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Simplifying algebra in Feynman graphs. II. Spinor helicity from the spacecone
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Manifestly Lorentz-covariant Feynman rules are given in terms of a ‘‘scalar’’ field for each helicity, dra-
matically simplifying the calculation of amplitudes with massless particles. The spinor helicity formalism is
properly identified as a null complex spacelike~not lightlike! gauge, where two massless external momenta
define the reference frame. Usually, this gauge is applied only to external line factors; we extend this method
to vertices and propagators by modifying the action itself using light-cone methods.@S0556-2821~98!05324-7#

PACS number~s!: 11.15.Bt, 12.38.Bx
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I. INTRODUCTION

In other papers in this series@1#, we describe a method t
simplify Feynman diagram calculations for massive fiel
based on the observation that fields with only undot
spinor indices formally have the same structure as nonr
tivistic fields, since a Lorentz transformation on such fields
just a complex rotation. Thus spins is described by a field
with 2s11 components in a manifestly covariant wa
: spin 1/2 by a chiral spinor, spin 1 by a self-dual tens
without their complex conjugates. The result is a unita
gauge where all propagators are simply 1/(p21m2). Also,
external line factors are unconstrained~i.e., arbitrary!; so am-
plitudes can be completely evaluated covariantly~rather than
leaving covariance for the more numerous squares of te
in probabilities!. Many supersymmetry relations are alrea
obvious from the graphs, since actions for spins 1/2 an
more closely resemble those for spin 0. Much repetitive
gebra ordinarily applied in graphs is already done once
for all in the action itself~so the action has more vertice
such as seagulls for spinors, but the amplitude has fe
terms!. Since the fields are chiral and self-dual, this meth
is particularly suited to graphs with maximal helicity viola
tion ~MHV !, which are those that have the simplest fin
form.

Although this method can be applied to massless theo
by an appropriate limiting procedure~which is trivial for spin
1/2!, it is inherently tailored to massive theories. In partic
lar, the concept of using only the physical degrees of fr
dom suggests the further reduction from 2s11 components
for the massive case to just 2 for the massless case. In
paper we accomplish this task by combining two well-kno
methods, the light-cone formalism@2# and twistors@3# ~the
spinor helicity formalism@4# for external line factors!.

The light-cone formalism is defined by choosing a fix
lightlike direction~‘‘ 2’’ !, choosing the gauge where the co
responding lightlike components of gauge fields vanish,
eliminating all auxiliary degrees of freedom~‘‘ 1’’ ! by their
nonpropagating~no ‘‘1’’ derivatives! equations of motion.
This last step is the most important one: It reduces all n
zero spins to two degrees of freedom~corresponding to the
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two helicities!; using four-vectors to describe light-con
Yang-Mills theory would miss the whole point of the ligh
cone approach. This gauge is manifestly unitary, and
propagators are 1/p2 because each field has a single comp
nent ~complex to describe two helicities!. The main disad-
vantage of the light cone is that Lorentz invariance is n
manifest: Although the action is Lorentz invariant, Loren
transformations are nonlinear in the fields~and momenta!
and the Feynman rules are asymmetric in the various c
ponents of the momenta. An especially simple case is s
dual Yang-Mills theory@5#, whose Feynman rules@6# are
manifestly covariant under half the Lorentz group@in 212
dimensions, one of the two SL~2!’s of
SO~2,2!5SL~2!^SL~2!#. In particular, the self-dual rules ar
much simpler than the usual ones for deriving MHV amp
tudes.

The spinor helicity method translates all external line fa
tors into twistor notation, essentially using the Penrose tra
form for free fields. Each massless momentum is expres
as the square of a momentum twistor, while the external
factor ~i.e., the external free field! is expressed in terms o
that and~for gauge fields! an arbitrary gauge-dependent p
larization twistor. If the polarization twistors for all externa
lines are chosen to point in the same fixed direction, then
gauge is a light-cone gauge, but only for the external fie
~and not the internal lines!. However, in practice, one
chooses to equate the polarization twistors with some of
momentum twistors of the other lines; so the amplitude
expressed completely in terms of momentum twistors~and
the probability completely in terms of momenta! @4#. Unlike
the light-cone formalism, with this approach not only th
vertices but even the external line factors are manifestly
variant.

