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Non-Abelian Aharonov-Bohm scattering of spinless particles
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The Aharonov-Bohm scattering for spinless, isospin 1/2, particles interacting through a non-Abelian Chern-
Simons field is studied. Starting from the relativistic quantum field theory and using a Coulomb gauge formu-
lation, the one loop renormalization program is implemented. Through the introduction of an intermediary
cutoff, separating the regions of high and low integration momentum, the nonrelativistic limit is derived. The
next to leading relativistic approximation is also determined. In this approach quantum field theory vacuum
polarization effects are automatically incorporated.
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I. INTRODUCTION

A great deal of interest has been devoted in recent y
to the study of the Aharonov-Bohm~AB! effect, the scatter-
ing of charged particles by an impenetrable magnetic fl
tube @1#. This situation was motivated both by potential a
plications, which come from many different areas, and a
by some conceptual difficulties found in the AB scattering
spinless particles. In that case, the Born approximation fa
to reproduce the expansion of the exact result and, furt
more, the second Born approximation turned out to be div
gent@2#. These issues have been investigated considerin
equivalents the AB effect and the scattering of particles
teracting through a Chern-Simons~CS! field. In a nonrelativ-
istic context, it was shown that, up to one loop, that is,
second Born approximation, agreement of the perturba
calculation with the expansion of the exact result could
achieved by introducing an extra quartic self-coupling of
scalar particles@3# tuned to eliminate divergences and resto
the conformal invariance of the tree amplitude. For the sc
tering of two spin up fermions it was verified@7# that an
additional self-interaction was not needed since its role w
provided by Pauli’s magnetic term, in accordance with
earlier conjecture@3#. However, if the fermions had antipa
allel spins the effect of the magnetic interaction canceled
a divergence showed up.

From a more basic standpoint, one can start directly fr
a relativistic quantum field theory of charged particles int
acting through a CS field and then appropriately taking
nonrelativistic limit. Proceeding in this way, purely quantu
field theory effects as vacuum polarization and anomal
magnetic moment are automatically incorporated. Suc
procedure was applied successfully to the study of the
scattering for both spin 0 and spin 1/2 particles@4,5#. The
calculation was greatly facilitated by the introduction of
intermediary auxiliary cutoff which, in the Feynman int
grals, separates the regions of high and low energy. T
allows a direct simplification of the integrands and it
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closely related to the methods of effective field theories@6#.
For the case of spinless or antiparallel spin fermionic p
ticles, it was found that the low energy part of the amplitu
contains a logarithmic divergence in the limit of very hig
intermediary cutoff. Nevertheless, different from the nonr
ativistic calculations previously mentioned, without any a
ditional hypothesis, the needed counterterm is automatic
afforded by the high energy part of the contribution. Besid
that, terms absent from the direct nonrelativistic calculat
were determined. These new interactions come from the h
energy part of the amplitudes and modify in an essential w
basic properties of the nonrelativistic scattering.

In this work we want to pursue these investigations
considering the non-Abelian AB effect for spinless particle
which corresponds to the problem of particles without s
but carrying isotopic spin scattered by an isotopic magn
flux tube. Cosmic strings and black holes are the more n
ral applications of this subject@8#.

The non-Abelian AB situation was first analyzed in a c
ebrated paper on nonintegrable phase factors@9# and since
then it has been more quantitatively investigated at the qu
tum mechanical level@10#. Recently, in a direct nonrelativ
istic approach, the scattering has been discussed using a
Abelian Chern-Simons field to simulate the flux tube w
results similar to the ones mentioned above for the Abe
case@11,12#. Here we want to begin from a relativistic for
mulation which, as said before, already embodies radia
corrections. In this way we will be able to find next to lea
ing corrections to the results presented in@11#.

