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Bulk versus boundary dynamics in anti–de Sitter spacetime
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We investigate the details of the bulk-boundary correspondence in Lorentzian signature anti–de Sitter space.
Operators in the boundary theory couple to sources identified with the boundary values of non-normalizable
bulk modes. Such modes do not fluctuate and provide classical backgrounds on which bulk excitations propa-
gate. Normalizable modes in the bulk arise as a set of saddlepoints of the action for a fixed boundary condition.
They fluctuate and describe the Hilbert space of physical states. We provide an explicit, complete set of both
types of modes for free scalar fields in global and Poincare´ coordinates. For AdS3, the normalizable and
non-normalizable modes originate in the possible representations of the isometry group SL(2,R)L

3SL(2,R)R for a field of given mass. We discuss the group properties of mode solutions in both global and
Poincare´ coordinates and their relation to different expansions of operators on the cylinder and on the plane.
Finally, we discuss the extent to which the boundary theory is a useful description of the bulk spacetime.
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I. INTRODUCTION

The description of certain charged black holes
D-branes in string theory implies a connection between
low-energy gauge dynamics on the brane and the low en
supergravity in spacetime.1 Recently, Maldacena has pro
posed decoupling limits in which the brane gauge dynam
is dual to string theory on the near-horizon anti–de Si
~AdS! geometry of the corresponding black hole@2#.

A more precise definition of this duality was developed
@3,4#. We associate with the string compactification
AdSd113M a conformal field theory~CFT! residing on a
space conformal to thed-dimensional boundaryB of the
AdS factor. To each fieldF i there is a corresponding loca
operatorO i in the conformal field theory. The relation be
tween string theory in the bulk and field theory on the bou
ary is

Zeff~F i !5eiSeff~F i !5K T expS i E
B
Fb,iO i D L . ~1!

HereSeff is the effective action in the bulk,Fb,i is the field
F i restricted to the boundary, andT is the time-ordering
symbol in the field theory onB. The expectation value on th
right hand side is taken in the boundary field theory, w
Fb,i treated as a source term. In the classical supergra
limit, given a boundary field we solve for the correspondi

*Email address: vijayb@pauli.harvard.edu
†Email address: perkraus@theory.caltech.edu
‡Email address: lawrence@string.harvard.edu
1Among many other works, see@1#.
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bulk field and use it to relate the bulk effective action
boundary correlation functions.2

In Euclidean AdS space this proposal used the absenc
normalizable solutions to the field equations, and the res
ing unique extension of a boundary fieldFb,i into the bulk
@4#. We are interested in issues of spacetime causal struc
and dynamics: so we would also like a Hamiltonian form
lation of the bulk theory in Lorentzian signature AdS spac
The standard construction of quantum field theory depe
on the existence of a complete set of normalizable mod
which is in tension with the unique extendibility of Ad
boundary conditions into the bulk. Indeed, several consis
quantizations have been found@5,6#, involving particular
choices of boundary conditions for AdS spacetimes and
resulting set of normalizable modes. On the other hand,
bulk-boundary correspondence demands the ability to t
the boundary conditions in order to describe the appropr
boundary correlation functions. In this paper we reso
these tensions by arguing that the bulk-boundary corresp
dence as formulated in@2,3,4# demands the inclusion of bot
normalizable and non-normalizable modes. The form
propagate in the bulk and correspond to physical states w
the latter serve as classical, non-fluctuating backgrounds
encode the choice of operator insertions in the bound
theory.

We begin in Sec. II by reviewing the computation
boundary correlation functions, and providing a prescript
for computing the bulk effective action in a Hamiltonia

2By ‘‘boundary correlation functions’’ we mean the correlatio
functions of the CFT.
©1999 The American Physical Society03-1
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formulation. We will argue that specifying the boundary co
ditions involves turning on non-normalizable modes wh
do not fluctuate. Including such non-fluctuating modes m
seem strange, but several well-known examples exist in o
contexts: a classic example is a field theory which underg
spontaneous symmetry breaking, and more recent related
amples arise in@7,8,9#. Normalizable solutions to the wav
equation are then used in the mode expansion of opera
and the construction of a Fock space. The resulting Hilb
space of states is identified with the Hilbert space of
boundary theory@10,4#. In Sec. III we make this more ex
plicit by studying solutions to the wave equation for fr
scalars of arbitrary mass. We find that for general masses
field equations have both normalizable and non-normaliza
solutions and the latter couple to the boundary.

In Sec. IV we specialize to AdS3, whose bulk isometry
group and boundary conformal group are bothG
5SL(2,R)L3SL(2,R)R . We show that the normalizabl
modes transform in unitary irreducible representations oG
while the non-normalizable modes transform in non-unit
reducible representations which contain a highest we
module. The normalizable and non-normalizable high
weight representations are built on states with SL(2,R)L

3SL(2,R)R weights hL5hR5h65(1/2)(16Am2L211).3

Interesting subtleties arise for small masses and for inte
n5(1/2)Am2L211. We carry out the analysis in both glo
bal and Poincare´ coordinates in order to discuss conform
field theories both on the cylinder and the plane. The la
case has some curious features because Poincare´ coordinates
only cover a patch of the global spacetime. We conclude
paper with a discussion of the utility and limitations of th
bulk-boundary correspondence for describing bulk spacet
physics via the boundary gauge theory.

II. BOUNDARY CORRELATORS FROM THE BULK

A. Euclidean formulation

Specifying the boundary behavior of a fieldF in Euclid-
ean AdS space leads to a unique solution to the equation
motion, given some regularity conditions~see@4# for a dis-
cussion and references!. So Eq.~1! is unambiguously inter-
preted by evaluating the AdSd11 effective action on the
unique bulk extension of the boundary field. For a free sca
F with boundary valueFb ,

Seff5E
AdSd11

dd11xAg~gmn]mF]nF1m2F2!. ~2!

We relate this to the right hand side of Eq.~1! by integrating
by parts. SinceF is a solution to the equations of motion, th
bulk contribution vanishes. There is, however, a bound
term which is non-vanishing for the relevant solutions to
Euclidean wave equation:

Seff5 lim
r→0

E dtdd21xWAggrr F] rF. ~3!

3HereL is the inverse of the cosmological constant of AdS3.
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~Here r 50 is the boundary of spacetime in the Poinca´
coordinates defined in the Appendix.! As r→0 this is qua-
dratic in Fb and can be thought of as a quantity in th
boundary theory. In order to compare to the right-hand s
of Eq. ~1!, we must identify the boundary operator couplin
to F. The dimension of the operator is determined by t
growth of F at the boundary of AdS space@3,4#. In particu-
lar, suppose that the boundary behavior ofF is

F→
r→0

r 2lF0~xW !. ~4!

Then the corresponding operator has mass dimensiod
1l. In fact, this procedure is not completely well-defined:
general, Eq.~3! blows up and some regularization is requir
in order to extract the correlator@11#. For interacting theo-
ries, we can calculateSeff perturbatively by integrating ove
fluctuations away from the classical solution. These fluct
tions should have finite action and vanish appropriately at
boundary.

B. Lorentzian formulation

In Lorentzian signature AdS spacetime the relation in E
~1! is more subtle, because there are normalizable solut
to the wave equation@5,6,12# which do not affect the leading
boundary behavior~4!. So the boundary valueFb does not
uniquely specify the bulk field. Furthermore, the normal
able modes cannot be projected out since they are need
expand quantum operators, build a Fock space, and com
Green’s functions in the bulk.

The bulk effective action appearing in Eq.~1! can be writ-
ten as

Zeff~F i !5E DF ie
iS~F! ~5!

where the path integral4 is taken over fieldsF i that take the
boundary valueFb,i . The measureDF i can be normalized
by requiring thatZeff51 when the boundary condition i
trivial (Fb,i50). In general there is a set of saddle poin
that must be summed over; these correspond to the nor
izable modes that are solutions to the equations of mo
with a fixed boundary condition. For a free theory
Minkowski space, the normalizable modes indicate that th
is a manifold of flat directions that must be integrated ov
for fixed boundary behavior. For a free theory the calcu
tions in Refs.@3,4# are not affected as the flat directions le
to an overall volume factor that is divided out when w
appropriately normalize the path integral.