On the other hand, spinor helicity modifies only the e
ternal line factors and does not simplify the vertices. T
result is that, although the final expression for MHV amp
tudes is extremely simple@7#, their calculation does not fully
reflect this simplicity. Explicitly, the first two steps in
spinor helicity calculation are the following:~1! Write
down all the terms that come from the various graphs, us
the usual Feynman rules in color-ordered form@4#. Some
simplification comes from using the Gervais-Neveu gau
which gives only three terms for each three-point vertex a
one term for each four-point~for pure Yang-Mills theory!.
~2! Contract all the vector indices~and spinor ones for
©1999 The American Physical Society13-1
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G. CHALMERS AND W. SIEGEL PHYSICAL REVIEW D59 045013
quarks!, coming from vertices, propagator numerators, a
external line factors. A remarkable feature of spinor helic
is the large number of terms that vanish in the second s
Many vanish immediately, from the direct effect th
external-line factors have on the vertices, but most van
only after more careful inspection, when polarization vect
are contracted from different parts of the graph via the K
necker deltas in the propagators. An equally remarkable
ture of spinor helicity is that one has to spend a considera
fraction of the calculation writing down these terms that
not contribute. Generally, any method that requires calc
tion to produce zeros indicates a simpler method is miss
for which the zeros would be automatic~e.g., supergraphs fo
the ‘‘miraculous cancellations’’ of supersymmetry!.

In this paper we derive new Feynman rules that avoid
second step above altogether by eliminating Lorentz ind
on all massless fields, while retaining all the advantage
spinor helicity. This is accomplished by modifying the usu
light-cone method to incorporate the principles of the spi
helicity method: ~1! Although we choose arbitrary fixe
vectors to define the reference frame used to derive the li
cone action, in the amplitudes we choose to identify the t
lightlike axes with two of the physical external~‘‘refer-
ence’’! momenta~as allowed by Lorentz and gauge inva
ance!, which also defines the other two~spacelike! axes, us-
ing momentum twistors. The result is then manifes
covariant, since explicit Lorentz components are replaced
Lorentz invariants. On external lines, this is equivalent
spinor helicity, but we have extended the method to inter
lines.~2! As a result, the direction chosen to define the gau
is not lightlike, but spacelike and complex, although it is s
null. The gauge condition is thus complex, like the Gerva
Neveu gauge, although it is linear.~This distinction does no
exist in 212 dimensions, but the Wick rotation to 311 is
different.! We thus refer to our formalism as the ‘‘spac
cone’’ ~although, as for ‘‘light cone,’’ no cone is actuall
involved; it is an abbreviation for ‘‘complex spacelike nu
hyperplane’’!. ~3! In the usual light-cone approach, where
fixed component of the gauge field vanishes, one takes
to avoid the vanishing of the corresponding lightlike comp
nent of the momentum, which would produce singulariti
In our approach its vanishing isrequiredby definition of the
two reference lines. We show that the external line fact
cancel such singularities and find that the resulting verti
for those two lines are much simpler than the rest. This
counts for much of the simplification of the spinor helici
formalism. These external-line factors follow from the cov
riant ones used in the usual spinor helicity approach and
not the trivial ones normally used in the light-cone approa
although they are still simple.~The field redefinition that
relates the two is singular for the reference lines.!

The main advantage of our approach over the usual sp
helicity is that there are no Lorentz indices associated w
any lines, although they have an orientation~1 helicity at
one end,2 at the other!; all indices show up at the final step
when Lorentz invariants are expressed in terms of mom
tum twistors. In particular, this means that vanishing gra
and terms in graphs, which in the spinor helicity approa
would be seen by expanding the vertices and performing
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~vector and spinor! index algebra, are avoided in the spac
cone approach without performing any algebra whatsoev

In the following section we review the basic points of th
light-cone formalism, including special features of four d
mensions, such as simplification of the interactions and s
duality. In the next section we review twistors and spin
helicity. The space cone is introduced in Sec. IV. Examp
are given in Sec. V to illustrate the improvement over pre
ous techniques. Recursion relations are discussed in Sec
The final section contains our conclusions.

II. SHORT REVIEW OF THE LIGHT CONE

We start with the Lagrangian for Yang-Mills theory, in
convenient normalization (S5trL/g2):

L5 1
8 F2, Fab5] [aAb]1 i @Aa,Ab#, ~1!

where ] [aAb]5]aAb2]bAa and the indicesa,b are vector
indices.~Throughout this paper we will use pure Yang-Mil
theory as our standard example, with straightforward gen
alization to other spins.! We use uppercase letters to deno
vectors and lowercase to denote their~contravariant! light-
cone components, as

Aa5~a,ā,a1,a2!. ~2!

In Minkowski spaceā is the complex conjugate ofa, while
a6 are real. Defining our light-cone frame by th
Minkowksi-space inner product

A•B5ab̄1āb2a1b22a2b1, ~3!

we choose the light-cone gauge

a250. ~4!

~In the original description of the light-cone gauge, the fo
malism was described by an ‘‘infinite-momentum frame
Of course, Lorentz invariance means that the equations
frame independent, and shortly thereafter it was realized
the infinite-momentum limit was a misconception and cou
be replaced with a simple change of variables. Even the
ton model was originally described in this language, unti
was realized that it was only hiding the Lorentz-invaria
statement that the one physical assumption of the pa
model is a transverse momentum cutoff, which is realiz
dynamically in QCD via asymptotic freedom.!