We will assume that the basic particles carry isotopic s
1/2. In the language of the 211 quantum field theory our
system is described by the Lagrangian density@13#

L52Q«abg trS Aa]bAg1
2g

3
AaAbAgD

1~DmF!†~DmF!2m2F†F2
l1

4
~F†F!2

2
l2

4
~F†TaF!2, ~1!

where Dm5]m1gAm is the covariant derivative andAm
©1999 The American Physical Society15-1
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5Am
aT

a andTa are the generators of the group SU~2!. As we
shall see, up to one loop, the leading contributions corre
reproduce the nonrelativistic results whereas the next to le
ing contributions are new corrections to the nonrelativis
calculation. As we are mainly interested in the nonrelativis
limit, in this work we will employ a strict Coulomb gauge

Our work is organized such that in Sec. II the nonrelat
istic theory is briefly considered. We do that not only to
our notation but also to make easier the comparison with
results of the nonrelativistic limit of Eq.~1!. In Sec. III, after
discussing the one loop renormalization program for the r
tivistic model, we analyze the two body scattering up to n
to the leading nonrelativistic approximation. Final comme
and a discussion of our results are presented at the end o
section.

II. THE NONRELATIVISTIC MODEL

In this section we want to summarize the results of
non-Abelian AB scattering of spinless particles. To facilita
comparison, we shall use essentially the same notation a
@11#, but to keep contact with the results to be derived in
next section, we will employ a cutoff to regularize the spat
part of the loop integrals instead of dimensional regulari
tion as it was done in that reference. The Lagrangian den
which specifies the model is

LNR52Q«abg trS Aa]bAg1
2g

3
AaAbAgD

1 iF†DtF2
1

2m
~DF!†~DF!

2
1

4
Fn8

† Fm8
† Cn8m8nmFmFm2

1

j
tr~“A!2

2h* a~dab¹
21g fabcA

c
•“ !hb, ~2!

whereF is ann component complex field belonging to th
fundamental representation of the SU(n) group. The genera
tors of the Lie algebra of SU(n), denoted byTa satisfy

@Ta, Tb#5 f abcT
c ~3!

and are normalized such that

tr~TaTb!52
1

2
dab. ~4!

With respect the constant matrixCn8m8nm we just assume
that it has the most general form compatible with the inva
ance of the action under the SU(n) transformations@11#.

We will use a graphical notation where the CS field, t
matter field and the ghost field propagators are represe
by wavy, continuous and dashed lines respectively. In
Coulomb gauge, obtained by lettingj→0, the analytic ex-
pressions for these propagators are as follows.

CS field propagator:
04501
ly
d-
c
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e

Dba
mn~k!5Dmn~k!dba5

1

Q
«mnl

k̄l

k2
dba , ~5!

wherek̄m5(0,kW ).
Matter field propagator:

Dnm~p!5D~p!dnm5
i

p02
p2

2m
1 i e

dnm . ~6!

Ghost field propagator:

Gba~p!5G~p!dba5
2 i

p2
dba . ~7!

The vertices of the Feynman’s diagrams are of five differ
types:

Trilinear CS–matter field vertices (p andp8 are the mo-
menta through the scalar lines at the vertex!

Gnm
a,0~p,p8!52g~Ta!nm ~8!

for the trilinear coupling involvingA0, and

Gnm
a,i ~p,p8!52

g

2m
~Ta!nm~p1p8! i ~9!

for the coupling containingAi ,i 51,2.
Trilinear CS–ghost field vertex

Gabc,i~p,p8!52g fabcp8 i. ~10!

Quadrilinear CS matter field vertex

Gnm
ab,i j ~p,p8!52

ig2

2m
@TaTb1TbTa#nmgi j . ~11!

Trilinear CS field vertex

Gabc,mnl~p,p8!5 igQ f abc«mnl. ~12!

