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Information measures and classicality in quantum mechanics
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We study information measures in quantum mechanics, with the particular emphasis on providing a quan-
tification of the notion of predictability and classicality. Our primary tool is the Shannon-Wehr| entripy
give a precise criterion for phase space classicality of states and argue that in view(af ltlpisovides a good
measure for the degree of deviation from classicality in closed systemgbame-S (S the von Neumann
entropy plays the same role in open quantum system. We examine particular examples in nonrelativistic
guantum mechanics. Finally we generalize the discussion into the field theory cagthisheing one of our
main motivationy we comment on the field classicalization in early universe cosmology.
[S0556-282(199)02802-1

PACS numbdss): 03.65.Sq, 03.65.Bz, 98.80.Cq

I. INTRODUCTION version of the n-pt functiongl]?).
We must also remark the absence from the discussion of a

The subject of this paper is a discussion on the notion otlear-cut and quantitatively precise criterion for classicality.
classicality as emerging in quantum mechanical systems arn@df course the formulation of such a criterion ought to depend
the possibility of giving a quantification of the nonclassical upon the degrees of freedom one is seeking to study. Very
behavior using an information theoretic measure. The physieften emergent characteristics of classicality are taken as de-
cal context on which we mainly focus is that of quantumfinitive of it, something that might eventually lead to a con-
fields in early universe cosmology. fusion, as for instance when taking the large fluctuations as

Recent years have seen increased activity in the study @haracteristic of classical behavior. A general and unambigu-
emergent classicality, which has led to the formation of newgys criterion could be provided by the consistent histories
concepts and a significant increase in the understanding %i‘pproach to quantum mechanj&s-7], once we have made a
the physical mechanisms underlying the classicalization progpgice of the type of variables on which we are to concen-
cess. Key among the former are the notion of decoherencgie This choice is not always easy to m4k& but even

(eithgr e_nvironmentally inducgd or through Fhe in'grinsic dy'then the technical demands raised by this approach are rather
namics in closed systemand its interplay with noise, set- high, so that it has been possible to treat in detail only a

ting limits to the degree of predictability enjoyed by any number of relatively simple systems

quantum mechanical system. As far as the latter is con- The identification of a classicality criterion and the search
cerned, a large number of illustrative, exactly solvable mod- y

els have been widely studied, mainly in the context of non—Of a measure to quantify it form the backbone of this paper.

relativistic quantum mechanics We argue that classicality ought to be thought of generically
One of the driving forces of this activity has been the@S aphase spacenanifestatioh and in that light the most

need to understand the quantum to classical transition in auitable object for this task is a version of Shqnnon informa-
cosmological settingquantum and early universeln the  tion: the Shannon-WehtSW) entropy[9,10]. This has been
context of the latter, it is well known that a basic premise of¢onsidered before as a measure of quantum and environmen-
the inflationary model is the eventual classicalization of thef@lly induced fluctuation$11,12. o _
quantum fluctuations as the seeds of later structure forma- We expand on this previous work, by tying its properties
tion. Nevertheless in spite of the conceptual importance, it ivith a precise formulation of a criterion of phase space clas-
fair to say that there is not yet a clear consensus on how th@icality. The emergent criterion is influenced by the work of
process of classicalization is effected. The reason for this i§Mne within the consistent histories progr46y. It essen-
partly that the well tested concepts have to be applied to Hally states that a state is to be thpught of as classical if it is
field theoretic setting with infinite number of degrees of free-Phase space concentrated and this property preserved by dy-
dom (hence besides the technical difficulties involved, a poshamical evolution. But here we apend an important distinc-
tulated Sp“t between System and environment is not intullon: CIaSS[CaIIty IS destroyed not Only in view of the |n.CT.'ea.S.e
itively transparentand partly because of the fact that the Of fluctuations but also because of phase space mixing in-
relevant physics are somewhat remote from the better undefluced by the quantum evolution. With few exceptions
stood realm of the low energy world. By this, we mean that 13,14 this has not been focused properly in the existing
it is not easy to precisely identify what is meant by classicaPibliography on classicalization, even though it is a well
behavior and which physical quantities ought to exhibiftst
it the mean field 1], the field modeg2], a coarse-grained
INote that this does not preclude classicality emerging for much
more coarse-grained variables, in particular at the level of hydrody-
*Email address: charis@ffn.ub.es namics.
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studied phenomenon in the context of quantum chaes
e.g.[15] and references thergiand we proceed to examine lolp]=— EI pilogp; . 2.1
it in detalil. In particular we argue that large squeezitypi-

cal for field modes in an expanding universea character- - Thjs is clearly a positive quantity, obtaining its maximum of

istic of nonclassical behavior, something that is implicitly jogN for the total ignorance probability distributiop;

well known in the field of quantum optics. =1/N and its minimum zero for a precise determination of
Our criterion then is argued to entail that the SW entropyan alternative. This incorporates nicely propefty, while

indeed quantifies the deviation from classicality: it takes intOproperty(Z) is guaranteed by the concavity of this function.

account both phase space spreading of the state as well as tHence, any coarse-grainifg— ', with its corresponding

phase space mixing. Hence it can be translated in the SWéstriction map for the probabilititegs— p’ will entail

entropy taking values of the order of its lower bound of

unity. We should stress the appealing fact that a single quan- lalp]<la/[p']. 2.2

tity is sufficient to capture the classicality relevant behavior ) o

in even systems with a large number of degrees of freedonit i not our purpose to give an exhaustive list of the prop-
The plan of the paper is then as follows. In the next secérties of Fhe Shannon mfolrmatlon here, since they are fully

tion some preliminary definitions are given for information cOvered in the relevant bibliograpfjy]. We just restrict

theory. We mainly focus on properties that are useful for thepurselves to two |mp9rtant results.- )

development of our later argumentation. Section Il is the _'F‘ th(_a case _Of contlnu_ous sampling SP@GN'Fh a prot_)-

main one. We give the definitions of the SW entropy, preseni"?‘b'“.ty distributionp(x) with x = &) the Shannon information

some of its properties, state the classicality criterion and pro'—S given by

vide the connection between this and the SW entropy. A

number of examples in nonrelativistic quantum mechanics IQ[p]:—J dxp(x)log p(x). (2.3

are studied so that particular features can be isolated and

commented upon. In the next section the discussion is U js generically not positive and it may not even be bounded
graded to the field theoretic context. Discussing the correqom below. In the case thab=R" and for distributions

sponding generalizations, we finally give a discussion ofyity constant covariance matri it has a lower bound
various proposals for field classicalization as well as whether

SW entropy could be identified with the phenomenological 1

(thermodynamigentropy, appearing in cosmological discus- lo[p]=1+ 5log detK, 2.4
sions.

which is achieved by the corresponding Gaussian probability
distributions.
[l. SHANNON INFORMATION IN QUANTUM Finally, we should note that one can define the relative
MECHANICS information between two probability distributiopsg andp,
(henceforward we drop the subscript referring to sampling

o N space unless explicitly requirgds
Information is largely not an absolute concept. Intuitively

it corresponds to the degree of precision of the knowledge
we can have about a particular system. As such, it has always ~ [P2[p1]= f dxpi(X)[logpi(X) —logpo(X)]. (2.5
to be defined with respect to the questions we want to ask.