The equation of motion fora1 now contains no ‘‘time’’
derivatives]1; so we use this equation to eliminate th
‘‘auxiliary’’ component from the Lagrangian: After a little
algebra, we find

L5ā]1]2a1 1
4 ~F21!22 1

4 ~Ft t̄ !2, ~5!

F215]ā1 ]̄a1 i
1

]2 ~@a,]2ā#1@ ā,]2a# !,

~6!

Ft t̄5]ā2 ]̄a1 i @a,ā#.
3-2
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SIMPLIFYING ALGEBRA IN FEYNMAN GRAPHS. II . . . PHYSICAL REVIEW D 59 045013
Only in four dimensions can we simplify the Lagrangian
using the self-dual and anti-self-dual combinations~which
would have been indicated if we had used spinor notatio!:

F5
1

2
~F211Ft t̄ !5]ā1 i

1

]2 @a,]2ā#,

F̄5
1

2
~F212Ft t̄ !5 ]̄a1 i

1

]2 @ ā,]2a#,

L5ā]1]2a1FF̄

52
1

2
āha2 i S ]̄

]2 aD @a,]2ā#

2 i S ]

]2 āD @ ā,]2a#1@a,]2ā#
1

~]2!2 @ ā,]2a#.

1

2
h5]]̄2]1]2. ~7!

The Feynman rules may be obtained in a straightforw
fashion; for example, the color-ordered three-point ver
contains only two terms and is thus simpler than us
gauges, such as Fermi-Feynman or Gervais-Neveu.

Translation into van der Waerden notation for We
spinors is easy: In terms of our light-cone basis, we h
the Hermitian 232 matrix

Aaḃ5S a1

a
ā

a2 D , A2522 detA. ~8!

Spinor indices are raised and lowered with the antisymme
symbol

Cab5Cȧḃ5-Cab52Cȧḃ5S 0
i

2 i
0 D , ~9!

ca5Cabcb , ca5cbCba , c̄ ȧ5~ca!†5Cȧḃc̄ ḃ
~10!

A•B5AaḃBaḃ . ~11!

Note that each of the four light-cone–spinor-notation co
ponents is defined with respect to a null direction: Two
real and lightlike (t̂6 x̂), two are complex and spacelike (ŷ
6 i ẑ). ~In 212 dimensions all four are real and lightlike
while in 410 dimensions all are complex and spacelike.!

Spinors can be treated similarly: There is no gauge c
dition for spin 1/2, but half of the field is auxiliary. Now
spinor notation is necessary, and in the light cone a W
spinor reduces to a single complex component, as did
vector.

Self-dual Yang-Mills theory also is described more eas
in spinor notation, where the field strength naturally se
rates into self-dual and anti-self-dual parts:

@¹aḃ,¹gḋ#5 i ~Cag f ḃḋ1Cḃḋ f ag!. ~12!
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Self-duality f ab50 is then partially solved in the light-con
gauge by

f 2250⇒@¹2ḃ,¹2 ḋ#50⇒A2ḃ50~a25a50!,
~13!

f 2150⇒]2[ ḃA1 ḋ]50⇒A1ḃ5]2ḃf~a15]f, ā5]2f!.

~14!

The remaining equationf 1150 is identical to that found
from the above light-cone action by varying with respect toa
and then settinga50: It is the ordinary Yang-Mills field
equation restricted to one helicity. If we define self-du
Yang-Mills theory by the LagrangianGab f ab, then our
light-cone analysis leads directly to the first two terms of t
above light-cone action, with (]2)21G11 acting as a re-
placement fora.

III. TWISTORS AND SPINOR HELICITY

The basic principle of the twistor approach is that a lig
like four-vector can be written as the square of a commut
spinor ~‘‘twistor’’ !:

P250⇒Paḃ56pap̄ḃ, ~15!

where the sign depends on whether the vector is forward
backward~with respect to the time direction!: In practice,
we ignore this sign, as justified by crossing symmetry or
Wick rotation from 212 dimensions, wherepa andp̄2ȧ are
independent and real~rather than complex conjugates!; so
the sign can be absorbed into either. This representatio
particularly useful for free, massless particles: Using t
twistor to describe the momentum, the usual free field eq
tions can be solved for the free field strengths as

f a1¯a2h5pa1
¯pa2hwh ~16!

for a spinorf a, vector field strengthf ab, Weyl tensorf abgd,
etc. Thus massless degrees of freedom are immediately
duced to~complex! scalars. Actually, Lorentz transforma
tions are reduced to their little group, helicity, which tran
forms the twistor by a phase~independently of the usua
Lorentz! and, thus, the ‘‘scalar’’ by the helicityh times the
phase.

