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Simplifying algebra in Feynman graphs. Il. Spinor helicity from the spacecone
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Manifestly Lorentz-covariant Feynman rules are given in terms of a “scalar” field for each helicity, dra-
matically simplifying the calculation of amplitudes with massless particles. The spinor helicity formalism is
properly identified as a null complex spacelilet lightlike) gauge, where two massless external momenta
define the reference frame. Usually, this gauge is applied only to external line factors; we extend this method
to vertices and propagators by modifying the action itself using light-cone metf&@556-282(198)05324-1

PACS numbegs): 11.15.Bt, 12.38.Bx

I. INTRODUCTION two helicitieg; using four-vectors to describe light-cone
Yang-Mills theory would miss the whole point of the light-
In other papers in this seri¢$], we describe a method to cone approach. This gauge is manifestly unitary, and all
simplify Feynman diagram calculations for massive fields,propagators are fif because each field has a single compo-
based on the observation that fields with only undottechent (complex to describe two helicitiesThe main disad-
spinor indices formally have the same structure as nonrelarantage of the light cone is that Lorentz invariance is not
tivistic fields, since a Lorentz transformation on such fields isnanifest: Although the action is Lorentz invariant, Lorentz
just a complex rotation. Thus spis described by a field transformations are nonlinear in the fiel¢End momenta
with 2s+1 components in a manifestly covariant way- and the Feynman rules are asymmetric in the various com-
spin 1/2 by a chiral spinor, spin 1 by a self-dual tensor,ponents of the momenta. An especially simple case is self-
without their complex conjugates. The result is a unitarydual Yang-Mills theory[5], whose Feynman rule6] are
gauge where all propagators are simplypfA m?). Also,  manifestly covariant under half the Lorentz grofip 2+ 2
external line factors are unconstrainge., arbitrary; so am-  dimensions, one of the two )’'s of
plitudes can be completely evaluated covariafitther than  SQ(2,2)=SL(2)®SL(2)]. In particular, the self-dual rules are
leaving covariance for the more numerous squares of termsiuch simpler than the usual ones for deriving MHV ampli-
in probabilities. Many supersymmetry relations are alreadytudes.
obvious from the graphs, since actions for spins 1/2 and 1 The spinor helicity method translates all external line fac-
more closely resemble those for spin 0. Much repetitive altors into twistor notation, essentially using the Penrose trans-
gebra ordinarily applied in graphs is already done once anébrm for free fields. Each massless momentum is expressed
for all in the action itself(so the action has more vertices, as the square of a momentum twistor, while the external line
such as seagulls for spinors, but the amplitude has fewefactor (i.e., the external free fieJds expressed in terms of
terms. Since the fields are chiral and self-dual, this methodthat and(for gauge fieldsan arbitrary gauge-dependent po-
is particularly suited to graphs with maximal helicity viola- larization twistor. If the polarization twistors for all external
tion (MHV), which are those that have the simplest finallines are chosen to point in the same fixed direction, then the
form. gauge is a light-cone gauge, but only for the external fields
Although this method can be applied to massless theoriegnd not the internal lings However, in practice, one
by an appropriate limiting procedufehich is trivial for spin  chooses to equate the polarization twistors with some of the
1/2), it is inherently tailored to massive theories. In particu-momentum twistors of the other lines; so the amplitude is
lar, the concept of using only the physical degrees of freeexpressed completely in terms of momentum twist@isd
dom suggests the further reduction frora21 components the probability completely in terms of momehfd]. Unlike
for the massive case to just 2 for the massless case. In thike light-cone formalism, with this approach not only the
paper we accomplish this task by combining two well-knownvertices but even the external line factors are manifestly co-
methods, the light-cone formalisfi2] and twistors[3] (the  variant.
spinor helicity formalisn{4] for external line factors On the other hand, spinor helicity modifies only the ex-
The light-cone formalism is defined by choosing a fixedternal line factors and does not simplify the vertices. The
lightlike direction(** —" ), choosing the gauge where the cor- result is that, although the final expression for MHV ampli-
responding lightlike components of gauge fields vanish, andudes is extremely simpl&], their calculation does not fully
eliminating all auxiliary degrees of freedo¢h +" ) by their  reflect this simplicity. Explicitly, the first two steps in a
nonpropagatingno “+" derivatives) equations of motion. spinor helicity calculation are the following:(1) Write
This last step is the most important one: It reduces all nondown all the terms that come from the various graphs, using
zero spins to two degrees of freeddoorresponding to the the usual Feynman rules in color-ordered fofAj. Some
simplification comes from using the Gervais-Neveu gauge,
which gives only three terms for each three-point vertex and
*E-mail address: chalmers@insti.physics.sunysb.edu one term for each four-poinffor pure Yang-Mills theory.
TE-mail address: siegel@insti.physics.sunysb.edu (2) Contract all the vector indicegsand spinor ones for
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quarks, coming from vertices, propagator numerators, andvector and spingrindex algebra, are avoided in the space-
external line factors. A remarkable feature of spinor helicitycone approach without performing any algebra whatsoever.
is the large number of terms that vanish in the second step: In the following section we review the basic points of the
Many vanish immediately, from the direct effect the light-cone formalism, including special features of four di-
external-line factors have on the vertices, but most vanisfnensions, such as simplification of the interactions and self-
only after more careful inspection, when polarization vectorgduality. In the next section we review twistors and spinor
are contracted from different parts of the graph via the KroJelicity. The space cone is introduced in Sec. IV. Examples
necker deltas in the propagators. An equally remarkable fes2r€ given in Sec. V to illustrate the improvement over previ-
ture of spinor helicity is that one has to spend a considerabl@US téchniques. Recursion relations are discussed in Sec. VI.
fraction of the calculation writing down these terms that do ' N final section contains our conclusions.
not contribute. Generally, any method that requires calcula-
tion to produce zeros indicates a simpler method is missing Il. SHORT REVIEW OF THE LIGHT CONE
for which the zeros would be automati.g., supergraphs for
the “miraculous cancellations” of supersymmetry

