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The orderg? radiative corrections to all two- and three-point correlators of the composite primary operators
Tr XX are computed if'=4 supersymmetric Yang-Mills theory with the gauge group S)J(Corrections are
found to vanish for allN. For k=2 this is a consequence of known superconformal nonrenormalization
theorems, and for generalthe result confirms alNl—, fixed largeg?N supergravity calculation and further
conjectures by S. Leet al., hep-th/9806074. A three-point correlator involving=4 descendents of TX? is
calculated, and its orde® contribution also vanishes, giving evidence for the absence of radiative corrections
in correlators of descendent operatd$0556-282(199)00502-Q

PACS numbsg(s): 11.30.Pb, 04.65-e, 11.10.Gh

I. INTRODUCTION renormalization properties which go beyond the known sym-
metries ofA’/=4 SYM theory.
The Maldacena conjectufd—3] has brought fruitful in- In this paper, we check the nonrenormalization properties

sights into string theory, supergravity, and supersymmetrief the two- and three-point functions of general chiral pri-
field theory while emphasizing a new and striking role of mary operators TX* to orderg?, by an explicit computation
anti—de-Sitter spaceAdS) in theoretical physics. Many cor- jn the (boundary A’=4 SYM theory. A further calculation
relation function2—14] have now been computed and com- uf 5 three-point function involvingv'=4 descendents of the
pared in the boundary=4 supersymmetric Yang-Mills gnerator Trx? to the same order gives evidence that non-

theory(SYM) and bulk five-dimensional AdS (AGBSUper- - renarmalization also holds for descendents of the chiral pri-
gravity theories. Certain two- and three-point correlators of

. X mary operators.
operators in the same multiplet as the stress tensor ad) SU The essential steps in the method are
flavor currents satisfy superconformal nonrenormalization _
theoremd 15,16 and thus have no radiative corrections. (i)  We use anV=1 description of the 6 real field$' as
In a very recent pap€rl3] the correlators of the chiral 3 complexz' and their conjugate® in 3 and 3 rep-
primary family' Tr XX were studied. Three-point functions resentations of the manifest &) subgroup of the
(Tr X*¥aTr X*2Tr Xks) of normalized operators were evalu- original SUA4) flavor group. Without loss of general-

. . 2 . _
"’.‘ted using am —e fixed largeg N. supergravny computa ity, a choice of highest weight operators in the rénk
tion and shown to be equal to their free-field values. A con- . : .
symmetric tensor representations of (SJis made,

jecture was made that the correlators are independent of hich simplifies the fi binatori
=g°N to leading order ifN and also a final speculation that . which simplines the tlavor combinatorics.

they are independent @ even for finiteN. Known non- i)  The essential part_ of th_e proplem is then reduced to
renormalization theorems apply only to the cdsge=k, thf’:lt of color comblnaton_cs which we handle by sum-
=kz=2. Thus, these results and speculations hint at non- ming over all permutations of color generators in

traces. Within each such permutation Dflines we
sum over choices of pairs of lines carrying interaction
vertices and choices of lines carrying self-energy in-
sertions.

In Sec. Il, we apply these steps ¢dr X*Tr X) and
show that the sum of all interactions gives an orgfer

1Tr X¥is shorthand for TX!1X2--- X'k}, an operator in the rank
traceless symmetric tensor product of the fundamental real scalahrii)
fields X' of the N=4 SYM theory. These fields are SO(6) vectors
in the adjoint representation of the SUY gauge group. It is con-

venient to introduce'=T?2X\,, whereT? is a Hermitian generator amplitude proportional to that for the case 2 which

of the SUN) fundamental, with normalization TFT®= §2°/2. vanishes by a known nonrenormalization theorem.
The structure constanf$®® of SU(N) are normalized byT2,7°]  (iv) In Sec. lll, we study the combinatorics of the three-
=ifabere, point function (Tr X¥Tr X*Tr X?). The net sum of
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interactions produces amplitudes which again vanish
by nonrenormalization theorems fke= 2.

