PHYSICAL REVIEW D, VOLUME 59, 045015

Non-Abelian Aharonov-Bohm scattering of spinless particles
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The Aharonov-Bohm scattering for spinless, isospin 1/2, particles interacting through a non-Abelian Chern-
Simons field is studied. Starting from the relativistic quantum field theory and using a Coulomb gauge formu-
lation, the one loop renormalization program is implemented. Through the introduction of an intermediary
cutoff, separating the regions of high and low integration momentum, the nonrelativistic limit is derived. The
next to leading relativistic approximation is also determined. In this approach quantum field theory vacuum
polarization effects are automatically incorporated.
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PACS numbes): 11.10.Kk, 11.10.Gh

I. INTRODUCTION closely related to the methods of effective field theofigs
For the case of spinless or antiparallel spin fermionic par-

A great deal of interest has been devoted in recent yeatticles, it was found that the low energy part of the amplitude
to the study of the Aharonov-Bohf\B) effect, the scatter- contains a logarithmic divergence in the limit of very high
ing of Charged partides by an impenetrab|e magnetic ﬂu){ntermediary cutoff. Nevertheless, different from the nonrel-
tube[1]. This situation was motivated both by potential ap- ativistic calculations previously mentioned, without any ad-
plications, which come from many different areas, and alsdlitional hypothesis, the needed counterterm is automatically
by some conceptual difficulties found in the AB scattering ofafforded by the high energy part of the contribution. Besides
spinless particles. In that case, the Born approximation faileéhat, terms absent from the direct nonrelativistic calculation
to reproduce the expansion of the exact result and, furthepvere determined. These new interactions come from the hlgh
more, the second Born approximation turned out to be diverenergy part of the amplitudes and modify in an essential way
gent[2]. These issues have been investigated considering &ssic properties of the nonrelativistic scattering.
equivalents the AB effect and the scattering of particles in- In this work we want to pursue these investigations by
teracting through a Chern-Simof@S) field. In a nonrelativ- ~ considering the non-Abelian AB effect for spinless particles,
istic context, it was shown that, up to one loop, that is, thevhich corresponds to the problem of particles without spin
second Born approximation, agreement of the perturbativ®Ut carrying isotopic spin scattered by an isotopic magnetic
calculation with the expansion of the exact result could bélux tube. Cosmic strings and black holes are the more natu-
achieved by introducing an extra quartic self-coupling of theral applications of this subje¢8].
scalar particle§3] tuned to eliminate divergences and restore  The non-Abelian AB situation was first analyzed in a cel-
the conformal invariance of the tree amplitude. For the scat€brated paper on nonintegrable phase fadt®fsand since
tering of two spin up fermions it was verifiel?] that an  then it has been more quantitatively investigated at the quan-
additional self-interaction was not needed since its role wa§!m mechanical level10]. Recently, in a direct nonrelativ-
provided by Pauli’'s magnetic term, in accordance with anistic approach, the scattering has been discussed using a non-
earlier conjecturé3]. However, if the fermions had antipar- Abelian Chern-Simons field to simulate the flux tube with
allel spins the effect of the magnetic interaction canceled ané&esults similar to the ones mentioned above for the Abelian
a divergence showed up. case[11,12. Here we want to begin from a relativistic for-

From a more basic standpoint, one can start directly frominulation which, as said before, already embodies radiative
a relativistic quantum field theory of charged particles inter-corrections. In this way we will be able to find next to lead-
acting through a CS field and then appropriately taking dng corrections to the results presented id].
nonrelativistic limit. Proceeding in this way, purely quantum We will assume that the basic particles carry isotopic spin
field theory effects as vacuum polarization and anomaloud/2. In the language of the21 quantum field theory our
magnetic moment are automatically incorporated. Such &ystem is described by the Lagrangian denkij
procedure was applied successfully to the study of the AB
scattering for both spin 0 and spin 1/2 partic[ds5]. The
calculation was greatly facilitated by the introduction of an
intermediary auxiliary cutoff which, in the Feynman inte-
grals, separates the regions of high and low energy. This
allows a direct simplification of the integrands and it is
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=A*,T? andT, are the generators of the group @U As we 1 k.
shall see, up to one loop, the leading contributions correctly D{2(k)=D*"(k) 5ba=6s“”‘—2 Sba> 5)
reproduce the nonrelativistic results whereas the next to lead- k
ing contributions are new corrections to the nonrelativistic _ R
calculation. As we are mainly interested in the nonrelativisticvherek= (0k).
limit, in this work we will employ a strict Coulomb gauge. Matter field propagator:
Our work is organized such that in Sec. Il the nonrelativ- .
istic theory is briefly considered. We do that not only to fix D,(p)=D(p) &= I s ®)
our notation but also to make easier the comparison with the nm(P P)onm pz
results of the nonrelativistic limit of Ed1). In Sec. Ill, after po—ﬁﬂ'E
discussing the one loop renormalization program for the rela-
tivistic model, we analyze the two body scattering up to next Ghost field propagator:
to the leading nonrelativistic approximation. Final comments
and a discussion of our results are presented at the end of that —i
section. Gba(p):G(p)5ba:F Oba- (7)