In this paper we derive new Feynman rules that avoid th
second step above altogether by eliminating Lorentz indices L=1F2, Fab=,laabl+i[A2 AP], 1)
on all massless fields, while retaining all the advantages of
spinor helicity. This is accomplished by modifying the usualwhere 9l2AP! = 92AP— 3PA? and the indicesa,b are vector
light-cone method to incorporate the principles of the spinolindices.(Throughout this paper we will use pure Yang-Mills
helicity method: (1) Although we choose arbitrary fixed theory as our standard example, with straightforward gener-
vectors to define the reference frame used to derive the lightalization to other spinsWe use uppercase letters to denote
cone action, in the amplitudes we choose to identify the twosectors and lowercase to denote th@ontravariant light-
lightlike axes with two of the physical externdfrefer- cone components, as
ence”) momenta(as allowed by Lorentz and gauge invari-
ance, which also defines the other twepacelikg axes, us- A%=(a,a,a",a”). (2)
ing momentum twistors. The result is then manifestly .
covariant, since explicit Lorentz components are replaced byn Minkowski spacea is the complex conjugate @, while
Lorentz invariants. On external lines, this is equivalent toa~ are real. Defining our light-cone frame by the
spinor helicity, but we have extended the method to internaMinkowksi-space inner product
lines.(2) As a result, the direction chosen to define the gauge _
is not lightlike, but spacelike and complex, although it is still A-B=ab+ab—a'b —a b, 3
null. The gauge condition is thus complex, like the Gervais- )
Neveu gauge, although it is linedfhis distinction does not We choose the light-cone gauge
exist in 2+ 2 dimensions, but the Wick rotation to+3L is _
different) We thus refer to our formalism as the “space a~=0. (4)
cone” (although, as for “light cone,” no cone is actually
involved; it is an abbreviation for “complex spacelike null
hyperplane’). (3) In the usual light-cone approach, where a
fixed component of the gauge field vanishes, one takes ca
to avoid the vanishing of the corresponding lightlike compo-
nent of the momentum, which would produce singularities

We start with the Lagrangian for Yang-Mills theory, in a
é:onvenient normalizationg=trL/g?):

(In the original description of the light-cone gauge, the for-
malism was described by an “infinite-momentum frame.”
Of course, Lorentz invariance means that the equations are
fFame independent, and shortly thereafter it was realized that
the infinite-momentum limit was a misconception and could

