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Perturbative Gross-Neveu model coupled to a Chern-Simons field:
A renormalization group study
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In 2+1 dimensions, for low momenta, using dimensional renormalization we study the effect of a Chern-
Simons field on the perturbative expansion of fermions self-interacting through a Gross-Neveu coupling. For
the case of just one fermion field, we verify that the dimension of operators of canonical dimension lower than
three decreases as a function of the Chern-Simons coup80§56-282(198)07224-5

PACS numbgs): 11.10.Gh, 11.10.Hi, 11.10.Kk

I. INTRODUCTION divergences, this idea was tested[#] where the effect of
the CS field over massless self-coupled fermions with a quar-
Effective field theories are a subject of great interest intic, Gross-Neveu-like, interaction was studied.
theoretical physics not only due to their potential applica- In this paper we will pursue this study further by consid-
tions but also because they provide new insight into the wa@ring massive fermions and adopting dimensional renormal-
we look at field theorie§1]. From this perspective nonrenor- 1zation[8] as a tool to render finite the Feynman amplitudes.
malizable models have acquired a new status as they mdy this way we evade the ambiguity problem associated with
become physically relevants at low enerdi2s The point is the routing of the momentum fIOW|_ng through the associated
that, if the scale of energy one is interested is low enoughf €Ynman graphEd]. Nevertheless, it should be stressed that
the ambiguities due to the virtual states of high energy do nd ur calculations are valid insofar, as said above, the effect of

. ; e higher order counterterms can be neglected. Otherwise
show up or, equivalently, are not meaningful. On the ener: . X . e '
P g y g g); gw couplings should be introduced. Our investigations, re-

interval where this happens the theory proceeds as a usu% . . :

: . stricted to the case of fermions of just one flavor, M.,
renormahngle one. Nonethele;s, as qbserve{G]Lrthe use - _ 1, show that, differently to what happens for lafgethe
of a mass-independent regularization is almost mandatory tPenormalization group beta function has only a trivial infra-

guarantee that high order counterterms can be effectively Ngzy gapie fixed point. Moreover, the operator dimensions of
glected. _ _ _ the basic field and composites of canonical dimension lower

The ultraviolet behavior of the Green functions may beihan 3 are monotonic decreasing functions of the CS param-
changed by a rearrangement of the perturbative series. lier. This indicates that the Feynman amplitudes have a bet-
fact, the incorporation of vacuum polarization effects in gen+er ytraviolet behavior if the underlying theory is renormal-
eral improves the convergence properties of the resumed sgmble. However, no improvement in the ultraviolet behavior
ries; this mechanism is well known to be operative in theseems to occur if the composite operators have canonical
context of the I expansion. In particular, Gross-Nevgd]  dimension bigger than 3.
or Thirring- [5] like four-fermion interactions which in-21 Our work is organized as follows. In Sec. Il some basic
dimensions are perturbatively nonrenormalizable becomeroperties of the model as Feynman rules, ultraviolet behav-
renormalizable within the framework of theNL/expansion jor of Feynman diagrams, and comments on the regulariza-
[4]. This result has motivated a series of investigations on théion procedure are presented. The derivation and calculation
properties of these theorig§]. In particular, using renormal-  of the renormalization group parameters are indicated in Sec.
ization group(RG) methods, it has been proved that the|ll. Section IV contains a discussion of our results as well as
N-component Gross-Neveu model if-2 dimensions is in-  our conclusions. Details of the calculations of the pole part
frared stable at low energies but has also a nontrivial ultraef the relevant amplitudes are described in Appendixes A
violet stable fixed point. These facts indicate that the theornand B.
could be perturbatively investigated if the momentum is low
enough. This actually would be the only remaining possibil-
ity for small N.

