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Quantum three-dimensional de Sitter space
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We compute the canonical partition function @&+ 1)-dimensional de Sitter space using the Euclidean
SU(2)xSU(2) Chern-Simons formulation of 3D gravity with a positive cosmological constant. First, we point
out that one can work with a Chern-Simons theory with leeell /4G, and its representations are therefore
unitary for integer values df. We then compute explicitly the partition function using the standard character
formulas for SWY2) WZW theory and find agreement, in the lardgemit, with the semiclassical result. Finally,
we note that the de Sitter entropy can also be obtained as the degeneracy of states of representations of a
Virasoro algebra witlc=31/2G. [S0556-282199)05002-X

PACS numbeps): 11.25.Hf, 04.60.Kz, 04.62.v, 04.70.Dy

In 2+1 dimensions, general relativity has been shown towvhere the periogB of the time coordinatég (0<tg<pg) is
be equivalent to Chern-Simons theory with a six dimensionafixed asg=2wxl by the requirement that the metric be ev-
gauge group whose structure depends on the value of therywhere regular. Below, we shall allow a conical singularity
cosmological constant and on the signature of the spacetimeg r = 0. This will change the value g8 such that the metric
metric [1]. In this paper, we shall focus on the case of ais still regular atr =1.
positive cosmological constant and Euclidean metrics. This A simple coordinate transformation=| cosg makes it
case has the attractive feature that the gauge group (8)SU clear that this is a three sphere, since
XSU(2), and its representations are therefore well defined.

We shall compute the canonical partition function of de Sit- dsZ=sirfedtZ+12de?+1%cogod $?. ©)
ter space by reducing the Chern-Simons theory to a boundary

Wess-Zumino-Witten(WZW) theory. For related calcula- Note thatp=0 describes the horizon and it is the origin of
tions se€[2,3]. This calculation is similar to those yielding the angular coordinatie , while the observer’'s worldline lies
the Barados-Teitelboim-ZanelliBTZ) black hole entropy by at o=n/2 and is the origin ofp. In the following, it will be
considering a boundary conformal field theory either at theconvenient to introduce a new time coordinafewith period

black hole horizorj4,5] or at spatial infinity[6,7,5)]. 1 related totg by x°=tg/p.
The metric for(2+1)-dimensional de Sitter space is In computing the entropy of de Sitter space, we shall con-
sider a boundary surface that encloses the Euclidean world
r2 r2\ -1 line of the timelike geodesic observémhis surface may be
ds?=— ( 1-12 dt2+( 1z dr’+r’d¢> (1)  thought of as analogous to a surface at spatial infinity in the

black hole cas¢.The boundary surface results from remov-
o , ___ing (a thickened version dfthe observer's worldline from
whereA =1/ is the cosmological constant, and the horizongcjigean de Sitter space. Since a three sphere can be con-
atr=| is that seen by an observer travelling along the time~,cred by gluing together a pair of solid tori, the remaining
like geodesic at =0. Performing a Wick rotation yields the gpace s jtself a solid torus. The topology of the Euclidean
Euclidean de Sitter metric manifold that we consider is thus exactly the same as for the
BTZ black hole[5].
-t 2. 24,2 A gravity theory of Riemannian metrics with a positive

1- 12 dri+ride 2 cosmological constant is classically equivalent to a Chern-
Simons theory for the group $B) XSU(2). The correspond-
ing SU2) gauge fields are
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Using the metric(3) we can read off the triad and spin B
connection. Actually, we shall consider a generalization of Ao=— |—A¢, (7)
the spacetimé3) described by the two-parameter gauge field

whereB will be the argument of the canonical partition func-
tion. Sincep is the period of the Euclidean time coordinate,

it can be interpreted as the inverse temperature. As explained
before, de Sitter space hgs=2#l. Other values of3 cor-

3

*Al=—y sin Q(d¢1lédx°

A2
A®==de, respond to holonomies in the gauge field, and,gor27l,
they can be interpreted as conical singularities.
A=+ y cosg( dd)IEdXO) 5 As in [5] we shall also add a term at the horizer 0 that
| imposes the constraint

from which de Sitter space is obtained fg=1. The param- g|Q:0: —27&% 8
eter y parametrizes the deficit angle of a conical singularity

located ateo=a/2 (r=0), or equivalently a holonomy which can be achieved by using a Wilson line along the
around a non-contractible loop in the solid torus. Indeedhorizon[5].

since the origin of¢ is located ato=/2, andA;= —y at The boundary condition&’) and(8) are motivated by the
that point, the gauge fielts) has a holonomyfor y#1. We  on-shell gauge field5) associated to de Sitter space. How-
shall only consider the case<®=<1 which, from the metric ever, they give rise to a far bigger space. Indeed, the phase
point of view, represents an angular deficiignWe shall see space is infinite dimensional and is described by a chiral
below that the condition/<1 will be protected quantum me- WZW model(see below.

chanically by the bound in the spin $Z k) arising in affine The Euclidean action appropriate to our boundary condi-
SU(2) representations. tions[(8) and(7)] is?

