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Information measures and classicality in quantum mechanics
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We study information measures in quantum mechanics, with the particular emphasis on providing a quan-
tification of the notion of predictability and classicality. Our primary tool is the Shannon-Wehrl entropyI. We
give a precise criterion for phase space classicality of states and argue that in view of this~a! I provides a good
measure for the degree of deviation from classicality in closed systems and~b! I 2S (S the von Neumann
entropy! plays the same role in open quantum system. We examine particular examples in nonrelativistic
quantum mechanics. Finally we generalize the discussion into the field theory case, and~this being one of our
main motivations! we comment on the field classicalization in early universe cosmology.
@S0556-2821~99!02802-7#

PACS number~s!: 03.65.Sq, 03.65.Bz, 98.80.Cq
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I. INTRODUCTION

The subject of this paper is a discussion on the notion
classicality as emerging in quantum mechanical systems
the possibility of giving a quantification of the nonclassic
behavior using an information theoretic measure. The ph
cal context on which we mainly focus is that of quantu
fields in early universe cosmology.

Recent years have seen increased activity in the stud
emergent classicality, which has led to the formation of n
concepts and a significant increase in the understandin
the physical mechanisms underlying the classicalization p
cess. Key among the former are the notion of decohere
~either environmentally induced or through the intrinsic d
namics in closed systems! and its interplay with noise, set
ting limits to the degree of predictability enjoyed by an
quantum mechanical system. As far as the latter is c
cerned, a large number of illustrative, exactly solvable m
els have been widely studied, mainly in the context of no
relativistic quantum mechanics.

One of the driving forces of this activity has been t
need to understand the quantum to classical transition
cosmological setting~quantum and early universe!. In the
context of the latter, it is well known that a basic premise
the inflationary model is the eventual classicalization of
quantum fluctuations as the seeds of later structure for
tion. Nevertheless in spite of the conceptual importance,
fair to say that there is not yet a clear consensus on how
process of classicalization is effected. The reason for thi
partly that the well tested concepts have to be applied
field theoretic setting with infinite number of degrees of fre
dom ~hence besides the technical difficulties involved, a p
tulated split between system and environment is not in
itively transparent! and partly because of the fact that th
relevant physics are somewhat remote from the better un
stood realm of the low energy world. By this, we mean th
it is not easy to precisely identify what is meant by classi
behavior and which physical quantities ought to exhibit it~is
it the mean field@1#, the field modes@2#, a coarse-grained
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version of the n-pt functions@1#?!.
We must also remark the absence from the discussion

clear-cut and quantitatively precise criterion for classicali
Of course the formulation of such a criterion ought to depe
upon the degrees of freedom one is seeking to study. V
often emergent characteristics of classicality are taken as
finitive of it, something that might eventually lead to a co
fusion, as for instance when taking the large fluctuations
characteristic of classical behavior. A general and unamb
ous criterion could be provided by the consistent histor
approach to quantum mechanics@3–7#, once we have made
choice of the type of variables on which we are to conc
trate. This choice is not always easy to make@8#, but even
then the technical demands raised by this approach are ra
high, so that it has been possible to treat in detail only
number of relatively simple systems.

The identification of a classicality criterion and the sear
of a measure to quantify it form the backbone of this pap
We argue that classicality ought to be thought of generica
as aphase spacemanifestation1 and in that light the most
suitable object for this task is a version of Shannon inform
tion: the Shannon-Wehrl~SW! entropy@9,10#. This has been
considered before as a measure of quantum and environm
tally induced fluctuations@11,12#.

We expand on this previous work, by tying its properti
with a precise formulation of a criterion of phase space cl
sicality. The emergent criterion is influenced by the work
Omnès within the consistent histories program@5#. It essen-
tially states that a state is to be thought of as classical if i
phase space concentrated and this property preserved b
namical evolution. But here we apend an important disti
tion: classicality is destroyed not only in view of the increa
of fluctuations but also because of phase space mixing
duced by the quantum evolution. With few exceptio
@13,14# this has not been focused properly in the existi
bibliography on classicalization, even though it is a w

1Note that this does not preclude classicality emerging for m
more coarse-grained variables, in particular at the level of hydro
namics.
©1998 The American Physical Society01-1
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C. ANASTOPOULOS PHYSICAL REVIEW D 59 045001
studied phenomenon in the context of quantum chaos~see
e.g.@15# and references therein! and we proceed to examin
it in detail. In particular we argue that large squeezing~typi-
cal for field modes in an expanding universe! is a character-
istic of nonclassical behavior, something that is implici
well known in the field of quantum optics.

Our criterion then is argued to entail that the SW entro
indeed quantifies the deviation from classicality: it takes i
account both phase space spreading of the state as well a
phase space mixing. Hence it can be translated in the
entropy taking values of the order of its lower bound
unity. We should stress the appealing fact that a single qu
tity is sufficient to capture the classicality relevant behav
in even systems with a large number of degrees of freed

The plan of the paper is then as follows. In the next s
tion some preliminary definitions are given for informatio
theory. We mainly focus on properties that are useful for
development of our later argumentation. Section III is t
main one. We give the definitions of the SW entropy, pres
some of its properties, state the classicality criterion and p
vide the connection between this and the SW entropy
number of examples in nonrelativistic quantum mechan
are studied so that particular features can be isolated
commented upon. In the next section the discussion is
graded to the field theoretic context. Discussing the co
sponding generalizations, we finally give a discussion
various proposals for field classicalization as well as whet
SW entropy could be identified with the phenomenologi
~thermodynamic! entropy, appearing in cosmological discu
sions.

II. SHANNON INFORMATION IN QUANTUM
MECHANICS

A. The notion of information

Information is largely not an absolute concept. Intuitive
it corresponds to the degree of precision of the knowle
we can have about a particular system. As such, it has alw
to be defined with respect to the questions we want to a
When one is dealing with systems exhibiting a degree
randomness, our knowledge about this is hidden in the
signment of probabilities to individual events.

When one is dealing with alternatives that can be me
ingfully assigned probabilities~either classical stochasti
processes or quantum mechanics, but notably not quan
mechanical histories!, one has an intuitive feeling of wha
properties a good measure of information should have:~1! It
should be small for peaked probability distributions a
large for spread ones~reflecting the fact that there is less
be discovered by a measurement or a precise determin
in the former case!; ~2! it should increase under coarse gra
ing, i.e., when settling for a less detailed description of o
system.

These properties are nicely captured by Shannon’s de
tion of information: Given a sample spaceV with N ele-
ments and assignment of probabilitiespi for i PV then in-
formation is naturally defined as
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I V@p#52(
i

pi log pi . ~2.1!

This is clearly a positive quantity, obtaining its maximum
logN for the total ignorance probability distributionpi
51/N and its minimum zero for a precise determination
an alternative. This incorporates nicely property~1!, while
property~2! is guaranteed by the concavity of this functio
Hence, any coarse-grainingV→V8, with its corresponding
restriction map for the probabilititesp→p8 will entail

I V@p#<I V8@p8#. ~2.2!

It is not our purpose to give an exhaustive list of the pro
erties of the Shannon information here, since they are fu
covered in the relevant bibliography@16#. We just restrict
ourselves to two important results.

In the case of continuous sampling spaceV with a prob-
ability distributionp(x) with xPV the Shannon information
is given by

I V@p#52E dxp~x!log p~x!. ~2.3!

It is generically not positive and it may not even be bound
from below. In the case thatV5Rn and for distributions
with constant covariance matrixK it has a lower bound

I V@p#>11
1

2
log detK, ~2.4!

which is achieved by the corresponding Gaussian probab
distributions.

Finally, we should note that one can define the relat
information between two probability distributionsp1 andp2
~henceforward we drop the subscript referring to sampl
space unless explicitly required! as

I @p2up1#5E dxp1~x!@ log p1~x!2 log p2~x!#. ~2.5!