An old lesson learned from supersymmetry is that
spinor algebra in four dimensions is performed most con
niently with two-component spinor indices exclusively, a
this rule also gives the simplest calculations in the spi
helicity formalism. This is much simpler than algebra wi
four-component~Dirac! spinors. In particular, Fierz identi
ties are avoided. This also means one should avoid allg and
s matrices, since they are nothing more than Clebs
Gordan coefficients. Vectors are described only as obje
with 2 two-component indices.

Since almost all spinor algebra for spins<1 involves ob-
jects carrying at most two spinor indices~spinors, vectors,
self-dual tensors!, for such purposes it is usually convenie
to use matrix notation, defined by
3-3
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G. CHALMERS AND W. SIEGEL PHYSICAL REVIEW D59 045013
^pu5pa, up&5pa , @pu5pȧ,up#5pȧ ~17!

As a result, we also have

^pq&5paqa , @pq#5pȧqȧ , ^pq&* 5@pq#52@pq#,
~18!

P5Pa
ḃ , P* 52Pȧ

b , ^kuPuq#5kaPa
ḃqḃ ,

PK* 1KP* 5~P•K !I , ~19!

f 5 f a
b , f * 5 f ȧ

ḃ , ^pu f uq&5paf a
bqb , ~20!

^pq&^rs&1^qr&^ps&1^rp&^qs&50, ~21!

where the last~‘‘Schouten’’! identity is the result of antisym
metrizing three indices that take only two values.~Note that
^pq&52^qp&, @pq#52@qp# are consequences of usin
twistors; when using physical, anticommuting spino
^cx&51^xc&, and^cc&Þ0 occurs in mass terms.!

Although gauge-invariant objects can be written direc
in terms of momentum twistors and scalars, the same is
true for gauge fields. Thus for a gauge vector we write~in
matrix notation!

A5
ue&@pu
^ep&

w̄⇒ f * 5up@puw̄, f 50, ~22!

for 1 helicity, or

A5
up&@eu
@ep#

w⇒ f 5up^puw, f * 50, ~23!

for 2. ~Positive helicity is the same as self-duality; negat
is anti-self-dual.! The former agrees with the self-du
Yang-Mills result of the previous section, up to normaliz
tion, if we choose

ea;d1
a . ~24!

These expressions are used for external lines in Feyn
diagrams: Setting scalar fieldsw51 as usual, the factor
multiplying w andw̄ are identified as the external line facto
for a massless vector. Thus the twistor formalism is ess
tially a covariant way of writing the axial gauge

N•A50, N5ue&@eu ~25!

in terms of an arbitrary lightlike vectorN.
However, a major simplification is achieved in applyin

spinor helicity methods to explicit evaluation of Feynm
diagrams: Instead of choosing the lightlike vectorsN to be
the same on each external line, as in a light-cone gauge,
are chosen to vary from line to line~i.e., to be momentum
dependent!. Furthermore, these lightlike vectors, rather th
being arbitrary, are identified with some of the external lig
like ~massless! momenta~although, of course, noN is iden-
tified with the momentum of the same line!. One result is
that all amplitudes are manifestly Lorentz invariant, sin
04501
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they are expressed completely in terms of the invariant pr
ucts of momentum twistors~and no other Lorentz structures!.

IV. SPACE CONE

Although these principles should be enough to apprec
the advantages of spinor helicity methods, there is one a
tional rule that, although not required, always gives the s
plest results in practice: All theN’s are chosen the same fo
one sign of the helicity and all the same for the other si
This means that all thee’s ~1 helicity! are the same undotte
spinor u1& and all theē ’s ~2 helicity! are the same dotted
spinoru2#. However, because noN can be identified with aP
of the same line, this means that thee’s are identified with a
P5u1&@1u of a line with the opposite sign helicity~2! and
all ē ’s with a P5u2&@2u of a line with 1 helicity. In par-
ticular, this means that the oneē used on all such lines is no
the complex conjugate of the onee used on all the other
lines. The naive way to interpret this would be to say that
the lines of positive helicity are in one light-cone gauge a
all the lines of negative helicity are in a different light-con
gauge. However, a much simpler way to interpret this is
say thatall lines are in the same gauge, defined by the vec

N5u1&@2u, N•A50. ~26!

This N is complex; it is also spacelike, since^pp&50. So it
is orthogonal to the two lightlike vectors~external momenta!
u6&@6u, as well as being null. Thus we have a compl
spacelike~axial! gauge.

Repeating the derivation of the light-cone action with t
gauge

a50, ~27!

eliminating ā by its equation of motion, we now have

L5
1

2
a1ha22 i S ]2

]
a1D @a1,]a~2 !#

2 i S ]1

]
a2D @a2,]a1#1@a1,]a2#

1

]2 @a2,]a1#.

