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Quantum three-dimensional de Sitter space
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We compute the canonical partition function of~211!-dimensional de Sitter space using the Euclidean
SU~2!3SU~2! Chern-Simons formulation of 3D gravity with a positive cosmological constant. First, we point
out that one can work with a Chern-Simons theory with levelk5 l /4G, and its representations are therefore
unitary for integer values ofk. We then compute explicitly the partition function using the standard character
formulas for SU~2! WZW theory and find agreement, in the largek limit, with the semiclassical result. Finally,
we note that the de Sitter entropy can also be obtained as the degeneracy of states of representations of a
Virasoro algebra withc53l /2G. @S0556-2821~99!05002-X#

PACS number~s!: 11.25.Hf, 04.60.Kz, 04.62.1v, 04.70.Dy
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In 211 dimensions, general relativity has been shown
be equivalent to Chern-Simons theory with a six dimensio
gauge group whose structure depends on the value of
cosmological constant and on the signature of the space
metric @1#. In this paper, we shall focus on the case o
positive cosmological constant and Euclidean metrics. T
case has the attractive feature that the gauge group is S~2!
3SU~2!, and its representations are therefore well defin
We shall compute the canonical partition function of de S
ter space by reducing the Chern-Simons theory to a boun
Wess-Zumino-Witten~WZW! theory. For related calcula
tions see@2,3#. This calculation is similar to those yieldin
the Bañados-Teitelboim-Zanelli~BTZ! black hole entropy by
considering a boundary conformal field theory either at
black hole horizon@4,5# or at spatial infinity@6,7,5#.

The metric for~211!-dimensional de Sitter space is

ds252S 12
r 2

l 2 Ddt21S 12
r 2

l 2 D 21

dr21r 2df2 ~1!

whereL51/l 2 is the cosmological constant, and the horiz
at r 5 l is that seen by an observer travelling along the tim
like geodesic atr 50. Performing a Wick rotation yields th
Euclidean de Sitter metric

dsE
25S 12

r 2

l 2 DdtE
21S 12

r 2

l 2 D 21

dr21r 2df2 ~2!
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where the periodb of the time coordinatetE (0<tE,b) is
fixed asb52p l by the requirement that the metric be e
erywhere regular. Below, we shall allow a conical singular
at r 50. This will change the value ofb such that the metric
is still regular atr 5 l .

A simple coordinate transformationr 5 l cos% makes it
clear that this is a three sphere, since

dsE
25sin2%dtE

21 l 2d%21 l 2cos2%df2. ~3!

Note that%50 describes the horizon and it is the origin
the angular coordinatetE , while the observer’s worldline lies
at %5p/2 and is the origin off. In the following, it will be
convenient to introduce a new time coordinatex0 with period
1 related totE by x05tE /b.

In computing the entropy of de Sitter space, we shall c
sider a boundary surface that encloses the Euclidean w
line of the timelike geodesic observer.~This surface may be
thought of as analogous to a surface at spatial infinity in
black hole case.! The boundary surface results from remo
ing ~a thickened version of! the observer’s worldline from
Euclidean de Sitter space. Since a three sphere can be
structed by gluing together a pair of solid tori, the remaini
space is itself a solid torus. The topology of the Euclide
manifold that we consider is thus exactly the same as for
BTZ black hole@5#.

A gravity theory of Riemannian metrics with a positiv
cosmological constant is classically equivalent to a Che
Simons theory for the group SU~2!3SU~2!. The correspond-
ing SU~2! gauge fields are

1Aa5va1
1

l
ea, 2Aa5va2

1

l
ea, ~4!

wherewa and ea are the spin connection and triad respe
tively.
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BAÑADOS, BROTZ, AND ORTIZ PHYSICAL REVIEW D59 046002
Using the metric~3! we can read off the triad and spi
connection. Actually, we shall consider a generalization
the spacetime~3! described by the two-parameter gauge fie

6A152g sin %S df7
b

l
dx0D ,

6A256d%,

6A356g cos%S df7
b

l
dx0D ~5!

from which de Sitter space is obtained forg51. The param-
eterg parametrizes the deficit angle of a conical singular
located at %5p/2 (r 50), or equivalently a holonomy
around a non-contractible loop in the solid torus. Inde
since the origin off is located at%5p/2, andAf

1 52g at
that point, the gauge field~5! has a holonomy1 for gÞ1. We
shall only consider the case 0,g<1 which, from the metric
point of view, represents an angular deficit inf. We shall see
below that the conditiong,1 will be protected quantum me
chanically by the bound in the spin (2s,k) arising in affine
SU~2! representations.

Since x0 is also an angular coordinate whose origin
located at%50, the requirement that there be no conic
singularities or holonomies at the horizon~%50! fixes
gb/ l 52p and thus

b5
2p l

g
. ~6!

