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Hidden symmetries, AdSD3Sn, and the lifting of one-time physics to two-time physics
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The massive non-relativistic free particle ind21 space dimensions, with a LagrangianL5(m/2)ṙ2, has an
action with a surprising non-linearly realized SO(d,2) symmetry. This is the simplest example of a host of
diverse one-time-physics systems with hidden SO(d,2) symmetric actions. By the addition of gauge degrees of
freedom, they can all be lifted to thesameSO(d,2) covariant unified theory that includes an extra spacelike
and an extra timelike dimension. The resulting action ind12 dimensions has manifest SO(d,2) Lorentz
symmetry and a gauge symmetry Sp(2,R). The symmetric action defines two-time physics. Conversely, the
two-time action can be gauge fixed to diverse one-time physical systems. In this paper three new gauge fixed
forms that correspond to the non-relativistic particle, the massive relativistic particle, and the particle in
AdSd2n3Sn curved spacetime will be discussed at the classical level. The last case is discussed at the first
quantized and field theory levels as well. For the last case the popularly known symmetry is SO(d2n21,2)
3SO(n11), but yet we show that the classical or quantum versions are symmetric under the larger SO(d,2).
In the field theory version the action is symmetric under the full SO(d,2) provided it is improved with a
quantized mass term that arises as an anomaly from operator ordering ambiguities. The anomalous mass term
vanishes for AdS23S0 and AdSn3Sn ~i.e., d52n). A quantum test for the presence of two-time-physics in a
one-time physics system is that the SO(d,2) Casimir operators have fixed eigenvalues independent of the
system. It is shown that this test is successful for the particle in AdSd2n3Sn by computing the Casimir
operators and showing explicitly that they are independent ofn. The strikingly larger symmetry could be
significant in the context of the proposed AdS/CFT duality.@S0556-2821~99!02104-9#

PACS number~s!: 11.30.2j, 04.62.1v, 11.25.Hf
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I. HIDDEN SO „d,2… IN ONE-TIME PHYSICS

In this section we will begin by showing some examp
of surprising non-linearly realized hidden SO(d,2) symmetry
in simple one-time-physics systems. We will then explain
true and systematic origin of these symmetries, not only
these examples but also in a host of many others, as be
simple and direct consequence of two time physics. Tw
time physics has been defined and explained in@1–4# and it
will be briefly outlined below, but the reader can understa
the symmetries discussed here from the traditional one-t
physics point of view. The main point of the examples is th
the hidden symmetry allows us to embed standard one-
physics in a larger spacetime with one more spacelike
one more timelike dimensions as compared to standard
time physics. The lifting to higher dimensions is done w
the addition of gauge degrees of freedom such that div
actions for one-time-physics systems converge to thesame
unified action in two-time physics that also has an Sp(2R)
gauge symmetry. The Sp(2,R) acts on position and momen
tum (XM,PM) as a doublet. This establishes an Sp(2,R) du-
ality symmetry among the diverse one-time-physics syste
There are consequences and some tests of two-time-ph
as will be illustrated in Sec. II.

A. Non-relativistic particle

1. Hidden symmetry

Consider the free massive non-relativistic particle ind
21 space dimensions with the action
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S5E dt
1

2
mṙ2. ~1!

We will discuss this simple example from different angl
because it serves as a prototype for understanding the m
complicated cases. The case of the massless relativistic
ticle ~with and without spin! discussed in@1,3# can also serve
as a prototype, but it is perhaps not sufficiently complica
to illustrate some of the issues.

As is well known, the obvious symmetry of this system
described by the Galilean group consisting of rotatio
SO(d21) and translationsTd21 in (d21) dimensions. The
Hamiltonian H5p2/2m commutes with the generators o
these symmetries. Until now there has not been any clue
this system has a higher symmetry structure. However, it
be checked that the action~not the Hamiltonian! is symmet-
ric under the larger symmetry SO(d,2) as follows.

Define a basis for an SO(d,2) vector with an indexM
5(18,28,0,i ), with i 51,2, . . . ,(d21) denoting the space
coordinates as inr i . The parameters of SO(d,2) form an
antisymmetric matrix«MN with independent component
«1828 ,«180 ,«280 ,«18 i ,«28 i ,«0i ,« i j , where the last« i j are
the parameters for rotations for the linearly realized rotatio
SO(d21). The hidden SO(d,2) symmetry of the action
above is obtained by the followingoff-shell linear and non-
linear transformations ofr (t)
©1999 The American Physical Society19-1
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dr i~t!5« i j r
j1«1828~r i22t ṙ i !1«180

2t~r i2 ṙ it!

A~r2t ṙ !2

1«280F ṙ iA~r2t ṙ !22
t ṙ2

2

~r i2 ṙ it!

A~r2t ṙ !2G2«18 it

1«28 jF2r i ṙ j1r j ṙ i2r–ṙd i j 1t ṙ i ṙ j1t
ṙ2

2
d i j G

1«0 jF2d i jA~r2t ṙ !21
t ṙ j~r i2ṙ it!

A~r2t ṙ !2 G . ~2!

Note the explicitt, in addition to the implicitt in r i(t),
which will be related below to a gauge transformation. T
Lagrangian transforms into a total derivatived( ṙ2/2)
5]tL(t,«MN), with L(t,«MN) given by

L~t,«MN!52«1828t ṙ2

2«180Ft ṙ–~r2t ṙ !