When one is dealing with systems exhibiting a degree ofrhjs quantity is always positive and jointly convex with re-
randomness, our knowledge about this is hidden in the asspect to both probability distributions. It is to be interpreted

signment of probabilities to individual events. as the “extra” amount of information contained i, with
When one is dealing with alternatives that can be meanreference tep; .

ingfully assigned probabilitiegeither classical stochastic
processes or quantum mechanics, but notably not quantum
mechanical historigs one has an intuitive feeling of what
properties a good measure of information should héijett Quantum mechanics is an inherently probabilistic theory.
should be small for peaked probability distributions andGiven a quantum stafe one can construct probability mea-
large for spread onegeflecting the fact that there is less to sures for any observable by virtue of the spectral theorem.
be discovered by a measurement or a precise determination Shannon information can first be naturally defined with
in the former casg (2) it should increase under coarse grain- respect to any orthonormal basis on Hilbert spéoence
ing, i.e., when settling for a less detailed description of ouwith a maximal set of commuting observabled we name
system. the basign), then the probabilitie$n|p|n) are constructed

These properties are nicely captured by Shannon’s definand the Shannon informatidi,[ p] can be defined as in Eq.
tion of information: Given a sample spa€® with N ele-  (2.1). Clearly the lower bound ohis here again 0 while the
ments and assignment of probabilitipsfor i € ) then in-  maximum bound is lof whereN is the dimension of the
formation is naturally defined as Hilbert space.

A. The notion of information

B. The quantum mechanical context
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Slightly more generally, one can define Shannon informa- Before proceeding we should be explicit in what we refer
tion with respect to any self-adjoint operadmwith discrete  to here as classicality. A state must satisfy two necessary
spectrum. Since theA==X,a,P,, in term of the projectors requirements in order to be characterized as clas@cagjua-

P, in its eigenspaces we can define again siclassical (1) suppression of interference&) seen as a
wave packet, it has to evolve with a good degree of accuracy
_ according to the classical equations of motion.
alp] ; t(Pnp)logti(Pnp). 2.6 The important point one has to stress here is that we use

the word classicality to refer to the Hamiltonian classical

In such a case the lower bound is not zero, unlédsas limit. Indeed(for instance in many body systejdassicality
nondegenerate spectrum. This comes from the fact that in thaight refer to collectivelhydrodynamic or thermodynanjic
degeneracy case, the probability distribution is a coarseariables characterizing the system. Our object is therefore
graining with respect to the one defined by a maximal set o€oncentrated on the phase space distributions associated with
observables to whicl belongs. a quantum state. So suppression of interferences is implied

There is an important relationship between Shannowvith respect to some phase space “basis,” an issue which is
information and von Neumann(vN) entropy Yp] again very relevant when discussing classical equations of

=—tr(plogp) in the case of discrete spectrum: motion. Of course, given particular assumptions our discus-
sion can involve classicality of collective variables as for
linlp]=Sp]. (2.7 instance center of mass of a many particle system. For such

) o ) ) issues, we refer the reader (8] for details.
The equality holds if is diagonal in then) basis. Hence the  Therefore, classicality is defined with respect ghase
values of the quantitys provide a measure of how close a gpace propertiegrather than configuration space or momen-
density matrix is to be diagonal in the particular basis. Thisym space ones. While phase space classicality straightfor-
can be an important tool, in the context of environment suyyarqly implies configuration or momentum space one, the
perselection rules and the identification of the pointer basiseonyerse is not necessarily true. A state localized solely in
The case of continuous spectrum is rather more interesfsasition (and with a large momentum spréazannot be con-
ing. The projection valued measud(x) associated 10 &  sigered as classical. The fluctuations around the classical
self-adjoint operatoX defines a distribution functiop(x)  path are too large to destroy any sense of predictability.
= (d/dx)tl pE(x) ], with respect to which the Shannon in- \joreover, such a localization is not robust in the presence of
formation is defined. For the case of the position operator oyen small interactions.
on L*(R) we get a lower bound for fixed uncertainty Finally, we should remark that, since the SW entropy is
defined in terms of coherent states, we have found expedient
2 )
L{p]=1+log2m(Ax)%) (28 to employ intermittedly the Schdinger and the Bargmann

saturated by the Gaussian states. A similar result holding forrepresentauon, according to calculational convention.

the momentum distribution ;[ p] these can be combined o _
with the standard uncertainty relation to yield A. Definition and properties

The SW entropy is defined as
[ p]+1[p]=1+logmh. (2.9

— x * *
IIl. SHANNON-WEHRL ENTROPY 'Lp] f DWDW?p(w,w™)logp(w.w?) (3.1
When one needs to discuss the emergence of classical terms of the probability density
behavior from a quantum system, one is in need to quantify
the notion of fluctuations around classical predictability. In p(w,w*)=(w|p|w), 3.2
one dimensional case, the uncertaidtyAp serves well this
purpose, but in systems with many degrees of freedom unwhere|w) is a (normalized coherent state. Given the fact
certainties are not by themselves sufficient to capture théhatw is a complex linear combination of position and mo-
classicalization of the system’s state. Correlations are inmentum[in the standard case of one dimensional harmonic
volved (in the strong form of entanglem@nthat can dis-  oscillator w= (w/24)Y?q+i(1/2hw)*?p.] p(w,w*) can be
gualify even a localized in phase space state from being condewed as a positive, normalizddue to the completeness
sidered as classical. The same situation is of course momelation of coherent statedistribution on phase space. This
important in field theory, where one is working with infinite is invariably called the Q-symbol, or the Husimi distribution.
number of degrees of freedom. It can be shown to correspond to a Gaussian smearing of the
It is therefore important that simple quantities can be usedVigner function(this rendering it positive
to codify the classicality of a state. A particular variant of  There is an ambiguity in the choice of the coherent states,
Shannon information, the so-called Shannon-W&bWl) en-  essentially that they can be defined with respect to arbitrary
tropy, seems well suited to provide such a quantification. Thetate vector on the Hilbert space. Its resolution by demanding
purpose of this chapter is to explain in which sense the studthat our information measure is sharpest, will be dealt with
of this object yields information about the classical behaviorshortly. We just comment here, that standardly the coherent
of quantum states. states can be taken as defined with respect to the vacuum of
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a harmonic oscillator or in the case of many dimensions of The first point we need to stress is that when one tries to
an isotropic harmonic oscillator. Then without loss of gener-give a phase space picture of guantum mechanical evolution
ality, we can representv) as and discuss classicality, the need inevitably arises to intro-
duce a measure of distance on phase space. Indeed, in the
_ X . simplest case of a single particle, to determine classicalit
(Xlw)=(x|ap)=(27ho?) 1/4exp< T +ipx]. (vie5ved as Iocalizatiohgne ?s comparing the area in which ’
(3.3 the corresponding probability distribution is supported with
fi; this criterion is encapsulated in the Heisenberg uncertain-
The SW entropy is the closest quantum object to the notiomies: the phase space sampling has to be in a phase space
of Gibbs entropy(indeed Wehrl was calling it the classical shell of area much larger thdn or correspondingly the state
entropy, in the sense that the coherent states define a cut-of§ viewed as classical if the uncertainty is of the order of
phase space volume, with respect to which a finite and urmagnitude off.
ambiguous notion of entropy can be defined. Its lower bound In essence one needs to introduce a metric on the classical

is determined by two inequalities phase space. This is exactly, what a choice of a family of
coherent states do. For, a coherent state is definddgs
I[p]=1, (3.4 =U(p,q)|£), in terms of any vector of the Hilbert space. As
such it defines a mapping from the phase space to the
Ilp]=Slp]. (3.5 projective Hilbert spac&H. The latter is a Kaler manifold,

. . o thus having compatible metric and symplectic structuges
The former is saturated by Gaussian coherent sttasit is iandQ. The pullbacks of these with respect toform the

only these states that achieve the minimum is a nontrivia . _ .
theorem due to Lielpl7]), while the latter by thermal states metric and symplectic structure respectively on the phase
' space. Hence, any choice of coherent state family defines a

of harmonic oscillator in the high temperature regime. distinct metri h ith t to which classi
We should also remark that by definition, the SW entropy IStinct metric on phase space with respect to which classi-

of a state remains invariant when acting on the state with th(gallty Isto be d_etermln_ed. The question t_hen, translates into
elements of the Weyl groufiranslation in position and mo- questioning which choice of metric is suitable for our pur-
mentun). poses.