Sincex? is also an angular coordinate whose origin is
located atp=0, the requirement that there be no conical
singularities or holonomies at the horiza@=0) fixes
yB/l=27 and thus

Ie[A /3]=L €< Tr(iA oA — AgF ) d2xdX°
E ’ A M k@0 of ki

k’B 2 0
_ 27l T A Tr(Ay)“dgdx
- (6)
7 k
For y=1 we recover the period of de Sitter space and(kg. ) fQ_OAf)dd)de. ©)

yields the Euclidean metri(3).
The conical singularities arising in three dimensional, i, =1/4G.

gravity with a non-zero cosmological constant were intro-  rpig chojce of action requires some explanation. The
duced in[8]. The|r. Sta.t'St'Cal mechanical properties ha_veChern—Simons action does not depend on the metric and
been recently studied if8]. Note that the presence of thiS ,qefore the spacetime signature does not affect its form. In
singularity provides another reason to remove the observerﬁ]e Chern-Simons formulation of general relativity, the in-

wordline o= /2 _since the singularity i_S located at that point. 5 mation about the spacetime signature is contained in the
The conformal field theory lives precisely on that surface. |, gauge group.

.In _the foIIow_ing +we shall conside_r only the positive However, letk be a positive integerg a compact Lie
chirality gauge field™ A and denote it simply by. All the group, and consider the Chern-Simons actidpA]

following equations can be straightforwardly generalized to . .
include gt]heqother S(2) field. g v =(kl4m) [ Tr €' (—AjAi+AoFj;) (plus boundary terms

We work here in the canonical ensemble. The first step irﬁ[)hn ?. magllfoldtl'\/l W'thdthe topol(lngyEEx |Sé Wef't?ldeﬂ?l as
defining the canonical partition function is to formulate € lime direction and, as usual in Eucliaean e eory, we

boundary conditions. Motivated by the gauge fi¢il, and {ﬁlate |tstper|o? Wr']tht t_hetr:nvgri(te temperaty&e:/r\]/e notvr\: _as;k |
as in BTZ cas€5,9], we fix the boundary conditions at € question of what Is the right measure in the pa ﬁ'ﬂ egra
_ which produces a partition function of the form &r*~",

=2 to be . . .

with H real and positive, and the trace being taken over a
well defined Hilbert space. If we integragd[*!, one finds a
- . . . . Kac-Moody algebra at levdd whose representations are well
Given an angular coordinate with period 2r whose origin is  defined, but the Hamiltonian has an unwaritgcoefficient.

located at a point =0, in general, there is a holonomy around If, on the contrary, we imegrate—l[A] one finds the right
=0 if the zero mode o\, is different from zero at =0. Suppose ' ' '

A= vyd#J with J any of the Hermitian S(2) generators. This value

of A can be set equal to zero by the gauge transformagon

=e " However,g is single valued only ify is an integer. In this 2We use the convention$ ;= —(i/12)o,, [Ta,Tp]l=— €apcT®,
case, the above holonomy is trivial. Fp#=n, gis multivalued and  Tr(T,Ty)=— %5ab. The total action including both chiralities is
thereforeA does have a non-trivial holonomy. I=I[*A,*B]—-I[ A, B].
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measuree” M, but the representations are not well definedgroup at the boundary. This infinite dimensional group is
because this yields a Kac-Moody algebra at lelel The  parametrized by a group elemegtand the action is the
source of this problem is not the choice of the measure buthiral WZW modef

the action itself. Indeed, Chern-Simons theory is of first or-

der (linear in the time derivativegherefore its correct “Eu- ik .