(v)  The analysis of the general three-point correlator X y
(Tr X*¥aTr X¥2Tr X*s) is somewhat more involved ‘
and is presented in Sec. IV. Tr X Trz

Specifically, our results are as follows. The free field con-
tributions to the above correlators are polynomials\irof
leading order N for two-point functions and order
N(ka+katks)2=1 for three-point functions. The cancellations
of radiative corrections that we find to ordgf occur for all  We use separate coupling constagtandY in order to dis-

N, not just leading order. Therefore, we confirm the resultdinguish interactions arising from the gauge and superpoten-
and speculations dfL3] in their strongest form. Concretely, tial sectors. The relatio =v2g produces\V=4 supersym-
the origin of the cancellations to ordgf may be traced back metry.

to the fact that only interactions which involve at most two

X-lines appear, so that nonrenormalization theoremskfor

=2 ca? be used in the proof fqr general vz_iluesk_ofTo IIl. THE CORRELATORS (Tr X*Tr XXy

orderg” however, there are also interactions involving three

X-lines, and the situation is far more complicated. There may Without loss of generality, we may choose to evaluate the
exist special symmetries or properties of the=4 theory  correlators of the S(3) flavor highest weight field* and its
which lead to nonrenormalization theorems in higher ordercomplex conjugate® only. This choice vastly simplifies the
but the only present evidence is the lafgecalculations of  problem since flavor combinatorics becomes trivial and sepa-
[13]. rates from color combinatorics. We therefore study the cor-

Another question of interest within the=4 SYM theory  relator (Tr(z})*Tr(z})*) for which contributing Feynman
is whether the absence of radiative corrections for two andliagrams are shown in Figs. 1 and 2. The free field contri-
three-point functions of TK* established by nonrenormal- bution is a sum over permutations of ordering in the second
ization theorems fok=2 or by calculation for generék  operator trace relative to a fixed ordering in the first operator
remains true for all supersymmetric partnetescendenjof  trace:
these operators. The cake 2 is of special interest because
the multiplet of descendents includes the(&WUlavor cur-
rents and the stress tensor. In this case the formaligi7f (Tr(ZH* ) Tr@ZH ¥ (y)) = G(X,¥)*Pi i o N),
predicts that there is a uniqu&’=4 superconformal cor-
relator for this multiplet, so that radiative corrections of de-
scendents should vanish as well. To check this we note that
the second descendent of Xf has the schematic forg'’ PekoN)= > Tr(To - T Tr(T2w: - T,
=Tr N\ +g(Tr X3)!, where TrX? transforms in the20/ permsa
of SU4) while S’ transforms in thel0. We discuss the
specific form ofS" in Sec. V and show that both free-field
and orderg? contributions to the correlatofS’S¥'Tr X?)

FIG. 1. Born graph for théTr(z%)* Tr(z})*) correlator.

(2.1

where G(x,y) = 1[4m%(x—y)?] is the free scalar propaga-

vanish. / o N
tor, and the sum in the second line is over all permutatians

of t?‘lg}\ofig; t?]lé;;ne;g?da:egzgﬁzrﬁgg\gﬁggf \?vfetvgcztrrgﬁgrr:rhe permutation sum of contracted traces defines the poly-
y only ' nomial in N we have calledP \ o(N). By cyclicity of the

f;)rlrce:(l;?;er;(;]eer';?erfgttgéilfgve;‘r;zgn;;gbsﬁgeriﬂs;; mri.né\é_ trace there arek(—1)! classes of permutations each wkh
P y proj identical contributions. S®, , o(N) has an overall factor of

tors): k. The leading term comes from “reverse order permuta-
Lo — — = tions” [o(1)=k, o(2)=k—1, etc] and is of order
L=|zF,,*32 AD\+D,zZD 2+ ; 4/'Dy P ol N)~K(N/2)¥, in agreement withf13].

From the Lagrangian one can easily see that there are
. two-particle interactions inside the “rainbow” coming from
+ivag TN ZoL e — R 2N ) gauge boson exchange abdterm quartic vertices.K-term
vertices do not contributeThe sum of these is a basic two
particle interaction of the following structure:

ER== ==

(1.1 FIG. 2. Orderg? corrections to the two-point function.

