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Bosonization of the three-dimensional gauged massive Thirring model
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Bosonization of the massive Thirring model, with a nonminimal and non-Abelian gauging, is studied in 211
dimensions. The static Abelian model is solved completely in the large fermion mass limit and the spectrum is
obtained. The non-Abelian model is solved for a restricted class of gauge fields. In both cases explicit expres-
sions for bosonic currents corresponding to the fermion currents are given.@S0556-2821~99!03802-3#

PACS number~s!: 11.10.Kk, 11.15.Bt
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I. INTRODUCTION

Ever since the explicit demonstration in 111 dimensions
of the equivalence of the massive Thirring model and
sine-Gordon model order by order in perturbation theory
the charge zero sector@1# and the subsequent construction
the fermion operator by boson operators@2#, the concept of
bosonization has proved to be an extremely useful one. H
ever, it was thought that this equivalence is an exclus
property of one-dimensional space, where in reality ther
no spin to distinguish fermions from bosons. Indeed,
tempts to generalize bosonization in two space dimens
met with limited success@3#.

Renewed interest in~211!-dimensional bosonization ha
created a flurry of activity in recent years, where the probl
is attacked from a different angle. The nonlocal fermion d
terminant generates local terms in the one-loop perturba
evaluation, in the limit of large fermion mass. In the lowe
orders of inverse fermion mass, the bosonized theory of
~Abelian! massive Thirring model turns out to be Maxwe
Chern-Simons theory@4#. In fact the equivalence betwee
massive Thirring and CP~1! models in the large fermion
mass limit was established a while ago@5#. The situation is
not that clear in the non-Abelian models. For example,
SU~2! Thirring model, in the limit where the Thirring cou
pling vanishes, can be identified with SU~2! Yang-Mills-
Chern-Simons theory, in the limit where the Yang-Mills ter
vanishes@6#.

In the present work, we consider a theory of nonmi
mally gauged Dirac fermions, with a Thirring@7# current-
current self-interaction. Both Abelian and non-Abelian gau
groups have been investigated. The model resides in 211
dimensions. We study the one-loop bosonized version of
model in the large fermion mass~m! limit and keep only
Chern-Simons (m independent! and Yang-Mills or Maxwell
@O(m21# terms. The effect of still higher order terms in th
inverse fermion mass is qualitatively discussed in the A
lian context. The mapping between the fermion and the
son fields at the level of currents is obtained. The behavio
the bosonic charge operator is studied in detail.

The paper is organized as follows: Section II deals w
the non-Abelian fermion model and its bosonization. In S
III we discuss in detail the Abelian theory. Section IV co
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tains results for the non-Abelian theory for a special class
gauge fields. The paper ends with a brief conclusion
Sec. V.

II. BOSONIZATION

The parent non-Abelian fermion model that we wish
study is a system of Dirac fermions with a nonminimal gau
ing. There is a Thirring @7# type current-current self-
interaction term as well. The Lagrangian considered by u

L5c̄ igmDmc2mc̄c1
g

2
~ c̄gmTac!2. ~1!

The covariant derivative is defined as

Dm5]m2 igAm
a Ta2 isKm

a Ta[]m2 iĀm
a Ta,

Km5emnlAnl.

The anti-Hermitian generators satisfy@Ta,Tb#5 f abcTc and
the g matrices are defined via the Pauli matrices by

g05s3, g15 is1, g25 is2.

To keep track of the various combinations of vector fie
that will appear, we introduce the notation

~Dm!~W!ab5]mdab2r f abcWm
c ,

Wmn
a 5]mWn

a2]nWm
a 1rWm

b Wn
c ,

whereW is some arbitrary vector field andr the associated
coupling constant. The fermion current enjoys a conserva
law:

~Dm
ĀJm!a50, Ām5gAm1sKm . ~2!

Note that no gauge field kinetic term, such as the Ya
Mills or Chern-Simons term, is kept in the fermion model
they will be generated in the bosonization process, alo
with other mixed terms. Hence, even if such terms are ke
their coefficients will get renormalized by bosonization.