A~r2t ṙ !2
1

1

2
A~r2t ṙ !2G

1«280F ṙ2

2
A~r2t ṙ !22

t ṙ2

2

ṙ–~r2t ṙ !

A~r2t ṙ !2
G

2«18 ir
i1«28 jF2 ṙ j ṙ–r1r j

ṙ2

2
1t ṙ j ṙ2G

1«0 jF t ṙ j
ṙ–~r2t ṙ !

A~r2t ṙ !2
G . ~3!

Hence the action is symmetric under SO(d,2).

2. Generators

The generators of this SO(d,2) symmetry can be derive
by using a generalized Noether theorem. Using canon
variablesr (t),p(t)5mṙ (t) they are given at anyt by

SO~d21!:Li j 5r ipj2r jpi ~4!

SO~1,2!:

5 L182852S r2t
p

mD –p, L18052mAS r2t
p

mD 2

,

L28052
p2

2m
AS r2t

p

mD 2

,

~5!

L18 i52mS r i2t
pi

mD , L0i5piAS r2t
p

mD 2

~6!
04501
e

al

L28 i52
p2

2mS r i2t
pi

mD1p•S r2t
p

mDpi

m
. ~7!

The Poisson brackets of theseLMN(t) form the SO(d,2)
algebra at everyt ~which is treated as a parameter!

$LMN,LRS%5hMRLNS1hNSLMR2hNRLMS2hMSLNR,
~8!

including the SO(1,2) and SO(d21) subalgebras as indi
cated. Furthermore, theLi j together withpi;L0i /L180 form
the Galilean subalgebra, which is the familiar symmetry
the non-relativistic particle. The Galilean generators are
only ones that do not have explicitt dependence. The gen
eral t dependentLMN generate the new hidden SO(d,2)
symmetries of the action~1!. Thet dependent terms may b
regarded as generatingt-dependent local transformation o
the independentoff-shelldynamical variablesr (t),p(t).

The SO(d,2) transformations of the independent cano
cal degrees of freedomr ,p are obtained at anyt by evaluat-
ing the Poisson brackets while treatingt as a parameter

dr i~t!5
1

2
«MN$LMN~t!,r i~t!%,

~9!

dpi~t!5
1

2
«MN$LMN~t!,pi~t!%.

Under these transformations the first order form of the act

S5E
0

T

dtS ṙ–p2
p2

2mD , ~10!

is invariant under SO(d,2). Here r (t),p(t) are treated as
independentoff-shell fields whoset dependence are unre
lated to each other. However, if they are related to each o
by using the equation of motion for momentump5mṙ , then
the dr i of Eq. ~9! reduces to thedr i in Eq. ~2! which corre-
sponds to the transformation law for the invariance of
action ~1! in the second order form.

It can be checked that the SO(d,2) generators can be re
written formally as the antisymmetric product of two (d
12)-dimensional vectors in the form

LMN5X0
MP0

N2X0
NP0

M ~11!

with

M5~18,28,0, i ! ~12!

X0
M5S t,

r–p

m
2

tp2

2m2
,AS r2t

p

mD 2

,r i D ~13!

P0
M5S m,

p2

2m
,0,pi D . ~14!

These satisfyX0
25P0

25X0•P050 with a metrichMN , such
that h1828521,h00521, h i j 5d i j . This is the metric in-
variant under SO(d,2) with two timelike dimensions.
9-2
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3. Lifting to two-time physics

The SO(d,2) symmetry with this structure implies that th
non-relativistic particle action can be lifted to a manifes
SO(d,2) symmetric form by the addition of gauge degrees
freedom. From the form of Eq.~11! we can deduce that th
manifestly symmetric form of the symmetry is the Loren
symmetry SO(d,2) realized linearly on a vectorXM(t) and
its canonical conjugatePM(t). These describe a particle~0-
brane! in a spacetime withd spacelike and 2 timelike dimen
sions (XM,PM are lifted forms ofX0

M ,P0
M including gauge

degrees of freedom!. This shows that the non-relativistic pa
ticle is connected to the realm of two-time physics, a form
lation that also has a sufficiently large gauge symme
Sp(2,R) to kill all ghosts and connect back to one-time phy
ics as discussed in recent papers@1–4#.

The Sp(2,R) gauge theory for zero branes takes the fo
@1#

S05
1

2E0

T

dt~DtXi
M !« i j Xj

NhMN

5E
0

T

dtS ]tX1
MX2

N2
1

2
Ai j Xi

MXj
NDhMN . ~15!

The canonical conjugates areX1
M5XM and ]S/]Ẋ1

M5X2
M

5PM. They are consistent with the idea that (X1
M ,X2

M) is the
Sp(2,R) doublet (XM,PM). The symmetricAi j are the 3
gauge potentials of Sp(2,R). The equations of motion forAi j

give the first class constraints

X•X5X•P5P•P50 ~16!

that form the Sp(2,R) Lie algebra. The action is evidentl
symmetric under SO(d,2). The generators are gauge inva
ant

LMN5Xi
MXj

N« i j 5XMPN2XNPM. ~17!

In this form all components ofXM andPM are canonical and
dXM,dPM are obtained by using the basic Poisson brack
dXM5 1

2 «RS$L
RS,XM%, etc. In this fully covariant approac

the constraints are applied on the states, as discusse
@1–4#.

