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We investigate the details of the bulk-boundary correspondence in Lorentzian signature anti—de Sitter space.

Operators in the boundary theory couple to sources identified with the boundary values of non-normalizable
bulk modes. Such modes do not fluctuate and provide classical backgrounds on which bulk excitations propa-
gate. Normalizable modes in the bulk arise as a set of saddlepoints of the action for a fixed boundary condition.
They fluctuate and describe the Hilbert space of physical states. We provide an explicit, complete set of both
types of modes for free scalar fields in global and Poincarerdinates. For Ad$ the normalizable and
non-normalizable modes originate in the possible representations of the isometry groufR)SL(2,
X SL(2R)g for a field of given mass. We discuss the group properties of mode solutions in both global and
Poincarecoordinates and their relation to different expansions of operators on the cylinder and on the plane.
Finally, we discuss the extent to which the boundary theory is a useful description of the bulk spacetime.
[S0556-282(199)07502-5

PACS numbes): 11.25.Hf, 04.65+e, 11.15.Pg

[. INTRODUCTION bulk field and use it to relate the bulk effective action to
boundary correlation functiorfs.

The description of certain charged black holes as In Euclidean AdS space this proposal used the absence of
D-branes in string theory implies a connection between theiormalizable solutions to the field equations, and the result-
low-energy gauge dynamics on the brane and the low energyg unique extension of a boundary fieel, ; into the bulk
supergravity in spacetimeRecently, Maldacena has pro- [4]. We are interested in issues of spacetime causal structure
posed decoupling limits in which the brane gauge dynamicgnd dynamics: so we would also like a Hamiltonian formu-
is dual to string theory on the near-horizon anti—de Sitt€fjation of the bulk theory in Lorentzian signature AdS spaces.

(AdS) geometry of the corresponding black h¢gj. _ The standard construction of quantum field theory depends
A more precise definition of this duality was developed in ;. the existence of a complete set of normalizable modes,

[3,4]. We associate with the string compactification ON\hich is in tension with the uni G
) - gue extendibility of AdS
AdSy,1 X M a conformal field theoryCFT) residing on a boundary conditions into the bulk. Indeed, several consistent

space conformal to thé-dimensional boundarys of the o . . :
AdS factor. To each field; there is a corresponding local qua_ntlzat|ons have been .f_our[ﬁ,G], involving partlcular
- ; ; choices of boundary conditions for AdS spacetimes and the
operator®" in the conformal field theory. The relation be- resulting set of normalizable modes. On the other hand, the
tween string theory in the bulk and field theory on the bound- 9 : L !
ary is bulk-boundary correspondence demands the ability to tune
the boundary conditions in order to describe the appropriate
S @ _ , boundary correlation functions. In this paper we resolve
Zei( D) = €'Sei i>=<Texp( [ L‘bb,iO') > (1) these tensions by arguing that the bulk-boundary correspon-
dence as formulated i2,3,4 demands the inclusion of both
Here Sy is the effective action in the bulkby,; is the field normalizable and non-normalizable modes. The former

@, restricted to the boundary, anfl is the time-ordering propagate in the bulk and correspond to physical states while
symbol in the field theory oi. The expectation value on the the latter serve as classical, non-fluctuating backgrounds and
right hand side is taken in the boundary field theory, withéncode the choice of operator insertions in the boundary

@, treated as a source term. In the classical supergravit{1€Ory-

limit, given a boundary field we solve for the corresponding W€ begin in Sec. Il by reviewing the computation of
boundary correlation functions, and providing a prescription

for computing the bulk effective action in a Hamiltonian
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formulation. We will argue that specifying the boundary con-(Here r=0 is the boundary of spacetime in the Poincare
ditions involves turning on non-normalizable modes whichcoordinates defined in the AppendiXs r—0 this is qua-
do not fluctuate. Including such non-fluctuating modes maydratic in ®,, and can be thought of as a quantity in the
seem strange, but several well-known examples exist in othdsoundary theory. In order to compare to the right-hand side
contexts: a classic example is a field theory which undergoesf Eq. (1), we must identify the boundary operator coupling
spontaneous symmetry breaking, and more recent related et¢ ®. The dimension of the operator is determined by the
amples arise i17,8,9. Normalizable solutions to the wave growth of ® at the boundary of AdS spa¢8,4]. In particu-
equation are then used in the mode expansion of operatofar, suppose that the boundary behaviodofs

and the construction of a Fock space. The resulting Hilbert

space of states is identified with the Hilbert space of the o

boundary theonf10,4]. In Sec. Ill we make this more ex- D — 1 Py(X). (4)
plicit by studying solutions to the wave equation for free . . .
scalars of arbitrary mass. We find that for general masses the'en the corresponding operator has mass dimendion

field equations have both normalizable and non-normalizabld X+ IN fact, this procedure is not completely well-defined: in
solutions and the latter couple to the boundary. general, Eq(3) blows up and some regularization is required

In Sec. IV we specialize to AdSwhose buik isometry ir_1 order to extract the correlatcﬁﬂ.;]. For in_teractin_g theo-
group and boundary conformal group are both ries, we can calculat8& perturba_tlvely by_lntegratlng over
= SL(2R) X SL(2R)r. We show that the normalizable f!uctuatlons away f.ro_m the. classical spluuon. Thgse fluctua-
modes transform in unitary irreducible representation§of tions should have finite action and vanish appropriately at the

while the non-normalizable modes transform in non-unitar)})oundary'
reducible representations which contain a highest weight ) _
module. The normalizable and non-normalizable highest B. Lorentzian formulation

weight representations are built on states with SEjp, In Lorentzian signature AdS spacetime the relation in Eq.
X SL(2R)g weights h, =hg=h.=(1/2)(1% Jm?AZ+1).2 (1) is more subtle, because there are normalizable solutions
Interesting subtleties arise for small masses and for integrab the wave equatiofb,6,12 which do not affect the leading
v=(1/2)ym?A%+1. We carry out the analysis in both glo- boundary behaviof4). So the boundary valué, does not

bal and Poincareoordinates in order to discuss conformal uniquely specify the bulk field. Furthermore, the normaliz-
field theories both on the cylinder and the plane. The latteable modes cannot be projected out since they are needed to
case has some curious features because Poinoardinates expand quantum operators, build a Fock space, and compute
only cover a patch of the global spacetime. We conclude th&reen’s functions in the bulk.

paper with a discussion of the utility and limitations of the  The bulk effective action appearing in Ed) can be writ-
bulk-boundary correspondence for describing bulk spacetime&n as

physics via the boundary gauge theory.

