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We construct anomaly-free nonsupersymmetric INgguge theories from orientifolds of type 11B @#/T'
orbifolds. In particular, massless as well as tachyonic one-loop tadpoles are canceled in these models. This is
achieved by starting witiv=1,2 supersymmetric orientifolds with a well defined world-sheet description and
including discrete torsioiwhich breaks supersymmejrin the orbifold action. In this way we obtain non-
trivial nonchiral as well as anomaly-free chiral lariyegauge theories. We point out certain subtleties arising
in the chiral cases. Subject to certain assumptions, these theories are shown to have the property that compu-
tation of anyM-point correlation function in these theories reduces to the corresponding computation in the
parentN'=4 oriented theory. This generalizes the analogous results recently obtained in supersymmetric large
N gauge theories from orientifolds, as well as(mn)supersymmetric largdl gauge theories without orien-
tifold planes.[S0556-282(99)03804-7

PACS numbgps): 11.15.Pg, 11.25.Mj

I. INTRODUCTION limit N—o with A=N\g fixed, where)\ is the type 1IB
string coupling.(Here we identify\ = g%M, wheregyy is
Recent developments in the AdS conformal field theorythe Yang-Mills coupling of the D3-brane gauge thepry.
(CFT) correspondenceésee, e.g.[1-5]) motivated a set of Note that addition of a cross-cap or a handle results in a
conjectures proposed i6,7] which state that certain gauge diagram suppressed by an additional poweNofso that in
theories with\/=0,1 supersymmetries atsupejconformal.  the largeN limit the contributions of cross-caps and handles
These gauge theories are constructed by starting from are subleading. In fact, ifiL3] it was shown that for string
U(N) gauge theory with\'=4 space-time supersymmetry in vacua which are perturbatively consistétiat is, the tad-
four dimensions, and orbifolding by a finite discrete sub-poles cancelcalculations of correlation functions V<4
groupI’ of the R-symmetry group Spii6) [7]. These conjec- gauge theories reduce to the corresponding calculations in
tures were shown at one-loop level {6f=0 theoried6,7],  the parent\’=4 oriented theory. This holds not only for
and to two loops forNV=1 theories using ordinary field finite (in the largeN limit) gauge theories but also for the
theory technique§7]. gauge theories which are not conformdh the latter case
In the subsequent developmé¢Bi these conjectures were the gauge coupling running was shown to be suppressed in
shown to be correct to all loop orders in the laigdimit of the largeN limit.)
't Hooft [9] (also seq10]%). In particular, in[8] the above One distinguishing feature of largé gauge theories ob-
gauge theories were obtained in thé— 0 limit of type IIB  tained via orientifolds is that the number of possibilities
with N parallel D3-branes imbedded in an orbifolded spacewhich possess well defined world-sheet expangtbat is,
time. The work in[8] was generalized ifiL3] where the type are perturbative from the orientifold viewpajris rather lim-
[IB string theory included both D3-branes and orientifold ited. In particular, in[13—-15 (also sed16,17) N=1 and
3-planes(with the transverse space bei@J/T). In certain  A'=2 supersymmetric larghl gauge theories from orienti-
cases string consistency also requires presence of D7-brangsds were studied in detail. Construction of these models is
and orientifold 7-planes. This corresponds to type [IB orien-accompanied by certain subtleties. Thus, naively it might
tifolds. Introducing orientifold planes is necessary to obtainappear that the corresponding orientifolds of type 1IB on
SO and Sp gauge groupgwithout orientifold planes the RS/T should result in theories with well defined world-sheet
gauge group is always unitgryand also allows for addi- description for any orbifold group C Spin(6). This is, how-
tional variety in possible matter content. ever, not the case. For supersymmetric models it was shown
In the presence of orientifold planes the string world-sheetn [13—15 that only a small number of orbifold groups re-
topology is characterized by the numbdrof boundaries sults in such theories. In all the other cases the corresponding
(corresponding to D-brangsc of cross-capscorresponding  orientifolds contain nonperturbative statéshich can be
to orientifold planes and g of handles(corresponding to viewed as arising from D-branes wrapping various collapsed
closed string loops Such a world-sheet is weighted with  two-cycles in the orbifoll Multiple independent checks
[18,13-15 have confirmed these conclusions.
(NAg)PASN207 2=\ 2972 broN—cm2g+2 1) Although the present understanding of lafgsupersym-
metric gauge theories from orientifolds appears to be rather
The 't Hooft's largeN limit then corresponds to taking the complete[13,14,16,1% no nonsupersymmetric examples of
such theories have been constructed. In fact, there are certain
difficulties associated with such a construction. Two of the
*Email address: zurab@string.harvard.edu main reasons that make it nontrivial to construct nonsuper-
For other related works, see, e.fl1,17. symmetric largeN gauge theories from orientifolds are the
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following. First, just as in the supersymmetric cagegriori Note that we have an orientifold 3-plane corresponding to
we expect nonperturbative contributions to the orientifoldthe 0J element of the orientifold group. I has aZ, sub-
spectrum at least for some choices of the orbifold groupgroup, then we also have an orientifold 7-plane. If we have
Checking whether such states are present in a given nonsan orientifold 7-plane we must introduce 8 of the corre-
persymmetric orientifold is much more nontrivial than in the sponding D7-branes to cancel the R-R charge appropriately.
supersymmetric cases where one can use type I-heterotic diFhe number 8 of D7-branes is required by the correspond-
ality [19] along the lines 0f20,21,18,1% as well as F theory ing tadpole cancellation conditionNote, however, that the
[22] consideration$18]. Moreover, in the cases without su- number of D3-branes is not constrainddr the correspond-
persymmetry the corresponding orientifolds generically coning untwisted tadpoles automatically vanish in the noncom-
tain tachyons inlsome of the twisted closed string sectors. pact casg
As we explain in the following, this by itself does not affect We need to specify the action @f on the Chan-Paton
the consistency of the gauge theory in the lakgémit (as  factors corresponding to the D3 and D7 branes. These are
the closed string sector decoupledowever, one potentially given by Chan-Paton matrices which we collectively refer to
has twisted as well as massless tadpoles, and generically thgn“x n* matricesy% , where the superscript refers to the
tadpole cancellation conditions are overconstrained. corresponding D3 or D7 branes. Note that {=n*