The three gauge choices that reduce the general syste
the non-relativistic particle are

X18~t!5t, P18~t!5m, P0~t!50. ~18!

After solving the three constraints~16! explicitly in this
gauge, XM(t) and PM(t) take the form given in Eqs
~13!,~14! . Note that the non-relativistic particle action~10!
can then be written as

S5E dt ]tX0•P05E
0

T

dtS ṙ–p2
p2

2mD . ~19!
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This follows from the fully gauge invariant and SO(d,2)
invariant two-time-physics action~15! after the gauge
~13!,~14! has been inserted.

4. An intermediate gauge

It is also interesting to consider an intermediate gau
For example, if we choose only two gaugesP18(t)
5m, P0(t)50 and solve two constraintsX25X•P50,
there remains one gauge freedom and one constraint. T
XM,PM are parametrized in terms of thed canonical degrees
of freedom „t(t),r i(t)… and their canonical conjugate
„H(t),pi(t)… as follows:

M5~18,28,0,i !

XM5S t,
r–p

m
2t

H

m
,Ar222

tr–p

m
12

H

m
t2, r i D ~20!

PM5~m,H,0,pi !. ~21!

We derive the dynamics for the remaining degrees of fr
dom t,r ,H,p by inserting this gauge fixed form in the orig
nal action~15!. The result is a one-time action given by

S5E
0

T

dtS ]tX
MPN2

1

2
A22~22mH1p2!2020D

~22!

5E
0

T

dtF2H]tt1pi]tr
i2

1

2
A22~22mH1p2!G .

~23!

We have dropped a total derivative term]t(r–p) that does
not contribute to the dynamics. The last form of the acti
confirms that (t,H) and (r,p) are canonical conjugates wit
Poisson brackets

$t,H%521, $r i ,pj%5d i j . ~24!

The A22 equation of motion gives the constraintH
5p2/2m. This is the same as theP250 constraint. The re-
maining local symmetry corresponds tot reparametrizations
In the gauget(t)5t the dynamics describes the free nonr
ativistic massive particle. In fact, if this additional gauge
chosen the action reduces to Eq.~10!.

We expect that this form of one-time-physics action~23!
is also symmetric under SO(d,2). To construct the genera
tors we insert the gauge choice of Eqs.~20!,~21! in the gauge
invariant LMN of Eq. ~17!. At the classical level, without
watching orders of operators, they are given by~now there is
no explicit t dependence!
9-3
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SO~d21!: Li j 5r ipj2r jpi ~25!

SO~1,2!: 5 L182852tH2r–p, L18052mAr222t
r–p

m
12

H

m
t2,

L28052HAr222t
r–p

m
12

H

m
t2,

~26!

L18 i5tpi2mr i , L28 i52t
H

m
pi1

r–p

m
pi2Hr i , ~27!

L0i5piAr222
tr–p

m
12

H

m
t2. ~28!
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Using the basic Poisson brackets~24! it can be shown tha
theseLMN form the SO(d,2) algebra. They also generate t
transformation rules fort,H,r i ,pi by evaluating the Poisso
bracketsdt5 1

2 «MN$LMN,t%, etc. The action is not invarian
under these transformations alone; for invariance one m
also transform A22. The reason is that the constrai
(22mH1p2) that multipliesA22 in the action is not invari-
ant, but transforms into itself with an overall factor

d~22mH1p2!5g~«MN ,t!~22mH1p2!, ~29!

where

g~«MN ,t!5S pj~t!

m
«28 j2«1828

1

t~t!S «1801
H~t!

m
«2802«0 j

pj~t!

m
D

Ar2~t!22t~t!
r ~t!–p~t!

m
12

H„t…

m
t2~t!

D .

~30!

This term is cancelled by takingdA22522A22g(«MN ,t).
This factor can be understood as follows. Recall that whe
gauge is fixed the new generatorsLMN perform a naive
SO(d,2) transformation~that disturbs the gauge! followed by
an Sp(2,R) gauge transformation~that restores the gauge!.
The constraints~16! transform as a triplet under the restorin
gauge transformation. Since two of the constraints are
ready zero explicitly, the third one transforms into itself wi
an overall factord(P2)5g(«MN)3P2, and this must be
compensated by the transformation of the gauge fielddA22

as given above.
04501
st

a

l-

5. Field theory

When we do not make the last gauge choice the remain
constraint must be applied on the states. A complete Hilb
space for the quantum theory is given in configuration sp
as ut,r &. The physical subset of statesuc& are those that
satisfy the constraint

S H2
p2

2mD uc&50. ~31!

In terms of the wave function in configuration spacec(t,r )
5^t,r uc& the physical state condition takes the form of t
non-relativistic Schro¨dinger equation

i ] tc~ t,r !52
¹2

2m
c~ t,r !. ~32!

The effective field theory that reproduces this equation is

Se f f5E dtdr F ic* ] tc2
1

2m
¹c* •¹cG . ~33!

The norm of the physical state is then given by integrat
the time component of the probability current at fixed tim

^cuc&5E dd21rc* ~ t,r !c~ t,r !. ~34!

This norm is independent oft due to the conservation of th
probability current„c* c,(c* ¹c2¹c* c)/2im… as a result
of the physical state condition~32!.

Now we ask the question: is the field theoretic version
the theory also SO (d,2) invariant under the transformation

dc~ t,r !5
i

2
«MN^t,r zLMNuc&5

1

2
«MN~ L̂MNc!~ t,r !

