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The massive non-relativistic free particledn-1 space dimensions, with a Lagranglas (m/2)r2, has an
action with a surprising non-linearly realized S%) symmetry. This is the simplest example of a host of
diverse one-time-physics systems with hidden &@) symmetric actions. By the addition of gauge degrees of
freedom, they can all be lifted to treameSO(d,2) covariant unified theory that includes an extra spacelike
and an extra timelike dimension. The resulting actiondin2 dimensions has manifest SM2) Lorentz
symmetry and a gauge symmetry SiXR, The symmetric action defines two-time physics. Conversely, the
two-time action can be gauge fixed to diverse one-time physical systems. In this paper three new gauge fixed
forms that correspond to the non-relativistic particle, the massive relativistic particle, and the particle in
AdS,;_, X S" curved spacetime will be discussed at the classical level. The last case is discussed at the first
quantized and field theory levels as well. For the last case the popularly known symmetrydis 80(,2)
XSO(n+1), but yet we show that the classical or quantum versions are symmetric under the largeg)SO(
In the field theory version the action is symmetric under the full @) provided it is improved with a
guantized mass term that arises as an anomaly from operator ordering ambiguities. The anomalous mass term
vanishes for Adgx S® and Ad$x S" (i.e.,d=2n). A quantum test for the presence of two-time-physics in a
one-time physics system is that the $(%) Casimir operators have fixed eigenvalues independent of the
system. It is shown that this test is successful for the particle inydAg8S" by computing the Casimir
operators and showing explicitly that they are independem. dfhe strikingly larger symmetry could be
significant in the context of the proposed AdS/CFT duali§0556-282199)02104-9

PACS numbegps): 11.30—j, 04.62+v, 11.25.Hf

I. HIDDEN SO (d,2) IN ONE-TIME PHYSICS

1 .
S= | dr=mr2, 1
In this section we will begin by showing some examples f 2 @)

of surprising non-linearly realized hidden SD2) symmetry

in simple one-time-physics systems. We will then explain the

true and systematic origin of these symmetries, not only inye will discuss this simple example from different angles
these examples but also in a host of many others, as beingacause it serves as a prototype for understanding the more
s_lmple an.d direct consequence of two time PhyS'CS- .TWO'compIicated cases. The case of the massless relativistic par-
time physics has been defined and explaineflLis] and it Jicle (with and without spindiscussed ifi1,3] can also serve

will be briefly outlined below, but the reader can understan i but it i h t sufficientl licated
the symmetries discussed here from the traditional one-timg> & Pro otype, but it Is perhaps not sufliciently complicate
physics point of view. The main point of the examples is thatl© illustrate some of the issues. _ _
the hidden symmetry allows us to embed standard one-time AS is well known, the obvious symmetry of this system is
physics in a larger spacetime with one more spacelike anélescribed by the Galilean group consisting of rotations
one more timelike dimensions as compared to standard on®O(d— 1) and translation$4_; in (d—1) dimensions. The
time physics. The lifting to higher dimensions is done with Hamiltonian H=p?/2m commutes with the generators of
the addition of gauge degrees of freedom such that diversgiese symmetries. Until now there has not been any clue that
actions for one-time-physics systems converge toséi®@e  this system has a higher symmetry structure. However, it can
unified action in two-time physics that also has an SRJ2, pe checked that the actignot the Hamiltoniahis symmet-
gauge symmetry. The Sp@), acts on position and momen- ric under the larger symmetry SO@) as follows.

tum (x™,PM) as a doublet. This establishes an SRj2u- Define a basis for an S@(2) vector with an indexvi

ality symmetry among the diverse one-time-physics systems.. +7,—.0j), withi=1,2, . ..,d—1) denoting the space
There are consequences and some tests of “No'time'phySiEéordinates as im'. The parameters of S@(2) form an

as will be illustrated in Sec. Il. antisymmetric matrixe,,y with independent components
E4r1_1,€410,€—10:€ 41, € 1), Ej ,8ij y Where the |a.S£|J are

A. Non-relativistic particle . . . .
the parameters for rotations for the linearly realized rotations

1. Hidden symmetry SO@d—-1). The hidden SQi,2) symmetry of the action
Consider the free massive non-relativistic particledin ~above is obtained by the followingff-shelllinear and non-
—1 space dimensions with the action linear transformations af(7)
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—. (7)

The Poisson brackets of thesd'N(7) form the SO(,2)
algebra at every (which is treated as a parameter

{LMN,LRS}: 77MRLN3+ 77NSLMR_ 7]NRLMS_ 7]MSLNR,
®)

including the SO(1,2) and S@¢ 1) subalgebras as indi-

cated. Furthermore, the!l together withp' ~L%/L* " form

the Galilean subalgebra, which is the familiar symmetry of
the non-relativistic particle. The Galilean generators are the
only ones that do not have explicitdependence. The gen-
eral 7 dependent.MN generate the new hidden S@p)
symmetries of the actio(l). The 7 dependent terms may be

which will be related below to a gauge transformation. Theregarded as generatingdependent local transformation on

Lagrangian transforms into a total derivativé(r?/2)
=d.A(1,emn), With A(7,eyn) Qiven by

A(T,SMN):_SJr/,rsz

[ I.’-(r—TI.’) +1m]
—E& 4| T /— T r—ar

° V(r—1r)2 2

r2 2 r(r—rr)]

+8710 E (r_Tl.')z_ -

2 Nr—1t)?

_ o
—e il +e_y —r'r-r+rJE+7-r'r2

3

+80]'

re(r—r)

M —].
V(r—1r)?