In this paper we construct a class of non-supersymmetrigjheren* is the number of D branes labelled |y
large N gauge theories from orientifolds in which all the At one-loop level there are three different sources for
tadpoles(that is, both massless and tachyonic oree can-  massless tadpoles: the Klein bottle, annulus, andbiMo
celled. This is achieved by starting witk=1,2 supersym-  strip amplitudes. The factorization property of string theory

metric orientifolds of type 1B onC*/T" with well-defined  mplies that the tadpole cancellation conditions reade,
world-sheet expansion, and considering nonsupersymmetri€ g. [13] for a more detailed discussipn

orientifolds of type 11B onC3/T"’, wherel'’ is obtained via
a modification of the action df. This modification amounts
© mY —
to including discrete torsionsuch that aZ, subgroup ofl”’ Ba+% CaTr(va)=0. )
acts differently on space-time bosonic and fermionic sectors

of the orientifold. This way we obtain nontrivial anomaly Here B, and C* are (model dependehtnumerical coeffi-
free nonsupersymmetric largegauge theories. In particular, jents of orderal.

we find both chiral and nonchiral gauge theories. In the |, the world-volume of D3 branes there lives a four di-

former case there are certain subtletieslated to possible mensional\V=1(2) supersymmetric gauge theofyhich is
nonperturbative statgsvhich we explain in detail in Sec. IV.  gpyiainad in the low energy, that ig, —0 limit). Since the
The remainder of this paper is organized as follows. Iny,mper of D3 branes is unconstrained, we can consider the

Sec. Il we review some of the important points in the orien- 5,46 N Jimit of this gauge theory. Ii13] (generalizing the
tifold construction, and explain how nontrivial discrete tor- 4y in [8]) it was shown that, if for a given choice of the

sion breaks supersymmetry. In Sec. lll we construct nong yio|q groupl” the world-sheet description for the orienti-

chiral models. In Sec. IV we give a construction of chiral ¢4 is adequate, then in the large limit (with A =N\
1 S

models. There we also point out certain subtleties that aris&xed where\, is the type IIB string couplingcomputation
in the construction of these models. In Sec. V we give ou ’ S

. lof any correlation function in this gauge theory is reduced to
conclusions. the corresponding computation in the parévit=4 super-
symmetricorientedgauge theory before orbifolding and ori-
Il. PRELIMINARIES entifolding. In particular, the running of the gauge coupling

_ ) ) ) is suppressed in the lardgé limit. Moreover, if
In this section we review the setup [ib3] which leads to

supersymmetric larg gauge theories from orientifolds. We Tr(y#)=0Va+1 (3)
then discuss how to obtain nonsupersymmetric |&tgmauge

theories from orientifolds that are free @foth massless and (¢hat is,B,=0Va+1), then the one-loog-function coeffi-
tachyonig tadpoles (and, consequently, of space-fime ;jentsp, for non-Abelian gauge theories living in world-

anomalieg volumes of the D3 branes vanish.
A. Setup B. Perturbative orientifolds
Consider type IIB string theory onC%I where The arguments df13] that imply the above properties of

I'CcSU(3)[SU(2)] so that the resulting theory ha&”  D3-brane gauge theories are intrinsically perturbative. In par-
=2(4) supersymmetry in four dimensions. In the following ticular, a consistent world-sheet expansion is crucial for their
we will use the following notationsf ={g,Ja=1,...|T'|}  validity. It is therefore important to understand the condi-

(g1=1). Consider theJ orientifold of this theory, where tions for the perturbative orientifold description to be ad-

Q) is the world-sheet parity reversal, adds aZ, element equate.

(J?=1) acting on the complex coordinates(i =1,2,3) on Naively, one might expect that any choice of the orbifold
C® as follows: Jz;=—Jz. The resulting theory hasv’  group I'CSpin(6) [note that Spif6) is the R-symmetry
=1(2) supersymmetry in four dimensions. group of V=4 gauge theorlyshould lead to an orientifold
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with well defined world-sheet expansion in terms of bound-Schwarz—Nevev-SchwarZNS-NS§ and Ramond-Ramond
aries(corresponding to D brangsross-capscorresponding (R-R) closed string sectors, and in the NS open string sec-
to orientifold planes and handlegcorresponding to closed tor], and it acts as- 1 in the fermionic sector@&hat is, in the
string loops. This is, however, not the ca$&8,14,19. In NS-R and R-NS closed string sectors, and in the R open
fact, the number of choices df for which such a world- string sector when, say, acting on the ground states. Now
sheet expansion is adequate is rather constrained. In particoensider type 1IB onC3/T"’. Generically, in this theory all
lar, in[18,14,15 it was argued that folv=1 there are only supersymmetries are broken. There are certain ‘“excep-
seven choices of the orbifold group leading to consistentions,” however. Thus, ifl’~Z, such thatl’' C SU(2), then
perturbative orientifoldsZ,®Z, [23], Z5 [24], Z;, Z3®2Z4 inclusion of the discrete torsion does not break supersymme-
andZg [21], Z,®Z,®Z 3 [25], andA(3- 3?) (the latter group  try. Similarly, if I'~Z,®Z, such thatl’ C SU(3), thenum-