~35!

where L̂MN are differential operators obtained from the o
eratorsLMN in Eqs. ~25!–~28! by replacingH5 i\] t , and
p52 i\¹ as applied onc(t,r ). The correct quantum opera
9-4
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tors to all orders of\ must correspond to a particular ord
of the canonical operatorst,H,r ,p, but we have not at-
tempted to find the order. Here we face a difficult proble
with the non-linear form of theLMN since an infinite numbe
of possibilities of ordering of an infinite series is possib
Therefore we have not been able to give a definitive ans
to this question.1 It would be amazing if one can find a
ordering of operators that would give SO(d,2) invariance for
the non-relativistic Schro¨dinger field theory action~33!. If
there is no such order, it would imply that the quantu
theory in the form~33! produces anomalies that break t
SO(d,2) symmetry. If this is the case one may ask if there
an anomalous term that can be added to the field theor
yield the correct quantum version with an SO(d,2) symme-
try. This question remains open for now.

B. Massive relativistic particle

1. Lifting to the intermediate SO(d21,1) covariant gauge

To understand better the hidden symmetries and their
gins it is useful to start with the fully gauge fixed form of th
relativistic massive particle action and first lift it to the inte
mediate gauge which is manifestly SO(d21,1) Lorentz co-
variant. The answer is well known, but by using similar ste
as the previous section it may be helpful to make analog
to the non-relativistic case, thus clarifying some conce
that may have remained hazy to the reader. Consider
action for the massive relativistic particle

S5mE
0

T

dtA12 ṙ2, ~36!

which as Eq.~1! is also symmetric under rotations and tran
lations. This action has a ‘‘hidden’’ off-shell symmetry un
derdr (t)5b it2b•r (t) ṙ i(t), whereb i are constant param
eters, since the Lagrangian transforms into a total deriva

dA12 ṙ25]t@r•bA12 ṙ2#. Using a generalized Noether’
theorem one can derive the generator of this transformat
and by writing it in terms of the canonical variable

r (t),p(t)5mṙ /A12 ṙ2 in the form

K i~t!5tpi~t!2r i~t!Ap2~t!1m2, ~37!

one can recognize that it is the generator of relativis
boosts. Thedr (t) used above can be written as the Poiss
bracketdr (t)5$2b–K (t), r i(t)%. Note the explicitt de-
pendence inK i(t) and in dr i(t) which is analogous to the
explicit t that appeared in the previous non-relativistic ca
Although the action is symmetric under the boosts,
HamiltonianH5Ap21m2 is not symmetric, but transform
under them in a well defined manner. We can compare
‘‘hidden’’ boost symmetry of Eq.~36! to a subset of the
hidden symmetries SO(d,2) of Eq. ~1!.

1The analogous question for the AdSd2n3Sn will be answered in
the affirmative in the last section.
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The ‘‘hidden’’ boost symmetry can be made manifest
lifting the action~36! to its well known Lorentz symmetric
form

S5mE dtA2~ ẋm!2. ~38!

To do this lifting we must add gauge degrees of freedom
then the action is gauge invariant undert-reparametrizations
As is well known this action can be rewritten in the fir
order form by introducing the canonical momentumpm(t)
and an einbeinA22(t) that plays the role of a Lagrange mu
tiplier to implement the constraint on this momentum

S5E
0

T

dtF ẋmpm2
1

2
A22~pm

2 1m2!G . ~39!

Integrating outpm and A22 gives back Eq.~38!. This form
should be compared to the non-relativistic case in Eq.~23!.
The generators of the Lorentz symmetry are now given
terms of canonical variablesLmn5xmpn2xnpm while the
constraint is applied on the physical states. Fixing the ga
x0(t)5t reduces the action~38! back to Eq.~36! while L0i

becomes theK i(t) of Eq. ~37!.

2. Lifting to two-time physics

We now note the surprising SO(d,2) symmetry of the
action ~39! as follows. Using the basis for a
(d12)-dimensional vector with indexM5(08,18,m) the pa-
rameters of SO(d,2) are given as an antisymmetric tens
with components«0818 ,«08m ,«18m ,«mn . The last«mn corre-
spond to the linearly realized Lorentz symmetry. The f
linearly and non-linearly realizedoff-shellSO(d,2) transfor-
mation is

dxm5«mnxn2«0818

xmx•p

Am2x21~x•p!2

1«18nFhnm
x•p

m
1

pn

m
xmG

2«08nF pn

m

xmx•p

Am2x21~x•p!2
1hnm

Am2x21~x•p!2

m G
~40!

and

dpm5«mnpn1«0818

m2xm1x•p pm

Am2x21~x•p!2
2«18nFhnmm1

pn

m
pmG

2«08npn
m2xm1x•p pm

Am2x21~x•p!2
~41!

and
9-5



c

e

g

g
g
r

n

two
sions

lar
and
alt
at

,
.

y in

n
an
r

he

ng

e
y-

ITZHAK BARS PHYSICAL REVIEW D 59 045019
dA225A22F S «08181«08n

pn

m D x•p

Am2x21~x•p!2
12«18n

pn

m
G1«18n

ẋn

m
.

~42!

This transformation gives a total derivativedL
5]tL(«MN ,t) with

L~«MN ,t!5«0818Am2x21~x•p!21«18npnx•p2m«18nxn

1«08n

pn

m

~x•p!2

Am2x21~x•p!2
. ~43!