Hence the action is symmetric under SIX).

2. Generators

The generators of this S@() symmetry can be derived
by using a generalized Noether theorem. Using canonicajr

variablesr (7),p(7)=mr(7) they are given at any by

SOd—1):Li=rlpl—rip (4)
sQ(1,2):
2
Lt —(r—rE) p, L"%=-m (r—i),
m m
o P p\°
o _ P _
L om (I’ Tm),
5
. P o p
+h_ i_ = 0i _ i —
L™ '= m(r Tm)’ L*=p (r Tﬁ) (6)

the independenff-shelldynamical variables(7),p(7).

The SO(,2) transformations of the independent canoni-
cal degrees of freedomp are obtained at any by evaluat-
ing the Poisson brackets while treatimgas a parameter

. 1 .
5r'(7')=§8MN{LMN(7),|"(T)},
1 9
5pi(T)=§8MN{LMN(T)ypi(T)}-

Under these transformations the first order form of the action

-
S=fd7'
0

is invariant under SQJ,2). Herer(7),p(7) are treated as
independenbff-shell fields whoser dependence are unre-
lated to each other. However, if they are related to each other

by using the equation of motion for momentywmr, then
the or' of Eq. (9) reduces to theSr' in Eq. (2) which corre-
sponds to the transformation law for the invariance of the
action(1) in the second order form.

It can be checked that the S@)R) generators can be re-
written formally as the antisymmetric product of twal (
2)-dimensional vectors in the form

2
i ) (10

I’p—ﬁ

LMN=xMPE— X Py (11)
with
M=(+',—',0, i) (12)
w_(, re_® PP
xo_(r, -y (r == (13
w_[ P o
Po = m,%,o,p'>. (14

These satisfy<3=P3=X,- Po=0 with a metricyyy, such
that 7., = —1,m00=—1, ;=& . This is the metric in-
variant under SQf,2) with two timelike dimensions.
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3. Lifting to two-time physics

The SO@,2) symmetry with this structure implies that the
non-relativistic particle action can be lifted to a manifestly

PHYSICAL REVIEW D 59 045019

This follows from the fully gauge invariant and S@QR)
invariant two-time-physics action15) after the gauge
(13),(14) has been inserted.

S0(d,2) symmetric form by the addition of gauge degrees of

freedom. From the form of Eq11) we can deduce that the
manifestly symmetric form of the symmetry is the Lorentz
symmetry SO@,2) realized linearly on a vectot™(7) and

its canonical conjugatB™(7). These describe a partici6-
brang in a spacetime witll spacelike and 2 timelike dimen-
sions XM,PM are lifted forms ofXy' ,P} including gauge
degrees of freedomThis shows that the non-relativistic par-
ticle is connected to the realm of two-time physics, a formu

lation that also has a sufficiently large gauge symmetry
Sp(2R) to kill all ghosts and connect back to one-time phys-

ics as discussed in recent papgts4).

The Sp(2R) gauge theory for zero branes takes the form

[1]

1 My _ijyN
SO:EL dr(DX") e Xj nun

T
=fd7'
0

The canonical conjugates abe'=XxM and 9S/aX}! =X}
=PM. They are consistent with the idea that/{,X}') is the
Sp(2R) doublet X™,PM). The symmetricA'! are the 3
gauge potentials of Sp(R). The equations of motion fok"
give the first class constraints

1

9. XMxY— 5

ATXMXN | - (15)

X-X=X-P=P.-P=0 (16)
that form the Sp(R) Lie algebra. The action is evidently
symmetric under SQI,2). The generators are gauge invari-
ant

LMN=XMX[ell = XMPN—XNPM. (17)

In this form all components okM andPM are canonical and

4. An intermediate gauge

It is also interesting to consider an intermediate gauge.
For example, if we choose only two gaugﬁ*'(r)
=m, P%7)=0 and solve two constraintX?=X-P=0,
there remains one gauge freedom and one constraint. Then
XM, PM are parametrized in terms of tilecanonical degrees
of freedom (t(7),r'(7)) and their canonical conjugates
(H(7),p'(7)) as follows:

M:(+,1_,101i)
r- H tr- H )
XM=<t, —p—t—,\/rz—z—p+2—t2, r'] (20
m m m m
PM=(m,H,0,p"). (21)

We derive the dynamics for the remaining degrees of free-
domt,r,H,p by inserting this gauge fixed form in the origi-
nal action(15). The result is a one-time action given by

T 1
S= f dr( a,XMpN— EAZZ(—ZmHJr p2)—0—0)
0
(22

T

:de
0

We have dropped a total derivative ted(r-p) that does
not contribute to the dynamics. The last form of the action
confirms that {,H) and (,p) are canonical conjugates with

_Ho')t+l i_l 22/ 2
A+po.r 2A( 2mH+p?)