is non-Abelian [15]. All the other orbifold groupsincluding  ber of unbroken supersymmetries is not affected by the dis-
those considered if26,27) lead to orientifolds containing crete torsion. The basic reason for this is thatZhewist is
sectors which are nonperturbative from the orientifold view-self-conjugate. On the other hand, in certain cases we can
point (that is, these sectors have no world-sheet descriptioninclude the discrete torsion in ways slightly different from
These sectors can be thought of as arising from D branege one just described. In particular, [Et~Z, such that
wrapping various(collapsed 2-cycles in the orbifold. The 'csU(2). Letg be the generator of thig,. Next, consider
above restrictions on the orbifold group will be important in the following orbifold group:I'’ ={1,gT,g%g%T}. In other

the construction of consistent non-supersymmetric la¥ge \yords, thez, twists g andg? (but not the corresponding,

gauge theories from orientifolds. twist g%) are accompanied by the discrete torsinin this
case we also have no unbroken supersymmetries. More gen-
C. Discrete torsion and nonsupersymmetric models erally, we can include the discrete torsion if the orbifold

The question we are going to address next is if we Car_groupF_ contains aZ,n subgroup. However, the correspond-
obtain nonsupersymmetritarge N gauge theories from ori- g orbifold groupI’” does not always lead to nonsupersym-
entifolds via generalizing the above construction for superMetric theories. _ .
symmetric theories. Such a generalization might naively Next, suppose using the above CO”SUUCUOQ we have
seem to be straightforward. However, there are certaifound an orbifold groud™ such that Type 1B orC*/T'" is
subtleties here. Thus, in nonsupersymmetric theories we gélonsupersymmetric. Then it is not difficult to show that the
nerically have tachyon@vhich, in particular, will be the case following statement holds. If is such that theJ orienti-
in the models constructed in this papér the twisted closed fold of Type IIB on C%T is a perturbatively well defined
string sectors. As we will point out in a moment, the pres-N=1 or V=2 theory(that is, all the massless tadpoles can-
ence of tachyons by itself does not pose a problem for théel, and there are no nonperturbative contributions to the
consistency of the corresponding lafyeheories. However, Mmassless spectrynthen in the()J orientifold of type I1B on
if tachyons are present in the physical spectrum of the corC*/I'’ (which is nonsupersymmetjiall the tachyonic and
responding orientifold modela priori they too contribute Massless one-loop tadpolgand, consequently, all the
into the tadpoles. Moreover, the cancellation conditions fo@nomalies automatically cancel. This fact is the key obser-
the tachyonic and massless tadpoles generically are rathéation in the construction of anomaly free nonsupersymmet-
different. That is, the numerical coefficienBs, andC, in  'ic largeN gauge theories from orientifolds which we give in
Eq. (2) corresponding to the massless and tachyonic tadpold§e subsequent sections.
are generically different. This typically overconstrains the
tadpole cancellation conditions, which makes it rather diffi- D. Large N limit

cult to find tadpole free nonsupersymmetric orientifolds. As we already mentioned above, in all the nonsupersym-
There is a way around the above difficulties, however. Lefyetric models constructed in this paper there are tachyons in
I'CSU(3) be an orbifold group such that it containZa  gome of the twisted closed string sectdfhese are Gliozzi-
subgroup. Let the generator of tfis subgroup beR. C?”' Scherk-Olive(GSO projected out in orbifolds without the
sider now the following orbifold group:I""={gila  giscrete torsion but are kept if the discrete torsion is non-
=1,...|I'[}, where the elementg, are the same ag, trivial.] This immediately raises a question of whether the
except thaR is replaced everywhere iy’ =RT, whereTis  corresponding orientifolds are meaningful. In particular, in
the generator of &, group corresponding to theiscrete  the presence of tachyons we expect vacuum instability. How-
torsion? The action ofT is defined as follows: it acts as ever, there is a subtlety here which saves the day. The point
identity in the bosonic sectorfthat is, in the Nevev- s that here we are interested in laf§gauge theories in the
't Hooft limit NA =fixed, which implies that the closed
string coupling constant;—0 as we takeN to infinity. In
2Note that “discrete torsion’T only acts on the space-time fer- Particular, all the world-sheets with handlerresponding
mionic sectors, and should not be confused with discrete torsion a9 closed string loopsas well as cross-cagsorresponding
used in orbifolds such a,®Z,. Thus, the action of in the closed  to orientifold planesare suppressed in this limit. That is, the
string sectors can be written as ()7t *Fr, whereF, andFg are  closed string sector decouples from the open string sector in
the space-time fermion numbers in left- and right-moving closedthis limit, and after takingr’ —0 we can ignore the closed
string sectors, respectively. string stategregardless of whether they are tachyonic on not
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altogether. In other words, the string construction here isN gauge theories from the above nonsupersymmetric orien-
simply an efficient and fast way of obtaining a field theory tifolds.