In order to define the path integral in Eq.~5! we must
specify the behavior of fields at the AdS boundary. We w
see that boundary conditions can be specified by includ
certain modes that are generically not normalizable or
least perturb the asymptotic geometry too violently. In fa

4Here we are restricting attention to those low energy proces
for which a field theory path integral makes sense. More genera
the full string theory partition function is implied.
3-2
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BULK VERSUS BOUNDARY DYNAMICS IN ANTI–DE . . . PHYSICAL REVIEW D 59 046003
these are precisely the modes that are identified in@3,4# with
sources coupling to boundary operators. As such, th
modes should be locked or non-fluctuating. Such n
fluctuating modes arise in a variety of contexts. One exam
is the homogeneous mode of a scalar field that takes a
zero value through spontaneous symmetry breaking. Ano
example is Euclidean field theory on spaces with cons
negative curvature; the authors of Ref.@7# note that the large
volume at infinity keeps modes with certain boundary co
ditions from fluctuating. Our discussion is particularly rem
niscent of Liouville theory, where local operators create n
normalizable wave functions when inserted in a d
amplitude@8,9#. This analogy is especially attractive after th
work in @13# and was a motivation for the present form
this paper; indeed, for AdS3 the gravity sector of the bulk ha
a Chern-Simons action which reduces to a boundary Li
ville theory @14,15#. In particular Ref. @13# relates the
asymptotic behavior of solutions to the wave equation to
gravitational dressing of chiral operators in the bound
CFT.

For an interacting theory, our prescription provides t
analog of an S-matrix for field theories in AdS space,
issue raised in Ref.@16#. In standard flat-space field theor
one specifies boundary conditions at infinity by turning
the interactions and physically separating the initial exc
tions, so that we can sensibly discuss asymptotic state
our picture, even though the bulk excitations may not
separable and asymptotic states may not exist, we can s
bly discuss the dependence of the partition function
boundary conditions for locked fields at infinity.

C. Hamiltonian quantization

Once we have specified the boundary conditions, we m
ask what fluctuating modes to keep in a Hamiltonian form
ism. The point is that quantization requires a complete, n
malizable set of field modes, which in AdS space requi
some sort of boundary condition at infinity. Several cons
tent choices have been suggested in the past; for the b
boundary correspondence to make sense the choice sh
be unambiguously determined by the physics of the situat
Our prescription is heavily motivated by the work of Breite
lohner and Freedman@6# ~which covers AdS4!: so we will
review their discussion for scalars of arbitrary massm in
AdSd11 ~also see@17#!.

Fix a spacelike sliceS,AdSd11 with coordinatesx and
an orthogonal, timelike coordinatet. Given two solutions
u1 ,u2 to the scalar wave equation, define the inner produ

~u1 ,u2!5 i E
S
ddxAggtt~u1* ] tu22] tu1* u2!. ~6!

If u15u2 , this is the integral of the time component of th
current

j m5 igmn~u* ]nu2]nu* u!. ~7!

Here j t is only time-independent up to boundary terms co
ing from the timelike boundary of anti–de Sitter space; it
easy to see, using the equations of motion, that
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] t j
t5E

]S
dAkj k, ~8!

where]S is the boundary of the spacelike slice. The auth
of @6# find complete sets of modes by demanding, first, t
the flux normal to the boundary vanish at infinity. They al
demand that no energy is exchanged with the boundary:

F5E
]S

dAkAgT0
k50. ~9!

The authors of@6,17# considered the relative merits of th
canonical and improved stress tensors in this equation. T
potential ambiguity in the stress tensor arises because
curvature is constant, and its possible coupling to a sc
field would appear as an effective mass term. In our case
choice is dictated by the underlying string theory and
supergravity effective action that descends from it. We w
simply treat scalar fields of mass squaredm2 with the under-
standing that the mass term may contain a contribution fr
a curvature coupling.

We will find that for massesm2>12d2/4, simply requir-
ing normalizability is sufficient to isolate a suitable class
fluctuating solutions, and the more refined discussion in R
@6# is unnecessary. For2d2/4,m2,12d2/4 ~stability re-
quiresm2>2d2/4!, there are two sets of normalizable sol
tions and some criterion is needed to distinguish them. R
erences@6,17# show that for any given field propagating o
AdSd>4 , conservation of the inner product~6! and the van-
ishing ofF at the boundary requires either but not both se
Furthermore, in the case of AdS4, the authors of@6# show
that the two sets of modes are built on representations of
conformal algebra with different lowest energy states a
that supersymmetry generically requires one to take b
types of mode into account. The clearest example is tha
the scalar and pseudoscalar in the gravity supermultiple
gauged N54 supergravity @6#. Both are conformally
coupled, and supersymmetry requires that the modes of
scalar lie in one representation while the modes of the ps
doscalar lie in the other. Further criteria are needed, h
ever, to decide which assignment is realized. In this parti
lar case, Hawking5 @18# imposed the requirement that th
metric be asymptotically anti–de Sitter~in a sense defined in
that work! to find particular boundary conditions on the lin
earized metric perturbations. Supersymmetry then requ
the scalar mode to reside in the representation wh
highest-weight state has the lowest energy. It would be n
if similar criteria could be applied to general modes in t
range2d2/4,m2,12d2/4, independently of supersymme
try; we will not investigate this point, however.

D. Summary

The lesson is that we need to keep both normalizable
non-normalizable modes in AdS spacetimes. The n

5We would like to thank S. Ross for pointing out this referen
and its relevance.
3-3



th
ey
le
de
I

e
tio

on
ity

a
a

i
s

on

a

t
he

-
iz
io
th

re

za-

ll-
n-

-

s
ry
of
d

to

the
are
s

t

r
the
ne
ble
ue

-

by

BALASUBRAMANIAN, KRAUS, AND LAWRENCE PHYSICAL REVIEW D 59 046003
normalizable modes correspond to operator insertions in
boundary gauge theory; from the AdS point of view th
provide non-trivial boundary conditions. The normalizab
modes fluctuate in the bulk; quanta occupying such mo
have a dual description in the boundary Hilbert space.
path integral language, Eq.~1! can be understood via th
background field expansion: we compute the effective ac
by expanding the path integral of the bulk theory as

F5Fcl1dF. ~10!

Fcl is a classical, non-normalizable solution to the equati
of motion, corresponding to an operator insertion at infin
and a particular choice of boundary conditions. ThendF is
the fluctuating piece over which we integrate to get the p
tition function. The normalizable modes appear as station
points of the action given the backgroundFcl .

III. EXPLICIT MODES FOR SCALARS
OF ARBITRARY MASS

In this section we show that a scalar of arbitrary mass
AdS spacetime has both fluctuating and non-fluctuating
lutions that implement the bulk-boundary correspondence
advocated above. Generically, the non-fluctuating soluti
are not normalizable in the norm~6!.

A. Solutions in Poincarécoordinates

We begin with solutions in Poincare´ coordinates, which
allows for a direct comparison with Refs.@3,4#. It is easy to
separate variables in these coordinates by writing the sc
of mass squaredm2/L2 as

F5e2 ivt1 ikW•xWr d/2x~r !. ~11!

x then satisfies the equation

r 2] r
2x1r ] rx2F S m21

d2

4 D1~kW22v2!r 2Gx50. ~12!

For q25kW22v2.0, the solution is6 @3,11#

Fs.l.5e2 ivt1 ikW•xWr d/2Kn~qr !, ~13!

wheren5 1
2 Ad214m2. This solution is non-normalizable a

the boundary at infinity but well-behaved in the interior. T
second, independent solutionI n is very badly behaved~i.e.
blows up exponentially! in the interior and is therefore elimi
nated. If we consider anti–de Sitter space as the near-hor
geometry of a brane, then in the asymptotically flat reg
Fs.l. would have imaginary momentum perpendicular to
brane.