(23

5XM, 5PM are obtained by using the basic Poisson bracket§0iSson brackets

SXM=ZerdLRSXMY, etc. In this fully covariant approach

the constraints are applied on the states, as discussed
[1-4].

The three gauge choices that reduce the general system
the non-relativistic particle are

X*'(n=r, P (H=m, PYn=0. (18)

After solving the three constraint€l6) explicitly in this
gauge, XM(7) and PM(7) take the form given in Egs.
(13),(14) . Note that the non-relativistic particle actighO)
can then be written as

T
S:f dT(?TXO'Pozf d’T(
0

2

r -p—;—m) . (19

n {tH}=—1, {r',p}=45". (24)
to
The A?? equation of motion gives the constrair
=p?/2m. This is the same as ttR?=0 constraint. The re-
maining local symmetry correspondsteeparametrizations.
In the gauge(7) = 7 the dynamics describes the free nonrel-
ativistic massive particle. In fact, if this additional gauge is
chosen the action reduces to E0).

We expect that this form of one-time-physics acti@g)
is also symmetric under S@(2). To construct the genera-
tors we insert the gauge choice of E¢0),(21) in the gauge
invariant LMN of Eq. (17). At the classical level, without
watching orders of operators, they are given(bgw there is

no explicit - dependence
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sOd-1): Li=ripl—rip (25)

r_r ’ r- H
L™~ =2tH-r.p, L7 O=—m\/r2—2t—p+2—t2,
m “m
(26)

SQ(1,2: e
L= '=—H \/r2—2t—+2—t2,
m m

L™ T=tp'—mr' L*":—tﬂp‘erpi—Hri (27)
L m m 7
o tr-p H
0i — pyi 2_o_ " __t2
L"=p \/r 2 - +2mt . (28
|
Using the basic Poisson brackéd) it can be shown that 5. Field theory

thesel "™ form the SO 2) ziilgiebra. They also generate the  \yhen we do not make the last gauge choice the remaining
transformation rules fot,H,r',p' by evaluating the Poisson ¢qngiraint must be applied on the states. A complete Hilbert

_1 MN . ; ; o X ) .
bracketsot=zeyn{L ™" t}, etc. The action is not invariant gn4ce for the quantum theory is given in configuration space

under these transformations alone; for invariance one musts It r). The physical subset of stat¢$) are those that
also transform A2 The reason is that the constraint satisfy the constraint

(—2mH-+p?) that multipliesA?? in the action is not invari-
ant, but transforms into itself with an overall factor ( p?

H——)|¢)=O. (31

2m

_ 2y _ _ 2
A(=2mH+p)=y(enn, )(=2MH+TP%), (29 0rms of the wave function in configuration spagé,r)

=(t,r|¢) the physical state condition takes the form of the

where non-relativistic Schrdinger equation
V2
| p(tr) == 5 (). (32
p'(7) - . o
v(emn,T)= E_ &4 The effective field theory that reproduces this equation is
1
Seff:f dtdr il//*(?tl//_ ﬁVl/l*Vl// . (33)
H(7) p(7) , , , , _
t(7)| e4r0t & _rg— 80— The norm of the physical state is then given by integrating
i m the time component of the probability current at fixed time
\/ PN GG
N -2n—] m L <w|w>=f Ay () (L ). (34
(30)

This norm is independent d¢fdue to the conservation of the
probability current(y* o, (4* Vip—V * )/12im) as a result
This term is cancelled by takingA??= —2A??y(gyn,7).  Of the physical state conditiof82).

This factor can be understood as follows. Recall that when a Now we ask the question: is the field theoretic version of
gauge is fixed the new generator$'N perform a naive the theory also SOd,2) invariant under the transformation
S0(d,2) transformatiorithat disturbs the gau@éollowed by _ 1

an Sp(2R) gauge transformatiofthat restores the gauge _ | MNJ .\ S MN

The constraint$16) transform as a triplet under the restoring op(tr)= 58MN<t’r|L |¥)= 2oL (L)

gauge transformation. Since two of the constraints are al- (35
ready zero explicitly, the third one transforms into itself with .

an overall factors(P?)=y(eyn) X P?, and this must be whereLMN are differential operators obtained from the op-
compensated by the transformation of the gauge &  eratorsLMN in Egs. (25—(28) by replacingH=i#4,, and
as given above. p=—i#V as applied on/(t,r). The correct quantum opera-
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tors to all orders ofi must correspond to a particular order  The “hidden” boost symmetry can be made manifest by
of the canonical operatorsH,r,p, but we have not at- lifting the action(36) to its well known Lorentz symmetric
tempted to find the order. Here we face a difficult problemform

with the non-linear form of th& N since an infinite number

of possibilities of ordering of an infinite series is possible. .
Therefore we have not been able to give a definitive answer S= mj dry—(x*)2. (39
to this questiort. It would be amazing if one can find an
ordering of operators that would give SfR) invariance for
the non-relativistic Schidinger field theory action(33). If
there is no such order, it would imply that the quantum
theory in the form(33) produces anomalies that break the