This quantity is always positive and jointly convex with r
spect to both probability distributions. It is to be interpret
as the ‘‘extra’’ amount of information contained inp2 with
reference top1 .

B. The quantum mechanical context

Quantum mechanics is an inherently probabilistic theo
Given a quantum stater one can construct probability mea
sures for any observable by virtue of the spectral theore

Shannon information can first be naturally defined w
respect to any orthonormal basis on Hilbert space~hence
with a maximal set of commuting observables!. If we name
the basisun&, then the probabilitieŝnurun& are constructed
and the Shannon informationI $n%@r# can be defined as in Eq
~2.1!. Clearly the lower bound onI is here again 0 while the
maximum bound is logN whereN is the dimension of the
Hilbert space.
1-2
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INFORMATION MEASURES AND CLASSICALITY IN . . . PHYSICAL REVIEW D59 045001
Slightly more generally, one can define Shannon inform
tion with respect to any self-adjoint operatorA with discrete
spectrum. Since thenA5(nanPn , in term of the projectors
Pn in its eigenspaces we can define again

I A@r#5(
n

tr~Pnr!log tr~Pnr!. ~2.6!

In such a case the lower bound is not zero, unlessA has
nondegenerate spectrum. This comes from the fact that in
degeneracy case, the probability distribution is a coa
graining with respect to the one defined by a maximal se
observables to whichA belongs.

There is an important relationship between Shann
information and von Neumann~vN! entropy S@r#
52tr(r logr) in the case of discrete spectrum:

I $n%@r#>S@r#. ~2.7!

The equality holds ifr is diagonal in theun& basis. Hence the
values of the quantityI S provide a measure of how close
density matrix is to be diagonal in the particular basis. T
can be an important tool, in the context of environment
perselection rules and the identification of the pointer ba

The case of continuous spectrum is rather more inter
ing. The projection valued measuredE(x) associated to a
self-adjoint operatorX defines a distribution functionp(x)
5(d/dx)tr@rE(x)#, with respect to which the Shannon in
formation is defined. For the case of the position operatox
on L2(R) we get a lower bound for fixed uncertaintyDx

I x@r#<11 log„2p~Dx!2
… ~2.8!

saturated by the Gaussian states. A similar result holding
the momentum distributionI p@r# these can be combine
with the standard uncertainty relation to yield

I x@r#1I p@r#>11 logp\. ~2.9!

III. SHANNON-WEHRL ENTROPY

When one needs to discuss the emergence of clas
behavior from a quantum system, one is in need to quan
the notion of fluctuations around classical predictability.
one dimensional case, the uncertaintyDxDp serves well this
purpose, but in systems with many degrees of freedom
certainties are not by themselves sufficient to capture
classicalization of the system’s state. Correlations are
volved ~in the strong form of entanglement! that can dis-
qualify even a localized in phase space state from being c
sidered as classical. The same situation is of course m
important in field theory, where one is working with infinit
number of degrees of freedom.

It is therefore important that simple quantities can be u
to codify the classicality of a state. A particular variant
Shannon information, the so-called Shannon-Wehrl~SW! en-
tropy, seems well suited to provide such a quantification. T
purpose of this chapter is to explain in which sense the st
of this object yields information about the classical behav
of quantum states.
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Before proceeding we should be explicit in what we re
to here as classicality. A state must satisfy two necess
requirements in order to be characterized as classical~or qua-
siclassical!: ~1! suppression of interferences;~2! seen as a
wave packet, it has to evolve with a good degree of accur
according to the classical equations of motion.

The important point one has to stress here is that we
the word classicality to refer to the Hamiltonian classic
limit. Indeed~for instance in many body systems! classicality
might refer to collective~hydrodynamic or thermodynamic!
variables characterizing the system. Our object is there
concentrated on the phase space distributions associated
a quantum state. So suppression of interferences is imp
with respect to some phase space ‘‘basis,’’ an issue whic
again very relevant when discussing classical equation
motion. Of course, given particular assumptions our disc
sion can involve classicality of collective variables as f
instance center of mass of a many particle system. For s
issues, we refer the reader to@5# for details.

Therefore, classicality is defined with respect tophase
space properties, rather than configuration space or mome
tum space ones. While phase space classicality straigh
wardly implies configuration or momentum space one,
converse is not necessarily true. A state localized solely
position~and with a large momentum spread! cannot be con-
sidered as classical. The fluctuations around the class
path are too large to destroy any sense of predictabi
Moreover, such a localization is not robust in the presence
even small interactions.

Finally, we should remark that, since the SW entropy
defined in terms of coherent states, we have found exped
to employ intermittedly the Schro¨dinger and the Bargmann
representation, according to calculational convention.

A. Definition and properties

The SW entropy is defined as

I @r#52E DwDw* p~w,w* !log p~w,w* ! ~3.1!

in terms of the probability density

p~w,w* !5^wuruw&, ~3.2!

where uw& is a ~normalized! coherent state. Given the fac
that w is a complex linear combination of position and m
mentum@in the standard case of one dimensional harmo
oscillator w5(v/2\)1/2q1 i (1/2\v)1/2p.] p(w,w* ) can be
viewed as a positive, normalized~due to the completenes
relation of coherent states! distribution on phase space. Th
is invariably called the Q-symbol, or the Husimi distributio
It can be shown to correspond to a Gaussian smearing o
Wigner function~this rendering it positive!.

There is an ambiguity in the choice of the coherent sta
essentially that they can be defined with respect to arbitr
state vector on the Hilbert space. Its resolution by demand
that our information measure is sharpest, will be dealt w
shortly. We just comment here, that standardly the cohe
states can be taken as defined with respect to the vacuu
1-3
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C. ANASTOPOULOS PHYSICAL REVIEW D 59 045001
a harmonic oscillator or in the case of many dimensions
an isotropic harmonic oscillator. Then without loss of gen
ality, we can representuw& as

^xuw&5^xuqp&5~2p\s2!21/4expS 2
~x2q!2

4\s2
1 ipxD .

~3.3!

The SW entropy is the closest quantum object to the no
of Gibbs entropy~indeed Wehrl was calling it the classic
entropy!, in the sense that the coherent states define a cu
phase space volume, with respect to which a finite and
ambiguous notion of entropy can be defined. Its lower bou
is determined by two inequalities

I @r#>1, ~3.4!

I @r#>S@r#. ~3.5!

The former is saturated by Gaussian coherent states~that it is
only these states that achieve the minimum is a nontri
theorem due to Lieb@17#!, while the latter by thermal state
of harmonic oscillator in the high temperature regime.

We should also remark that by definition, the SW entro
of a state remains invariant when acting on the state with
elements of the Weyl group~translation in position and mo
mentum!.

We should finally remark of an important property of th
SW relative entropy. This is defined as

I @r2ur1#5E DwDw* pr1
~w,w* !

3@ log pr1
~w,w* !2 log pr2

~w,w* !#. ~3.6!

We have that

I @r2ur1#2I @r2#1I @r1#

5E DwDw* @ log pr1
~w,w* !2 log pr2

~w,w* !#<0

~3.7!

since by constructionpr(w,w* )<1. Hence

I @r2ur1#<I @r2#2I @r1#. ~3.8!

We are going to see later, that this inequality is satura
whenr1 is a coherent andr2 a squeezed state with the sam
center. This property is not true for general probability d
tribution; in our case in holds by virtue of the particul
definition of pr .

