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Perturbative Gross-Neveu model coupled to a Chern-Simons field:
A renormalization group study

V. S. Alves,* M. Gomes, S. V. L. Pinheiro,* and A. J. da Silva
Instituto de Fı´sica, USP, Caixa Postal 66318 - 05315-970, Sa˜o Paulo - SP, Brazil
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In 211 dimensions, for low momenta, using dimensional renormalization we study the effect of a Chern-
Simons field on the perturbative expansion of fermions self-interacting through a Gross-Neveu coupling. For
the case of just one fermion field, we verify that the dimension of operators of canonical dimension lower than
three decreases as a function of the Chern-Simons coupling.@S0556-2821~98!07224-5#

PACS number~s!: 11.10.Gh, 11.10.Hi, 11.10.Kk
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I. INTRODUCTION

Effective field theories are a subject of great interest
theoretical physics not only due to their potential applic
tions but also because they provide new insight into the w
we look at field theories@1#. From this perspective nonreno
malizable models have acquired a new status as they
become physically relevants at low energies@2#. The point is
that, if the scale of energy one is interested is low enou
the ambiguities due to the virtual states of high energy do
show up or, equivalently, are not meaningful. On the ene
interval where this happens the theory proceeds as a u
renormalizable one. Nonetheless, as observed in@3#, the use
of a mass-independent regularization is almost mandator
guarantee that high order counterterms can be effectively
glected.

The ultraviolet behavior of the Green functions may
changed by a rearrangement of the perturbative series
fact, the incorporation of vacuum polarization effects in ge
eral improves the convergence properties of the resumed
ries; this mechanism is well known to be operative in t
context of the 1/N expansion. In particular, Gross-Neveu-@4#
or Thirring- @5# like four-fermion interactions which in 211
dimensions are perturbatively nonrenormalizable beco
renormalizable within the framework of the 1/N expansion
@4#. This result has motivated a series of investigations on
properties of these theories@6#. In particular, using renormal
ization group ~RG! methods, it has been proved that t
N-component Gross-Neveu model in 211 dimensions is in-
frared stable at low energies but has also a nontrivial ul
violet stable fixed point. These facts indicate that the the
could be perturbatively investigated if the momentum is l
enough. This actually would be the only remaining possib
ity for small N.

It has recently been conjectured that in 211 dimensions,
besides the 1/N expansion, there is another way to impro
the ultraviolet behavior of Feynman amplitudes. By coupli
fermion fields to a Chern-Simons~CS! field the scale dimen-
sion of field operators could be lowered, possibly turni
nonrenormalizable interactions into renormalizable or, bet
super-renormalizable ones. Using a sharp cutoff to regu
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divergences, this idea was tested in@7# where the effect of
the CS field over massless self-coupled fermions with a qu
tic, Gross-Neveu-like, interaction was studied.

In this paper we will pursue this study further by consi
ering massive fermions and adopting dimensional renorm
ization @8# as a tool to render finite the Feynman amplitud
In this way we evade the ambiguity problem associated w
the routing of the momentum flowing through the associa
Feynman graphs@9#. Nevertheless, it should be stressed th
our calculations are valid insofar, as said above, the effec
the higher order counterterms can be neglected. Otherw
new couplings should be introduced. Our investigations,
stricted to the case of fermions of just one flavor, i.e.,N
51, show that, differently to what happens for largeN, the
renormalization group beta function has only a trivial infr
red stable fixed point. Moreover, the operator dimensions
the basic field and composites of canonical dimension lo
than 3 are monotonic decreasing functions of the CS par
eter. This indicates that the Feynman amplitudes have a
ter ultraviolet behavior if the underlying theory is renorma
izable. However, no improvement in the ultraviolet behav
seems to occur if the composite operators have canon
dimension bigger than 3.

Our work is organized as follows. In Sec. II some ba
properties of the model as Feynman rules, ultraviolet beh
ior of Feynman diagrams, and comments on the regular
tion procedure are presented. The derivation and calcula
of the renormalization group parameters are indicated in S
III. Section IV contains a discussion of our results as well
our conclusions. Details of the calculations of the pole p
of the relevant amplitudes are described in Appendixes
and B.