Hence the action~39! is invariant.
The generators of this transformation are

L08185Am2x21~x•p!2, L08m5pmAm2x21~x•p!2

~44!

L18m52
x•p

m
pm2mxm, Lmn5xmpn2xnpm.

~45!

They close under Poisson brackets to form the SO(d,2) Lie
algebra.

These generators are written in the form of cross produ

LMN5X0
MP0

N2X0
NP0

M ~46!

with

M5~08,18,m!

X0
M5SAx21S x•p

m
D 2

,2
x•p

m
,xmD ~47!

P0
M5~0,m,pm!. ~48!

These satisfyX0
25X0•P050 while P0

25p21m2, with the

metric 2h08085h181852h080851 and hmn5Minkowski.
This form suggests that we may lift the system to two-tim
physics.

Therefore we may start from the Sp(2,R) gauge symmet-
ric two-time physics action~15!, choose the two gauges

P08~t!50, P18~t!5m, ~49!

and solve the two constraintsX25X•P50. The result is the
gauge fixed form~47!,~48!. The dynamics of the remainin
degrees of freedom (xm,pm) is obtained by inserting the
gauge fixed form~47!,~48! into the two-time physics action
~15!. The result is the one-time-physics action~39! for the
relativistic particle. This action has one remaining gau
symmetry (t reparametrization! and imposes the remainin
constraint P25p21m250 as the equation of motion fo
A22.

This shows that both the relativistic and the no
relativistic particle are lifted to thesametwo-time-physics
04501
ts

e

-

action. Hence to an observer in two-time physics these
systems are the same, since they are just gauge fixed ver
of the same theory.

C. Particle on AdSd2n3Sn

A particle moving in the curved background AdSd2n
3Sn is described by the action

S5E
0

T

dt„Gmn
AdS~x!ẋmẋn1Gab

Sn
~y!ẏaẏb

…, ~50!

where m50,1, . . . ,d2n21 and a51,2, . . . ,n. There are
many ways of parametrizing the AdS metric. The particu
parametrization used below is convenient for discussing
resolving the quantum ordering problem which will be de
with in the next section. The point that we will make is th
for AdSD3Sn the full symmetry of the action is SO(D
1n,2). Furthermore, as long asD1n5d is a constant the
various models distinguished byn are Sp(2,R) dual to each
other because they are obtained from the same Sp(2R)
gauge symmetric two-time-physics action by gauge fixing

As in the previous cases, the larger SO(d,2) symmetry
comes as a surprise since the popularly known symmetr
this background is SO(d2n21,2)3SO(n11) which is
smaller than SO(d,2). For example, we claim that the actio
for AdS3 alone has SO(3,2) symmetry which is larger th
the popularly known SO(2,2). Similarly the action fo
AdS53S5 has SO(10,2) symmetry which is larger than t
popularly known SO(4,2)3SO(6); and theaction for
AdS43S7 or AdS73S4 has SO(11,2) symmetry.

Instead of lifting the AdSd2n3Sn action ~50! to the two-
time-physics action~15!, we will construct Eq.~50! as a
gauge fixed form of Eq.~15!. Lifting would correspond to
the reverse process.

Consider the (d12)-dimensional vectorsXM,PM in the
basis M5(18,28,m,i ) for m50,1, . . . ,d2n21 and i

51,2, . . . ,n11. The metric is h1828521,h i j 5d i j and
hmn 5 Minkowski. We choose two gauges by demandi
uXi u51 and P1850. Then the unit vectorXi5ui /uuu[Vi

describes a sphereSn as the boundary of a ball inn11
dimensions. The radius of the balluXi u is one of the coordi-
nates that has been gauge fixed to 1. The constraintsX2

5X•P50 are solved by the following parametrization:

M5~18,28,m,i !

XM5S uuu,
11u2x2

2uuu
,uuuxm,

ui

uuu D ~51!

PM5S 0,2
u–k

uuu
1

x•p

uuu
,
pm

uuu
,S uuuk i22k–u

ui

uuu D D .

~52!

The bold vectorsui ,k i are inn11 dimensions andxm,pm are
in d2n21 dimensions. Forn50 we replaceui /uuu by 1.
Inserting this gauge fixed form into the original two-tim
physics action~15! gives an action that determines the d
namics ofxm(t),pm(t),ui(t),k i(t)
9-6
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S5E dtS p• ẋ1k•u̇2
1

2
A22S p2

u2
1u2k2D D ~53!

→E dt
1

2A22S u̇2

u2
1u2ẋ2D ~54!

5E dt
1

2A22S u̇2

u2
1u2ẋ21V̇2D . ~55!

The second form of the action is obtained by integrating
the momenta. From the first line we see that the vec
pm,k i are indeed the canonical conjugates toxm,ui respec-
tively. The last line is obtained by making a transformati
from Cartesian coordinates to spherical coordinatesui

5uVi . This action describes the particle in the curved ba
ground AdSd2n3Sn with metric

ds25u2~dxm!21
~du!2

u2
1~dV!2

where thed2n coordinates of AdSd2n are (xm,u) and then
coordinates ofSn are those that parametrize the unit vec
Vi embedded inn11 dimensions. This form of the metri
has been used in recent discussions of the proposed
conformal field theory~CFT! duality @6#, and we find it use-
ful for the discussion of operator ordering that will be de
with in the next section.2 There are many other possible p
rametrizations of the AdS metric. Each one of them w
correspond to some form of gauge choice in our formalis
For such other gauge choices for AdS see@4# and @3#.