Quadrilinear matter field vertex

G~p,p8!m8n8mn5
2 i

2
Cm8n8mn . ~13!

Using these rules, the tree approximation to the dir
scattering amplitude corresponds to the graphs in Figs.~a!
and 1~b!. In the center of mass frame it is given by

M~u!52
C

2
2 i

2p

m
V cot~u/2!, ~14!

where u is the scattering angle andV5(2g2/2pQ)
Ta

^ Ta . We use a simplified notation introduced in Re
@11#, where isospin indices are omitted. Accordingly, if th
incoming and outgoing particles have isospin (n,m) and
(n8,m8) the total scattering amplitude for the process
given by
5-2
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M n8m8;nm~u!1~u→p1u,n8↔m8!, ~15!

where

M n8m8;nm~u!52
Cn8m8nm

2
1 i

g2

Q
Tn8n

a Tm8m
a cot~u/2!.

~16!

The one-loop graphs depicted in Figs. 1~c!–1~f! have
been computed in@11# using dimensional regularization
Here we just quote the corresponding results obtained
introducing a cutoffLNR in the spatial part of the loop inte
grals. We get

Mc~u!5
mC2

16p F logS LNR
2

p2 D 1 ipG , ~17!

Md~u!5
2pV2

m
@2 logu2 sin~u/2!u1 ip#, ~18!

FIG. 1. Graphs contributing to the nonrelativistic scattering.
04501
y

Me~u!5
2pV2

m F logS LNR
2

p2 D 22 logu2 sin~u/2!uG
1

g2

16mQ
VF logS LNR

2

p2 D 22 logu2 sin~u/2!uG ,

~19!

Mf~u!5
2g2

16mQ
VF logS LNR

2

p2 D 22 logu2 sin~u/2!u11G ,

~20!

whereMi denotes the contribution coming from the graphi
in Fig. 1. Note that the finite constant term inMf can be
absorbed into a redefinition ofC. Afterwards, we see that ou
result agrees with Ref.@11# if the dimensional regularization
parametere and our cutoffLNR are related by

1

e
1 lnS 4pm2

LNR
2 D 2g50, ~21!

whereg is the Euler constant. Adding the above results a
disregarding the mentioned constant term, we get

M1loop~u!5
m

16pS C22
16p2V2

m2 D F logS LNR
2

p2 D 1 ipG .

~22!

Thus, in complete analogy with what happens in the Ab
lian case, we now chooseC2516p2V2/m2 to restore the
conformal invariance of the tree approximation and rep
duce the exact result

M~u!52 i
2p

m
„V cot~u/2!2 i uVu…, ~23!

as also derived by@11#.

III. RELATIVISTIC THEORY

In the relativistic domain, the Feynman amplitudes a
very intricate for a general matrixC. Considerable simplifi-
cation occurs however if the gauge symmetry is taken
isospin SU~2! group @15#. Thus, for simplicity we restrict
ourselves to the study of the SU~2! case described by th
Lagrangian~1! where a gauge fixing and ghost terms must
added for a proper quantization.

Of course, we choose to work in a strict Coulomb gau
FIG. 2. Alternative graphical representation for the four scalar field vertex.
5-3
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FIG. 3. One loop contributions to the matter field and CS self-energy.
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tions the graphical representation of Feynman amplitudes
the same as before. However, as indicated in Fig. 2, to be
clarify the matrix structure of the four scalar field vertices w
will sometimes use an auxiliary dotted line whose cor
sponding propagator is just the identity. Concerning the f
field propagators, we have to use the matter field relativi
propagator

Dnm~p!5D~p!dnm5
i

p22m21 i e
dnm ~24!

instead of Eq.~6! whereas the CS free propagator continu
to be given by Eq.~5!. The new rules for the vertices are a
follows.

Trilinear CS–matter field vertex

Gnm
a,m~p,p8!52g~Ta!nm~p1p8!m. ~25!

Quadrilinear CS matter field vertex

Gnm
ab,mn~p,p8!52 ig2@TaTb1TbTa#nmgmn. ~26!

Quadrilinear matter field vertices

G1
n8m8nm~p,p8!5

2 il1

2
I n8nI m8m ~27!

for the vertex proportional tol1 (I denotes the identity ma
trix in the isospin space!. We have also
04501
re
er

-
e
ic

s

G2
n8m8nm~p,p8!5

2 il2

2
~Ta!n8n~Ta!m8m ~28!

for the vertex proportional tol2 . The CS–ghost field vertex
and the trilinear CS field vertex are, up the replacements
f abc by eabc, the same as before.

