV6
a (a51,2) is a SL~2,R! matrix that transforms from

the left by the global SL~2,R! and from the right by the loca
U~1!. Note that we are using a complex basis for con
nience. A general transformation is then written as

~V1
a ,V2

a !→Ub
a~V1

b eiS,V2
b e2 iS!, ~A11!

whereU is a SL~2,R! matrix andS is the U~1! phase. An
appropriate choice ofS fixes the gauge and eliminates th
scalar fieldf. We will make the gauge choicef50. Since
this gauge is not maintained by generic symmetry trans
mations, it is necessary to compensate a symmetry tran
mation with an appropriate local U~1! transformation to
maintain the gauge. In particular, the local supersymme
transformations require compensating local U~1! transforma-
tions. The supersymmetry and U~1! transformations ofV2

a

are given by

d~0!V2
a 5 iV1

a ēl* 2 iSV2
a . ~A12!

This choice ensures that the gaugef50 is maintained if a
local supersymmetry transformation is accompanied b
U~1! transformation with parameter

S5
1

2
~ ēl* 2 ē* l!. ~A13!

The SL~2,R! singlet expression

Qm52 i eabV1
a ]mV2

b , ~A14!

is the composite U~1! connection and transforms asQ→Q
1]mS under infinitesimal local U~1! transformations, while
the SL~2,R! singlet expression

Pm52eabV1
a ]mV1

b , ~A15!

transforms with U~1! chargeqP52. In the gaugef50, the
expression forPm takes the simple form
04600
s

ce

l
t

:

-

r-
or-

y

a

Pm5
i

2

]mt

t2
. ~A16!

The fermions comprise the complex chiral gravitino,cm
a ,

which has U~1! chargeqc5 1
2 , and the dilatinola with U~1!

chargeql5 3
2 . These two fields have opposite chiralities. T

graviton is a U~1! and SL~2,R! singlet as is the antisymmet
ric fourth-rank potentialC(4) which has a field strengthF5

5dC(4). As is well known, this field strength has an equ
tion of motion that is expressed by the self-duality conditi
F55* F5 , which cannot be obtained from a globally wel
defined Lagrangian. For this reason, our considerations
restricted to statements concerning the on-shell propertie
the theory where the fields satisfy the equations of motio

The two antisymmetric second-rank potentialsBmn and
Cmn

(2) have field strengthsF1 (NS^NS) andF2 (R^R) that
form an SL~2,R! doubletFa. It is very natural to package
them into the SL~2,R! singlet fields

G52eabV1
a Fb, G* 52eabV2

a Fb, ~A17!

which carry U~1! chargesqG511 and qG* 521, respec-
tively.

In a fixed U~1! gauge, a global SL~2,R! transformation
which acts ont by

t→
at1b

ct1d
, ~A18!

with ad2bc51, induces a U~1! transformation on the fields
that depends on their charge. Thus, a fieldF with U~1!
chargeqF transforms as

F→FS ct̄1d

ct1dD qF/2

. ~A19!

The higher derivative terms of interest to us only repect
SL~2,Z! subgroup of SL~2,R! for which a,b,c,dare integers
and the continuous U~1! symmetry is broken.

The supersymmetry of the action is naturally described
terms of combinations of bosonic fields and fermion bili
ears which are ‘‘supercovariant,’’ which means that they
not contain derivatives of the supersymmetry parametere in
their transformations. These combinations are

Ĝmnr5Gmnr23c̄ [mgnr]l26i c̄ [m* gncr] ,

P̂m5Pm2c̄* l,
~A20!

F̂5m1¯m5
5F5m1¯m5

25c̄ [m1
gm2m3m4

cm5]

2
1

16
l̄gm1¯m5

l.
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We will now present the lowest-order supersymme
transformations, suitably adapted from those given in R
@7# to the SL~2,R! parametrization. From Eqs.~A12! and
~A13!, it follows that

d~0!t52t2ē* l, d~0!t̄522t2ēl* . ~A21!

It follows from the definition ofQm and the transformation
of t and t̄ that

d~0!Qm52 ēl* Pm1c.c. ~A22!

Also, the supersymmetry transformation of the zehnbein
given by

d~0!em
m5 i ~ ēgmcm1 ē* gmcm* !. ~A23!

The transformation of the dilatino is given, in the fixed U~1!
gauge, by

d~0!l5 igme* P̂m2
1

24
igmnreĜmnr1dS

~0!l

5 igme* P̂m1
i

8
gmnte~c̄ [mgnt]l!

2 igme* ~ c̄m* l!1dS
~0!l1¯ , ~A24!

where we have only kept the terms that are needed in
body of this paper in the second line. ThedS arises from the
compensating U~1! gauge transformation

dS
~0!la5

3

2
iSla5

3

4
ila~ ēl* !2

3

4
ila~ ē* l!. ~A25!