~28!

The fact that the three vertices come in helicities112,
221, and1122 will prove important later when writing
Feynman graphs, since now the6 index on the field labels
its helicity ~as seen, e.g., from the external-line factors of
previous section with our present choice ofe and ē!. This
action is complex because of the appearance of] without ]̄.
Unlike the Euclidean formulation of light-cone Yang-Mill
theory given in Eq.~7!, it is not necessary to specify th
integration contours in individual Feynman diagrams arou
the spurious poles introduced by the 1/]2 powers in Eq.~7!.
The space-cone gauge is complex, and as a result, ther
no singularities introduced as a result of the inverse pow
of ] in the vertices@alternatively, one may simply shift theie
out of the denominator because in momentum spacek and k̄
are complex, as in Eq.~31!#.
3-4
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SIMPLIFYING ALGEBRA IN FEYNMAN GRAPHS. II . . . PHYSICAL REVIEW D 59 045013
In spinor notation in matrix form, we use the bas
u1&@1u, u2&@2u, u2&@1u, u1&@2u:

P5p1u1&@1u1p2u2&@2u1pu2&@1u1 p̄u1&@2u,
~29!

with the normalization

^12&5@21#51; ~30!

so we can write, e.g., for massless momentumP5up&@pu,

p15^p2&@2p#, p25^1p&@p1#,

p5^1p&@2p#, p̄5^p2&@p1#. ~31!

@We can then identify6 as labeling rows and columns i
232 matrix notation; with our normalization,^1u5d1

a , but

^2u52 id2
a ; so this leads to the harmless redefinitionAaḃ

5(2 ia
a1

a2
i ā ).#

This is as much as we can do in the action; howev
when we write down an explicit amplitude, we identi
u1&@1u with the momentum of one line with negative helici
~vector or, more generally, spinor! and u2&@2u with that of a
line of positive helicity. ~Alternatively, we can take one
functional derivative each with respect toa1 anda2 of the
S-matrix generating functional, to get a propagator in a ba
ground, and define the functional integral in terms of t
momenta associated with the ends of the propagator. T
the fields in the action in this functional integral become tr
scalars.! This definesu6& up to phases, and thusu2&@1u and
u1&@2u, on which the phase transformation is a rotation in
plane orthogonal to the two momenta. Thus our choice of
phase^12&/@21#51 is a further specification of thes
phases, while our choice of the magnitude^12&@21#5
2^1u@1u•u2&u2#51 is a choice of~mass! units. In ex-
plicit calculations, we restore generality~in particular, to al-
low momentum integration! by inserting appropriate power
of ^12& and @21# at the end of the calculations, as dete
mined by simple dimensional and helicity analysis.~This
avoids a clutter of normalization factorsA^12&@21# at
intermediate stages.! For example, looking at the form o
the usual spinor helicity external-line factors and count
momenta in the usual Feynman rules, we see that any
amplitude ~or individual graph! in pure Yang-Mills theory
must go as

^ &22E1@ #22E2, ~32!

whereE6 is the number of external lines with helicity6.
We now return to external-line factors. The naive facto

for the above Lagrangian are 1, since the kinetic term
sembles that of a scalar. However, this would lead to unu
normalization factors in probabilities, which are not obvio
in this complex gauge. Therefore, we determine external-
factors from the earlier spinor helicity expressions for ext
nal four-vectors:
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~e1!152^2u@2u• u1&up#^1p& 5
@2p#

^1p&
, ~33!

~e2!252^1u@1u• up&u2#@2p# 5
^1p&
@2p#

. ~34!

Note that these factors are inverses of each other, consi
with leaving invariant~the inner product defined by! the ki-
netic term.

An exception is the external-line factors for the referen
momenta themselves, whereup&5u7& for helicity 6 gives
vanishing results. However, examination of the Lagrang
shows that this zero can be canceled by a 1/] in a vertex,
since p5 p̄50 for the reference momenta by definitio
~Such cancellations occur automatically from field redefi
tions in the light-cone formulation of the self-dual the
ry.! The actual expressions we want to evaluate, bef
choosing the reference lines, are then

p2

p
~e1!15

^1p&@p1#

^1p&@2p#

@2p#

^1p&
5

@p1#

^1p&
, ~35!

p1

p
~e2!25

^p2&@2p#

^1p&@2p#

^1p&
@2p#

5
^p2&
@2p#

. ~36!

Evaluating the former atup&5u2& and the latter atup&5
u1&, we get 1 in both cases. In summary, for reference lin
~1! use only the three-point vertex of the corresponding s
duality ~6 6 7 for helicity 6!, and use only the term asso
ciating the singular factor with the reference line~the other
term and the other vertices give vanishing contributions!; ~2!
including the momentum factors on that line from the verte
the external line factor is 1.