It has recently been conjectured that in-2 dimensions, We consider a self-interacting two-component spinor field
besides the N expansion, there is another way to improve minimally coupled to a CS field. The Lagrangian density is
the ultraviolet behavior of Feynman amplitudes. By couplinggiven by
fermion fields to a Chern-Simon€S) field the scale dimen-
sion of field operators could be lowered, possibly turning
nonrenormalizable interactions into renormalizable or, better, .
super-renormalizable ones. Using a sharp cutoff to regulate T 27

II. QUARTIC INTERACTION

€479, A A+ (i b—m) Y+ hyR YA,

- — 1
, -G + =— (9 ,A")2. 2.1
*On leave of absence from Universidade Federal do.Para () () 2)\( K ) 20

0556-2821/98/5@4)/04500210)/$15.00 59 045002-1 ©1998 The American Physical Society



ALVES, GOMES, PINHEIRO, AND da SILVA PHYSICAL REVIEW 19 045002

. gree of divergence are odd functions of the loop momentum
pg 'TH and therefore vanish, after symmetric integration.

Ill. RENORMALIZATION GROUP

As known, Green functions of renormalizable models,
which have been made finite by the subtraction of pole terms
in the dimensionally regularized amplitudes, satisfy a 't
1 3 1> Hooft—Weinberg-type renormalization group equatjaZ].
>< = i _ | - G) Nonrenormalizable models require special consideration
] ! since the form of the effective Lagrangian changes with the
’ ' order of perturbation. However, at sufficiently small mo-
menta, such that the effect of the new counterterms may be
FIG. 1. Feynman rules for the interaction vertices. Solid andneglected, the Green functions will still approximately sat-
wavy lines represent the fermion and vector propagators, respetsfy the RG equation. Thus, although being nonrenormaliz-
tively. able, for small enough momenta, the Green function of the
theory (2.1 satisfies the following renormalization group
The Dirac fieldy, represents particles and antiparticles ofequation:
spin up and the same massthe parametem is to be taken
positive [10]. The Gross-NevedGN) term in Eq.(2.1) is
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the most general Lorentz-covariant quartic self-interaction A—+Mi+5mi+ﬁi—N;f I'™N(ps,...,pn) =0,
for the Thirring-like vector interaction is not independent but I Jm —dg 3.0
satisfie§ . Sy (by ) :=—3:(1/{z,0)(:?b{/;):. A is a '

gauge-fixing parameter but for simplicity we will always where T™(p, , ... py) denotes the vertex function ol

WO(;k Ilr? tt:ie Landau t%augf’ fcr)]"??]"%i or?tarlrr:ed Ey Iet::q)qg t fermion fields(sinceA,, is not a dynamical field, we shall not
- S gauge, the Lreen iunctions may be compu eq:onsider vertex functions having external vector figld$e
using the Feynman rules _o!eplcted in F'.g‘ 1. For convenienc mbol =~ means equality in the region where all counter-
we have introduced auxiliary dotted lines, hereafter calle erms different from those terms already present in @d)
auxn.lary GN lines, to clarify the structure of the four- can be neglected. For example, oré#- contributions to
ferm.|on vertex. L the two-point function are quadratically divergent and would
D|verge_nces show up, the degree of superficial dlVergenc?equire a counterterm proportional i besides the usual
of a generic graply being mass and wave function renormalizations. For momenta not
small this would modify the right hand side of E(.D.
d(y)=3—Na—Ng+V, (2.2) However, if p<A, this additional term can be safely ne-
glected.

whereN, andNp are the number of external lines associated AS & consequence of the Coleman-Hill theorem, which
with the propagators for the Chern-Simons and the fermiorstates that all radiatives corrections to the CS term are finite
fields, respectivelyy denotes the number of quartic vertices [13], thebetafunction for the CS coupling: vanishes iden-

in y. The model is of course nonrenormalizable and thdically; that explains why the term with a derivative with
number of counterterms necessary to render the amplitudé§SPect tox I.s.absent fron{3.1}. .