V= iS(®)
Il. BOUNDARY CORRELATORS FROM THE BULK Ze( D) f Ddie ®)

A. Euclidean formulation where the path integrals taken over fieldsb; that take the

Specifying the boundary behavior of a fieldin Euclid-  boundary valueby, ;. The measuré®®; can be normalized
ean AdS space leads to a unigue solution to the equations bf requiring thatZ.=1 when the boundary condition is
motion, given some regularity conditiorfsee[4] for a dis- trivial (®,;=0). In general there is a set of saddle points
cussion and referencesSo Eq.(1) is unambiguously inter- that must be summed over; these correspond to the normal-
preted by evaluating the A¢$; effective action on the izable modes that are solutions to the equations of motion
unigue bulk extension of the boundary field. For a free scalawith a fixed boundary condition. For a free theory in
@ with boundary valueb,,, Minkowski space, the normalizable modes indicate that there

is a manifold of flat directions that must be integrated over
_ d+1 Y 242 for fixed boundary behavior. For a free theory the calcula-
Seﬁ_f Hd x\/§(g“ 9u®d,L+mMP%).  (2) tions in Refs[3,4] are not affected as the flat directions lead
to an overall volume factor that is divided out when we
We relate this to the right hand side of E@) by integrating  appropriately normalize the path integral.
by parts. Sinca is a solution to the equations of motion, the  |n order to define the path integral in E€5) we must
bulk contribution vanishes. There is, however, a boundar)gpecify the behavior of fields at the AdS boundary. We will
term which is non-vanishing for the relevant solutions to thesee that boundary conditions can be specified by including
Euclidean wave equation: certain modes that are generically not normalizable or at
least perturb the asymptotic geometry too violently. In fact,

Ser= lim f drd?1%\gg" ®o,P. 3
r—0
“Here we are restricting attention to those low energy processes
for which a field theory path integral makes sense. More generally,
SHere A is the inverse of the cosmological constant of AdS the full string theory partition function is implied.
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these are precisely the modes that are identifig® il with L »
sources coupling to boundary operators. As such, these a4 :J,szkJ : (8)
modes should be locked or non-fluctuating. Such non- ’

fluctuating modes arise in a variety of contexts. One examplghere s, is the boundary of the spacelike slice. The authors
is the homogeneous mode of a scalar field that t_akes a noRs [6] find complete sets of modes by demanding, first, that
zero value through spontaneous symmetry breaking. Anothghe flux normal to the boundary vanish at infinity. They also

example is Euclidean field theory on spaces with constanfemand that no energy is exchanged with the boundary:
negative curvature; the authors of Rigf] note that the large

volume at infinity keeps modes with certain boundary con- ‘
ditions from fluctuating. Our discussion is particularly remi- F= ﬁdAk\/aTo:O- C)
niscent of Liouville theory, where local operators create non-

normalizable wave functions when inserted in a diskThe authors of6,17] considered the relative merits of the
amplitude{8,9]. This analogy is especially attractive after the canonical and improved stress tensors in this equation. This
work in [13] and was a motivation for the present form of potential ambiguity in the stress tensor arises because the
this paper; indeed, for Ad3he gravity sector of the bulk has cyrvature is constant, and its possible coupling to a scalar
a Chern-Simons action which reduces to a boundary Lioufield would appear as an effective mass term. In our case the
ville theory [14,15. In particular Ref.[13] relates the choice is dictated by the underlying string theory and the
asymptotic behavior of solutions to the wave equation to theypergravity effective action that descends from it. We will

gravitational dressing of chiral operators in the boundarysimply treat scalar fields of mass squaretiwith the under-

CFT. _ _ o _ standing that the mass term may contain a contribution from
For an interacting theory, our prescription provides thez curvature coupling.

analog of an S-matrix for field theories in AdS space, an e will find that for massem?®=1—d?/4, simply requir-
issue raised in Ref16]. In standard flat-space field theory, jng normalizability is sufficient to isolate a suitable class of
one specifies boundary conditions at infinity by turning off fj,,ctuating solutions, and the more refined discussion in Ref.
the interactions and physically separating the initial excita 6] is unnecessary. For d2/4<m?<1—d%4 (stability re-
tions,.so that we can sensibly discuss _asymptotic states. Eﬁhiresmzz —d?/4), there are two sets of normalizable solu-
our picture, even though the bulk excitations may not b&jons and some criterion is needed to distinguish them. Ref-
separable and asymptotic states may not exist, we can sengkenceq6,17] show that for any given field propagating on
bly discuss thg dependence of the partition function OMAgdS,.,, conservation of the inner produ@) and the van-
boundary conditions for locked fields at infinity. ishing of F at the boundary requires either but not both sets.
Furthermore, in the case of AgSthe authors of6] show
C. Hamiltonian quantization that the two sets of modes are built on representations of the

Once we have specified the boundary conditions, we mugtonformal algebra with different lowest energy states and
ask what fluctuating modes to keep in a Hamiltonian formalthat supersymmetry generically requires one to take both
ism. The point is that quantization requires a complete, norfypes of mode into account. The clearest example is that of
malizable set of field modes, which in AdS space requireshe scalar and pseudoscalar in the gravity supermultiplet of
some sort of boundary condition at infinity. Several consisgauged N=4 supergravity [6]. Both are conformally
tent choices have been suggested in the past; for the bulkoupled, and supersymmetry requires that the modes of the
boundary correspondence to make sense the choice shodigalar lie in one representation while the modes of the pseu-
be unambiguously determined by the physics of the situatiorloscalar lie in the other. Further criteria are needed, how-
Our prescription is heavily motivated by the work of Breiten- €ver, to decide which assignment is realized. In this particu-

lohner and Freedmaf6] (which covers Ad$: so we will  lar case, Hawking [18] imposed the requirement that the
review their discussion for scalars of arbitrary massn ~ Metric be asymptotically anti—de Sittén a sense defined in
AdSy.; (also sed17]). that worK to find particular boundary conditions on the lin-

Fix a spacelike slic& C AdS,, , with coordinatesx and ~ €arized metric perturbations. Supersymmetry then requires

an orthogonal, timelike coordinate Given two solutions the scalar mode to reside in the representation whose
Uy, U, to the scalar wave equation, define the inner product?lighest-weight state has the lowest energy. It would be nice
if similar criteria could be applied to general modes in the

g o . range— d?/4<m?<1—d?/4, independently of supersymme-
(Ug,up)=i zd X\gg™ (U7 dip— diuy Up). ) try; we will not investigate this point, however.
If u;=u,, this is the integral of the time component of the D. Summary

current The lesson is that we need to keep both normalizable and

jH=ighr(u* a,u—a,u*u). 7) non-normalizable modes in AdS spacetimes. The non-
Herej' is only time-independent up to boundary terms com-

ing from the timelike boundary of anti—de Sitter space; it is “we would like to thank S. Ross for pointing out this reference
easy to see, using the equations of motion, that and its relevance.
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normalizable modes correspond to operator insertions in thare two independent solutions. i is integral, J., are

boundary gauge theory; from the AdS point of view theyequivalent, and the two independent solutions @f¢) in

provide non-trivial boundary conditions. The normalizableEq. (14) and

modes fluctuate in the bulk; quanta occupying such modes

have a dual description in the boundary Hilbert space. In (I)H:e‘i“’t+”z"zrd’2YV(|q|r). (15)

path integral language, Eql) can be understood via the

background field expansion: we compute the effective actiofote that many of the scalar modes arising from the Kaluza-

by expanding the path integral of the bulk theory as Klein (KK) reduction of string theory down to A¢S,; have

_ integral v [4,20,21,22,23,24,35so0 this is a “special case”

=Dgt o0 (10 of particular importancé.The boundary terni3) will vanish

@, is a classical, non-normalizable solution to the equationdor ®*; for @) it will either go to a constantfor m?

of motion, corresponding to an operator insertion at infinity="0, d=2) or blow up.®>" and®() both behave as

and a particular choice of boundary conditions. Ti#Enis

the fluctuating piece over which we integrate to get the par- D~r2-o, (16)
tition function. The normalizable modes appear as stationary _
points of the action given the backgrougiy,. as discussed if8,4], where
d 1
IIl. EXPLICIT MODES FOR SCALARS _ 12 >
h + i_ d + 4m . 1
OF ARBITRARY MASS - 44 (17

In this section we show that a scalar of arbitrary mass in- -)
A . ) =0, d'"’ beh
AdS spacetime has both fluctuating and non-fluctuating so—Or v ehaves as
lutions that implement the bulk-boundary correspondence as b1t (18)
advocated above. Generically, the non-fluctuating solutions '

are not normalizable in the nort6). As in [3,4], @Y couple to operators of dimensior?2.