Y - .
- Efabc( fijk‘#'al—zﬂ)'/fléJr Eijk'plaR%‘#ié)

o Y2 _
1 42/ fabcst 2 abcgade kst=m
— 3 9°(f*Zz )+ 7 fFanef Eijkfnmzfazczdze
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a®b + OC = (S0 + 7 7 B, y) Gz, y) (2.2
a’ b’

B(z,y) = bo + by In(z — y)°p®

where a,a’,b,b’ indicate adjoint color indices. The indi- 1B Tr(T2--T)
cated space-time dependence is the result of integrations
which may be performed explicitly, but it turns out that we
will not need the precise values bf,b,. Self-energy cor-
rections to ordeg? arise from two sources: a gauge boson
exchange and a fermion loop. They are represented in the = 2NB Tr(T3--T%)
figures below by a dark dot, and may be expressed as fol-

k
X 3, Tr(Tew- [T, TP], TP To)
=1

k
lows:
XS (Tr To(w- - - T2a)- - - T(0), (2.6
i=1

a 2 — aa’ (23) :

o 5 NA@,y)G(z,y) where the last equality follows sind¢,TP],TP] is the Ca-
simir operator in the adjoint representation, so that for any
A(z,y) = ao + a1 In(z — y)*u’. generatorT® we have[[T2,TP],TP]=NT?2 The sumZ; is

now overk identical terms and thus collapses to an overall

h ffici b q d b K factor k. The self-energy corrections also produce an obvi-
The coefficientsa; ,b; are gauge dependent, but we know g facior ofk relative to the free field form. Adding inter-

that the final color traced amplitude is gauge independeniction and self-energy contributions, we find the following
and that logarithms will also cancel, since the primary operagegyit, including the sum over all permutations
tors cannot have anomalous dimension.

We shall now show that the sum of tgé contributions to 1 kKN(B+2A) E Tr(T2--Ta) Tr( T2 - - Ta(),

the two-point functions of Fig. 2 precisely cancel for Al permsa
and allk. The study of the color factors is facilitated by the o o (2.7)
following identity for any set of matrices; andN: The nonrenormalization theorem fd=2 implies thatB

+2A=0, and this is enough to show that radiative correc-

n tions vanish for all values df. Note that this argument does
> Tr(My-[M;,N]---M ) =0. (2.4 not require the explicit expressions fArandB.
i=1

. . . . ) , lll. THE CORRELATORS (Tr XXTr X*Tr X?)
We will use this identity here and in following sections.

For each fixed permutation of final relative to initial ~ As we noted in the previous section, flavor combinatorics
z-lines we insert the two particle interaction structure Eq.is greatly simplified by considering the &) flavor highest
(2.2) between all distinct pairs of lines. We then convert theweight fields for the TiX* operators and a flavor nonsinglet
two f symbol contractions to commutators within the final for the operator Tix?. Without |?(SS of %enerality, we there-
trace, and obtain the expressfamitting an overall factor of fore study the correlator§Tr(z") Tr(z")"Tr(ziz)), wheret

G(x,y)¥ throughot is a diagonal S(B) generator. This choice ensures that
' Tr(ztz) transforms as of SU(3), which is a part of the0’
1 (—2B)Tr(Ta---T) of SU(4) and does not mix with the singlet. The free field

contribution to this correlator is a sum of all possible pair-

K ings of fields into free propagators

X > Tr(Teo: [ T3, TP]- - [ Ta(), TP]: - - Ta0(k)).
1#)=1 (THEZH* ) TrE@H () Tr(ZE2) (w))
@9 =G(%,Y)< 16X, W)G(y,W)Py o Ny,