. DL - ‘be replaced with a simple change of variables. Even the par-
In our approach its vanishing fequiredby definition of the ton model was originally described in this language, until it

two reference lines. We show that the external line factor%vas realized that it was only hiding the Lorentz-invariant

cancel such singularities and find that the resulting Verticegtatement that the one physical assumption of the parton
for those two lines are much simpler than the rest. This aChodel is a transverse momentum cutoff, which is realized

counts for much of the simplification of the spinor helicity dynamically in QCD via asymptotic freedom
formalism. These external-line factors follow from the cova- The equation of motion foa* now contain.s no “time”
riant ones used in the usual spinor helicity approach and A% rivatives ™ so we use this equation to eliminate this

not the trivial ones normally used in the light-cone approach,,_ .., P ;
although they are still simple(The field redefinition that a"f‘;é‘t')';grng%r:go”e”t from the Lagrangian:  After a little

relates the two is singular for the reference lines.
The main advantage of our approach over the usual spinor

helicity is that there are no Lorentz indices associated with

any lines, although they have an orientatioh helicity at 1

one end,— at the othey, all indices show up at the final step, F-*=da+da+i — ([a,d a]+[a,0"a]),

when Lorentz invariants are expressed in terms of momen- d

tum twistors. In particular, this means that vanishing graphs (6)

and terms in graphs, which in the spinor helicity approach - _

would be seen by expanding the vertices and performing the F'=ga—oga+i[a,a].

L=ag" 9 a+3(F~")*=3(F'"? (5)
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Only in four dimensions can we simplify the Lagrangian by Self-duality f*¥=0 is then partially solved in the light-cone
using the self-dual and anti-self-dual combinatigméich  gauge by
would have been indicated if we had used spinor notation

f-~=0=[V B,V ]=0=AB=0(a =a=0),

1 . 1
F=5 (F 4R =dati ——[a,07a), (13

. - . f-+=0=0 BA* =0 A B= g Bp(at =g, a=d~ ).
F=5 (F " =FY=dati —[a0 al, (14)

The remaining equatiofi* *=0 is identical to that found
L=ag 9 a+FF from the abov.e light-cone _action by yarying with rgspe@to
and then setting@g=0: It is the ordinary Yang-Mills field

1 £l equation restricted to one helicity. If we define self-dual
=——§Da—i(—_a [a,07a] Yang-Mills theory by the LagrangiarGaﬁf“ﬁ, then our
2 d light-cone analysis leads directly to the first two terms of the
J 1 above light-cone action, withd(') G, , acting as a re-
—i ﬁ—,i [a,0”a]+[a,d a] W[Ea*a]. placement fora.
1 _ Ill. TWISTORS AND SPINOR HELICITY
=0O=d9—d"9". (7 . _ , _
2 The basic principle of the twistor approach is that a light-

) ) ) like four-vector can be written as the square of a commuting
The Feynman rules may be obtained in a straightforwardpinor (“twistor” ):

fashion; for example, the color-ordered three-point vertex
contains only two terms and is thus simpler than usual P2=0:>P“B=+p“6‘é (15)
gauges, such as Fermi-Feynman or Gervais-Neveu. - '

Translation into van der Waerden notation for Weylhere the sign depends on whether the vector is forward or
spinors is easy: In terms of our light-cone basis, we havgy,ivard(with respect to the time direction In practice,
the Hermitian <2 matrix we ignore this sign, as justified by crossing symmetry or by

Wick rotation from 2+ 2 dimensions, wherp® andp ¢ are

A?=—2 detA. (8) independent and redtather than complex conjugajeso
the sign can be absorbed into either. This representation is
particularly useful for free, massless particles: Using this
twistor to describe the momentum, the usual free field equa-
tions can be solved for the free field strengths as

at a

af —
A a a

Spinor indices are raised and lowered with the antisymmetri
symbol

(0 =i
CaB=Cab='C“B:‘CaB:<i 0 ) © ferrazn=po..-pehg, (16)
o ~ap s et i for a spinorf¢, vector field strengtti®®, Weyl tensorf *A7°,
Pr=C%p, =9 Cpo, P =) =Cp etc. Thus massless degrees of freedom are immediately re-
(10 duced to(complex scalars. Actually, Lorentz transforma-
- tions are reduced to their little group, helicity, which trans-
A-B=A“’B,;. (1) forms the twistor by a phaséindependently of the usual

. ) . Lorent? and, thus, the “scalar” by the helicith times the
Note that each of the four light-cone—spinor-notation COM-phase.