: - The answer is that this is largely irrelevant, provided
We should finall k of tant f th ; o . .
SW rZIZtisg (;nltrr](?pi r.?.mgris %e%:;g]ggr ant property o esome mild conditions are satisfied. First of all, we should

note that there is an optimization algorithm for coherent
states of any group, so that the uncertain(@sthe determi-
|[P2|P1]:f DwDw*p, (w,w*) nant of the covariance matjixof the relevant operators are
minimal. In the standard case, this corresponds to defining
X[log ppl(w,w*)—log ppz(w,w*)]. (3.9 coherent states with respect to the family of the Gaussians
ground states of some harmonic oscillator potential. But in

We have that fact, provided we take a sufficiently localized vector [g,
this is not much of a restrictiof.
I[p2lpa]—1[p21+1[p1] The reason is mainly, that one of the important classical-
ity criteria is the stability under time evolution. That is, a
= J DwDw*[log ppl(W'W*)_ log ppz(W,W*)]$0 state is to be considered classical, if the determining criterion

remains during its time evolution. This means that provided
(3.7 we have made a reasonable choice for our coherent state
family, the object one should look is the relative information

since by constructiop,(w,w*)<1. Hence [[p(0)|p(t)] wherep(t) is the evolved density matrix. This
_ object is rather the one that should remain small, if the state
ILpzlpal=I[p2]=1[p1]. (3.8 p is to be assessed as classigabvided of course that the

&)eaks of the phase distribution approximately satisfy some
deterministic equations of motiprHence, the important cri-
terion is eventually dynamical. We should choose a family of
coherent states, that is rather stable with respect to time evo-

We are going to see later, that this inequality is saturate
whenp; is a coherent angd, a squeezed state with the same
center. This property is not true for general probability dis-
tribution; in our case in holds by virtue of the particular
definition of p,, .

B. The classicality criterion 2t is interesting to note, that at least in one approach to quantiza-
. o . tion (Klauder’'s coherent state quantizatiph8]) a metric on the
The point we need to address now, is in which respect thgnhase space is a primitive ingredient of the quantization algorithm
SW entropy is a measure of phase space classicality, or pgo that the phase space can support Wiener meadthis could
differently what is implied by the deviation df from its  mean that that there is a preferred choice of an equivalence class of
lower boundl =1. This goes together with the resolution of metrics, that give rise to unitarily equivalent quantum theories. In

the ambiguity, regarding the choice of coherent states in Eghe case of 2(R") these are the homogeneous metrics of zero cur-
(3.2. vature.
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lution. For harmonic oscillator potentials, this entails a par-tum space are respectively approximate position and momen-
ticular choice forf£). But more generally, given the fact that tum POV measures.

the Gaussian approximation is good for a large class of po- To define such a family of quasiprojectors one needs first
tentials, it would be reasonable to consider the Gaussian cdatroduce a metrigg on phase space and its corresponding
herent states for a larger class of systems. Alternatively, foflistance functior. One can define the quasiprojector corre-
highly nonlinear potentials a good choice might be to takesPonding to a phase space dglthrough its Weyl symbol

for ¢ lowest lying eigenstate of the Hamiltonian, even this 5N o
being not a Gaussian. This becomes rather a necessity when f_(q,p)=|-— J dudve*U* IPVTr(e~1UP=IvQp )
one is dealing with interacting field theory, as we shall ex- 2m

plain in the next section, and in general it seems wise when (3.9

the Hamilt_onian is invaria_nt under a group of symr_netries,v\,here I the dimension of the phase space. The Weyl sym-
for they will be reflected in the choice of the metric. For po|, ought to correspond to a smeared characteristic function.
similar reason, it seems more suitable to consider isotropipne can define such one by considering, for instance

with respect tag metrics for many dimensional systems.

The question of course remains, what exactly is measured "dp’ )
by the SW entropy. The answer we will give here is simple: fc(a,p)= fc(z 7y exp(—d“[(q,p);(a’,p") D).
SW entropy is a measure of how much the “shape” of the & (3.10

phase space distribution associated to a gtateviates from

the corresponding to coherent states. What we mean byo each such projector one can associate a numalyerich
shape, can be intuitively viewed in the Wigner function caseis roughly the ratio of volumegM]/[C]. Here[ ] stands
The 1- o contour of the Wigner function corresponding to a for volume of a phase space cell aktis the margin of the
coherent state is a circlghe characterization of circle fol- phase space ce@l, defined as the region where the smeared
lows from the choice of metric associated with this family of characteristic function o€ is appreciably different from 1
coherent statgsith areafi/2. The SW entropy of a stageis  (well inside the ce)l and 0 (outside the cell If also, €

a quantification of the difference between this circle and the>eflz, wherel is the maximum curvature radius of the
1- o contour associated witp. In particular, two charac- houndary ifC, Pc is close to a true projector, since the
tensncs“ are qugntljledi) the area enclosed in the contour; following properties are satisfiedl) |Pc— PZ|,<ce|Pcy
(2)'the squeezing” of the contour, i.e. the ratio of its Iength and (2) if C and C' do not intersect|Pc—Pcly

to its areahence how much structure a state developes in the- .- max(Pcly ,|Perly), With ¢ and ¢’ constants of order

scale off). , , unity. Such phase space cellegular in Omns terminol-
In what follows, we shall try to explain both our interpre- ogy), optimally have a value of of the order of /[ C])"2.
tation of the SW entropy and its relevance for the classicality-q, 5 given family of quasiprojectofsneaning in particular
characterization of a state. Later we shall give particular €Xz; choice of metric on the phase spaoee can view the
amples of our interpretation for the case of squeezed Stateﬁptimal choice ofe for each cell as a function from the
measurable phase space cells to the real positive numbers.
We shall call it theclassicality functiorassociated with this
One needs first to give a precise criterion for the notion ofchoice of metric.
classicality of the state, and then examine how the use of the
SW entropy, allows us to express this criterion in a quanti- 2. The classicality criterion

fied form. _ Given a family of quasiprojectors, one can say that a state
The apprqach we shall follow, is very much based on thq@ is localized within a phase space c€| if it is an
ideas of Omng[5], himself arguing within the context of the e-approximate eigenstate &, i.e., if

consistent histories approach to quantum mechanics. We be-
lieve his line of reasoning to allow for a sharp and precise [|Pel ) — ||| <e. (3.11)
characterization of classicality.