Il. THE NONRELATIVISTIC MODEL The vertices of the Feynman'’s diagrams are of five different

. . . types:
In this section we want to summarize the results of theypTriIinear CS—matter field verticep(andp’ are the mo-

non-Ab_ellan AB scattering of spln_less particles. To fa_c'l'tatementa through the scalar lines at the vertex
comparison, we shall use essentially the same notation as in

[11], but to keep contact with the results to be derived in the r2%p,p)=—g(T¥nm (8
next section, we will employ a cutoff to regularize the spatial

part of the loop integrals instead of dimensional regularizafor the trilinear coupling involvingA°, and

tion as it was done in that reference. The Lagrangian density

which specifies the model is i , g i
P PEPR)= o (Thon(p+p) (@)
29 .
Lyg=—0&"P7tr| ALdpA,+ 3 AaPpAy for the coupling containind\',i=1,2.
Trilinear CS—ghost field vertex
1
T o T i ’ "
+id'D,® 2m(DCI)) (D®) rabei(p p’)=—gfbop'i (10)

1 4 1 Quadrilinear CS matter field vertex
= 2P0 P Comn P Etr(VA)2

N ig? N
ab,ij N — _ aTb TbTa ij
_ 77*a(5abV2+gfabcAC'V)7]b’ (2) an (p,p ) 2m[T T ™T ]nmg . (11)

where® is ann component complex field belonging to the Trilinear CS field vertex

fundamental' representation of the $(group. Thg genera- rabeur(p p')=ig@fabsa, (12)
tors of the Lie algebra of SW\), denoted byT? satisfy
Quadrilinear matter field vertex
[T Tb] =fabcl® ©) .
=i
1—‘ y ! ' :—C ' . 13
and are normalized such that (PP nmn 2 —mmmn 13
1 Using these rules, the tree approximation to the direct
tr(TaTP) = — = 52°. (4) scattering amplitude corresponds to the graphs in Fi@s. 1
2 and Xb). In the center of mass frame it is given by

With respect the constant matri,: v nm We just assume
that it has the most general form compatible with the invari-
ance of the action under the Stj(transformationg11].

We will use a graphical notation where the CS field, thewhere @ is the scattering angle and)=(—g%2mw®)
matter field and the ghost field propagators are representétf® T,. We use a simplified notation introduced in Ref.
by wavy, continuous and dashed lines respectively. In th¢ll], where isospin indices are omitted. Accordingly, if the
Coulomb gauge, obtained by lettig—0, the analytic ex- incoming and outgoing particles have isospim,rf) and
pressions for these propagators are as follows. (n’,m’) the total scattering amplitude for the process is

CS field propagator: given by

C 2=«
M(6)=— E—I FQ cot( 6/2), (14
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D, b, —70)? ﬁR .
M(6)= log| —-| -2 log|2 sin(6/2)]
p
2 2
g ARR .
P, P R | —
_ - + 16m®Q Iog( o ) 2 log2 sin( 6/2)| |,
a b
m m’ (19)
) 2
~9 ool 22| 5 102 sirgar
M;i(0)= 16mo | 109 F —2log 2 sin(6/2)|+1],
P, Py (20)
¢ ! d " where M, denotes the contribution coming from the graph
in Fig. 1. Note that the finite constant term i(; can be
m o m o absorbed into a redefinition &. Afterwards, we see that our
P, P, P b, result agrees with Ref11] if the dimensional regularization
parametefe and our cutoffA g are related by
1 A’
P, P P, D —+In 2 —v=0, (22)
n n’ n n’ € ANR
e f

wherey is the Euler constant. Adding the above results and
disregarding the mentioned constant term, we get

AR
p?