ponents is defined with respect to a null direction:  Two areé  ppy g|d lesson learned from supersymmetry is that all
real and lightlike =X), two are complex and spacelik§ ( spinor algebra in four dimensions is performed most conve-
*i2). (In 2+2 dimensions all four are real and lightlike, niently with two-component spinor indices exclusively, and
while in 4+ 0 dimensions all are complex and spacelike. this rule also gives the simplest calculations in the spinor
Spinors can be treated similarly: There is no gauge conhelicity formalism. This is much simpler than algebra with
dition for spin 1/2, but half of the field is auxiliary. Now four-componentDirac) spinors. In particular, Fierz identi-
spinor notation is necessary, and in the light cone a Weylies are avoided. This also means one should avoig afid
spinor reduces to a single complex component, as did thg matrices, since they are nothing more than Clebsch-
vector. Gordan coefficients. Vectors are described only as objects
Self-dual Yang-Mills theory also is described more easilywith 2 two-component indices.
in spinor notation, where the field strength naturally sepa- Since almost all spinor algebra for spisd involves ob-

rates into self-dual and anti-self-dual parts: jects carrying at most two spinor indicéspinors, vectors,
. . . . self-dual tensops for such purposes it is usually convenient
[V*B VYo =i(C*fPo+ CPofY), (120  to use matrix notation, defined by
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(pl=p*% |p)=p.. [p|= piv'| pl=p, (17)  they are expressed C(_)mpletely in terms of the invariant prod-
ucts of momentum twistor@nd no other Lorentz structupes
As a result, we also have
IV. SPACE CONE

pa)=p°q.. [pal=p°d,. (pa)*=[pal=—[pq],
pa) (pa) (18 Although these principles should be enough to appreciate

the advantages of spinor helicity methods, there is one addi-

pP= Pa;é, P*=—P,8, (KP|q]= k“PaﬁqB. tional rule that, altho_ugh not required, always gives the sim-
plest results in practice: All thE's are chosen the same for
PK* +KP*=(P-K)I, (19 one sign of the helicity and all the same for the other sign.

This means that all the's (+ helicity) are the same undotted
8 f_s.B _ e g spinor |+) and all thee’s (— helicity) are the same dotted
f=f.7, =12 (plflay=p*fds, (20 gpinor|—]. However, because é can be identified with &
of the same line, this means that téie are identified with a
(pa)(rs)+(ar){ps)+{rp)(as)=0, (21)  p=|+)[+] of a line with the opposite sign helicity-) and
, o ) all €'s with a P=|—)[ —| of a line with + helicity. In par-
where the last“Schouten”) identity is the result of antisym- 0,5 this means that the oreused on all such lines is not
metrizing three indices that take only two valuédote that the C(;mplex conjugate of the oneused on all the other

(pg)=—(ap), [pq]l=—[qp] are consequences of USiNg |ineg The naive way to interpret this would be to say that all
twistors; when using physical, anticommuting  Spinors,ine jines of positive helicity are in one light-cone gauge and
{(x)=+{x¢), and{y))+0 occurs in mass terms. all the lines of negative helicity are in a different light-cone

Although gauge-invariant objects can be written directly auge. However, a much simpler way to interpret this is to

in terms of momentum twistors and scalars, the same is Ny thagll lines are in the same gauge, defined by the vector
true for gauge fields. Thus for a gauge vector we wfite

matrix notation N=[+)[—-]|, N-A=0. (26)

_lelpl —

A= —<6p> e=f*=|p[ple, =0, (22) This N is complex; it is also spacelike, sin¢pp)=0. So it

is orthogonal to the two lightlike vectofexternal momenja
|£)[=|, as well as being null. Thus we have a complex

for + helicity, or spacelike(axial) gauge.
Repeating the derivation of the light-cone action with the
A Ip)l el (= _0 b3  dauge
= Tep] ©° =[p(ple, =0, (23

a=0, (27
for —. (Positive helicity is the same as self-duality; negative
is anti-self-dua). The former agrees with the self-dual eliminatinga by its equation of motion, we now have
Yang-Mills result of the previous section, up to normaliza-
tion, if we choose

1 J
L==-a"Oa —i 7a+

5 [a*,9a 7]

€~ 57 . (24)

+

1
These expressions are used for external lines in Feynman —ijzala ,gat]+[a”,oa I=21a ,0a"].
diagrams: Setting scalar fields=1 as usual, the factors
multiplying ¢ and¢ are identified as the external line factors (28)
for a massless vector. Thus the twistor formalism is esse

tially a covariant way of writing the axial gauge

"The fact that the three vertices come in helicitiest —,
——+, and ++—— will prove important later when writing

N-A=0, N=|e)[e| (25) _Feynmem graphs, since now theindex on the field labels
its helicity (as seen, e.g., from the external-line factors of the
in terms of an arbitrary lightlike vectdx. previous section with our present choice ofind ). This