result, and at the end of the day we are going to throw out all

the irrelevant ingredient§such as complications in the A. The Zg orbifold

closed string sectors due to the presence of tachyand Let g andR be the generators of t&; andZ, subgroups
keep only those relevant for the field theory discussion. NOt&¢ the orbifold groupl ~Zs~Z,®Z,. The action ofy andR
that we would not be able to do the same had we considereg, ihe complex coordina?eg ig givrien by

a compactmodel(with a finite number of D3 brangsin this
case the closed string sector does not decouple and the gz;=27;, g9z=w0Z,, gZ=w0 z3, o=(27i/3),

theory is sick due to the presence of tachyons. 4
Thus, in the largeN limit of 't Hooft (accompanied by
taking @’ to zerd the nonsupersymmetric gauge theory liv- Rza=21, Rz=-7;, Rz=-2z;. 5

ing in the world volumes of the D3 branes is completely WeIINOW consider the orbifold grouff’ where thez,, twist is

defined, and followind 13] we conclude that in the nonsu- accompanied by nontrivial discrete torsion, that is, the gen-
persymmetric gauge theories arising from the orientifolds P y ’ ’ 9

with well defined world-sheet expansions computation OferatorR_ IS r(_eplaced bYRT. Supersymmetry is broken com-
any correlation function reduces to the corresponding Compleltelyhl_n thlsdc?se. h D3 b d8D7b
putation in the parent\V=4 oriented gauge theorgbefore Th nt |s|dmo Ie we ?V;n?* D3 branes, ]fllln h ranes.
orbifolding and orientifoldingg The only remaining question € WOI volumes of the ranes fi the noncompact
is which of these nonsupersymmetric orientifolds have welSPaCER” transverse to the coordinates. The world vol-

defined world-sheet expansion. The answer to this questioﬁmtﬁs of the 5.7 lirar_lrehs il Thte notnctohm;zac_:ttsgalcz tralmsverse
should be clear from our previous discussions: as long as thg thez, coordinate. The solution fo the twisted tadpole can-

supersymmetri€)J orientifold of type IIB onC3/T is per- cellation conditions is given byN=(n;—2)/6]

turbatively well defined, we expect the corresponding nonsu- —di -1

persymmetricQ)J orientifold of type 1I1B onC3/T"’ to also Yoo~ diagolzn. 0 an Ians2), ©)
possess a well defined world-sheet expansion. This will be yra=diagi,—i)® a1, 7
our guiding principle in constructing consistent nonsuper- ’

symmetric largeN gauge theories from orientifolds in the Yor= diag wl,, 0 t,,1y,), 8)
following sections. The fact that non-Abelian gauge anoma-

lies cancel nontrivially in the models discussed in this paper yrr=diagi,—i)®l,. 9)

indicates self-consistency of this assumpti@dowever, as
we discuss in Sec. 1V, such an expectation might not hold inThe massless spectrum of this model is given in Table I. The

some cases. gauge group iJU(N)2®@U(N+1)]53®[U(1)2@U(2)]/7.
Note that the one-loogB-function coefficientsby(N) and
lIl. NONCHIRAL A'=0 GAUGE THEORIES bo(N+1) for the SU(N) and SU(N+1) subgroups of the

_ ) ) 33 sector gauge group are independeniof
In this section we construct nonchiral lariyegauge theo-

ries from nonsupersymmetric type 1B orientifolds. The idea bo(N)=—3/2, (10
here is the following. Consider type 1IB o€® (C?%T)

whereI’CSU(2). Suppose now’ contains aZ, subgroup. bo(N+1)=+3. (11
If there is no discrete torsion accompanying its generator in ) ) )

symmetric (after orientifolding. However, if we include have tachyons, namely, the tachyons arise in dfeand
nontrivial discrete torsion, the supersymmetry is going to bed IR twisted sectors. All the other closed string sectors are
broken. Actually, ifT~Z, [such thatf CSU(2)], then(as  tachyon free.

we already mentioned in Sec) lincluding the discrete tor-

sion cannot break supersymmetry. On the other hand, as was B. The Z, orbifold

shown in[13] in detail, 9”'VF”ZM1 M :2,3,_4,6_orbifold Let g be the generator of the orbifold grodp~=Z,. The
groups lead to perturbatively well defin€t orientifolds of 5 tion ofg on the complex coordinates is given by
type 1IB on C®(C?/T") without discrete torsiorfand such

orientifolds have A’=2 supersymmetpy In all the other 0z,=2;, 0z=iz,, 0zz3=-—iz;. (12
cases some of the massless tadpoles cannot be cancelled. We
will therefore concentrate on these orbifold groups. TheNow consider the orbifold group’ where theZ, twists g
casesM =2,3 are of no interest to us: f& =2, as we just and g® are accompanied by nontrivial discrete torsion, that
discussed, inclusion of the discrete torsion does not breais, g andg® are replaced bg T andg>T, respectively(Note
supersymmetry; in th&1 =3 case we have nd, subgroup, that this discrete torsion is such that & twist is torsion
hence we cannot have discrete torsion. The only cases Iefitee) Supersymmetry is broken completely in this case.
then are theZ, andZg cases. In this model we haven; D3 branes, and 8 D7 branes.
We are now ready to give an explicit construction of largeThe world volumes of the D3 branes fill the noncompact
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TABLE I. The massless open string spectra of ffte 0 orientifolds of type 1B orC® (C%/Zg) and type
IIB on C®(C?Z,). The subscript b” indicates that the corresponding field consists of the bosonic content
of a hypermultiplet.(Thus,% of this content corresponds to a complex scal@he subscript " indicates
that the corresponding field consists of the fermionic content of a hypermultip&gtis, of one left-handed
and one right-handed chiral fermion in the corresponding representation of the gauge GheupotationA
stands for the two-index antisymmetric representation of the corresponding unitary group, whejeas
stands for the adjoint representation. For the sake of simplicity we have suppresggd jhehargegwhich
are not difficult to restone