The factor of 1/4 is inserted because the expression would
otherwise overcount pairs for two reasons: first by the ex- Pkka(N)=k > Tr(TaL--Ta)Tr(Taw: - Ta0),
pected factor of two foE,; rather thanS;_;, and second perms 3.0
since a given choice of the pait(i),o(j) occurs both in the '
fixed final trace permutation chosen and in the permutatiohe additional factor ok enters because of the distinguished

with o(i) and o(j) interchanged. The- sign appears be- line to the third vertex Ti£tz). This line can appear at any
cause of tha's in [T,T]=ifT and the factor of 2 because position in the first trace, and may then be moved to first

the twoff terms in Eq.(2.2) contribute equally. position using cyclicity. Sincé® , ,=kPy ¢ o(N), the lead-
We now use Eq(2.4) on one of the commutators to re- ing term for largeN is Py , ,~k?(N/2)¥, in agreement with
write Eq. (2.5 as [13].
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Explicit calculation of the ordeg? radiative corrections e\ ﬁ
to Eq.(3.1) would not be necessary if, as might be expected
[18,19, the mathematical form of the correlation function of \/
w
© d

N=1 superfields(S(zl)g(zz)J(z3)> is uniquely determined @ ®)
by N=1 superconformal symmetry as a function of the three
superspace points = (X; , 6, ZI) i=1,2,3. HereS(z) is a FIG. 3. Orderg? corrections to the three-point function. In ad-

dition to gauge boson exchange diagraims (c), and(d) there are

chiral operator of dimensiok, S(z) is its antichiral conju- . - o .
analogous diagrams with quartic interactions.

gate, andl(2) is a flavor current superfield containing a con-

S‘:F"eg ;/eCteOrrcc]:Ir%‘\é)?LgIJ:‘E)erﬁﬂr(ﬁga?\Ss Ittr?aatealtl:?:rgr?]ogigtﬁti Orrtherefore present an explicit calculation of the radiative cor-
unique sup P rections to{ Tr X¥Tr XKTr X?).

elators, among them({Tr(z%)*Tr(z})*Tr(ztz)), contain a : : . . .

common coupling dependent factor. The same factor occurs Prewously_descrlb_ed ordes’ mteractlon_s that contrlbut_e
in the two-point function(Tr(z})*Tr(z})¥) because of the to the two-point function naturally appear in the computation
Ward identity, and its ordeg? term would then be absent by of the corrections to the three-point function. In addition,

the calculation of Sec. Il. However, current understanding of '€r€ IS an interaction that depends on all three space-time
superconformal correlators is still tentative, and we will coordinates, which is of the form

a Y
s+ U =0 o o)y, w6, )G, ). 32

Again, the specific functional form o will not be needed where we have used E¢R.4). Using this in the second term

in the argument below. as well as the identity[ T2, TP],TP]=NT?, we can express
We now analyze combinatorics and color factors presenthe above equation as

in different diagrams depicted in Fig. 3. The contribution of

the self-energy diagrams is straightforward to evaluate. The

sum of all such diagrams is 2 (k—1)N Tr(Ta - --T3(k)

N[(k—=1)A(x,y) +A(x,w)+A(y,w)], 3.3 — 3 Tr(T2---[[ T2k, TP], TP])

where we indicated the space-time arguments of the function
A defined in Eq.(2.3). As usual, we omit the part propor-
tional to the Born contribution, which is identical for all

diagrams.
Next we consider the insertion of the basic interactionl N€ last result has the same color factor as the Born term.

(2.2) within the “rainbow” part of the correlator, as in the After contracting with the trace for the vertex>gtand sum-
diagram of Fig. &). We proceed as in Sec. Il and insert the MiNg over permutations, one_flnds the previous golor poly-
color factor into all pairs of lines, j that belong to the “rain-  Nomial Py, o(N). Therefore this set of diagrams yields
bow,” and we replace thé symbols with commutators in-

side the second trace Ti{-@):---T2®) in Eg. (3.1). We .

choose the index of the line to the lower vertex todjein 7 (K=2)NB(X,y) P ko N). 3.9

the first trace and,, in the second, so we sum ovet |

=1,... k—1. The sum over the “rainbow” lines is

=2 (k= 2)N Tr(T2()---T3K), (3.5

The remaining ordeg? diagrams are obtained by insert-
ing the interaction of Eq(3.2) into the Born graph. The
—5 2 Tre(Te- - [Ta0), TP [ T2, TP]- - - To00) algebra is quite similar to the previous case. We first analyze