Obviously, the uniqueness of the vertex term for a ref
ence line is a considerable additional simplification for t
rules. As examples, consider the amplitudes in pure Ya
Mills theory that are known to vanish by supersymme
@8#: By simple counting of1’s and 2’s, we see that the
tree graphs with the fewest external2’s, those with only
self-dual vertices~112!, have a single external2. Thus the
all 1 amplitude vanishes automatically. Furthermore,
diagrams with a single external2 must have that line chose
as one of the reference lines. However, by the above r
that line can carry only theanti-self-dual vertex~221!; so
those amplitudes also vanish.

The vanishing of these amplitudes is also easy to se
the usual spinor helicity formalism: In the space-co
gauge, the only nonvanishing inner products of polarizat
vectors are between those of opposite helicity, neither
which can be a reference line. Since by momentum coun
a tree graph in pure Yang-Mills theory must have at least
such product~as opposed to momentum times polarizatio!,
nonvanishing graphs must have at least two external line
each helicity~including reference lines! @4#. The amazing
thing about our space-cone approach is that our corresp
ing arguments of the previous paragraph make no refere
to momenta or inner products; this extends to the avoida
3-5
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of vanishing terms in nonvanishing amplitudes, where
usual spinor helicity methods require explicit index algeb

The vanishing amplitudes can also be seen from su
symmetry. On the other hand, supersymmetry is not requ
on the space cone, because it is already built in: The ha
the supersymmetry transformations actually used are tri
on the space cone~or light cone!, reflecting the fact that the
terms in the Lagrangian are identical for different heliciti
except for the placement of factors of the transverse mom
tum componentp ~or, in the usual light-cone formalism, th
longitudinal componentp1!. In fact, in the self-dual theory
because of field redefinitions, the terms are identical with
exception.

V. MORE EXAMPLES

The simplest nonvanishing amplitude is1122. We use
color ordering; i.e., we examine only planar diagrams
each permutation of external lines. We consider the c
where the helicities are cyclically ordered as1122; we
label them 1234, and choose 1 and 4 as the reference l
this amplitude can be denoted as%12*. (P45u1&@1#,
P15u2&@2u: The positive-helicity reference line gives th
reference momentum for negative helicity and vice v
sa.! There are only three diagrams; however, the1 refer-
ence line uses only the112 vertex, while the2 reference
line uses only the221 vertex, and so the four-point-verte
diagram vanishes, as does the diagram with both refere
lines at the same vertex. Thus we are left with only o
graph. Furthermore, we know that the three-point verti
contribute only one term to the reference line; so this gra
has only one term. This means we can immediately w
down the answer:

Atree~1122 !5e21
1 e32

2 p2p3

1
1
2 ~P31P4!2

5
@22#

^12&

^13&
@23#

^12&@22#^13&@23#

3
1

^34&@34#

1

^12&@21#

5
@12#2^34&

@34#@41#^14&
, ~37!

where we have restored helicity and dimensions. Using
identities following from overall momentum conservation

~P11P4!25~P21P3!2⇒@41#^14&5@23#^32&, ~38!

( up&@pu50⇒^34&@14#52^32&@12#, ~39!

this can be put in the standard form

Atree~1122 !5
@12#4

@12#@23#@34#@41#
. ~40!

~Similar manipulations cast it into the form
04501
e
.
r-
d

of
al

n-

t

r
se

es;

-

ce
e
s
h
e

e

^34&4/^12&^23&^34&^41&.)

By comparison, the Fermi-Feynman gauge would prod
75 terms for this calculation and the Gervais-Neveu gauge
terms. The usual spinor helicity methods eventually red
this to the same one graph and one term, but only after
amining the vector products among polarization vectors
momenta. Although relatively simple in this example~the
easiest!, tracking indices across diagrams~through propaga-
tors! can be tedious in general. The space cone elimina
this index algebra, since the fields are effectively scala
Similar remarks apply to amplitudes involving fermion
where spinor algebra is involved when spinor helicity is a
plied to the usual Feynman rules, but no such algebra
pears on the space cone. Of course, the final result will
ways contain Lorentz products, and some manipulation m
be used for further simplification, but no algebra whatsoe
is required on the space cone to eliminate vanishing gra
or terms.

A more complicated example is the11122 amplitude.
Again, taking color-ordered~planar! amplitudes, we choose
the amplitude cyclically ordered as11122 with lines la-
beled 12345, picking 1 and 5 as the reference lines, wh
we denote as%112*. Again dropping all graphs with a
reference line at a four-point vertex or two references line
a three-point vertex, all five graphs with a four-point vert
are destroyed, and only three of the remaining five surv
Since three-point vertices with~without! a reference line
have one~two! terms, we are left with only six terms.~We
also need to consider various combinations of1 and2 in-
dices, but only one survives for each graph because of
chirality of three-vertices with reference lines.! The initial
result for the amplitude is then

Atree~11122 !