However, a major simplification is achieved in applying action is complex because of the appearancéwithout 4.
spinor helicity methods to explicit evaluation of FeynmanUnlike the Euclidean formulation of light-cone Yang-Mills
diagrams: Instead of choosing the lightlike vectbrso be  theory given in Eq.(7), it is not necessary to specify the
the same on each external line, as in a light-cone gauge, thégtegration contours in individual Feynman diagrams around
are chosen to vary from line to ling.e., to be momentum the spurious poles introduced by the&"lpowers in Eq(7).
dependent Furthermore, these lightlike vectors, rather thanThe space-cone gauge is complex, and as a result, there are
being arbitrary, are identified with some of the external light-no singularities introduced as a result of the inverse powers
like (masslessmomenta(although, of course, nbl is iden-  of din the verticedalternatively, one may simply shift the
tified with the momentum of the same linéDne result is  out of the denominator because in momentum syaaed k
that all amplitudes are manifestly Lorentz invariant, sinceare complex, as in Eq31)].
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In spinor notation in matrix form, we use the basis [—p]
IO A= 0L 9= (e)"==(=Il-I |+>|p]<+p>=w, (33

P=p*|+)+]+p | )|+ p| =)+ +Dl+) -], (+ )
@9 (e ==(+l+ ] IP)I=I=pl= 5 (34

with the normalization
Note that these factors are inverses of each other, consistent
(+=)=[-+]=1; (30) with leaving invariant(the inner product defined byhe ki-
netic term.

An exception is the external-line factors for the reference
momenta themselves, whefe)=|+) for helicity + gives
vanishing results. However, examination of the Lagrangian
shows that this zero can be canceled by @id/a vertex,
since p=p=0 for the reference momenta by definition.

p=(+p)[—pl, p=(p—)p+] (31)  (Such cancellations occur automatically from field redefini-
tions in the light-cone formulation of the self-dual theo-
[We can then identify+ as labeling rows and columns in ry.) The actual expressions we want to evaluate, before
2X 2 matrix notation; with our normalizatio;+|= 8% , but ~ choosing the reference lines, are then

so we can write, e.g., for massless momentm|p)[p|,

p =(p—)—pl, P =(+p)p+]

(—|=—18"; so this leads to the harmless redefinitiaf?
+ iz - + +1[— +
—C )] p (6+)+:< plp+]l—pl_[p ]’ 35
This is as much as we can do in the action; however, p (+p)=pI{+p) (+p)

when we write down an explicit amplitude, we identify

[++)[+] with the momentum of one line with negative helicity p* ~A{p)—pl{(+p) (p—)

(vector or, more generally, spinoand|—)[—| with that of a ) (e-) :(+p>[—p] [—p] = [—pl (36)
line of positive helicity. (Alternatively, we can take one

functional derivative each with respectad anda™ of the Evaluating the former afp)=|—) and the latter afp)=

S matrix generating functional, to get a propagator in a backH)’ we get 1 in both cases. In summary, for reference lines

ground, and defme the. functional integral in terms of the 1) use only the three-point vertex of the corresponding self-
momenta_assouat«_ad V.V'th _the enc_is of _the propagator. The ality (= = = for helicity =), and use only the term asso-
the fields in the action in this functional integral become trueCiating the singular factor with the reference liftae other

scalars. This defineg+) up to phases, and thiis)[ +| and . ) e .
[+)[—|, on which the phase transformation is a rotation in theterm and the other vertices give vanishing contributip(®

) including the momentum factors on that line from the vertex,
plane orthogonal to the two momenta. Thus our choice of th 9

h bV —47=1 | furth ificati £ th fhe external line factor is 1.
phase( >. [—+]=1 is a further specification of these Obviously, the uniqueness of the vertex term for a refer-
phases, while our choice of the magnituge —)[ —+]=

(+|[+|-|=)|=1=1 is a choice of(mas3 unis. In ex ence line is a considerable additional simplification for the

N . " . rules. As examples, consider the amplitudes in pure Yang-
plicit calculatlons, we restore .ge”efa""y‘ partlcglar, to al- Mills theory that are known to vanish by supersymmetry
low momentum integrationby inserting appropriate powers [8]: By simple counting of+'s and —'s, we see that the

Of.<+_> and_[—+] ?t the gnd of the cal'cglatmns, as d.eter'tree graphs with the fewest externals, those with only
mmgd by simple dlmenspnall and helicity analysihis self-dual verticeg++—), have a single externat. Thus the
_av0|ds a clutter of normalization factor_é{+—>[—+] at | + amplitude vanishes automatically. Furthermore, the
intermediate stages. For example, looking at the form of iaqrams with a single external must have that line chosen

the usual spinor helicity external-line factors and counting,s gne of the reference lines. However by the above rules
momenta in the usual Feynman rules, we see that any trggat jine can carry only thanti-self-dual vertex——+); so
amplitude (or individual graph in pure Yang-Mills theory those amplitudes also vanish.