In quantum mechanics one says that a state is localizeBut, we should remark, that localization in phase space does
with respect to some observaldidf it is an eigenstate of one not imply classicality. As we have seen localization in phase
of A’s spectral projection. Actually approximate eigenstate isspace is relative to a choice of a phase space metric. Hence it
a sufficient characterization. That is we can say tffais  is not a stringent criterion of classicality, let alone that one
localized in the range of the spectrufm,b] of A if needs still ensure that the state remains localized during its
[|E([a,b])— || <e|b—a| for somee<1. (Note, a metric classical evolution. This is an essential requirement, that
on the spectrum is implicitly assumed. largely removes the redundancy due to the freedom of choos-

For the phase space localization, one does not have préng a phase space metric.
jectors onto phase space ranges, but one can use rather un-Hence a classicality criterion ought to read as follows: A
sharp phase space projectdtisese are termed quasiprojec- pure statey is considered to exhibit classical behavior in
tors by Omne). These are essentially positive operatorsome time interval, if with respect to some choice of a
valued (POV) measures on the phase sp&t8], such that family of quasiprojectors, ig localized in phase space cells
their marginal measures with respect to position and momer,, such that(1) C; is correlated withC,. by the classical

1. Phase space quasiprojectors
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equations of motion and2) [C,]<[C,], whereC, is the  system, since the environment would smear fast the oscilla-
smalleste regular phase space cell that contains the union ofions of the Wigner function at the scale ®f[14,20.
all C; ’s. The SW entropy proves to be a meaningful calculational
The second condition is added here, so that time evolutiotool, taking the above discussion neatly into account. For it
is not trivial, i.e. there is indeed some meaning to a coarseéoes not only measure the spread of the Wigner function, but
grained description of the classical equations of motion. Analso its shape. In other words, SW entropy measures the
other important point stressed here, is that classicality is cordegree of approximation of the classical equations of motion
tingent upon a particular time interval, outside of which phe-to the Ehrenfest’'s theorem mean values. The time parameter
nomena of wave packet spreading might invalidate theassociated with the increase of the SW entréphenever
localization condition. This is even apparent for the case ofhis increases is essentially the parameter determining the
free particle evolution, as we shall examine later. breakdown of the classical approximation.
The above criterion was for pure states. In the case of Finally we should remark that a choice of coherent states
mixed stategand relaxing the condition for unitary evolu- defines naturally a family of quasiprojectors by
tion), it should be generalized to include density matrices.

This is straightforwardly done by substituting the approxi- dpdq
mate eigenstate conditid.11) by the requirement c:f (2wﬁ)“|qp><qp|' (3.13
[[PcpPc—plli<e (312 These have actually been used by Omitethe context of
consistent histories to prove a semiclassical theorem. In view
the rest following as before. of our previous discussion, we can remark that computing

The above definitions contain nothing more than the in-the relative information between an initial coherent state and
tuitive idea, that a state is classical if its Wigner functionthe evolved state at timeprovides a good measure of how
exhibits a number of sufficiently concentrated peaks, each ahuch a particular Hamiltonian preserves or degrades classi-
which follows with some degree of approximation the clas-cal predictability.
sical equations of motion. Such a criterion has been widely
used in the literature. The point we insist is rather the impor- 3. Estimating the SW entropy

tance of the introduction of the metric in the phase space, as Before examining some concrete examples, we should at

the one determining localization. While intuitive arguments,s . ovamine how the phase space spread of a staie

based on uncertainty principle might usually be sufficient forencoded in the SW entropy.

the determination of classicality. But what one may overlook™ | .. < consider first the case ¢fbeing an approximate

in such considerationgarticularly when one is dealing with _. ; ; o
. X X . : .~ eigenstate of a phase space projed®gr with classicality
many dimensional or field systejns the loss of predictabil- parametere. The probabilty distribution associated Ry,

ity (|.e.3 th? large QYOWth of fluctuationslue to extreme namely (z|P¢|z)/TrP¢ is within an approximation of a
squeezing in some directions of the phase space distribution D . o 7

i : characteristic function o€ divided by the trace. But this is
Such a phenomenon will generically cause the state not to b

; ) . Siso a smearing of the distribution function corresponding to
an approximate eigenfunction of the relevant phase SPaCE 6 enstate). Hence due to the concavity of the entro
projector, thus invalidating our criterion of classicality. This 9 ' y Py

is particularly true in recent discussions on classicalization of'® have
cosmological quantum field<]. [C]
This is a point worth emphasizing: the classicality crite- I[4]<log(TrP¢c)+O(€)=log O(e)
rion is not so much sensitive on the phase-space spread of (2mh)"
the wave packefprovided it is smaller than the typical scales (3.14

of the classical solutionsas to the development of structure L . . o
0s P which is essentially the number of “classical states” within

at the scale of:. In a regime where chaos is expected to S .
d P R}1ase space volum@. Reasoning inversely if for a staig

appear classically, the phase space distribution gets rapid X : g
squeezed and as such cannot be said to satisfy either of tfﬁgue for instance to time eVOIunt'O"ftS SW entropy becomeg
uch larger than lo§C](2=#%)"), its corresponding classi-

two conditions. The classicality parameter in that case blow§ AN : )
rapidly up. Systems in that regime are not expected to exhibi ality parameter for its tl_me evolution grows essentlally_as
classical behavior. ast ad[ ] hence becoming of the order or larger than unity.
The criterion we have given can be said to be somewhat
restrictive: it corresponds to a particular type of classicality,
essentially Hamiltonian determinism. Classicality emerges The evaluation of SW and relative SW entropies for states
also in open systemflike the quantum Brownian motion that are obtained from implementing a linear canonical trans-
models we discuss in Sec. ll)DIn that case it is reasonable formation on coherent state is quite important for a number
to drop the conditior{2) as the environmentally induced dif- of reasons. First, it gives an intuitive example of the way
fusion would tend to increase the spread around the classicahtropy is connected with defomation of the shape of the 1-
path. This introduced stochasticity is classical rather tharontour. Second, this type of transformation appears natu-
guantum. On the other hand, in such a case, the chaotic syslly in time evolution of physically interesting systems:
tems mentioned earlier could behave as a classical chaotidamiltonian evolution in the Gaussian approximation and in

4. Linear canonical transformations
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particular quantum fields in nonstatic spacetimes. Our resultSrom this one gets the following expression for the SW en-

in this section will be valid for a description of such cases. tropy of a transformed staigor brevity just useA andB as
Recall, that given a family ofGaussiah coherent states arguments

|w) on some Hilbert space?(R") the annihilation operators

are naturally defined by

i , I[A,B]=1+Iog[de(1—KK)]’l’2=1—%Trlog(l—EK).
a(é)lwy= & w'w) (3.19

(3.23

with £,we C" and can be written aa(&)r =a'&* . _ o _
A linear canonical transformation is implemented by al€t Us examine some special illustrative cases.

unitary operatoS= e whereA is a self-adjoint quadratic to ~ Pure rotation In such a cas&=0 and hencel[A,0]
=1 (the transformed state is a coherent tate

5 ot

a anda One dimensional cas@he general squeezing transforma-
S?a( £)S 1= é(ATé:) n éT(BTg), (3.16 tion is of the form

whereA and B arenXn complex matrices to be viewed as SaS 1=coshra—e'*sinhra’ (3.24

linear operators on the underlying real vector sp&28.
They are the parameters of the squeezing transformation and

preservation of the canonical commutation relations enforce! termis(/)of the positive real and the phase. In this case
the Bogolubov identities: =—e¢e'%tanlr and the SW entropy for the squeezed states

reads
ATA-B'B=1, (3.17
I[r,¢¢]=1+logcostr. (3.2
AAT-BBT=1, (3.18
o ot This illustrates our earlier arguments sirrcs interpreted as
A'B=B'A, (3.19

the eccentricity of the ellipse corresponding to ther ton-
four of the squeezed state Wigner function. For larghe

where we use the bar to denote complex conjugation of a; . e
matrix. It is well known that the set of these transformation eII_lpse becomes extremely prolongated in a direction deter-

forms a representation on our Hilbert space of the symplectieq'r_}_ed byqbdand the S.W ehntrop_y grogvs Iinearlty w]i(th v of
groupSp(2n,R). Transformations witlBB=0 are sometimes wo-mode Sq“eez'ﬂg’ I€re IS a b-parameter family o
denoted as rotationgorming a U(n) subgroup and ones squeezing transformation in two dimensions. A widely stud-

i o ied case is the Caves-Schumaker squeezing, well studied in
generated by operatofsnot containing terms mixing and . . o .
a' as squeezing. It is straightforward to check that the matri>zhe field of quantum optics. This is generated by the unitary

elements ofSin a coherent state basis are given by operator
(z|S|w)= (def(1—KK))~ 4 S=exp(re'?alal—re '?%a,a,) (3.26
1
><exp( —|z|%12— |w|?/2+ EZ* Kz* and corresponds to the matrices
1 coshr 0 0 —sinhre'?
+ —wKw+ z*A1w>. (3.20 - = .
2 A 0 coshr)’ —sinhre'¢ 0
HereK stands for the matrix (3.29
K=A"1B. (3.21) which yield the value
The transformed vacuuf®;A,B) is defined by the action I[r,¢]=1+2logcostr. (3.28

of Son|0) and a transformed stape; A,B) by the action of
the operatotJ (w) of the Weyl group oj0;A,B). Since the
SW entropy is invariant under phase space translation, o
can use the transformed vacuum for its calculation.