Before embarking into the discussion of the scatter
process and its nonrelativistic limit we will examine th
other one loop superficially divergent amplitudes. The Co
lomb gauge CS theory without matter fields has been a
lyzed in Ref.@14# with the conclusion that there are no r
diative corrections to the Green functions. For that reason
will restrict our study to graphs arising from the coupling
the scalar matter field.

We begin by considering the matter self-energy contrib
tions whose nonvanishing contributions are in Figs. 3~a!–
3~c!. Because of the specific form of the CS field propaga
or the trace over the SU~2! matrices, the other graphs ar
zero. We have

Sa
nm~p!5dnmSa~p!, ~29!

Sb
nm~p!5 tr ~ I !dnmSa~p!, ~30!

Sc
nm~p!5@TaTa#nmSa~p!l1→l2

, ~31!

where again the subscripts are in a strict correspondence
the diagrams mentioned and
FIG. 4. Corrections to the CS-matter field trilinear vertex.
5-4
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Sa~p!52 i
l1

2 E d3k

~2p!3
D~k!5

l1

2 EL0 d3k

~2p!3

1

k22m21 i e
,

~32!

whereL0 is an ultraviolet cutoff in the spatial part of th
above integral. The integral is linearly divergent, but th
divergence could be absorbed by a mass renormalizatio

Let us now look at the CS field polarization tensor. T
nonvanishing graphs are shown in Figs. 3~d! and 3~e!. Up to
a group factor, they give the same result as in the Abe
case@4#

Pmn,ab~q!5
ig2

8p
tr ~TaTb!~q2gmn2qmqn!P~q2!, ~33!

where
te

04501
n

P~q2!5E
0

1

dx
124x14x2

@m22q2x~12x!#~1/2!
'

1

3mF11
q2

20m2G ,

~34!

where the approximated result is valid form large compared
with the momentumq. It is a purely relativistic quantum field
theory contribution.

Consider now the corrections to the trilinear CS-mat
field vertex as shown in Fig. 4. Graphs 4~e!–4~h! vanish due
to the oddness of the integrand. Although not so obvio
graph 4~d! also vanishes. Since the integrand isk0 indepen-
dent, this result follows by first regularizing thek0 part of the
integral. More details on this will be given later, when di
cussing the two body scattering amplitude. Graph 4~a! has
the analytic expression
G~a!nm
m,b ~p,p8!5@TcTbTc#nmG~a!

m ~p,p8!, ~35!

where

G~a!
m ~p,p8!5

2g3

Q E d3k

~2p!3F ~2p2k!s«srlk̄l~2p82k!r~p1p82k!m

k2@~p2k!22m21 i e#@~p82k!22m21 i e#
G . ~36!
In the low momentum regime, this expression is easily in
grated and we get

G~a!
0 ~p,p8!5

ig3

4pQm
« i j p

iqj , ~37!

G~a!
l ~p,p8!5

2 ig3

8pQ
F « i j

piqj

m
S pl1p8 l

2m
D

22« i l qiS 11
p2

12m2
@21cos~u!# D G , ~38!

whereq5p2p8.
Graphs 4~b! and 4~c! have the expressions

G~b!nm
m,a ~p,p8!5@~TaTc1TcTa!Tc#nmG~b!

m ~p,p8!,

G~c!nm
m,a ~p,p8!5@Tb~TaTb1TbTa!#mnG~c!

m ~p,p8!,
~39!
-where

G~b!
m ~p,p8!5

g3

Q E d3k

~2p!3F ~2p2k!s«srlk̄lgrm

k2@~p2k!22m21 i e#
G ,

~40!

G~c!
m ~p,p8!5

g3

Q E d3k

~2p!3F ~2p82k!s«srlk̄lgrm

k2@~p82k!22m21 i e#
G .

~41!

Performing the integrals, we obtain

G~b!
0 ~p,p8!5G~c!