The asymptotic behavior of Bessel functions is well-
known: so criteria for selecting fluctuating and non-
We begin with solutions in Poincamoordinates, which fluctuating modes are easy to apply. Bor 1, only &) is
allows for a direct comparison with Refi8,4]. It is easy to  normalizable and®(™) must therefore act as the non-

separate variables in these coordinates by writing the scaldluctuating source term in E@l). For v<<1 the story is more

A. Solutions in Poincarecoordinates

of mass squareth?/A? as complicated as both ofp(*) are normalizable and, as
L pointed out in Refd.6,7], both kinds of modes are necessary
O =g lomHkXpd2y (. (1)  for supersymmetry. Indeed, for compactifications of
o ) M-theory on AdSxS’, a conformally coupled scalar and
x then satisfies the equation pseudoscalar appear in the KK spectritd,21,25,26’
42 Both the analysis of the KK spectrum and its relation to
292y +rd x—| | m2+ — +(I22—w2)r2})(=0. (120  operators in the dual 3D CF[R5,26], and the arguments in
4 [8], show that the fluctuating modes for the scalar are of the
9 2 3 o form ®(7) and the fluctuating modes for the pseudoscalar are
For g*=k?— w”>0, the solution i[3,11] of the form ®(*). Furthermore, the “conjugate” solutions
it ®M) and®(~) couple to operators with dimensidn. and
d>'=e reeK,(ar), (13 h,, respectively{25,26.2 One may worry legitimately that

for the scalar mode, interpreting E(l) is problematic be-
_ l . . . . L A N
wherev =z yd“+4m". This solution is non-normalizable at ¢4,se the surface tert8) diverges for this mode and not for

the boundary at infinity but well-behaved in the interior. Thehe “source” modes coupling to the boundary. Perhaps the
second, independent solutiop is very badly behavedi.e.  gnswer is that when computing correlation functions, one
blows up exponentiallyin the interior and is therefore elimi-  jqeg not perturb the background with classical normalizable

nated. If we consider anti—de Sitter space as the near-horizqoges. At present we will leave the resolution of this issue
geometry of a brane, then in the asymptotically flat regiory; f,ture work.

®*! would have imaginary momentum perpendicular to the

brane.
For gq2<0, there are two possible solutions which are ; ) o )

regular in the interior. Ifv is not integral, We would Ilke_ to thfink 0. Aharony_ for pointing out this ex-

ample, and for discussing the<1 case in general.
dD(i):e_i“’””z'ird/zL (|q|r) (14) 8Note that the fact that the scalar mode has dimensigrd/2
=V contradicts the statement made in Rief] for Euclidean theories
that the dimension of operators in the CFT is bounded below by
d/2. It however satisfies the unitarity conditidn?%(d—Z) for
SWe use the notation ifiLl9] for Bessel functions. scalar operators in the dual CFZ7].
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It is also worth noting that the borderline non- where
normalizable modes@®(~) for h_=3%(d—2), contain the
singleton[34,35.

dy m?
B. Solutions in global coordinates h( h— 5) =7 2b(2b+d—-2)=I1(1+d-2). (24

Let us examine a scalar of masg/A2. Make the substi-

tution . )
. The equations foh,b each have two solutioris:
P=e""tY m(Q)x(p). (19
HereY, are thel™ spherical harmonics 089~ 2, for which o+ a2 r 42
ho=—— (25
ViaY=—1(+d-2)V, (20) 4
with [ =0. The wave equation in global coordinatisse the
Appendiy is I 1
b=§, E(Z—d—l). (26)

1 d-1

(tTp)d——lﬁp[(tanp) dplx
+[w?~1(1+d—2)csé p—m?se€ p]xy=0. (21)  The hypergeometric equation will have two independent so-

lutions, corresponding to the two solutions of the indicial
We have chose® with which we can build an arbitrary equation forb. One solution will be logarithmic if +d/2 is

configuration orS®~1x R for a givenp; Eq. (21) then gives  an integer, i.e., il is even.

us the p dependence. For general?, » the equation of Choosing instead=cog p, one gets the hypergeometric

motion is easily converted into a hypergeometric equatiorequation

which can naturally be expanded in variables that vanish

either at the origin §=0) or the boundary d= 7/2). For

maintaining regularity at the origin, it will be easier to ex- 5

amine the solutions as functions of %jn For examining the X(1=x)a5f+

boundary behavior, solutions as functions of gosvill be

more convenient. We will display both sets of solutions ex-

plicitly. Of course one can pass between them using standard +

formulas relating hypergeometric functions as arguments of

z and 1-2z[19,28,29; these permit the enforcement of regu-

larity conditions at the origin and the boundary, thereby im- i, h,b as before. Again, the hypergeometric equation has

posing quantization conditions on the spectrum of the theory, 4 independent solutions; this time they correspond to the
Begin by substituting two solutions of the indicial equation fdr. One solution

d
2h+1- 5 —(2h+2b+1)x 4,f

2
(h+b)2—%}f=0, 27)

x(p)=(cosp)2N(sinp)2°f(p). (22) will be logarithmic if v= % Jd?+4m? is an integer. In fact, if
we wish to transform solutions as functions of%into so-
Let y=sir?p. It is then easy to see that lutions as functions of cég, the relevant formulas are modi-

fied in the case of integral; thus we will examine the two
cases separately.

Behavior at the originThe behavior at the origin is con-
veniently analyzed by studying solutions as a function of
sir? p. Choose, without loss of generality=h, . The first
solution as a function of sfp is'®

2
y(1-y)ayf+

d
2b+ 5 —(2h+2b+ 1)y}¢9yf

2
(h+b)2— %}fzo, 23)

(1) —iwt 2h ; | 1 1 d
PH=e7'°Y,(Q)(cosp)"+(sinp)' ,F, h++§(|+w),h++§(|—w),|+§;SIn2p. (28

The second solution depends on whettiés even or odd. Id is odd, then

9 et A" be what Ref[6] calls\ and\" be what Ref[4] calls .. Thenh is related to these as. =3\%=—1\%.
Oywe use the notation ifiL9].
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V@ =e Y (Q)(cosp) 2+ (sinp)? 47! ,F4

1 1 d .
h++E(Z—d—l+w),h++E(Z—d—l—w),Z—I—E;smzp). (29

If dis even, the second solution is logarithmic:

. _— [h++%(|+w)]k[h++%(|—w)]k[ d d
_ K - _ g
\p<2>—«1r<1>|nsm2p+k21 sirtk p (42 [h 0l+5 1,v+l,w,k) hl 0l+ 5 1,1/-0-1,(0,0)
I+3d—1 K1) (1—] —
- (DI V2 sin % p, (30)
1 [1-h =3I+ o) {1-h,—3(1+ )]
where
11 1|1
h(e,f,g,w,k)=¢(E setfigto|+k +¢(§ setfg—o|+k| =gl f+k)—y(1+k), (31)
following Ref. [29], and
T'(a+k) d
a)kZW, P(x)= g INTX). (32

We must impose a regularity condition at the origin because in order fofllEgo make sense, we should not have
contributions to correlation functions coming from the interior. So we will only keep solutions for which the boundary term of
the classical action vanishes at the origis O:

Sorigin= lim f dtdQ \gg*®3,d—0. (33
p fixed

p—0
It is easy to show that this means that only the first solutid® is allowed.

