PHYSICAL REVIEW D, VOLUME 59, 045012
Simplifying algebra in Feynman graphs. I. Spinors
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We present a general formalism for simplifying manipulations of spin indices of massless and massive
spinors and vectors in Feynman diagrams. The formalism is based on covariantly reducing the number of field
components in the action in favor of chiral or self-dual fields. In this paper we concentrate on calculational
simplifications involving fermions in gauge theories by eliminating half of the components of Dirac spinors.
Some results arél) we find reference momenta for massless fermions analogous to those used for external
gauge bosong2) many of the known supersymmetry identitié#®e and one logpare seen in a simple manner
from the graphs(3) manipulations with external line factors for massive fermions are unnecessary)and
some of the simplifications for nearly maximally helicity violating gluonic amplitudes are built into the
Feynman rules[S0556-282(98)04924-§

PACS numbd(s): 11.15.Bt

I. INTRODUCTION The indices are raised and lowered through the me€t%
and C*? on the SL(2C) covering group of the Lorentz

In the past decade there have been many advances in theoup,
art of doing perturbative gauge theory calculatiofis. [1]
reviews of these methods are presented for massless
QCD,) Color ordering, new Feynman rules and methods
inspired directly from string theory, and techniques based on
unitarity and analyticity requirements damatrix elements Wwhere
have been important developmefs3,4]. Notable among _
the new techniques was the introduction of reference mo- C”‘B:Cw:—caﬁ:—czﬂé:(
menta for external polarization tensors. However, the simpli-
fications for doing these calculations when external fermions o ) o
are present have not been as dramatic, and no analogo_ﬁ§ _usual, symmetrization and antisymmetrization of the two
simplifications for massive particles have been presented. Ifdices a,8 are denoted througha8) and [«]. We shall
this work we fill this gap by introducing reference momenta@lS0 use the conventions with the inner prodactw
for massless external fermion lines analogous to those usedsV**W,, and the Abeliar{self-dua) field strength is de-
for gluons and, similarly, covariantly reduce the componentdined asF =3 d(,“Ag)a -
of massive external line factors for spinors and vectors. Furthermore, the polarization vectoeg,, satisfying the
Many of the simplifications are introduced directly into the required normalization conditions may also be represented in
action by covariantly reducing the components of the fieldgerms of commuting spinors as
themselves. This leads to further simplifications for propaga-

ke=Cak,, ki=Cabkj, @

0 i

ool e

tors and vertices. . K.P., ~ k,p.,

Twistors[5], also known in gauge theory calculations as €,o(K)=—Ii o’ €,.(K) =i . (6)
“spinor helicity” [6], are formulated by writing all massless Pe k®pg
(on-shel) momenta in terms of commuting spinors, . _ _

or, in matrix notation,
K2=0=K,0=* KKy, (1)
PR 1)) L R 911 o]

wherek,, andk;, are two-component Weyl spinors of left or e =~ kpy ' € ' Tkpl (@)

right chirality. In matrix notation these spinors may also be

represented as Our conventions are such thaQ)*=¢* and (,)* =
N . —,. Because of gauge invariance, the polarization spinor
(kl=k®, [k)=kq, [k[=k, [k]=kq, (2 p, is arbitrary(but k*p,,#0):

and we may write SA ;= 9 goh= €4, (K) =ik 4 N (K)
k== |k)[K|. 3 = 0p= LK)k, +&(K)P, ®
where{(k) comes from the gauge transformation parameter
*Email address: chalmers@insti.physics.sunysb.edu N(k), while the scale parametéi(k) comes from the nor-
TEmail address: siegel@insti.physics.sunysb.edu malization of the polarization vectors. The perturbative cal-
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culations can then be simplified by identifying the null vector 1 . m
P..=P.P,; With any other massles$reference”) momen- L=5 (Vo) (V gop?) + 5 ¥ (10
tum in the amplitude.
This approach has been applied both to eliminate muclyy
algebra in intermediate stages of calculations and to reduce
the expressions for the final result of the amplitude. In some _ N 5 arB
cases the resulting amplitudes are extremely simple, such as L==5o v (O—m) = 5 ¥ Foip
the case of pure gluon amplitudes where all external legs
except one or two are similarly polarizéd,7]. The simplic-
ity of these expressions is now understood to arise from the =" o5m
relation of these particular amplitudes to self-dual field theo-

ries [8]. The simplifications we present in this paper are(which defines the spin operatB,z=Sg,) for real represen-

basgd on actions that take advantage of chirality and selixtions of the gauge group. In the obtaining the result in Eq.