The usual scheme of linearizing the Thirring term in E
~1! is by introducing an auxiliary fieldBm

a , such that when
Bm

a is integrated out, the original model is reproduced. T
gives us
©1999 The American Physical Society14-1
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L̄5c̄gm~ iD m1Bm!c2mc̄c2
1

2g
Bm

a Bma

5c̄gm~ i ]m1Cm!c2mc̄c2
1

2g
Bm

a Bma, ~3!

whereCm[Bm1gAm1sKm . The quadratic term inBm con-
stitutes a mass term forBm . This leads us to the evaluatio
of the fermion determinant, which is in general nonlocal, b
yields local expressions under various approximat
schemes. A gauge-invariant Pauli-Villars regularization h
been invoked. We choose, in particular, the large ferm
mass limit such thatm21 is a small term. This also restrict
us to the low energy or long wavelength limit, where term
with a smaller number of derivatives dominate. The See
coefficients in the fermion determinant are computed at
one-loop level. With these restrictions, the bosonized
grangian is the following:

LB52
a

4
Cmn

a Cmna2
1

2g
Bm

a Bma

1aemnlCm
a S ]nCl

a1
1

3
f abcCn

bCl
c D . ~4!

The coefficientsa51/(4p) anda521/(24pm) are known
from bosonization rules.

Since there are a number of fields, coupling constants,
parameters, a glossary of the dimensions of them in thc
5\51 system of units is provided below, withl denoting
length:

@Cm#5@Bm#5@c#5@m#5
1

l
,

@Am#5@g#5
1

Al
, @g#5@a#5 l , @s#5Al .

The Lagrangian equations of motion following from Eq.~4!
are

2senml~Dm
~A!Xl!a1gXna50, ~5!

where

Xna5~aDm
~C!Cmn1aenmlCml!a,

Xn
a2

1

g
Bn

a50. ~6!

Putting Eq.~6! into Eq. ~5! we get

2senml~Dm
~A!Bl!a1gBna50. ~7!

This is essentially a generalized non-Abelian self-dual eq
tion for Bm

a . Our next task is to identify the operator that w

correspond to the fermion currentJm
a 5c̄gmTac. The stan-

dard procedure is to introduce a source termsm
a Jm

a in the
fermion Lagrangian wheresm

a is an auxiliary field coupled to
04501
t
n
s
n

s
y
e
-

nd

a-

the operatorJm
a in question. After bosonizing this modifie

Lagrangian,dLB /dsm
a us50 can be identified as the mappin

of the fermion current. This shows us that the bosoniz
current j m

a is

j na[Xna5~aDm
~C!Cmn1aenmlCml!a5

1

g
Bn

a . ~8!

The last equality follows from Eqs.~6!. It is reassuring to
note that the whole structure is internally consistent since
the fermion model, the equation of motion forBm

a is

1

g
Bm

a 5Jm
a .

The above operator identity is preserved now as well:

1

g
Bm

a 5 j m
a .

The fermion current conservation equation in Eqs.~2! in
Abelian theory reduces to

]mJm50.

From the expression ofXm
a or from the non-Abelian self-dua

equation~7! it is clear that in the Abelian theory the boson
current conservation is valid as well:

]m j m50. ~9!

This makes the mapping between the currentsJm and j m
unambiguous. It is important to note thatj m is a topological
current, meaning that its conservation is assured by const
tion.

The Hamiltonian in the static limit simply reduces to th
Lagrangian with a negative sign:

HB52LB . ~10!

In the next section, we will show that the Abelia
bosonized model has a local gauge invariance. This ga
symmetry along with the set of time-independent equati
of motion helps us to solve the Abelian model completel

III. ABELIAN THEORY

In the Abelian case, one can replace the covariant der
tives by simple derivatives and Eq.~7! is reduced to

2senml]mBl1gBn50. ~11!

We are interested in the behavior of the matter densityB0 in
the static limit. Hence all time derivatives are dropped. T
above equation is broken up in component form:

gB012sB1250,

2gB112s]2B050, gB212s]1B050. ~12!

From the last two equations we get
4-2
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gB1252s¹2B052
g2

2s
B0 .

Combining with the first equation of Eqs.~12!, it is found
that B0 satisfies the time-independent Helmholtz equation

¹2B01S g

2s D 2

B050. ~13!

In fact the above equation is true forBm .
Now we show the gauge invariance in the model. T

Lagrangian is

LB52
a

4
CmnCmn2

1

2g
BmBm1

a

2
emnlCmCnl . ~14!

Rewriting

Cm5Bm1gAm1sKm5Bm1Ām ,

the field tensor breaks into two decoupled parts:

Cmn5Bmn1Āmn .

In terms of these redefinitions, Eq.~14! becomes

LB52
a

4
~B1Ā!mn~B1Ā!mn

2
1

2g
BmBm1

a

2
emnl~B1Ā!m~B1Ā!nl . ~15!