0 ~p,p8!'0 ~42!

G~b!
l ~p,p8!1G~c!

l ~p,p8!5
ig3

4pQ
« i j g

j l qi f ~p2,m2!,

~43!

where
FIG. 5. Tree approximation to the scattering.
5-5
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FIG. 6. l ’s second order contributions to the scattering.
.
d
a

st
pa-
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ing;
ar-
f ~p2,m2!5
Am21p2

Am21Am21p2
'

1

2
1

p2

8m2
. ~44!

We postpone the computation of the graph 4~i! until the
discussion of the two body scattering, to be done shortly

Besides the two body scattering amplitude, to conclu
our study of the one loop divergences we still have to look
04501
e
t

the corrections to the trilinear CS field vertex. There is ju
one graph consisting of a closed loop of matter field pro
gators which, by power counting, is logarithmically dive
gent~the other graphs cancel, as shown in@14#!. However, as
it is easily checked, it is in fact convergent by symmet
integration. We will not explicitly compute this diagram
since, up to one loop, it does not contribute to the scatter
we just want to remark that, together with the vacuum pol
FIG. 7. Graphs contributing to the scattering having only CS-matter field vertices.
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FIG. 8. Graphs admixing the quadrilinear scalar and trilinear CS-matter field vertices.
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ization calculated before and the one loop CS field four po
function, it implies that a Yang-Mills kinetic term

1

4

g2

24pm
tr @FmnFmn# ~45!

is induced in the effective low momentum Lagrangian. S
up to this point, only a trivial mass renormalization of th
matter field is necessary.

We are now ready to pursue our study of the two bo
scattering process. In our computations we will work in t
center of mass frame and shall retain terms up to or
upu2/m2'upu4/L4'L4/m4, wherep is the momentum of the
incoming particles andL the intermediary cutoff which
separates the regions of low and high momenta in the sp
part of the Feynman integrals.

In the tree approximation, the contributing graphs a
those shown in Fig. 5. We get

Mtree~u!52
l1@ I ^ I #1l2@Ta

^ Ta#

2
2 i ~8p!Vvpcot~u/2!.

~46!

Of course, we may adjust the coupling constants to c
rectly reproduce the nonrelativistic result. Prior to that, ho
ever, we will examine the one loop contributions which a
listed in Figs. 6, 7 and 8.

Let us begin by looking at the 2nd order~in l1 andl2)
graphs. The box diagrams, Figs. 6~a1!–6~a4!, furnish
04501
t

,

y

er

ial

e

r-
-

M l2~a!~u!5
1

4
@2l1

2I ^ I 22l1l2Ta
^ Ta

2l2
2TaTb

^ TaTb#I ~1!~u!, ~47!

where

I ~1!~u!52 i E d3k

~2p!3
D~k!D~p11p22k!. ~48!

We now detail the calculation of the above expression;
illustrate the general procedure we shall follow in the eva
ation of the contributing graphs. First we integrate ink0 get-
ting

I ~1!~u!5
1

32p2E0

`

d~k!2E
0

2p

da
1

wk

1

p22k21 i e
,

wherewk5Ak21m. The angulara integration is trivial and
gives 2p. In order to facilitate the taking of the nonrelativ
istic limit it is useful to introduce an auxiliary cutoffL,
satisfying upu!L!m, which separates the integral in tw
regions of low (0<k2<L2) and high (k2>L2) loop mo-
mentum. In thelow part of the integral the integrand is ex
panded in power of 1/m whereas in thehigh part it is ap-
proximated by a Taylor expansion aroundp50. We thus
arrive at

I ~1!~u!5I low
~1! ~u!1I high

~1! ~u!, ~49!
5-7
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I low
~1! ~u!5

1

16pE0

L

d~k!2
1

wk

1

p22k21 i e
~50!

5
21

16pmH S 12
p2

2m2D F logS L2

p2 D 1 ipG
2

p2

L2
2

p4

2L4
2

L2

2m2
1

3L4

16m4J , ~51!