Model Gauge group Charged bosons Charged fermions
Zg [UN)2Q@U(N+1)]33 3x3[(1,1,2;2)p]ss [(N,N,1;1)¢]33
®[U(1)20U(2)] 3 [(Adj,1,1;2)p]33 [(N,N, ;1) ¢]as
3 [(LAd],1;1)p]a3 [(L1,A;2)]3
3 [(L,1,Ad);1)p]33 [(L1,A;2)]5
[(A,1,1;1)p]a3 [(N,N,1;1)¢]s3
[(LA, L 1)p]s3 [(N,1,N+1;1)(]33
[(N,1,N+1;1)p]33 [(L,N,N+1;1)¢]33
[(L,N,N+1;1)p]33
31411377
33 [(LLL1)sl 5X[(L1,51)(l
2X[(1,1,1,2)p]47 2X[(LL,1,2)¢]+7
31N, L2)pls [(N,1,3;1)¢]5
31N, 1,12 ]57 [(LN,11)(]s
FIAN,LD),]s [(LLN+1;2)(]s
FIAN,12)p]s
2x3 [(LLN+11)p]5
Z, [U(N)?123®[U(2)?]77 [(1,1,5,1)p]33

3[(Adj,1;1,2) )53
3I(LAd};1,1) )55
[(A,1;1,1)p]33
[(1L,A;1,1)p]33
[(N,N;1,1)p]33
3X[(1,51,1) ]+
31133177
F1(LLL,3)]77
[(1,,2,2)p]4
[(N,1;2,1)p]37
[(1,N;1,2)p]37

[(N,N;1,1)¢]ss
[(N,N;1,1)¢]ss
[(A,1,1,1)¢]a3
[(LA;1,D)¢]s3
[(N,N;1,1)¢]53
2X[(1,1,1,2)¢]47

Sx[(lvlvzrz)f]77
[(N11;271)f]37
[(LN;1,2)¢]ar

spaceR* transverse to the coordinates. The world vol- bo(N)=0. (15
umes of the D7 branes fill the noncompact space transverse

to thez; coordinate. The solution to the twisted tadpole can—rp s at the one-loop order the theory is conforfeaien for
cellation conditions is given byN=ns/4): finite N). According to[13], this property persists to all loop

orders in 't Hooft's largeN limit.

—di -1 3 -3
Yga=diagwly, 0 Iy, 0”ly,0 ), (13 Note that in some of the twisted closed string sectors we
_ . 5 s have tachyons, namely, the tachyons arise ingtand g*
Ygr=diagwly, 0™y, 0%, 07 "l,). (14 twisted sectors. All the other closed string sectors are

tachyon free.
Here w=exp(mi/4). The massless spectrum of this model is
given in Table I. The gauge group i$U(N)?]s3
®[U(2)?]77. Note that the one-loop-function coefficient
by(N) for each of theSU(N) subgroups of the 33 sector Here some remarks are in order. The first comment is
gauge group is independent df. In fact, this coefficient regarding the fact that in thég case the one-loog-function
vanishes: coefficients of the non-Abelian subgroups of the 33 open

C. Comments

045007-5



ZURAB KAKUSHADZE PHYSICAL REVIEW D 59 045007

string sector gauge group are nonzero, whereas inZthe yg,3:diagwI2N,w‘1I2N,I2N_4), (18
case they vanish. This is in accord with the observation of
[13] that by=0 if all the twisted Chan-Paton matrices, yra=diagi,—)®I3y_2, (19
(a#1) are traceless. Moreover, generically we do not expect
b, coefficients to vanish unless all Trf) (a#1) are trace- Yo7= diag wl,, 0 ,), (20)
less. However, there can be “accidental” cancellations in
some models such that &l,=0 despite some of the twisted yro=diagi,~i)®l,. (21)

Chan-Paton matrices not being traceless. Such “accidental”

cancellations, in particular, occur in thé=2 supersymmet- The massless spectrum of this model is given in Table 1.
ric Z3 andZg models discussed if13]. These cancellations The gauge group i U(N)2®U(N—2)]s®[U(2)%]+-.
were explained if13] using the results obtained [@8]. On  Ngte that the non-Abelian gauge anomaly is cancelled in this
the other hand, such an “accidental” cancellation does nof,,4el. Moreover. the one-loogs-function coefficients
occur in the above nonsupersymmefig model. bo(N) and bo(N—2) for the SU(N) and SU(N—2) sub-

The §ec0nd remark.is r.elated tp the fol!owing. As dis-groups of the 33 sector gauge group are independeht of
cussed in29,18, the orientifold projection) in the above

cases maps thg, twisted sector to its inversg;, * twisted bo(N)=+3, (22)
sector. As discussed at length[it8], such a projection im-
plies that there are no nonperturbatiifeom the orientifold be(N—2)=—6. (23)

viewpoin) states arising in sectors corresponding to the ori-

. 71 2 .
entifold group elementdlg, and Qg,~ for gz#1. This  Note that in thegR and g2R twisted closed string sectors

property of such orientifolds is independent of the spacethere are physical tachyons. All the other closed string sec-
time supersymmetry. This is not a trivial statement as it neegyrs are tachyon free.