must go as The vanishing of these amplitudes is also easy to see in
the usual spinor helicity formalism: In the space-cone

()YE[PE (320 gauge, the only nonvanishing inner products of polarization

vectors are between those of opposite helicity, neither of

whereE.. is the number of external lines with helicity. which can be a reference line. Since by momentum counting

We now return to external-line factors. The naive factorsa tree graph in pure Yang-Mills theory must have at least one
for the above Lagrangian are 1, since the kinetic term resuch productas opposed to momentum times polarizakion
sembles that of a scalar. However, this would lead to unusualonvanishing graphs must have at least two external lines of
normalization factors in probabilities, which are not obviouseach helicity (including reference lings[4]. The amazing
in this complex gauge. Therefore, we determine external-linghing about our space-cone approach is that our correspond-
factors from the earlier spinor helicity expressions for exter-ing arguments of the previous paragraph make no reference
nal four-vectors: to momenta or inner products; this extends to the avoidance
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of vanishing terms in nonvanishing amplitudes, where the <34>4/<12><23><34><41>,)
usual spinor helicity methods require explicit index algebra.

The vanishing amplitudes can also be seen from super- By comparison, the Fermi-Feynman gauge would produce
symmetry. On the other hand, supersymmetry is not requireds terms for this calculation and the Gervais-Neveu gauge 19
on the space cone, because it is already builtin:  The half ofarms, The usual spinor helicity methods eventually reduce
the supersymmetry tr_ansformatlons a_ctually used are triviahis to the same one graph and one term, but only after ex-
on the space conr light cons, reflecting the fact that the  amining the vector products among polarization vectors and
terms in the Lagrangian are identical for different helicities j,omenta. Although relatively simple in this examptae
except for the placement of factorg of the transverge mMomensasiest tracking indices across diagrarttrough propaga-
tum componenp (or, in the usual light-cone formalism, the tors) can be tedious in general. The space cone eliminates
longitudinal componenp ™). In fact, in the self-dual theory, this index algebra, since the fields are effectively scalars.
becaus_e of field redefinitions, the terms are identical withouimilar remarks apply to amplitudes involving fermions,
exception. where spinor algebra is involved when spinor helicity is ap-

plied to the usual Feynman rules, but no such algebra ap-

V. MORE EXAMPLES pears on the space cone. Of course, the final result will al-

. _ . . ways contain Lorentz products, and some manipulation may
e s 10 Use o utorSiplfcato, but 10 gebra hatsoever
each permutation of external lines. We consider the cast required on the space cone to eliminate vanishing graphs
where the helicities are cyclically ordered ast——; we or terms.

label them 1234, and choose 1 and 4 as the reference Iine&b';rzn?;iiﬁonl%“'gifr%:é?dngali ;hr:ﬁlzj;;s avr\?eplgﬁggée
this amplitude can be denoted as+—©. (P,=|+)[+1, ! g b '

P,=|—)[—|: The positive-helicity reference line gives the the amplitude cyclically ordered as+ +—— with lines la-
relference rﬁomentupm for ne ati\)//e helicity and gvice ver-beled 12345, picking 1 and 5 as the reference lines, which
€9 ) y we denote asb++—©O. Again dropping all graphs with a
sa) There are only three diagrams; however, thaefer- . ; .
. . reference line at a four-point vertex or two references lines at
ence line uses only the +— vertex, while the— reference

line uses onlv the- — + vertex. and so the four-point-vertex & three-point vertex, all five graphs with a four-point vertex
diaaram van?/shes as does the diaaram with Eoth referen are destroyed, and only three of the remaining five survive.
llag ’ 9 . Since three-point vertices witkwithout) a reference line

lines at the same vertex. Thus we are left with only on

graph. Furthermore, we know that the three-point vertices ave one(two) te”T‘S’ we are left W't.h only SIX termS\Ne
. e . also need to consider various combinationstofind — in-
contribute only one term to the reference line; so this graph,. .
has onlv one term. This means we can immediatel writedlces’ but only one survives for each graph because of the
y o y chirality of three-vertices with reference lings.The initial

down the answer:

result for the amplitude is then

1
Atree(++__)=62++6§—p2p3m Aged +++——)
_[Z2 D) ) 2p2+1_p_3) 4(p_2_p_3)
S (+2) [—3]<+2>[ 2K {+3)~3] et eate P2Pa P2 P3 Ps P2 Ps
1 1 2B (P Py)(PyPs)  (PyP3)(Py-Ps)
“(3a34] () +] 2 p;+1_g)
[12]%(34) T ps )
~ (3441 (14" (37) (P1-Po)(Pg-Py) |’

where we have restored helicity and dimensions. Using th&here we have used the fact that the reference lines have
identities following from overall momentum conservation, trivial momenta: 1 for the component with index opposite
to its helicity, O for the remaining components. The two
(Py1+Py)?=(P,+P3)*=[41](14=[23|(32), (38  terms for each diagram simplify to 1 using

> Ip)pl=0=(34[14]= —(32)[12], (39) P~ _[p+]_ P2 Ps_[2+][—3]-[3+][—2]
p [—p] P2 Ps [-2][—-3]
this can be put in the standard form [23]
[12]* T2 42
Aved + 4= =)= moaiiaaan (40

with our normalization. Using this result, we find the similar
(Similar manipulations cast it into the form result
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p,+1 p;  (+—=)—3]+(+2)[23] yvhi_ch is just the transverse momentum component, appear-
-—= (+2)[—21[-3] ing in the space-cone three-point vertex. With the space-cone
P2 P3 method, this algebra has already been done, which allows
(+4)[34] some cqllection_o_f terms and common factor; even before
= m (43 substlFutlng explicit twistor expressions. In particular, the po-
larizations now appear as an overall scalar factor for the
applying momentum conservation. We next translate the movhole amplitude; the rest is all momenta, and so identities
mentum denominators into twistor notation and also substilnvolving momentum conservation can be applied more gen-
tute the space-cone expressions for the polarizations and n@trally between graphs.
merators. Canceling identical factors in the numerator and

denominator(but no further use of identiti¢sthe amplitude VI. RECURSION RELATIONS
becomed+ =5, —=1) Another method used to derive higher-point amplitudes is
3 _ 12 B the classical Schwinger-Dyson equations, i.e., the classical
(+4) ([ Al34] + [—4] +<+2>[ 2]) field equations with perturbativémultiparticle boundary
(+2)(+3) [(2—)[4+] (23)[4+] (—2)34 conditions at infinite times(In the literature, the field has
143 N 1\ —2 often been mistaken for the current; as usual, these are dis-
= <+<2><13> - <<2 >>[<23>] + <<2 >>[<34>]) tinguished by the fact the field always has an external propa-

gator, while the current has it amputated, siridep+---
<+4>3 =J.) The steps are the following:(1) Calculate the first
= few terms in the serie@numerated by the number of exter-
(2=)(23)(34 nal lineg. (2) Guess the general resu(B) Prove that it is
(45)% correct by induction, using t.he Schwinger—'Dyson equations.
=- (12/(23(38(51)" (44  Of course, t_he s_gcond part is the hardest in ger(atdkbast
when one simplifies the third step by using space-cone meth-
applying momentum conservation twice, restoring normal-°d9, and has been possible for just a couple of cases, only
ization, and replacing the numerals far because the. results for thosg cases are so.S|mp.Ie. _

By comparison, in the usual spinor helicity formalism we ~ 1he solution to the classical field equations is given by
find that only the same three diagrams contribute: In thidrée graphs with all external lines but oftiae field itselj
formalism, also, the two reference momenta cannot be on th@Mputated and put on shelb]. (The usual external-line
same three-point vertex. Unlike the space cone, a referendiave functions describe the asy_mptotlc field, which is free.
momentum can attach to a four-point vertex as long as thé—h_'s mthod has been used to find several tree amplltudgs at
opposite line is off shell; fortunately, that is not possible in finite point order as well as the two well-known cases with
this example. In general, a three-point vertex with an at@l the on-shell lines possessing the same helicity or one
tached reference line and one other external line can nofjifferent[4,7]. Note that the field™ has a+ associated with
have two terms instead of three; the same is true for a thredD® Opposite end of its external propagator. We then see in
point vertex with two external lines of the same helicity. This the former case, with al-’s on on-shell lines, thaa™ van-
reduces the naive 81 terms to 42. More detailed algebrishes because there are no fully amputated diagrams, even
eventually reduces this to eight terms. The algebra involve@ff shell, with only +’s externally (again counting+’s and
in enumerating these terms is comparable in difficulty to that~'S On verticeg. Similarly, for the latter case, with only one
of all the rest of the calculatioIn practice, this amplitude — ©n an on-shell line, we see that has only++— verti-