duality. ) _(9), we have integrated by parts in the covariant derivative.
In our formulation reference momenta may also be givenyhen the real representation is complex plus complex con-

to externalfermion lines. This is interesting in that, unlike jugate (e.g., QED or QCI) we can write ¢*= (%, &%),

external vector bosons, there is no apparent local symmetiyhere y and £ are in complex conjugate representations:

incorporating the fermion field. In our approach we shall first

integrate out half of the massive spin-1/2 fiel@sg., ¢“) N ) b s

coupled to gauge fields. In such theories with a labeling of L=- mX (O-m9)E,~ mX Faép

the fields according to an SL@) (van der Waerdernweyl-

spinor notation, the massive spinor fields with dotted indices 1 i

may be eliminated in favor of those with undotted ones; we =- X Hts Frsb-m?|&,. (12)

treat the former fields as Lagrange multipliers. Taking the

massless limit of the resulting Lagrangian defines our massgp aqgition, the same procedure can be applied for complex
less theory; the definition of the in and out states then allowsepresentations, i.e., cases with parity violation, but the result
us to present the reference momenta for the external fermiog more complicated.

lines. _ _ Turning out attention back to the modified theory in Eq.

?:snsrlr\w/gnapudlez?r?sgaescs ﬁ?l?ﬁgﬂi‘ﬁIdfﬁﬂifgﬁéﬁe&@ﬂg@b' the elimination ona produced only a trivial functional
y e 9 eterminant factor in the path integral. The overathldan

for external fermions. In Sec. IV we ma_ke Some comparisonyiso be removed from the kinetic term by scaling the fermi-
of our approach to the usual formulation. In Sec. V we '€ nic field:

produce a well-known result: We illustrate our technique
with a sample calculation of the high-energy lingt e” ¢—>\/ﬁ¢. (13)
— yy tree-level scattering process. The known supersymme-
try identities and their implication for the vanishing of cer- |t is interesting that upon setting the anti-self-dual el
tain tree and one-loop amplitudes are immediately obviousf the field strength to zero the actiqfil) loses its spin
from the action and are discussed in Sec. VI. Section V”dependence and the Coup”ngs of the fermions to the gauge
contains our final comments. In the sequel we will applyfields are exactly what one obtains for scalars. For this rea-
similar methods to vector@belian and non-Abelian son there is much improvement in using the actitf) to
computeS-matrix elements involving external fermions; this
will be demonstrated in later sections.

The idea of using fields with only undotted spinor indices

The action for a massive particle in an external masslesgas been used previously for spin-1/2 fields9, but ad-

vector field(Yang-Mills or electromagnetishtan be written ~ vantage was not taken of the simplification of external-line
as factors; the fermion reference momentum described in the

following section was not introduced. More importantly, the
v matrices were replaced by the four-vectommatrices; in
—. LIS —— [9], the o matrices and their transposes were effectively
L=V ooty +§ (Yt " 40), ©) treated as independent. The result of these manipulations
does not change the amount ¢fmatrix algebra in actual
. . . . calculations.
whereV ,,=d,;,+iA,, is our convention for the covariant  There is also a major simplification in using the Lagrang-
derivative. We may treat the dotted field as an auxiliary ongan in Eq.(11) for the case in which the massless Yang-Mills
and eliminate it using the field equationsV(.y“= fields that couple to the fermion field atalmosi all of the
—my,); alternatively, one may functionally integrate out same helicity: Only the self-dual pa®,; of the spin op-
the barred fermion field after completing the square. We therrator appears in the acti@®) in the magnetic-moment cou-
have[9] pling. The coupling of anti-self-dual Yang-Mills fields does