The corresponding probability distribution is

Note that here the parametehas a different physical inter-
n;?retation. If our system represents twaonidentical one
dimensional particles, then the paramatés a measure of
the entanglement of the total state. This is a nonclassical
feature; if our classical limit is to correspond to two classical
particles the entanglement between them must be minimal.
1 1 _ Hence SW entropy can quantify also this deviation from
X exp< - |W|2+ EW* Kw* + EWKW . classicality(provided of course that the coherent state family
with respect to which it is defined, is constructed from a
(3.22 factorized vacuum stake

Po.a.s(W,W*) = (de(1—KK))~*?
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5. Relative entropy P(x)=(deM*M 277;1)—1/4
It is interesting also to compute the relative SW entropy 1
between a coherent and a transformed state. Without loss of ><ex;< — _(X_q)i(LM*l)ij(x_q)jﬂﬁpixi ,
generality one can consider the coherent state to be the 4h
vacuum. (3.32
The probability distribution associated to the transformed
state|z;A,B) is where the matriced and L are such that:*MM* and

#2121 * L are the position and momentum covariance matri-
. — ces respectively. Since the expression is invariant under a
Pzas(W,W*) = (de(1-KK)) U(n) matrix right acting on bott. andM we have the free-
1 dom to define them in terms of the matrik of equation
X ex;{ —|w—2z?+ E(W* —Z*)K(W* —Z¥) (3.21) through the following relations:
1 Q=LM '=(26%) Y(1+K)(1-K)"%  (38.33
+>(w—2)K(w=2) |; 3.29
7 (W—2)K(w Z)) (329 M =(ReQ) 2 (3.3
hence the relative entropy with respect to vacuum is L=QM (339
or, more importantly the inverse relationship

I[O|z;A,B]=Iog[de(l—EK)]’l’er|z|2 K=(1+Q) X1-Q). (3.36
+ E(z* Kz* +2Kz). (3.30 Now, for the Gaussian approximation we shgll utilize a
2 result of Hagedori21]. For a large class of physically rel-

evant potentialgbounded from below, growing slower than

Hence the relative entropy is a sum of a term, purely from® Gaussianand time interval[0,T], the Gaussiar(3.39

the squeezing plus a term containing the contribution of th(gvolves to another Gaussian of the same type with the center

Weyl translation. Note that in the case D£0 (pure linear dgtermmed by the clas_s|cal equation 9f motion, a phfase
transformatioh the inequality(3.8) is saturated. It is a rea- given by the corresponding classical action and the matrices

sonable conjecture, that this is true only for this particularA(t)’ B(t) evolving according to the equations

class of states, i.e., for Gaussians with the same center. d i
aM(t)zﬁL(t), 3.39
C. Squeezing induced by quantum evolution
1. The Gaussian approximation %L(t)zZiV(z)[q(t)]M(t).
We now come back to our main point. We shall consider (3.39

the evolution of SW entropy for closed quantum systems,
their evolution governed by a Hamiltoniak=p?%2m In fact they can be shown to satisfy
+V(q), in the Gaussian approximation. The latter consists :
essentially in appro_ximating the_ evolution of Gaussian_ states, M(t)= Ja(t) M(0) + ! Jga(t) L(0), (3.39
by the action of a linear canonical transformation. This is of dq(0) 2 dp(0)
course exact for systems evolving under a quadratic Hamil-
tonian and a good approximation for systems evolving in a L(t)= ap(t) L(0)—2i ap(t) M(0)
macroscopically varying potentight least within a particular ap(0) dq(0) '
time interval while the spread of the wave function has not (3.40
become extremely largeWe shall see that the evaluation of ) ) .
the SW entropy gives a self-consistency check for the valid- 10 Study the SW entropy production, we will consider the
ity of the Gaussian approximation. evolution of an initial coherent stafpenceK (0)=0] so that
In this section, it is more convenient to switch back to theM (0)=(2¢%)"?1 andL(0)=(24?) " "1.
Schralinger representation for our Hilbert space vectors. ) .
Choosing our coherent state basis by the relation 2. One dimensional case

In the case of a free particle the complex numbdrand

Wi=(2ﬁ0’2)_1/2qi+i(0'2/2ﬁ)1/2pi, (33]) L read
i
(o212, 5 2\-1
i.e., choosing an isotropic and factorized Gaussian defining M(t)=(20%) "+ 2m(20 )~ 4, (3.4)
state, we get the following expression for a translated vector
o L(t)=(20%) 12 (3.42
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Using the equation$3.39, (3.40 we find that the SW en- phenomenon.For a potentiaV(q) = — smk’q?, it is easy to

tropy at large timest>o?m behaves like verify that for coherent states defined by=(4mk) ! the
evolution is as squeezing in E¢3.24) with parameters
=kt and ¢=m/2. Hence the SW entropy evolves as

I=1+log (3.43

80°m’ I(t)=1+log coshkt (3.47

In a free particle time evolution produces strong squeezingand asymptotically grows witkt.
towards localizing a particle in the position moment(aa- In the case of general potentials in one dimension, one
tually for free evolution momentum basis is some sort ofcan make some qualitative predictions. W(q) is also
pointer basis since superposition of two states with differenbounded from above by,,, for particles withE>V,, the
momenta are asymptotically suppressed—though not expaesults of the free particle case ought to be relevant: degra-
nentially as in the presence of environmemtence eventu- dation of predictability growing logarithmically with time.
ally classical predictability breaks down for the free particle,For U-shaped potentials and low energi@gnce mimicking
though rather slowly. In view of our previous discussion thea harmonic oscillatgrpredictability ought to remain good.
classicality parametee is increasing logarithmically with Rugged potentials that vary within microscopic scales rap-
time. More precisely taking into account E@.14) a state idly destroy predictability(tunnelling effects plus caustics
that can be considered as localized in a volwhef phase typically weaken the effectiveness of the Gaussian approxi-
space initially will stop being localizethpproximate eigen- mation.
state of the corresponding quasiprojettaiter time

3. Higher dimensional systems

- 40°mV (3.44) When considering systems with many degrees of free-
Th ' dom, Egs.(3.39, (3.40 can be the basis of a number of
qualitative estimations. For instance, if the classical equa-
Note the persistence of predictability for higher mass partions of motion admit runaway solutioripositive Lyapunov
ticles. exponentg the matricedV andL are going to have exponen-
For a harmonic oscillator Hamiltonian the choice of thetially increasing with time entries and typically a behavior of
standard coherent states wittf=(4mw) ! gives constant the type of inverse harmonic oscillator is to be expected.
SW entropy, corresponding to maximum possible predict- Hence, the SW entropy is going to increase linearly at
ability. It is nonetheless instructive to see what would haplong times, eventually bringing again a breakdown of classi-
pen, had we not been wise to make this choice. The relevamility. Hence we arrive at a conclusion, noted by many au-
guantities read now thors, that quantum mechanical systems the classical ana-
logue of which exhibits chaotic behaviolmeaning
i ] exponential dependence on the initial conditiprigpically
M(t)=(20%)coswt + 5—(20?%) " Visinot, do not have a good classical linfii]. It is interesting to note
(3.45 that the SW entropy plays a role of a measure of mixing. By
this we mean, the thin spreading of an initial phase space
L(t)=(20?) Y2coswt— 2imw(202) Y2sinwt. distribution into a given partition of phase space, so that its
(3.46 components eventually occupy larger and larger number of
partition cells. This suggests that the SW entropy plays a role