is evaluated by applying supersymmetry to the three-gluon-€S, but setting one on-shefl to be a reference linevhich
two-quark amplitude. by definition must be on shellsuch a vertex is not allowed,;

more complicated with the usual spinor helicity, becauseSPinor helicity method, where the analogue of the vanishing
vector products have to be evaluated in terms of spinor prodef @  requires an inductive proof. By similar reasoning, we
ucts, after which terms can be collected. For example, théee thata™ in the former case consists entirely of+—
inner product of two polarization vectors in the usual spinorvertices and in the latter case consists oftait — except for

helicity formalism is one ——+ (no ++——), which must have the- reference
line directly attached. The appearance of only the self-dual
(FI0 1il—= [—i]{(+]) field (a*) and almost only the self-dual vertex-+—)
i+ €-= +iy -] =T (+y[—]] means that in both cases one is essentially solving the field
equations in the self-dual theofg].
=—(€+)"(-)" (45) We now consider in more detail the simplgormen ex-

_ _ ample (the one which does not directly give a nontrivial
in space-cone language; the inner product of two vectors hagattering amplitude As a slight simplification, we look at
been replaced by the product of two scalars. Similar remarkghe recursion relation for the field as defined in the self-dual

apply to theory: From the results at the end of Sec. I, we write
€+ rer Pj=(+|[—[-IDIT=(+D)[—il=p;, (46 a"=pao. (47)
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(Implicitly, we also haveafzpflfﬁ. These redefinitions
make the++— vertex local) The recursion relation is
now

n—-1
B(1n)= TP 21 G(Li)p(i+1,n)
X[p (Li)p(i+1n)—p(li)p (i+1n)],
(48)
k
P(j,k)sz:j P, (49)

PHYSICAL REVIEW D59 045013

(The algebra of the color indices works as usuaWe then
perform the sum overbefore that ovej andk (the complete
sum is over ali,j,k with 1<j=<i=<k=n), making use of one
of the identities used in the usual spinor helicity evaluation:

(ab) (bc)
(+a){+b) (+b){+c)
(ac) KL G+ (jk)
“Hat =& D (R
(54)

Multiplying this by the vertex momentum factor gives a sum
over j<k of (jk)[jk]=P;-Py, canceling the external

where we again use color ordering, number the external lineBropagator, yielding the desired result.

cyclically, and ¢(j,k) denotes the field with on-shell lines
with momentaP; throughP,. (Thus on the left-hand side of
the equation the field hason-shell lines, while on the right-
hand side the two fields haveandn—i.) Plugging in the
twistor expressions for the vertex momenta, we find

p (Li)p(i+1n)—p(Li)p (i+1n)

> 2 (+DIKN+K). (50)
j=1 k=i+1

VII. CONCLUSIONS

We have introduced a complex gauge formalism useful
for reducing further the algebraic complexity associated with
vector amplitude calculations. The results here generalize
naturally to theories containing additional matter. We have
seen that the space-cone formalism simplifies the algebra in
massless Feynman diagrams to such an extent that supersym-
metry identities are no longer needed. The index algebra at
intermediate stages of the calculation is eliminated; the only
remnant of spin indices on fields is thelabel for helicity of

If we are clever, we can guess the general result fromhe two components of the space-cone Yang-Mills field. Our
explicit evaluation of the lower-order graphs; instead, wecomplex spacelike gauge, together with the use of reference

find in the literaturd 7], after the above redefinition,

N 1
D= T D =)

(5

For the initial-condition case=1, this is simply the state-
ment that the external-line factor f@¥ is now

(5+)+ 1

ep=—"—

EDE 2

The induction hypothesis is also easy to check: The prod

uct of the two¢’'s from the induction hypothesis gives the
desired result by itself up to a simple factor:

(i,i+1)

d(Li)p(i+1n)=¢(1,n) m (53

momenta, incorporates all the ideas of spinor helicity, and
extends them to internal lines and vertices through light-
cone-type techniques.

Although we have considered only tree graphs in this pa-
per, the method applies straightforwardly to loops. Alterna-
tively, since auxiliary fields are often useful in the analysis of
effective actiongincluding renormalization one might use
a background field formalism, where a Fermi-Feynman or
Gervais-Neveu gauge would be used to calculate the gauge-
invariant effective action first, and then the effective action
would be evaluated in the space-cone gauge to derive
Smatrix elements.
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