2

@

O+

FiSi—m?|y, (11)

II. ACTIONS
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not enter through th&faFaB(//B term and, as a result, is spin 1

independent. It only couples through the covariantized box, (P () PP(—k))= T CP, 17
as a scalar coupling would enter. In calculating amplitudes

closer to self-dual onefi.e., maximum helicity violation Correlations between externBltype couplings are simple;
(MHV)], the fermions resemble scalars in actual calculafor example, we have

tions. Examples of this will be discussed in Sec. V on super-

symmetry identities. k) =1k, € . (= ¢
Because our method treats dotted and undotted indices in (Fap(OF o —0) =2k (Ag A (KK
an asymmetric fashion, the actighl) is complex and uni- =3C,Cp)s- (18
tarity is not readily apparent. However, because unitarity is ) . )
present within the original actiof), it must persist after The coupling of a gauge field to the charged spinors may

be found from the Lagrangiafll) and appears in three

integrating out the auxiliary fermionic fieldg’*. [Even in i The fermion line either emit boson in i
non-Abelian gauge theories used with a complex gaugeypes' € fermio € elther emils a gauge boso asp

i - independent fashion through the expansion of the gauge-
llxzri%\)t_?rrg,. Afiri Aezx)%mlﬁ)r!?tatr:l; isGr?(;}[/?rI:m'\éed\ilgtue Iyggg\t/;%us covariant box or through the self-dual field strength. We first

from the reality properties of the actign. expand the box as

As another example of this asymmetry between the dotted aay . gedy L DiIACEY . Ligrap . — NCUp -
and undotted spinor treatments, we analyze the classical ad aa ad as as ’(19)
magnetic moment; because only the self-dual part of the
classical magnetic-moment coupling appears in the actiogo that we may clearly read off the contributions to the Feyn-
(11), it is not immediately obvious that a complete contribu-man rules. From the spin-independent couplings, i.e., from a
tion arises. The effect of this coupling may be found from 74 _ . we have thee™e™ y coupling:
the covariantized Pauli-Lubanski vectoNa[‘;ZSalgVﬁ'ﬁ.
Commuting this operator with the “Hamiltonian” VA" =Ze(ky—Kp) 4aCH”. (209

i This Feynman rule represents the emission a gauge vector
H=U-3 F**Sga (14 A, from two fermionsy* and” with momentak; andk,.
The e*efy vertex coming from the,z/“FaBz,bﬁ term in the
gives the usual precessions Lagrangian Is
VA =Ze(ky—ky) 6%, (20b)

d .
—i == W,=[H,W,5]=iW,°F 55+ iW°sF

dr (19

pa with the same quantum number assignments. The external

vector emitted through the chiréd,z(k)-type coupling is a

as follows from truncation of the usual expressions that in- — helicity state. This is clearly seen in the light-cone
cludeS, ; terms forW andH. We see that the precession of 92Uge where the gauge degree of freedom containéd, in

the spin as described by the covariantized Pauli-Lubanskf Only the _ helicity scalar stateandF,z is the”:‘+”
vector has contributions from both self-dual and anti-self-N€licity state; alternatively, contracting an on-shell** he-
dual fields. licity state with the vertex gives zero. The final vertex is the

We also note that the same method used to obtairiEy. four-pointe”e” yy coupling:
has also been applied to the classical mechanics and classical v ) .
field theory of the massive superparti¢tiescribing spins 0 Vadﬁ/é:e CapCapC”, (21
and 1/2 and the subcritical(Liouville) superstring[10]. ] ]
There, the undotted indices are carried by the anticommutin§hich does not contain any momentum dependence and
coordinates. Such “chiral superspaces” are natural for selfWhere the gauge fields and spinors have the assignments

dual supersymmetric theories of any spjfi4]. AaiApp and g, ¢". The couplings(20g and (21) are of
the same form as the scalar ones, but with additional indices

(uv) of the fermions contracted with the external fermion
lll. FEYNMAN RULES lines.