=1 diagrams depicted in Fig.(8. The color structure of the
k=1 diagrams with gauge boson exchange between the single leg
== >, Tr(T2w:-[[T2),TP],TP]- - T2(k) and the rainbow and their analogs wilihiterm quartic inter-
2 actions is again obtained by replacing thesymbols with
K1 commutators inside the second trace. One of the commuta-
(1), - [ TRo(i) TPT- - -[ TR(k) TP tors is attached to the distinguished line with the inelgy; ,
2’1 (TR [ TR0, TR - (TR0, THD), the other corresponds to a line from the rainbayy;, V\?/fl(%h
(3.4 i=1,.k-1:

k—1

N[ =

+
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k-1 excluded. All contributions to the diagram have the color
— > Tr(Ta - [ T2(0), TP]- - [ Tk, TP]) factorN from a double contraction off and matrix element
=1 t'! as a flavor factor. The latter is included in the Born am-
= Tr(Te---[[ T3k, TP],TP]) pIitude (3.1). It is now straig_htforward to see that the net
contribution of the graph (@) is
=N Tr(T2 - -T2(k), (3.7
—2NC'(W;X,y) Py k2o(N). (3.9

Again, the final result is proportional to the Born graph thus L .
the sum over all permutations is trivial. Both gluon exchange, 1 N€ honrenormalization theorem for a three-point func-
and quartic interactions from th®-term contribute to the ton With k=2 implies that
diagrams of Fig. &). Adding the diagrams obtained by sym- NLA(X,Y) +A(X,W)+A(y,w)+2C(X;y,W)
metrizing inx,y, we obtain the result
+2C(y;x,w)—2C'(w;X,y)]=0. (3.10
2N[C(x;y,w) +C(y;X,W) ]Py k o N). (3.9 , . . o
We now combine this result with the relatioh+35B=0,
The diagram depicted in Fig.(® needs to be treated obtained from the nonrenormalization of the two-point func-
separately, because quartic interactions which contribute ition in the previous section to show that there are no agder
this case come from both tHe-term and theF-term. We  corrections to the(Tr X* Tr X* Tr X2) correlator. Specifi-
denote the space-time function associated with the sum afally the sum of all interaction diagrams computed in Egs.
gauge boson and quartic vertices ®y(w;x,y). This is de- (3.3, (3.6), (3.9), and(3.9) is the Born term(3.1) multiplied
fined so thalC’ andC would coincide ifF-term vertices are by Eq.(3.11)

N[ (k—1)A(x,y)+A(X,w)+A(y,w)+ (k- 2)B(x,y)+2C(x;y,w)+2C(y;x,w)—2C"(w;X,y)]

=N{[A(X,y) +A(X,w) +A(y,w) +2C(X;y,w) +2C(y;x,w) —2C" (w;X,y) |+ (k= 2)[A(X,y) + 1 B(x,y)]}=0,
(3.11

and this vanishes by the nonrenormalization theorems for all <Tr(21)kl(x)Tr(Zl)kz(y)Tr(ﬁz)alaz(W»

k andN.
=G(x,y)3G(y,W)“1G(W,X) “?Py K, k(N)ty.1:1.01,

IV. THE CORRELATORS (Tr X*t Tr Xk2 Tr X*s)

; : . : kq!ky!
In this section we show that a general three-point function Pe. k. k.(N)= ' ST - - TagTP1. - - TPay)
of Tr XX does not receive corrections at ordgr The basic 1 @3’
ingrt_adients of our argume_nts were outliped in two previous X Str(TP1 - - Ta, TC1. .. TCay)
sections, but the algebra is more complicated for the case at
hand. We first define the symmetric trace as follows: X Str(TC1- - - TCay T2 - - Toay), (4.2

i There are three classes of diagrams contributing at order
g? to the correlator. These are self-energy insertions de-
scribed in EqQ.(2.3), gauge boson exchanges within each
The Born diagram for the correlatér X1 Tr X2 Tr Xks)  “rainbow” [Eq.(2.2)] and gauge boson exchanges from one
containsas=(k;+k,—k3)/2 lines connecting the operators rainbow to anothefEg. (3.2)]. The self-energy graphs are
Tr Xkt and TrX*2, etc. It is convenient and sufficiently gen- straightforward to evaluate. The sum of all such diagrams
eral to work with highest weight components of the first two equals to

operators and to choose the third operator

St(To- - To¥)= >

permso k!