I high
~1! ~u!5

1

16pEL

`

d~k!2
1

wk

1

p22k21 i e
~52!

5
1

16pmH S 12
p2

2m2D logS L2

4m2D 2
p2

2m2

2
p2

L2
2

p4

2L4
2

L2

2m2
1

3L4

16m4J , ~53!
04501
so that

I ~1!~u!5
21

16pmH S 12
p2

2m2D F logS 4m2

p2 D 1 ipG1
p2

2m2J .

~54!

Notice that if we consider thelow part of the above resul
and reinterpretL as the nonrelativisticLNR cutoff then the
leading contribution to Eq.~51! is the same as the result~17!
from Sec. II. Here, however, a counterterm is automatica
provided by the contribution of thehigh energy part and,
consequently, the final result~54! is finite. In the effective
field theory program@6# the high energy parts, which ar
only polynomials inp2, are associated to new interactions
be introduced in the nonrelativistic Lagrangian.

Following the same steps described above, the sum of
remaining graphs, Figs. 6~b! and 6~c!, give
us now
ted box

, has a
f these

lativistic
are
M l2~bc!~u!52
1

64pmF S 25l1
21

3

2
l1l22

3

16
l2

2D I ^ I 1S 24l1l21
1

2
l2

2DTa
^ TaG S 22

p2

3m2D
2

1

64pmF S 23l1
21

3

2
l1l21

3

16
l2

2D I^ I2
1

2
l2

2Ta
^ TaG p2

3m2
cosu. ~55!

As expected, the above result comes essentially from the high energy part of the corresponding integrals. Let
examine the graphs involving the CS field which are listed in Fig. 7. The graphs in the first row, the direct box and twis
diagrams, are given respectively by

M g4~a!~u!52 ig4@TaTc
^ TaTc#E d3k

~2p!3
$D~k!D~p11p22k!~p11k!mDsm~k2p1!~2p21p12k!s@~p31k!nDnr~k2p3!

3~p21p11p42k!r#%,

M g4~b!~u!52 ig4@TaTc
^ TcTa#E d3k

~2p!3
$D~k!D~k1p22p3!~p11k!mDms~p12k!~k1p22p31p4!s

3@~2p22p31k!nDnr~p32k!~k1p3!r#%. ~56!

Performing the integrals one finds that the low energy part, after the reinterpretation of the intermediary cutoff
logarithmic divergence which is canceled by the contribution from the high energy part. The final result for the sum o
graphs is

M g4~ab!~u!5
2g4m

2pQ2
@TaTc

^ TaTc#H 2S 11
p2

2m2D @ log@2~12cosu!#1 ip#22cosuF log@2~12cosu!#

2 logS 4m2

p2 D G p2

m2
2

p2

m2
~11cosu!J 1

g4m

4pQ2
@Ta

^ Ta#S 2~11cosu!
p2

m2D . ~57!

The next set of diagrams in Fig. 7 needs special care since they contain a genuine ultraviolet divergence of the re
theory. In fact they may have divergences in bothk0 and k parts of the loop momentum integral. We found that they
naturally grouped in two sets which have distinct properties. We shall discuss each of them separately.
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The graphs of the first set, Figs. 7~c! and 7~d!, are potentially more dangerous for, because of the form taken by th
propagator, thek0 integration is not well defined. We found that, as suggested in@14#, this difficulty can be circumvented by
first regularizing thek0 integral. For practical purpose we will introduce an additional cutoff so that

E dk0f ~k0!→E
2L

L

f ~k0!, ~58!

but the final result actually does not depend on the regularization one chooses. It turns out that the spatial integral mu
the k0 integral vanishes. To see how this happens, consider the graph 7~c! whose analytic expression is

M g4~c!~u!52g4Q@«bacT
b

^ TcTa#Ds8s~q!«s8m8n8~p21p4!sE d3k

~2p!3
@~k1p3!nD~k!~k1p1!m#Dm8m~k2p1!Dnn8~k2p3!.

~59!