FIG. 1. Graphs contributing to the nonrelativistic scattering.

+im

Mn’m’;nm(a)"_(e‘”'f"' o,n'—m’), (15 m / > 167202
Mlloop( 0)= 1677\ - e

where (22)

Thus, in complete analogy with what happens in the Abe-
c ) lian case, we now choosg?=1672Q02%/m? to restore the

_ nmam 97 4 _a conformal invariance of the tree approximation and repro-
Manrmrinm(0)= = > ! ng,nTm,mcot( 6/2). duce the exact result %P P

(16)

M(e):—i%T(Qcot(alz)—ﬂm), (23
The one-loop graphs depicted in Figsicot1(f) have
been computed irf11] using dimensional regularization. as also derived bj11].

Here we just quote the corresponding results obtained by
introducing a cutoffA \ in the spatial part of the loop inte- IIl. RELATIVISTIC THEORY
grals. We get
In the relativistic domain, the Feynman amplitudes are

very intricate for a general matri€. Considerable simplifi-
cation occurs however if the gauge symmetry is taken as

, 17 isospin SUW2) group [15]. Thus, for simplicity we restrict

ourselves to the study of the &) case described by the
Lagrangian(1) where a gauge fixing and ghost terms must be

mC?
M(0)= 16m

A2
Iog( %{) +iar
p

) added for a proper quantization.
_ : ; Of course, we choose to work in a strict Coulomb gauge
= + . : i
Mq(6) m [2log2 sin(0/2)|+i], (18) as before. As described below, unless by obvious modifica-
m 5 m m ? m
n E n’ n i n

FIG. 2. Alternative graphical representation for the four scalar field vertex.
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FIG. 3. One loop contributions to the matter field and CS self-energy.

tions the graphical representation of Feynman amplitudes are S —iNp . .
the same as before. However, as indicated in Fig. 2, to better I'; (p,p")= T(Ta)n nreHmm (28)
clarify the matrix structure of the four scalar field vertices we

will sometimes use an auxiliary dotted line whose corre-for the vertex proportional ta,. The CS—ghost field vertex
sponding propagator is just the identity. Concerning the fregnq the trilinear CS field vertex are, up the replacements of
field propagators, we have to use the matter field relativistigabe jyy, cabe the same as before.

propagator Before embarking into the discussion of the scattering
process and its nonrelativistic limit we will examine the

S (24) other one loop superficially divergent amplitudes. The Cou-

p2—m?+ie nm lomb gauge CS theory without matter fields has been ana-
lyzed in Ref.[14] with the conclusion that there are no ra-

instead of Eq(6) whereas the CS free propagator continuesdiative corrections to the Green functions. For that reason we
to be given by Eq(5). The new rules for the vertices are as will restrict our study to graphs arising from the coupling to

Apm(P)=A(P) Snm=

follows. the scalar matter field.
Trilinear CS—matter field vertex We begin by considering the matter self-energy contribu-
au N a ) tions whose nonvanishing contributions are in Fig&)-3
Ion(p,p")=—9(T)am(p+p")* (25 3(c). Because of the specific form of the CS field propagator

or the trace over the S@) matrices, the other graphs are

Quadrilinear CS matter field vertex sero. We have

ra2(p,p’)=—ig?[TATP+ T°T%] . g*".  (26)

23"(p) ="M a(p), (29
Quadrilinear matter field vertices am n
b (P)=tr(1)8""2a(p), (30
"m’nm ’ i n'ngm’'m
Ly R = 1 @ SIM(P) =[TTL]"Sa(p)y, -, (31)

for the vertex proportional ta; (I denotes the identity ma- where again the subscripts are in a strict correspondence with
trix in the isospin spage We have also the diagrams mentioned and

A A
P pk Pk P’ P p-k P
=pp’ a=pp’ § =P
a g b c

p pk P’
=pp’
H 3
f
a=pp’
g L p k P
P 7 s P Pg P pk bk
a=pp’ q=pp’ . e
h 1

FIG. 4. Corrections to the CS-matter field trilinear vertex.

P

q=p-p’
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5.(0) ,xlf d3k A xlon d3k 1 (D) fld 1—4x+4x2 1 ..
=15 =5 ’ = X ~ — —_—
P 2J) (2m)3 2) 2w K-mitie a o [m2—g>(1-x)]¥2 3m T 20m?

