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Bosonization of the three-dimensional gauged massive Thirring model
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Bosonization of the massive Thirring model, with a nonminimal and non-Abelian gauging, is studied in 2
dimensions. The static Abelian model is solved completely in the large fermion mass limit and the spectrum is
obtained. The non-Abelian model is solved for a restricted class of gauge fields. In both cases explicit expres-
sions for bosonic currents corresponding to the fermion currents are §8@556-282(199)03802-3

PACS numbgs): 11.10.Kk, 11.15.Bt

[. INTRODUCTION tains results for the non-Abelian theory for a special class of
gauge fields. The paper ends with a brief conclusion in
Ever since the explicit demonstration if-1 dimensions  Sec. V.
of the equivalence of the massive Thirring model and the
sine-Gordon model order by order in perturbation theory in Il. BOSONIZATION
the charge zero sectpt] and the subsequent construction of i i i
the fermion operator by boson operatf23, the concept of The parent non-Abelian fermion model that we wish to
bosonization has proved to be an extremely useful one. HowstUdY IS @ system of Dirac fermions with a nonminimal gaug-
ever, it was thought that this equivalence is an exclusivd?d- There is a Thirring[7] type current-current self-
property of one-dimensional space, where in reality there interaction term as well. The Lagrangian considered by us is
no spin to distinguish fermions from bosons. Indeed, at-
tempt; to.ggneralize bosonization in two space dimensions L=% YD, ¢— mZszr g(ZV“Talﬂ)z- (1)
met with limited succesk3].
Renewed interest if2+1)-dimensional bosonization has The covariant derivative is defined as

created a flurry of activity in recent years, where the problem
is attacked from a different angle. The nonlocal fermion de-
terminant generates local terms in the one-loop perturbative
evaluation, in the limit of large fermion mass. In the lowest K — AVA
orders of inverse fermion mass, the bosonized theory of the p= Epn
(Abelian). massive Thirring model turns qut to be Maxwell- The anti-Hermitian generators satigfy® T?]=f2*°T® and
Chern-Simons theory4]. In fact the equivalence between
massive Thirring and GB) models in the large fermion
mass limit was established a while agg]. The situation is Y=0cd y=icl, +?=ic’
not that clear in the non-Abelian models. For example, the
SU(2) Thirring model, in the limit where the Thirring cou- To keep track of the various combinations of vector fields
pling vanishes, can be identified with 8) Yang-Mills-  that will appear, we introduce the notation
Chern-Simons theory, in the limit where the Yang-Mills term

D,=d,—iyALT3—ioK3T?=4,—iAZT?,

the v matrices are defined via the Pauli matrices by

vanisheq6]. (D,,)Wab=g 52P—pfabons
In the present work, we consider a theory of nonmini-
mally gauged Dirac fermions, with a Thirringy] current- WZV:%WEV‘_&VWTNLPWZWE,

current self-interaction. Both Abelian and non-Abelian gauge

groups have been investigated. The model resides+ih 2 whereW is some arbitrary vector field angthe associated

dimensions. We study the one-loop bosonized version of theoupling constant. The fermion current enjoys a conservation

model in the large fermion magsn) limit and keep only law:

Chern-Simons ifi independentand Yang-Mills or Maxwell — o

[O(m~ 1] terms. The effect of still higher order terms in the (DﬁJf‘)azo, A,=vyA,+oK,. 2

inverse fermion mass is qualitatively discussed in the Abe-

lian context. The mapping between the fermion and the bo- Note that no gauge field kinetic term, such as the Yang-

son fields at the level of currents is obtained. The behavior oMills or Chern-Simons term, is kept in the fermion model as

the bosonic charge operator is studied in detail. they will be generated in the bosonization process, along

The paper is organized as follows: Section Il deals withwith other mixed terms. Hence, even if such terms are kept,

the non-Abelian fermion model and its bosonization. In Sectheir coefficients will get renormalized by bosonization.