II. QUARTIC INTERACTION

We consider a self-interacting two-component spinor fi
minimally coupled to a CS field. The Lagrangian density
given by

L5
1

2pa
emna]mAnAa1c̄~ i ]”2m!c1c̄gmcAm

2G~ c̄c!~c̄c!1
1

2l
~]mAm!2. ~2.1!
©1998 The American Physical Society02-1



o

on
u

s

te
c

le
r-

n

te
io

es
th
d
e
la
a

-
-

er
n

ap
y
o
o

u-

e
e.
d

um

ls,
rms

’t

tion
the
o-

be
at-
liz-
the
p

t

r-

ld
l
not

-

ich
nite

h

or
o-
ts,

x-
n

to

n
pe

ALVES, GOMES, PINHEIRO, AND da SILVA PHYSICAL REVIEW D59 045002
The Dirac fieldca represents particles and antiparticles
spin up and the same massm ~the parameterm is to be taken
positive! @10#. The Gross-Neveu~GN! term in Eq. ~2.1! is
the most general Lorentz-covariant quartic self-interacti
for the Thirring-like vector interaction is not independent b
satisfies :(c̄gmc)(c̄gmc)ª23:(c̄c)(c̄c):. l is a
gauge-fixing parameter but for simplicity we will alway
work in the Landau gauge, formally obtained by lettingl
→0. In this gauge, the Green functions may be compu
using the Feynman rules depicted in Fig. 1. For convenien
we have introduced auxiliary dotted lines, hereafter cal
auxiliary GN lines, to clarify the structure of the fou
fermion vertex.

Divergences show up, the degree of superficial diverge
of a generic graphg being

d~g!532NA2NF1V, ~2.2!

whereNA andNF are the number of external lines associa
with the propagators for the Chern-Simons and the ferm
fields, respectively;V denotes the number of quartic vertic
in g. The model is of course nonrenormalizable and
number of counterterms necessary to render the amplitu
finite increases with the order of perturbation but, to a giv
order, the number of counterterms is finite. To do calcu
tions we will employ dimensional renormalization using
space-time dimensiond. It is therefore convenient to intro
duce a dimensionless couplingg and a renormalization pa
rameterm throughG5(g/L)me anda→ame, wheree53
2d must be set to zero at the end. The massive parametL
must be considered much bigger than any typical mome
and than the fermion massm; it sets the scale which limits
the region where our results are valid. Divergences will
pear as poles ine and a renormalized amplitude is given b
the e-independent term in the Laurent expansion of the c
responding regularized integral. However, at the one-lo
level no infinities will remain after the remotion of the reg
lator. This is so because the poles for a graphg may occur
only at even values of the degree of superficial divergenc
g @11#. Moreover, it is easy to check that asymptotically, i.
for zero external momenta, one-loop graphs with even

FIG. 1. Feynman rules for the interaction vertices. Solid a
wavy lines represent the fermion and vector propagators, res
tively.
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gree of divergence are odd functions of the loop moment
and therefore vanish, after symmetric integration.

III. RENORMALIZATION GROUP

As known, Green functions of renormalizable mode
which have been made finite by the subtraction of pole te
in the dimensionally regularized amplitudes, satisfy a
Hooft–Weinberg-type renormalization group equation@12#.
Nonrenormalizable models require special considera
since the form of the effective Lagrangian changes with
order of perturbation. However, at sufficiently small m
menta, such that the effect of the new counterterms may
neglected, the Green functions will still approximately s
isfy the RG equation. Thus, although being nonrenorma
able, for small enough momenta, the Green function of
theory ~2.1! satisfies the following renormalization grou
equation:

FL ]

]L
1m

]

]m
1dm

]

]m
1b

]

]g
2NgGG~N!~p1 , . . . ,pN!'0,

~3.1!

where G (N)(p1 , . . . ,pN) denotes the vertex function ofN
fermion fields~sinceAm is not a dynamical field, we shall no
consider vertex functions having external vector fields!. The
symbol ' means equality in the region where all counte
terms different from those terms already present in Eq.~2.1!
can be neglected. For example, order-Ga contributions to
the two-point function are quadratically divergent and wou
require a counterterm proportional top2 besides the usua
mass and wave function renormalizations. For momenta
small this would modify the right hand side of Eq.~3.1!.
However, if p!L, this additional term can be safely ne
glected.