The point here is that our construction shows that
symmetry of the action is SO(d,2) which is larger than the
popularly known SO(d2n21,2)3SO(n11). In our ap-
proach the SO(d,2) generators are obtained by inserting t
gauge fixed forms ofX0

M andP0
M given in Eqs.~51!,~52! into

the gauge invariantLMN of Eq. ~17!. At the classical level
~operator ordering ignored! we obtain LMN5X0

MP0
N

2X0
NP0

M in the form

L182852u–k1x•p, L18m5pm, L18 i5u2k i22k–uui

~56!

L28m5
pm

2u2
1u–kxm1

1

2
x2pm2x•pxm ~57!

L28 i5
1

2
k i1

x2

2
~u2k i22k–uui !2x•p

ui

u2
~58!

2There is a similarity between our parametrization and one use
@5#, however our’s treats the radius of AdS or the sphere~here
scaled toR51) as an additional coordinate that has been ga
fixed @i.e., uXi(t)u5R51]. This additional coordinate together wit
the global and gauge symmetries of the action~15! is what permits
us to have the larger symmetry SO(d,2).SO(d2n21,2)3SO(n
11).
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Lmn5xmpn2xnpm, Li j 5uik j2ujk i ~59!

Lm i5xm~u2k i22k–uui !2pm
ui

u2
. ~60!

By using the basic Poisson brackets among (u,k),(xm,pm) it
is easily seen that these form the SO(d,2) algebra

$LMN,LRS%5hMRLNS1hNSLMR2hNRLMS2hMSLNR.
~61!

The generators for the subgroup SO(n11)3SO(d2n

21,2) are Li j and (Lmn,L1828,L18m,L28m) respectively.
The additional symmetry generators that complete
SO(d,2) areL18 i ,L28 i ,Lm i . It is well known that the action
~54! is symmetric under SO(n11)3SO(d2n21,2). To
show that it is also symmetric under the full SO(d,2) it is
sufficient to show that it is symmetric under theLm i since the
remainingL68 i are obtained from these by SO(d2n21,2)
rotations. The transformations generated byLm i are given by
evaluating the Poisson bracketsdui5$«n jL

n j ,ui%, dxm

5$«n jL
n j ,xm%:

dui52«n j xnuju
i2xn«n iu2, dxm5«m j

uj

u2
. ~62!

The Lagrangian transforms as follows:

dS u̇2

u2
1u2ẋ2D 5~2«m ix

mui !S u̇2

u2
1u2ẋ2D .

This is equivalent to a conformal rescaling of the met
which can be cancelled by a transformation of the einbe

dA225~2«n j xnuj !A
22. ~63!

Therefore the action for a particle on AdSd2n3Sn is invari-
ant under SO(d,2) for all n.

II. SO„d,2… GENERATORS IN FIRST QUANTIZATION

Since the AdSd2n3Sn case is of current interest due t
the proposed AdS-CFT duality@6#, we will also discuss the
first quantized theory in that gauge. We will resolve quant
ordering ambiguities in the generators of SO(d,2), and then
compute the quadratic Casimir eigenvalue of SO(d,2) for all
values ofn at fixed d, to show that these gauge invaria
quantities are independent ofn and are the same as thos
computed in other gauges, namelyC2„SO(d,2)…512d2/4.
This confirms the gauge invariant prediction of two-tim
physics, thus verifying its presence.

The full physical information of the theory is contained
the gauge invariant LMN. Using the constraintsX25P2

5X•P50 it is straightforward to show that all the Casim
operators of SO(d,2) vanish at the classical level

classical: Cn„SO~d,2!…5
1

n!
Tr~ iL !n50. ~64!

in
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In the first quantized theory theCn„SO(d,2)… are not zero
after taking quantum ordering into account. Since theLMN

are gauge invariant we must find the same eigenvalues in
gauge. First consider the SO(d,2) covariant quantization
without choosing any gauges, as treated in@1#. In this case
all components of (XM,PM) are independent canonical d
grees of freedom and the first class constraints are applie
the states. The constraints form the Sp(2,R) algebra. The
states are labelled simultaneously by the Casimir opera
of Sp(2,R) as well as the Casimir operators of SO(d,2) since
these groups commuteuC2„Sp(2,R)…,Cn„SO(d,2)…&. We
need to find their eigenvalues for physical states. The follo
ing relations are proven by writing out all the Casimir ope
tors in terms of X,P. First, all Casimir eigenvalue
Cn„SO(d,2)… are rewritten in terms ofC2„SO(d,2)… and d.
For example C3„SO(d,2)…5(d/3!)C2„SO(d,2)…. Second,
the quadratic Casimir operator of Sp(2,R) is related to the
quadratic Casimir operator of SO(d,2). Third, since physica
states are gauge invariant, the quadratic Casimir operato
Sp(2,R) must vanish in the physical sector. The last con
tion fixes all the Casimir eigenvalues for SO(d,2) to unique
non-zero values in terms ofd. Therefore the quantum syste
can exist only in a unique unitary representation of SO(d,2)
characterized by

quantum: C2„Sp~2!…50, 5
C2„SO~d,2!…512

d2

4
,

C3„SO~d,2!…5
d

3!S 12
d2

4 D ,

•••.
~65!