B. The classicality criterion

The point we need to address now, is in which respect
SW entropy is a measure of phase space classicality, or
differently what is implied by the deviation ofI from its
lower boundI 51. This goes together with the resolution
the ambiguity, regarding the choice of coherent states in
~3.2!.
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The first point we need to stress is that when one tries
give a phase space picture of quantum mechanical evolu
and discuss classicality, the need inevitably arises to in
duce a measure of distance on phase space. Indeed, i
simplest case of a single particle, to determine classica
~viewed as localization! one is comparing the area in whic
the corresponding probability distribution is supported w
\; this criterion is encapsulated in the Heisenberg uncert
ties: the phase space sampling has to be in a phase s
shell of area much larger than\, or correspondingly the stat
is viewed as classical if the uncertainty is of the order
magnitude of\.

In essence one needs to introduce a metric on the clas
phase space. This is exactly, what a choice of a family
coherent states do. For, a coherent state is defined asupq&
5U(p,q)uj&, in terms of any vector of the Hilbert space. A
such it defines a mappingi j from the phase space to th
projective Hilbert spaceRH. The latter is a Ka¨hler manifold,
thus having compatible metric and symplectic structureg
and V. The pullbacks of these with respect toi j form the
metric and symplectic structure respectively on the ph
space. Hence, any choice of coherent state family defin
distinct metric on phase space with respect to which cla
cality is to be determined. The question then, translates
questioning which choice of metric is suitable for our pu
poses.

The answer is that this is largely irrelevant, provid
some mild conditions are satisfied. First of all, we shou
note that there is an optimization algorithm for cohere
states of any group, so that the uncertainties~or the determi-
nant of the covariance matrix! of the relevant operators ar
minimal. In the standard case, this corresponds to defin
coherent states with respect to the family of the Gauss
ground states of some harmonic oscillator potential. But
fact, provided we take a sufficiently localized vector foruj&,
this is not much of a restriction.2

The reason is mainly, that one of the important classic
ity criteria is the stability under time evolution. That is,
state is to be considered classical, if the determining criter
remains during its time evolution. This means that provid
we have made a reasonable choice for our coherent s
family, the object one should look is the relative informatio
I @r(0)ur(t)# wherer(t) is the evolved density matrix. This
object is rather the one that should remain small, if the s
r is to be assessed as classical~provided of course that the
peaks of the phase distribution approximately satisfy so
deterministic equations of motion!. Hence, the important cri-
terion is eventually dynamical. We should choose a family
coherent states, that is rather stable with respect to time

2It is interesting to note, that at least in one approach to quant
tion ~Klauder’s coherent state quantization@18#! a metric on the
phase space is a primitive ingredient of the quantization algori
~so that the phase space can support Wiener measure!. This could
mean that that there is a preferred choice of an equivalence cla
metrics, that give rise to unitarily equivalent quantum theories.
the case ofL2(Rn) these are the homogeneous metrics of zero c
vature.
1-4
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INFORMATION MEASURES AND CLASSICALITY IN . . . PHYSICAL REVIEW D59 045001
lution. For harmonic oscillator potentials, this entails a p
ticular choice foruj&. But more generally, given the fact tha
the Gaussian approximation is good for a large class of
tentials, it would be reasonable to consider the Gaussian
herent states for a larger class of systems. Alternatively,
highly nonlinear potentials a good choice might be to ta
for j lowest lying eigenstate of the Hamiltonian, even th
being not a Gaussian. This becomes rather a necessity w
one is dealing with interacting field theory, as we shall e
plain in the next section, and in general it seems wise w
the Hamiltonian is invariant under a group of symmetri
for they will be reflected in the choice of the metric. F
similar reason, it seems more suitable to consider isotro
with respect toq metrics for many dimensional systems.

The question of course remains, what exactly is measu
by the SW entropy. The answer we will give here is simp
SW entropy is a measure of how much the ‘‘shape’’ of t
phase space distribution associated to a stater deviates from
the corresponding to coherent states. What we mean
shape, can be intuitively viewed in the Wigner function ca
The 12s contour of the Wigner function corresponding to
coherent state is a circle~the characterization of circle fol
lows from the choice of metric associated with this family
coherent states! with area\/2. The SW entropy of a stater is
a quantification of the difference between this circle and
12s contour associated withr. In particular, two charac-
teristics are quantified:~1! the area enclosed in the contou
~2! the ‘‘squeezing’’ of the contour, i.e. the ratio of its leng
to its area~hence how much structure a state developes in
scale of\).

In what follows, we shall try to explain both our interpre
tation of the SW entropy and its relevance for the classica
characterization of a state. Later we shall give particular
amples of our interpretation for the case of squeezed sta

1. Phase space quasiprojectors

One needs first to give a precise criterion for the notion
classicality of the state, and then examine how the use of
SW entropy, allows us to express this criterion in a qua
fied form.

The approach we shall follow, is very much based on
ideas of Omne´s @5#, himself arguing within the context of th
consistent histories approach to quantum mechanics. We
lieve his line of reasoning to allow for a sharp and prec
characterization of classicality.

In quantum mechanics one says that a state is local
with respect to some observableA if it is an eigenstate of one
of A’s spectral projection. Actually approximate eigenstate
a sufficient characterization. That is we can say thatc is
localized in the range of the spectrum@a,b# of A if
uuE(@a,b#)c2cuu,eub2au for somee!1. ~Note, a metric
on the spectrum is implicitly assumed.!

For the phase space localization, one does not have
jectors onto phase space ranges, but one can use rathe
sharp phase space projectors~these are termed quasiproje
tors by Omne´s!. These are essentially positive opera
valued ~POV! measures on the phase space@19#, such that
their marginal measures with respect to position and mom
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tum space are respectively approximate position and mom
tum POV measures.

To define such a family of quasiprojectors one needs fi
introduce a metricg on phase space and its correspond
distance functiond. One can define the quasiprojector corr
sponding to a phase space cellC through its Weyl symbol

f C~q,p!5S \

2p D nE dudveixu1 ipvTr~e2 iuP̂2 ivQ̂P̂C!,

~3.9!

where 2n the dimension of the phase space. The Weyl sy
bol, ought to correspond to a smeared characteristic funct
One can define such one by considering, for instance

f C~q,p!5E
C

dq8dp8

~2p\!n
exp„2d2@~q,p!;~q8,p8!#….

~3.10!

To each such projector one can associate a numbere which
is roughly the ratio of volumes@M #/@C#. Here @ # stands
for volume of a phase space cell andM is the margin of the
phase space cellC, defined as the region where the smear
characteristic function ofC is appreciably different from 1
~well inside the cell! and 0 ~outside the cell!. If also, e

.e2 l 2, where l is the maximum curvature radius of th
boundary if C, PC is close to a true projector, since th
following properties are satisfied:~1! uPC2PC

2 u tr,ceuPCu tr

and ~2! if C and C8 do not intersect uPC2PC8u tr
,c8e max(uPCutr ,uPC8utr), with c and c8 constants of order
unity. Such phase space cells~regular in Omne`s terminol-
ogy!, optimally have a value ofe of the order of (\/@C#)n/2.
For a given family of quasiprojectors~meaning in particular
a choice of metric on the phase space!, we can view the
optimal choice ofe for each cell as a function from th
measurable phase space cells to the real positive num
We shall call it theclassicality functionassociated with this
choice of metric.

2. The classicality criterion

Given a family of quasiprojectors, one can say that a s
uc& is localized within a phase space cellC, if it is an
e-approximate eigenstate ofPC , i.e., if

uuPcuc&2uc&uu<e. ~3.11!

But, we should remark, that localization in phase space d
not imply classicality. As we have seen localization in pha
space is relative to a choice of a phase space metric. Hen
is not a stringent criterion of classicality, let alone that o
needs still ensure that the state remains localized during
classical evolution. This is an essential requirement, t
largely removes the redundancy due to the freedom of cho
ing a phase space metric.