1. v nonintegral

Behavior at the boundaryl.o study the behavior at the boundary it is most convenient to work with solutions as a function
of cog p:

. , 1 1 d
P =e7oty 1 (Q)(cosp)+(sinp)' HF 4| hy + s(+w)h+5(1-w)2h +1- E;cos.2 p) (34
and
_ , 1 1 d
P =e71Y| m(Q)(cosp)®"-(sinp)’ 2F1( h+>(+w)h_+5(-w)2h +1- E;co§ p). (35

In general the regular solution at the origiff (') is a linear  normalizable mode. Similarly, a combination &™) and
combination of®(*). &) js a candidate non-normalizable mode. Again, its be-
We can see directly that the leading behavior at thehavior at infinity indicates that it will couple to operators of

boundary of®(*) is (cosp)®=. For v>1 the norm(6) of  dimensionh, in (1).
&) diverges ap = 7/2, while the norm ofb(*) converges. For v<<1 both modes are well-behaved at infinity and
Thus, up to regularity at the originb(™) is our candidate further examination is required to select the relevant fluctu-
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ating modes, just as in our discussion of the solutions ifThe quantization conditiof38) gives the spectrum of nor-

Poincarecoordinates. Again, fields which have the solutionsmalizable modes of the form (™). Normalizable modes of

&) as their fluctuating modes will have solutiods*)  the form®(~) are obtained by imposing instead:

which act as source terms in E(d) for the related operator

of dimensionh.. in the dual CFT. w=*(2h_+1+2n), n=012,.... (40
Quantization condition for normalizable mode&s we

have discussed, regularity at the origin requires the choice dhfter picking one of these towers as the fluctuating modes,

w1, This solution can be written as a linear combination ofthe remaining modes that are regular at the origin should be

o): locked and mediate the bulk-boundary correspondence. As
we have already discussed, the case wherl and®(7) is

YO=cHpH +cHP), (36) the fluctuating mode is confusing since the locked mode falls

off faster at the boundary than the fluctuating mode. As a

where result, for the non-fluctuating mode to couple as source to an

T(l+di2)T (=) operator in the boundary theory with dimension, it must

cH)= not contain any terms which behave as (g% at the
Fh_+3(l+o)T(h_+3(1-w)) boundary. Thus, its frequency must be quantized according
to Eq. (38); it seems that in this case one cannot write a
o) r{+d/2)rv) classical source with arbitrary behavior in global time. If we

simply interpret the left-hand side of Efl) as a path inte-
37) gral over field configurations which fall off as (cpg™,

then there will be no saddle points in the path integral when
(Note thatv is assumed to be non-integral herBor »>1, the time dependence of the boundary configuration is arbi-
C(*) must vanish for a fluctuating solution because the nornirary. We leave the resolution of this conundrum for future
of () diverges at the boundary. This will happen if one of WOrk.

the gamma functions in the denominator has zero or a nega- Upon imposing the condition88) and(40) for (*) and
tive integer as its argument, i.e., if ®() respectively, the solutions may be written in terms of

Jacobi polynomialg?

Tyt 1+ + (1 -w)

w=*(2h +I1+2n), n=0,1,2,.... (38 _
O =e oY (cosp)?N=

So this is the spectrum of normalizable modeS") for v
(I+di2—1,2h, —d/2)

>1. For the same range of non-fluctuating modes do not ><(sinp)'Pn (cos 2p). (41
have a quantization condition. For a special set of frequen-
cies It is easy to show that these quantiz&éd*) can be made

orthonormal under the norr6). For v<<1 these quantized

w=x(2h_+1+2n), n=012,., B9 $) can be made orthonormal as well.

the non-fluctuating modes are purely of tHhé ) type. We

will see in the next section that such modes are in a highest

weight representation. In general, however, the non- As functions of sifp the solutions? (*?) are the same as

normalizable modes are simply the linear combination apbefore. Because is the difference of the roots of the indicial

pearing in Eq(37).1 equation, however, the solutions expanded near infinity are a
For v<1, both®(") and®(~) are potentially normaliz- little different than those listed abové&(*) is the same as

able because both norms are well-behaved at the boundaryefore:

2. veZtUu{0}

(+)— a—iwt 2h, (i | 1 1
O F=e7"lY| i (Q)(cosp)?+(sinp)' ,F4 h++E(I+w),h++E(I—w),1+v;cos’-p. (42)

Again, the norm(6) is well-behaved at infinity. For=0®d(") becomes

Yin a previous unpublished version of this work, we imposed a quantization condition on the non-normalizable solutions also, by
demanding that the be purely of td&*) type. In fact, there is no need to impose such a condition. Since the AdS-CFT correspondence
should work when time is noncompact, we should be allowed sources with arbitrary time dependence. We would like to thank J. Maldacena
for emphasizing this to us.

125ee Ref[28] for notation.
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1

d=e"eY,(Q)(cosp)¥?(sinp)' 5

2Fl

d 1 d
7750+, + (|—w),l;CO§p)|nCOSZp

2

- d/a+ (I did+1(1-
+k21 (cosp)2k[ i +w)]l'i[, i w)]k[h(d,o,l,w,k)—h(d,O,I,w,O)]

. (43

Here h(e,f,g,w,k) is defined in Eq.(31). Note that this has a well-behaved norm at the boundary.iBed the second
solution is

dH=e7lY,(Q)(cosp) ¥ ¥(sinp)'

+_
4 2

d 1 d 1
oFql = (V+|+w),z+E(v+|—w),l+v;C03"p Incog p

[d/4+3(v+1+ w) | [dd+ 3 (v+]—w)]
(1+ 1) K!

+ k21 (cosp)? k[h(d,v,l,w,k)—h(d,v,l,w,O)])

S (k=1)! (= )y
E1[1-d/a— 3 (v+1+ )] [1—d/id—E(v+1—w)]

(cosp) ‘Zk] : (44)

The norm of these solutions blows up at the boundary.
Quantization conditionOnce again we can start with the soluti@tf') which is regular at the origin and examine its
behavior at the boundary. The transformation laws are modified wherntegral, so that

Y=gl (Q)(sinp)’

(cosp)?"- >

T'he+3i(l+)(hy+i(-w)) k=0 KI(1—-v)

(cosp)*

Xl I(»)[(di2+1) "1 h +i(l+o)]h +i(0-w)]

(—1)'T(d/2+1) o [he+ s+ o) dhy +3(1- )]k

_ 2h,
F(h_+%(l+w))F(h_+%(I—w))(COSp) kgo k! (k+v)! (cosp

)2k

X

Incog p— p(k+1)— p(v+k+1)+ o h++%(|+w)+k

+¢(h++%(l—w)+k } (45)

Once again, in order to isolate normalizable modes whichion in cosp. We will see in the next section that these solu-
fall off as (cosp)®™ at the boundary we must impose Eg. tions are part of a special highest weight representation that
(38). At these frequencies, the gamma functions in the deexists for integral.