finite increases with the order of perturbation but, to a given 1he coefficientss, 8, andy in Eq. (3.1) may be obtained
order, the number of counterterms is finite. To do calculaPy formally computing the action of the differential operator
tions we will employ dimensional renormalization using a©Vver the two- and four-point Green functions. For the two-
space-time dimensiod. It is therefore convenient to intro- POINt function, up to second order in the coupling constants,
duce a dimensionless couplimgand a renormalization pa- We have

rametery throughG=(g/A)u€ and a— au®, wheree=3

—d must be set to zero at the end. The massive parameter g

must be considered much bigger than any typical momenta™®(p)=i(p—m)+ N @+ ap1?+a?(1-Du?1P

and than the fermion magssg; it sets the scale which limits

the region where our results are valid. Divergences will ap- ga g2

pear as poles ik and a renormalized amplitud_e is given by + T(l_ﬂﬂzel 22)+_2(1_7)#25|552>, (3.2

the e-independent term in the Laurent expansion of the cor- A

responding regularized integral. However, at the one-loop

level no infinities will remain after the remotion of the regu- where the limite—0 must be understood. In the above ex-
lator. This is so because the poles for a grgphay occur  pressionl;, i=1,...,5denote the regularized Feynman
only at even values of the degree of superficial divergence aimplitudes. In particular, the graphs ascribed4pl,, and

v [11]. Moreover, it is easy to check that asymptotically, i.e.,|5 have been depicted in Figs. 2, 3 and 4, respectivElg,

for zero external momenta, one-loop graphs with even dean operator to remove the pole term in the amplitudes to
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@) (b) ()

FIG. 2. Ordera? graphs contributing to the two-point function.

which it is applied. As mentioned earlier, the amplituti®d ~ where the sum is restricted te-j<2, we get
and 152 which are associated with one-loop diagrams are
finite. Inserting Eq.(3.2) into Eqg. (3.1 allows us to deter-

mine the coefficients and y as follows. Initially notice that 91,0 01~ ¥1,0= Y01=0, 3.9
asA enters into the perturbative expansion only in the com-
binationg/A, fixing 3 in lowest order as being equal tp 82~ —2i(A3+B3), 7yp2=—iB3, (3.6

eliminates all contributions of the term with the derivative
with respect toA in Eq. (3.1). After that, up to the order we

will study, in Eqg. (3.1 there will be no mixing of higher 2m m
order contribution tg3 with those toy and é. 6117~ 1 (AatBa),  y1a=— 1 Ba,
Using the expansions (3.7)
8=, 8,9d, (3.3 2im? im?2
] 620= ?(As"‘ Bs), 72,02F|35a (3.8
i here A; and B;, for i=3,4,5, are defined by writing the
= - g'al, 3.4 W i i 4,9, Yy g
=2 %0 34 pole term for the amplitudé&(® as
k2
n v
)
- kytky ky+ky
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FIG. 3. Fermionic self-energy graphs of ordgz.
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k2 31,2: _4|B3_ 203, (315)
2im 4m
] L B21= 3~ Ca= 1 Ba, (3.16
! ! PN
| | ’ Vs N hY
| I II I, \l Iy ‘I i B _ 2m2C + 4ImZB (3 17)
pk, BECISECS AR TR A '
(a) (b) In the above expression§;, for i=3,4,5, are related to the
pole part of the amplitude™® through
FIG. 4. Orderg? fermionic self-energy graphs.
L pole part of I§V=—iCj/e, (3.18
pole term of |2 =(mA;+ PBa)-. (3.9
pole part of 1{Y=—[mC,+0O(p)]/e, (3.19
(2) ) 27 4 —irm?2
pole term of I;”=—i[m°A,+mpB,+ O(p )]Z’ (3.10 pole part of 15”=i[m"C5+O(p)]/e. (3.20

In Appendix B we have collected the results of the calcula-

5 . X 51 tions of the pole part of the relevant graphs. Using B§)
pole term of 1) = —[m*As+m?pBs+O(p )= 31D we obtain, finally,

Appendix A presents a detailed analysis of the various

contributions to these parameters. From Egd9), (A22), 20 , 2Im 161m?2 .
and (A24), the final result is B=9+ z9a"—5—+0gat PRI (3.21)
8 11'm 7 m
S=— —al— — —ga+ —92, (3.12 IV. DISCUSSION AND CONCLUSIONS
3 87 A 12772 A2

