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Simplifying algebra in Feynman graphs. I. Spinors

G. Chalmers* and W. Siegel†

Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11794-3840
~Received 17 September 1997; revised manuscript received 7 August 1998; published 25 January 1999!

We present a general formalism for simplifying manipulations of spin indices of massless and massive
spinors and vectors in Feynman diagrams. The formalism is based on covariantly reducing the number of field
components in the action in favor of chiral or self-dual fields. In this paper we concentrate on calculational
simplifications involving fermions in gauge theories by eliminating half of the components of Dirac spinors.
Some results are~1! we find reference momenta for massless fermions analogous to those used for external
gauge bosons,~2! many of the known supersymmetry identities~tree and one loop! are seen in a simple manner
from the graphs,~3! manipulations with external line factors for massive fermions are unnecessary, and~4!
some of the simplifications for nearly maximally helicity violating gluonic amplitudes are built into the
Feynman rules.@S0556-2821~98!04924-8#

PACS number~s!: 11.15.Bt
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I. INTRODUCTION

In the past decade there have been many advances i
art of doing perturbative gauge theory calculations.~In @1#
reviews of these methods are presented for mass
QCD.! Color ordering, new Feynman rules and metho
inspired directly from string theory, and techniques based
unitarity and analyticity requirements onS-matrix elements
have been important developments@2,3,4#. Notable among
the new techniques was the introduction of reference m
menta for external polarization tensors. However, the sim
fications for doing these calculations when external fermi
are present have not been as dramatic, and no analo
simplifications for massive particles have been presented
this work we fill this gap by introducing reference momen
for massless external fermion lines analogous to those u
for gluons and, similarly, covariantly reduce the compone
of massive external line factors for spinors and vecto
Many of the simplifications are introduced directly into th
action by covariantly reducing the components of the fie
themselves. This leads to further simplifications for propa
tors and vertices.

Twistors @5#, also known in gauge theory calculations
‘‘spinor helicity’’ @6#, are formulated by writing all massles
~on-shell! momenta in terms of commuting spinors,

k250⇒kaȧ56kakȧ , ~1!

whereka andkȧ are two-component Weyl spinors of left o
right chirality. In matrix notation these spinors may also
represented as

^ku5ka, uk&5ka , @ku5kȧ, uk#5kȧ , ~2!

and we may write

k56uk&@ku. ~3!

*Email address: chalmers@insti.physics.sunysb.edu
†Email address: siegel@insti.physics.sunysb.edu
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The indices are raised and lowered through the metricsCab

and Cȧḃ on the SL(2,C) covering group of the Lorentz
group,

ka5Cabkb , kȧ5Cȧḃkḃ , ~4!

where

Cab5Cȧḃ52Cab52Cȧḃ5S 0
2 i

i
0D . ~5!

As usual, symmetrization and antisymmetrization of the t
indices a,b are denoted through~ab! and @ab#. We shall
also use the conventions with the inner productV•W
5 1

2 VaȧWaȧ and the Abelian~self-dual! field strength is de-
fined asFab5 1

2 ] (a
ȧAb)ȧ .

Furthermore, the polarization vectorseaȧ
6 satisfying the

required normalization conditions may also be represente
terms of commuting spinors as

eaȧ
1 ~k!52 i

kȧpa

kbpb
, eaȧ

2 ~k!5 i
kapȧ

kḃpḃ

~6!

or, in matrix notation,

e152 i
up&@ku
^kp&

, e25 i
uk&@pu
@kp#

. ~7!

Our conventions are such that (ca)* 5cȧ and (cȧ)* 5
2ca . Because of gauge invariance, the polarization spi
pa is arbitrary~but kapaÞ0):

dAaȧ5]aȧl⇒deaȧ~k!5 ikaȧl~k!

⇒dpa5z~k!ka1j~k!pa , ~8!

wherez(k) comes from the gauge transformation parame
l(k), while the scale parameterj(k) comes from the nor-
malization of the polarization vectors. The perturbative c
©1999 The American Physical Society12-1
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G. CHALMERS AND W. SIEGEL PHYSICAL REVIEW D59 045012
culations can then be simplified by identifying the null vec
paȧ5papȧ with any other massless~‘‘reference’’! momen-
tum in the amplitude.