S0(d,2) symmetry. If this is the case one may ask if there isorder form by introducing the canonical momentyrty(r)

ihei 22 .
an anomalous term that can be added to the field theory and an einbeih™(7) that plays the role of a Lagrange mul

1o . . . .
yield the correct quantum version with an D) symme- ﬁ)pller to implement the constraint on this momentum
try. This question remains open for now.

To do this lifting we must add gauge degrees of freedom and
then the action is gauge invariant undereparametrizations.
As is well known this action can be rewritten in the first

. 1
XHp,— §A22( pa+m?)|. (39)

T
S=f dr
B. Massive relativistic particle 0
1. Lifti he i i 1,1 i . . .
ifting to the intermediate SO(&+1,1) covariant gauge Integrating outp” and A%? gives back Eq(38). This form
To understand better the hidden symmetries and their orishould be compared to the non-relativistic case in @8).
gins it is useful to start with the fully gauge fixed form of the The generators of the Lorentz symmetry are now given in
relativistic massive particle action and first lift it to the inter- terms of canonical variables*”=x*p”—x"p* while the
mediate gauge which is manifestly SD¢1,1) Lorentz co-  constraint is applied on the physical states. Fixing the gauge
variant. The answer is well known, but by using similar stepsx®( r) = r reduces the actiofB8) back to Eq.(36) while L
as the previous section it may be helpful to make analogiebecomes th&'(7) of Eq. (37).
to the non-relativistic case, thus clarifying some concepts
that may have remained hazy to the reader. Consider the 2. Lifting to two-time physics

action for the massive relativistic particle .
We now note the surprising S@@) symmetry of the

T action (399 as follows. Using the basis for a
S= mf drvi-r2 (39 (d+ 2)-dimensional vector with inded = (0',1", ) the pa-
0 rameters of SQf,2) are given as an antisymmetric tensor
. . _ ) with components: o1+ ,89/,,,81/,,€ 4, - The laste,, corre-
which as Eq(1) is also symmetric under rotations and trans-spond to the linearly realized Lorentz symmetry. The full
lations. This action has a “hidden” off-shell symmetry un- |inearly and non-linearly realizedff-shellSO(d,2) transfor-
derdr(7)=pB'7—B-r(7)r'(7), whereg' are constant param- mation is
eters, since the Lagrangian transforms into a total derivative
S5V1—-r?=4[r-BY1-r?]. Using a generalized Noether's XX p
theorem one can derive the generator of this transformation,ox*=¢&*"X,—&gs1: N RV
and by writing it in terms of the canonical variables VMX“+ (X p)

r(7),p(7)=mr/\/1—r2 in the form p p’
+teqr,ln M_+EXM
Ki(7)=7p(7)=r'(7)\p%(7)+m?, (37)

p” X#X-p ” \/mzszr(x-p)z
one can recognize that it is the generator of relativistic U ™Y mJF m
boosts. Thedr(7) used above can be written as the Poisson
bracketsr(7)={—B-K(7), r'(7)}. Note the explicitr de- (40
pendence irK'(7) and in &r'(7) which is analogous to the
explicit 7 that appeared in the previous non-relativistic caseand
Although the action is symmetric under the boosts, the
HamiltonianH = pZ+m? is not symmetric, but transforms M2xk 4 X p p4 p
under them in a well defined manner. We can compare theSp*=¢*"p,+ 801 T " &1/ n"*m+ —p*
“hidden” boost symmetry of Eq.(36) to a subset of the Vmox“+(x- p) m
hidden symmetries S@(2) of Eq.(1). ) X+ X p ph "

eonP JmxZ+ (x- p)2

1The analogous question for the AdSx S" will be answered in
the affirmative in the last section. and
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pV
(80’1’+80’Vm>x'p v )'(V
SAZ2= 7?2 — ——+2e1,— | +er,—.
VMexe+(x- p) m m
(42)
This transformation gives a total derivativesL

:&TA(SMN ,’T) W|th

Alenn,T)=€or1 VM?X2+ (X-p)2+ &1/, p"X- P—Meq/ X"

P’ (x-p)?
+ 80/ v —2 > 5"
m Jymx“+(x-p)
Hence the actior§39) is invariant.
The generators of this transformation are

LO'Y = BB (x p), LY = pi o (x )2

(44)

(43

l’,u:_ﬂ [T MY iV VL
L mp mx*, L xX#p¥—x"ph.

(49)

They close under Poisson brackets to form the &@)( Lie
algebra.
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action. Hence to an observer in two-time physics these two
systems are the same, since they are just gauge fixed versions
of the same theory.