Forg51 we recover the period of de Sitter space and Eq.~5!
yields the Euclidean metric~3!.

The conical singularities arising in three dimension
gravity with a non-zero cosmological constant were int
duced in @8#. Their statistical mechanical properties ha
been recently studied in@3#. Note that the presence of th
singularity provides another reason to remove the observ
wordline%5p/2 since the singularity is located at that poin
The conformal field theory lives precisely on that surface

In the following we shall consider only the positiv
chirality gauge field1A and denote it simply byA. All the
following equations can be straightforwardly generalized
include the other SU~2! field.

We work here in the canonical ensemble. The first step
defining the canonical partition function is to formula
boundary conditions. Motivated by the gauge field~5!, and
as in BTZ case@5,9#, we fix the boundary conditions a
%5p/2 to be

1Given an angular coordinateu with period 2p whose origin is
located at a pointr 50, in general, there is a holonomy aroundr
50 if the zero mode ofAu is different from zero atr 50. Suppose
A5gduJ with J any of the Hermitian SU~2! generators. This value
of A can be set equal to zero by the gauge transformatiog
5e2guJ. However,g is single valued only ifg is an integer. In this
case, the above holonomy is trivial. ForgÞn, g is multivalued and
thereforeA does have a non-trivial holonomy.
04600
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l
Af , ~7!

whereb will be the argument of the canonical partition fun
tion. Sinceb is the period of the Euclidean time coordinat
it can be interpreted as the inverse temperature. As expla
before, de Sitter space hasb52p l . Other values ofb cor-
respond to holonomies in the gauge field, and, forb.2p l ,
they can be interpreted as conical singularities.

As in @5# we shall also add a term at the horizon%50 that
imposes the constraint

A0
au%50522pd3

a ~8!

which can be achieved by using a Wilson line along t
horizon @5#.

The boundary conditions~7! and~8! are motivated by the
on-shell gauge field~5! associated to de Sitter space. How
ever, they give rise to a far bigger space. Indeed, the ph
space is infinite dimensional and is described by a ch
WZW model ~see below!.

The Euclidean action appropriate to our boundary con
tions @~8! and ~7!# is2

I E@A,b#5
k

4p E
M

ekl Tr~ iAk]0Al2A0Fkl!d
2xdx0

2
kb

4lp E
%5p/2

Tr~Af!2dfdx0

2
k

2 E
%50

Af
~3!dfdx0. ~9!

with k5 l /4G.
This choice of action requires some explanation. T

Chern-Simons action does not depend on the metric
therefore the spacetime signature does not affect its form
the Chern-Simons formulation of general relativity, the i
formation about the spacetime signature is contained in
local gauge group.

However, letk be a positive integer,G a compact Lie
group, and consider the Chern-Simons actionI @A#

5(k/4p)*M Tr e i j (2AiȦi1A0Fi j ) ~plus boundary terms!
on a manifoldM with the topologyS3S1 . We takeS1 as
the time direction and, as usual in Euclidean field theory,
relate its period with the inverse temperatureb. We now ask
the question of what is the right measure in the path integ
which produces a partition function of the form Tre2bH,
with H real and positive, and the trace being taken ove
well defined Hilbert space. If we integrateeiI @A#, one finds a
Kac-Moody algebra at levelk whose representations are we
defined, but the Hamiltonian has an unwantedib coefficient.
If, on the contrary, we integratee2I @A#, one finds the right

2We use the conventionsTa52( i /2)sa , @Ta ,Tb#52eabcT
c,

Tr(TaTb)52
1
2 dab . The total action including both chiralities i

I 5I @1A,1b#2I @2A,2b#.
2-2
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QUANTUM THREE-DIMENSIONAL de SITTER SPACE PHYSICAL REVIEW D59 046002
measuree2bH, but the representations are not well defin
because this yields a Kac-Moody algebra at levelik. The
source of this problem is not the choice of the measure
the action itself. Indeed, Chern-Simons theory is of first
der ~linear in the time derivatives! therefore its correct ‘‘Eu-
clidean’’ version is I E@A#5(k/4p)* Tr e i j ( iAiȦi1A0Fi j )
~plus boundary terms! and one integratese2I E. This is the
form of the action~9!. We stress that here the terminolog
‘‘Euclidean’’ refers to properties of the path integral and n
to the spacetime signature~which is encoded in the loca
gauge group!.

To further justify Eq.~9! we note, first, that the equation
of motion derived from it areFi j 50 and i ]0Ai5DiA0 and
they are solved by the de Sitter gauge field~5!, and second,
the value ofI on the solution~5! coincides with that of the
Euclidean Hilbert action on the metric~2! with k5 l /4G ~see
below!. Finally, and perhaps most importantly in the conte
of Euclidean integrals in quantum gravity, the action~9!
gives rise to a well defined partition function that can
computed exactly and yields sensible answers. In a fu
publication@10#, we shall argue that a similar approach lea
to a simplified treatment of Riemannian anti–de Sitter m
rics, although in that case the gauge group is necess
complex.