Hence a classicality criterion ought to read as follows:
pure statec is considered to exhibit classical behavior
some time intervalI, if with respect to some choice of
family of quasiprojectors, ise localized in phase space cel
Ct , such that~1! Ct is correlated withCt ‘ by the classical
1-5
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C. ANASTOPOULOS PHYSICAL REVIEW D 59 045001
equations of motion and~2! @Ct#!@CI #, where CI is the
smalleste regular phase space cell that contains the union
all Ct ’s.

The second condition is added here, so that time evolu
is not trivial, i.e. there is indeed some meaning to a coa
grained description of the classical equations of motion. A
other important point stressed here, is that classicality is c
tingent upon a particular time interval, outside of which ph
nomena of wave packet spreading might invalidate
localization condition. This is even apparent for the case
free particle evolution, as we shall examine later.

The above criterion was for pure states. In the case
mixed states~and relaxing the condition for unitary evolu
tion!, it should be generalized to include density matric
This is straightforwardly done by substituting the appro
mate eigenstate condition~3.11! by the requirement

uuPCrPC2ruu tr<e ~3.12!

the rest following as before.
The above definitions contain nothing more than the

tuitive idea, that a state is classical if its Wigner functi
exhibits a number of sufficiently concentrated peaks, eac
which follows with some degree of approximation the cla
sical equations of motion. Such a criterion has been wid
used in the literature. The point we insist is rather the imp
tance of the introduction of the metric in the phase space
the one determining localization. While intuitive argumen
based on uncertainty principle might usually be sufficient
the determination of classicality. But what one may overlo
in such considerations~particularly when one is dealing with
many dimensional or field systems! is the loss of predictabil-
ity ~i.e., the large growth of fluctuations! due to extreme
squeezing in some directions of the phase space distribu
Such a phenomenon will generically cause the state not t
an approximate eigenfunction of the relevant phase sp
projector, thus invalidating our criterion of classicality. Th
is particularly true in recent discussions on classicalization
cosmological quantum fields@2#.

This is a point worth emphasizing: the classicality cri
rion is not so much sensitive on the phase-space sprea
the wave packet~provided it is smaller than the typical scale
of the classical solutions!, as to the development of structu
at the scale of\. In a regime where chaos is expected
appear classically, the phase space distribution gets rap
squeezed and as such cannot be said to satisfy either o
two conditions. The classicality parameter in that case blo
rapidly up. Systems in that regime are not expected to exh
classical behavior.

The criterion we have given can be said to be somew
restrictive: it corresponds to a particular type of classical
essentially Hamiltonian determinism. Classicality emerg
also in open systems~like the quantum Brownian motion
models we discuss in Sec. III D!. In that case it is reasonabl
to drop the condition~2! as the environmentally induced di
fusion would tend to increase the spread around the clas
path. This introduced stochasticity is classical rather th
quantum. On the other hand, in such a case, the chaotic
tems mentioned earlier could behave as a classical cha
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system, since the environment would smear fast the osc
tions of the Wigner function at the scale of\ @14,20#.

The SW entropy proves to be a meaningful calculatio
tool, taking the above discussion neatly into account. Fo
does not only measure the spread of the Wigner function,
also its shape. In other words, SW entropy measures
degree of approximation of the classical equations of mot
to the Ehrenfest’s theorem mean values. The time param
associated with the increase of the SW entropy~whenever
this increases!, is essentially the parameter determining t
breakdown of the classical approximation.

Finally we should remark that a choice of coherent sta
defines naturally a family of quasiprojectors by

PC5E dpdq

~2p\!n
uqp&^qpu. ~3.13!

These have actually been used by Omne´s in the context of
consistent histories to prove a semiclassical theorem. In v
of our previous discussion, we can remark that comput
the relative information between an initial coherent state a
the evolved state at timet provides a good measure of ho
much a particular Hamiltonian preserves or degrades cla
cal predictability.

3. Estimating the SW entropy

Before examining some concrete examples, we shoul
first examine how the phase space spread of a statec is
encoded in the SW entropy.

Let us consider first the case ofc being an approximate
eigenstate of a phase space projectorPC with classicality
parametere. The probabilty distribution associated toPC ,
namely ^zuPcuz&/TrPC is within an approximation ofe a
characteristic function ofC divided by the trace. But this is
also a smearing of the distribution function corresponding
its eigenstatec. Hence due to the concavity of the entrop
we have

I @c#< log~TrPC!1O~e!5 log
@C#

~2p\!n
1O~e!

~3.14!

which is essentially the number of ‘‘classical states’’ with
phase space volumeC. Reasoning inversely if for a statec
~due for instance to time evolution! its SW entropy becomes
much larger than log„@C#(2p\)n

…, its corresponding classi
cality parameter for its time evolution grows essentially
fast asI @c# hence becoming of the order or larger than uni

4. Linear canonical transformations

The evaluation of SW and relative SW entropies for sta
that are obtained from implementing a linear canonical tra
formation on coherent state is quite important for a num
of reasons. First, it gives an intuitive example of the w
entropy is connected with defomation of the shape of the 1s
contour. Second, this type of transformation appears n
rally in time evolution of physically interesting system
Hamiltonian evolution in the Gaussian approximation and
1-6
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INFORMATION MEASURES AND CLASSICALITY IN . . . PHYSICAL REVIEW D59 045001
particular quantum fields in nonstatic spacetimes. Our res
in this section will be valid for a description of such case

Recall, that given a family of~Gaussian! coherent states
uw& on some Hilbert spaceL2(Rn) the annihilation operators
are naturally defined by

â~j!uw&5j i* wi uw& ~3.15!

with j,wPCn and can be written asâ(j)r 5âij i* .
A linear canonical transformation is implemented by

unitary operatorS5eiA whereA is a self-adjoint quadratic to
â and â†

Sâ~j!S215â~A†j!1â†~B†j!, ~3.16!

whereA andB aren3n complex matrices to be viewed a
linear operators on the underlying real vector spaceR2n.
They are the parameters of the squeezing transformation
preservation of the canonical commutation relations enfor
the Bogolubov identities:

A†A2B†B51, ~3.17!

AA†2BB†51, ~3.18!

A†B̄5B†Ā, ~3.19!

where we use the bar to denote complex conjugation o
matrix. It is well known that the set of these transformatio
forms a representation on our Hilbert space of the symple
groupSp(2n,R). Transformations withB50 are sometimes
denoted as rotations@forming a U(n) subgroup# and ones
generated by operatorsA not containing terms mixinga and
a† as squeezing. It is straightforward to check that the ma
elements ofS in a coherent state basis are given by

^zuSuw&5„det~12K̄K !…21/4

3expS 2uzu2/22uwu2/21
1

2
z* Kz*

1
1

2
wK̄w1z* A21wD . ~3.20!

HereK stands for the matrix

K5A21B̄. ~3.21!

The transformed vacuumu0;A,B& is defined by the action
of Son u0& and a transformed stateuw;A,B& by the action of
the operatorU(w) of the Weyl group onu0;A,B&. Since the
SW entropy is invariant under phase space translation,
can use the transformed vacuum for its calculation.

The corresponding probability distribution is

p0;A,B~w,w* !5„det~12K̄K !…21/2

3expS 2uwu21
1

2
w* Kw* 1

1

2
wK̄wD .

~3.22!
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From this one gets the following expression for the SW e
tropy of a transformed state~for brevity just useA andB as
arguments!

I @A,B#511 log@det~12K̄K !#21/2512
1

2
Tr log~12K̄K !.

~3.23!

Let us examine some special illustrative cases.
Pure rotation. In such a caseK50 and henceI @A,0#

51 ~the transformed state is a coherent state!.
One dimensional case. The general squeezing transform

tion is of the form

SâS215coshrâ2eifsinhrâ† ~3.24!

in terms of the positive realr and the phasef. In this case
K52eiftanhr and the SW entropy for the squeezed sta
reads

I @r ,f#511 log coshr . ~3.25!