C. Particle on AdS;_,x S"

A particle moving in the curved background AdS

X S" is described by the action
T
s- [ a0+ hmin. 50

wherem=0,1,...d—n—1 anda=1,2,...n. There are
many ways of parametrizing the AdS metric. The particular
parametrization used below is convenient for discussing and
resolving the quantum ordering problem which will be dealt
with in the next section. The point that we will make is that
for AdSy;XS" the full symmetry of the action is SO
+n,2). Furthermore, as long d3+n=d is a constant the
various models distinguished byare Sp(ZR) dual to each
other because they are obtained from the same Bp(2,
gauge symmetric two-time-physics action by gauge fixing.

As in the previous cases, the larger SI(%) symmetry
comes as a surprise since the popularly known symmetry in
this background is S@(—n—1,2)XSO(n+1) which is
smaller than SQ4,2). For example, we claim that the action

These generators are written in the form of cross productfor AdS; alone has SO(3,2) symmetry which is larger than

LMN=x}pPN—xNPY (46)
with
M=(0",1", )
x-p\? x-p
XY= X2+ | —| ,— — x* (47
m m
Pg'=(0m,p~). (48)

These satisfyX3=X,-Po=0 while P3=p?+m?, with the
metric —7° % =71 =— 4% =1 and »*”=Minkowski.

the popularly known SO(2,2). Similarly the action for
AdS; X S° has SO(10,2) symmetry which is larger than the
popularly known SO(4,2xSO(6); and theaction for
AdS,x S" or AdS,x S* has SO(11,2) symmetry.

Instead of lifting the Ad$_,,X S" action(50) to the two-
time-physics action(15), we will construct Eq.(50) as a
gauge fixed form of Eq(15). Lifting would correspond to
the reverse process.

Consider the @+ 2)-dimensional vector&™,PM in the
basis M=(+',-",u,i) for u=0,1,...d—n—-1 andi
=1,2,...n+1. The metric isp* ~'=—1,41=4 and
n*? = Minkowski. We choose two gauges by demanding
|X[|=1 andP*'=0. Then the unit vectoX'=u'/|u|=Q'
describes a spher8” as the boundary of a ball in+1

This form suggests that we may lift the system to two-timedimensions. The radius of the b&X'| is one of the coordi-

physics.
Therefore we may start from the SpR3,gauge symmet-
ric two-time physics actioril5), choose the two gauges

nates that has been gauge fixed to 1. The constraiats
=X-P=0 are solved by the following parametrization:

o’ — 1’ —
P°(r)=0, P~ (7)=m, (49 ) 141D . u
and solve the two constrain®¥’=X-P=0. The result is the XH=| ul, 2|ul Julx Jul D
gauge fixed form(47),(48). The dynamics of the remaining
degrees of freedomx{,p*) is obtained by inserting the M u-k x-p p* i u'
gauge fixed form47),(48) into the two-time physics action P¥=|0, INRRNRTE |ulk 2"'”@
(15). The result is the one-time-physics acti@9) for the (52)

relativistic particle. This action has one remaining gauge o

symmetry ¢ reparametrizationand imposes the remaining The bold vectorsl', k' are inn+1 dimensions and*,p* are

constraintP?=p2+m?=0 as the equation of motion for in d—n—1 dimensions. Fon=0 we replaceu'/|u| by 1.

A%, Inserting this gauge fixed form into the original two-time
This shows that both the relativistic and the non-physics action(15) gives an action that determines the dy-

relativistic particle are lifted to theametwo-time-physics namics ofx*(7),p*(7),u'(7),k'(7)
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- _ S R - L#r=xtp’—x"p*, Li=u'ki—ulk (59)
S=| dr p-x+k-u—§A F+u k (53 '
A . A u'
L L‘“=x“(u2k'—2k-uu')—p”—2. (60)
1 (u . u
—>f dr—; —2+u2x2) (54)
2A%\u By using the basic Poisson brackets amoag], (x*,p*) it
- is easily seen that these form the SI(X) algebra
1 (u . .
:f dTIzz F_|_uZx2_|_QZ . (55) {LMN’LR%: pMRLNS4 NS MR_  NR) MS_  MS| NR

(61)

The second form of the action is obtained by integrating out % _
the momenta. From the first line we see that the vectors The generators for the subgroup 30G(1)xSOW=n

p* k' are indeed the canonical conjugatesxtqu' respec- —1.2) arg_L" and LA,L7 7, LT KL respectively.
tively. The last line is obtained by making a transformation-rhe addltlonaly‘ syrynmef[ry generators that complete to
from Cartesian coordinates to spherical coordinatés SO(d,2) areL™ 'L~ ',L*. Itis well known that the action
=uQ'. This action describes the particle in the curved back{54) is symmetric under S®(+1)xSO(d—-n—1,2). To

ground AdS_,Xx S" with metric show that it is also symmetric under the full SOZ) it is
, sufficient to show that it is symmetric under th&' since the