It is easy now to verify that the SW entropy remains boundedimilar to the classical Kolmogorov—Sinai'ent'ropy of g:lassi-
for all times, taking values around+llog(4mwa?)|. Hence, cal dyn_amlcal systemgf course not s_hf_;mng its invariance
the harmonic oscillator potential generally preserves classiProperties and related measures of mixing.
cality for large class of phase space localized states, the SW In view of our inequality(3.8) the difference between SW
entropy remaining bounded by the limit for the proper choice€ntropies at initial time and timecan be viewed as an esti-
of the quasiprojectors monitoring the classical evolution.mation of the upper bound to the relative entropy between
This also verifies that our classicality estimation based on thé€ classically evolved ste_atweyl transforming according to
SW entropy is sufficiently stable with respect to the choiceclassical equation of motigrand full quantum evolution.
of coherent state family. A further remark is at point here. Classicality and in par-
Of interest is also the case of the inverse harmonic oscilticular predictability is a “nonperturbative” issue. Even in
lator potential. In the context of inflationary cosmology, it is the Gaussian approximation knowledge of the full solutions
sometimes stated that a number of modes that evolve for ¥ the classical equations of motion is necessary in order to
time as inverse harmonic oscillators, undergo amplificatior?Stab“Sh whether or not there exists gradual deterioration of
of their fluctuations and hence become “classicalized.” As
mentioned in the Introduction, we believe that in such claims
there is a confusion between the notion of large fluctuations 31g see this it is sufficient to compute the time evolution of a
and classicality. Amplified quantum mechanical fluctuationssuperposition of two spatially localized states under this potential.
are not classical fluctuations. They only imply lack of pre- There is no way one could interpret their amplified fluctuations as
dictability, which can be a purely quantum mechanicalclassical however large they might become.
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the amount of predictability. It is well known, that generi- where 0<s<1. Up to a Weyl transformation, this is the most
cally perturbative solutions to the classical equations of mogeneral Gaussian density matrix. It is straightforward to
tion are valid only for short interval of time. The same argu-compute the corresponding SW entropy

ment is more pointedly true in the case of quantum open

systems, when one wants to study environmentally induced 1 4a(l+s)

decoherence and classicalf#]. I=1+3 log

o 202(1+ 2412+
D. Open systems Ag? ota(1+s™Hro)ra

So far our discussion has been concentrated on closed (3.50
systems. When our quantum system is coupled to an env

ronment the evolution is not unitary and a class of interesting, " function(3.49 corresponds to a tru@ositive den-
phenomena related to predictability appears. Most promlnensﬁty matrix. Now .Iet us consider the case of a_harmonic
among them is the emergence of superselection rules ' '

namely that some class of environments produces a rap%scnlator. Itis known that fot>y" " any initial state ap

diagonalization of the density matrix in some phase Spacgroqches exponentlallly th_e thermzjll state, for whitking
basis. again the natural choice“=(4mw) -]

So, examination of classicality in presence of an environ-
ment requires besides the study of predictability preservation I=1+log
a quantification of how close the density matrix is diagonal
to_a phase space bagend what is such a terminologyin which is the classical Gibbs entropy. This implies that as
this context, the SW entropy has been used before: a Iow%ng as our phase space sampling voluvhis much larger
bound has been computed for a particular class of open SY#han kT/w (the size of the thermal fluctuationsne can
tems[22] (see alsd23,24] for a consistent histories analysis meaningfully talk about the particle moving according to

of the classical behavior in such systems 468,29 for classical dissipative equations of motion, fluctuations around

other measures of predictability . o ,
. e . - . redictability becoming eventually fully therm@ee[23] for
Usually the discussion is carried out within the formalism Fnore detaili;/ 9 y ully alee[23]
of the Caldeira-Leggett model, where a one-dimensional par- In the free particle case, the interest lies in whether the

ticle is evolving under a potentia(Q) and in contact with modification due to the environment is sufficient to cause a

a thermal bath of harmonic oscillators. In the high temperas.qction in the asymptotical rate of increase of the SW en-

ture regime, the corresponding master equation is Markoviaﬂopy' Using the extensive calculations[i25] we find that

Note that the parametarmust lie between 0 and 1 in order

2nho’ (3.5D

and reads asymptotically
ap B 1 p2 Y D kTt
E—m{m"‘V(X)vp _E[X’{p’p}]_h?[x,[x’p]]’ |21+|Og E (353
(3.48

Hence the free particle exhibits again a logarithmic in time
increase in its entropy hence essentially destroying the de-
X X X . gree of predictability in the same manner as in the no envi-
The analysis of the behavior of this model has been quitgonment case. But the important point is that the correspond-
tho_rough, so instead of giving a full treatment we shall "®-ng fluctuations are to be interpreted as thernfiagénce
strict ourselves to some remarks that are particularly releva@lassica) rather than fully quantum as in the former case.
tp our approach and have not been made in the aforemen- N in the case of an open system, the SW entropy as a
tioned references. _ .. measure of fluctuations cannot separate between the ones
One question of relevance is whether the characterizatiop,qyced by the environment and the intrinsic to the system
of predictability .for various potentials given n Sec. IIC jiself. What we would like is a quantification of the degree
changes by the introduction of a thermal environment. Nowy gistribution function of a quantum open system behaves
for quadratic potentials any coherent state evolves into ag 5 cjassical one. The key for an answer lies in(Ed): the
Gaussian, the center of which is given by the classical equagyy entropy is always larger than the von Neumann entropy.
tions of motlon_(actually thgre is a stronger statement iNVOIV- The |atter enompasses the degree of mixing of the quantum
ing the Gaussian approximation for general potenfid,  ga1e hence their difference ought to be a measure of the
but we shall not need this hgrdHence the relevant object is purely quantum mechanical unpredictability. For the Gauss-

whereD=2M ykT, k the Boltzmann constant; a dissipa-
tion constant depending on the details of the coupling.

the density maitrix ian density matrix3.49 the von Neumann entropy reads
ah 1/2
p(X,y)= —) B S
a(l+s) S=—log(1—s)— 1TS|09 S. (3.53
a as ar )
><ex;< - %(x2+ y2) — S XY ﬁ(xz—yz) , Indeed one can check that both for the free particle and the

harmonic oscillator in the Caldeira-Leggett environment at
(3.49 long times
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| —S=0; (3.59 entropy. If technically feasible, this would provide an alter-
native way of checking, for instance, the classicalization of
hence the fluctuations around predictability of the particlehydrodynamic variables or of variables corresponding to

are asymptotically classical ones. Boltzmann-type of coarse grainirid].
o _ _ Indeed this construction might easily be seen in the con-
1. A criterion for pointer basis text of phase space classicality. One can construct a lattice

It is often stated in the bibliography that coherent state®n phase space, consisting of, say, cubic dg|lsvith vol-
are essentially the pointer basis to which a density matriume much larger tha# and then consider the operatar
becomes diagonal, due to interaction with the environment= Ei)\ilsci- where\; are real numbers anflc, the relevant

téuatse being th? natl:]ral lfjhgme of phas; spetlﬁetlocqhtzeg IStat%{?Jasiprojectors. Using the properties of quasiprojectors it is
ut some caution should be exercised on that point. A largg, easy task to verify that the corresponding informatign

erent generically of the order ot for phase space localized

basis, the latter being overcomplete. The requirement is ®Htates, e being the classicality function of the quasiprojec-

sentially the existence of the P-symlddly,p) given by

tors.
dod For similar ideas, using the von Neumann entropy to iden-
;):J' pda £(q,p)|pg)(pal. (3.55 tify the most stable states in evolution under an environment,
(2mh)" the reader is referred {@7].