For q2,0, there are two possible solutions which a
regular in the interior. Ifn is not integral,

F~6 !5e2 ivt1 ikW•xWr d/2J6n~ uqur ! ~14!

6We use the notation in@19# for Bessel functions.
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are two independent solutions. Ifn is integral, J6n are
equivalent, and the two independent solutions areF (1) in
Eq. ~14! and

F~2 !5e2 ivt1 ikW•xWr d/2Yn~ uqur !. ~15!

@Note that many of the scalar modes arising from the Kalu
Klein ~KK ! reduction of string theory down to AdSd11 have
integraln @4,20,21,22,23,24,25#: so this is a ‘‘special case’’
of particular importance.# The boundary term~3! will vanish
for F (1); for F (2) it will either go to a constant~for m2

50, d52! or blow up.Fs.l. andF (2) both behave as

F;r 2h2F0 ~16!

as discussed in@3,4#, where

h65
d

4
6

1

4
Ad214m2. ~17!

For n50, F (2) behaves as

f;r d/2ln r . ~18!

As in @3,4#, F (2,s.l.) couple to operators of dimension 2h1 .
The asymptotic behavior of Bessel functions is we

known: so criteria for selecting fluctuating and no
fluctuating modes are easy to apply. Forn.1, only F (1) is
normalizable andF (2) must therefore act as the non
fluctuating source term in Eq.~1!. Forn,1 the story is more
complicated as both ofF (6) are normalizable and, a
pointed out in Refs.@6,7#, both kinds of modes are necessa
for supersymmetry. Indeed, for compactifications
M-theory on AdS43S7, a conformally coupled scalar an
pseudoscalar appear in the KK spectrum@20,21,25,26#.7

Both the analysis of the KK spectrum and its relation
operators in the dual 3D CFT@25,26#, and the arguments in
@8#, show that the fluctuating modes for the scalar are of
form F (2) and the fluctuating modes for the pseudoscalar
of the form F (1). Furthermore, the ‘‘conjugate’’ solution
F (1) andF (2) couple to operators with dimensionh2 and
h1 , respectively@25,26#.8 One may worry legitimately tha
for the scalar mode, interpreting Eq.~1! is problematic be-
cause the surface term~3! diverges for this mode and not fo
the ‘‘source’’ modes coupling to the boundary. Perhaps
answer is that when computing correlation functions, o
does not perturb the background with classical normaliza
modes. At present we will leave the resolution of this iss
for future work.

7We would like to thank O. Aharony for pointing out this ex
ample, and for discussing then,1 case in general.

8Note that the fact that the scalar mode has dimension 1,d/2
contradicts the statement made in Ref.@4# for Euclidean theories
that the dimension of operators in the CFT is bounded below
d/2. It however satisfies the unitarity conditionh> 1

2 (d22) for
scalar operators in the dual CFT@27#.
3-4
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It is also worth noting that the borderline non
normalizable modes,F (2) for h25 1

2 (d22), contain the
singleton@34,35#.

B. Solutions in global coordinates

Let us examine a scalar of massm2/L2. Make the substi-
tution

F5e2 ivtYl ,$m%~V!x~r!. ~19!

HereYl are thel th spherical harmonics onSd21, for which

¹Sd21
2 Yl52 l ~ l 1d22!Yl ~20!

with l>0. The wave equation in global coordinates~see the
Appendix! is

1

~ tanr!d21 ]r@~ tanr!d21]r#x

1@v22 l ~ l 1d22!csc2 r2m2 sec2 r#x50. ~21!

We have chosenF with which we can build an arbitrary
configuration onSd213R for a givenr; Eq. ~21! then gives
us the r dependence. For generalm2, v the equation of
motion is easily converted into a hypergeometric equat
which can naturally be expanded in variables that van
either at the origin (r50) or the boundary (r5p/2). For
maintaining regularity at the origin, it will be easier to e
amine the solutions as functions of sin2 r. For examining the
boundary behavior, solutions as functions of cos2 r will be
more convenient. We will display both sets of solutions e
plicitly. Of course one can pass between them using stan
formulas relating hypergeometric functions as arguments
z and 12z @19,28,29#; these permit the enforcement of reg
larity conditions at the origin and the boundary, thereby i
posing quantization conditions on the spectrum of the the

Begin by substituting

x~r!5~cosr!2h~sinr!2bf ~r!. ~22!

Let y5sin2 r. It is then easy to see that

y~12y!]y
2f 1F2b1

d

2
2~2h12b11!yG]yf

2F ~h1b!22
v2

4 G f 50, ~23!
04600
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where

hS h2
d

2D5
m2

4
, 2b~2b1d22!5 l ~ l 1d22!. ~24!

The equations forh,b each have two solutions:9

h65
d6Ad214m2

4
~25!

b5
l

2
,

1

2
~22d2 l !. ~26!

The hypergeometric equation will have two independent
lutions, corresponding to the two solutions of the indic
equation forb. One solution will be logarithmic ifl 1d/2 is
an integer, i.e., ifd is even.

Choosing insteadx5cos2 r, one gets the hypergeometr
equation

x~12x!]x
2f 1F2h112

d

2
2~2h12b11!xG]xf

1F ~h1b!22
v2

4 G f 50, ~27!

with h,b as before. Again, the hypergeometric equation h
two independent solutions; this time they correspond to
two solutions of the indicial equation forh. One solution
will be logarithmic if n5 1

2 Ad214m2 is an integer. In fact, if
we wish to transform solutions as functions of sin2 r to so-
lutions as functions of cos2 r, the relevant formulas are mod
fied in the case of integraln; thus we will examine the two
cases separately.

Behavior at the origin.The behavior at the origin is con
veniently analyzed by studying solutions as a function
sin2 r. Choose, without loss of generality,h5h1 . The first
solution as a function of sin2 r is10
C~1!5e2 ivtYl~V!~cosr!2h1~sinr! l
2F1S h11

1

2
~ l 1v!,h11

1

2
~ l 2v!,l 1

d

2
;sin2 r D . ~28!

The second solution depends on whetherd is even or odd. Ifd is odd, then

9Let lbf be what Ref.@6# calls l andl6
w be what Ref.@4# calls l. Thenh is related to these ash65

1
2 l6

bf52
1
2 l7

w .
10We use the notation in@19#.
3-5
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C~2!5e2 ivtYl~V!~cosr!2h1~sinr!22d2 l
2F1S h11

1

2
~22d2 l 1v!,h11

1

2
~22d2 l 2v!,22 l 2

d

2
;sin2 r D . ~29!

If d is even, the second solution is logarithmic:

C~2!5C~1! ln sin2 r1 (
k51

`

sin2k r
@h11 1

2 ~ l 1v!#k@h11 1
2 ~ l 2v!#k

~ l 1d/2!kk! FhS 0,l 1
d

2
21,n11,v,kD2hS 0,l 1

d

2
21,n11,v,0D G

2 (
k51

l 1
1
2 d21

~k21!! ~12 l 2d/2!k

@12h12 1
2 ~ l 1v!#k@12h12 1

2 ~ l 1v!#k

sin22k r, ~30!

where

h~e, f ,g,v,k!5cS 1

2 F1

2
e1 f 1g1vG1kD1cS 1

2 F1

2
e1 f 1g2v G1kD2c~11 f 1k!2c~11k!, ~31!

following Ref. @29#, and

~a!k5
G~a1k!

G~a!
, c~x!5

d

dx
ln G~x!. ~32!

We must impose a regularity condition at the origin because in order for Eq.~1! to make sense, we should not ha
contributions to correlation functions coming from the interior. So we will only keep solutions for which the boundary te
the classical action vanishes at the originr50:

Sorigin5 lim
r→0

E
r fixed

dtdVAggrrF]rF→0. ~33!

It is easy to show that this means that only the first solutionC (1) is allowed.