As a consequence of the Coleman-Hill theorem, wh
states that all radiatives corrections to the CS term are fi
@13#, thebeta function for the CS couplinga vanishes iden-
tically; that explains why the term with a derivative wit
respect toa is absent from~3.1!.

The coefficientsd, b, andg in Eq. ~3.1! may be obtained
by formally computing the action of the differential operat
over the two- and four-point Green functions. For the tw
point function, up to second order in the coupling constan
we have

G~2!~p!5 i ~p”2m!1
g

L
meI 1

~2!1ameI 2
~2!1a2~12T!m2eI 3

~2!

1
ga

L
~12T!m2eI 4

~2!1
g2

L2
~12T!m2eI 5

~2! , ~3.2!

where the limite→0 must be understood. In the above e
pressionI i , i 51, . . . ,5, denote the regularized Feynma
amplitudes. In particular, the graphs ascribed toI 3 , I 4 , and
I 5 have been depicted in Figs. 2, 3 and 4, respectively;T is
an operator to remove the pole term in the amplitudes

d
c-
2-2
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FIG. 2. Order-a2 graphs contributing to the two-point function.
ar

m

ve
which it is applied. As mentioned earlier, the amplitudesI 1
(2)

and I 2
(2) which are associated with one-loop diagrams

finite. Inserting Eq.~3.2! into Eq. ~3.1! allows us to deter-
mine the coefficientsd andg as follows. Initially notice that
asL enters into the perturbative expansion only in the co
bination g/L, fixing b in lowest order as being equal tog
eliminates all contributions of the term with the derivati
with respect toL in Eq. ~3.1!. After that, up to the order we
will study, in Eq. ~3.1! there will be no mixing of higher
order contribution tob with those tog andd.

Using the expansions

d5(
i , j

d i , jg
ia j , ~3.3!

g5(
i , j

g i , jg
ia j , ~3.4!
04500
e

-

where the sum is restricted toi 1 j <2, we get

d1,05d0,15g1,05g0,150, ~3.5!

d0,2522i ~A31B3!, g0,252 iB3 , ~3.6!

d1,152
2m

L
~A41B4!, g1,152

m

L
B4 ,

~3.7!

d2,05
2im2

L2
~A51B5!, g2,05

im2

L2
B5 , ~3.8!

where Ai and Bi , for i 53,4,5, are defined by writing the
pole term for the amplitudeI i

(2) as
FIG. 3. Fermionic self-energy graphs of orderga.
2-3
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pole term of I 3
~2!5~mA31p”B3!

1

e
, ~3.9!

pole term of I 4
~2!52 i @m2A41mp”B41O~p2!#

1

e
, ~3.10!

pole term of I 5
~2!52@m3A51m2p”B51O~p2!#

1

e
. ~3.11!

Appendix A presents a detailed analysis of the vario
contributions to these parameters. From Eqs.~A19!, ~A22!,
and ~A24!, the final result is

d52
8

3
a22

11

8p

m

L
ga1

7

12p2

m2

L2
g2, ~3.12!

g52
1

12
a22

1

8p

m

L
ga1

5

48p2

m2

L2
g2. ~3.13!

Letting m→0, we note that our determination ofg agrees
with @7#. In the regionm!L, however, our result presen
corrections for nonvanishing fermion mass.

To fix b we look now at the four-point Green function
which up to third order is~we omit contributions which by
power counting are finite!

G~4!~p1 ,p2 ,p3 ,p4!

5meS 2 i
g

L
1

ga

L
meI 1

~4!1
g2

L2
meI 2

~4!1
g

L
a2~12T!m2eI 3

~4!

1
g2a

L2
~12T!m2eI 4

~4!1
g3

L3
~12T!m2eI 5

~4!D . ~3.14!

Here, again, the one-loop amplitudesI 1
(4) and I 2

(4) are finite
because of the use of dimensional regularization. Inser
Eq. ~3.14!, the expansionb5( i , jb i , jg

ia j , and d and g
given in Eqs.~3.4! and ~3.3! into Eq. ~3.1!, we obtainb1,0
51, b0,15b1,15b2,05b0,250, and

FIG. 4. Order-g2 fermionic self-energy graphs.
04500
s

g

b1,2524iB322C3 , ~3.15!

b2,15
2im

L
C42

4m

L
B4 , ~3.16!

b3,05
2m2

L2
C51

4im2

L2
B5 . ~3.17!