Il we discuss in detail the Abelian theory. Section IV con-  The usual scheme of linearizing the Thirring term in Eq.
(1) is by introducing an auxiliary fiel®2 , such that when
Bi is integrated out, the original model is reproduced. This

*Email address: subir@boson.bose.res.in gives us
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- — _ 1. the operatorJZ in question. After bosonizing this modified
L=¢y*(iD,+B,)¢—myy— EBMBMI Lagrangian,sLg/80%|,_o can be identified as the mapping
of the fermion current. This shows us that the bosonized
T R — 1 currentj? is
—UyM(i9,+ Coy-mpy- 5 BIBK, (3) b
whereC,=B,+ yA,+ oK . The quadratic term i, con- ]
stitutes a mass term fd@,, . This leads us to the evaluation
of the fermion determinant, which is in general nonlocal, butThe last equality follows from Eqg6). It is reassuring to
yields local expressions under various approximatiomote that the whole structure is internally consistent since, in
schemes. A gauge-invariant Pauli-Villars regularization hashe fermion model, the equation of motion fB,ﬁ is
been invoked. We choose, in particular, the large fermion
mass limit such thatm™? is a small term. This also restricts 1 . .
us to the low energy or long wavelength limit, where terms gBu_J;r
with a smaller number of derivatives dominate. The Seeley
coefficients in the fermion determinant are computed at thdhe above operator identity is preserved now as well:
one-loop level. With these restrictions, the bosonized La-
grangian is the following:

1
ra=X"2=(aD{Y'C*"+ ae"**C )= aBi. ®)

EBa:-a
g I J#'
I C“”a—iBiB“a

4 "mv 29 The fermion current conservation equation in E(. in

Abelian theory reduces to
1
—fabechcs |, (4) 3,34=0.

+ae™Cl| 9,C+ 5

The coefficientsy=1/(4m) anda= — 1/(247m) are known From the expression off, or from the non-Abelian self-dual
from bosonization rules. equation(7) it is clear that in the Abelian theory the bosonic

Since there are a number of fields, coupling constants, angHrrent conservation is valid as well:
parameters, a glossary of the dimensions of them incthe

e 7 . : . d,i*=0. 9
=f=1 system of units is provided below, withdenoting m
length: This makes the mapping between the currehsand j,

1 unambiguous. It is important to note thgt is a topological

[C.=[B, ]=[¢]=[m]= T current, meaning that its conservation is assured by construc-
tion.
1 The Hamiltonian in the static limit simply reduces to the
[A]=[y]= m [g]=[a]=I, [o]=\l. Lagrangian with a negative sign:
H B= — LB . (10)

The Lagrangian equations of motion following from E4) In the next section, we will show that the Abelian

are . : : X
bosonized model has a local gauge invariance. This gauge
zgevm(DLMXA)aJr yX =0, (55  symmetry along with the set of time-independent equations
of motion helps us to solve the Abelian model completely.
where

Ill. ABELIAN THEORY
X"3=(aD\Y'C*"+ ae""'C,,)?, _ . _
In the Abelian case, one can replace the covariant deriva-
1 tives by simple derivatives and E(y) is reduced to
X8— —B2=0. (6)
9 20€"9,B\ + yB"=0. (11)
Putting Eq.(6) into Eq. (5) we get We are interested in the behavior of the matter derjtyn
@) the static limit. Hence all time derivatives are dropped. The
above equation is broken up in component form:

This is essentially a generalized non-Abelian self-dual equa-
tion for Bi. Our next task is to identify the operator that will

correspond to the fermion curredf, = ¢y, T%. The stan- —yB1+20d,By=0, 7yB,+20d;B,=0. (12

dard procedure is to introduce a source t z in the

fermion Lagrangian wherei is an auxiliary field coupled to From the last two equations we get

20€"N(DVB,)2+ yB"=0.

’}/Bo+ 20'B]_2= 0,
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2 e B1
’yBlZ: ZO'V BOZ - _Bo. _a(92C12+ 2&(9280“‘ _:0,
20 g
Combining with the first equation of Eq$l2), it is found B,
that B, satisfies the time-independent Helmholtz equation —ad,Cpt2a0,Bg— EZO’
¥ 2
V2B, + 2_) Bo=0. (13)  which are combined to give
g
7 ay’ ay 1 v\
In fact the above equation is true fBr, . —+ =|By—20aV? V?A,+ Ao |=0.
Now we show the gauge mvarlance in the model. The 407 9 20

Lagrangian is . ' .
grang From the above set of equations, we finally obtain an equa-

a 1 a tion involving Aq only:
— v 28
LB——ZCWC”“ _EBMBM+ EeM C.Ch. (19

V2 V2A,+

Y 2
%) AO} =0.
(17)

2 y
30 ) Ao |+ U[V2A0+

Rewriting

C,=B,+yA,+0K,=B,+A,, i
p=PrT Y poTeT TR Note that for small we have approximately

the field tensor breaks into two decoupled parts: )

V2A+ Ay=0,

20

Co=Bu,TA,

In terms of these redefinitions, E(L4) becomes which is identical to Eq(13).