ds?=u2(dx*)2+ (du) +(dQ)? remainingLi'i are obtained from these by S@{n—1,2)
u? rotations. The transformations generated iy are given by

evaluating the Poisson bracketsu'={e L"), u'}, ox*
where thed—n coordinates of Adg ,, are (x*,u) and then ={e,;L" x"}:
coordinates ofS" are those that parametrize the unit vector
Q' embedded im+1 dimensions. This form of the metric _ _ . . U
has been used in recent discussions of the proposed AdS su'=2e"x,uu'—x,g"%,  oxt=gM—. (62
conformal field theoryCFT) duality [6], and we find it use- u
ful for the discussion of operator ordering that will be dealt
with in the next sectiof.There are many other possible pa-
rametrizations of the AdS metric. Each one of them will
correspond to some form of gauge choice in our formalism. S
For such other gauge choices for AdS $ékand[3].

The point here is that our construction shows that the ] ) .
symmetry of the action is S@(2) which is larger than the Th|_s is equivalent to a conformal rescglmg of the_met.rlc
popularly known SO§—n—1,2)XSO(n+1). In our ap- which can be cancelled by a transformation of the einbein
proach the SQ{,2) generators are obtained by inserting the
gauge fixed forms ok} andPj' given in Eqs(51),(52) into
the gauge mvangnlLM’?' of Eq. (17). At the cI%stmalMle\'(lel Therefore the action for a particle on AgS,x S" is invari-
(op(,a\lrakﬂor ordering ignored we obtain L""=XyPg ant under SQ4,2) for all n.

—XoPg in the form

The Lagrangian transforms as follows:

12

2
242 | — i
uz+u X )—(Zsmx“u')

u .
—+ u2x?
u

SAP=(2e"Ix,uj) A% (63)

II. SO(d,2) GENERATORS IN FIRST QUANTIZATION

LY ~'=—u-k+x-p, L*'#=pt, LT T=uk—2k-uu
(56) Since the Ad$_,X 8" case is of current interest due to
the proposed AdS-CFT dualif], we will also discuss the
. p* 1, first quantized theory in that gauge. We will resolve quantum
L™ #= =t u-kxk+ oxph—x-px* (570 ordering ambiguities in the generators of %), and then
2u 2 . A
compute the quadratic Casimir eigenvalue of 8QJ for all
2 i values ofn at fixed d, to show that these gauge invariant
L= Eki+ X_(uzki_Zk.uui)_X'pu_ (58) guantities are independent afand are the same as those
2 2 u? computed in other gauges, namely(SO(d,2))=1—d%/4.

This confirms the gauge invariant prediction of two-time
physics, thus verifying its presence.

There is a similarity between our parametrization and one used inh The ful physmgl Inf(éeraaop of tue theory IS C%?;Tn:zd n
[5], however our's treats the radius of AdS or the sphérere the gauge' mvanant - Using the constraint(®= .
scaled toR=1) as an additional coordinate that has been gauge:X' P=01itis stralghtfo.rward to show Fhat all the Casimir
fixed[i.e.,|X (7)|=R=1]. This additional coordinate together with OP€rators of SQ,2) vanish at the classical level
the global and gauge symmetries of the actip) is what permits
us t)o have the larger symmetry Sf)2)DSO(d—n—1,2)XSO(n classical: C,(SQ(d,2))= ilTr(iL)“=0. (64)
+1). n!
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In the first quantized theory the,(SO(d,2)) are not zero  Evidently the factors ofu|*(%27"~2) drop out in the classi-
after taking quantum ordering into account. Since tHY&Y cal theory, but they are essential for the correct symmetry
are gauge invariant we must find the same eigenvalues in argenerators in the quantum theory as proved in the last section
gauge. First consider the S@R) covariant quantization [see Eq(97)]. The (non-unitary looking similarity transfor-
without choosing any gauges, as treatedlih In this case mation with thelu|%2~"~2 will be explained in the next sec-
all components of XM,PM) are independent canonical de- tion. This transformation is required for Hermiticity of the
grees of freedom and the first class constraints are applied arenerators according to a scalar product defined in(&g).
the states. The constraints form the SR)2algebra. The thatis appropriate for an AdS covariant quantization scheme.
states are labelled simultaneously by the Casimir operatorhe LMN are Hermitian in the physical Hilbert space pro-
of Sp(2R) as well as the Casimir operators of LX) since  vided theLoMN are the following operator ordered versions of
these groups commut¢C,(Sp(2R)),C,(SO(,2))). We the classical generatot§6)—(60):
need to find their eigenvalues for physical states. The follow-
ing relations are proven by writing out all the Casimir opera- 1
tors in terms of X,P. First, all Casimir eigenvalues - _ Tyl e ;