This approach has been applied both to eliminate m
algebra in intermediate stages of calculations and to red
the expressions for the final result of the amplitude. In so
cases the resulting amplitudes are extremely simple, suc
the case of pure gluon amplitudes where all external l
except one or two are similarly polarized@4,7#. The simplic-
ity of these expressions is now understood to arise from
relation of these particular amplitudes to self-dual field th
ries @8#. The simplifications we present in this paper a
based on actions that take advantage of chirality and s
duality.

In our formulation reference momenta may also be giv
to externalfermion lines. This is interesting in that, unlik
external vector bosons, there is no apparent local symm
incorporating the fermion field. In our approach we shall fi
integrate out half of the massive spin-1/2 fields~e.g., cȧ!
coupled to gauge fields. In such theories with a labeling
the fields according to an SL(2,C) ~van der Waerden! Weyl-
spinor notation, the massive spinor fields with dotted indi
may be eliminated in favor of those with undotted ones;
treat the former fields as Lagrange multipliers. Taking
massless limit of the resulting Lagrangian defines our ma
less theory; the definition of the in and out states then allo
us to present the reference momenta for the external ferm
lines.

In Sec. II we present the reformulation of the actions
massive and massless spin-1/2 fields. We give the impro
Feynman rules in Sec. III, including the reference mome
for external fermions. In Sec. IV we make some comparis
of our approach to the usual formulation. In Sec. V we
produce a well-known result: We illustrate our techniq
with a sample calculation of the high-energy limite1e2

→gg tree-level scattering process. The known supersym
try identities and their implication for the vanishing of ce
tain tree and one-loop amplitudes are immediately obvi
from the action and are discussed in Sec. VI. Section
contains our final comments. In the sequel we will app
similar methods to vectors~Abelian and non-Abelian!.

II. ACTIONS

The action for a massive particle in an external mass
vector field~Yang-Mills or electromagnetism! can be written
as

L5c̄ ȧi¹aȧca1
m

2
~caca1c̄ ȧc̄ ȧ!, ~9!

where¹aȧ5]aȧ1 iAaȧ is our convention for the covarian
derivative. We may treat the dotted field as an auxiliary o
and eliminate it using the field equations (i¹aȧca5

2mc̄ ȧ); alternatively, one may functionally integrate o
the barred fermion field after completing the square. We t
have@9#
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L5
1

2m
~¹a

ȧca!~¹bȧcb!1
m

2
caca ~10!

or

L52
1

2m
ca~h2m2!ca2

i

2m
caFa

bcb

[2
1

2m
caS h1

i

2
Fb

gSg
b2m2Dca ~11!

~which defines the spin operatorSab5Sba! for real represen-
tations of the gauge group. In the obtaining the result in
~9!, we have integrated by parts in the covariant derivati
When the real representation is complex plus complex c
jugate ~e.g., QED or QCD!, we can writeca5(xa,ja),
wherex andj are in complex conjugate representations:

L52
1

m
xa~h2m2!ja2

i

m
xaFa

bjb

[2
1

m
xaS h1

i

2
Fb

gSg
b2m2D ja . ~12!

In addition, the same procedure can be applied for comp
representations, i.e., cases with parity violation, but the re
is more complicated.

Turning out attention back to the modified theory in E
~11!, because the original action possessed a quadratic
c̄2, the elimination ofc̄ ȧ produced only a trivial functiona
determinant factor in the path integral. The overall 1/m can
also be removed from the kinetic term by scaling the ferm
onic field:

c→Amc. ~13!

It is interesting that upon setting the anti-self-dual partFab
of the field strength to zero the action~11! loses its spin
dependence and the couplings of the fermions to the ga
fields are exactly what one obtains for scalars. For this r
son there is much improvement in using the action~11! to
computeS-matrix elements involving external fermions; th
will be demonstrated in later sections.

The idea of using fields with only undotted spinor indic
has been used previously for spin-1/2 fields in@9#, but ad-
vantage was not taken of the simplification of external-li
factors; the fermion reference momentum described in
following section was not introduced. More importantly, th
g matrices were replaced by the four-vectors matrices; in
@9#, the s matrices and their transposes were effectiv
treated as independent. The result of these manipulat
does not change the amount ofg-matrix algebra in actua
calculations.