not hold generically, namely, it is far from being obvious in
the cases we discuss in the next section. B. The Z,@Z,®Z, orbifold
IV. CHIRAL AN=0 GAUGE THEORIES Letg, R; andR, be the generators of th#&; and the two
] ] _ ) Z, subgroups of the orbifold group~Z,®Z,87Z5. The
In this section we construct ch|ra_l Iar_gégauge theorles_ action ofg andRs (Rs=R;R,) on the complex coordinates

from nonsupersymmetric type IIB orientifolds. We start with zo is given by (there is no summation over the repeated
type 1B on C3/T", wherel is one of theSU(3) subgroups indices herg
(discussed in subsection B of Seq.lBading to perturbative

orientifolds. For us to be able to include nontrivial discrete 0z=wzs, w=exp2mil3), (24
torsion,I" must contain &, subgroup. As we already men-

tioned in Sec. Il, including discrete torsion in tfle®Z, Rezg=—(—1)%sz . (25)
case does not break supersymmetry. We are therefore led to

consider theZg andZ,®Z,® Z3 cases only. Without loss of generality we can consider the orbifold

groupI’’ whereR; has no discrete torsion, whereRg (and,

. therefore,R3) is accompanied by nontrivial discrete torsion.
A. The Z orbifold (That is, R, and R; are replaced bR, T and R;T, respec-

Let g andR be the generators of th®; andZ, subgroups tively.)

of the orbifold groud’~Zg~Z3;®Z,. The action ofg andR In this model we hava; D3 branes, and three sets of D7
on the complex coordinates is given by branes, which we refer to as DBranes, with 8 D7 branes in
] each set. The world volumes of the D3 branes fill the non-
9%=wz;, w=exp2mi/3), (18 compact spaceR? transverse to the coordinates. The

world volumes of the D¢ branes fill the noncompact space
transverse to the coordinarg. The solution to the twisted
Rz=-2,, Rz=-2,, Rzn=z,. (17 tadpole cancellation conditions is given pM= (ns+4)/6]

=diagW®Iy,lon_4), 26
Now consider the orbifold group’ where theZ, twist R is Y3 g N lan-a) (8

accompanied by nontrivial discrete torsion, thatRsis re-
placed byRT. Supersymmetry is broken completely in this
case.

In this model we haven; D3 branes, and 8 D7 branes. Here W=diag(w,w,0"*,@™"). (The action on the D7
The world volumes of the D3 branes fill the noncompactb_ranes_ is similay. The massless spectrum of this model is
space R* transverse to the coordinates. The world- given in Table lll. The gauge group iBU(N)®Sp(N
volumes of the D7 branes fill the noncompact space trans=2)lss®3-1[U(2)]7 7. [Here we are using the convention
verse to the coordinatg. The solution to the twisted tadpole where the rank o8 p(2M) is M.] Note that the non-Abelian
cancellation conditions is given QN=(n3;+4)/6]: gauge anomaly is cancelled in this model. Moreover, the

Yr,3=10s®I3n-2. (27)
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TABLE IIl. The massless open string spectrum of the=0 orientifold of type 1B onC3*/Z4. The
subscript ‘c” indicates that the corresponding field is a complex boson. The subsdripiriticates that the
corresponding field is a left-handed chiral fermion. The notafiostands for the two-index antisymmetric
representation of the corresponding unitary group. Dlf&) charges are given in parentheses.

Model Gauge group Charged complex bosons
Zg [UN)®U(N)®U(N—2)]33 2X[(A,1,1;1,1)(+2,0,0;0,0} ]33
®[U(2)®U(2)]~ 2X[(1,A,1;,1,1)(0,~ 2,0;0,0) ]33

2X[(N,1,N=2;1,1)(—1,0,-1;0,0)]a3
2X[(1,N,N=2;1,1)(0,4+1,+1;0,0).]s3
[(N,1,N=2;1,1)(—1,041;0,0)x]ss
[(1,N,N=-2;1,1)(0,+1,—1;0,0)]33
[(N,N,1;2,2)(+1,—1,0;0,0)]3
2X%X[(1,1,1;1,1)(0,0,0;+ 2,0). 177
2X%[(1,1,1;1,1)(0,0,0;0 2)¢177
[(1,1,1;2,2)(0,0,0;+1,—1).]77
[(N,1,1;1,2)(+1,0,0;0:+1)]3;
[(1,N,1;2,1)(0,+1,0;+1,0).]57
[(N,1,1;1,2)(—1,0,0;0-1)c]5
[(1N,1;2,1)(0,—1,0;— 1,0).]57