In the above expressions,Ci , for i 53,4,5, are related to the
pole part of the amplitudesI i

(4) through

pole part of I 3
~4!52 iC3 /e, ~3.18!

pole part of I 4
~4!52@mC41O~p!#/e, ~3.19!

pole part of I 5
~4!5 i @m2C51O~p!#/e. ~3.20!

In Appendix B we have collected the results of the calcu
tions of the pole part of the relevant graphs. Using Eq.~B6!
we obtain, finally,

b5g1
20

3
ga22

21m

2pL
g2a1

161m2

12p2L2
g3. ~3.21!

IV. DISCUSSION AND CONCLUSIONS

An inspection of Eq.~3.21! shows that the renormaliza
tion groupbeta function hasg50 as a fixed point. As, for
m!L, b'g(1120a2/3), the origin is an infrared stable
fixed point. Actually, this is the only existing fixed poin
Here we are in disagreement with Ref.@7# where a line of
fixed points was found. The diverse conclusions are perh
due to the use of different regularizations but a more dir
comparison of the methods seems infeasible as the calc
tions in @7# were not spelled out.

We will examine now the dimensions of some operato
As seen before the basic fieldc has operator dimensiondc
512a2/12, and so atg50 the Green functions of the fer
mion field have an improved ultraviolet behavior asa in-
creases. Similar results are obtained if one considers c
posite operators of canonical dimension less than 3.
simplest of them, the mass operatorc̄c, has an anomalous
dimension given by

gc̄c52g22Rres, ~4.1!

whereRres is the residue coming from graphs contributing
the vertex function with the insertion of the mass opera
c̄c and having two external fermionic lines. For practic
purposes this residue may be computed by taking the m
derivative of the contributions calculated in item~1! of Ap-
pendix A. The result isiA355/4. Thus the dimension ofc̄c
turns out to be equal to
2-4
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dc̄c522
8

3
a2. ~4.2!

From the computation of the anomalous dimension of
operatorc one could easily obtain the dimension ofc̄ ]”c, in
the casem50. Indeed, recalling that the integrated opera
counts the number of internal fermionic lines, we get that
dimension ofc̄ ]”c is given by~4.1! but with the replacemen
of Rres by 3iB351/4. Thus

dc̄ ]”c5322/3a2. ~4.3!

The determination of the anomalous dimension of the op
tor (c̄c)2 at g50 is more complicated due to the fact th
renormalization in general produces a mixing with other o
erators of dimension lower or equal to 4. However, if w
restrict the calculation to them50 case, as we will do, only
operators of dimension 4 need to be considered. A furt
simplification is obtained by considering only~formally! in-
tegrated operators. We have

E d3xN@~ c̄c!2#5a1E d3x~ c̄c!21a2E d3xc̄]2c,

~4.4!

E d3xN@c̄]2c#5b1E d3x~ c̄c!21b2E d3xc̄]2c,

~4.5!

where the symbolN indicates a normal product prescriptio
corresponding to the subtraction of the pole terms. A dir
calculation gives thata25b150, a1511C3a2/e and b2
512a2/3e. A straightforward analysis shows now that th
dimensions of*d3xN@(c̄c)2# and*d3xN@c̄]2c# are given
by

414g02a
222C3a2541

20

3
a2, ~4.6!

412g02a
21

2

3
a2541

a2

2
, ~4.7!
04500
e
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respectively. One sees that, at least for the operators tha
explicitly considered, the operator dimension decreases w
a if the canonical dimension is lower or equal to 3, in a
cordance with@7#. However, if the canonical dimension i
bigger than 3, the operator dimension increases witha so
that no improvement for nonrenormalizable interactions
sults.