The rules for the propagators and vertices can be read !t Might appear that the Feynman rules for vertices are
from the action(11) as usual. The vector propagator is the MOre complicated than in the usual formalism, because there

usual one, the same as the scalar propagator up to ind&{® more(two three-point vertices and a four-point 9ne
factors: However, all such terms arise in either method: here, di-

rectly in the action; by the usual method, after performing
the Dirac algebra. The advantage in the formulation pre-
1 - )
(Ag( KA (—K)=15Cs,Cs. (16)  sented here is that thematrix algebra has been performed
7 ke =27 once and for all in the action itself, whereas in the usual
method one must reshuffle the terms individually in each
The fermion propagator is now also like a scalar propagatorf-eynman diagram at each vertex and propagator. Also, our
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form allows for a more convenient comparison of the contri- As an example of the reduced spinor algebra associated

butions to scattering amplitudes arising from particles ofwith these couplings, we consider the case of a single fer-

other spinge.g., for supersymmetyy mion line with a number of attached external gauge bosons.
In deriving theS-matrix elements in terms of the reduced All the algebra associated with the indices of the external

action(11), we need to specify the ingoing and outgoing line fermions comes from thE coupling. We immediately obtain

factors for the external fermions. In the massive case externalith the propagatof17) the contracted vertex algebra

line factors are arbitrary; their choice corresponds to one of

the spin axes. Unlike Dirac spinors, in our case massive ex- Fa" (K)F g7 (ka)FP(kg) -+ =[1)(12)(23)- -+,

ternal line factors are not needed to determine the four com- (il=k* [i)=k
ponents in terms of two polarizations, since we have already b Ja
reduced them explicitly to only two. With the usual methods, (26)

external line factors are needed to reduce thentrix ele- from the couplings. The numbers 1,2 . label the consecu
ments forn external fermion lines to 2appropriate to the . T e . )
bprop ive F’'s that appear in the product of exterrfalfields at-

two polarizations of spin 1/2. The alternative is to square th ached to the fermion line: the remaining spin-independent

amplitude before performing Dirac algebra. However, this . )
can be cumbersome, especially when numerical evaluatioﬁouDIIngS appear as scalars and do not effect the matrix al-

of momentum integrals is involved, sind¢ diagrams pro- gebra associated with the &) indices. If the fermion line is
duceN? terms in the cross section ' a closed loop, then the F's contract to a cyclic product

In the massless case, the line factors are determined by P=(12)(23)---(n1); (27)
helicity: The two helicity states fogs, are, with the nor-
malizatione™ e, =1, if the line is open, then the product is terminated on either
end with the polarization spinot§ and|i) of the correspond-
e =p,. €= ga 22) ing external fermion fields,
Pas P=(f1)--(ni), 28)

or, In matrix notation, with the helicity state$22) in the massless case.

Iq) Last, we comment on the use of_the Lagran_gmm) for
e"=|p), € =7—%, (23)  fermions in massive QED calculations. Consider, for ex-
(Pg) ample, the scattering of a fermion-antifermionﬂgir going
. . . into n— 2 vectors of the same helicity. Because ver-
It of an sty ton T States OSSP o coss ot enter o the calcuatkgenerates he -

L — } a i helicity stateg we find that the expressions for the graphs
Ya=¢€, and y,=p,=—id"€, . The relation to Eq(1l)  are the same as the ones obtainedrfer2 photons emitted
can be seen, e.g., by introducing a four-component backyjong a scalar line. The Feynman rules in this particular ex-
ground spinor for Eq(9) before integrating out the barred ample completely avoid the usual Dirac matrix algebra, ex-
fields. The ambiguity in choosing, is analogous to choos- ternal line factors, and field equations usually used to sim-
ing reference momenta for gauge field polarization vectors il’b”fy the algebra. Similar simplifications occur for
the spinor helicity formalisntan independent derivation of a amplitudes with a general set of polarizations for the external
fermionic reference momenta was given[it2]). Note that  vectors or virtual photons connecting to other fermion lines.
the vector polarizations are products of the spinor polariza-
tions and their complex conjugatémcluding normaliza- IV. COMPARISONS TO THE USUAL FORMALISM
tion). In the remaining part of this section, we illustrate the
simplifications obtained by using these Feynman rules. In this section we make several remarks comparing the