1. n nonintegral

Behavior at the boundary.To study the behavior at the boundary it is most convenient to work with solutions as a fun
of cos2 r:

F~1 !5e2 ivtYl ,$m%~V!~cosr!2h1~sinr! l
2F1S h11

1

2
~ l 1v!,h11

1

2
~ l 2v!,2h1112

d

2
;cos2 r D ~34!

and

F~2 !5e2 ivtYl ,$m%~V!~cosr!2h2~sinr! l
2F1S h21

1

2
~ l 1v!,h21

1

2
~ l 2v!,2h2112

d

2
;cos2 r D . ~35!
th
e-

of

d
tu-
In general the regular solution at the origin (C (1)) is a linear
combination ofF (6).

We can see directly that the leading behavior at
boundary ofF (6) is (cosr)2h6. For n.1 the norm~6! of
F (2) diverges atr5p/2, while the norm ofF (1) converges.
Thus, up to regularity at the origin,F (1) is our candidate
04600
e

normalizable mode. Similarly, a combination ofF (1) and
F (2) is a candidate non-normalizable mode. Again, its b
havior at infinity indicates that it will couple to operators
dimensionh1 in ~1!.

For n,1 both modes are well-behaved at infinity an
further examination is required to select the relevant fluc
3-6
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ating modes, just as in our discussion of the solutions
Poincare´ coordinates. Again, fields which have the solutio
F (6) as their fluctuating modes will have solutionsF (7)

which act as source terms in Eq.~1! for the related operato
of dimensionh6 in the dual CFT.

Quantization condition for normalizable modes.As we
have discussed, regularity at the origin requires the choic
C (1). This solution can be written as a linear combination
F (6):

C~1!5C~1 !F~1 !1C~2 !F~2 !, ~36!

where

C~1 !5
G~ l 1d/2!G~2n!

G„h21 1
2 ~ l 1v!…G„h21 1

2 ~ l 2v!…

C~2 !5
G~ l 1d/2!G~n!

G„h11 1
2 ~ l 1v!…G„h11 1

2 ~ l 2v!…
.

~37!

~Note thatn is assumed to be non-integral here.! For n.1,
C(2) must vanish for a fluctuating solution because the no
of F (2) diverges at the boundary. This will happen if one
the gamma functions in the denominator has zero or a n
tive integer as its argument, i.e., if

v56~2h11 l 12n!, n50,1,2,... . ~38!

So this is the spectrum of normalizable modesF (1) for n
.1. For the same range ofn, non-fluctuating modes do no
have a quantization condition. For a special set of frequ
cies

v56~2h21 l 12n!, n50,1,2,..., ~39!

the non-fluctuating modes are purely of theF (2) type. We
will see in the next section that such modes are in a high
weight representation. In general, however, the n
normalizable modes are simply the linear combination
pearing in Eq.~37!.11

For n,1, bothF (1) and F (2) are potentially normaliz-
able because both norms are well-behaved at the bound
04600
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The quantization condition~38! gives the spectrum of nor
malizable modes of the formF (1). Normalizable modes of
the formF (2) are obtained by imposing instead:

v56~2h21 l 12n!, n50,1,2,... . ~40!

After picking one of these towers as the fluctuating mod
the remaining modes that are regular at the origin should
locked and mediate the bulk-boundary correspondence
we have already discussed, the case whenn,1 andF (2) is
the fluctuating mode is confusing since the locked mode f
off faster at the boundary than the fluctuating mode. A
result, for the non-fluctuating mode to couple as source to
operator in the boundary theory with dimensionh2 , it must
not contain any terms which behave as (cosr)2h2 at the
boundary. Thus, its frequency must be quantized accord
to Eq. ~38!; it seems that in this case one cannot write
classical source with arbitrary behavior in global time. If w
simply interpret the left-hand side of Eq.~1! as a path inte-
gral over field configurations which fall off as (cosr)2h1,
then there will be no saddle points in the path integral wh
the time dependence of the boundary configuration is a
trary. We leave the resolution of this conundrum for futu
work.

Upon imposing the conditions~38! and~40! for F (1) and
F (2) respectively, the solutions may be written in terms
Jacobi polynomials:12

F~6 !5e2 ivtYl~cosr!2h6

3~sinr! l Pn
~ l 1d/221,2h62d/2!

~cos 2r!. ~41!

It is easy to show that these quantizedF (1) can be made
orthonormal under the norm~6!. For n,1 these quantized
F (2) can be made orthonormal as well.

2. nPZ1:ˆ0‰

As functions of sin2 r the solutionsC (1,2) are the same as
before. Becausen is the difference of the roots of the indicia
equation, however, the solutions expanded near infinity a
little different than those listed above.F (1) is the same as
before:
lso, by
dence
aldacena
F~1 !5e2 ivtYl ,$m%~V!~cosr!2h1~sinr! l
2F1S h11

1

2
~ l 1v!,h11

1

2
~ l 2v!,11n;cos2 r D . ~42!

Again, the norm~6! is well-behaved at infinity. Forn50F (2) becomes

11In a previous unpublished version of this work, we imposed a quantization condition on the non-normalizable solutions a
demanding that the be purely of theF (1) type. In fact, there is no need to impose such a condition. Since the AdS-CFT correspon
should work when time is noncompact, we should be allowed sources with arbitrary time dependence. We would like to thank J. M
for emphasizing this to us.

12See Ref.@28# for notation.
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F~2 !5e2 ivtYl~V!~cosr!d/2~sinr! lF 2F1S d

4
1

1

2
~ l 1v!,

d

4
1

1

2
~ l 2v!,1;cos2 r D ln cos2 r

1 (
k51

`

~cosr!2k
@d/41 1

2 ~ l 1v!#k@d/41 1
2 ~ l 2v!#k

k!
@h~d,0,l ,v,k!2h~d,0,l ,v,0!#G . ~43!

Here h(e, f ,g,v,k) is defined in Eq.~31!. Note that this has a well-behaved norm at the boundary. Forn.0 the second
solution is

F~2 !5e2 ivtYl~V!~cosr!d/21n~sinr! lF 2F1S d

4
1

1

2
~n1 l 1v!,

d

4
1

1

2
~n1 l 2v!,11n;cos2 r D ln cos2 r

1S (
k51

`

~cosr!2k
@d/41 1

2 ~n1 l 1v!#k@d/41 1
2 ~n1 l 2v!#k

~11n!kk!
@h~d,n,l ,v,k!2h~d,n,l ,v,0!# D

2 (
k51

n
~k21!! ~2n!k

@12d/42 1
2 ~n1 l 1v!#k@12d/42 1

2 ~n1 l 2v!#k

~cosr!22kG . ~44!

The norm of these solutions blows up at the boundary.
Quantization condition.Once again we can start with the solutionC (1) which is regular at the origin and examine i

behavior at the boundary. The transformation laws are modified whenn is integral, so that

C~1!5e2 ivtYl~V!~sinr! l

3H G~n!G~d/21 l !

G„h11 1
2 ~ l 1v!…G„h11 1

2 ~ l 2v!…
~cosr!2h2 (

k50

n21 @h21 1
2 ~ l 1v!#k@h21 1

2 ~ l 2v!#k

k! ~12n!k
~cosr!2k

2
~21!nG~d/21 l !

G„h21 1
2 ~ l 1v!…G„h21 1

2 ~ l 2v!…
~cosr!2h1 (

k50

` @h11 1
2 ~ l 1v!#k@h11 1

2 ~ l 2v!#k

k! ~k1n!!
~cosr!2k

3F ln cos2 r2c~k11!2c~n1k11!1cS h11
1

2
~ l 1v!1kD1cS h11

1

2
~ l 2v!1kD G J . ~45!
ic
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Once again, in order to isolate normalizable modes wh
fall off as (cosr)2h1 at the boundary we must impose E
~38!. At these frequencies, the gamma functions in the
nominator of the coefficient of the final sum have negat
integer argument; so only terms in the sum which have co
pensating poles will survive. Such poles will come from o
of the final twoc functions; thus, the logarithmic term drop
out and the solution falls off at the boundary as desir
giving a series of modes built fromF (1). Equivalently, one
can easily show that when Eq.~38! holds,F (1) is regular at
the origin. As before, for generalv we have non-fluctuating
modes which are well-behaved at the origin and which h
a logarithmic part at infinity. A particularly interesting set
non-normalizable solutions occurs when

v52h21 l 12n, n50,1,...,n21. ~46!