The partition function associated toA is then equal to

ZA~b!5E D@A#exp~2I E@A,b#!, ~10!

where the measureD@A# denotes a sum over all gauge fiel
modulo gauge transformations andI @A,b# is given in Eq.
~9!. Note that this partition function has the right semiclas
cal value. Indeed, in the saddle point approximation provid
by the de Sitter gauge field~5! one finds

ZA~b!;(
g

e2bg2/~16G!1pg l /~4G!. ~11!

The sum overg arises because the only fixed quantity in t
canonical calculation isb. A saddle point approximation fo
that sum yields the relationgb52p l which is the classica
value of g that avoids conical singularities at the horizo
From Eq.~11! we can associate to each state labeled byg an
energy Eg5g2/(16G) and a degeneracyr(g)5exp@pgl/
(4G)#. The de Sitter state corresponds tog51 and has a tota
entropy @adding the entropy coming from the other SU~2!
gauge field# S5Sl1Sr5p l /(2G) which is the Gibbons-
Hawking value for de Sitter space@11#.

Our goal now is to compute the above partition functi
exactly. In the exact calculation we shall re-encounter
sum ~11! but with discretized values ofg. The condition
g,1, which is necessary for a sensible metric interpretat
for the sum overg as conical singularities, will be protecte
by the bound on the spins arising in affine SU~2! represen-
tations.

It is well known that Eq.~10! can be reduced to a WZW
model at the boundary. The idea is that once the bulk ga
degrees of freedom are eliminated, one is left with an eff
tive theory describing an infinite dimensional residual gau
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group at the boundary. This infinite dimensional group
parametrized by a group elementg and the action is the
chiral WZW model3

I CWZW@g,b#52
ik

4p E Tr~]fg21]tg!dfdt

2
ik

12p E
M

Tr~g21dg!3d2xdt

2
kb

4lp E Tr~g21]fg!2dfdt

2
k

2 E ~g21]fg!~3!dfdt. ~12!

The partition function thus becomes

Z~b!5E D@g#exp~2I CWZW@g,b#! ~13!

and can be evaluated using canonical methods. The can
cal Poisson brackets associated with the WZW action
given by the SU~2! Kac-Moody algebra,

@Tn
a ,Tm

b #5 i eab
cTn1m

c 1n
k

2
dabdn1m,0 , ~14!

where theTn
a are the Fourier components of the gauge fie

Af5g21]fg5
2

k (
n52`

`

Tn
aeinf. ~15!

Z can thus be computed as

ZA~b!5 (
2s50

k

Trsexp~2bL0 / l 12pT0
3!, ~16!

wheres labels the spin of the different SU~2! representations
andL0 is a Virasoro generator defined by

L05
1

k1Q (
n52`

`

:T2n
a Tn

b :dab . ~17!

The parameterQ is the second Casimir in the adjoint repr
sentation. We shall be interested in thek@Q limit so this
term can be neglected. The computation of the trace in
~16! follows from @12#:

3The reduction from Chern-Simons to WZW has been extensiv
studied in the literature. In our situation, the simplest way
pass from Eq.~10! to Eq. ~13! is by solving the constraintFkl50.
Alternatively, one can integrate over purely imaginary valu
of A0 .
2-3
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Trs~qL0eiuT0
3
!5

qs~s11!/k(n52`
` qkn21~2s11!n$ei ~s1kn!u2e2 i ~s111kn!u%

Pm51
` ~12qm!~12qmeiu!~12qm21e2 iu!

5qs~s11!/kD21 (
n52`

`

qkn21~2s11!n
sin@~s1kn1 1

2 !u#

sin
u

2

~18!
e
lu
n
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with q5e2b/ l and D5Pm51
` (12qm)(12qmeiu)(1

2qme2 iu). Splitting the sine in Eq.~18! according to sin(x
1y)5sin(x)cos(y)1cos(x)sin(y), using the fact that in our
caseu522p i , and assuming the main contribution in th
trace over the spin representations to come from high va
of s, one finally ends up with an effective partition functio

ZA~b!5 (
2s50

k

D21qs~s11!/k
sinh@2p~s1 1

2 !#

sinh p

3 (
n52`

`

qkn21~2s11!ne2pkn. ~19!

In the semiclassical limitk→` we can concentrate on th
numerator since it carries all thek dependence whereas th
denominator leads to a subleading contribution.4

The sum overn can be calculated by a saddle point a
proximation obtaining for the saddle point

n5
g

2
2

1

2k
2

s

k
~20!

where we have replacedb52p l /g. Sinces is bounded from
above byk/2 andg,1, in the limit k→` we haven,1 and
thus the sum is well approximated byn50.