The rules are simplest when the amplitudes possess extdprmalism discussed in this work with the usual Feynman
nal vector lines mostly of the same heliciiye., of the “+” diagrammatic techniques. First, it is not equivalent to other
type). If an external gauge boson of helicity~" is emitted ~ known tricks known to simplify they-matrix algebra. Our
through anF 5 coupling, we can immediately apply twistor reformulation of the original vertex is analogous to applying
techniques to write the corresponding external-line factothe Gordon identity,
with momentumk?=0 in momentum space:

1
i U(p) Y*u(a) = 5~ UL(p+a)*+25*(q— p)s]u(q),

Fap(k)= 5 Kia“Apya(K)=K.Kg (24) (29)
or whereS*= (i/4)[ y?,9"] is the spin operator. The rescaling
of the fermion by the mass factqim occurs naturally in the
F=|k)(k|. (25) above when taking the massless limit. The “squared-

propagator” trick, originally introduced by Feynman and
Because of gauge invariance, it is independent of the refeiSchwinger, uses the fact tha?¥ ¢ m)(V+m)=0+--- is
ence momentum chosen for the vector boson. more analogous to the scalar theory. Although these manipu-
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lations give a convenient rearrangementyahatrices along four-point contact term within the non—AbeIiaF\fj spin-
fermion lines, the number of matrices involved is the same. dependent interaction. We label the incoming fermion line
Second, a major advantage of our method is thatdhe with momentumk, and the outgoing one witk,; the pho-
matrices are treated as self-dual tensors instead of vectongns with outgoing momentuiky andk, have helicity— and
With the squared-propagator trick, only even numbergof + respectively. In a color-ordered format, there are three
matrices appear; so the matrix algebra consists of only 8 afiagrams—one with an ordered labeling 1234 of the external
the usual 16, namelyi, ys, and the spin operatorS,,.  legs (containing ans;, channel, one with the crossed legs
When we restrict ourselves to chiral spinors, a further reduci243 (containing as,, channe), and an additional one from
tion to just 4 matricego andl) is achieved, since theps is  the e*e ™ yy four-point contact term within the covariant
identified with the identity and only the self-dual part of the pox.
spin survives. In notation where representations are written Because the outgoing photons have opposite helicities,
as (m,n), wherem andn are either integral or half-integral there is at most one emission of a vector through the spin-
(corresponding to & undotted indices andr2dotted indi-  dependenE-type coupling(which generates a minus helicity
ces, theseo matrices appear d4,0), not as(3, 3). Thus the  vector state The first ordered diagram receives contribu-
o matrices we use are treated as spin, as in nonrelativistigons from the emission of a “” state through either a
quantum mechanics, and not as part)gf. (I.e., they are  y*F Ay, coupling or theA- 3 within the covariantized box;
treated as bosonic, not fermionic. The action, however, is we label the contributions &g, andT, with the index label-
still manifestly Lorentz covariant: SL(@), when re- ing the number ofF couplings. The Feynman rules give the
stricted to just undotted indices, is indistinguishable fromexpressions for the diagrams:

SU(2). More generally, our massive fields are aih,Q) rep-
resentations. We emphasize that the resulting matrices carry T(234_ 2 (20)(32)[2k](1p)
0 (q1)(14[k3](p4)’

only an effective SW2) algebra, and not the usual
since the fields carry only undotted indices. Also, instead of , (20)(42)[2p](1k)

SU(2)®SU(2) associated with the covering group SLC2,

using explicit Paulioc matrices (which are the Clebsch- Te?P=e (qL){13)[ p4](K3) (34)
Gordan coefficients fos®3=1@0), we use S(R) spinor
notation, which is simpler even in nonrelativistic quantumgnd
mechanics.