For such frequencies the final sum in Eq.~45! vanishes and
the result is, as in the case of non-integraln, a rational func-
04600
h
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e
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e

tion in cosr. We will see in the next section that these so
tions are part of a special highest weight representation
exists for integraln.

IV. AdS3 AND SL„2,R…3SL„2,R…

The zoo of solutions that we have described in glo
coordinates should fall in various representations of
spacetime-isometry–boundary-conformal group. The fluc
ating modes should clearly fall in unitary representatio
and the boundary operators should create states~in sectors
for which the state-operator map is one-to-one! which fall in
such unitary representations as well. The non-normaliza
modes do not have to fall in unitary representations of
conformal group, but we will see that they do lie in line
representations. Since they couple to primary boundary
erators and their conformal descendants, such representa
are also important; in order to understand the coupling
descendants we need to understand how the various re
sentations combine.
3-8
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We will discuss mode solutions in AdS3, for which the
representations of the isometry group are well-known;
especially@30# for a discussion and references. The highe
weight unitary representations in global coordinates and
continuous representations in Poincare´ coordinates were dis
cussed in@31#. As we will see, the results of the previou
section provide explicit expressions for the wave functio
for all of the linear representations.13

As discussed in the Appendix, subsection 1, AdS3 is ob-
tained as the hyperboloid2L252U22V21X21Y2 em-
bedded in R 2,2 with metric ds252dU22dV21dX2

1dY2. The isometry group ofR 2,2 is clearlySO(2,2) gen-
erated by

J015V]U2U]V , J025X]V1V]X , J035Y]V1V]Y ,

J235X]Y2Y]X , J125X]U1U]X , J135Y]U1U]Y .
~47!

We can construct two commuting SL~2,R! factors from these
generators as SL(2,R)L5$L15(J011J23)/2,L25(J02

2J13)/2,L35(J121J03)/2% and SL(2,R)R5$L̄15(J01

2J23)/2,L̄25(J021J13)/2,L̄35(J122J03)/2%. With these
definitions,

@L1 ,L2#52L3 , @L1 ,L3#5L2 , @L2 ,L3#5L1 ~48!

and similarly for theL̄. These generators preserve the hyp
boloid that embeds AdS3 in R 2,2 and so are also isometrie
of AdS3.

From $L1 ,L2 ,L3% it is easy to construct linear combina
tions $L0 ,L6% that satisfy the algebra

@L0 ,L6#57L6 , @L1 ,L2#52L0 . ~49!

The quadratic Casimir of SL(2,R)L is then

L25
1

2
~L1L21L2L1!2L0

2. ~50!

Representations can be built by starting with a stateuc& with
L0 eigenvalueE and acting on it with powers ofL1 or L2 .
The commutation relations as defined imply thatL2 (L1)
raises~lowers! the L0 eigenvalue by one unit. Highest~low-
est! weight representations contain a stateuh& that is annihi-
lated byL1 (L2). The entire representation can be built
acting on this state with arbitrary powers ofL2 (L1).

A. Review of the representations of SL„2,R…

The irreducible representations of the SL~2,R! algebra are
well known @33#. Barut and Fronsdal@30# derived a set of
linear representations which contain them; we will follo
their discussion as we will find that this more general se

13For previous discussions of SL(2,R)3SL(2,R) structure in so-
lutions to the wave equation in black hole backgrounds, see
review in @32# and references therein.
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important for our purposes.14 The representations are in
dexed by 2 invariants. The first ish ~called 2F in @30#!
which is related to the quadratic Casimir operator:

L25h~h21!. ~51!

We will see that this is the sameh as defined in the previou
section;h6 are the two solutions for a given value of th
Casimir operator. The second invariant is the fractional p
E0 of the spectrum ofL0 for a given representation~here we
use the same notation as in@30#!. Representations are fille
out by starting with a given vector in the representation a
acting on it an arbitrary number of times withL6 . The re-
sulting representations are:
D(L2,E0). This an irreducible, infinite-dimensional rep

resentation but does not have a highest or lowest we
state.h and E0 are not related; the only condition is thath
6E0 is not an integer.E does not even have to be real, b
since we wish to describe stable modes in spacetime we
not consider complex values. We can define2 1

2 ,E0< 1
2

without losing generality; the spectrum isL05E01n for n
an arbitrary integer. For fixedL2 andE0 , the representations
for each branch of Eq.~51! are equivalent. The non-unitar
representations will correspond to non-normalizable mo
for which the energies are not related to the mass, i.e.
which v is not quantized in even integers above 2h21 l .
Imposing unitarity restrictsD(L2,E0) to two types of repre-
sentations:

~1! DP—the ‘‘principal series’’ occurs forL2,2 1
4 ; thush

5 1
2 1 il. lÞ0 will correspond to unstable modes

spacetime as noted in@6,4#.
~2! DS—the ‘‘supplementary series’’ occurs forL2.2 1

4 .
Here h is real anduh2 1

2 u, 1
2 2uE0u. This occurs in the

range 0,n,1 discussed in the previous section.

D1(h,E0). This is an irreducible, infinite-dimensiona
highest weight representation and exists for 2h¹Z2ø0.
Here E05h and the spectrum isL05E01n for integral n
>0; the highest weightn50 state is annihilated byL1 . The
representation will be unitary ifh.0. These states corre
spond to the solutions in global coordinates quantized
cording to Eq.~38! for generaln. For non-integraln solu-
tions quantized according to Eq.~40! also transform in this
representation. The solutionsF (1) haveh5h1.0 and re-
side in a unitary positive energy representation. The so
tions F (2) haveh5h2 ; they reside in a non-unitary repre
sentation forn.1 and in a unitary representation forn,1.
The derivation of this representation in@30# shows that it can
be imbedded in a reducible, nondecomposable represent
wheren is an arbitrary integer. In this representation we c
reachD1 by starting with negativen states and acting on

e

14We use generators with a slightly different normalization th
@30#. The generators in@30# are calledL12 andM 6, and the Casimir
operator is calledQ. In this notation our generators areL05L12 and
L65 i&M 7; our expression for the Casimir operator isL25
2Q.
3-9
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them repeatedly withL2 ; however, once we examine stat
in D1 we cannot leave the irreducible representation~irrep!
with actions ofL6 because of the highest weight state.
D2(h,E0). This is an irreducible, infinite-dimensiona

lowest weight representation and again exists
2h¹Z2ø$0%. HereE052h and the representation is un
tary for h.0. The spectrum isL05E02n for integral n
>0. The lowest weightn50 state is annihilated byL2 .
These are the negative energy modes corresponding toD1.
Reference@30# embeds this in a reducible, nondecomposa
representation which contains energies larger than that o
lowest weight~highest energy! state.
D(h). This is an irreducible, finite-dimensional represe

tation. It occurs when 2hPZ2ø$0% andE050. Its spectrum
is L05h1n for integral 0<n<22h. The representation is
only unitary in the caseh50, i.e. for the identity represen
tation, also known as the singleton@34,12,35#. It is contained
in a reducible nondecomposable representation for whicn
is arbitrary.D(h) arises in AdS3 as F (2) for integral n. In
global coordinates, the casel 50, v52h22¯22h2 for
integral v corresponds to a tensor productD(h2)3D(h2)
transforming under SL(2,R)L3SL(2,R)R . For arbitrary l
nondecomposable representations containing this irrep
occur.
In the next subsection we will explicitly discuss how the
representations are realized as solutions to the wave equ
in AdS3 in global coordinates.

B. Global coordinates

In global coordinates the AdS3 metric is

ds25L2@2cosh2 mdt21dm21sinh2 mdu2# ~52!

and a scalar field of massm has a wave equation (h

2m2L2)f50 where

h5]m
2 1

2 cosh~2m!

sinh~2m!
]m1

1

sinh2 m
]u

22
1

cosh2 m
] t

2.

~53!