Charged chiral fermions
[(A,1,1;1,1)(+2,0,0;0,0) Js3
[(1A,1;1,1)(0,~2,0;0,0) ]33

[(N,1LN-2,1,1)(—1,0-1;0,0) I35
[(1L,N,N=2;1,1)(0,+1,+1;0,0) ]s3
2%[(N,1,N=2;1,1)(—1,0+1;0,0) ]s3
2x[(L,N,N=2,1,1)(0,+1,-1;0,0) ]33
2X[(N,N,1;:1,1)(+1,—1,0;0,0) ]33
[(N,N,1;1,1)(+1,+1,0;0,0) Js3
[(N.N,1;1,2)(~1,-1,0;0,0) ]5
[(1,1,A;1,1)(0,0,+2;0,0) Js3
[(1,1,A;1,1)(0,0,-2;0,0) ]
[(1,1,1;1,1)(0,0,0:+2,0). 1~
[(1,1,1,1,1)(0,0,0;0:-2).1+7
2x[(1,1,1;2,2)(0,0,0;+1,— 1), J77
[(1,1,1;2,2)(0,0,0;+ 1,4+ 1), 177
[(1,1,122)(0,0,0,—-1,—1). 177
[(N,1,1;2,1)(—1,0,0;~1,0) ]5
[(1L,1,N=21,2)(0,0-1;0,-1) ]5
[(1,N,1;1,2)(0,+1,0;07+ 1), a7
[(1,1,N=2;2,1)(0,0,+1;+1,0) 7

one-loop B-function coefficientsby(N) and bo(N—2) for C. Comments
the SU(N) andSp(N—2) subgroups of the 33 sector gauge

group are independent of: As we already mentioned, not all choices of the orbifold

groupI'CSU(3) lead to perturbatively well defined/=1
supersymmetri€)J orientifolds of type 1B onC3/T'. Let us
review the reasons responsible for such a limited number of
perturbative orientifolds. Thus, consider the] orientifold
bo(N—2)=—-2. (29 of type 1IB on C3T'. The orientifold group is given by
={g.,QJgzla=1, ... |T|}. The sectors labeled hy, cor-
Note that in thegR,, g°R,, gR; and g?R; twisted closed respond to the unoriented closed twisted plus untwisted sec-
string sectors there are physical tachyons. All the othetors. The sectors labeled bQJg, with (Jg,)°=1 corre-
closed string sectors are tachyon free. spond to open strings stretched between D-braribs.

bo(N)=+1, (28
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TABLE Ill. The massless open string spectrum of tkie=0 orientifold of type 1B onC?/Z,8Z,®Z5.
The subscript €” indicates that the corresponding field is a complex boson. The subsciptindicates
that the corresponding field is a left-handed chiral fermion. The not&iatands for the two-index anti-
symmetric representation 8&U(N), whereasS stands for the two-index symmetric representatio8 ofN).
The notatiorAdj stands for théd?— 1 dimensional adjoint representation®)(N), whereas stands for the
N(N—1)/2—1 dimensionalracelessantisymmetric representation &p(N). Also, s=1,2,3, andk=2,3.
The U (1) charges are given in parentheses.

Model Gauge group Charged complex bosons
2,872,823 [U(N)®Sp(N—2)]33 3X[iA:1)(+2)c]33
®3 1[U(2)]72, 3X[(N,;N=2)(— 1) Jss
?’X[(J-s)(+23)c]7s7S

[(N,3;2¢)(+ 15+ 11)cls7,
[(LN=22)(0;—11)cla7,
[(22;23)(+12;+ 13)cl7,7,
[(N,3;29(+ 15— 1i)clsy,
[(N,3;29 (= 15+ Li)clsy,
[(20;29(+ 115 =1 cl7 7,
Charged chiral fermions
[(Adj,1)(0) a3
[(1,2)(0)L]ss
2X[(1,1)(0) ]33
[(SD(+2)]a3
2X[(A 1) (+2)]a3
3X[(N,N=2)(—1)]ss
[(B)(+29)I77,
2X[(1)(+24) 1177,
[(3s)(0s) 17,7,
2X[(19)(0) 177,
[(N,L2y)(+1;+11) 117,
[(LN=22)(0;=14)( I3,
[(22,12;25,15) (+ 125+ 13) 17,7,
[N, 120 (= 1= 1) ]y,
[(LN=22)(0;+ 1) ]a7,
[(21,20(= 11— L)Ll77,

particular, if the set of points fixed unddg, has dimension field theory if we consider compactifications on blown up
0 then these are D3-branes. If this set has real dimension 4rbifolds[18]. In fact, these blow-ups are forced by the ori-
then these are D7-brang$iowever, the sectors labeled by entifold consistency. The point is that the orientifold projec-
QJg, with (Jg,)?#1 do not have an interpretation in terms tion 0 must be chosen to be the same as in the case of type
of open strings starting and ending on perturbative D-brane8B on a smooth Calabi-Yau threefold. The reasons why this
(i.e., they do not have an interpretation in terms of operchoice of the orientifold projection is forced have been re-
strings with purely Dirichlet or Neumann boundary condi- cently discussed at length [118]. In particular, we do not
tions in all direction}[18]. Instead, if viewed as open strings have an option of choosing the orientifold projection analo-
they would have mixedthat is, neither Dirichlet nor Neu- gous to that in the six dimensional models[86]. (Instead,
mann boundary conditions. These states do not have worldthe orientifold projection must be analogous to that inZhe
sheet description. They can be viewed as arising fronmodels of{31].) On the other hand, the abo¥k orientifold
D-branes wrappingcollapsed two cycles in the orbifold projection is not a symmetry of type 1B o83%/T at the
[18]. These states are clearly nonperturbative from the orienerbifold conformal field theory poinf18]. The reason for
tifold viewpoint. this is that{) correctly reverses the world-sheet orientation
This difficulty is a generic feature in most of the orienti- of world-sheet bosonic and fermionic oscillators and left-
folds of type 1IB compactified on toroidal orbifolds, as well and right-moving momenta, but fails to do the same with the
as the corresponding noncompact cases such aQJdheri-  twistedground states(Such a reversal would involve map-
entifolds of type 1B onC3/T". However, there is drather  ping theg, twisted ground states to tkgg;l twisted ground
limited) class of cases where the would-be nonperturbativetates. I 18] such an orientation reversal was shown to be
states are massiv@and decouple in the low energy effective inconsisten). This difficulty is circumvented by noting that
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the orientifold projectior() is consistent fosmoothCalabi-  bative (as they would contain NS 5 branesnd it is not
Yau threefolds, and, in particular, for a blown up version ofclear how to proceed in these cases. Thus, we do not really
the C3/T orbifold. Thus, once the appropriate blow-ups arehave an independent check in the nonsupersymmetric cases
performed, the orientifold procedure is well defined. (in contrast to theV’=1 supersymmetric caseor the per-