Our results are valid if the basic fermion field is flavo
less. TheN-flavor case is presently under investigation.
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APPENDIX A

In this appendix we shall present a detailed analysis of
contributions to the pole part of the two-point vertex fun
tion. Although there is some latitude in the choice of t
rules which define the regularization scheme, in this work
have adopted an specific way of implementing the dim
sional regularization. Initially, using the identities

gmgn5gmn2 i emnrgr ~A1!

and

emnrersl5ds
mdl

n2dl
mds

n , ~A2!

the Feynman integrands were simplified directly in 211 di-
mensions. After this step, the integrals were promoted td
dimensions and performed by the usual rules. Because o
use of dimensional regularization, the poles only appea
the two-loop level, beginning at second order in the coupl
constants. We will examine separately each order of per
bation, i.e., the ordersa2, ga, andg2. We have the follow-
ing.

~1! Ordera2. In this order there are three diagrams whi
are shown in Fig. 2. These diagrams give the contributio
n

Figure 2~a!:

I 3~a!54p2i ermlenuaTE ddk1

~2p!d

ddk2

~2p!d
k1

lk1
aTr@gm~k” 21m!gn~k” 22k” 11m!#

3
@gr~p”2k” 11m!gu#

~k2
22m2!@~k22k1!22m2#@~p2k1!22m2#~k1

2!2
5@mA3~a!1p”B3~a!#

1

e
, ~A3!

where, on the right hand side of the first equality, we have introduced the operatorT to extract the pole part of the expressio
to which it is applied. From Eq.~A3! we obtain
2-5
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A3~a!

e
5

1

2m
TrI 3~a!up505

2ip2

m
TE ddk1

~2p!d

ddk2

~2p!d

28m3k1
228m~k1

2!228mk1
2~k1•k2!18m~k1•k2!2

~k2
22m2!@~k22k1!22m2#@k1

22m2#~k1
2!2

. ~A4!

The trace was taken in the integrand of Eq.~A3! and calculated directly atd53. This, of course, does not affect the result f
the pole part of the integrals. Analogously,

B3~a!

e
5

1

2p2
Tr@ I 3~a!p” #5

2ip2

p2
TE ddk1

~2p!d

ddk2

~2p!d

numerator

~k2
22m2!@~k22k1!22m2#@~p2k1!22m2#~k1

2!2
, ~A5!

where

numerator5216ermlenuak1
rk2

mplk1
nk2

upa216m2k1
2~k1•p!28k1

2~k1•k2!~k1•p!18k1
2k2

2p218m2~k1•p!2

18~k1•k2!~k1•p!228~k1•p!2k2
228~k1•k2!2p218~k1•k2!2~k1•p!. ~A6!

Here and in what follows we shall adopt the following procedure for performing the integrals. We first consider thek2 integral
and use Feynman’s trick,

1

a1
a1a2

a2
5

G@a11a2#

G@a1#G@a2#
E

0

1

dx
xa121~12x!a221

@xa11~12x!a2#a11a2
, ~A7!

to reduce denominators containing the variable of integration to only one denominator. After integrating ink2 we use again
Feynman’s formula~A7! to combine the denominators that depend onk1 . We then integrate overk1 and, finally, perform the
parametric integrations. In the present case, after integrating onk2 , we get

A3~a!

e
5T

p~22d/2!

2d23 E
0

1

dxE ddk1

~2p!d

1

~k1
22m2!k1

2FGS 12
d

2DDd/2211GS 22
d

2D k1
2Dd/222~11x2x2!G ~A8!

and

B3~a!

e
52T

1

p2

p~22d/2!

2d21 E
0

1

dxE ddk1

~2p!d

k1•p

@~p2k1!22m2#~k
2
!2

3F4GS 12
d

2D @~d22!~k1•p!2k1
2#Dd/22118x~12x!GS 22

d

2D @~k1•p!k1
22~k1

2!2#Dd/222G , ~A9!

whereD5m22x(12x)k1
2 . Continuing our calculation, we would introduce two new parametric integrations as there ar

three different denominators~we take 1/D as a new denominator! depending onk1 in each of the terms of the abov
expressions. However, as the result does not depend onm and we are looking only for the pole part of the amplitudes, we
speed up the calculation by modifying the dependence onm of some denominators. For example, without changing the fi
result, we can replace the first term on the right hand side of Eq.~A8! by

T
p~22d/2!

2d23 E
0

1

dxE ddk1

~2p!d

GS 12
d

2DDd/221

~k1
22m2!2

. ~A10!