A fermion line in the old formalism gives a string of the T2 _ o (23)(3q)(1p) (1203 _ 2 (23)(39)(2p)
form ! (q1)(14)(p4)" '+ (ql><24><p?§5’)

[ U2 Z3a ) U (30)
wherek and p are the reference momenta for the photons

for n verticesY; andn—1 propagatorsPy; the new way \yish momentumk, andk,, respectively, and is that for the

gives fermion with momenturk,;. The next contribution arises
ViVy eV, (31) from the four-point contact term and is
Matrix multiplication is now trivial, of the form C—e? (209) (3p)[4K] 36

~% {q1) [3K1(4p)"

The final result after adding up all the contributions is guar-
rather than anteed to be independent of the reference momentum. How-
ever, we should choose them to simplify the intermediate
steps in the calculation.

for the antisymmetrized produgt™ of n y matrices, since (152«:5 example, upon taking=k, we eliminateT
any 2x 2 matrix contains only the singlet 61,0 represen- 1o » andC. Choosing the reference mome”tl‘g’zz k, for
tations. Similarly, for two fermion lines the old method re- the “—" helicity outgoing photon eliminateg{***>. The
quired Fierz identities, which are not needed in our formal-entire result for the amplitude then arises from Hg**%
ism. In the next section an explicit example will illustrate our contribution; it is
approach.

AB=(A-B)I+AXB, (32

7("‘))/(”): ,y(m+n)+ ,),(m+n*1)+...+| (33)
(1234)
0 1

At e kG ki)=e e 114129
V. MASSLESS EXAMPLE e (14)(24) (42)[23]"

In this section we reproduce two very simple QE&hd
QCD) scattering processes using these riilegshe massless where we have multiplied by23]/[23] and usedk,-ks;=
or high-energy limit. k; -k, to show agreement with the result obtained by conven-
A classic scattering example & e” —y~ y*. A similar  tional techniques. In practice, the reference momenta are
analysis will provide the massless QCD amplitude @y  chosen at the beginning of the calculation; so only the single
—g*g after including the color factors and the additional graphT{1%*¥ is actually calculated. Although the amplitude
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here is a relatively easy one to evaluate with more conven- (gj)(jn)

tional techniques, our evaluation did not involve any RGN (40)

y-matrix algebra; for higher-point diagrams, this is a signifi-

cant advantage. Furthermore, we expect that in one-loop amyith the simple choice of=k;, all of these diagrams are

plitudes the fermionic reference momenta will lead 10 Sig-get 1o zero and do not contribute to the amplitude. The ex-

nificant calculational advantages. ternal fermion line factors in the remainiref e~ — vector
diagrams, i.e., those without any expliEit ; couplings, con-

VI. SUPERSYMMETRY IDENTITIES tract directly to give
In this section we rederive several of the known super- (gn) {jn)
symmetry identities relevant to maximally helicity-violating Dl TGy (41
a=K,

amplitudes[13,1] and their relation to self-dual Yang-Mills
theory in 2+2 dimensions. The reformulation of the gauge
theory we present is naturally suited to deriving these iden
tities.

First, consider the scattering at the tree level ofcppair
into a series of+ helicity outgoing non-Abelian vectors,
A(9,9,97,....g7). This example is particularly simple to
describe with our rules because an off-shell fi¢l,,,)
evaluated at the tree level between on-shell self-dual states is
itself self-dual[14]; i.e., any tree amplitude with a number of
external legs of the same helicity attached to the fermion lin
vanishes if it is coupled through &h,z=0 term in the La-
grangian(9). Along the fermion line the vectors are then
emitted through thdscalar-type coupling found from ex-
panding the covariantized bakx*J+,. Because the gluons
are emitted through a scalar-type coupling, the incoming an
outgoing fermions contract immediately to givéfi)
=(1q)/{2q). (The q,q lines possess momentk,,
k,.) The entire contribution is immediately seen to vanish
upon takingg=k; . A similar analysis shows that amplitudes
with any number of fermions and vectors containing a maxi
mally helicity violating assignment of polarizations vanish.

Next, the well-known relation for the partial amplitude,

where ¢ andgare complex scalars,

In comparing the diagrams contributing to tige ™ y*---y*

andgoy*---y* amplitudes, we find the relation in E(®S).