Tr(Tq---Ta), (4.1

o NLazA(X,y) + aA(X,W) + a1ACY,W) Py, k, k(N),
Tr(ﬁz)alazztilmial;jlmjazsn(?l‘"Er“lzjl"‘zj‘yz)a 12 (4.3)

wheret is any tensor which is symmetric in ifs and j where we omitted the propagator and flavor matrix factors of
indices and traceless upon contraction ofiaandj index. the Born amplitude.
This ensures that the operator belongs to an irreducible As the next step we evaluate diagrams with the insertions

SU(3) component of Tex*s, with ky=a;+ a,. of the gauge boson ardl-term quartic interactions described
The free field contribution to the correlator we study isin Eq. (3.2) between different rainbows. The color structure
then of these diagrams is
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as az r ! r r

> (fpeici fPbib 4 fpaibj fpbici)

i=1j=1

X{St(TOL T+ ToasTP1 - T+ Tay) Str(TOL - TP TA1- - Toey) St T2+ T2y T - Toug) }

a3 a2

=—2> > St(TCt--[T%, TP]- - TCasTPL - [ TP, TP] - - TPas) Str(TP2- - - TP, TAL - - T3;) Str( T - - T3, TCL - - TCur).
=131
(4.9

We will now show that the color structure arising from insertions of tteymbols on any pairs of indices is identical.

@3 ap
2 2 St(TCL- [T, TP]- - TCasTP1- - -[ TP, TP - TP St TPL - - TP, T3 - - Tay) Str( T2 -- T3, TC1- - - TCas)
=

@2 a3

= ST - TCasTPL - - TPaz) D Str(TPL- - [ TP, TP]- - TP, TAL - T3ay) D) Str( T2 -T2y TCL- - [ TS, TP]- - TCas)
i=1 i=1

ay as

= — ST - TCayTb1. ... .. Tbaz) 2 Str(Tbl- TPa, T [T, TP]-- .Taal)E St(T21- - -T2 TC1 [ TG TP]- - -TCas)
k=1 =1

a3 @

=Str(T¢ - - TCagTPL - e o TPay) Str(TPL - - TPa, T2 - ‘Taal)z z Str(T21- [ T2, TP -T2y TCL - [ TS TP]- - -TCas).
=1 k=1
(4.5

Using this last result we may now define the above quantity as a funﬁljgl)mzjks(N), which is independent of the location
of insertion of the two commutators. Adding all three sets of diagrams with interactions among two different “rainbows,” we
obtain

= 2Wy, k, k(N)LC(X;y, W)+ C(y;x,w) = C(W;x,y) ], (4.6

since the color factors are identical for the contributions associated with each of the three vertices, except for a sign at the

Tr X3 vertex because the operator contains bo#ndz fields.
The next step is the evaluation of diagrams with gauge boson exchanges within one “rainbow.” The color structure of such

diagrams is of the form

az

-5 > St(TC - TCag o1 - [T TP [ TP}, TP]- - TPay) Str(- ) Str(- - -)
i#j=1

az @
E 2 Str(Ta - -[ T& TP]- - - T2agTP1 [ TP} TP - TPay)
=1i=1

a

+ 2 Str(Ta - - TaagTPL - -[[ TP, TP], TP]- - - TPy) | Str(---)Str(--+)
=1

1 1
= 5 Wiy ky kg(N)+ 5 NazPy i, ki (N). 4.7

Finally, we evaluate the contribution of the quarffieterm vertex in the Lagrangiafl.1). There are nonvanishing Wick-
contractions with ong and onéz field of the operator TiX¥s, and one line is attached to each of the two other vertices. One
can see by contracting thesymbols in theF-term of (1.1), using the tracelessness tgfthat this contribution also has the
flavor factort;...;.;...;, The space-time function associated with fhéerm will combine with gauge boson arid-term
contributions at the TX*s vertex to give the same functid®Y (w;X,y) used in our discussion of thke- k— 2 correlator in Sec.