clidean” version isIg[A]=(k/4m) [ Tr € (iIA/A +AgF ) ICWZV\[g'B]:_EJ Tr(d49™ '9,9)dpdr
(plus boundary termsand one integrates™'e. This is the

form of the action(9). We stress that here the terminology ik 30
“Euclidean” refers to properties of the path integral and not 127 Tr(g~"dg)°d“xdr

to the spacetime signatui@hich is encoded in the local
gauge group k3

To further justify Eq.(9) we note, first, that the equations T f Tr(g '949)%dgdr
of motion derived from it aré=; =0 andidyA;=D;A, and
they are solved by the de Sitter gauge fiédgl and second, K
the value ofl on the solution(5) coincides with that of the -3 J (97 19,9)¥dedr. (12
Euclidean Hilbert action on the metri2) with k=1/4G (see
below). Finally, and perhaps most importantly in the context
of Euclidean integrals in quantum gravity, the acti(®)
gives rise to a well defined partition function that can be
computed exactly and yields sensible answers. In a future _ _
publication[10], we shall argue that a similar approach leads 2B f Dlglexp—lcwzul 9.8]) 3
to a simplified treatment of Riemannian anti—de Sitter met-
rics, although in that case the gauge group is necessariynd can be evaluated using canonical methods. The canoni-

complex. cal Poisson brackets associated with the WZW action are
The partition function associated fis then equal to given by the SI2) Kac-Moody algebra,

The partition function thus becomes

zA(m:f D[Alexp( — [ A,B]), (10 e o yoienTe snKaws i
n:*'m c'n+m 2 n+m,0»

where the measu@[ A] denotes a sum over all gauge fields

modulo gauge transformations ahfdA, 3] is given in Eq.  \here theT? are the Fourier components of the gauge field,
(9). Note that this partition function has the right semiclassi-

cal value. Indeed, in the saddle point approximation provided

i i i 2 o .
by the de Sitter gauge fiel@) one finds A¢=g‘1a¢g: 5 n:z_ Taging, (15
ZA(B)NE e~ BY?I(16G) + m1(4G) (12)
Y Z can thus be computed as
The sum overy arises because the only fixed quantity in the k
canonical calculation ig. A saddle point approximation for ZA(B)= >, Trexp—BLo/l+27TY), (16)
2s=0

that sum yields the relatioj8= 27| which is the classical
value of y that avoids conical singularities at the horizon.
From Eqg.(11) we can associate to each state labeled lay
energy E, = ¥?1(16G) and a degeneracy(y)=exd my/
(4G)]. The de Sitter state correspondsyte 1 and has a total 1 %
entropy [adding the entropy coming from the other @ Lo= > T TP, (17)
gauge field S=S+S,==l/(2G) which is the Gibbons- k+Q nfo
Hawking value for de Sitter spa¢é1]. . o o
Our goal now is to compute the above partition function The paramete is the second Casimir in the adjoint repre-
exactly. In the exact calculation we shall re-encounter théentation. We shall be interested in the-Q limit so this
sum (11) but with discretized values of. The condition term can be neglected. The computation of the trace in Eq.
y<1, which is necessary for a sensible metric interpretatiod16) follows from [12]:
for the sum overy as conical singularities, will be protected
by the bound on the spisarising in affine SW2) represen-
tations. 3The reduction from Chern-Simons to WZW has been extensively
It is well known that Eq(10) can be reduced to a WZW  stydied in the literature. In our situation, the simplest way to
model at the boundary. The idea is that once the bulk gauggass from Eq(10) to Eq.(13) is by solving the constrairf,;=0.
degrees of freedom are eliminated, one is left with an effecalternatively, one can integrate over purely imaginary values
tive theory describing an infinite dimensional residual gaugesf A,.

wheres labels the spin of the different $P) representations
andL, is a Virasoro generator defined by
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s(s+ 1)/k2;°: _qun2+(25+ 1)n{ei(s+ knmo_ g=i(s+1+ kn)0}

Try(qtog mg) _

_ qs(s+ Dikp -1 E qkn2+(2s+ 1)n

n=—o

with  g=e ' and D=II;_,(1-gM(1-qme'%)(1
—qMe'%). Splitting the sine in Eq(18) according to sin
+y)=sin(x)cosfy)+cos§)sin(y), using the fact that in our

casef=—2qi, and assuming the main contribution in the
trace over the spin representations to come from high values

of s, one finally ends up with an effective partition function

k ; 1
sinff 27(s+ 3)]
— —1ns(s+1)/k
ZA('B) 23§=:0 D q sinh 7

©

< E qkn2+(2$+ 1)ne217kn_

n=—w

(19

In the semiclassical limik—c we can concentrate on the
numerator since it carries all tHedependence whereas the
denominator leads to a subleading contribufion.

The sum ovemn can be calculated by a saddle point ap-

proximation obtaining for the saddle point

n=o—--—r1 (20

where we have replace@=2l/y. Sincesis bounded from
above byk/2 andy<1, in the limitk—« we haven<1 and
thus the sum is well approximated loy=0.