The first quantization of the theory in several one-tim
physics gauges~massless relativistic particle, H-atom, ha
monic oscillator, and all of these with spin! has already been
performed elsewhere@1–3#, and the correct value of the Ca
simir operators~which change with spin! have been ob-
tained, in agreement with the prediction. Hence for th
diverse systems the Hilbert space corresponds to the s
unique representation of SO(d,2). This establishes a
Sp(2,R) duality among these systems at the quantum le
This may be considered a successful test of the unificatio
the form of two-time physics at the quantum level.

Now we consider the first quantized theory in t
AdSd2n3Sn gauge. We want to find the correct operat
ordering of the generators in the quantum theory and t
compute the quadratic Casimir eigenvalue. We must find
C2„SO(d,2)…512d2/4 since this is the prediction of th
gauge invariant two-time physics. Confirming this result
tantamount to the presence of two time physics in the o
time quantum theory of the AdSd2n3Sn particle, and to es-
tablishing that the Hilbert space is the same as the o
cases already mentioned.

With operator ordering taken into account the quant
generators have the form

LMN5uuu2d/21n12L0
MNuuud/22n22. ~66!
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Evidently the factors ofuuu6(d/22n22) drop out in the classi-
cal theory, but they are essential for the correct symme
generators in the quantum theory as proved in the last sec
@see Eq.~97!#. The ~non-unitary looking! similarity transfor-
mation with theuuud/22n22 will be explained in the next sec
tion. This transformation is required for Hermiticity of th
generators according to a scalar product defined in Eq.~90!
that is appropriate for an AdS covariant quantization sche
The LMN are Hermitian in the physical Hilbert space pr
vided theL0

MN are the following operator ordered versions
the classical generators~56!–~60!:

L0
18285

1

2
~x•p1p•x2u–k2k–u!1 i ~67!

L0
18m5pm, L0

18 i5V i~u,k! ~68!

L0
28m5

1

2
xnpmxn2

1

2
x•pxm2

1

2
xmp•x2 ixm

~69!

1
pm

2u2
1

1

2
~u–k1k–u!xm ~70!

L0
28 i5

1

2
k i1

x2

2
V i~u,k!2

1

2
~x•p1p•x12i !

ui

u2

~71!

L0
mn5xmpn2xnpm, L0

i j 5uik j2ujk i ~72!

L0
m i5xmV i~u,k!2pm

ui

u2
. ~73!

V i(u,k) is the operator ordered version of the classical
pressionu2k i22k–uui

V i~u,k!5ukk iuk2uik–u2u–ku i ~74!

5u2k i2ui~u–k1k–u! ~75!

5k iu22~u–k1k–u!ui . ~76!

Some of its interesting properties are

F ui

u2
,V j G5 id i j , @V i ,V j #50, V25u2k2u2 ~77!

@k i ,V j #522iL i j 1 id i j ~u–k1k–u! ~78!

@ui ,V j #5 id i j ~u222uiuj !, @ uuu,V j #52 i uuuuj .
~79!
9-8
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These may be used to verify the closure of the algebra a
quantum level.3 Sinceuuu6(d/22n22) is a similarity transfor-
mation, the commutation relations are the same forLMN or
L0

MN at the quantum level.
The quadratic Casimir operator may now be computed

L0
MN or LMN. All operators cancel and it reduces to a pu

number independent ofn for all AdSd2n3Sn

C2„SO~d,2!…512d2/4. ~80!

This is the correct value imposed by the overall structure
two-time physics as given in Eq.~65!. The similarity trans-
formation of Eq.~66! cannot change the Casimir operator

Cn~LMN!5uuu2d/21n12Cn~L0
MN!uuud/22n225Cn , ~81!

since they are pure numbers.

III. FIELD THEORY IN AdS d2n3Sn BACKGROUND

As seen from the action~53! the equation of motion for
A22 generates the classical constraint

P25S p2

u2
1u2k2D 5Gmnpmpn50, pm[~pm ,k i !.

~82!

In the quantum theory the constraint is applied on the Hilb
space to find the physical states which are annihilated b

~ :Gmnpmpn : !uf&50. ~83!

The columns (:) indicate that the operator form of the co
straint must first be defined by resolving ambiguities in
ordering of the operators. This must be done in such a wa
to preserve the SO(d,2) symmetry of the system.

One possible ordering follows from the definition of L
placian in general relativity. This is guaranteed to prese
the symmetries SO(d2n21,2)3S(n11) of the background
AdSd2n3Sn, so it is a good starting point. In configuratio
space the constraint on the wave functionf(xm,ui)
5^xm,ui uf& takes the form of the Laplace equation

]m„A2GGmn]nf~xm,ui !…50. ~84!

This follows from the effective action Se f f

5 1
2 *ddXA2G(Gmn]mf]nf). Using

3The following change of variablesr i5ui /u2,pi5V i(u,k) is a
canonical transformation at the quantum level. With this subst
tion one may notice that the generators of SO(d,2) take the same
form we found in @1# for the free massless relativistic particl
Hence the computation of the Casimir operator is easily explain
This may also shed light on the overall structure of the genera

and helps explain the anomaly termsi in L1828, 2 ixm in L28m,

andiui /u2 in L0
28 i , as due to Hermiticity in Lorentz covariant quan

tization in flat space. The AdS covariant quantization introduces
further anomaly terms generated by the similarity transforma
uuu6(d/22n22) given in Eq.~66!.
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Gmn5S u2hmn 0

0
1

u2
d i j
D , A2G5ud22n22, ~85!