We now consider two special cas€n: y=0, =0, the
Thirring model[7] and (ii)) g=0, o=0, the Deser Redlich
model[5]. Note that the third option, i.e., bosonization of the
free fermion theory withy=o=9g=0, is not permissible in
this scheme ag ™! is present.

In case(i), the set of equations of motion in Eq$),(6),
and(7) now reduces to the single equation
Clearly the action is invariant up to a total derivative under

the local gauge transformation, B”
ad,B*"+ ae”’”‘Bm\— E:O. (18

a — —
Lg==7(B+A),(B+A)*

1
~ 5588t 3 —e’“’"(B-i—A) (B+A),,. (15

KMHKIM-F 3,9,
) ) ) Breaking it into components, we end up with the equations
where ¢ is some arbitrary function.
This allows us to choose a gauge B By,
B 2aB,+aV2By— EZO’ ?—aVZBlﬁ 2aV?By=0
Ao=yAot20A1,=0, (16) (19

which makesAq;=0 andB;= — 4B, in the static case. Us- Thjs reproduces a static equation of motion involving only
ing this gauge and static expressions, we simplify the comg,,:

ponents related to thi, field:

2a B
K,=2€,,,0"A", a?(V?)?B,— E—4a2)v250+§§=0. (20)

Ko=2A12, K1=7202R0,  K2=201A0, Rewriting the above equation in the form, wherehas been

KiOZZ(?iAlzv K12: - ZVZAO. drOpped'
_ 1 a |7t
Now, from Egs.(6), for v=0 we get V2B, + (29a)2< 1— 5942 0=0,
ay’ ay 1 ) AN o
152 —+§ Bot+20] VoAg+| 5| Ao|=0 we make an expansion &
[where Eq.(13) has been usddand forv=1 andv=2 we 2 1 / a ) _
get v B°+(Zga)2\1 2ga2+ Bo=0
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Note that theB, mass term is renormalized by fermion mass
corrections. WithC,=B,,, the bosonized Lagrangian and

current reduce to the well-known forms,

a my 1 " 2N
_ZBMVB —EBMB +ae’”B,d,B,),

LB=
_ Y
X'"=ad,B*"+ ae"B,, .

In case(ii), for o=0, C,=B,+ yA, and the Lagrangian
becomes

a
Lor= =~ 7(B+yA).,(B+yA)*”
1 12
- EB#B”-I— aet" (B+yA) ,d,(B+ yA), .
(21)

The above Lagrangian breaks up into two pieceB, ande-
pendent one,

ayz 2% 2 v\
Lpr(A)=— TA’“’A +ay e ALd0,A, (22

and aB, dependent one,

Lpr(A,B)=— ZBWB/“HL aet"™B,3,B,
1 ay
- EBMBM— - Bu A 2aye""™ B, A, .
(23)
We rewrite the latter equation in the form
Lor(A,B)=B,P*'B,+B,Q*, (24)

where

pLY= 1 nvy a ,uVaZ oI ,uv)\(g
=739 >(9 )~ aetay

Q¥=yla(ghd?— a ") —2ae ™3, ]A, .

Performing the Gaussian integration 8y, leads to the for-
mal result

1
Lor(A,B)~— ZQ“(P’l)WQ”- (25

At present we are only interested in getting local terms with
a smaller number of derivatives, and hence we take the in-

verse ofP,,, as simply

(Pil),uv% _zgg,uu'

Substituting this back in Eq25) yields
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gvy?