In these coordinates, a convenient basis for SL(2,R)L is

L05 iL 1 , L15~L21 iL 3!, L252~L22 iL 3!. ~54!

Starting with generators in Eq.~47! and using the coordinat
patch in the Appendix, subsection 1, that yields the glo
metric, it is easy to work out the explicit representation

L05 i ]w ~55!

L25 ie2 iwFcosh~2m!

sinh~2m!
]w2

1

sinh~2m!
] w̄1

i

2
]mG ~56!

L15 ieiwFcosh~2m!

sinh~2m!
]w2

1

sinh~2m!
] w̄2

i

2
]mG ~57!

where w5t1u and w̄5t2u. The generatorsL̄0 , L̄6 of
SL(2,R)R are obtained by exchangingw andw̄ in Eqs.~55!–
~57!. ClearlyL06L̄0 generate time translations and rotation
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Discussion of explicit solutions.The d’Alembertian for
scalar fields is given in terms of the left and right Casim
operators as

hF522~LL
21L̄R

2 !F5m2L2. ~58!

The highest weight statesD (1) andD are simplest to de-
scribe. We require thatL1FH5L̄1FH50, and this imposes
h5h̄. Using this, the d’Alembertian in Eq.~58! acting on
highest weight states reduces to

h~h21!5
m2L2

4
⇒h65

1

2
~16A11m2L2!. ~59!

Explicit solutions of the equationL1FH5L̄1FH50 give
@31#

FH
~6 !5e2 ih6w2 ih6w̄

1

~coshm!2h6
5e2 i ~2h6!t

1

~coshm!2h6

~60!

so thath in this section and in the previous section are t
same.

For n5h12h2 non-integral, FH
(1) are precisely the

minimum-energy normalizable modes found in Sec. III
~here tanr5sinhm as in the Appendix, subsection 1!. FH

(2)

are the non-normalizable modes of lowest energy in
spectrum~39!. Other non-fluctuating modes will reside i
non-highest-weight representations. Descendant states
constructed on the primaryFH

(6) by the action of

(L2)p(L̄2)q and have weightsh5h61p and h̄5h61q.
Examining the differential operatorL2 shows that all of
these solutions have the same boundary behavior as the
mary states and therefore share their normalizability prop
ties. Finally,L01L̄0 is the generator of time translations, an
L02L̄0 is the generator of rotations, so that the frequen
and angular momentum are given byv5h1h̄ and l 5h

2h̄. The spectra of the two towers of states are given by

v652n12h61 l , n50,1,2,... . ~61!

This matches the spectra for then¹Z solutions found in Sec.
III B.

For integraln, the situation is the same for representatio
built on h1 ; the modes residing in this representation a
again the normalizable solutionsF (1). The non-fluctuating
states will fall into two types. Ifv is not quantized according
to Eq. ~46!, the solutions will reside in the representatio
D(L2,v). If the energies are quantized according to E
~46!, then the solutionsF (2) will reside in nondecomposabl
representations containing the finite-dimensional represe
tions R5D(h2)3D(h2). The lowest energy~highest
weight! state inR hasv52h2 and is given by

e2 iwh22 iw̄h2~coshm!22h2. ~62!

The highest energy~lowest weight! state in R has
v522h252h122 and is given by
3-10
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eiwh21 iw̄h2~coshm!22h2 ~63!

which is annihilated byL2 andL̄2 . One may also find thes
modes in the manner described in Sec. III B 2.

The casen51 is quite straightforward and interesting.
addition to the~unitary! identity representation atl 50 there
are solutions with (hPZ1, h̄50!:

F5e2 i lw tanhl m. ~64!

One may applyL6 to reach other such solutions. For gene
l , applyingL6 to (h,h̄)5( l ,0) gives us the state (h,h̄)5( l
71,0). Applying L1 to (h51, h̄50! gives the irreducible
identity representationD(0)3D(0). Applying L̄1 annihi-
lates all states (h,h̄)5( l ,0). Applying L̄2 to such states
brings one to the normalizable set of solutions forming
irrep D1(1,0)3D1(1,0). There are similar solutions fo
~h50, h̄PZ1! and states generated from these by apply
the raising and lowering operators. The full representation
this example is a nondecomposable representation and
discussed in Ref.@35#. Such representations were discuss
for n50,1 in AdSd11 in Refs. @36,37# from a somewhat
different point of view.

In summary, we have found that every solution to t
wave equation which is well-behaved in the bulk lies in
representation of the bulk-isometry–boundary-conform
group G5SL(2,R)L3SL(2,R)R . The energy is simply the
L0 eigenvalue, and the singularity or zero of the wave fu
tion at infinity is related to the invarianth of the representa
tion. The map is quite natural. Normalizable modes~plus the
singleton! correspond to unitary representations ofG; it
makes sense to quantize these modes. Non-normaliz
modes correspond to non-unitary representations ofG.
These are the modes we wish to keep as non-fluctua
backgrounds.

Relation to conformal field theory on the cylinder.As m
→`, the generators SL(2,R)L acting on surfaces of fixedm
become

L05 i ]w , L25 ie2 iw]w , L15 ieiw]w . ~65!

These generators and their SL(2,R)R companions which re-
placew by w̄ are the standard conformal symmetries of t
cylinder. Acting on descendants of a primary stateFH with
weight h, the generators at the boundary become

L05 i ]w , L25 ie2 iw~]w2 ih !, L15 ieiw~]w1 ih !.
~66!

The shift ofL6 by 6 ih arises from the radial derivatives i
the bulk generators.

C. Poincaré coordinates

In Poincare´ coordinates the AdS3 metric and
d’Alembertian are

ds25S L2

r 2 D ~2dt21dx21dr2! ~67!
04600
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h5r 2] r2r ] r1r 2~]x
22] t

2!. ~68!

As discussed in the Appendix, subsection 1, these coo
nates only cover a region of AdS3 and there is a horizon a
r 5`. A convenient basis for SL(2,R)L in these coordinates
is

L052L2 , L15 i ~L11L3!, L25 i ~L12L3!. ~69!

Starting with the explicit generators in Eq.~47! and imple-
menting the Poincare´ coordinates in the Appendix, subse
tion 1, yields the generators

L05
2r

2
] r2z]z ~70!

L25 iL]z ~71!

L152
i

L
@zr] r1z2]z1r 2] z̄#.

~72!

Here z5t1x and z̄5t2x. The generatorsL̄ of SL(2,R)R
simply exchangez and z̄.

Translations and CFT on the plane.It is instructive to
examine the action of the generators~70!–~72! on surfaces of
constantr at the boundaryr 50:

L052z]z , L25 iL]z , L15
2 iz2

L
]z . ~73!

These are the standard generators of conformal transfo
tions on the plane.~The factors ofi andL arise because we
are in Minkowski space andz is a dimensionful coordinate.!
In the case of the CFT on the cylinder,L0 generated trans
lations.L2 generates translations on the plane, whileL0 gen-
erates dilatations. Furthermore, the basis~69! for SL~2,R! is
different from the basis~54! we used for global coordinates
As discussed in the Appendix, the boundary of the patch
spacetime covered by Poincare´ coordinates is conformal to
Minkowski space and we have chosen the correspond
natural basis forL0 andL6 . It is important to emphasize tha
we arenot dealing with the standard bijective map betwe
CFTs on the cylinder and the plane. The plane that appea
the Poincare´ boundary is merely a patch of the cylinder an
can only be expected to describe the theory on the cylinde
a thermal sense, after tracing over some degrees of freed

The Poincare´ mode solutions of Sec. III A with fixed fre-
quencyv and momentumk are eigenstates ofL2 and L̄2

with eigenvaluesv6k ~see also@31#!. L2 generates a non
compact subgroup of SL~2,R! @30#; thus the wave functions
we get by diagonalizing this operator should be continuou
moded, as we have found.

Representing the isometries.We can also construct a se
of scalar fields in Poincare´ coordinates that carry well
defined weights underL0 and L̄0 . Again, the d’Alembertian
is the sum of left and right Casimir operators:

hF522~LL
21L̄R

2 !F5m2L2 ~74!
3-11
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where we have used the definition in Eq.~50! of SL~2,R!