An inspection of Eq(3.21) shows that the renormaliza-
tion groupbetafunction hasg=0 as a fixed point. As, for
1 1 m 5 m? m<A, .ﬁ~g(1+20a2/_3),. the origin is qn_infrqred staple
y=— 1—2a2— P L — 9% (38.13  fixed point. Actually, this is the only existing fixed point.
m 48 A Here we are in disagreement with RET] where a line of
fixed points was found. The diverse conclusions are perhaps
Letting m—0, we note that our determination of agrees  due to the use of different regularizations but a more direct
with [7]. In the regionm< A, however, our result presents comparison of the methods seems infeasible as the calcula-
corrections for nonvanishing fermion mass. tions in[7] were not spelled out.
To fix B we look now at the four-point Green function,  we will examine now the dimensions of some operators.
which up to third order igwe omit contributions which by As seen before the basic field has operator dimensioah,,

power counting are finite =1-a?/12, and so ag=0 the Green functions of the fer-
mion field have an improved ultraviolet behavior asin-
L' (p1,p2.P3,Pa) creases. Similar results are obtained if one considers com-

posite operators of canonical dimension less than 3. The
simplest of them, the mass operaipyy, has an anomalous

2 . . :
e 9,92 oy, 9 i, 9 21 (4) dimension given by
=u —IK'FT/J,ll "rP/_le +KC¥ A=Tpcl3
2 3 Y™ 27— 2Res, 4.1
+g_a(1_7') 26|(4>+g_(1_7) 2¢|(4) (3.14 ) ) ) o
A2 Kla A3 K5 ' whereR,is the residue coming from graphs contributing to

the vertex function with the insertion of the mass operator

Here, again, the one-loop amplitudgd and 1" are finite  #% and having two external fermionic lines. For practical
because of the use of dimensional regularization. Insertin§urposes this residue may be computed by taking the mass
Eq. (3.19, the expansion,(%:Eiyjﬁingiaj, and 6 and y  derivative of the contributions calculated in ite® of Ap-
given in Egs.(3.4) and (3.3) into Eq. (3.1), we obtainB,;,  pendix A. The result i$A3;=5/4. Thus the dimension afs

=1, Bo1=PB11=B20=PF02=0, and turns out to be equal to
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respectively. One sees that, at least for the operators that we
dy,=2- §a2- (4.2)  explicitly considered, the operator dimension decreases with
« if the canonical dimension is lower or equal to 3, in ac-
From the computation of the anomalous dimension of thecordance with[7]. However, if the canonical dimension is

operatory one could easily obtain the dimensionyoféy, in ~ Pigger than 3, the operator dimension increases witgo
the casem=0. Indeed, recalling that the integrated operatorthat no improvement for nonrenormalizable interactions re-
counts the number of internal fermionic lines, we get that theSUItS'

dimension Oﬂﬂw is given by(4.1) but with the replacement Our results are valid if the basic fermion field is flavor-
of Reo. by 3iB,—1/4. Thus less. TheN-flavor case is presently under investigation.

d; yy=3—2/3a>. 4.3 ACKNOWLEDGMENTS
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renormalization in general produces a mixing with other op-(Capes.

erators of dimension lower or equal to 4. However, if we
restrict the calculation to the=0 case, as we will do, only

operators of dimension 4 need to be considered. A further APPENDIX A
simplification is obtained by considering onfformally) in- In this appendix we shall present a detailed analysis of the
tegrated operators. We have contributions to the pole part of the two-point vertex func-

tion. Although there is some latitude in the choice of the

3 — 3 — o 3.2 rules which define the regularization scheme, in this work we

f d°xNL(¢¢) ]—alj d°x(¢eh) +32J d*xgpa”4h, have adopted an specific way of implementing the dimen-
(4.4 sional regularization. Initially, using the identities