[lI. It remains to determine the color structure of this contribution, which is again obtained from the quartic Lagrangian vertex.

The result is
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132 ‘ot
- E E Str(T21- - - T - T, TP1. .. D). .. TPay) P D} £PD} &
21>
St TCL - TCaT01. - - Thj. .. TO2) Sty(TCL- - - T3 A1 T ... T o) 4.8
ReplacingfPa PiTbi= —i[ TP, T ] and fPPiaTa=—i[ TP, T? ], we recognize this double sum as proportional to the quantity

Wkl'kz'kS(N)' introduced earlier.
We can now combine all contributions together to obtain

N[as(A+ £ B)(X.Y)+az(A+  B)(x,W)+ as(A+ £ B)(Y.W)IPy i, i, (N)

—[2(C(x;y,w) + C(y;x,w) = C"(W;X,¥))— 3 (B(X,Y) —B(X,W) = B(y,W))IWi, k, k,(N)- (4.9

This can be seen to vanish when the nonrenormalizatiowhich transforms in thes representation of SU(3) flavor,
theorems used in previous sections are applied, specificallwhich is contained in the decomposition of theof SU(4),
when A+3B=0 is combined with Eq(3.11. This result whose components can be denoted®y i,j=1,...,4. We
shows that ordeg? corrections cancel for arbitraly in all  will study the correlatot S’ S¥'Tr X2) which vanishes in free

three-point functions of the operators X¥. field approximation but could have an ordgr contribution.
Indeed, there is one SU(4) invariant coupling H® 10
V. A DESCENDENT CORRELATOR ®20' representations, so to check for the absence of radia-

tive corrections, it is sufficient to choose the convenient set

It is commonly believed that the three-point correlators of ¢ components S*(x) St(y) Tr@}(w))2). Here, S* is the
chiral primary operators determine those of descendents. F(gu(4) partner ofSi whose bifermion term is TRLA

=1 SUSY the form of superconformal correlators has : . o .
: . , where\ is the gaugino of thév'=1 description. To find the
been discussed t20,18,19. If there is a unique supercon- correctly normalized triboson term we use the fact that the

formal tensor form. for a given superfield correlator, th_en 10 representation is both the symmetric second rank tensor in
the correlation functions of all components are determined

- 3 - : the SU(4) description and the self-dual third rank tensor of
For/\/_—4 SUSY no off-shell sgperspatﬁer auxiliary f|eld the SO(6) description of flavor. We use an SO(6) Clifford
formalism is known, but there is an on-shell formalifh?] ; - -

. ; . . algebra constructidrto connect these descriptions. Omitting
which predicts a unique three-point supercorrelator for th%edious details. the result for the descendent is
multiplet containing the primary TX? and descendents. '
Other useful results have been deduced within this formalism SM_)\Ln.— Lyfabee  Fi gl K 5.2
[21], but the rules of applicability are not completely clear amfa s €iikfa’n’e- 62

(at least to up so it is desirable to check its predictions. (Of course, to enforceN=4 SUSY, we should setY
Absence of radiative corrections is known for the three-point=y2¢, but we postpone this until the end of the calculation.

function of flavor current$6] and for the stress tensfi22], There are two diagrams for the two-loop correlator
and we shall study here an amplitude involving the seconds*4(x)s'Y(y)Tr(z}(w))?), a nonplanar diagram with a fer-
descendent of TK®. mion loop and a purely bosonic Born-like diagram. Dia-

We shall discuss this descendent from &1 view-  grams are drawn in Fig. 4. The eight-dimensional integral in
point. For a chiral multiplet,L¢,F), wherey is a Majo-  the nonplanar amplitude can be evaluated using the tech-
rana spinor and. is the left chiral projector, the second nique of conformal inversiofi23,24), and the other ampli-
descendent of? is the operatoS= yLy— 2zF. For the La- tude is elementary. Attention to combinatoric factors is es-
grangian (1.1) the N=1 auxiliary fields are F®  sential. The results are
= %Yfabceijkz{)z'é. This defines the descendent operator

S”=@Lw2— %Yfabcemn{izga}?ﬁ? (5.9 2In six Euclidean dimensions there are six Hermiteax 83

gamma matriced™" and a chirality matrixI' =il 2034057,

x y X Y There is a symmetric charge conjugation mat@x which anti-
TIsal, . ':’” commutes withl. Let T'* denote the antisymmetric third rank
s~ Co- tensor of the Clifford algebra. ThE'XC are symmetric matrices,

\W/ N while (1+T)I'C are symmetric, self-dual, and effectively<4.