Now, recall the property2.7) of quantum mechanical infor-
mation. If a density matrix is diagonal in a given basis, the
corresponding information is equal to the von Neumann en- In this section, we shall try to examine whether our results
tropy. This can provide a criterion for determining the can be generalized to a field theory case. A quantum field,
pointer basis. Indeed, consider the SW entropy defined witheing a system with infinite number of degrees of freedom
respect to a particular coherent state family, labeled by théan infinite dimensional phase spads expected to have
defining vectoré. One ’s task should be then to determine much more complicated behavior. In the case of interacting
the family by requiring the minimization df,—S. fields, the study of classical behavior is much more compli-
One can use a result due to Wehrl to improve the characzated, since as we discussed earlier the notion of predictabil-
terization. If the P-symbol of a density matrix exists and isity is a nonperturbative phenomenon.
positive then there exists a lower bound to the von Neumann The SW entropy is expected to play again an important

IV. FIELD THEORY

entropy role for the identification of classical predictability. But we
should note, that a quantum field is itself a thermodynamical

dpdq system(due to its infinite number of degrees of freedpm
S= _f (Zm}l)nf(q,p)log f(a.p)=lp. (3.56 hence it would be important to see whether the SW entropy

is connected to its proper thermodynamical entropy. It would
Hence the quantity —|p wheneverlp exists is an upper P€ indeed an appealing picture, if we couleven in the
bound tol — S characterizing the pointer basis. Now, if a P Simple free field casetransfer the notion of entropy due to
symbol is positive then its distance in noiaietermined by ~ Mixing in phase space also in the field theory case.

the coherent state metric from the Q symbol is of the order of

#). Hence, a sufficient criterion for the determination of the A. The notion of classicality in field theory

pointer basis is the P-symbol corresponding to that basis be-

comin_g positive rapidly for all choices pf in.itial states. Such (QFT) and quantum particle mechanics, as far as the issue of
a basis has been constructed(#6], using ideas from the classicality is concerned, lies mainly on the facts ttit

quantum state diffusion picture of quantum open SyStemSQFT describes a system with infinite number of degrees of
and it consists of Gaussian states with small value of th‘freedom and2) QFT is relativistically invariant

sgueezing parameter. The . . .
. . . . . guestion then arises whether these differences are
We should remark at this point, that information theoretic fficient to necessitate a different approach towards the is-

L . . S
criteria_seem to be strong.enough to d!scuss the issue 'Jlje of classicality. Again, we are going to concentrate on the
pointer basis, without referring to the notion of the reduce otion of Hamiltonian classicality, i.e., whether and in what

aﬁgs'?' matan For|_:nstance n Iz:\jcombmtehd ts;:ﬁtem Il\t/mg T %egime QFT behaves as a classical field theory. The fact that
loert spaceri,© M, we cou yenfy at the systém 1 e have a system with infinite number of degrees of free-
gets asymptotically diagonalized in the basis of the operatoaom’ necessitates the consideration of other type of quasi-

A when the quantity ., — Sis close to zero. This could also ¢|assjcal domains associated to the field’s thermodynamic or
generalize to the case where there is no natural splitting bewdrodynamic behavior. We shall return to this issue later,
tween system and environment, hence the reduced densif(t for now we shall concentrate on the possible emergence
matrix is not naturally defined. One then considers the inforyf 3 classical field theory.

mation associated to some self-adjoint operdtptypically The condition for classicality we developed in Sec. Ill is
with degenerate spectrum so that a degree of coarse grainirg first sight sufficiently general to encompass the case of
is to be incorporated, and compare it to the von Neuman@QFT as well. It makes no reference to whether the phase

A possible divergence between quantum field theory
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space is finite or infinite dimensional. But the issue of inte-classical even as time increases. The same can be shown to
gration in an infinite dimensional space is quite complicatecbe true in the presence of an external source coupled linearly
and there is no apparent way of how one would construct & the field.

classicality parameter associated to each quasiprojector, that But more interesting is the case of a field in a curved
would have an intuitive geometric meaning. Indeed in andynamical spacetime. These cases are relevant in the cosmo-
attempt to generalize Omseheorem for the case of free logical context, and to their examination we shall return
fields Blencowe 28] restricted the consideration to finite di- shortly.

mensional phase space cells. Such a restriction implies a

consideration of essentially a finite number of modes. While B. Field theory in cosmological spacetimes

this might give sufficient physical information for free fields : o .
(studying the modes is standard practice for instance in cos- The evolution of the vacuum states for a field in a time

mological setting clearly cannot be transferred to the non- dependent cos_mological space_time e§sentially co_rresponds to
linear case a linear canonical transformation acting on the field. Hence

On the other hand, the function of the SW entropy as &a- (3.23 for th? SW.entropy is applicable here, prpvided
measure of predictability seems to be unaffected by the trant-h‘".It Fhe trace exists, since of nowandB are operators in an
sition to the infinite dimensional case. Indeed, one can definlaofm'te d|menS|(£1aI Hilbert space. Actually this condition is
coherent states for the fieldwe shall give the basic conven- €quivalent to TKK << and sinceA is bounded equivalent
tions latej even in the interacting case and there is a wellto TrB'B<<w. This is of course the necessary condition for
defined notion of integration over the infinite dimensionalthe Bogolubov transformation to be unitarily implementable

phase space. or the total number of created particles to be finite.
The Hilbert space of a quantum field carries a unitary In cosmological situationgor at least in the models usu-
representation of the canonical commutation relations ally employed this is not the case, but still one can define a
kind of entropy density by restricting the spatial integration
[D(x),[T(x")]=i8(x,x"), (4.1)  involved in the trace to a finite region, dividing by its volume
and in the end taking the latter into infinity.
wherex andx’ are points on a Cauchy surfae We can It is usually the case that the Bogolubov transformation
define the field coherent states as couples only a finite number of modes, in which case it is
meaningful to define an entropy per particle by concentrating
(W)=, )= P(M*@D) gy, (4.2 on the relevant finite dimensional subspaces.

A case which has been explicitly discussed is the case

The relation between the complex functimix) [an element where the Bogolubqv transformation breaks into two djmen-
of L%(3)] and the phase space coordinatesand 7 is de- sional blocks involving the mode_s labeled byand .—k, in
pendent on the choice of the representation. Now, if thé@ch block the transformation given by a two dimensional
Hamiltonian is quadratic the vacuum state is a Gausian Sdueezing transformation. Transformations of {26 ap-
either the Scirdinger or the Bargmann representajiamd ~ Pear for instance in pair creation of gravitofisr scalar
so are our coherent states. fields) from the vacuum.