(32 (34)

2

where A, is an ultraviolet cutoff in the spatial part of the . ) .
above integral. The integral is linearly divergent, but thiswhere the approximated result is valid forlarge compared

divergence could be absorbed by a mass renormalization. With the momentung. Itis a purely relativistic quantum field
Let us now look at the CS field polarization tensor. Thetheory contribution.

nonvanishing graphs are shown in Fig&d)3and 3e). Up to Consider now the corrections to the trilinear CS-matter
a group factor, they give the same result as in the Abeliafi€eld vertex as shown in Fig. 4. Grapheef-4(h) vanish due
case[4] to the oddness of the integrand. Although not so obvious,

graph 4d) also vanishes. Since the integrandckisindepen-

Jab 9% L ) ) dent, this result follows by first regularizing th& part of the
[#7%(q) = atr(T T™)(a°g*"—a*a")1I(q%), (33)  integral. More details on this will be given later, when dis-

cussing the two body scattering amplitude. Gragh) has

where the analytic expression
|
Llanm(PP ) =[TT Tl (a(P.P"), (35
where
L =@ k[ (2p—K)%e,,\KN2p k) (p+p’ k)
0 J (2m3 kY (p—k)2—m2+iel[(p' —Kk)2—m?+ie]
|
In the low momentum regime, this expression is easily intewhere
grated and we get -
ig? T4 (p p’)—g—sf k[ (2p—K) e,k g
0 " — [P b ’ - . ’
Ta(p.p)= 1 —gmeip'd, (37) ® 0 2m3 K (p—Kk2—m2+ie] w0
_i93" piqj(pl+p’l> g3 dSk [ (Zp/_k)ag P\gpu
FI ’ Yy — = u N2 ap\
@ PP =56 m | 2m | 2m K (p' —k)2-mP+ie]]
(41
) 2
—2¢e'qi| 1+ 12m2[2+005{ 9)]) ] (38)  Performing the integrals, we obtain
whereq=p—p’. r?b)(p:p,):r?c)(pyp’)wo (42)
Graphs 4b) and 4c) have the expressions -
| , | 9 il ifr 2 2
Clmm(P.p ) =[(TATH TTH T ]nml fh) (PP, Lipy(P,p" ) +T (PP )—477 ;9" q'f(p*,m),
(43
Ll (PP ) =[To(TATP+TPT?) ]yl (P, P,
(39 where
= P, Py - = i Pgm = P, ? pgm
4=P,- P, .
B, Ps b, Ps b, : s
a b c

FIG. 5. Tree approximation to the scattering.
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m m m ~ . m
P, : k : P, b k L.
N . : .
- : : : :
. . . L]
: : . .
a p, . . P p, ’:\ ; Ps
n n n e e n
al a2
m = m’ m A m
b ° k. B Bo. k1B
N . . .
. .
. M . o
. : . o
. : : .
b, : . Py p, : : Ps
n ~ Y o O -
a3 a4
b c

FIG. 6. \'s second order contributions to the scattering.

\/szpz 1 p? the corrections to the trilinear CS field vertex. There is just
f(p?,m?)= > ==~ > (44 one graph consisting of a closed loop of matter field propa-
Jm?+m +p® 2 8m gators which, by power counting, is logarithmically diver-

gent(the other graphs cancel, as showfid]|). However, as
We postpone the computation of the graph) 4intil the it is easily checked, it is in fact convergent by symmetric
discussion of the two body scattering, to be done shortly. integration. We will not explicity compute this diagram
Besides the two body scattering amplitude, to concludesince, up to one loop, it does not contribute to the scattering;
our study of the one loop divergences we still have to look atve just want to remark that, together with the vacuum polar-

m m’ m m’
14 k 1 P, k 12
P, P. P, Ps
n n n n’
a b
m m’ m m’
P, k P, B 23
P, P P, k B
n n’ n n
c d
m m’ m m m m
P, k P, P, 28 b P,
P, Ps P, k Ps P, P:
n n n n n n
e f g

FIG. 7. Graphs contributing to the scattering having only CS-matter field vertices.
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a3

b c

FIG. 8. Graphs admixing the quadrilinear scalar and trilinear CS-matter field vertices.

ization calculated before and the one loop CS field four point 1 5

function, it implies that a Yang-Mills kinetic term Mz (0)= z[ -l @l — 2NN, TR T,
1 g2 —NTRTPR T, T, 11 M (0), (47)
- tr[F'F ] (45)

is induced in the effective low momentum Lagrangian. So, 1 ) d3k

up to this point, only a trivial mass renormalization of the I )(0):_'f (27)3A(k)A(p1+ p2—k). (48

matter field is necessary.