This illustrates our earlier arguments sincer is interpreted as
the eccentricity of the ellipse corresponding to the 1-s con-
tour of the squeezed state Wigner function. For larger the
ellipse becomes extremely prolongated in a direction de
mined byf and the SW entropy grows linearly withr.

Two-mode squeezing. There is a 6-parameter family o
squeezing transformation in two dimensions. A widely stu
ied case is the Caves-Schumaker squeezing, well studie
the field of quantum optics. This is generated by the unit
operator

S5exp~reifâ1
†â2

†2re2 ifâ1â2! ~3.26!

and corresponds to the matrices

A5S coshr 0

0 coshr D , B5S 0 2sinhreif

2sinhreif 0 D
~3.27!

which yield the value

I @r ,f#5112 log coshr . ~3.28!

Note that here the parameterr has a different physical inter
pretation. If our system represents two~nonidentical! one
dimensional particles, then the parameterr is a measure of
the entanglement of the total state. This is a nonclass
feature; if our classical limit is to correspond to two classic
particles the entanglement between them must be minim
Hence SW entropy can quantify also this deviation fro
classicality~provided of course that the coherent state fam
with respect to which it is defined, is constructed from
factorized vacuum state!.
1-7
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C. ANASTOPOULOS PHYSICAL REVIEW D 59 045001
5. Relative entropy

It is interesting also to compute the relative SW entro
between a coherent and a transformed state. Without los
generality one can consider the coherent state to be
vacuum.

The probability distribution associated to the transform
stateuz;A,B& is

pz;A,B~w,w* !5„det~12K̄K !…21/2

3expS 2uw2zu21
1

2
~w* 2z* !K~w* 2z* !

1
1

2
~w2z!K̄~w2z! D ; ~3.29!

hence the relative entropy with respect to vacuum is

I @0uz;A,B#5 log@det~12K̄K !#21/21uzu2

1
1

2
~z* Kz* 1zK̄z!. ~3.30!

Hence the relative entropy is a sum of a term, purely fr
the squeezing plus a term containing the contribution of
Weyl translation. Note that in the case ofz50 ~pure linear
transformation! the inequality~3.8! is saturated. It is a rea
sonable conjecture, that this is true only for this particu
class of states, i.e., for Gaussians with the same center.

C. Squeezing induced by quantum evolution

1. The Gaussian approximation

We now come back to our main point. We shall consid
the evolution of SW entropy for closed quantum system
their evolution governed by a HamiltonianH5p2/2m
1V(q), in the Gaussian approximation. The latter cons
essentially in approximating the evolution of Gaussian sta
by the action of a linear canonical transformation. This is
course exact for systems evolving under a quadratic Ha
tonian and a good approximation for systems evolving i
macroscopically varying potential~at least within a particular
time interval while the spread of the wave function has
become extremely large!. We shall see that the evaluation
the SW entropy gives a self-consistency check for the va
ity of the Gaussian approximation.

In this section, it is more convenient to switch back to t
Schrödinger representation for our Hilbert space vecto
Choosing our coherent state basis by the relation

wi5~2\s2!21/2qi1 i ~s2/2\!1/2pi , ~3.31!

i.e., choosing an isotropic and factorized Gaussian defin
state, we get the following expression for a translated ve
c:
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c~x!5~detM* M2p\!21/4

3expS 2
1

4\
~x2q! i~LM 21! i j ~x2q! j1 i\pix

i D ,

~3.32!

where the matricesM and L are such that\1/2MM* and
\1/2/2L* L are the position and momentum covariance ma
ces respectively. Since the expression is invariant unde
U(n) matrix right acting on bothL andM we have the free-
dom to define them in terms of the matrixK of equation
~3.21! through the following relations:

Q5LM 215~2s2!21~11K !~12K !21, ~3.33!

M5~ReQ!21/2, ~3.34!

L5QM ~3.35!

or, more importantly the inverse relationship

K5~11Q!21~12Q!. ~3.36!

Now, for the Gaussian approximation we shall utilize
result of Hagedorn@21#. For a large class of physically rel
evant potentials~bounded from below, growing slower tha
a Gaussian! and time interval@0,T#, the Gaussian~3.32!
evolves to another Gaussian of the same type with the ce
determined by the classical equation of motion, a ph
given by the corresponding classical action and the matr
A(t), B(t) evolving according to the equations

d

dt
M ~ t !5

i

2m
L~ t !, ~3.37!

d

dt
L~ t !52iV ~2!@q~ t !#M ~ t !.

~3.38!

In fact they can be shown to satisfy

M ~ t !5
]q~ t !

]q~0!
M ~0!1

i

2

]q~ t !

]p~0!
L~0!, ~3.39!

L~ t !5
]p~ t !

]p~0!
L~0!22i

]p~ t !

]q~0!
M ~0!.

~3.40!

To study the SW entropy production, we will consider t
evolution of an initial coherent state@henceK(0)50] so that
M (0)5(2s2)1/21 andL(0)5(2s2)21/21.

2. One dimensional case

In the case of a free particle the complex numbersM and
L read

M ~ t !5~2s2!1/21
i

2m
~2s2!21/2t, ~3.41!

L~ t !5~2s2!21/2. ~3.42!
1-8
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INFORMATION MEASURES AND CLASSICALITY IN . . . PHYSICAL REVIEW D59 045001
Using the equations~3.39!, ~3.40! we find that the SW en-
tropy at large times,t@s2m behaves like

I .11 log
t

8s2m
. ~3.43!

In a free particle time evolution produces strong squeez
towards localizing a particle in the position momentum~ac-
tually for free evolution momentum basis is some sort
pointer basis since superposition of two states with differ
momenta are asymptotically suppressed—though not e
nentially as in the presence of environment!. Hence eventu-
ally classical predictability breaks down for the free partic
though rather slowly. In view of our previous discussion t
classicality parametere is increasing logarithmically with
time. More precisely taking into account Eq.~3.14! a state
that can be considered as localized in a volumeV of phase
space initially will stop being localized~approximate eigen-
state of the corresponding quasiprojector! after time

t.
4s2mV

p\
. ~3.44!

Note the persistence of predictability for higher mass p
ticles.

For a harmonic oscillator Hamiltonian the choice of t
standard coherent states withs25(4mv)21 gives constant
SW entropy, corresponding to maximum possible pred
ability. It is nonetheless instructive to see what would ha
pen, had we not been wise to make this choice. The rele
quantities read now

M ~ t !5~2s2!1/2cosvt1
i

2mv
~2s2!21/2sinvt,

~3.45!

L~ t !5~2s2!21/2cosvt22imv~2s2!1/2sinvt.
~3.46!

It is easy now to verify that the SW entropy remains bound
for all times, taking values around 11u log(4mvs2)u. Hence,
the harmonic oscillator potential generally preserves cla
cality for large class of phase space localized states, the
entropy remaining bounded by the limit for the proper cho
of the quasiprojectors monitoring the classical evolutio
This also verifies that our classicality estimation based on
SW entropy is sufficiently stable with respect to the cho
of coherent state family.

Of interest is also the case of the inverse harmonic os
lator potential. In the context of inflationary cosmology, it
sometimes stated that a number of modes that evolve f
time as inverse harmonic oscillators, undergo amplificat
of their fluctuations and hence become ‘‘classicalized.’’
mentioned in the Introduction, we believe that in such clai
there is a confusion between the notion of large fluctuati
and classicality. Amplified quantum mechanical fluctuatio
are not classical fluctuations. They only imply lack of pre
dictability, which can be a purely quantum mechanic
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phenomenon.3 For a potentialV(q)52 1
2 mk2q2, it is easy to

verify that for coherent states defined bys25(4mk)21 the
evolution is as squeezing in Eq.~3.24! with parametersr
5kt andf5p/2. Hence the SW entropy evolves as

I ~ t !511 log coshkt ~3.47!

and asymptotically grows withkt.
In the case of general potentials in one dimension, o

can make some qualitative predictions. IfV(q) is also
bounded from above byVm , for particles withE@Vm the
results of the free particle case ought to be relevant: de
dation of predictability growing logarithmically with time
For U-shaped potentials and low energies~hence mimicking
a harmonic oscillator! predictability ought to remain good
Rugged potentials that vary within microscopic scales r
idly destroy predictability~tunnelling effects plus caustic
typically weaken the effectiveness of the Gaussian appr
mation!.