There is also a major simplification in using the Lagran
ian in Eq.~11! for the case in which the massless Yang-Mi
fields that couple to the fermion field are~almost! all of the
same helicity: Only the self-dual partSab of the spin op-
erator appears in the action~9! in the magnetic-moment cou
pling. The coupling of anti-self-dual Yang-Mills fields doe
2-2
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SIMPLIFYING ALGEBRA IN FEYNMAN GRAPHS. I. . . . PHYSICAL REVIEW D59 045012
not enter through thecaFa
bcb term and, as a result, is spi

independent. It only couples through the covariantized b
as a scalar coupling would enter. In calculating amplitud
closer to self-dual ones@i.e., maximum helicity violation
~MHV !#, the fermions resemble scalars in actual calcu
tions. Examples of this will be discussed in Sec. V on sup
symmetry identities.

Because our method treats dotted and undotted indice
an asymmetric fashion, the action~11! is complex and uni-
tarity is not readily apparent. However, because unitarity
present within the original action~9!, it must persist after
integrating out the auxiliary fermionic fieldsc̄ ȧ. @Even in
non-Abelian gauge theories used with a complex gau
fixing term, for example the Gervais-Neveu gaugeLg f
5(1/l)Tr(]•A1 iA2)2, unitarity is not immediately obvious
from the reality properties of the action.#

As another example of this asymmetry between the do
and undotted spinor treatments, we analyze the class
magnetic moment; because only the self-dual part of
classical magnetic-moment coupling appears in the ac
~11!, it is not immediately obvious that a complete contrib
tion arises. The effect of this coupling may be found fro
the covariantized Pauli-Lubanski vectorWaḃ5Sab¹b

ḃ .
Commuting this operator with the ‘‘Hamiltonian’’

H5h2
i

2
FabSba ~14!

gives the usual precessions

2 i
d

dt
Waḃ5@H,Waḃ#5 iWa

ḋF ḋḃ1 iWr
ḃFra , ~15!

as follows from truncation of the usual expressions that
cludeSȧḃ terms forW andH. We see that the precession
the spin as described by the covariantized Pauli-Luban
vector has contributions from both self-dual and anti-se
dual fields.

We also note that the same method used to obtain Eq.~11!
has also been applied to the classical mechanics and clas
field theory of the massive superparticle~describing spins 0
and 1/2! and the subcritical~Liouville! superstring@10#.
There, the undotted indices are carried by the anticommu
coordinates. Such ‘‘chiral superspaces’’ are natural for s
dual supersymmetric theories of any spins@11#.

III. FEYNMAN RULES

The rules for the propagators and vertices can be r
from the action~11! as usual. The vector propagator is t
usual one, the same as the scalar propagator up to in
factors:

^Abė~k!Agż~2k!&5
1

k2 CbgCė ż . ~16!

The fermion propagator is now also like a scalar propaga
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^ca~k!cb~2k!&5
1

k21m2 Cab. ~17!

Correlations between externalF type couplings are simple
for example, we have

^Fab~k!Fgd~2k!&5 1
4 k(a

ė^Ab) ė~k!Aż(g~2k!&kd)
ż

5 1
4 Cg(aCb)d . ~18!

The coupling of a gauge field to the charged spinors m
be found from the Lagrangian~11! and appears in three
types. The fermion line either emits a gauge boson in a s
independent fashion through the expansion of the gau
covariant box or through the self-dual field strength. We fi
expand the box as

¹aȧ¹aȧ5]aȧ]aȧ12iAaȧ]aȧ1 i ]aȧAaȧ2AaȧAaȧ ,
~19!

so that we may clearly read off the contributions to the Fe
man rules. From the spin-independent couplings, i.e., fro
cahca , we have thee1e2g coupling:

Vaȧ
mn5 1

2 e~k12k2!aȧCmn. ~20a!

This Feynman rule represents the emission a gauge ve
Aaȧ from two fermionscm andcn with momentak1 andk2 .
The e1e2g vertex coming from thecaFa

bcb term in the
Lagrangian is

Vaȧ
mn5 1

2 e~k12k2!(m
ȧdd

n) , ~20b!

with the same quantum number assignments. The exte
vector emitted through the chiralFab(k)-type coupling is a
‘‘ 2’’ helicity state. This is clearly seen in the light-con
gauge where the gauge degree of freedom contained inFab
is only the ‘‘2’’ helicity scalar state~and F ȧḃ is the ‘‘1’’
helicity state!; alternatively, contracting an on-shell ‘‘1’’ he-
licity state with the vertex gives zero. The final vertex is t
four-point e1e2gg coupling:

V
aȧ,bḃ

mn
5e2CabCȧḃCmn, ~21!

which does not contain any momentum dependence
where the gauge fields and spinors have the assignm
Aaȧ ,Abḃ and cm,cn. The couplings~20a! and ~21! are of
the same form as the scalar ones, but with additional ind
~mn! of the fermions contracted with the external fermio
lines.