Given then a density matrix one can define the prob- An impqrtant point in this case is that the squeezing pa-
ability distribution rameterr, is related to the number of created particles on

modek,n, by
p(W) = (w|p|w)/{w|w) 4.3 n,=sinter; (4.9

and from this define the SW entropy as in £8.1), where  hence the SW entropy per mode can be written
now the integral measure BwDw*, which is the well de-

fined Gaussian integral on the field phase space. lyk=1+log (1+ny) (4.5
Note, that for the free fields the Gaussian nature of coher-
ent states reproduces again the lower bo(®#) for SW  and the entropy increases with the number of particles cre-
entropy, but in the case of interacting fields this is not anyated. In general the knowledge of the Bogolubov coefficients
more true(the vacuum is not a Gaussjarhlso in the inter- in any cosmological model enables us to straightfowardly
acting field’s case, it makes no sense to consider Gaussiamompute the SW entropy. Such calculations have been done
coherent states, for they generically do not exist in the field’sn a number of casg®9-31 and is not the point we intend
Hilbert space. This marks a significant difference from theto pursue here. We are rather more interested in some inter-
particle QM case where one could always consider and studgretational issues.
the SW entropy minimizing Gaussian coherent states. Field classicalizationAs we have argued in the previous
For technical reasons therefore we shall be forced to corsection, the SW entropfor rather the relative SW entropy
centrate only on the free field case. In the case of Minkowskis a measure of the deviation of the system from classical
spacetime, time evolution with the free Hamiltonian is ratherdeterministic behavior, while the quantity- S is a measure
trivial. The coherent states are preserved, and the analysig the deviation from classical stochastic behavior. Given the
proceeds as in the simple harmonic oscillator case. There fact that in most relevant models the squeezing parameters
no SW entropy production and a classical state will remairincrease with timefor conformally coupled massless scalar
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field in de Sitter spacetimg,=Ht) we conclude that rather represent the phenomenological entropy of the matter as de-
than producing classicality, time evolution in time dependenfined in the latter universe. This has been argued in[26f.
background enhances nonclassical behavior. We have giverlis would be indeed an appealing feature, since the SW
detailed argumentation in the previous section, but we shoul§Ntropy can be conveniently interpreted as a measure of the
also examine a number of possible counterarguments. ph_ase space mixing induced to the field by the classical evo-
We have already examined the case the argument thition. _
extreme squeezing in one direction is essentially equivalent What entropy actually corresponds to the phenomenologi-
to diagonalization of the state in some pointer basis. W@l thermodynamic entropy is often a difficult question to
argued against this by pointing that classicality and deter@nSwer. In standard equilibrium thermodynamics the von
minism is essentially a phase space issue. Still, one can arglumann entropy of a thermal density matrix is to be iden-
[32] that in an operational sense the highly squeezed statdied with the thermodynamic entropy, by the consideration
correspond to classical states, in the sense that the obsen®-2 quantum mechanical version of the macrocanonical dis-
tionally relevant quantities are field amplitudes rather tharffibution, implicitly acknowledging the openness of the ther-
field momenta. Setting aside the measurement-theoretic truffodynamic system as coupled to a heat bath.
of this assertion, we should point out that this notion of clas- N the case of cosmology our system is essentially closed
sicality is not robust to even small external perturbations@nd far from equilibrium. It seems therefore that the entropy
This can be seen even in nonrelativistic quantum mechanic@Ught to be identified with some coarse grained version of
from inspection of Eqs(3.39 and (3.40. Any interaction Yon Neumann entropy. The SW entropy is such a candidate,
terms couple intrinsically position and momentum uncertain/NvoIving minimal smearing over phase space and being very
ties and are prone to increase the small position uncertainfg/0Se t0 Gibbs entropy, but is not the only one. Any thermo-
of a squeezed state. In addition it is not robust in the pres(_1ynam|c description ne_cessnates the identification o_f a finite
ence of a decohering environment. Even when the systefiUMber of macroscopic degrees of freedom describing the
couples to the environment via its configuration space variSyStem. Should we wish for such a description in a quantum
ables, the pointer basis is not the position basis but of &€ld, we ought to perform definitely further coarse graining,
coherent state type. This has been demonstratEti4ij26. as for ms_ta_nce.focusmg ona set of hydrodynamlc variables
Another argument usually put forward is that at the limit charact_erlzmg |t_, or tracmg_out the effept of hlgher_order
of large squeezing the number of created particles becom&@rrelation functions, smearing over spatial or spacetime re-
very large and hence can be taken in some sense to corr8ONS €tc. , ,
spond to classical behavior. The problem with this is taat _ 1he point we want to make is that a thermodynamical
priori classicality is insensitive to the number of particles d€Scription has to be given in terms of essentially classically
(one can easily construSchralinger cat statesven for a behaving quantities. This is not the case of _the minimally
many particle systejrand there is no guararantee from first C0arse grained phase space description implied by the SW
principles, unless some explicit mechanism being describe@NtropPY- It seems therefore necessary that extra coarse grain-
that suppresses such interferences. What is more, as {& would be necessary in order to obtain a quantity that
known from quantum optics the distribution function of pho- could naturally be considered as the thermodynamical en-
tons in squeezed states is highly nonclassinah-Poisson tropy. For these reasons we are rather reluctant to conS|_der
[33]. the SW entropy as a measure of the actual thermodynam_lcal
Given the fact that field classicalization is important in €Ntropy of the quantum field, and we are restricted to its
any discussion of inflation, one should start examining alteriNtérpretation as a measure of deviation of classicality and
natives. Coupling of the fields to an environment might seenPh@se space mixing due to time evolution.
to provide a solution to the problem, turning the quantum
fluctuations into thermal ones, and indeed seems quite prob-
able. But still one has to show that classicality does appear in
such system. According to our argumentation the calculation To conclude, we would like to put our results in a differ-
of | =S is a good guide for obtaining a classical stochasticent perspective, that might turn out to provide an alternative
process. But still there are some problems. First of all thevay to discuss the issue of classicality.
difficulty of separating between system and environn{gnt One can use coherent states to define unequal time n-point
a nonlinear theory this splitting seems to be quite arbitraryfunctions on phase space for any quantum systeme for
[1,34)). Second, we should not forget that even the environinstance36] and references thergirSuch objects, provided
ment undergoes squeezing due to the time dependence of ttieey satisfy the Kolmogorov conditions, can be used to de-
scale factor and there is no guarantatleast not from the fine a measure on phase-space paths and hence a stochastic
well studied examples like the Caldeira Leggett mpdel process. As expected from the Bell-Wigner theorem this is
whether such feature might render classicalization problemrot true in the case of quantum mechanics. But then the
atic. An investigation of this issue will be taken elsewhere. question arises, when is the quantum process close to a clas-
Another possibility, of the classicalization of much more sical process and how do we quantify the notion of close-
coarse-grained hydrodynami@ther than phase space quan-ness?
tities as discussed heris tentatively discussed if85]. The quantityl —S we examined in this paper is able to
Phenomenological entropyrhe other important question play this role. This having value of the order of unity is a
is whether the SW entropy for the fields can be taken tcsign that the quantum mechanical evolution can be approxi-

V. CONCLUSIONS
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mated by a classical stochastic process. Of course, classicgphace classicality, giving a single quantification even for sys-
determinism cannot be seen from the inspection of this quartem with large number of degrees of freedom. But of course,
tity: the evolution of a superposition of two phase spacea more complete and satisfactory description, would be given
localized states in presence of decohering environment iby translating our stated classicality criterion into a stochas-
such an example: the system behaves classically, but sttie process language. This issue is currently our main inves-
chastically rather than deterministically. tigation.
We can easily see that our criterion for a classical state
corresponds to this way of addressing classicality. Indeed,
given an initial density matrix and the evolution equation,
the “guantum stochastic process” describing the system in | would like to thank J.J. Halliwell, A. Zoupas, and A.
phase space is uniquely constructed. As argued, the quantiBoura for discussions and comments. The research was sup-
|—S can provide a good quantifying criterion for phase ported by Generalitat de Catalunya by grant 96SGR-48.
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