nominator of the coefficient of the final sum have negative

integer argument; so only terms in the sum which have com-

pensating poles will survive. Such poles will come from one IV. AdS3 AND SL(2,R) x SL(2,R)

of the final twoy functions; thus, the logarithmic term drops  The 700 of solutions that we have described in global
out and the solution falls off at thf boundary as desired¢gorginates should fall in various representations of the
giving a series of modes built from(*). Equivalently, one  spacetime-isometry—boundary-conformal group. The fluctu-
can easily show that when Eg8) holds,®(*) is regular at  ating modes should clearly fall in unitary representations,
the origin. As before, for general we have non-fluctuating and the boundary operators should create statesectors
modes which are well-behaved at the origin and which havgor which the state-operator map is one-to-owich fall in

a logarithmic part at infinity. A particularly interesting set of sych unitary representations as well. The non-normalizable

non-normalizable solutions occurs when modes do not have to fall in unitary representations of the
conformal group, but we will see that they do lie in linear
w=2h_+1+2n, n=01,..v—1. (46) representations. Since they couple to primary boundary op-

erators and their conformal descendants, such representations

are also important; in order to understand the coupling of
For such frequencies the final sum in E45) vanishes and descendants we need to understand how the various repre-
the result is, as in the case of non-integrah rational func-  sentations combine.
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We will discuss mode solutions in AdSfor which the

PHYSICAL REVIEW D 59 046003

important for our purpose$. The representations are in-

representations of the isometry group are well-known; seéexed by 2 invariants. The first is (called —® in [30])
especially{ 30] for a discussion and references. The highestwhich is related to the quadratic Casimir operator:

weight unitary representations in global coordinates and the

continuous representations in Poincao®rdinates were dis-
cussed in31]. As we will see, the results of the previous

L?=h(h—1). (51)

section provide explicit expressions for the wave functions?Ve will see that this is the santeas defined in the previous

for all of the linear representations.

As discussed in the Appendix, subsection 1, AdSob-
tained as the hyperboloid- A2=—U?—V?+X?+Y? em-
bedded in R2? with metric ds?=—dU2—dV2+dXx?
+dY?. The isometry group oR %2 is clearlySQ(2,2) gen-
erated by

JOl=V¢9U—U&V, J02: X&V+V<9X, \]03:Y(9\/+V(9y,

J23:X(9Y_Yﬂx, J12=X&U+U&X, \]13:Y&U+Uay.

(47)
We can construct two commuting 8,R) factors from these
generators  as SL(]B)Lz{le(J01+J23)/2,£2=(J02
—J19)/2L3=(J12tJo9)/2}  and  SL(2R)gr={L1=(Jon

—309/2 L= (Jop+ 319 /2L 3= (J1o—Joa)/2}. With these
definitions,
[Li,Lo]=—Ls, [Li,L3]l=L,, [LyLsl=L, (48)

and similarly for theL. These generators preserve the hyper
boloid that embeds AdSn R 22 and so are also isometries
of AdS;.

From{L,,L,,L3} it is easy to construct linear combina-
tions{Ly,L.} that satisfy the algebra

[LOlL:]:IL:! [L+IL—]:2L0' (49)
The quadratic Casimir of SL(R), is then
1 2

L2=—(L,L_+L _L,)—L§ (50)

2

Representations can be built by starting with a sfgtevith
L, eigenvalueE and acting on it with powers df . orL _.
The commutation relations as defined imply that (L)
raises(lowers the L, eigenvalue by one unit. Highedbw-
es) weight representations contain a stgt that is annihi-

section;h.. are the two solutions for a given value of the
Casimir operator. The second invariant is the fractional part
E, of the spectrum ok, for a given representatiafihere we
use the same notation as[iB0]). Representations are filled
out by starting with a given vector in the representation and
acting on it an arbitrary number of times with, . The re-
sulting representations are:

D(L?,Ey). This an irreducible, infinite-dimensional rep-
resentation but does not have a highest or lowest weight
state.h andE, are not related; the only condition is that
+E, is not an integerE does not even have to be real, but
since we wish to describe stable modes in spacetime we will
not consider complex values. We can defing <E,<3
without losing generality; the spectrum lig=Eg+n for n
an arbitrary integer. For fixed? andE,, the representations
for each branch of Eq51) are equivalent. The non-unitary
representations will correspond to non-normalizable modes
for which the energies are not related to the mass, i.e. for
which w is not quantized in even integers abovh_2t1.
Imposing unitarity restrict9(L2,E,) to two types of repre-
sentations:

(1) Dp—the “principal series” occurs fot.?< —%: thush
=14iN. A#0 will correspond to unstable modes in
spacetime as noted [16,4].

(2) Ds—the “supplementary series” occurs fdr>>— 3.
Hereh is real andh—3|<3—|E|. This occurs in the
range 0<v<<1 discussed in the previous section.

D*(h,Ey). This is an irreducible, infinite-dimensional
highest weight representation and exists fdreZ,~ UO.
Here Eo=h and the spectrum iky=Ey+n for integraln
=0; the highest weighh=0 state is annihilated bly, . The
representation will be unitary ih>0. These states corre-
spond to the solutions in global coordinates quantized ac-
cording to Eq.(38) for generalv. For non-integralv solu-
tions quantized according to E(0) also transform in this

lated byL, (L_). The entire representation can be built by representation. The solutiom!™) haveh=h,>0 and re-

acting on this state with arbitrary powerslof (L.).

A. Review of the representations of SI2,R)

The irreducible representations of the(3|R) algebra are
well known [33]. Barut and FronsddI30] derived a set of
linear representations which contain them; we will follow

their discussion as we will find that this more general set is

BFor previous discussions of SL{®,X SL(2,R) structure in so-

lutions to the wave equation in black hole backgrounds, see the.=ivV2ZM*;

review in[32] and references therein.

side in a unitary positive energy representation. The solu-
tions ®(7) haveh=h_ ; they reside in a non-unitary repre-
sentation forr>1 and in a unitary representation for 1.

The derivation of this representation[iB0] shows that it can

be imbedded in a reducible, nondecomposable representation
wheren is an arbitrary integer. In this representation we can
reachD ™ by starting with negativen states and acting on

We use generators with a slightly different normalization than
[30]. The generators ifB80] are called_,, andM =, and the Casimir
operator is calle®. In this notation our generators drg=L ;, and
our expression for the Casimir operator li€=

-Q.
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them repeatedly with. _ ; however, once we examine states

in D we cannot leave the irreducible representatiomp)
with actions ofL . because of the highest weight state.

D~ (h,Ep). This is an irreducible, infinite-dimensional
for O®=—-2(L2+L2)d=m?A2 (58)
2h¢ 7~ U{0}. HereEy=—h and the representation is uni-

lowest weight representation and again exists
tary for h>0. The spectrum it y=Ey—n for integral n

=0. The lowest weighihn=0 state is annihilated by .

PHYSICAL REVIEW D 59 046003

Discussion of explicit solutionsThe d’Alembertian for
scalar fields is given in terms of the left and right Casimir
operators as

The highest weight stateB ") and D are simplest to de-
scribe. We require thdt , ;=L , =0, and this imposes

These are the negative energy modes correspondiiy'to  h=h. Using this, the d’Alembertian in Eq58) acting on
Referencg30] embeds this in a reducible, nondecomposablenighest weight states reduces to

representation which contains energies larger than that of the )
lowest weight(highest energystate. m°A 1 —

D(h). This is an irreducible, finite-dimensional represen- h(h—1)= 4 :htzi(li VI+m A% (59
tation. It occurs when2e 7~ U{0} andE,=0. Its spectrum
is Lo=h+n for integral O<n<—2h. The representation is gxplicit solutions of the equatioh , ®,=L P =0 give
only unitary in the casé=0, i.e. for the identity represen- [31]
tation, also known as the singletfd4,12,39. It is contained

in a reducible nondecomposable representation for which

is arbitrary. D(h) arises in Ad§ as®(~) for integral v. In
global coordinates, the cade=0, w=2h_—---—2h_ for
integral w corresponds to a tensor produ@th_)xXD(h_)
transforming under SL(R), XSL(2R)g. For arbitrary |

(D(r):efihiwfihtw 1 =g i(2ho)t 1
H (coshpu )2+ (coshu )2+

(60)

so thath in this section and in the previous section are the

nondecomposable representations containing this irrep casame.

occur.