It might appear that the Feynman rules for vertices
more complicated than in the usual formalism, because th
are more~two three-point vertices and a four-point one!.
However, all such terms arise in either method: here,
rectly in the action; by the usual method, after performi
the Dirac algebra. The advantage in the formulation p
sented here is that theg-matrix algebra has been performe
once and for all in the action itself, whereas in the us
method one must reshuffle the terms individually in ea
Feynman diagram at each vertex and propagator. Also,
2-3
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G. CHALMERS AND W. SIEGEL PHYSICAL REVIEW D59 045012
form allows for a more convenient comparison of the con
butions to scattering amplitudes arising from particles
other spins~e.g., for supersymmetry!.

In deriving theS-matrix elements in terms of the reduce
action~11!, we need to specify the ingoing and outgoing li
factors for the external fermions. In the massive case exte
line factors are arbitrary; their choice corresponds to one
the spin axes. Unlike Dirac spinors, in our case massive
ternal line factors are not needed to determine the four c
ponents in terms of two polarizations, since we have alre
reduced them explicitly to only two. With the usual method
external line factors are needed to reduce the 4n matrix ele-
ments forn external fermion lines to 2n appropriate to the
two polarizations of spin 1/2. The alternative is to square
amplitude before performing Dirac algebra. However, t
can be cumbersome, especially when numerical evalua
of momentum integrals is involved, sinceN diagrams pro-
duceN2 terms in the cross section.

In the massless case, the line factors are determine
helicity: The two helicity states forca are, with the nor-
malizatione1,aea

251,

ea
15pa , ea

25
qa

pbqb
~22!

or, in matrix notation,

e15up&, e25
uq&

^pq&
, ~23!

in terms of an arbitrary twistorqa . These states correspon
to solutions to the field equations in the original action~9!,
ca5ea

1 and c̄ ȧ5pȧ52 i ]a
ȧea

2 . The relation to Eq.~11!
can be seen, e.g., by introducing a four-component ba
ground spinor for Eq.~9! before integrating out the barre
fields. The ambiguity in choosingqa is analogous to choos
ing reference momenta for gauge field polarization vector
the spinor helicity formalism~an independent derivation of
fermionic reference momenta was given in@12#!. Note that
the vector polarizations are products of the spinor polar
tions and their complex conjugates~including normaliza-
tion!. In the remaining part of this section, we illustrate t
simplifications obtained by using these Feynman rules.

The rules are simplest when the amplitudes possess e
nal vector lines mostly of the same helicity~i.e., of the ‘‘1’’
type!. If an external gauge boson of helicity ‘‘2’’ is emitted
through anFab coupling, we can immediately apply twisto
techniques to write the corresponding external-line fac
with momentumk250 in momentum space:

Fab~k!5
i

2
k(a

ȧAb)ȧ~k!5kakb ~24!

or

F5uk&^ku. ~25!

Because of gauge invariance, it is independent of the re
ence momentum chosen for the vector boson.
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As an example of the reduced spinor algebra associ
with these couplings, we consider the case of a single
mion line with a number of attached external gauge boso
All the algebra associated with the indices of the exter
fermions comes from theF coupling. We immediately obtain
with the propagator~17! the contracted vertex algebra

Fa
b~k1!Fb

s~k2!Fs
r~k3!¯5u1&^12&^23&¯,

^ i u5ki
a, u j &5kj a ,

~26!

from the couplings. The numbers 1,2, . . . label the consecu-
tive F’s that appear in the product of externalF fields at-
tached to the fermion line; the remaining spin-independ
couplings appear as scalars and do not effect the matrix
gebra associated with the SU~2! indices. If the fermion line is
a closed loop, then then F’s contract to a cyclic product

P5^12&^23&¯^n1&; ~27!

if the line is open, then the product is terminated on eith
end with the polarization spinors^fu andui& of the correspond-
ing external fermion fields,

P5^ f 1&¯^ni&, ~28!