In some cases the blow-ups result in decoupling of thdurbative consistency of the noncompact orientifolds we con-
would-be massless nonperturbative states, which is due @fructed in this section. However, non-Abelian anomaly can-
the presence of an appropriate Superpotemthﬂt Coup|es cellation in these models is rather nontrivial, so it is
the blow-up modes to the nonperturbative stat@his fea- reasonable to believe that these models are indeed perturba-
ture, however, is not generic and is only present in a handfdively consistent. Yet, the above discussion points to a pos-
of cases. This was shown to be the cas€iorientifolds of ~ Sible caveat in the above construction.
type IIB on TT with I'~Z3, Z;, Z3®Z3, A(3-3?) in
[20,21,19. These orientifolds correspond to type | compac- V. CONCLUSIONS
tifications on the corresponding orbifolds, which in turn have
perturbative heterotic dualgthe corresponding heterotic
compactifications are perturbative as there are no D5 bran
(which would map to heterotic NS5 branés these models
The nonperturbativéfrom the orientifold viewpoint states

In this paper we have constructed nonsupersymmetric
é%rgeN gauge theories from orientifolds. The construction is
Similar to that of the supersymmetric models but involves
nontrivial discrete torsion which is the source of supersym-

were shown to correspond to twisted sector states on th@?ﬁé b;eil?r;?é zgis?sigﬁ?lgzl trr?gdglr?a Vc\)lt?tz;]ia\é?j go'}ﬁtcrlt(gier]d
heterotic side. The perturbative superpotentials for thest' bap y y 9

states can be readily computed, and are precisely such thg?ntrlwal discrete torsion ith/=2 theories(in Wh'C.h We_do_
after the appropriate blow-ugithose needed for the orienti- not expect nonperturbative states due to a peculiar orientifold

fold consistencythe twisted sector states decouple projectiorn). However, the situation with the chiral models is
These arguments were generalizeli] to theZ rﬁodel Iess_ cle_ar: they are o_btained by in_cIL_Jding nontrivial discrete
of [21] and theZ,®Z,®Z3; model of[25]. In all the other torsion |n_N=1 theorles_wh_era priori we do expect non-
cases(except for theZ,©Z, model of [23] which is obvi- perturbative states. U_nI|ke in the supersymmetric cases, in
ously perturbative from the above viewpdiit: was argued the nonsupersymmetric case decoupling of such states is far

16/ hat nonerturate Saes do not decoupe. Varou O, D519 CPULS, 00k be nereing o ncersand,
checks of these statements were performeid 8] using the do decouple, the chirai mode[snlén with ?he nonchiral
web of dualities between type IIB orientifolds, F-theory, and P, 9

type | and heterotic compactifications on orbifolds. Theseones we have constructed in this paper provide examples of

statements, however, only depend on local properties of I'I)](i)t?ls\tjvzﬁrz)é?nmegtwo:r?éfhgzg gi tgﬁgircl)?lsvxf/rrl()ig] (i)smiar? ttlafr?(lao-ltso—
branes and orientifold planes near orbifold singularities an o p' .
o e one correspondence with 't Hooft's largé expansion(and
should persist in noncompact cases such adXheorienti- . L
3 . results in rather nontrivial statements about the correspond-

folds of type IIB onC®/T". In [14] it was shown that only for . heories in the | limi
the above seven choices of the orbifold group do the pertur'—ng gauge theories in the grgdz imit). .
bative (from the orientifold viewpoint tadpole cancellation In conclusion we would like to stress that if we attempted
conditions have appropriate soILE)tions forpmé orientifolds to constructompactmodels using the above techniques, we

pprop would get tachyonic models in which the closed string sector

3
of Type I1B onC*/T". (unlike in the largeN limit of the noncompact casgsloes

The reason we have rewewe'd the above facts IS th.e fOIﬁot decouple from the gauge theory, and these models would
lowing. In the nonsupersymmetric cases we discussed in th

. o | iah bati e sick due to tachyonic instabilities. It remains an open
sectiona priori we also might expect nonperturbative states, astion whether it is possible to construct chiral tachyon

arising in varipus sectorhs of the Qri.entifolld. UnIirI]<e r:n the nd tadpole(and, therefore, anomalyfree compact type I
supersymmetric cases, however, it Is unclear whether sugh,qels |t would be interesting to understand this issue in
states would decouple once the orbifold singularities are re-

o ) > '~more detail.
solved. In fact, it is not even clear if the corresponding
“blow-ups” are marginal deformatiofsince supersymmetry
is broken. In particular, we do not have the dual heterotic
picture in these cases which we would use to check the de- This work was supported in part by the grant NSF PHY-
coupling of nonperturbativéfrom the orientifold viewpoint ~ 96-02074, and the DOE. | would also like to thank Albert
states: such heterotic duals would be intrinsically nonperturand Ribena Yu for financial support.
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