3. Higher dimensional systems

When considering systems with many degrees of fr
dom, Eqs.~3.39!, ~3.40! can be the basis of a number o
qualitative estimations. For instance, if the classical eq
tions of motion admit runaway solutions~positive Lyapunov
exponents!, the matricesM andL are going to have exponen
tially increasing with time entries and typically a behavior
the type of inverse harmonic oscillator is to be expected.

Hence, the SW entropy is going to increase linearly
long times, eventually bringing again a breakdown of clas
cality. Hence we arrive at a conclusion, noted by many
thors, that quantum mechanical systems the classical
logue of which exhibits chaotic behavior~meaning
exponential dependence on the initial conditions!, typically
do not have a good classical limit@5#. It is interesting to note
that the SW entropy plays a role of a measure of mixing.
this we mean, the thin spreading of an initial phase sp
distribution into a given partition of phase space, so that
components eventually occupy larger and larger numbe
partition cells. This suggests that the SW entropy plays a
similar to the classical Kolmogorov-Sinai entropy of clas
cal dynamical systems~of course not sharing its invarianc
properties! and related measures of mixing.

In view of our inequality~3.8! the difference between SW
entropies at initial time and timet can be viewed as an est
mation of the upper bound to the relative entropy betwe
the classically evolved state~Weyl transforming according to
classical equation of motion! and full quantum evolution.

A further remark is at point here. Classicality and in pa
ticular predictability is a ‘‘nonperturbative’’ issue. Even i
the Gaussian approximation knowledge of the full solutio
to the classical equations of motion is necessary in orde
establish whether or not there exists gradual deterioratio

3To see this it is sufficient to compute the time evolution of
superposition of two spatially localized states under this poten
There is no way one could interpret their amplified fluctuations
classical however large they might become.
1-9
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C. ANASTOPOULOS PHYSICAL REVIEW D 59 045001
the amount of predictability. It is well known, that gene
cally perturbative solutions to the classical equations of m
tion are valid only for short interval of time. The same arg
ment is more pointedly true in the case of quantum op
systems, when one wants to study environmentally indu
decoherence and classicality@6#.

D. Open systems

So far our discussion has been concentrated on clo
systems. When our quantum system is coupled to an e
ronment the evolution is not unitary and a class of interes
phenomena related to predictability appears. Most promin
among them is the emergence of superselection ru
namely that some class of environments produces a r
diagonalization of the density matrix in some phase sp
basis.

So, examination of classicality in presence of an envir
ment requires besides the study of predictability preserva
a quantification of how close the density matrix is diago
to a phase space basis~and what is such a terminology!. In
this context, the SW entropy has been used before: a lo
bound has been computed for a particular class of open
tems@22# ~see also@23,24# for a consistent histories analys
of the classical behavior in such systems and@22,25# for
other measures of predictability!.

Usually the discussion is carried out within the formalis
of the Caldeira-Leggett model, where a one-dimensional p
ticle is evolving under a potentialV(Q) and in contact with
a thermal bath of harmonic oscillators. In the high tempe
ture regime, the corresponding master equation is Markov
and reads

]r

]t
5

1

i\F p2

2M
1V~x!,rG2

g

i\
@x,$r,p%#2

D

\2
†x,@x,r#‡,

~3.48!

whereD52MgkT, k the Boltzmann constant,g a dissipa-
tion constant depending on the details of the coupling.

The analysis of the behavior of this model has been q
thorough, so instead of giving a full treatment we shall
strict ourselves to some remarks that are particularly relev
to our approach and have not been made in the aforem
tioned references.

One question of relevance is whether the characteriza
of predictability for various potentials given in Sec. III
changes by the introduction of a thermal environment. N
for quadratic potentials any coherent state evolves int
Gaussian, the center of which is given by the classical eq
tions of motion~actually there is a stronger statement invo
ing the Gaussian approximation for general potentials@23#,
but we shall not need this here!. Hence the relevant object i
the density matrix

r~x,y!5S p\

a~11s! D
1/2

3expS 2
a

2\
~x21y2!2

as

\
xy1 i

ar

2\
~x22y2! D ,

~3.49!
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where 0<s,1. Up to a Weyl transformation, this is the mo
general Gaussian density matrix. It is straightforward
compute the corresponding SW entropy

I 511
1

2
log S 4a~11s!

1

4s2
1s2a2~11s21r 2!1aD .

~3.50!

Note that the parameters must lie between 0 and 1 in orde
that the function~3.49! corresponds to a true~positive! den-
sity matrix. Now, let us consider the case of a harmo
oscillator. It is known that fort@g21 any initial state ap-
proaches exponentially the thermal state, for which@taking
again the natural choices25(4mv)21]

I .11 log
kT

2p\v
, ~3.51!

which is the classical Gibbs entropy. This implies that
long as our phase space sampling volumeV is much larger
than kT/v ~the size of the thermal fluctuations! one can
meaningfully talk about the particle moving according
classical dissipative equations of motion, fluctuations arou
predictability becoming eventually fully thermal~see@23# for
more details!.

In the free particle case, the interest lies in whether
modification due to the environment is sufficient to caus
reduction in the asymptotical rate of increase of the SW
tropy. Using the extensive calculations in@25# we find that
asymptotically

I .11 log
kTt

\g
. ~3.52!

Hence the free particle exhibits again a logarithmic in tim
increase in its entropy hence essentially destroying the
gree of predictability in the same manner as in the no en
ronment case. But the important point is that the correspo
ing fluctuations are to be interpreted as thermal~hence
classical! rather than fully quantum as in the former case

Now in the case of an open system, the SW entropy a
measure of fluctuations cannot separate between the
induced by the environment and the intrinsic to the syst
itself. What we would like is a quantification of the degre
the distribution function of a quantum open system beha
as a classical one. The key for an answer lies in Eq.~3.4!: the
SW entropy is always larger than the von Neumann entro
The latter enompasses the degree of mixing of the quan
state, hence their difference ought to be a measure of
purely quantum mechanical unpredictability. For the Gau
ian density matrix~3.49! the von Neumann entropy reads

S52 log ~12s!2
s

12s
log s. ~3.53!

Indeed one can check that both for the free particle and
harmonic oscillator in the Caldeira-Leggett environment
long times
1-10
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INFORMATION MEASURES AND CLASSICALITY IN . . . PHYSICAL REVIEW D59 045001
I 2S.0; ~3.54!

hence the fluctuations around predictability of the parti
are asymptotically classical ones.

1. A criterion for pointer basis

It is often stated in the bibliography that coherent sta
are essentially the pointer basis to which a density ma
becomes diagonal, due to interaction with the environm
these being the natural choice of phase space localized s
But some caution should be exercised on that point. A la
class of density matrices can be diagonalized in a cohe
basis, the latter being overcomplete. The requirement is
sentially the existence of the P-symbolf (q,p) given by

r̂5E dpdq

~2p\!n
f ~q,p!upq&^pqu. ~3.55!

Now, recall the property~2.7! of quantum mechanical infor
mation. If a density matrix is diagonal in a given basis, t
corresponding information is equal to the von Neumann
tropy. This can provide a criterion for determining th
pointer basis. Indeed, consider the SW entropy defined w
respect to a particular coherent state family, labeled by
defining vectorj. One ’s task should be then to determi
the family by requiring the minimization ofI j2S.