Casimirs operators. States of weight (h,h̄) underL0 and L̄0
must satisfy the equations

2S r

2
] r1z]zDF5hF, 2S r

2
] r1 z̄] z̄DF5h̄F. ~75!

SinceL0 andL̄0 are linear in derivatives, a product of eige
states of these operators is still an eigenfunction. A gen
class of eigenstates is given by

F5r azbz̄c~r 1Azz̄!d~r 2Azz̄!e. ~76!

The left and right weights are then

~h,h̄!5„2@b1~a1d1e!/2#, 2@c1~a1d1e!/2#….
~77!

In global coordinates the eigenstates ofL0 essentially pro-
vided a Fourier basis for mode expansions. Here theL0
eigenstates provide an expansion in a power series of f
tions.

To find highest weight~primary! states we want to addi
tionally solve the equationsL1FH5L̄1FH50. Simulta-
neous solution of these conditions requires thatz]zF

5 z̄] z̄F implying thath5h̄ and imposing symmetry betwee
z and z̄ in primary states. Usingz]zF5 z̄] z̄F and the equa-
tion for L0F5hF in L1FH50 gives

] rFH5
22h

r S r 21zz̄

r 22zz̄DFH ~78!

which is easily solved to give

FH5r 2h~r 22zz̄!22h. ~79!

It can be explicitly checked that this is a primary state w
weights (h,h). Requiring that the d’Alembertian acting o
this solution have eigenvaluem2L2 yields the condition

h~h21!5
m2L2

4
⇒h65

1

2
~16A11m2L2! ~80!

exactly as in the case of global coordinates.
For m2.0 andzz̄,0 the solutions withh5h1 vanish at

the boundary (r 50) and at the horizon (r 5`) while the the
h2 solutions diverge in both locations. This agrees with
claim in Sec. III that theh2 representation alters the boun
ary conditions but does not fluctuate. Furthermore, it s
gests that in Poincare´ coordinates the horizon should also
treated as a boundary with which flux can be exchang
Indeed, it is well known that quantum field theory in a spa
time with horizon requires the specification of horizo
boundary conditions. Forzz̄>0 the situation is more
disturbing—theh1 solution is singular in the bulk of space
time at r 25zz̄. This appears to be a pathology that aris
because the surface (r 22zz̄)50 is a fixed point ofL0 , the
generator of dilatations. The eigenstates ofL0 are accord-
ingly singular on this surface.
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V. DISCUSSION AND CONCLUSIONS

A. Understanding the bulk from the boundary

The original motivation for this work was the desire
study quantum gravity in the bulk spacetime from the p
spective of the boundary gauge theory. In particular,
would like to study the appearance of spacetime singulari
and horizons~see@10,38#, for example! which we expect to
be related to nonperturbative issues in the gauge theory
preliminary step is to determine whether we can say anyth
about local spacetime physics from the boundary persp
tive.

The existence of the normalizable modes displayed in
article implies that there is a natural Hilbert space of sm
fluctuations around the bulk AdS background. These fluc
ating modes are the probes of bulk causal structure. Since
can map such states into the boundary Hilbert space,
might expect that there is an analysis of local bulk proces
from the boundary point of view.

On the other hand it seems that we cannot reconst
position space correlation functions in terms of the cor
spondence as written in Eq.~1!. To see this let us expan
both sides of Eq.~1! in a formal series in the boundary fiel
Fb . For the moment we will work in Euclidean space whe
this is a well-defined procedure since the bulk fieldF is
uniquely determined byFb . ~We will return to the Lorent-
zian version below.! As pointed out in@4#, F can be ex-
pressed in terms ofFb via the equation~here, in Poincare´
coordinates!

F~x0,xW !5E
B
dxW8K~x0,xW ;xW8!Fb~xW8!. ~81!

whereK is a solution to the wave equation behaving as
delta function times a given power ofx0 on the boundary.
The quadratic piece of the action can be written as

Seff5E dzdxdz8dx8F~z,x!F~z,x;z8,x8!F~z8,x8!1¯ .

~82!

F is the inverse spacetime propagator forF, which we
would like to extract from the boundary theory. This pie
can be written as a quadratic expression inFb via Eq. ~81!.
Expanding~formally! Eq. ~1! to quadratic order, we find

^O~ t1 ,xW1!O~ t2 ,xW2!&

522i E dt8dxW8dr8dt9dxW9dr9K~r 8,t8,xW8;t1 ,xW1!

~83!

3F~r 8,t8,xW8;r 9,t9,xW9!K~r 9,t9,xW9;t2 ,xW2!. ~84!

ExtractingF from this would require ‘‘inverting’’K, which
seems impossible. The integration overr 8,r 9 washes out any
information about localization in the direction perpendicu
to the boundary. Essentially, this point was made in R
@16#—the correspondence~1! relates off-shell operators in
3-12
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the boundary to on-shell fields in the bulk. Since ther de-
pendence of the latter depends on the (t,xW ) dependence, full
localization is not possible.

The point is that instead of being able to reconstruct a
trary off-shell correlators, we must be content with a desc
tion of on-shell quantities in the bulk. Indeed, our knowled
of the mapping between the bulk and boundary Hilb
spaces and their Hamiltonians implies that transition am
tudes between arbitraryphysicalstates are computable in e
ther of the dual descriptions. Off-shell physics can be pro
to the extent that on-shell correlators receive contributi
from off-shell modes in intermediate states. This situat
will force the boundary analysis of the bulk geometry to
somewhat subtle and indirect, but still possible in princip

In addition to correlation functions, we want to be able
ask how the vacuum in the bulk string theory relates to
boundary field theory. This question really concerns the g
bal causal structure—the existence of different natural va
in a spacetime often reflects the presence of horizons,
example. Understanding this is also relevant to the stud
possible singularities in black hole backgrounds from
dual gauge theory point of view. It may be that althou
local bulk physics is quite difficult to examine via the boun
ary field theory, the global causal structure may somew
easier to address.

B. Apparent ambiguities in the effective action

The presence of normalizable modes in Lorentzian A
might appear to render the correspondence~1! ambiguous,
since there is no preferred solution corresponding to a gi
boundary value. However, there is a natu
prescription—we must sum the effective action over
spacetime backgrounds with the same boundary beha
with a weighting which depends upon the state of the syst
We can generalize the calculations in@4# that we outlined
above, by appropriately modifying Eq.~81!:

F5Fn1E
B
KFb5Fn1Fnn , ~85!

whereFn is an arbitrary normalizable solution of the fie
equations. HereK is a particular solution we have chose
which solves the wave equation and has the same behav
infinity as in the Euclidean case.Seff can be written as

Seff5E @]~Fn1Fnn!#
21m2F2. ~86!

Upon integrating by parts, the bulk term vanishes. It is e
to see that upon including the correct measure factors,
non-vanishing boundary terms are

SB5E
B
dSi@2Fn] iFnn1Fnn] iFnn#. ~87!

When summing over field histories in the Lorentzian pa
integral, one must also specify a state at early and late ti
in the form of wave functionalsC i , f@F#. A path integral
obtained by continuation from Euclidean signature will pi
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out vacuum wave functionals, since thei e prescription
damps out all excited states. In such a case, the normaliz
modeFn is set to zero and the boundary contribution to t
action in Eq. ~86! vanishes. More generally, one cou
choose to study excited states at early and late times by
plicitly including the appropriate wave functionals; in th
case the boundary terms become physically relevant and
contributions to correlation functions evaluated in excit
states.

For calculations in interacting theories, the effects of t
ambiguity can be more pronounced. In Euclidean AdS
dramatic example of the effect of multiple saddlepoints w
same boundary behavior is the high-temperature transi
between AdS space and the AdS black hole discussed in
3.2 of @4#. Our normalizable modes represent a large clas
saddlepoints of the bulk action in Lorentzian AdS and, in
interacting theory, they encode the non-trivial dynamics
the bulk.