Clearly the action is invariant up to a total derivative und
the local gauge transformation,

Ām→Ām1]mf,

wheref is some arbitrary function.
This allows us to choose a gauge

Ā0[gA012sA1250, ~16!

which makesĀ0i50 andB0i52] iB0 in the static case. Us
ing this gauge and static expressions, we simplify the co
ponents related to theKm field:

Km52emnl]nAl,

K052A12, K1522]2A0 , K252]1A0 ,

Ki052] iA12, K12522¹2A0 .

Now, from Eqs.~6!, for n50 we get

S ag2

4s2 1
ag

s
1

1

gDB012sF¹2A01S g

2s D 2

A0G50

@where Eq.~13! has been used#, and forn51 andn52 we
get
04501
e

r

-

2a]2C1212a]2B01
B1

g
50,

2a]1C1212a]1B02
B2

g
50,

which are combined to give

S g

2s D S ag2

4s2 1
ag

s
1

1

gDB022sa¹2F¹2A01S g

2s D 2

A0G50.

From the above set of equations, we finally obtain an eq
tion involving A0 only:

¹2F¹2A01S g

2s D 2

A0G1
g

2asF¹2A01S g

2s D 2

A0G50.

~17!

Note that for smalla we have approximately

¹2A01S g

2s D 2

A050,

which is identical to Eq.~13!.
We now consider two special cases:~i! g50, s50, the

Thirring model @7# and ~ii ! g50, s50, the Deser Redlich
model@5#. Note that the third option, i.e., bosonization of th
free fermion theory withg5s5g50, is not permissible in
this scheme asg21 is present.

In case~i!, the set of equations of motion in Eqs.~5!,~6!,
and ~7! now reduces to the single equation

a]mBmn1aenmlBml2
Bn

g
50. ~18!

Breaking it into components, we end up with the equatio

2aB121a¹2B02
B0

g
50,

B12

g
2a¹2B1212a¹2B050.

~19!

This reproduces a static equation of motion involving on
B0 :

a2~¹2!2B02S 2a

g
24a2D¹2B01

B0

g2 50. ~20!

Rewriting the above equation in the form, wherea2 has been
dropped,

¹2B01
1

~2ga!2S 12
a

2ga2D 21

B050,

we make an expansion ina:

¹2B01
1

~2ga!2S 11
a

2ga2 1••• DB050.
4-3
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Note that theB0 mass term is renormalized by fermion ma
corrections. WithCm5Bm , the bosonized Lagrangian an
current reduce to the well-known forms,

LB52
a

4
BmnBmn2

1

2g
BmBm1aemnlBm]nBl ,

Xn5a]mBmn1aenmlBml .

In case~ii !, for s50, Cm5Bm1gAm and the Lagrangian
becomes

LDR52
a

4
~B1gA!mn~B1gA!mn

2
1

2g
BmBm1aemnl~B1gA!m]n~B1gA!l .

~21!

The above Lagrangian breaks up into two pieces, aBm inde-
pendent one,

LDR~A!52
ag2

4
AmnAmn1ag2emnlAm]nAl , ~22!

and aBm dependent one,

LDR~A,B!52
a

4
BmnBmn1aemnlBm]nBl

2
1

2g
BmBm2

ag

2
BmnAmn12agemnlBm]nAl .

~23!

We rewrite the latter equation in the form

LDR~A,B!5BmPmnBn1BmQm, ~24!

where

Pmn52
1

2g
gmn1

a

2
~gmn]22]m]n!2aemnl]l ,

Qm5g@a~gmn]22]m]n!22aemnl]l#An .

Performing the Gaussian integration forBm leads to the for-
mal result

LDR~A,B!'2
1

4
Qm~P21!mnQn. ~25!

At present we are only interested in getting local terms w
a smaller number of derivatives, and hence we take the
verse ofPmn as simply

~P21!mn'22ggmn .

Substituting this back in Eq.~25! yields
04501
h
n-

LDR~A,B!5
gg2

2
$@a~gmn]l]l2]m]n!22aemnl]l#An%

3$@a~gmh]r]r2]m]h!22aemhr]r#Ah%.

~26!

Keeping in mind the condition of the lowest number of d
rivatives, we take only the following contribution in the e
fective action:

LDR~A,B!5g~ag!2AmnAmn5gS g

4p D 2

AmnAmn. ~27!