Similarly, in the computation ofB3(a) one can setm50 in the expression forD so that one has to use only one parame
integral. Following this recipe, after integrating ink1 we obtain@a512y2yx(12x)#

A3~a!

e
5T

p22d

22d23
G@32d#E

0

1

dxE
0

1

dy~12y!F ~122y!m2

a Gd23F y2d/2

a32d/2
1

d

2
~11x2x2!

y12d/2

a42d/2G52
5i

8e
~A11!

and
045002-6



integrals.

dimen-

eed, we

PERTURBATIVE GROSS-NEVEU MODEL COUPLED TO A . . . PHYSICAL REVIEW D59 045002
B3~a!

e
52T

p22d

22d23
G@32d#E

0

1

dxE
0

1

dy
~12y!22d/2@ym22y~12y!p2#d23

@x~x21!#12d/2

3F ~125y!G@12d/2#

G@32d/2#
22

G@22d/2#G@52d/2#

G@42d/2#2
~12y!~127y!G52

i

24e
. ~A12!

Now, for the remaining graphs of ordera2, we have
Figure 2~b!:

I 3~b!524ip2emnleabrTE ddk1

~2p!d

ddk2

~2p!d
k1

lk2
r@gm~p”2k” 11m!ga~p”2k” 12k” 21m!gb~p”2k” 11m!gn#

@~p2k1!22m2#2@~p2k12k2!22m2#k1
2k2

2

5@mA3~b!1p”B3~b!#
1

e
. ~A13!

Following the same steps as in previous case, we obtain

A3~b!

e
5

1

2m
TrI 3~b!up5052

i

4e
, ~A14!

B3~b!

e
5

1

2p2
Tr~ I 3~b!p” !52

i

12e
. ~A15!

Figure 2~c!:

I 3~c!524ip2embleanrTE ddk1

~2p!d

ddk2

~2p!d
k1

lk2
r @gm~p”2k” 11m!ga~p”2k” 12k” 21m!gb~p”2k” 21m!gn#

@~p2k1!22m2#@~p2k12k2!22m2#@~p2k2!22m2#k1
2k2

2

5@mA3~c!1p”B3~c!#
1

e
. ~A16!

The computation of this expression is a bit more complicated because one has to introduce three Feynman parametric
The final result is, nevertheless, simple:

A3~c!52
3i

8
, ~A17!

B3~c!5
i

24
. ~A18!

Collecting these results, we obtain

A35A3~a!1A3~b!1A3~c!52
5i

4
, B35B3~a!1B3~b!1B3~c!52

i

12
. ~A19!

~2! Orderga graphs. There are six diagrams which have been drawn in Fig. 3. They give the following.
Figures 3~a! and 3~b!. Both diagrams have the structure of a product of two one-loop graphs. The corresponding

sionally regularized amplitudes does not have a pole atd53.
Figure 3~c!. Actually, this diagram does not contribute because the corresponding analytic expression is finite. Ind

have
045002-7
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I 4~c!5T
]

]mE ddk1

~2p!d

ddk2

~2p!d

Tr@gm~k” 21m!gn~k” 21k” 11m!#emnr

~k2
22m2!@~k11k2!22m2#

k1
r

k1
2

524iT
]

]mE ddk1

~2p!d

ddk2

~2p!d

m

~k2
22m2!@~k11k2!22m2#

50, ~A20!

since the integral in the second equality has the structure of a product of two one-loop integrals.
Figure 3~d!. The same reasoning can be applied to this situation since no external momentum flows through the d

We conclude that there is not a pole term.
Figure 3~e!. By Furry’s theorem this diagram cancels with its charge-conjugated partner.
Figure 3~f!. We have the contribution

I 4~ f !54pemnlTE ddk1

~2p!d

ddk2

~2p!d
gm~p”2k” 11m!k1

l ~k” 22k” 11m!gn~k” 21m!

@~p2k1!22m2#~k2
22m2!@~k22k1!22m2#k1

2

52 i
@m2A4~ f !1mp”B4~ f !#

e
, ~A21!

from which one obtains

A45A4~ f !5
9

16p
, B45B4~ f !5

1

8p
. ~A22!