The last identity oS matrix elements we discuss is one
which relates different MHV amplitudes at one loop. These
Smatrix elements are known to satisfy, for any number of
external legs, the identity

AH=ALl= - AM* g @2

She index[j] labels the spin content of the internal states
within the loop(complex scalar, Weyl fermion, and gluon
By the indicesn; 1 we mean the single-trace structure in a
non-Abelian gauge theory using the color-ordered Feynman
5ules [2] derived from the actior(11). The result(39) is
normally found through a supersymmetric identity which
states that the contribution of a virtual supersymmetric mul-
tiplet to the scattering gives zero, i.éAh; %(g”,....%)
=0; as discussed if3,4], taking linear combinations of
states at one loop in different supersymmetric multiplets then
gives Eq.(42).

We examine the derivation of E¢42) in the following.
Clearly, the only violation of this identity between the
=1/2 andj=0 contributions(j =1 will be discussed in the
sequel papercan come from the coupling of trees from the

Apede™ 17,7, (n—1)Fe) anti-self-dual field strengtR ,; to the loop. However, as in
1 case of the first identity discussed, we may t&kg="0 in
- ﬁ Aved il reoj o (n=1)",¢), (38  the amplitudesAl)(g™,....g7). The reduced action formu-
(in) lation we present in this work is thus naturally suited to
describing self-dual Yang-Mills theory, which has an
may also be easily found with the use of our new Feynmar§-matrix coinciding with the Wick-rotated one-loop MHV
rules. In this example, for simplicity we consider Abelian gauge theory amplitudes.
gauge fields only. The coupling of scalars to the gauge field
is similar to that of the fermions; however, there is no spin- VII. DISCUSSION

dependent term: . .
For completeness, we also give the reduced Lagrangian

_ 5 describing the theory of fermions obtaining their mass
L=—¢(I-m")¢. (39 through a Higgs effect. The Yukawa coupling of the Majo-
rana fermion is

In deriving thee™ e~ amplitude, the ‘=" helicity jth vector _

along the fermion line may be emitted throughy&F~y* Ly=3NpY Yo+ 3N Y, . (43
vertex or through the fermion-vector coupling found in the

expansion of the covariant box. In the former case, withinln this theory, integrating out the dotted spinor components
each diagram the external fermion line factors do not con®f the Lagrangian(9) with the mass terms replaced by Eg.
tract with any of the algebra associated with the vector emist43d) leads to_nonlinearities in the final action. We find, after
sion except for the singlE ,4(k;) field to give, as described eliminating ¢ and rescaling they field as in Eq.(13), the

in Eq. (26), fermion contributions
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L£=—LyxO- )\254)) o —(i14) lpaF,Bwﬂ amples of reduced Lagrangians to theories containing higher-
“ spin fields. We have already looked at the case of spin 1 and
+ 3%,V In ¢)2= 34y, (0 In @) found similar simplifications; details will be presented else-
o where. As a final note, it would be interesting to find the
-3 P (V7 In ¢)VB)-Y¢B. (44) local symmetry responsible for the ambiguity in choosing the

) . ) . fermionic reference momenta; the analogous invariance re-
Expression(44) is defined by a perturbation about the sponsible for the simplifications involving the vector refer-
vacuum valug(¢) of the Higgs particle. Similar simplifica- ence momenta is gauge symmetry. The appearance of such

tions for amplitude calculations, for example in the elec-fermionic gauge symmetry is suggested by a first-quantized
troweak sector of the standard model, are expected using thgproach to a spin-1/2 fie[d5].

reduced action above.

We expect that the use of these rules will aid substantially
in the' future computat_lon of hlgh_er—p_o_mt !oop amplltudgs ACKNOWLEDGMENTS
involving external fermions. The simplifications obtained in
eliminating complicated intermediate algebra in gluon scat- This work was supported in part by National Science
tering amplitudes should persist in these cases as well. FuFoundation Grant No. PHY 9722101. We thank Martin
thermore, it would be interesting to generalize these exRocek for useful discussions.
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