One can use a result due to Wehrl to improve the cha
terization. If the P-symbol of a density matrix exists and
positive then there exists a lower bound to the von Neum
entropy

S>2E dpdq

~2p\!n
f ~q,p!log f ~q,p!5I P . ~3.56!

Hence the quantityI 2I P wheneverI P exists is an upper
bound toI 2S characterizing the pointer basis. Now, if a
symbol is positive then its distance in norm~determined by
the coherent state metric from the Q symbol is of the orde
\). Hence, a sufficient criterion for the determination of t
pointer basis is the P-symbol corresponding to that basis
coming positive rapidly for all choices of initial states. Su
a basis has been constructed in@26#, using ideas from the
quantum state diffusion picture of quantum open syste
and it consists of Gaussian states with small value of
squeezing parameter.

We should remark at this point, that information theore
criteria seem to be strong enough to discuss the issu
pointer basis, without referring to the notion of the reduc
density matrix. For instance in a combined system living i
Hilbert spaceH1^ H2 , we could verify that the system 1
gets asymptotically diagonalized in the basis of the oper
Â when the quantityI A^ 12S is close to zero. This could als
generalize to the case where there is no natural splitting
tween system and environment, hence the reduced de
matrix is not naturally defined. One then considers the inf
mation associated to some self-adjoint operatorÂ, typically
with degenerate spectrum so that a degree of coarse gra
is to be incorporated, and compare it to the von Neum
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entropy. If technically feasible, this would provide an alte
native way of checking, for instance, the classicalization
hydrodynamic variables or of variables corresponding
Boltzmann-type of coarse graining@1#.

Indeed this construction might easily be seen in the c
text of phase space classicality. One can construct a la
on phase space, consisting of, say, cubic cellsCi with vol-
ume much larger than\ and then consider the operatorÂ

5( il i P̂Ci
, wherel i are real numbers andPCi

the relevant
quasiprojectors. Using the properties of quasiprojectors
an easy task to verify that the corresponding informationI A
is generically of the order ofe for phase space localize
states,e being the classicality function of the quasiproje
tors.

For similar ideas, using the von Neumann entropy to id
tify the most stable states in evolution under an environme
the reader is referred to@27#.

IV. FIELD THEORY

In this section, we shall try to examine whether our resu
can be generalized to a field theory case. A quantum fi
being a system with infinite number of degrees of freed
~an infinite dimensional phase space! is expected to have
much more complicated behavior. In the case of interact
fields, the study of classical behavior is much more com
cated, since as we discussed earlier the notion of predicta
ity is a nonperturbative phenomenon.

The SW entropy is expected to play again an import
role for the identification of classical predictability. But w
should note, that a quantum field is itself a thermodynam
system~due to its infinite number of degrees of freedom!,
hence it would be important to see whether the SW entr
is connected to its proper thermodynamical entropy. It wo
be indeed an appealing picture, if we could~even in the
simple free field case! transfer the notion of entropy due t
mixing in phase space also in the field theory case.

A. The notion of classicality in field theory

A possible divergence between quantum field the
~QFT! and quantum particle mechanics, as far as the issu
classicality is concerned, lies mainly on the facts that~1!
QFT describes a system with infinite number of degrees
freedom and~2! QFT is relativistically invariant.

The question then arises whether these differences
sufficient to necessitate a different approach towards the
sue of classicality. Again, we are going to concentrate on
notion of Hamiltonian classicality, i.e., whether and in wh
regime QFT behaves as a classical field theory. The fact
we have a system with infinite number of degrees of fr
dom, necessitates the consideration of other type of qu
classical domains associated to the field’s thermodynami
hydrodynamic behavior. We shall return to this issue la
but for now we shall concentrate on the possible emerge
of a classical field theory.

The condition for classicality we developed in Sec. III
at first sight sufficiently general to encompass the case
QFT as well. It makes no reference to whether the ph
1-11
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C. ANASTOPOULOS PHYSICAL REVIEW D 59 045001
space is finite or infinite dimensional. But the issue of in
gration in an infinite dimensional space is quite complica
and there is no apparent way of how one would constru
classicality parameter associated to each quasiprojector,
would have an intuitive geometric meaning. Indeed in
attempt to generalize Omne´s theorem for the case of fre
fields Blencowe@28# restricted the consideration to finite d
mensional phase space cells. Such a restriction implie
consideration of essentially a finite number of modes. Wh
this might give sufficient physical information for free field
~studying the modes is standard practice for instance in
mological setting! clearly cannot be transferred to the no
linear case.

On the other hand, the function of the SW entropy a
measure of predictability seems to be unaffected by the t
sition to the infinite dimensional case. Indeed, one can de
coherent states for the fields~we shall give the basic conven
tions later! even in the interacting case and there is a w
defined notion of integration over the infinite dimension
phase space.

The Hilbert space of a quantum field carries a unita
representation of the canonical commutation relations

@F̂~x!,P̂~x8!#5 id~x,x8!, ~4.1!

wherex and x8 are points on a Cauchy surfaceS. We can
define the field coherent states as

uw&5uf,p&5eiF~p!1 iP~f!u0&. ~4.2!

The relation between the complex functionw(x) @an element
of L2(S)] and the phase space coordinatesf and p is de-
pendent on the choice of the representation. Now, if
Hamiltonian is quadratic the vacuum state is a Gaussian~in
either the Schro¨dinger or the Bargmann representation! and
so are our coherent states.

Given then a density matrixr one can define the prob
ability distribution

p~w!5^wuruw&/^wuw& ~4.3!

and from this define the SW entropy as in Eq.~3.1!, where
now the integral measure isDwDw* , which is the well de-
fined Gaussian integral on the field phase space.

Note, that for the free fields the Gaussian nature of coh
ent states reproduces again the lower bound~3.5! for SW
entropy, but in the case of interacting fields this is not a
more true~the vacuum is not a Gaussian!. Also in the inter-
acting field’s case, it makes no sense to consider Gaus
coherent states, for they generically do not exist in the fie
Hilbert space. This marks a significant difference from t
particle QM case where one could always consider and s
the SW entropy minimizing Gaussian coherent states.

For technical reasons therefore we shall be forced to c
centrate only on the free field case. In the case of Minkow
spacetime, time evolution with the free Hamiltonian is rath
trivial. The coherent states are preserved, and the ana
proceeds as in the simple harmonic oscillator case. The
no SW entropy production and a classical state will rem
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classical even as time increases. The same can be show
be true in the presence of an external source coupled line
to the field.

But more interesting is the case of a field in a curv
dynamical spacetime. These cases are relevant in the co
logical context, and to their examination we shall retu
shortly.

B. Field theory in cosmological spacetimes

The evolution of the vacuum states for a field in a tim
dependent cosmological spacetime essentially correspon
a linear canonical transformation acting on the field. Hen
Eq. ~3.23! for the SW entropy is applicable here, provide
that the trace exists, since of nowA andB are operators in an
infinite dimensional Hilbert space. Actually this condition
equivalent to TrK̄K,` and sinceA is bounded equivalen
to TrB†B,`. This is of course the necessary condition f
the Bogolubov transformation to be unitarily implementab
or the total number of created particles to be finite.

In cosmological situations~or at least in the models usu
ally employed! this is not the case, but still one can define
kind of entropy density by restricting the spatial integrati
involved in the trace to a finite region, dividing by its volum
and in the end taking the latter into infinity.

It is usually the case that the Bogolubov transformat
couples only a finite number of modes, in which case it
meaningful to define an entropy per particle by concentrat
on the relevant finite dimensional subspaces.