We are now ready to pursue our study of the two body
scattering process. In our computations we will work in theWe now detail the calculation of the above expression; to
center of mass frame and shall retain terms up to ordei|”UStrate the general procedure we shall follow in the evalu-
|p|?/m?~|p|*/ A%~ A*/m* wherep is the momentum of the ation of the contributing graphs. First we integratekfhget-
incoming particles andA the intermediary cutoff which ting
separates the regions of low and high momenta in the spatial
part of the Feynman integrals. 1

In the tree approximation, the contributing graphs are 1D(g)=
those shown in Fig. 5. We get

. 2r 1 1
j d(k)?| da——>——,
0 0 Wkp?—Kk’+ie

3272

wherew, = Vk?+m. The angular integration is trivial and
Aq[l ®I]+)\2[Ta®Ta]—i(8w)Qw cot 6/2) gives 2. In order to facilitate the taking of the nonrelativ-
2 P ' istic limit it is useful to introduce an auxiliary cutofA,
(46)  satisfying|p|<A<m, which separates the integral in two
regions oflow (0=<k?<A?) and high (k?®=A?) loop mo-

. . mentum. In thdow part of the integral the integrand is ex-
Of course, we may adjust the coupling constants to cor-

L : panded in power of i whereas in théigh part it is ap-
rectly repro'duce thg nonrelativistic result..Prlc.)r to tha.t, how_proximated by a Taylor expansion aroupe=0. We thus
ever, we will examine the one loop contributions which are

Miree(0)=—

listed in Figs. 6, 7 and 8. arrive at
Let us begin by looking at the 2nd ordén A, and\,)
graphs. The box diagrams, Figga®)—6(a4), furnish 1) =1{g0(0) +1ign(6), (49
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1 so that
w(®)= 167-rf Wk p?—k*+ie 0
-1 2 4m? 2
-1 p? A% D)= J 1- pz) Iog(— +im +p—2 .
:l67r—m 1—— |Og +ia 167Tml 2m 2m
2m? p? (54)
ot
A2 2A* 2m?  1em?)’ Notice that if we consider théow part of the above result
and reinterpret\ as the nonrelativistid\ g cutoff then the
(D leading contribution to Eq51) is the same as the reslt7)
Thign(0)= 75— 161 Wk p?P—k2+ie (52) from Sec. Il. Here, however, a counterterm is automatically
provided by the contribution of thaigh energy part and,
1 p2 A2 p? consequently, the final resulb4) is finite. In the effective
= Tomm 1 5 log o3 B field theory prograni6] the high energy parts, which are
m 2m 4m 2m only polynomials inp?, are associated to new interactions to
2 pt A2 3A4 be introdl_Jced in the nonrelativistic_ Lagrangian.
- _ - + , (53) Following the same steps described above, the sum of the
A% 2A% 2m?  16m? remaining graphs, Figs.() and Gc), give
|
1 , 3 3 1, p?
M)\Z(bc)(g)z—%_ -5\t E)\l)\z 167\2 Q1+ —4NNo+ E)\z T®T Z_Q
L 3>\2+3>\x+3>\ 1o 17\2Ta T2 i 9. 5
64mm| oot gz f1el- 5NeTe 32 (55)

As expected, the above result comes essentially from the high energy part of the corresponding integrals. Let us now
examine the graphs involving the CS field which are listed in Fig. 7. The graphs in the first row, the direct box and twisted box
diagrams, are given respectively by

M gaa)(0)=—ig [T TR T, Tc]f ——{AK)A(p1+pP2—K)(P1+K)#D (k= p1)(2p2+ p1—K)[(p3+K) "D, (K= p3)

X (p2tp1t+pa—K)7T},

M gapy(0)=—ig [T T°® T, Ta]f 3 {AKA(K+p2—P3)(P1+K)#D 4o (P1—K) (K+pa—pstpa)”

><[(2p2—p3+k)”DVp(p3—k)(k+p3)P]}. (56)

Performing the integrals one finds that the low energy part, after the reinterpretation of the intermediary cutoff, has a
logarithmic divergence which is canceled by the contribution from the high energy part. The final result for the sum of these
graphs is