Lor(AB)= =5-{[a(g""d o, — 9d")~ 2ae 3, ]A,}

X{[a(gh73Pd,— ") — 2a el g, 1A, }.
(26)

Keeping in mind the condition of the lowest number of de-
rivatives, we take only the following contribution in the ef-
fective action:

2
Y
LDR(A:B):g(a'Y)ZAMVA”V:g(E) ALART.(27)

Thus we notice that in this order the coefficient of the Max-
well term in A, gets modified whereas the Chern-Simons
term inA, remains unaltered. The final form of the action to
the order stated is

g a
— 2 v 2 _juv.
Lpr=—7v (F_ Z) AMVA’“ +ayet )‘AM&VA)\ .
(28)
This is exactly the model studied 5], if following [5] the
Thirring couplingg is taken to be proportional tm 2.
Let us now discuss the effects of higher ordier m™?)

Seelay terms in the fermion determinant in the full theory.
Considering the next Seelay term our Lagrangian will be

Lg=Lg+ye*"™C,33,d,Cy , (29)

whereLg is given in Eq.(14) andy is of orderO(m™?).
Clearly the equations of motion in Eg&), (6), and(_?) will

remain unchanged structurally, wi¥, changing toX,,:
X'=X"+ye" ™3 d,C, . (30)

However, in the full theory this will not change the behavior
of By. On the other hand, in the pure Thirring model, Byg
equation in Eq(7) is modified to

2 B”
ad,B*'+ e a+yd )BM—E:O. (31)
The resulting time-independent equations are

B
Flz —aV2B,,+2(a+yV2)V2B,=0,

2 _% 2 _
aV BO g +2(a+yV )Blz 0

Neglecting terms oD(ay) we get

_1 B
BlZZZ 1+§V2) (EO—aVZB())
1|Bg Yo,
“zila (e agl v

Hence theB, equation becomes
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2a B e*,e Pl=6,45n%, [he,ef]=K,,eP,
2aa%(V?)?Bo+ 4a2—3+%2-)vzao+5§:o. [ 1= 0agh”,  [h*.e7]=Kp

(32) [ha,e_ﬁ]:_KBae—ﬁ.

Comparing with Eqg.(20) we note that now the first term Note that €%)"=—e#, (hf)*=h”, and the Cartan matrix
cannot be ignored. The next Seelay teret'('B,B,,)* ob- K.p is real and for SU) symmetric. Thus in the fermion
viously causes more complications in the pure Thirringmodel the charge is
model and obtaining an equation involvifgg only is non-
trivial. In the full theory, the generic feature is that these type Jo=~[v*,y]~h".
of changes leaves th&, equation intact.
This shows that the charge is also in the Cartan subalgebra.
IV. NON-ABELIAN THEORY This ansatz prompts us to restrBﬁ in the Cartan subalge-

o a . .
As has been emphasized befd, the results are far bra. But withA’, already in the Cartan subalgebra the entire

more complicated in the non-Abelian scenario. For arbitrar)r°’3’5t.ertn IS ffdu.cedd tot essegtlalllly an Agellfatr;l o?_el, dW'th Just da
non-Abelian gauge fieldsAf‘L, identification between the oniNteracting indextagged along €ach ol the hields, remind-

. : : ._ing us of the non-Abelian nature. Hence, in the lowest order
Fermi and Bose currents is problematic. From the equations- ; :

. . . . of inverse fermion mass, we get a number of decoupled static
of motion given in Egs(5), (6), and(7), the following co-

variant conservation equation emerges: Helmoltz equations for the non-Abelian chargg:

(C)ipya_ 2
(D,1#)7=0. (33 V288+(%) B3=0. (36)
But this is different from Eq.(2). Also there is no local

gauge invariance in the non-Abelian bosonized version due

to the nature of cross terms betwijj and AZ present in
the theory. As an application of2+1)-dimensional bosonization, we
However, these problems can be completely removed fohave studied thoroughly the nonminimally gauged massive
a restricted class of gauge fields, formerly usefBilhwhich  Thirring model. Computing the fermion determinant up to
are proportional to the generators of the Cartan subalgebrfirst order in inverse fermion mass, the charge in the Abelian
only: model is shown to obey thstatio massive Helmholtz equa-
tion. Special cases leading to known results in the Thirring
and Deser-Redlich models are derived. For the Abelian
gauge group, effects of higher order terms are also discussed.
(34) In case of non-Abelian gauge fields, a restricted class of
gauge fields reduces the system to essentially a group of
where decoupled Abelian ones and the charges behave in an iden-
tical fashion to the Abelian one.

V. CONCLUSION

r r
[h*,hf]=0, A_= A,h% A,=—2> A*h?
a=1 a=1

A=A TiA,.
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