— — _ MoaV— MYV VP
| aontuy1=b, | dxz+b, [ @i, YYmgietty, (A1
(45  and
where the symboN indicates a normal product prescription
corresponding to the subtraction of the pole terms. A direct €7P €, ) = O} — S ST, (A2)

calculation gives that,=b;=0, a;=1+Cza? € andb,

=1-a’/3e. A straightforward analysis shows now that the Feynman integrands were simplified directly in2di-

dimensions off d*xN[()?] and Jd*xN[ 40} are given  mensions. After this step, the integrals were promoted to

by dimensions and performed by the usual rules. Because of the
use of dimensional regularization, the poles only appear at
the two-loop level, beginning at second order in the coupling

4+4yg0a”—2Cza°=4+ 36!21 (4.6)  constants. We will examine separately each order of pertur-
bation, i.e., the ordera?, ga, andg?. We have the follow-
ing.
2 o? (1) Ordera?. In thi [ i
2.5 2, % a“. In this order there are three diagrams which
At 2yt zat=4t 5, 47 are shown in Fig. 2. These diagrams give the contributions

Figure Za):

di; d%,
(2m)9 (2m)¢

" [y*(bp—Kkyi+m)y?]
(K3—m?)[ (ky—kq)2—m?][(p—ky)2—m?](k3)?

(@)= 4o T AKETH 7#(Ko-+ M) y*(Ky— Ky + m)]

1
=[mAg(a)+ pBs(a)]-, (A3)

where, on the right hand side of the first equality, we have introduced the op&rat@xtract the pole part of the expression
to which it is applied. From EqA3) we obtain
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As(a) 1 2i 72 J ddk, dd, —8mkZ—8m(k3)2—8mi(ky -ky)+8m(k; -ky)? Ad)

:ﬁTrl?,(a)h):O: m (27T)d (27T)d (k%_mz)[(kz_kl)z_mz][k%_mz](k%)z

The trace was taken in the integrand of E43) and calculated directly at=3. This, of course, does not affect the result for
the pole part of the integrals. Analogously,

Bs(a) :iTr[lg(a)p]: 2i7T27f d%; d%, numerator | 5)
€ 2p? p? (2m)® (2m)* (K5—m?)[ (ko —kqy)2=m?][ (p—kq)?—m?](k])?
where
numerator= — 16¢,,,,, €, 5Kk P kikop®— 16m?k3(ky - p) — 8KZ(Ky - ko) (K- p) + 8kZk3p2+8m?3(ky - p)?
+8(Ky - ky) (Ky- p)2—8(Ky - p)2k3—8(Kky- Kp)2p?+8(Ky- ko) ?(Ky - p). (AB)

Here and in what follows we shall adopt the following procedure for performing the integrals. We first consikleiritegral
and use Feynman's trick,

1 _ F[al-l-a'z] 1 Xalil(l_x)azil

= X ,
a,'a,? PlagTaz]l)o  [xa;+(1—x)a,]** 2

(AT)

to reduce denominators containing the variable of integration to only one denominator. After integratjngeénuse again
Feynman'’s formuldA7) to combine the denominators that depenckpnWe then integrate ovée; and, finally, perform the
parametric integrations. In the present case, after integratirlg owe get

A3(a (2 - o'k [ d) g d} 5 4o
T J f (2m) (k )kﬂr(l_5>A chr Z_E)klA 231+ x—x?) (A8)
and
B3(a)__ i’]T(2 dlz)J‘ f ddkl kl D
e  Tp? it (2 [(p—ky)2—m2](K))2
X 4F(l—g)[(d—2)(kl.p)_k JAY2 1 8y (1~ X)F(Z—g)[(kl p)k2— (k)2]A92-2|, (A9)

whereA=m2—x(1-Xx) kf. Continuing our calculation, we would introduce two new parametric integrations as there are now
three different denominatoreve take 1A as a new denominatpidepending ork; in each of the terms of the above
expressions. However, as the result does not depemdamd we are looking only for the pole part of the amplitudes, we can
speed up the calculation by modifying the dependencenafi some denominators. For example, without changing the final
result, we can replace the first term on the right hand side of &R). by

d
(2 d/2) ddkl ( )Ad/z !
2d 3 J f 27T)d k2 2)2 ' (A].O)