5e21e31e42
F p2p4

2S p2
211

p2
2

p3
2

p3
D

~P1•P2!~P4•P5!
2

p3
4S p2

2

p2
2

p3
2

p3
D

~P2•P3!~P4•P5!

2

p2
2p4S p2

211

p2
2

p3
2

p3
D

~P1•P2!~P3•P4!
G , ~41!

where we have used the fact that the reference lines h
trivial momenta: 1 for the component with6 index opposite
to its helicity, 0 for the remaining components. The tw
terms for each diagram simplify to 1 using

p2

p
5

@p1#

@2p#
⇒

p2
2

p2
2

p3
2

p3
5

@21#@23#2@31#@22#

@22#@23#

5
@23#

@22#@23#
, ~42!

with our normalization. Using this result, we find the simil
result
3-6
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p2
211

p2
2

p3
2

p3
5

^12&@23#1^12&@23#

^12&@22#@23#

5
^14&@34#

^12&@22#@23#
, ~43!

applying momentum conservation. We next translate the
mentum denominators into twistor notation and also sub
tute the space-cone expressions for the polarizations and
merators. Canceling identical factors in the numerator
denominator~but no further use of identities!, the amplitude
becomes~155, 251!

^14&3

^12&^13& S @24#@34#

^22&@41#
1

@24#2

^23&@41#
1

^12&@22#

^22&^34& D
5

^14&3

^12&^13& S 2
^12&@24#

^22&^23&
1

^12&@22#

^22&^34& D
52

^14&3

^22&^23&^34&

52
^45&4

^12&^23&^34&^51&
, ~44!

applying momentum conservation twice, restoring norm
ization, and replacing the numerals for6.

By comparison, in the usual spinor helicity formalism w
find that only the same three diagrams contribute: In t
formalism, also, the two reference momenta cannot be on
same three-point vertex. Unlike the space cone, a refere
momentum can attach to a four-point vertex as long as
opposite line is off shell; fortunately, that is not possible
this example. In general, a three-point vertex with an
tached reference line and one other external line can
have two terms instead of three; the same is true for a th
point vertex with two external lines of the same helicity. Th
reduces the naive 81 terms to 42. More detailed alge
eventually reduces this to eight terms. The algebra invol
in enumerating these terms is comparable in difficulty to t
of all the rest of the calculation.~In practice, this amplitude
is evaluated by applying supersymmetry to the three-gluo
two-quark amplitude.!

Furthermore, the algebra of the nonvanishing terms
more complicated with the usual spinor helicity, becau
vector products have to be evaluated in terms of spinor p
ucts, after which terms can be collected. For example,
inner product of two polarization vectors in the usual spin
helicity formalism is

e i 1•e j 25
^1u@ i u
^1 i &

•

u j u2
@2 j #

52
@2 i #

^1 i &

^1 j &
@2 j #

52~e i 1!1~e j 2!2 ~45!

in space-cone language; the inner product of two vectors
been replaced by the product of two scalars. Similar rema
apply to

e i 6,ref•Pj5^1u@2u•u j &u j #5^1 j &@2 j #5pj , ~46!
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which is just the transverse momentum component, app
ing in the space-cone three-point vertex. With the space-c
method, this algebra has already been done, which all
some collection of terms and common factors even bef
substituting explicit twistor expressions. In particular, the p
larizations now appear as an overall scalar factor for
whole amplitude; the rest is all momenta, and so identit
involving momentum conservation can be applied more g
erally between graphs.

VI. RECURSION RELATIONS

Another method used to derive higher-point amplitudes
the classical Schwinger-Dyson equations, i.e., the class
field equations with perturbative~multiparticle! boundary
conditions at infinite times.~In the literature, the field has
often been mistaken for the current; as usual, these are
tinguished by the fact the field always has an external pro
gator, while the current has it amputated, sincehf1¯

5J.! The steps are the following:~1! Calculate the first
few terms in the series~enumerated by the number of exte
nal lines!. ~2! Guess the general result.~3! Prove that it is
correct by induction, using the Schwinger-Dyson equatio
Of course, the second part is the hardest in general~at least
when one simplifies the third step by using space-cone m
ods!, and has been possible for just a couple of cases, o
because the results for those cases are so simple.