with the helicity states~22! in the massless case.
Last, we comment on the use of the Lagrangian~11! for

fermions in massive QED calculations. Consider, for e
ample, the scattering of a fermion-antifermion pair goi
into n22 vectors of the same helicity. Because theFa

b ver-
tex does not enter into the calculations~it generates the ‘‘2’’
helicity states!, we find that the expressions for the grap
are the same as the ones obtained forn22 photons emitted
along a scalar line. The Feynman rules in this particular
ample completely avoid the usual Dirac matrix algebra,
ternal line factors, and field equations usually used to s
plify the algebra. Similar simplifications occur fo
amplitudes with a general set of polarizations for the exter
vectors or virtual photons connecting to other fermion lin

IV. COMPARISONS TO THE USUAL FORMALISM

In this section we make several remarks comparing
formalism discussed in this work with the usual Feynm
diagrammatic techniques. First, it is not equivalent to ot
known tricks known to simplify theg-matrix algebra. Our
reformulation of the original vertex is analogous to applyi
the Gordon identity,

ū~p!gau~q!5
1

2m
ū@~p1q!a12Sab~q2p!b#u~q!,

~29!

whereSab5( i /4)@ga,gb# is the spin operator. The rescalin
of the fermion by the mass factorAm occurs naturally in the
above when taking the massless limit. The ‘‘square
propagator’’ trick, originally introduced by Feynman an
Schwinger, uses the fact that (¹” 2m)(¹” 1m)5h1¯ is
more analogous to the scalar theory. Although these man
2-4
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lations give a convenient rearrangement ofg matrices along
fermion lines, the number ofg matrices involved is the same

Second, a major advantage of our method is that ths
matrices are treated as self-dual tensors instead of vec
With the squared-propagator trick, only even numbers og
matrices appear; so the matrix algebra consists of only 8
the usual 16, namely,I, g5 , and the spin operatorsSab .
When we restrict ourselves to chiral spinors, a further red
tion to just 4 matrices~s andI! is achieved, since theng5 is
identified with the identity and only the self-dual part of th
spin survives. In notation where representations are wri
as ~m,n!, wherem and n are either integral or half-integra
~corresponding to 2m undotted indices and 2n dotted indi-
ces!, theses matrices appear as~1,0!, not as~1

2,
1
2!. Thus the

s matrices we use are treated as spin, as in nonrelativ
quantum mechanics, and not as part ofga . ~I.e., they are
treated as bosonic, not fermionic.! The action, however, is
still manifestly Lorentz covariant: SL(2,C), when re-
stricted to just undotted indices, is indistinguishable fro
SU~2!. More generally, our massive fields are all (m,0) rep-
resentations. We emphasize that the resulting matrices c
only an effective SU~2! algebra, and not the usua
SU~2!^SU~2! associated with the covering group SL(2,C),
since the fields carry only undotted indices. Also, instead
using explicit Paulis matrices ~which are the Clebsch
Gordan coefficients for12 ^

1
2 51% 0!, we use SU~2! spinor

notation, which is simpler even in nonrelativistic quantu
mechanics.

A fermion line in the old formalism gives a string of th
form

ūfV” 1P” 1V” 2¯P” n21V” nui ~30!

for n verticesV” j and n21 propagatorsP” k ; the new way
gives

V1V2¯Vn . ~31!

Matrix multiplication is now trivial, of the form

AB5~A•B!I 1A3B, ~32!

rather than

g~m!g~n!5g~m1n!1g~m1n21!1¯1I ~33!

for the antisymmetrized productg (n) of n g matrices, since
any 232 matrix contains only the singlet or~1,0! represen-
tations. Similarly, for two fermion lines the old method r
quired Fierz identities, which are not needed in our form
ism. In the next section an explicit example will illustrate o
approach.

V. MASSLESS EXAMPLE

In this section we reproduce two very simple QED~and
QCD! scattering processes using these rules~in the massless
or high-energy limit!.

A classic scattering example ise1e2→g2g1. A similar
analysis will provide the massless QCD amplitude forqq̄
→g1g2 after including the color factors and the addition
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four-point contact term within the non-AbelianFa
b spin-

dependent interaction. We label the incoming fermion li
with momentumk1 and the outgoing one withk2 ; the pho-
tons with outgoing momentumk3 andk4 have helicity2 and
1, respectively. In a color-ordered format, there are th
diagrams—one with an ordered labeling 1234 of the exter
legs ~containing ans14 channel!, one with the crossed leg
1243 ~containing as24 channel!, and an additional one from
the e1e2gg four-point contact term within the covarian
box.