Gmn5S 1

u2
hmn 0

0 u2d i j
D , ~86!

we find the effective action

Se f f
0 ~f!5

1

2E dd2n21xdn11u~ud22n24]mf* ]mf

1ud22n] if* ] if! ~87!

5
1

2
^fu~ uuud22n24p21k i uuud22nk i !uf&.

~88!

The norm of the state is not^fuf&5*f* f, but rather it is
defined by the scalar product (f,f)5*dSmJm, using the
conserved probability currentJm5A2GGmn(f* i ]nf
2 i ]nf* f), by integrating over a spacelike surface, such
fixed time

~f,f!5E
x05 f ixed

A2GG0n~f* i ]nf2 i ]nf* f! ~89!

5E
x05 f ixed

~dd2n22x!~dn11u!uuud22n24

3~f* i ]0f2 i ]0f* f!. ~90!

The adjoint of an operator and its Hermiticity in the physic
Hilbert space must be defined relative to this scalar prod
This approach defines theAdS-covariant quantization
schemeconsistent with field theory. The operatorsLMN de-
fined in the previous section are Hermitian according to
scalar product in this quantization scheme. This explains
reason for the similarity transformationuuu6(d/22n22) and the
other insertions ofi in Eqs. ~66!,~67!–~73!. The analog of
this approach for Lorentz covariant quantization of the re
tivistic particle in flat space, with and without spin, was d
cussed in@1,3#.

The Laplace equation may be written in operator fo

Ŝ0uf&50, where

Ŝ05uuud22n24p21k i uuud22nk i . ~91!

This is just the constraint condition with a particular order
operators. Thus, general covariance imposes a particula
der. To check the symmetries of the effective field theo
action Se f f(f) for this order of operators we transform th
wave function

duf&52
i

2
«MNLMNuf&, d^fu5

i

2
«MN^fu~LMN!†.

~92!

-
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Then the transformation of the actiondSe f f
0 (f) can be writ-

ten in the form

dSe f f
0 ~f!5

i

2
«MN^fu@~LMN!†Ŝ02Ŝ0LMN#uf&. ~93!

Note that (LMN)† is the naive Hermitian conjugation4 ~using
x,p,u,k that are naively Hermitian!. Now we can verify that
the generatorsLi j and (L1828,L18m,L28m,Lmn) are indeed
symmetries of the effective action as expected in the Gen
Relativity formalism. Indeed we find explicitlydSe f f

0 (f)
50, confirming the SO(d2n21,2)3SO(n11) invariance
of the action and of the quantization procedure.

Next we turn to the remaining generators
SO(d,2), L18 i ,L28 i ,Lm i . We find that the ordering of op

erators given byŜ0 introduces quantum anomalies that bre
the bigger symmetry SO(d,2) for the generic AdSd2n3Sn

background in field theory. There are exceptions for
cases AdS23S0 and AdSn3Sn ~i.e., d52n) for which the
anomaly is zero and the full symmetry is active. On the ot
hand it is also possible to improve the effective action
adding the following anomaly term to the action in such
way as to preserve the full SO(d,2) for all d,n

Ŝ5Ŝ02
1

4
~d22!~d22n!uuud22n22, ~94!

Se f f~f!5
1

2
^fuŜuf&5Se f f

0 ~f!1Se f f
1 ~f!. ~95!

The anomalySe f f
1 (f) results from a different ordering of th

operators and may be seen as a potential term~no momenta!
added on to the kinetic term defined by general relativ
Actually it is just a mass term in the field theory formalism

4Because of thei insertions and the factors ofuuu6(d/22n22) in
Eqs.~66!,~67!–~73! (LMN)† may not be equal toLMN. This is of no
concern since theLMN are Hermitian in the correct sense defin
above, not in the naive sense.
in
n
.
an
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Se f f
1 (f)52 1

2 m2*A2Gf* f, with the quantized mass~in
units of the Sn radius22 that was set toR51)

m25
1

4
~d22!~d22n!. ~96!

Of course, the mass term is invariant separately under
subgroup SO(n11)3SO(d2n21,2). On the other hand
the total action is invariant under the full SO(d,2) thanks to
the relations

~LMN!†Ŝ2ŜLMN50 ~97!

that are satisfied just for the special value of the mass,
the precise ordering of operators inLMN as given in Eqs.
~66!,~67!–~73!. For the special cases AdS23S0 and AdSn
3Sn ~i.e., d2n5n) the mass vanishes.

In recent literature the cases of AdS2 ,AdS33S3 and
AdS53S5 have been investigated in the context of the Ad
CFT correspondance@6–9#. These are among the cases th
according to our results, have higher symmetries SO(2
SO(6,2) and SO(10,2) respectively, with vanishing ma
term. The higher symmetry may be of interest in future
vestigations.

We have shown that in order to be consistent with tw
time physics the quantum theory must be carefully co
structed. The formalism sets constraints that are non-triv
One of the signatures of two-time physics is the SO(d,2)
symmetry realized in a unique unitary representation w
special values of the Casimir operators. This is a unify
aspect since it connects diverse one-time physics system
the same quantum representation of SO(d,2). Furthermore,
our work establishes a quantum duality for AdSd2n3Sn for
all n among themselves, as well as with all other one-ti
physics systems that we derived before@1–4# from the same
action.
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