After some arrangement, the above expression can be rewritten as

M g4~c!~u!5
22g4

Q2
@«bacT

b
^ TcTa#E d2k

~2p!2

@q`k2p1`p3#

@~k2p1!2#@~k2p3!2#@q2#
T0 , ~60!

where

T05E
2L

L dk0

~2p!

2wq~k01wq!@q`k#1~k01wq!2@p1`p3#

k0
22wk

21 i e
. ~61!

For L large enough, we obtain

T05@q`k#
wp

2

wk
1@p1`p3#

wp
21wk

2

2wk
1

L

p
@p1`p3#. ~62!

Notice now that the spatial integral multiplying the divergent piece inT0 is

E d2k

~2p!2

~k2p1!`~k2p3!

@~k2p1!2#@~k2p3!2#
50, ~63!

so that no counterterm will be needed if we agree to eliminate the cutoffL only at the end of the calculation. Proceeding in th
way and making the nonrelativistic approximation we arrive at

M g4~cd!~u!52
g4m

4pQ2
@Ta

^ Ta#H 21F11

2
13cosu G p2

m2
1S 21@122cosu#

p2

m2D F logS 4m2

p2 D 2@ log@2~12cosu!##G J
~64!

for the sum of the graphs 7~c! and 7~d!.
Similarly to the calculation for the 7~c! graph, each one of the graphs 7~e!–7~g! presents a linear divergence in L. Th

divergence is however eliminated when we sum the contributions so that the final result is

M g4~e f g!~u!5
2g4m

2pQ2
@TaTc

^ TaTc#H 221~21cosu!
p2

m2
1S 21@122cosu#

p2

m2D F logS 4m2

p2 D 2@ log@2~12cosu!##G J
1

g4m

4pQ2
@Ta

^ Ta#H 221~21cosu!
p2

m2
1S 21@122cosu#

p2

m2D F logS 4m2

p2 D 2@ log@2~12cosu!##G J
2

3g4m

16pQ2
@ I ^ I #

L0

m
, ~65!

whereL0 in an ultraviolet cutoff introduced in the spatial part of the integral. The divergent term proportional to this
can be removed by a redefinition of the coupling constantl1 . After this, the final result for the sum of the graphs in Fig. 7
045015-9
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M g4~u!5
2g4m

2pQ2
@TaTc

^ TaTc#H 2S 11
p2

2m2D F logS 4m2

p2 D 1 ipG1
p2

m2J 2
g4m

4pQ2
@Ta

^ Ta#
3

2

p2

m2
. ~66!

We still have to incorporate to our calculation the contributions of graphs with vacuum polarization and vertex corre
They do not exist in the nonrelativistic theory of the previous section and their contribution come entirely from thehigh energy
part. Using Eq.~33!, the insertions of vacuum polarization graphs give

MP~u!5
g4m

4pQ2
@Ta

^ Ta#H 1

3
1

7

15

p2

m2
1

1

5

p2

m2
cosuJ , ~67!

whereas, using Eqs.~37!, ~38!, and~43!, the vertex corrections produce

MV~u!52
g4m

4pQ2
@Ta

^ Ta#H 1

6

p2

m2
1

1

3

p2

m2
cosuJ . ~68!

At last, there are some contributions from graphs that admix the quadrilinear scalar vertex and the CS–matter fiel
They are shown in Fig. 8 and give the result

M lg2~u!52
ig2

8pQF3

4S l11
l2

4 D I ^ I 1S l11
3

4
l2DTa

^ TaG p2

m2
sinu. ~69!

In the Abelian situation the corresponding amplitude is canceled by its exchanged particle partner. Here, becaus
nonabelian structure, even after symmetrization the result is nonvanishing.