For v=h,—h_ non-integral, ") are precisely the

In the next subsection we will explicitly discuss how theseminimum-energy normalizable modes found in Sec. IlIB
representations are realized as solutions to the wave equatigRere tarp=sinhu as in the Appendix, subsection. 1,

in AdS; in global coordinates.
B. Global coordinates
In global coordinates the AdSnetric is
ds?=A?[—costt udt?*+du’+sint? ud6?] (52

and a scalar field of massn has a wave equation{
—m?A?) ¢=0 where

2 costi2u) 1 1
=2 2_ 2
H=du+ sinh(2u) Iut sinhz,u,ao cosit u %
(53
In these coordinates, a convenient basis for SR)2js
LOI iLl,

L,=(Lo+ils), L_=—(L,—iLsg). (54)

Starting with generators in E¢47) and using the coordinate

are the non-normalizable modes of lowest energy in the
spectrum(39). Other non-fluctuating modes will reside in
non-highest-weight representations. Descendant states are
constructed on the primaryd{;") by the action of
(L_)P(L_)% and have weighth=h.+p and h=h. +q.
Examining the differential operatdc_ shows that all of
these solutions have the same boundary behavior as the pri-
mary states and therefore share their normalizability proper-
ties. Finally,Lo+f0 is the generator of time translations, and
Lo—fo is the generator of rotations, so that the frequency
and angular momentum are given by=h+h andI=h

—h. The spectra of the two towers of states are given by

w.=2n+2h.+1, n=01,2,... (61)

This matches the spectra for the: Z solutions found in Sec.
1 B.
For integralv, the situation is the same for representations

patch in the Appendix, subsection 1, that yields the globapyjit on h, ; the modes residing in this representation are

metric, it is easy to work out the explicit representation

- lcoshi2u) 1 i

—i —Iw _ —. —_
L=l a2 ™ sinfz) ot 2% 9

. lcosh2u) 1 i

—iaiw _ —
L=t Sz ™ sz 2% ©7

where w=t+ 6 and w=t— 0. The generatord,, L. of
SL(2,R)R are obtained by exchangingandw in Egs.(55)—

again the normalizable solutior(*). The non-fluctuating
states will fall into two types. liv is not quantized according

to Eqg. (46), the solutions will reside in the representations
D(L? w). If the energies are quantized according to Eq.
(46), then the solutiond () will reside in nondecomposable
representations containing the finite-dimensional representa-
tions R=D(h_)XD(h_). The lowest energy(highest
weight state inR hasw=2h_ and is given by

e Wh-—iwh_(coghy )~ 20— (62)

The highest energy(lowest weight state in R has

(57). ClearlyLy= L, generate time translations and rotations.o=—2h_=2h, —2 and is given by
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eiwh,+iv7h,(COShM)—2h, (63) O=r29,—rd,+r2(92— d?). (68)

which is annihilated by. _ andL_ . One may also find these As discussed in the Appendix, subsection 1, these coordi-
modes in the manner described in Sec. Il B 2. nates only cover a region of Ad@and there is a horizon at

The casev=1 is quite straightforward and interesting. In F =% A convenient basis for SL(B), in these coordinates
addition to the(unitary) identity representation &t=0 there IS

are solutions WithIQeZ+, h=0): Lo=—Lo, L+=i(|_l+ Lg), L,Zi(Ll—L3). (69)

-l _ _ - : .
d=e""tanH u. (64 starting with the explicit generators in EG7) and imple-
menting the Poincareoordinates in the Appendix, subsec-

One may apply .- to reach other such solutions. For general,[ion 1, yields the generators

|, applyingL .. to (h,h)=(1,0) gives us the stateh(h)=(l
+1,0). ApplyingL, to (h=1, h=0) gives the irreducible -
, : , = o Lo=—59,—29, (70
identity representatiorD(0)Xx D(0). Applying L, annihi- 2
lates all statesh,h)=(l,0). Applying L_ to such states
brings one to the normalizable set of solutions forming the
irep D*(1,00xD*(1,0). There are similar solutions for |
(h=0, heZ") and states generated from these by applying L,=— K[zrar+zzaz+r2r92—].
the raising and lowering operators. The full representation in

this example is a hondecomposable representation and was

discussed in Ref.35]. Such representations were discusse B —_— —
for v=0,1 in AdS;;; in Refs.[36,37] from a somewhat q:i(rar:r?hz/_e;[(éhxar?gg Z;(;?X' The generators. of SL(2R)r

different point of view. Translations and CFT on the pland. is instructive to

In summary, we have found that every solution to the . .
wave equation which is well-behaved in the bulk lies in gSxamine the action of the gengrat(ﬂ@)—(?Z) on surfaces of
constantr at the boundary =0:

representation of the bulk-isometry—boundary-conformal
group G=SL(2R) X SL(2R)r. The energy is simply the _iz2
L, eigenvalue, and the singularity or zero of the wave func- Lo=—2zd,, L_=iAd,, L*:T
tion at infinity is related to the invariatt of the representa-

tion. The map is quite natural. Normalizable modglsis the
singleton correspond to unitary representations @f it

makes sense to quantize these modes. Non-normalizab
modes correspond to non-unitary representationsGof In the case of the CFT on the cylindéry generated trans-

gggseroegﬁdtshe modes we wish to keep as non'ﬂlmtw’mn%tions.L, generates translations on the plane, whijegen-
grot ) , . erates dilatations. Furthermore, the bd8i@ for SL(2,R) is
Relation to conformal field th_eory on the cyhnd@ts M different from the basi§54) we used for global coordinates.
—, the generators SL(R),_ acting on surfaces of fixefl  ag giscussed in the Appendix, the boundary of the patch of
become spacetime covered by Poincareordinates is conformal to
(65) Minkowski space and we have chosen the corresponding
natural basis fot j andL .. . It is important to emphasize that

These generators and their SLEPx companions which re- We arenot dealir_lg with the standard bijective map between
placew by W are the standard conformal symmetries of theCFTS on the cylinder and the plane. The plane that appears at
cylinder. Acting on descendants of a primary stdtg with the Poincardoundary is merely a patch of the cylinder and

weighth, the generators at the boundary become can only be expected to de'scribe the theory on the cylinder in
a thermal sense, after tracing over some degrees of freedom.

Lo=idy,, L_=ie " ™(4,—ih), L,=ie"(a,+ih). The Poincarenode solutions of Sec. Ill A with fixed fre-
(66)  quencyw and momenturk are eigenstates df _ and L _

) ) ) . o _with eigenvaluesv*+k (see alsd31]). L _ generates a non-
The shift ofL.. by ®ih arises from the radial derivatives in compact subgroup of $2,R) [30]; thus the wave functions

L_=iAg, (72)

(72

g, (73

These are the standard generators of conformal transforma-
ions on the plang(The factors ofi and A arise because we
ffe in Minkowski space anglis a dimensionful coordinate.