M (1—g™(1-qgme'?)(1—q™ te ')

sin(s+kn+ 3)6]
0

smE

(18

with apparent degeneraciggs)=e?"™. We calculate the
sum(21) by a saddle point approximation. The saddle point
occurs wherg ands are related as

B=2l (23)

(2s+1)°

As we mentioned above, the values gfof the form g
=2l/y with y<1 can be interpreted as conical singularities
with an angular deficit defined by. Thus we find the series
of quantized conical singularities with

_25+1
Tk

Y (24)

which is indeed less than 1 for the allowed states23
The state withs taking its maximum valus=k/2 hasp
=2l (in the limit k—«) and corresponds to de Sitter
space. Its energy, according to BE§2), is E=1/16G and
degeneracy i®™. Adding the degeneracy associated to the
other SU2) gauge field(whose de Sitter state has the same
degeneracyyields the total entropy

27l

Sus=27k= 75

(25

We thus find an effective quantum mechanical partition

function

k

Z) B]= 252;’0 @2mSg—Bs(s+ 1)1k (21)

which should be compared with the semiclassical glith).
The energy levels are quantized and given by

s(s+1)
Bk

(22

“For the denominatoD =1I17_,(1—q")(1—q"e?*")(1—q"e 27)

we get a subleading contribution to the density of states, but Whickﬁ1

which agrees with the semiclassical approximation for the
Gibbons-Hawking entropy of de Sitter space.

Note, that in analogy with the BTZ black ho[&] the
density of states arises purely from the presence of the hori-
zon term. This raises the question of whether the density of
states could arise dynamically in the context of a theory that
does not presuppose the relati@.

Finally, we point out an interesting relation between this
calculation and the use of the twisted Sugawara construction
to produce a pair of Virasoro algebras with a classical central
charge. This discussion follows the ideas developed in
[13,14 but without making a direct connection between the
Virasoro algebras and the group of symmetries of de Sitter
space at the boundary.

The gauge field5) obeys the boundary conditions set out
Refs.[5, 14] that allow us to define a pair of Virasoro

interestingly is equal to zero for de Sitter spaegd/l=logq=
—24. But this is only the case if we neglect the fact that the tem-
perature gets renormalized in the quantum calculation. This is be-
cause the particular form of the quantum Virasoro operatode-
fined in Eq.(17) forces us to replacg by B’ =(1+Q/k) 8.

algebras at the boundary. The central charge of the algebra is

3l

c=6k= %

(26)
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as in the case of negative cosmological constant. This centrabse[5,6,7. However, the formula used in those papers is
charge is fixed in the case of negative cosmological constarmnly valid if the eigenvalueN of L, is much larger tharm.

by the condition that the Virasoro charges leave invariant thé&quation(29) shows that this is not the case. A generaliza-
anti—de Sitter metric at infinity15,13,5,16. In the present tion of the formula is straightforward and can be derived
case the only justification we have for this choice is by anafrom [17]. The improved formula reads

lytic continuation of the result df5] and that it turns out to _

give the correct result. Another difference is that in this case Q(I)=ex;{27r /C (N— c o /e (W— i)
our algebra comes from a theory of Euclidean rather than 6 24 6 24

Lorentzian metrics, since this allows us to avoid problems of (30
complex gauge group and complkx

The Virasoro operatork, andfo are defined as

_k 1 _ l
L= g [ T A tanmgs @ 5 75 @

which reduces to the formula used[#] in the case of large
N. The entropy following from this formula is

_k oo 1 B in exact agreement with the standard result.
Lo=~— A Tr (CAg)" = 2 dé= 8G This last result at least suggests that a theory in which the
(28) density of states arises dynamically is likely to have an ef-

fective central charge of|[®2G as in anti—de Sitter space.
and from this we see that de Sitter space can be defined by

the condition that the asymptotic zero modes satisfy the con- ACKNOWLEDGMENTS
ditions
We are grateful to Fay Dowker, Marc Henneaux and
Lo=c/12, fozc/12. (29 Adam Ritz for helpful conversations. M.B. was supported by
CICYT (Spain project AEN-97-1680 and also thanks the
Note that, just as in the anti—de Sitter case, the Virasordinisterio de Educacio y Cultura. T.B. acknowledges fi-
operators which yield the central charge normalized asiancial support from the German Academic Exchange Ser-
(c/12)n(n®>—1) are shifted with respect to the mass ldy  vice (DAAD). M.E.O. was supported by the PPARC, UK.
=(Lo—c/24)+(Lo—c/24). The de Sitter energy of each
sector is thenE g=c¢/24=1/16G, just as in the canonical

calculation. SNote that the use of the formu(&0) implies the assumptiofthat
It is now interesting to see whether one can extract theve have as yet been unable to veyithat Z(—1/8) is a slowly
density of states from the Cardy formula as in the black holevarying function in the region of the saddle point.
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