C,(80(d,2)) are rewritten in terms 0€,(S0(d,2)) andd. Lo = Z(X p+p-x—u-k=k-wti (67)
For example C5(S0(d,2))=(d/3!)C,(S0O(,2)). Second,
the quadratic Casimir operator of SpR2,is related to the

guadratic Casimir operator of S@). Third, since physical Lgl"“= p*, Lg/'=V‘(u,k) (68
states are gauge invariant, the quadratic Casimir operator of
Sp(2R) must vanish in the physical sector. The last condi- 1 1 1
tion fixes all the Casimir eigenvalues for Sf)2) to unique Ly #= Ex”p“xv— 7% pXx*— Ex“p~x—ix“
non-zero values in terms df Therefore the quantum system 69)
can exist only in a unique unitary representation of &QJ
characterized by
pr 1 u
42 +E+§(u~k+k-u)x (70
C,(SQd,2)=1—- i
: =0, d d? o1 X2 1 ul
quantum CZ(SF(Z)) 0 C3(SQd,2)): a(]—_Z>, La |:Ek|+5\/l(u’k)_§(xp+px+2|)?
(7D
(65 )
LA =x*p’—x"p#, Ld=ukl—uk (72

The first quantization of the theory in several one-time
physics gaugesmassless relativistic particle, H-atom, har- i
monic oscillator, and all of these with spihas already been LA =x#V'(u,k)— puu__ (73
performed elsewherel—3], and the correct value of the Ca- u?
simir operators(which change with spinhave been ob-
tained, in agreement with the prediction. Hence for these/i(u k) is the operator ordered version of the classical ex-
diverse systems the Hilbert space corresponds to the samgessionu?k' — 2k -uu'
unique representation of S@@). This establishes a
Sp(2R) duality among these systems at the quantum level. Vi(u,k) = Uk uk— u'k -u—u-ku' (74)
This may be considered a successful test of the unification in
the form of two-time physics at the quantum level.

Now we consider the first quantized theory in the
AdS;_ XS gauge. We want to find the correct operator _ _
ordering of the generators in the quantum theory and then =k'u?~—(u-k+k-uu'. (76)
compute the quadratic Casimir eigenvalue. We must find that
C,(S0(d,2))=1-d?4 since this is the prediction of the Some of its interesting properties are
gauge invariant two-time physics. Confirming this result is
tantamount to the presence of two time physics in the one-
time quantum theory of the AgS, X S" particle, and to es-
tablishing that the Hilbert space is the same as the other
cases already mentioned.

With operator ordering taken into account the quantum [k Vi]=—2iL"+i¢8'(u-k+k-u) (78)
generators have the form

=u?k'—u'(u-k+k-u) (75)

i
—,Vi
u2

=i, [V VI]=0, VZ2=u%k?u? (77

- o [u, Vi]=isi(u?—2u'u)), [|u,VI]=—i|u|u.
LMN:|U| d/2+n+2Lg/|N|u|d/2 n 2. (66) (79)
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These may be used to verify the closure of the algebra at the ”277w 0

quantum levef Since|u|=(927"=2) is a similarity transfor- 4ona
mation, the commutation relations are the sameLfI or Gmn= 0 ia__ , N=G=ut""2 (8p)
LY at the quantum level. u2 !

The quadratic Casimir operator may now be computed for

Lo™ or LMN. Al operators cancel and it reduces to a pure 1
number independent of for all AdSy_,x S" G Eﬂ’“’ 0 -
C2(SQ(d,2)=1-d%4. (80 0 uzs'

This is the correct value imposed by the overall structure ofve find the effective action
two-time physics as given in E@65). The similarity trans-
B . . 1
formation of Eq.(66) cannot change the Casimir operators L, (4)= EJ dd‘”‘lxd““u(ud‘zn“‘ﬂ#gzs* b
Cn(LMN) — | U| 7d/2+n+2Cn(L|(\)/|N)|u|d/27n72: Cn , (81)
+ul2N9, * 3, ) (87
since they are pure numbers.
1 : )
I d—2n—4,2 i d—2ny,i
Ill. FIELD THEORY IN AdS 4_,%xS" BACKGROUND B 2<¢|(|u| Ptk |u| k )|¢>'

As seen from the actiofb3) the equation of motion for (88)

A?? generates the classical constraint The norm of the state is ndip| )= ¢* ¢, but rather it is
defined by the scalar productp(¢)=fd3,J™, using the
conserved probability currentd™=\/—GG™($*id, ¢
—idn@™ @), by integrating over a spacelike surface, such as

(82 fixed time

p2
F + U2k2) = Gmnpmpnzoa me(p,u 1ki)-

pP2=

In the quantum theory the constraint is applied on the Hilbert

<¢,¢>=LL V=GG™(g*iapp—idnd* &) (89)

space to find the physical states which are annihilated by it —fixed
. mn, - —
(67 Pnpn )l $)=0 ® = f o (@t ful i
The columns (:) indicate that the operator form of the con- X =fixed
straint must first be defined by resolving ambiguities in the X (Pp*idgp—idgdp* P). (90)
ordering of the operators. This must be done in such a way as
to preserve the S@(2) symmetry of the system. The adjoint of an operator and its Hermiticity in the physical