Lo=idy, L_=ie ™a,, L,.=ie"s,.

the bulk generators. we get by diagonalizing this operator should be continuously
moded, as we have found.
C. Poincare coordinates Representing the isometried/e can also construct a set
In Poincafe coordinates the AdS metric and of scalar fields in Poincérgoordinates that carry well-
d’Alembertian are defined weights unddr, andL,. Again, the d’Alembertian
A2 is the sum of left and right Casimir operators:
d52=(r—2)(—dt2+dx2+dr2) (67) D<I>=—2(Lf+f%)<l>zm2A2 (74)
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where we have used the definition in E§O) of SL(2,R)

Casimirs operators. States of Weight@ underL andfo
must satisfy the equations

r
2

,
2

3, +Z295|®=hd. (75

a,+zaz)<1>=hq>, -

Sincel, andL, are linear in derivatives, a product of eigen-
states of these operators is still an eigenfunction. A gener

class of eigenstates is given by

@ =r22"7°(r +Z22)%r — \z2)°. (76)
The left and right weights are then
(h,h)=(=[b+(a+d+e)/2], —[c+(a+d+e)/2]).
(77)

In global coordinates the eigenstatesLgf essentially pro-
vided a Fourier basis for mode expansions. Here lthe

PHYSICAL REVIEW D 59 046003

V. DISCUSSION AND CONCLUSIONS
A. Understanding the bulk from the boundary

The original motivation for this work was the desire to
study quantum gravity in the bulk spacetime from the per-
spective of the boundary gauge theory. In particular, we
would like to study the appearance of spacetime singularities
and horizongsee[10,38, for example which we expect to

atie related to nonperturbative issues in the gauge theory. A

preliminary step is to determine whether we can say anything
about local spacetime physics from the boundary perspec-
tive.

The existence of the normalizable modes displayed in this
article implies that there is a natural Hilbert space of small
fluctuations around the bulk AdS background. These fluctu-
ating modes are the probes of bulk causal structure. Since we
can map such states into the boundary Hilbert space, we
might expect that there is an analysis of local bulk processes
from the boundary point of view.

On the other hand it seems that we cannot reconstruct

eigenstates provide an expansion in a power series of fungosition space correlation functions in terms of the corre-

tions.

To find highest weightfprimary) states we want to addi-

tionally solve the equations ,®y=L,d,=0. Simulta-
neous solution of these conditions requires ttzat,d

=237 implying thath=h and imposing symmetry between

z andz in primary states. Usingd,® =z,;® and the equa-
tion for Lo®@=h® in L, ®,=0 gives

) _—2h(r?+77 © 28
rPHT T | 2227 O (78)
which is easily solved to give

Oy =r2Nr2-z2 2" (79

It can be explicitly checked that this is a primary state with
weights f,h). Requiring that the d’Alembertian acting on

this solution have eigenvalua®A? yields the condition

m?2A 2

1
7 :hizz(li JI+m?A?) (80

h(h—1)=

exactly as in the case of global coordinates.
Form?>0 andzz<O0 the solutions with=h, vanish at
the boundary (=0) and at the horizonr(=«) while the the

h_ solutions diverge in both locations. This agrees with the

spondence as written in E¢l). To see this let us expand
both sides of Eq(1) in a formal series in the boundary field
@, . For the moment we will work in Euclidean space where
this is a well-defined procedure since the bulk fididis
uniquely determined byp, . (We will return to the Lorent-
zian version below.As pointed out in[4], ® can be ex-
pressed in terms ob, via the equatior(here, in Poincare
coordinates

D (x%,%)= de)?’K(XO,i;)?’)(I)b(X’). (81

whereK is a solution to the wave equation behaving as a
delta function times a given power af on the boundary.
The quadratic piece of the action can be written as

Seff=f dzdxdzdx' ®(z,x) F(z,x;z' ,x")®(z' ,x")+---.
(82
F is the inverse spacetime propagator f&r which we
would like to extract from the boundary theory. This piece

can be written as a quadratic expressiombin via Eq. (81).
Expanding(formally) Eq. (1) to quadratic order, we find

(O(t1,X1) O(t5,%5))

claim in Sec. Il that thén_ representation alters the bound-
ary conditions but does not fluctuate. Furthermore, it sug- =—2if dt’dX'dr’dt"dX"dr"K(r’,t",X";t;,X1)
gests that in Poincareoordinates the horizon should also be

treated as a boundary with which flux can be exchanged. (83
Indeed, it is well known that quantum field theory in a space-
time with horizon requires the specification of horizon XF(r' X " XK (", 1", X"15,X5). (84)

boundary conditions. Forzz=0 the situation is more

disturbing—theh , solution is singular in the bulk of space- ExtractingF from this would require “inverting”K, which
time atr?=zz This appears to be a pathology that arisesseems impossible. The integration ovérr” washes out any
because the surface’—z2) =0 is a fixed point ofL,, the  information about localization in the direction perpendicular

generator of dilatations. The eigenstatesLgfare accord-
ingly singular on this surface.

to the boundary. Essentially, this point was made in Ref.
[16]—the correspondencél) relates off-shell operators in
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the boundary to on-shell fields in the bulk. Since thde- out vacuum wave functionals, since the prescription
pendence of the latter depends on th& dependence, full damps out all excited states. In such a case, the normalizable
localization is not possible. mode® , is set to zero and the boundary contribution to the
The point is that instead of being able to reconstruct arbiaction in Eq. (86) vanishes. More generally, one could
trary off-shell correlators, we must be content with a descripchoose to study excited states at early and late times by ex-
tion of on-shell quantities in the bulk. Indeed, our knowledgeplicitly including the appropriate wave functionals; in this
of the mapping between the bulk and boundary Hilbertcase the boundary terms become physically relevant and give
spaces and their Hamiltonians implies that transition amplicontributions to correlation functions evaluated in excited
tudes between arbitraphysicalstates are computable in ei- states.
ther of the dual descriptions. Off-shell physics can be probed For calculations in interacting theories, the effects of the
to the extent that on-shell correlators receive contribution@ambiguity can be more pronounced. In Euclidean AdS, a
from off-shell modes in intermediate states. This situationdramatic example of the effect of multiple saddlepoints with
will force the boundary analysis of the bulk geometry to besame boundary behavior is the high-temperature transition
somewhat subtle and indirect, but still possible in principle.between AdS space and the AdS black hole discussed in Sec.
In addition to correlation functions, we want to be able t03.2 of[4]. Our normalizable modes represent a large class of
ask how the vacuum in the bulk string theory relates to thesaddlepoints of the bulk action in Lorentzian AdS and, in an
boundary field theory. This question really concerns the glointeracting theory, they encode the non-trivial dynamics of
bal causal structure—the existence of different natural vacuthe bulk.
in a spacetime often reflects the presence of horizons, for
example. Understanding this is also relevant to the study of C. Conclusions
possible singularities in black hole backgrounds from the

dual gauge theory point of view. It may be that although ; . X
local bulk physics is quite difficult to examine via the bound- version of the bulk-boundary correspondence. This required

ary field theory, the global causal structure may somewha'tmderStE’mmng t_he respective roles played by normalizable
easier to address. and non-normalizable modes. The two sets of modes emerge

naturally, either from direct solution of the field equations or
from the field representations of the AdS isometry group.
The non-normalizable modes act as backgrounds and couple
The presence of normalizable modes in Lorentzian AdSo local operators in the boundary description, while normal-
might appear to render the correspondefibeambiguous, izable modes describe fluctuations in the bulk.
since there is no preferred solution corresponding to a given The picture we have presented suggests several avenues
boundary value. However, there is a naturalfor the study of black hole spacetimes from the boundary
prescription—we must sum the effective action over allperspective. Black holes can be constructed in AdS spaces
spacetime backgrounds with the same boundary behaviof39] by making discrete identifications of the geometry. Un-
with a weighting which depends upon the state of the systeniike pure AdS spacetime, the resulting bulk spacetime has
We can generalize the calculations[if] that we outlined global horizons and singularities in the classical supergravity