The solution to the classical field equations is given
tree graphs with all external lines but one~the field itself!
amputated and put on shell@9#. ~The usual external-line
wave functions describe the asymptotic field, which is fre!
This method has been used to find several tree amplitude
finite point order as well as the two well-known cases w
all the on-shell lines possessing the same helicity or
different@4,7#. Note that the fielda6 has a7 associated with
the opposite end of its external propagator. We then se
the former case, with all1’s on on-shell lines, thata2 van-
ishes because there are no fully amputated diagrams,
off shell, with only 1’s externally~again counting1’s and
2’s on vertices!. Similarly, for the latter case, with only on
2 on an on-shell line, we see thata2 has only112 verti-
ces, but setting one on-shell2 to be a reference line~which
by definition must be on shell!, such a vertex is not allowed
soa2 vanishes also in this case. This contrasts with the us
spinor helicity method, where the analogue of the vanish
of a2 requires an inductive proof. By similar reasoning, w
see thata1 in the former case consists entirely of112
vertices and in the latter case consists of all112 except for
one 221 ~no 1122!, which must have the2 reference
line directly attached. The appearance of only the self-d
field (a1) and almost only the self-dual vertex~112!
means that in both cases one is essentially solving the
equations in the self-dual theory@6#.

We now consider in more detail the simpler~former! ex-
ample ~the one which does not directly give a nontrivi
scattering amplitude!. As a slight simplification, we look a
the recursion relation for the field as defined in the self-d
theory: From the results at the end of Sec. II, we write

a15pf. ~47!
3-7



in
s
f
-

om
w

-

od
e

n:

m
l

ful
ith
lize
ve
a in
sym-
a at
nly

ur
nce
nd
ht-

pa-
a-
of

or
uge-
on
rive

ce

G. CHALMERS AND W. SIEGEL PHYSICAL REVIEW D59 045013
~Implicitly, we also havea25p21f̂. These redefinitions
make the112 vertex local.! The recursion relation is
now

f~1,n!5
1

1
2 P2~1,n!

(
i 51

n21

f~1,i !f~ i 11,n!

3@p2~1,i !p~ i 11,n!2p~1,i !p2~ i 11,n!#,

~48!

P~ j ,k![ (
m5 j

k

Pm , ~49!

where we again use color ordering, number the external l
cyclically, andf( j ,k) denotes the field with on-shell line
with momentaPj throughPk . ~Thus on the left-hand side o
the equation the field hasn on-shell lines, while on the right
hand side the two fields havei andn2 i .! Plugging in the
twistor expressions for the vertex momenta, we find

p2~1,i !p~ i 11,n!2p~1,i !p2~ i 11,n!

5(
j 51

i

(
k5 i 11

n

^1 j &@ jk#^1k&. ~50!

If we are clever, we can guess the general result fr
explicit evaluation of the lower-order graphs; instead,
find in the literature@7#, after the above redefinition,

f~ i , j !5
1

^1 i &^ i ,i 11&¯^ j 21,j &^1 j &
. ~51!

For the initial-condition casen51, this is simply the state
ment that the external-line factor forf is now

ef5
~e1!1

p
5

1

^1p&2 . ~52!

The induction hypothesis is also easy to check: The pr
uct of the twof’s from the induction hypothesis gives th
desired result by itself up to a simple factor:

f~1,i !f~ i 11,n!5f~1,n!
^ i ,i 11&

^1 i &^1,i 11&
. ~53!
,

p.

W

04501
es

e

-

~The algebra of the color indices works as usual.! We then
perform the sum overi before that overj andk ~the complete
sum is over alli,j,k with 1< j < i<k<n!, making use of one
of the identities used in the usual spinor helicity evaluatio

^ab&

^1a&^1b&
1

^bc&

^1b&^1c&

5
^ac&

^1a&^1c&
⇒(

i 5 j

k21
^ i ,i 11&

^1 i &^1,i 11&
5

^ jk&

^1 j &^1k&
.

~54!

Multiplying this by the vertex momentum factor gives a su
over j ,k of ^ jk&@ jk#5Pj•Pk , canceling the externa
propagator, yielding the desired result.

VII. CONCLUSIONS

We have introduced a complex gauge formalism use
for reducing further the algebraic complexity associated w
vector amplitude calculations. The results here genera
naturally to theories containing additional matter. We ha
seen that the space-cone formalism simplifies the algebr
massless Feynman diagrams to such an extent that super
metry identities are no longer needed. The index algebr
intermediate stages of the calculation is eliminated; the o
remnant of spin indices on fields is the6 label for helicity of
the two components of the space-cone Yang-Mills field. O
complex spacelike gauge, together with the use of refere
momenta, incorporates all the ideas of spinor helicity, a
extends them to internal lines and vertices through lig
cone-type techniques.

Although we have considered only tree graphs in this
per, the method applies straightforwardly to loops. Altern
tively, since auxiliary fields are often useful in the analysis
effective actions~including renormalization!, one might use
a background field formalism, where a Fermi-Feynman
Gervais-Neveu gauge would be used to calculate the ga
invariant effective action first, and then the effective acti
would be evaluated in the space-cone gauge to de
S-matrix elements.
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