Similarly, in the computation oBz(a) one can sein=0 in the expression foA so that one has to use only one parametric
integral. Following this recipe, after integrating kn we obtainfla=1—y—yx(1—Xx)]

2—d _ 21d-3
As(a) _ F[3—d]foldxjoldy(l—y)[(1 2y)m }

€ 22d*3 a

—d/2 d 1-d/2

Y =
+§(1+x X)a“*d’z =~ 8e (A11)

y
a3-d2

and
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By(a)  _am*¢ Lot (A-y)? Y ymP-y(1-y)p?]e e
c ——lzzd_af[s—d]fo dxfO dy X 1)t 92
(1-5y)I[1-d/2] T[2—-d/2]T[5-d/2] s

Now, for the remaining graphs of ordef, we have
Figure Zb):

d%; d%; )\p[y“([b—kﬁ—m)y“(p—kl—kz-l-m)yﬁ(p—k1+m)y”]
2md (2m® 7 [(p—ky)Z— M (p—ky— k)2~ m2K3KS

I3(b): —4i WZEMV)\EQ,BPTJ (

1
=[mAg(b) +pB3(b)]_. (A13)
Following the same steps as in previous case, we obtain
Az(b) 1 i
=5 3(b)|p=0=— 1’ (Al4)
By(b) 1 o
p —z—pzTr(lg(b)p)——E (A15)
Figure Zc):
. d%; d%; [y*(p— Ky +m) y*(p—ky— Ko+ m) yP(p—Ky+m)y”]
l3(c)=—4im? T N
(0= AT Cupn ey f (2m)? (2m)® " [(p—ky)2 = mZ)[(p—ky—ka) 2~ m?][(p—kz) *— m?]KEKE
1
=[mAg(c)+pBs(c)]_. (A16)

The computation of this expression is a bit more complicated because one has to introduce three Feynman parametric integrals.
The final result is, nevertheless, simple:

3
Ag(e)=— ¢, (A17)
i
Bs(c)= 2 (A18)
Collecting these results, we obtain
i
Asz=Asz(a)+Az(b) +As(c)=— 72 Bs;=B3(a) +Bs(b)+Bs(c)=— 12 (A19)

(2) Orderga graphs. There are six diagrams which have been drawn in Fig. 3. They give the following.

Figures 3a) and 3b). Both diagrams have the structure of a product of two one-loop graphs. The corresponding dimen-
sionally regularized amplitudes does not have a polé=a8B.

Figure 3c). Actually, this diagram does not contribute because the corresponding analytic expression is finite. Indeed, we
have
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14(C) 77 d%; d%; Tr[y*(ka+m)y"(Ka+Kyi+m)]e,,, kY
C)="1— T2
4 amJ (2m)9 (2m)9 (K2—m?)[ (kg +kp)2—m?] k2

a4’ d%, d%, m 0 (A20)
= —4|/J— = ,
amJ (2m)® (2m)® (kK3—m?)[ (ky+ k)2 —m?]

since the integral in the second equality has the structure of a product of two one-loop integrals.

Figure 3d). The same reasoning can be applied to this situation since no external momentum flows through the diagram.
We conclude that there is not a pole term.

Figure 3e). By Furry’s theorem this diagram cancels with its charge-conjugated partner.

Figure 3f). We have the contribution

d%,; d%, (ko= ky+m)y"(Ky+m)
l4(f)=4 VTf “(p— Ky +m)k}
A=A T ) oy ame PR e 0= e (k)2 1K
m2A,(f)+mpB,(f
__ [mPA(D) +mpBy(F)] a21)
€
from which one obtains
A= 9 B 1
Ay=Ay )_E’ B,=By( )—g- (A22)
(3) Orderg? graphs. There are only the two diagrams shown in Fig. 4. We get
| A f d%, d%; p+Kk,+m
= —4j
° (2m)? (2m)? [(p+ky)?—M2](K3—m2)[ (ko — kq)?— m?]
(MPAs+m?pBs)
X{(Kky+m)(Ko—Ki+m)=Tr[ (ko +m)(k,—k;+m) ]} = — ————, (A23)