The contraction of these matrices with XiX/X* produces a sym-
FIG. 4. Two graphs contributing to theS*S!'Tr(z!)2) cor-  metric second rank SU(4) tensor. The relative normalization of the
relator. Solid lines represent the boson propagators, broken ondmsonic admixtures in Eq¢5.1) and(5.2) may be obtained from a
fermion propagators. specific construction of these matrices.
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nonplanas — g?N(N?—1)G(x,y)2G(x,w)G(y,w), higher order. For example in ordgf there are interactions
(5.3  which involve the exchange of two gluons among three ad-
jacent scalar lines of the “rainbow” of Fig. 1. It does seem
clear, though, that the method and the ordérresult are
valid for the N/’=4 theory with any gauge group.
(5.4 The Montonen-Olive duality al'=4 SYM theory relates
weak and strong coupling behavior of the theory at fiked
We see that these two graphs cancel one another only wherme gauge invariant correlators we study are invariant under
the N'=4 relationY =v2g is imposed, so this is clearly not a the S-duality group so the absence of ordgrradiative cor-
consequence of just=1 SUSY. rections for smalg implies that there are no orderg®/terms
One should note that each graph is itself the lowest ordejf, the strong coupling expansion. This is valid for Elland
contribution to a three-point correlator of gauge invarianttherefore consistent with but stronger than the conclusions of
operators in theV=4 SYM theory. In each amplitude only Ref. [9]. In this paper it was argued that the lowest order
two of the three operators have scale dimension protected tyonperturbative string corrections to the type 1IB effective
R symmetry. These correlators are thus not accessible froiupergravity action are of order >R* wherea ' is the string
AdS; calculations with supergravity or Kaluza-Klein fields. tension andR* denotes a quartic contraction of the ten-
Perhaps they can be computed using appropriate stringimensional curvature tensor. This correction term therefore

bosonic= 2 Y2N(N2—1)G(x,y)?G(x,w)G(y,w).

modes and interactions. makes no contribution to two- and three-point boundary cor-
relators of the graviton and its supersymmetric partners, in-
VI. CONCLUSIONS cluding Kaluza-Klein modes, in the Ad8S; theory [25].

Using the Maldacena correspondence, a cubic correction of
the form a’2R® would produce order §”N corrections as
N—oc in the correlatorgTr X*1 Tr X2 Tr Xks),

The main result of this paper is that ordgt radiative
corrections to the correlators (Tr XTr X¥)  and
(Tr XkaTr Xk2Tr X3) cancel to all orders ifN. This con-
firms theN— fixed largeg®N, AdS; supergravity calcula-
tion of Ref.[13] and the additional conjecture and specula-
tion made in that paper concerning finite behavior. The
result goes beyond known nonrenormalization theorem for We thank Massimo Bianchi, Marc Grisaru, Paul Howe,
two- and three-point functions of TX? and thus suggests an Shiraz Minwalla, Leonardo Rastelli, and Daniela Zanon for
unsuspected additional simplicity or symmetry of the=4 useful discussions during the course of this work. The re-
SYM theory. search of E.D'H. is supported in part by National Science

Our method used careful combinatorics to reduce the infFoundation under Grant No. PHY-95-31023. D.Z.F. is sup-
teraction terms of general T¢® correlators to multiples of ported in part by NSF Grant No. PHY-97-22072. W.S. is
those of TrX?, which vanish by nonrenormalization theo- supported in part by the Department of Energy under Grant
rems. It seems unlikely that the method can be applied iitNo. DOE-FG03-97ER40506.
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