A case which has been explicitly discussed is the c
where the Bogolubov transformation breaks into two dime
sional blocks involving the modes labeled byk and2k, in
each block the transformation given by a two dimensio
squeezing transformation. Transformations of type~3.26! ap-
pear for instance in pair creation of gravitons~or scalar
fields! from the vacuum.

An important point in this case is that the squeezing
rameterr k is related to the number of created particles
modek,nk by

nk5sinh2r k ; ~4.4!

hence the SW entropy per mode can be written

I k511 log ~11nk! ~4.5!

and the entropy increases with the number of particles
ated. In general the knowledge of the Bogolubov coefficie
in any cosmological model enables us to straightfowar
compute the SW entropy. Such calculations have been d
in a number of cases@29–31# and is not the point we intend
to pursue here. We are rather more interested in some in
pretational issues.

Field classicalization. As we have argued in the previou
section, the SW entropy~or rather the relative SW entropy!
is a measure of the deviation of the system from class
deterministic behavior, while the quantityI 2S is a measure
of the deviation from classical stochastic behavior. Given
fact that in most relevant models the squeezing parame
increase with time~for conformally coupled massless scal
1-12



r
en
iv
u

th
le
W
te
rg
at
er
a

tru
as
ns
ni

in
in
e
te
ar
f

it
m
or
t
es

st
e
s
o-

in
te
em
m

ro
r

tio
ti
th

ar
on
f

el
em
e.
re
n

n
t

de-

SW
f the
vo-

gi-
to
on
n-

on
dis-
r-

sed
py
of

ate,
ery
o-
ite
the
um
g,
les
er
re-

cal
ally
lly
SW
rain-
hat
en-
ider
ical
its
nd

r-
ive

oint

de-
hastic

is
the
clas-
se-

o
a

oxi-

INFORMATION MEASURES AND CLASSICALITY IN . . . PHYSICAL REVIEW D59 045001
field in de Sitter spacetimer k5Ht) we conclude that rathe
than producing classicality, time evolution in time depend
background enhances nonclassical behavior. We have g
detailed argumentation in the previous section, but we sho
also examine a number of possible counterarguments.

We have already examined the case the argument
extreme squeezing in one direction is essentially equiva
to diagonalization of the state in some pointer basis.
argued against this by pointing that classicality and de
minism is essentially a phase space issue. Still, one can a
@32# that in an operational sense the highly squeezed st
correspond to classical states, in the sense that the obs
tionally relevant quantities are field amplitudes rather th
field momenta. Setting aside the measurement-theoretic
of this assertion, we should point out that this notion of cl
sicality is not robust to even small external perturbatio
This can be seen even in nonrelativistic quantum mecha
from inspection of Eqs.~3.39! and ~3.40!. Any interaction
terms couple intrinsically position and momentum uncerta
ties and are prone to increase the small position uncerta
of a squeezed state. In addition it is not robust in the pr
ence of a decohering environment. Even when the sys
couples to the environment via its configuration space v
ables, the pointer basis is not the position basis but o
coherent state type. This has been demonstrated in@14,26#.

Another argument usually put forward is that at the lim
of large squeezing the number of created particles beco
very large and hence can be taken in some sense to c
spond to classical behavior. The problem with this is thaa
priori classicality is insensitive to the number of particl
~one can easily constructSchrödinger cat stateseven for a
many particle system! and there is no guararantee from fir
principles, unless some explicit mechanism being describ
that suppresses such interferences. What is more, a
known from quantum optics the distribution function of ph
tons in squeezed states is highly nonclassical~non-Poisson!
@33#.

Given the fact that field classicalization is important
any discussion of inflation, one should start examining al
natives. Coupling of the fields to an environment might se
to provide a solution to the problem, turning the quantu
fluctuations into thermal ones, and indeed seems quite p
able. But still one has to show that classicality does appea
such system. According to our argumentation the calcula
of I 2S is a good guide for obtaining a classical stochas
process. But still there are some problems. First of all
difficulty of separating between system and environment~in
a nonlinear theory this splitting seems to be quite arbitr
@1,34#!. Second, we should not forget that even the envir
ment undergoes squeezing due to the time dependence o
scale factor and there is no guarantee~at least not from the
well studied examples like the Caldeira Leggett mod!
whether such feature might render classicalization probl
atic. An investigation of this issue will be taken elsewher

Another possibility, of the classicalization of much mo
coarse-grained hydrodynamic~rather than phase space qua
tities as discussed here! is tentatively discussed in@35#.

Phenomenological entropy. The other important questio
is whether the SW entropy for the fields can be taken
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represent the phenomenological entropy of the matter as
fined in the latter universe. This has been argued in Ref.@29#.
This would be indeed an appealing feature, since the
entropy can be conveniently interpreted as a measure o
phase space mixing induced to the field by the classical e
lution.

What entropy actually corresponds to the phenomenolo
cal thermodynamic entropy is often a difficult question
answer. In standard equilibrium thermodynamics the v
Neumann entropy of a thermal density matrix is to be ide
tified with the thermodynamic entropy, by the considerati
of a quantum mechanical version of the macrocanonical
tribution, implicitly acknowledging the openness of the the
modynamic system as coupled to a heat bath.

In the case of cosmology our system is essentially clo
and far from equilibrium. It seems therefore that the entro
ought to be identified with some coarse grained version
von Neumann entropy. The SW entropy is such a candid
involving minimal smearing over phase space and being v
close to Gibbs entropy, but is not the only one. Any therm
dynamic description necessitates the identification of a fin
number of macroscopic degrees of freedom describing
system. Should we wish for such a description in a quant
field, we ought to perform definitely further coarse grainin
as for instance focusing on a set of hydrodynamic variab
characterizing it, or tracing out the effect of higher ord
correlation functions, smearing over spatial or spacetime
gions etc.

The point we want to make is that a thermodynami
description has to be given in terms of essentially classic
behaving quantities. This is not the case of the minima
coarse grained phase space description implied by the
entropy. It seems therefore necessary that extra coarse g
ing would be necessary in order to obtain a quantity t
could naturally be considered as the thermodynamical
tropy. For these reasons we are rather reluctant to cons
the SW entropy as a measure of the actual thermodynam
entropy of the quantum field, and we are restricted to
interpretation as a measure of deviation of classicality a
phase space mixing due to time evolution.

V. CONCLUSIONS

To conclude, we would like to put our results in a diffe
ent perspective, that might turn out to provide an alternat
way to discuss the issue of classicality.

One can use coherent states to define unequal time n-p
functions on phase space for any quantum systems~see for
instance@36# and references therein!. Such objects, provided
they satisfy the Kolmogorov conditions, can be used to
fine a measure on phase-space paths and hence a stoc
process. As expected from the Bell-Wigner theorem this
not true in the case of quantum mechanics. But then
question arises, when is the quantum process close to a
sical process and how do we quantify the notion of clo
ness?

The quantityI 2S we examined in this paper is able t
play this role. This having value of the order of unity is
sign that the quantum mechanical evolution can be appr
1-13
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C. ANASTOPOULOS PHYSICAL REVIEW D 59 045001
mated by a classical stochastic process. Of course, clas
determinism cannot be seen from the inspection of this qu
tity: the evolution of a superposition of two phase spa
localized states in presence of decohering environmen
such an example: the system behaves classically, but
chastically rather than deterministically.

We can easily see that our criterion for a classical s
corresponds to this way of addressing classicality. Inde
given an initial density matrix and the evolution equatio
the ‘‘quantum stochastic process’’ describing the system
phase space is uniquely constructed. As argued, the qua
I 2S can provide a good quantifying criterion for pha
n

ys
-

n,

04500
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space classicality, giving a single quantification even for s
tem with large number of degrees of freedom. But of cour
a more complete and satisfactory description, would be gi
by translating our stated classicality criterion into a stoch
tic process language. This issue is currently our main inv
tigation.
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