Because the outgoing photons have opposite helicit
there is at most one emission of a vector through the s
dependentF-type coupling~which generates a minus helicit
vector state!. The first ordered diagram receives contrib
tions from the emission of a ‘‘2’’ state through either a
caFa

bcb coupling or theA•] within the covariantized box;
we label the contributions asT0 andT1 with the index label-
ing the number ofF couplings. The Feynman rules give th
expressions for the diagrams:

T0
~1234!5e2 ^2q&^32&@2k#^1p&

^q1&^14&@k3#^p4&
,

T0
~1243!5e2 ^2q&^42&@2p#^1k&

^q1&^13&@p4#^k3&
~34!

and

T1
~1234!5e2 ^23&^3q&^1p&

^q1&^14&^p4&
, T1

~1243!52e2 ^23&^3q&^2p&

^q1&^24&^p4&
,

~35!

where k and p are the reference momenta for the photo
with momentumk3 andk4 , respectively, andq is that for the
fermion with momentumk1 . The next contribution arises
from the four-point contact term and is

C5e2 ^2q&

^q1&

^3p&@4k#

@3k#^4p&
. ~36!

The final result after adding up all the contributions is gu
anteed to be independent of the reference momentum. H
ever, we should choose them to simplify the intermedi
steps in the calculation.

For example, upon takingq5k2 we eliminateT0
(1234),

T0
(1243), andC. Choosing the reference momentump5k2 for

the ‘‘2’’ helicity outgoing photon eliminatesT1
(1243). The

entire result for the amplitude then arises from theT1
(1234)

contribution; it is

A~e1,e2;k3
2 ,k4

1!5e2 ^23&2

^14&^24&
52e2

@14#^23&

^42&@23#
,

~37!

where we have multiplied by@23#/@23# and usedk2•k35
k1•k4 to show agreement with the result obtained by conv
tional techniques. In practice, the reference momenta
chosen at the beginning of the calculation; so only the sin
graphT1

(1234) is actually calculated. Although the amplitud
2-5
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here is a relatively easy one to evaluate with more conv
tional techniques, our evaluation did not involve a
g-matrix algebra; for higher-point diagrams, this is a sign
cant advantage. Furthermore, we expect that in one-loop
plitudes the fermionic reference momenta will lead to s
nificant calculational advantages.

VI. SUPERSYMMETRY IDENTITIES

In this section we rederive several of the known sup
symmetry identities relevant to maximally helicity-violatin
amplitudes@13,1# and their relation to self-dual Yang-Mills
theory in 212 dimensions. The reformulation of the gau
theory we present is naturally suited to deriving these id
tities.

First, consider the scattering at the tree level of aqq̄ pair
into a series of1 helicity outgoing non-Abelian vectors
A(q,q̄,g1,...,g1). This example is particularly simple t
describe with our rules because an off-shell field^Aaȧ&
evaluated at the tree level between on-shell self-dual stat
itself self-dual@14#; i.e., any tree amplitude with a number o
external legs of the same helicity attached to the fermion
vanishes if it is coupled through anFab50 term in the La-
grangian~9!. Along the fermion line the vectors are the
emitted through the~scalar-type! coupling found from ex-
panding the covariantized boxcahca . Because the gluon
are emitted through a scalar-type coupling, the incoming
outgoing fermions contract immediately to givêf i &
5^1q&/^2q&. ~The q,q̄ lines possess momentak1 ,
k2 .! The entire contribution is immediately seen to van
upon takingq5k1 . A similar analysis shows that amplitude
with any number of fermions and vectors containing a ma
mally helicity violating assignment of polarizations vanish

Next, the well-known relation for the partial amplitud
wheref and f̄ are complex scalars,

Atree„e
1,11,...,j 2,...,~n21!1,e2

…

5
^ j 1&

^ jn&
Atree„f̄1,11,...,j 2,...,~n21!1,fn…, ~38!

may also be easily found with the use of our new Feynm
rules. In this example, for simplicity we consider Abelia
gauge fields only. The coupling of scalars to the gauge fi
is similar to that of the fermions; however, there is no sp
dependentF term:

L52f̄~h2m2!f. ~39!