We thus find an effective quantum mechanical partit
function

ZA@b#5 (
2s50

k

e2pse2bs~s11!/ lk ~21!

which should be compared with the semiclassical sum~11!.
The energy levels are quantized and given by

Es5
s~s11!

lk
, ~22!

4For the denominatorD5Pn51
` (12qn)(12qne2p)(12qne22p)

we get a subleading contribution to the density of states, but wh
interestingly is equal to zero for de Sitter space2b/ l 5 log q5
22p. But this is only the case if we neglect the fact that the te
perature gets renormalized in the quantum calculation. This is
cause the particular form of the quantum Virasoro operatorL0 de-
fined in Eq.~17! forces us to replaceb by b85(11Q/k)b.
04600
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with apparent degeneraciesr(s)5e2ps. We calculate the
sum ~21! by a saddle point approximation. The saddle po
occurs whenb ands are related as

b52p l
k

~2s11!
. ~23!

As we mentioned above, the values ofb of the form b
52p l /g with g,1 can be interpreted as conical singulariti
with an angular deficit defined byg. Thus we find the series
of quantized conical singularities with

g5
2s11

k
~24!

which is indeed less than 1 for the allowed states 0<2s
<k.

The state withs taking its maximum values5k/2 hasb
52p l ~in the limit k→`! and corresponds to de Sitte
space. Its energy, according to Eq.~22!, is E51/16G and
degeneracy isepk. Adding the degeneracy associated to t
other SU~2! gauge field~whose de Sitter state has the sam
degeneracy! yields the total entropy

SdS52pk5
2p l

4G
~25!

which agrees with the semiclassical approximation for
Gibbons-Hawking entropy of de Sitter space.

Note, that in analogy with the BTZ black hole@5# the
density of states arises purely from the presence of the h
zon term. This raises the question of whether the density
states could arise dynamically in the context of a theory t
does not presuppose the relation~8!.

Finally, we point out an interesting relation between th
calculation and the use of the twisted Sugawara construc
to produce a pair of Virasoro algebras with a classical cen
charge. This discussion follows the ideas developed
@13,14# but without making a direct connection between t
Virasoro algebras and the group of symmetries of de Si
space at the boundary.

The gauge field~5! obeys the boundary conditions set o
in Refs. @5, 14# that allow us to define a pair of Virasor
algebras at the boundary. The central charge of the algeb

c56k5
3l

2G
~26!

h

-
e-
2-4



nt
ta
th

na

s
ha

o

d
o

or
a

h
l

th
ol

is

a-
ed

the
ef-

nd
by
e

-
er-

QUANTUM THREE-DIMENSIONAL de SITTER SPACE PHYSICAL REVIEW D59 046002
as in the case of negative cosmological constant. This ce
charge is fixed in the case of negative cosmological cons
by the condition that the Virasoro charges leave invariant
anti–de Sitter metric at infinity@15,13,5,16#. In the present
case the only justification we have for this choice is by a
lytic continuation of the result of@5# and that it turns out to
give the correct result. Another difference is that in this ca
our algebra comes from a theory of Euclidean rather t
Lorentzian metrics, since this allows us to avoid problems
complex gauge group and complexk.

The Virasoro operatorsL0 and L̄0 are defined as

L052
k

4p E TrS ~1Af!22
1

2Ddf5
l

8G
~27!

L̄052
k

4p E TrS ~2Af!22
1

2Ddf5
l

8G
~28!

and from this we see that de Sitter space can be define
the condition that the asymptotic zero modes satisfy the c
ditions

L05c/12, L̄05c/12. ~29!

Note that, just as in the anti–de Sitter case, the Viras
operators which yield the central charge normalized
(c/12)n(n221) are shifted with respect to the mass byM

5(L02c/24)1(L̄02c/24). The de Sitter energy of eac
sector is thenlEdS5c/245 l /16G, just as in the canonica
calculation.

It is now interesting to see whether one can extract
density of states from the Cardy formula as in the black h
e

d
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case@5,6,7#. However, the formula used in those papers
only valid if the eigenvalueN of L0 is much larger thanc.
Equation~29! shows that this is not the case. A generaliz
tion of the formula is straightforward and can be deriv
from @17#. The improved formula reads5

%~ l !5expF2pAc

6 S N2
c

24D12pAc̄

6 S N̄2
c̄

24D G
~30!

which reduces to the formula used in@5# in the case of large
N. The entropy following from this formula is

S5
p l

2G
~31!

in exact agreement with the standard result.
This last result at least suggests that a theory in which

density of states arises dynamically is likely to have an
fective central charge of 3l /2G as in anti–de Sitter space.
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