€

where the two terms in the second equality refer to the graphsathd 4b), respectively. After a lengthy calculation one
determines

Aeo g (A24)
> 16m2’ 0 482

APPENDIX B

In this appendix we will discuss the calculation of the
pole part of the four-point vertex function which is needed

u k2 for fixing the renormalization group beta function. Actually,
-+ > T -+ since all we need is the constant part of the residue, the
{ calculation of the relevant graphs will be done at zero exter-
nal momenta.
K TABLE I. Pole part for four legs graphs with a closed fermionic
k 17K
2 loop.
Order of perturbation Number of diagrams Pole part
|
} C — - ga? 12 —i/2e
v -k g’a 7 —4ilme
g® 8 4ilm?e

FIG. 5. Example of a two-loop diagram.
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1
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4
’
L

T FIG. 6. Diagrams illustrating the various
: classes of graphs in the four-point vertex func-
1 .

i tion.

H +
(b) :
L .4

2.0)

T T
! N ! N
[}
(C) : )( 1 /\,\
) Ve \\ ] 7’ \\
1 ,/ AN 1 4 LN
(1.0) (2,0) (3.0)

The first observation is that, up to the order we are inter-
ested, i.e., third order, there are too many graphs. To be
systematic, we will separate them according to whether they
have or have not closed fermionic loops. Moreover, if they
do not possess fermionic loops, we group them according to
the number of CS or auxiliary GN lines linking the two
fermion lines crossing the diagram. Many diagrams cancel

pole part of f d%;d%,(A®B)C
7 d d
=5 | d%d%e(TTAITB]-TAB])C. (B1)

For example, from the analytic expression for the graph

because of Furry’s theorem; this is the case if there is &pown in Fig. 5

fermionic loop with an odd number of attached CS lines.
Other diagrams have the structure of a product of two one-
loop graphs and therefore are finite. We shall not consider
these two types of graphs any longer. The antisymmetrized
amplitude for a graphy has the generic structure of a prod-
uct, (A®B)C, whereA andB refer to the propagators and
vertices associated with the two fermion lines @do the
others factors @ indicates the antisymmetrized direct prod-
uct). Using this notation, one can verify that

d%,d%,[ ¥*Se(ka)]

N

k
®WSF<—k2>]Tr[sF<kl>sF<k1—I@)]emk—i, (B2)
2

where\ is a combinatorial factor, we determide B, andC

as

TABLE II. Pole part for four legs graphs without closed fermi-

onic loops. The first column lists different types of diagrams)( A=[y*Sc(ky)], (B3)
wherei andj are the number of GN and CS lines joining the two

fermion lines crossing the graph; the digits in parentheses after the

pole parts are the number of contributing graphs. B=[7"Se(—ky)], (B4)
Diagram type Ordega? Orderg?a Orderg?®

0,2 i/2¢(8) — — k)i

1,0 —5il2e (12  3i/lme (18)  —3il4n?e (6) C= M,MF- (B5)

(G0 8ile (24) 4ilme (8) — 2

1,2 —2ile (12) — —

(2,0 — —ilme (14) i/m?e (12 The results for the pole parts are summarized in Tables |
2,0 — —15i/2me (9) — and II, which correspond to the two cases mentioned above.
(3,0 — — 5i/4m2e (4) In Table | are listed the results from graphs with one closed

fermionic loop; these have been arranged according to the
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number of CS vertices in the loop. Table Il exhibits the polediagrams. The final result for each order is obtained by sum-
part of graphs without a fermionic loop. They have beenming the corresponding entries in each table. Thus we have
collected into typesi(j), wherei andj are the number aux-
iliary GN and CS lines, respectively, linking the two fermion
lines crossing the diagram. Notice that there are no contribu-

tions from graphs of typd0,1) since they are not proper. Ciy=— Z C4:£, C5=1—32. (B6)

Figure 6 furnishes examples of each one of these sets of 2 2m 2m
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