In deriving thee1e2 amplitude, the ‘‘2’’ helicity j th vector
along the fermion line may be emitted through acaFa

bcb

vertex or through the fermion-vector coupling found in t
expansion of the covariant box. In the former case, wit
each diagram the external fermion line factors do not c
tract with any of the algebra associated with the vector em
sion except for the singleFab(kj ) field to give, as described
in Eq. ~26!,
04501
n-

-
m-
-

-

-

is

e

d

i-

n

ld
-

n
-

s-

^g j&^ jn&

^q1&
. ~40!

With the simple choice ofq5kj , all of these diagrams are
set to zero and do not contribute to the amplitude. The
ternal fermion line factors in the remaininge1e2→vector
diagrams, i.e., those without any explicitFab couplings, con-
tract directly to give

^qn&

^q1&
U

q5kj

5
^ jn&

^ j 1&
. ~41!

In comparing the diagrams contributing to thee1e2g1
¯g1

andffg1
¯g1 amplitudes, we find the relation in Eq.~38!.

The last identity onS-matrix elements we discuss is on
which relates different MHV amplitudes at one loop. The
S-matrix elements are known to satisfy, for any number
external legs, the identity

An;1
@1# 5An;1

@0# 52An;1
@1/2#~g1,...,g1!. ~42!

The index @j# labels the spin content of the internal stat
within the loop~complex scalar, Weyl fermion, and gluon!.
By the indicesn; 1 we mean the single-trace structure in
non-Abelian gauge theory using the color-ordered Feynm
rules @2# derived from the action~11!. The result~39! is
normally found through a supersymmetric identity whi
states that the contribution of a virtual supersymmetric m
tiplet to the scattering gives zero, i.e.,An;1

@N.0#(g1,...,g1)
50; as discussed in@3,4#, taking linear combinations o
states at one loop in different supersymmetric multiplets th
gives Eq.~42!.

We examine the derivation of Eq.~42! in the following.
Clearly, the only violation of this identity between thej
51/2 and j 50 contributions~j 51 will be discussed in the
sequel paper! can come from the coupling of trees from th
anti-self-dual field strengthFab to the loop. However, as in
case of the first identity discussed, we may takeFab50 in
the amplitudesAn;1

@ j # (g1,...,g1). The reduced action formu
lation we present in this work is thus naturally suited
describing self-dual Yang-Mills theory, which has a
S-matrix coinciding with the Wick-rotated one-loop MHV
gauge theory amplitudes.

VII. DISCUSSION

For completeness, we also give the reduced Lagrang
describing the theory of fermions obtaining their ma
through a Higgs effect. The Yukawa coupling of the Maj
rana fermion is

Ly5 1
2 lfcaca1 1

2 lf̄c̄ȧc̄ ȧ . ~43!

In this theory, integrating out the dotted spinor compone
of the Lagrangian~9! with the mass terms replaced by E
~43! leads to nonlinearities in the final action. We find, aft
eliminating c̄ and rescaling thec field as in Eq.~13!, the
fermion contributions
2-6
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L52 1
2 ca~h2l2f̄f!ca2~ i /4!caFa

bcb

1 1
4 caca~¹ ln f̄ !22 1

2 caca~h ln f̄ !

2 1
2 ca~¹ (a

ġ ln f̄ !¹b)ġ
cb

. ~44!

Expression ~44! is defined by a perturbation about th
vacuum valuê f& of the Higgs particle. Similar simplifica
tions for amplitude calculations, for example in the ele
troweak sector of the standard model, are expected using
reduced action above.

We expect that the use of these rules will aid substanti
in the future computation of higher-point loop amplitud
involving external fermions. The simplifications obtained
eliminating complicated intermediate algebra in gluon sc
tering amplitudes should persist in these cases as well.
thermore, it would be interesting to generalize these
u.

l.

s.

p.

W

04501
-
he

ly

t-
r-
-

amples of reduced Lagrangians to theories containing hig
spin fields. We have already looked at the case of spin 1
found similar simplifications; details will be presented els
where. As a final note, it would be interesting to find t
local symmetry responsible for the ambiguity in choosing
fermionic reference momenta; the analogous invariance
sponsible for the simplifications involving the vector refe
ence momenta is gauge symmetry. The appearance of
fermionic gauge symmetry is suggested by a first-quanti
approach to a spin-1/2 field@15#.
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