C. Conclusions

In this work we have developed a Lorentzian signatu
version of the bulk-boundary correspondence. This requ
understanding the respective roles played by normaliza
and non-normalizable modes. The two sets of modes em
naturally, either from direct solution of the field equations
from the field representations of the AdS isometry grou
The non-normalizable modes act as backgrounds and co
to local operators in the boundary description, while norm
izable modes describe fluctuations in the bulk.

The picture we have presented suggests several ave
for the study of black hole spacetimes from the bound
perspective. Black holes can be constructed in AdS spa
@39# by making discrete identifications of the geometry. U
like pure AdS spacetime, the resulting bulk spacetime
global horizons and singularities in the classical supergra
approximation. The question is whether and how the bou
ary theory describes the interior of the black hole. One wo
hope that the Hilbert space of states within the black hole
identified with a sector of states in the boundary theory; t
would realize a form of the black hole complementarity a
vocated by ’t Hooft and Susskind. In our picture, this iss
would be studied by considering the roles of the norma
able and non-normalizable solutions to the wave equatio
the black hole spacetime.
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APPENDIX: COORDINATE SYSTEMS ON AdS d11

1. AdS3

AdS3 is defined as the hyperboloid2U22V21X21Y2

52L2 embedded in a space with metricds252dU2

2dV21dX21dY2.
Global coordinates.Global coordinates for AdS3 are de-

fined by

U5L coshm sint, V5L coshm cost,

X5L sinhm cosu, Y5L sinhm sinu.

These yield the metric

ds25L2@2cosh2 mdt21dm21sinh2 mdu2#. ~A1!

Here 0<m<`, 0<u<2p and 0<t<2p. We unwrapt to
have range2` to ` in order to work on CAdS3, the univer-
sal cover of AdS3.

It is often convenient to make the coordinate transform
tion sinhm5tanr with 0<r<p/2. The metric then become

ds25L2@2sec2 rdt21sec2 rdr21tan2 rdu2#. ~A2!

From the above we see that AdS3 has the topology of a
disk times a line. The boundary of spacetime atr5p/2 is a
cylinder S13R ~see Fig. 1!. The bulk-boundary correspon
dence asserts that a conformal field theory on this cylinde
dual to quantum gravity in the bulk.

FIG. 1. Anti–de Sitter spacetime displayed as the interior o
cylinder. For the single cover of AdS spacetime the top and bot
boundaries should be identified, whereas for its universal cove
space~CAdS! an infinite number of copies should be attach
above and below the displayed region. The boundary of AdS sp
time is identified with the boundary of the cylinder. The coordina
indicated correspond to those in Eq.~A2!. Horizons in AdS space-
time are obtained by making two diagonal cuts through the cy
der, as shown. The cuts divide AdS spacetime into two regio
each of which is covered by a set of Poincare coordinates.
boundary divides into two diamond shaped regions, which are e
conformal to copies of flat Minkowski space.
04600
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A Penrose diagram illustrating the causal structure can
drawn by considering a two dimensional cross section of
hyperboloid. We choose to display aX50 slice, and obtain
the diagram in Fig. 2~a!.

Poincaré coordinates.Poincare´ coordinates are define
by

U5
1

2r
~L21x21r 22t2!, V5L

t

r
,

Y5
21

2r
~2L21x21r 22t2!, X5L

x

r
,

~A3!

giving the metric

ds25~L2/r 2!~2dt21dx21dr2!. ~A4!

Heret andx range between2` and`, and 0<r<`. Poin-
carécoordinates only cover one half of AdS3, as shown in
Fig. 1. There is a horizon in these coordinates atr 5`. The
boundary atr 50 is clearly conformal to flat Minkowski
spaceR1,1. The bulk-boundary correspondence asserts th
conformal field theory on this boundary plane is dual
quantum gravity in the bulk. Note however, that the pla
only covers half of the cylindrical boundary of global AdS3.

The second half of AdS3 displayed in Fig. 1 can be cov
ered by labelling the hyperboloid as in Eq.~A3! but now
letting 2`<r<0. These two patches together cover AdS3,
while to cover CAdS3 one assembles a vertical tower of su
patches. The Penrose diagram is displayed in Fig. 2~b!.

BTZ coordinates.For completeness, we consider a thi
coordinate system which is useful for constructing the B
black hole. Divide the hyperboloid into three regions:

a
m
g

e-
s

-
s,
e

ch

FIG. 2. Penrose diagrams for anti–de Sitter space. Displayed
vertical cross sections which cut through the center of the A
cylinder. In each figure, regions demarcated by solid lines iden
the portion of the spacetime covered by a single coordinate pa
~a! Global coordinates. The boundary of the region is the surfac
a cylinder.~b! Poincare´ coordinates. Here AdS space is divided in
two patches, with the two boundaries atr 50 being conformal to
flat Minkowski space. At the horizons,r 56`. ~c! BTZ coordi-
nates. AdS space is divided into 12 patches, 8 of which appea
the 2 dimensional slice shown. The 8 boundaries are each con
mal to flat Minkowski space.
3-14
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region 1: 2U21X2<0, 2V21Y2>0,

region 2: 2U21X2<0, 2V21Y2<0,

region 3: 2U21X2>0, 2V21Y2<0. ~A5!

Note that one cannot take both2U21X2 and 2V21Y2 to
be positive. We then cover each region with four coordin
patches.

U56 r̂ coshf̂, V5Ar̂ 22L2 sinht̂ ,

X5 r̂ sinhf̂, Y56Ar̂ 22L2 cosht̂ ,

ds252~ r̂ 22L2!d t̂21L2~ r̂ 22L2!21dr̂21 r̂ 2df̂2,
~A6!

region 1,

U56 r̂ coshf̂, V56AL22 r̂ 2 cosht̂ ,

X5 r̂ sinhf̂, Y5AL22 r̂ 2 sinht̂ ,

ds252~ r̂ 22L2!d t̂21L2~ r̂ 22L2!21dr̂21 r̂ 2df̂2,
~A7!

region 2,

U5 r̂ sinhf̂, V56Ar̂ 21L2 cosht̂ ,

X56 r̂ coshf̂, Y5Ar̂ 21L2 sinht̂ ,

ds25~ r̂ 21L2!d t̂21L2~ r̂ 21L2!21dr̂22 r̂ 2df̂2,
~A8!

region 3.

In all three regions,t̂ and f̂ range between2` and `.
Herer̂ has rangeL< r̂<` in region 1, 0< r̂<L in region 2,
and 0< r̂<` in region 3. So altogether there are 12 patch
covering AdS3. To draw a Penrose diagram we again co
n,
.

tt
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sider the sliceX50. Note that on this slice region 3 is
dimension one submanifold, while regions 1 and 2 are
mension 2 submanifolds. Thus only regions 1 and 2 w
appear in the Penrose diagram, and we label the var
patches as 166, 266 in an obvious notation. The Penros
diagram then appears as in Fig. 2~c!.

To make a BTZ black hole@39# of massM from the
above coordinates one simply makesf̂ periodic with period
2pAM .

2. AdSd11

The various coordinate systems defined above genera
straightforwardly to arbitrary dimensions. Global coordina
for AdSd11 give the metric

ds25L2@2sec2 rdt21sec2 rdr21tan2 rdVd21
2 #

~A9!

with 0<r<p/2, 2`<t<`. Thus AdSd11 is globally a
d-dimensional disk times a line and the boundary atr
5p/2 is a cylinderSd213R. The d’Alembertian operator in
global coordinates is

L2h52cos2 r] t
21cos2 r]r

21~d21!cotr]r

1cot2 r¹Sd21
2 . ~A10!

Poincare´ coordinates yield a metric

ds25~L2/r 2!~2dt21dxW21dr2!. ~A11!

HeredxW2 is the flat metric onRd21 and 0<r<`. There is a
horizon at r 5` and the boundary atr 50 is the plane
Rd21,1. The d’Alembertian operator in Poincare´ coordinates
is

L2h52r 2] t
21r 2] r

22~d21!r ] r1r 2¹Rd21
2 . ~A12!
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