Thus we notice that in this order the coefficient of the Ma
well term in Am gets modified whereas the Chern-Simo
term inAm remains unaltered. The final form of the action
the order stated is

LDR52g2S g

16p2 2
a

4DAmnAmn1ag2emnlAm]nAl .

~28!

This is exactly the model studied in@5#, if following @5# the
Thirring couplingg is taken to be proportional tom21.

Let us now discuss the effects of higher order~in m21)
Seelay terms in the fermion determinant in the full theo
Considering the next Seelay term our Lagrangian will be

L̄B5LB1yemnlCm]r]r]nCl , ~29!

where LB is given in Eq.~14! and y is of order O(m22).
Clearly the equations of motion in Eqs.~5!, ~6!, and~7! will
remain unchanged structurally, withXn changing toX̄n :

X̄n5Xn1yenml]r]rCml . ~30!

However, in the full theory this will not change the behavi
of B0 . On the other hand, in the pure Thirring model, theBm
equation in Eq.~7! is modified to

a]mBmn1enml~a1y]2!Bml2
Bn

g
50. ~31!

The resulting time-independent equations are

B12

g
2a¹2B1212~a1y¹2!¹2B050,

a¹2B02
B0

g
12~a1y¹2!B1250.

Neglecting terms ofO(ay) we get

B125
1

2aS 11
y

a
¹2D 21S B0

g
2a¹2B0D

'
1

2aFB0

g
2S a2

y

agD¹2B0G .
Hence theB0 equation becomes
4-4
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2aa2~¹2!2B01S 4a22
2a

g
1

y

ag2D¹2B01
B0

g2 50.

~32!

Comparing with Eq.~20! we note that now the first term
cannot be ignored. The next Seelay term (emnlBmBnl)2 ob-
viously causes more complications in the pure Thirri
model and obtaining an equation involvingB0 only is non-
trivial. In the full theory, the generic feature is that these ty
of changes leaves theB0 equation intact.

IV. NON-ABELIAN THEORY

As has been emphasized before@6#, the results are far
more complicated in the non-Abelian scenario. For arbitr
non-Abelian gauge fieldsAm

a , identification between the
Fermi and Bose currents is problematic. From the equat
of motion given in Eqs.~5!, ~6!, and ~7!, the following co-
variant conservation equation emerges:

~Dm
~C! j m!a50. ~33!

But this is different from Eq.~2!. Also there is no local
gauge invariance in the non-Abelian bosonized version
to the nature of cross terms betweenBm

a and Ām
a present in

the theory.
However, these problems can be completely removed

a restricted class of gauge fields, formerly used in@8#, which
are proportional to the generators of the Cartan subalg
only:

@ha,hb#50, A25 (
a51

r

Aaha, A152 (
a51

r

Aa* ha,

~34!

where

A65A16 iA2 .

In the fermion problem@8# it was assumed that the fermio
fields c are proportional to the ladder generatorsea only:

c5caea, ~35!

where
04501
e

y

ns

e

or

ra

@ea,e2b#5dabha, @ha,eb#5Kbaeb,

@ha,e2b#52Kbae2b.

Note that (eb)152e2b, (hb)15hb, and the Cartan matrix
Kab is real and for SU(N) symmetric. Thus in the fermion
model the charge is

J0'@c1,c#'ha.

This shows that the charge is also in the Cartan subalge
This ansatz prompts us to restrictBm

a in the Cartan subalge
bra. But withAm

a already in the Cartan subalgebra the ent
system is reduced to essentially an Abelian one, with jus
noninteracting index tagged along each of the fields, remi
ing us of the non-Abelian nature. Hence, in the lowest or
of inverse fermion mass, we get a number of decoupled st
Helmoltz equations for the non-Abelian chargeB0

a :

¹2B0
a1S g

2s D 2

B0
a50. ~36!

V. CONCLUSION

As an application of~211!-dimensional bosonization, we
have studied thoroughly the nonminimally gauged mass
Thirring model. Computing the fermion determinant up
first order in inverse fermion mass, the charge in the Abel
model is shown to obey the~static! massive Helmholtz equa
tion. Special cases leading to known results in the Thirr
and Deser-Redlich models are derived. For the Abel
gauge group, effects of higher order terms are also discus
In case of non-Abelian gauge fields, a restricted class
gauge fields reduces the system to essentially a grou
decoupled Abelian ones and the charges behave in an i
tical fashion to the Abelian one.
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