Our one loop calculation is now completed. Collecting all the results above, the total one loop amplitude~without sym-
metrization! is given by

M1loop5
21

64pmF S 2l1
22

3

16
l2

2D I ^ I 1S 2
1

2
l2

222l1l2DTa
^ TaG H S 12

p2

2m2D F logS 4m2

p2 D 1 ipG1
p2

2m2J
2

1

64pmF S 25l1
21

3

2
l1l22

3

16
l2

2D I ^ I 1S 24l1l21
1

2
l2

2DTa
^ TaG S 2

p2

3m2D
2

1

64pmF S 23l1
21

3

2
l1l21

3

16
l2

2D I ^ I 2S 1

2
l2

2DTa
^ TaG p2

3m2
cosu2

g4m

2pQ2
@TaTc

^ TaTc#

3H 2S 11
p2

2m2D F logS 4m2

p2 D 1 ipG1
p2

m2J 2
g4m

4pQ2
@Ta

^ Ta#H 18

15

p2

m2
1

2

15

p2

m2
cosuJ 2

ig2

8pQF3

4S l11
l2

4 D I ^ I

1S l12
3

4
l2DTa

^ TaG p2

m2
sinu. ~70!
hi
fo
rs
ne
-

re

a-
We are now in a position to compare the results of t
section with the ones stated in the preceding section. Be
doing that we will need to adjust some normalization facto
These come from the normalization of the relativistic o
particle states,̂p8up&52vpd(p82p), whereas the nonrela
tivistic theory does not have the 2wp factor. Another factor

to take into consideration isf 5Avp /m which comes from
the different expressions used for the relativistic and non
04501
s
re
.

l-

ativistic velocities. Altogether, we need to multiply the rel
tivistic expression by the kinematic factor

f S 1

A2vp
D 4

5
1

4m2F12
3p2

4m2
1•••G . ~71!

Thus, to leading order inp/m, we have
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M dom~u!52
1

2S le f f

4m2D 2 i
2p

m
V cot~u/2!

1
m

16pF S le f f

4m2D 2

2
16p2

m2
V2G

3H logF4m2

p2 G1 ipJ , ~72!

wherele f f5l1@ I^ I#1l2@Ta
^ Ta#. As remarked after Eq

~54! and explicit in Eqs.~51! and~53!, the low energy part of
AB
h
h
ee
to

l-
dd
-
lf-
s
u

ys
,

da

04501
this formula coincides with the nonrelativistic result, aft
the identification of the intermediary with the nonrelativist
cutoff. In our calculation, however, thehigh part provides
the necessary counterterm to thelow part and the final resul
becomes automatically finite.

To restore the conformal invariance of the tree appro
mation, eliminating the log term and obtaining the same
sult as in the expansion of the exact amplitude one m
choosel150 andl258mg2/(uQu). At these values of the
renormalized quartic self-interaction there are subdomin
terms in Eq.~70! that survive, namely,
M sub5
ip

2mFV cot~u/2!2 i
3

4 UVUG p2

m2
2

g4

4pmQ2F 3

16
I ^ I 2

1

2
Ta

^ TaG p2

m2S logF4m2

p2 G1 ip D
2

g4

4pmQ2H F 1

16
I^ I1

2

15
Ta

^ TaG p2

m2
1F 1

16
I ^ I 2

2

15
Ta

^ TaG p2

m2
cosuJ

6
ig4

4pmQuQuF 3

16
I^ I2

3

4
Ta

^ TaG p2

m2
sinu ~73!
d
ring

e-

al
and represent relativistic corrections to the non-Abelian
scattering. These terms break conformal invariance whic
therefore only a property of the leading approximation. T
first row of the above formula are corrections of the tr
level and are partially of kinematical rise and partially due
the energy dependence of the relativistic amplitude Eq.~46!.
The other terms, proportional tog4 are absent in the nonre
ativistic Aharonov-Bohm scattering which contains only o
powers ofg2 @11#. In an effective low momentum Lagrang
ian they would correspond to derivative quartic se
couplings of the matter fieldf. The subleading correction
change also the nature of the effective AB potential: beca
is
e

se

of vacuum polarization, this potential is not strictly localize
at the origin and the AB effect, considered as the scatte
by an impenetrable flux tube, only exists in a quantum m
chanical, first quantized level.
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