~3! Orderg2 graphs. There are only the two diagrams shown in Fig. 4. We get

I 5524iTE ddk2

~2p!d

ddk1

~2p!d

p”1k” 11m

@~p1k1!22m2#~k2
22m2!@~k22k1!22m2#

3$~k” 21m!~k” 22k” 11m!2Tr@~k” 21m!~k” 22k” 11m!#%52
~m3A51m2p”B5!

e
, ~A23!

where the two terms in the second equality refer to the graphs 4~a! and 4~b!, respectively. After a lengthy calculation on
determines

A552
3i

16p2
, B552

5i

48p2
. ~A24!
e
ed
y,
the

ter-

ic

t

FIG. 5. Example of a two-loop diagram.
04500
APPENDIX B

In this appendix we will discuss the calculation of th
pole part of the four-point vertex function which is need
for fixing the renormalization group beta function. Actuall
since all we need is the constant part of the residue,
calculation of the relevant graphs will be done at zero ex
nal momenta.

TABLE I. Pole part for four legs graphs with a closed fermion
loop.

Order of perturbation Number of diagrams Pole par

ga2 12 2 i /2e
g2a 7 24i /pe
g3 8 4i /p2e
2-8
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FIG. 6. Diagrams illustrating the variou
classes of graphs in the four-point vertex fun
tion.
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The first observation is that, up to the order we are int
ested, i.e., third order, there are too many graphs. To
systematic, we will separate them according to whether t
have or have not closed fermionic loops. Moreover, if th
do not possess fermionic loops, we group them accordin
the number of CS or auxiliary GN lines linking the tw
fermion lines crossing the diagram. Many diagrams can
because of Furry’s theorem; this is the case if there i
fermionic loop with an odd number of attached CS line
Other diagrams have the structure of a product of two o
loop graphs and therefore are finite. We shall not cons
these two types of graphs any longer. The antisymmetri
amplitude for a graphg has the generic structure of a pro
uct, (A^ B)C, whereA and B refer to the propagators an
vertices associated with the two fermion lines andC to the
others factors (̂ indicates the antisymmetrized direct pro
uct!. Using this notation, one can verify that

TABLE II. Pole part for four legs graphs without closed ferm
onic loops. The first column lists different types of diagrams (i , j ),
where i and j are the number of GN and CS lines joining the tw
fermion lines crossing the graph; the digits in parentheses afte
pole parts are the number of contributing graphs.

Diagram type Orderga2 Orderg2a Orderg3

~0,2! i /2e~8! — —
~1,0! 25i /2e ~12! 3i /pe ~18! 23i /4p2e ~6!

~1,1! 8i /e ~24! 4i /pe ~8! —
~1,2! 22i /e ~12! — —
~2,0! — 2 i /pe ~14! i /p2e ~12!

~2,1! — 215i /2pe ~9! —
~3,0! — — 5i /4p2e ~4!
04500
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pole part of E ddk1ddk2~A^ B!C

5
T
2E ddk1ddk2~Tr@A#Tr@B#2Tr@AB# !C. ~B1!

For example, from the analytic expression for the gra
shown in Fig. 5,

lE ddk1ddk2@gmSF~k2!#

^ @gnSF~2k2!#Tr@SF~k1!SF~k12k2!#emnl

k2
l

k2
2

, ~B2!

wherel is a combinatorial factor, we determineA, B, andC
as

A5@gmSF~k2!#, ~B3!

B5@gnSF~2k2!#, ~B4!

C5lemnl

k2
l

k2
2

. ~B5!

The results for the pole parts are summarized in Table
and II, which correspond to the two cases mentioned abo
In Table I are listed the results from graphs with one clos
fermionic loop; these have been arranged according to

he
2-9
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number of CS vertices in the loop. Table II exhibits the po
part of graphs without a fermionic loop. They have be
collected into types (i , j ), wherei and j are the number aux
iliary GN and CS lines, respectively, linking the two fermio
lines crossing the diagram. Notice that there are no contr
tions from graphs of type~0,1! since they are not proper
Figure 6 furnishes examples of each one of these set
he

ev

va

n

04500
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diagrams. The final result for each order is obtained by su
ming the corresponding entries in each table. Thus we h

C352
7

2
, C45

11i

2p
, C55

13

2p2
. ~B6!
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