—o*m 2
M g4an)(0)= g®2[TaTC®TaTC][2 1+ #)[Iog[2(1—cos¢9)]+i7-r]—20039 log[2(1—cos)]
4m? p2 p2 g“m ] p2
—log ? E—?(Hcosﬂ) + @2[T ®T,] 2(1+CO§)E . (57)

The next set of diagrams in Fig. 7 needs special care since they contain a genuine ultraviolet divergence of the relativistic
theory. In fact they may have divergences in bkghand k parts of the loop momentum integral. We found that they are
naturally grouped in two sets which have distinct properties. We shall discuss each of them separately.
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The graphs of the first set, Figs(cY and 7d), are potentially more dangerous for, because of the form taken by the CS

propagator, th&® integration is not well defined. We found that, as suggestdd4h this difficulty can be circumvented by
first regularizing thek, integral. For practical purpose we will introduce an additional cutoff so that

L
f dkof(ko)ﬁf_Lf(ko), (58)

but the final result actually does not depend on the regularization one chooses. It turns out that the spatial integral multiplying
the k, integral vanishes. To see how this happens, consider the gfaplvfifose analytic expression is

! ror d3k
M gi(e)(0)=—g*O 8o T O TTID ()8 # * (p2+p4)"f 2 )3[(k+ps)”A(k)(kerl)“]DM(k—pl)Dwr(k—ps)-
a
(59
After some arrangement, the above expression can be rewritten as
-2¢* d%k Ak—p A\
Mao(0)=—2[opad o TT] | —— LR Rl (60)
0 (2m)° [(k=p1)“I[(k—p3)°][a"]
where
_fL dk® 2w, (k%+we)[gAK]+ (KO+wg) A p1/\ps] 61)
0~ 2_ 2 :
-L(2m) ke—wi+ie
For L large enough, we obtain
N w) N wi+wp L N
To=LaAKIG + [P/APs 50 =+ Z1P1/APs]. (62
Notice now that the spatial integral multiplying the divergent piec& jris
d%k k—p) A\ (k—
f . ( p1)2 ( p3)2 _ 63
(2m)° [(k=p)“I[(k—=p3)“]

so that no counterterm will be needed if we agree to eliminate the dutwify at the end of the calculation. Proceeding in this
way and making the nonrelativistic approximation we arrive at

4m p?
_2 +
m

g
M g4(cd)( 0)=—
4

11
—+3coY

= |
log| —— | —[log[2(1—co¥)]]
2 p2

(64)

p2
2+[1—20099]—2>
m

@2[Ta®Ta]|2+

for the sum of the graphs(@ and 71d).
Similarly to the calculation for the (¢) graph, each one of the graph&)~7(g) presents a linear divergence in L. This
divergence is however eliminated when we sum the contributions so that the final result is

4m?
Iog( F) —[log[2(1— cose)]]l }

_g4m e p2 p2
Mg4<efg)(0):W[T T@T,Tel| —2+(2+c0%) —+| 2+[1-2cow)

+ g'm [T2®T,] —2+(2+cos€)p—2+
4702 2 m?

p2 4m2
2+[1—20099]F> Iog( F) —[Iog[2(1—c099)]]1 ]

3g*m
16702

Ao
[|®|]H, (65)

where A, in an ultraviolet cutoff introduced in the spatial part of the integral. The divergent term proportional to this cutoff
can be removed by a redefinition of the coupling constantAfter this, the final result for the sum of the graphs in Fig. 7 is
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g ) (4m2 !
1+ —||log| —| +im
2m2 pZ

— g4m
2

270

+ P’ g'm [T2®T ]3 i
—_— — ® —
m? 4702 &2

M ga(0)=

(66)

[TATC®T,T ] 2 p—z.
m
We still have to incorporate to our calculation the contributions of graphs with vacuum polarization and vertex corrections.

They do not exist in the nonrelativistic theory of the previous section and their contribution come entirely frioighteeergy
part. Using Eq(33), the insertions of vacuum polarization graphs give

_g“m T2®T LA 6
MP(G)_47T®2[ ®Ta] 3 B 5 oY (67)
whereas, using Eq$37), (38), and(43), the vertex corrections produce
My(0)= g'm T2T 1p2+1p2 SV 68
w( )__471-@2[ @Tal 62 3 20Y (68)

At last, there are some contributions from graphs that admix the quadrilinear scalar vertex and the CS—matter field vertex.
They are shown in Fig. 8 and give the result

2

\
-2 P sino. (69)
m

+ 2ol +
N L

70| 4 4

ig?[3 3 .
Mig(0)==5—517 Nt oA, | T3eT,

In the Abelian situation the corresponding amplitude is canceled by its exchanged particle partner. Here, because of the
nonabelian structure, even after symmetrization the result is nonvanishing.