The gravitino transformation is given by

d~0!cm5Dme1
1

480
igr1¯r5gmeF̂r1¯r5

1
1

96
~gm

nrlĜnrl29grlĜmrl!e*

2
7

16S grlc̄mgre* 2
1

1680
gr1¯r5

lc̄mgr1¯r5e* D
1

1

32
i F S 9

4
gmgr13grgmD el̄grl

2S 1

24
gmgr1r2r31

1

6
gr1r2r3gmD el̄gr1r2r3

l

1
1

960
gmgr1¯r5el̄gr1¯r5

lG1dS
~0!~cm!, ~A26!
04600
f.

is

e

where the compensating U~1! transformation is given by

dS
~0!cm5

1

2
iS5

1

4
icm~ ēl* !2

1

4
icm~ ē* l!. ~A27!

By using Eqs.~A6! and ~A26! extensively we may ma-
nipulate the variation ofgmcm* into the form

d~0!~gmcm* !a52
3

4
ila* ~ ēl!

1
1

1920
i ~gr1¯r5e* !a~ l̄gr1¯r5

l!1¯ ,

~A28!

where we have only kept the terms bilinear inl,l* . This
implies the relation

~l!a
15d~0!~gmcm* !a5215il16~ l̄e* !1¯ , ~A29!

which we use in the body of the text.

APPENDIX B: DETERMINATION
OF THE COEFFICIENT c

To determine the coefficientc in L1
(0) , we need to con-

sider how this term mixes with other terms under supersy
metry transformations. We shall, in particular, consider
term in the dilatino transformation~A24!,

d~0!l5 igme* Pm , ~B1!

which transformsL1
(0) into the formll* 2Pme* .

There are two terms which mix withL1
(0) under this trans-

formation. One of these,L2
(0) , arises from the U~1! connec-

tion in the kinetic terml̄gmDml,

L2
~0!5

3

2
i detel̄gmlQm . ~B2!

It follows from the transformation ofQm in Eq. ~A22! that
the relevant transformation ofL2

(0) is

d~0!L2
~0!52

3

2
i detel̄gmlēl* Pm . ~B3!

In addition toL2
(0) , there is another term in the IIB actio

that can be deduced from the gravitino equation of mot
†Eq. ~4.12! of Ref. @7#‡,

L3
~0!5 i detel̄gmgvcm* Pv . ~B4!

The supersymmetry transformation of the gravitino~A26!
gives the variation ofL3

(0) ,
6-13
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d~0!L3
~0!5

1

32
i detel̄gmgvF S 9

4
gmgr13grgmD e* l̄* grl*

2S 1

24
gmgr1r2r31

1

6
gr1r2r3gmD e* l̄* gr1r2r3

l* 1
1

960
gmgr1¯r5e* l̄* gr1¯r5

l* GPv

5
1

32
i deteF12l̄e* l̄* gvl* 2l̄S 1

3
gvgr1r2r31

1

3
gr1r2r3gvD e* l̄* gr1r2r3

l*

2
1

120
l̄gvgr1¯r5e* l̄* gr1¯r5

l* GPv . ~B5!
ns

ta

th
l

An important simplification occurs when the variatio
d (0)L2 and d (0)L3 are added together by adding Eqs.~B3!
and~B5!. To see this it is first useful to use the fundamen
Fierz identity~A6!, to write

A[l̄grll̄e* 5
8

9 F 1

16
l̄gmgve* l̄gml

1
1

96
l̄gvgr1r2r3e* l̄gr1r2r3

l

2
1

240316
l̄gvgr1¯r5e* l̄gr1¯r5

lGPv . ~B6!

The sumd (0)L21d (0)L3 contains the terms (2 3
2 1 3

8 ) iA
529i /8A. Substituting in Eqs.~B3! and ~B5! gives

d~0!L21d~0!L352
i

32
deteF2l̄gmgve* l̄gml

1
1

3
l̄gr1r2r3gve* l̄* gr1r2r3

l* GPv .

~B7!

This sum of the variations has to cancel the variation of
termL1

(0) using Eq.~3.7!. To see this most clearly, it is usefu
to first manipulateL1

(0) using Eq.~A6! into the form
04600
l

e

L1
~0!52dete

c

6
l̄* gmnrll̄gmnrl*

5dete
4c

3 S l̄gmll̄* gml*

1
1

6
l̄* gmnrl* l̄* gmnrl* D1¯ . ~B8!

Therefore the supersymmetry variation ofL1
(0) may be ex-

pressed as

d~0!L1
~0!5dete

8c

3
i S l̄* gml* l̄gmgve*

1
1

6
l̄* gmnrl* l̄gmnrgve* D Pv1¯ , ~B9!

which can be compared directly with Eq.~B7!. In order for
the sum of Eqs.~B7! and ~B9! to vanish the coefficientc
must have the value

c52
3

128
. ~B10!
ded
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