In this work we have developed a Lorentzian signature

B. Apparent ambiguities in the effective action

above, by appropriately modifying E(B1): approximation. The question is whether and how the bound-
ary theory describes the interior of the black hole. One would

_ _ hope that the Hilbert space of states within the black hole is

P=Pnt fBK(Db Pt Pon, 89 identified with a sector of states in the boundary theory; this

would realize a form of the black hole complementarity ad-
where®, is an arbitrary normalizable solution of the field vocated by 't Hooft and Susskind. In our picture, this issue
equations. Her& is a particular solution we have chosen would be studied by considering the roles of the normaliz-
which solves the wave equation and has the same behavior alble and non-normalizable solutions to the wave equation in
infinity as in the Euclidean cas&q can be written as the black hole spacetime.
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FIG. 1. Anti—de Sitter spacetime displayed as the interior of a
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FIG. 2. Penrose diagrams for anti—de Sitter space. Displayed are
vertical cross sections which cut through the center of the AdS

cylinder. For the single cover of AdS spacetime the top and bottorr?y"nder' In each figure, regions demarcated by solid lines identify

boundaries should be identified, whereas for its universal coverin
space (CAdS) an infinite number of copies should be attached
above and below the displayed region. The boundary of AdS spac
time is identified with the boundary of the cylinder. The coordinates

indicated correspond to those in E&2). Horizons in AdS space-

time are obtained by making two diagonal cuts through the cylin-
der, as shown. The cuts divide AdS spacetime into two regions,

gw portion of the spacetime covered by a single coordinate patch.
a) Global coordinates. The boundary of the region is the surface of

& cylinder.(b) Poincarecoordinates. Here AdS space is divided into

two patches, with the two boundariesrat 0 being conformal to
flat Minkowski space. At the horizong,= *+«. (¢) BTZ coordi-
nates. AdS space is divided into 12 patches, 8 of which appear in
the 2 dimensional slice shown. The 8 boundaries are each confor-

each of which is covered by a set of Poincare coordinates. Th@al to fiat Minkowski space.

boundary divides into two diamond shaped regions, which are each

conformal to copies of flat Minkowski space.

APPENDIX: COORDINATE SYSTEMS ON AdS 4,1

1. AdS,

AdS; is defined as the hyperboloig U2—V2+ X2+ Y?
=—A? embedded in a space with metrigs’=—dU?
—dV2+dX%+dY?2

Global coordinatesGlobal coordinates for AdSare de-
fined by

U=A coshu sint, V=A coshu cost,

X=A sinhu cosf, Y=A sinhusiné.
These yield the metric

ds?=A?[ —costf udt®>+du’+sintf wd6?]. (Al)
Here Os u<ow, 0<0<27 and 0<t<27. We unwrapt to

have range- to o in order to work on CAd§ the univer-
sal cover of AdS.

It is often convenient to make the coordinate transforma:
tion sinhu=tanp with 0<p=< /2. The metric then becomes

ds®= A7 —sel pdt’+sel pdp?®+tarf pd6?]. (A2)

From the above we see that AgdBas the topology of a
disk times a line. The boundary of spacetimepat«/2 is a

cylinder S'XR (see Fig. 1L The bulk-boundary correspon-

A Penrose diagram illustrating the causal structure can be
drawn by considering a two dimensional cross section of the
hyperboloid. We choose to displayXa=0 slice, and obtain
the diagram in Fig. @&).

Poincare coordinates.Poincarecoordinates are defined
by

1 t
_ 24 %24 p2_¢2 — A
] 2r(A X +re—ts), V Ar’

-1 X
_ A2, y2, 242 — A
Y 2r( A+ x+re—t%), X Ar’
(A3)
giving the metric

ds?=(A?/r?)(—dt?+dx>+dr?). (A4)
Heret andx range between-«~ ando, and O<r=<o~. Poin-
carecoordinates only cover one half of AglSas shown in
Fig. 1. There is a horizon in these coordinatesate. The
boundary atr=0 is clearly conformal to flat Minkowski
spaceR™™. The bulk-boundary correspondence asserts that a
conformal field theory on this boundary plane is dual to

quantum gravity in the bulk. Note however, that the plane
only covers half of the cylindrical boundary of global AJS

The second half of Adsdisplayed in Fig. 1 can be cov-
ered by labelling the hyperboloid as in EGA3) but now
letting —oo<r=<0. These two patches together cover AdS
while to cover CAdg one assembles a vertical tower of such
patches. The Penrose diagram is displayed in Hig). 2

BTZ coordinatesFor completeness, we consider a third

dence asserts that a conformal field theory on this cylinder isoordinate system which is useful for constructing the BTZ

dual to quantum gravity in the bulk.

black hole. Divide the hyperboloid into three regions:
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region 1: —U?+X%<0, —V2+Y?=0,
region 2: —U?+X%<0, —V2+Y?<0,
region 3: —U2+X?=0, —V?+Y%<0. (A5)

Note that one cannot take bothU?+ X? and —V2+Y? to

be positive. We then cover each region with four coordinate

patches.

U==*fcoshp, V=FZ—AZsinht,

X=fsinhg, Y==+FZ—AZcosht,
ds?= — (F2= A?)dt?+ AX(F?— A?) " 1di2+72d ¢,
(AB)
region 1,
U= =7 coshp, V== AZ—72cosht,
X=fsinhg, Y=+AZ-7Zsinht,
ds?=— (2= A?)dt>+ A2(F2— A% 1dP?+72d$2,
(A7)
region 2,
U=fsinhp, V== f2+A%cosht,
X==*fcoshg, Y=+F2+AZsinht,
ds?=(P2+ A?)dt?+ AX(P2+ A2) " 1dP?—72d¢?,
(A8)

region 3.

In all three regionst and ¢ range between-c and .
Heref has range\ <f = in region 1, G=f <A in region 2,

and O<f=o» in region 3. So altogether there are 12 patches
covering AdS. To draw a Penrose diagram we again con-

PHYSICAL REVIEW D 59 046003

sider the slicex=0. Note that on this slice region 3 is a
dimension one submanifold, while regions 1 and 2 are di-
mension 2 submanifolds. Thus only regions 1 and 2 will
appear in the Penrose diagram, and we label the various
patches as * =, 2=+ =+ in an obvious notation. The Penrose
diagram then appears as in FigcR

To make a BTZ black hol¢39] of massM from the

above coordinates one simply makgseriodic with period
ZWN.

2. AdSy+s

The various coordinate systems defined above generalize
straightforwardly to arbitrary dimensions. Global coordinates
for AdS; ., give the metric

ds’=A7 —seé pdt®+sed pdp?+tarf pdQ3_,]
(A9)

with 0<p<m/2, —o<t<o, Thus AdS,; is globally a
d-dimensional disk times a line and the boundary pat
=m/2 is a cylinderS®~*x R. The d’Alembertian operator in
global coordinates is

A?O=—co¢ pd;+cog pds+(d—1)cotpd,

+cof pVid-1. (A10)
Poincarecoordinates yield a metric
ds?=(A%/r?)(—dt?+dx2+dr?). (A11)

Heredx? is the flat metric orRY~* and O<r=<o=. There is a
horizon atr=o and the boundary at=0 is the plane
RY~1L The d’Alembertian operator in Poincaceordinates
is

A2O=—r252+r202—(d—1)ro, +r2Vae1. (A12)
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