Our one loop calculation is now completed. Collecting all the results above, the total one loop amlitixdet sym-
metrizatior) is given by

_ -1 » 3., 1, a p? am?\ p?
MllOOp_m _)\1_ 1_6)\2 Il + _z)\Z_Z)\l)\Q T ®Ta l_ﬁ |Og F +ia +ﬁ
1 , 3 3., 1.\, p?
~amm] | MM A s [1 91| — ANkt SN TR T | - o
| TV V| [P e A L cosh— g'm [TeTC®T,T.]
64mm| S T 272 232 Py ale
2 2 2 4 2 2 P2
p 4m ) p g*m 18 p 2p ig 3( Ao
X +— — |+ +—— a ——t—— — ] N+ —
[2 1 o Iog( 02 i m2] 471_@2[T ®Ta][15m2 15m20059 8,012 N 2 Il
3 p*
+{Ng— =N\, | TA® T, |—sing. (70
4 m2

We are now in a position to compare the results of thisativistic velocities. Altogether, we need to multiply the rela-
section with the ones stated in the preceding section. Befortvistic expression by the kinematic factor
doing that we will need to adjust some normalization factors.
These come from the normalization of the relativistic one
particle states(p’|p)=_2w,8(p’ —p), whereas the nonrela- f(
tivistic theory does not have theag factor. Another factor

to take into consideration if=\w,/m which comes from
the different expressions used for the relativistic and nonrelThus, to leading order ip/m, we have

4 2
! ) 1[ _3p +--- . (71

= 1
V2w, am? " am?

045015-10



NON-ABELIAN AHARONOV-BOHM SCATTERING OF ... PHYSICAL REVIEW D59 045015

1 Ness 20 this formula coincides with the nonrelativistic result, after
Mgy =—= > —i—Q cot(6/2) the identification of the intermediary with the nonrelativistic
2\ 4m m cutoff. In our calculation, however, thieigh part provides
2 2 the necessary counterterm to e part and the final result
m ’7( )\eff 167 2 b . ..
+ — Q ecomes automatically finite.
1677{ am? m? To restore the conformal invariance of the tree approxi-
’ mation, eliminating the log term and obtaining the same re-
XIIOg - +i77], (72) sult as in the expansion of the exact amplitude one must
p? choose\ ;=0 andA,=8mg?/(|0®|). At these values of the

A renormalized quartic self-interaction there are subdominant
wherehgii=N[I® 1]+ N[ T®T,]. As remarked after EQ. terms in Eq.(70) that survive, namely,
(54) and explicit in Egs(51) and(53), the low energy part of

2 2

MS“b—'WQ /2 '39 P* g* 3| | 1Ta T P | 4m +i
=om cot( 6/2) |4 R —— 16® > ® a2 og o2 i
—94 1| |+2Ta T IO2+ 1| | 2Ta1 T P 9
47me?| 167 15 ©la 2T 16 T 15 @ a) 2%
+—ig4 3| | 3Ta T pz'e 73
“4mmele|16 > 4 & laj " 73

and represent relativistic corrections to the non-Abelian ABof vacuum polarization, this potential is not strictly localized
scattering. These terms break conformal invariance which iat the origin and the AB effect, considered as the scattering
therefore only a property of the leading approximation. Theby an impenetrable flux tube, only exists in a quantum me-
first row of the above formula are corrections of the treechanical, first quantized level.

level and are partially of kinematical rise and partially due to
the energy dependence of the relativistic amplitude (&§j.
The other terms, proportional @ are absent in the nonrel-
ativistic Aharonov-Bohm scattering which contains only odd
powers ofg? [11]. In an effective low momentum Lagrang-  This work was partially supported by Conselho Nacional
ian they would correspond to derivative quartic self-de Desenvolvimento Ciefiico e Tecnolgico (CNPQ and
couplings of the matter fielgh. The subleading corrections Coordenaao de Aperfejoamento de Pessoal dévdl Supe-
change also the nature of the effective AB potential: becauseor (Capes.
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