One possible ordering follows from the definition of La- Hilbert space must be defined relative to this scalar product.
placian in general relativity. This is guaranteed to preservdhis approach defines theAdS-covariant quantization
the symmetries S@(—n—1,2)x S(n+ 1) of the background schemeconsistent with field theory. The operatdr¥™N de-
AdS,_,X 9", soitis a good starting point. In configuration fined in the previous section are Hermitian according to the
space the constraint on the wave functiap(x“,u’)  scalar product in this quantization scheme. This explains the

=(x*,u'| $) takes the form of the Laplace equation reason for the similarity transformatida|~(¥2~"~2) and the
_ other insertions of in Egs. (66),(67)—(73). The analog of
(N —GGM™9, p(x*,u"))=0. (84)  this approach for Lorentz covariant quantization of the rela-

tivistic particle in flat space, with and without spin, was dis-
This follows from the effective action Sg¢s cussed in1,3].

=1 1d9X = G(G™9,,¢pdn¢). Using The Laplace equation may be written in operator form
Sol ) =0, where
3The following change of variables =u'/u?,p'=V'(u,k) is a Sp=|u[@ 2" 4p2 4 ki |u| 9~ 2K (91

canonical transformation at the quantum level. With this substitu-

tion one may notice that the generators of 8@] take the same This is just the constraint condition with a particular order of
form we found in[1] for the free massless relativistic particle. operators. Thus, general covariance imposes a particular or-
Hence the computation of the Casimir operator is easily explainedder. To check the symmetries of the effective field theory
This may also shed light on the overall structure of the generatorsaction S¢¢(¢) for this order of operators we transform the
and helps explain the anomaly terin L*' =", —ix*in L~'#,  wave function

andiu'/u?in La'i , as due to Hermiticity in Lorentz covariant quan- i i

tization in flat space. The AdS covariant quantization introduces the _ MN — MNy T

further anomals terms generated by thg similarity transformation olé)=— 28mnk 4). &¢l= EgMN<¢|(L )
|u|=(@2=n=2) given in Eq.(66). (92
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Then the transformation of the actid®2(¢) can be writ-  St(¢)=—1m2[J—G¢* ¢, with the quantized masén
ten in the form units of the 8 radius 2 that was set tiR=1)

< 2 1
5ngf(¢):%SMN<¢|[(LMN)TSO_SOLMN]|¢>- (93 m?=7 (d—2)(d~2n). (96)

Note that ("")" is the naive Hermitian conjugatifiiusing  Of course, the mass term is invariant separately under the
X,p,u,k that are naively Hermitign Now we can verify that subgroup SQOf+1)xSOd—n—1,2). On the other hand,
the generator&!l and L*'~',L*'# L~ "# L~ are indeed the total action is invariant under the full S@P) thanks to
symmetries of the effective action as expected in the Generdhe relations

Relativity formalism. Indeed we find explicitIySSSff(cﬁ) o

=0, confirming the SQf—n—1,2)xSO(n+1) invariance (LMNYTS— gL MN=0 (97)

of the action and of the quantization procedure.

Next we turn to the remaining generators of that are satisfied just for the special value of the mass, and
S0(d,2), L*,L~"I,L4. We find that the ordering of op- the Precise ordering of operators in"™N as given in Egs.
(66),(67)—(73). For the special cases Ag8S® and AdS,
xS (i.e.,d—n=n) the mass vanishes.

In recent literature the cases of AQ®dS;x S and

erators given by%o introduces quantum anomalies that break
the bigger symmetry S@(2) for the generic Ad$ X S"

background in field theory. There are exceptions for theAdS5><85 have been investi -
: - . gated in the context of the AdS-
cases Adgx S’ and Ad§xS" (i.e,, d=2n) for which the CFT correspondand&—9]. These are among the cases that,

anomaly is zero and the full symmetry is active. On the Othe%\ccording to our results, have higher symmetries SO(2,2),

hand it is also possible to improve the effective action by, : : c
adding the following anomaly term to the action in such aSO(G’Z) and SO(10,2) respectively, with vanishing mass

way as to preserve the full S@@) for all d,n :/taergé;?gnglgher symmetry may be of interest in future in-

We have shown that in order to be consistent with two-
(d—2)(d—2n)|u|¢~2"~2 (94)  time physics the quantum theory must be carefully con-
structed. The formalism sets constraints that are non-trivial.
1 . One of the signatures of two-time physics is the 8QJf
Ser( )= §<¢|S| )=S0 () + Sk ). (95) ~ symmetry realized in a unique unitary representation Wlth
special values of the Casimir operators. This is a unifying
aspect since it connects diverse one-time physics systems in
the same quantum representation of 8Q@J. Furthermore,
our work establishes a quantum duality for AdSx S" for
-all n among themselves, as well as with all other one-time
physics systems that we derived befpte-4] from the same
action.

N

55

The anomalyS}(( $) results from a different ordering of the
operators and may be seen as a potential {@@mmomenta
added on to the kinetic term defined by general relativity
Actually it is just a mass term in the field theory formalism,
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