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Black holes and the SYM phase diagram
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Making combined use of the matrix and Maldacena conjectures, the relation between various thermody-
namic transitions in super Yang-MillSYM) theory and supergravity is clarified. The thermodynamic phase
diagram of an object in DLCQ M theory in four and five non-compact space dimensions is constructed; matrix
strings, matrix black holes, and blagkbranes are among the various phases. Critical manifolds are charac-
terized by the principles of correspondence and longitudinal localization, and a triple point is identified. The
microscopic dynamics of the matrix string near two of the transitions is studied; we identify a signature of
black hole formation from SYM physic$§S0556-282199)03604-9

PACS numbds): 04.70.Dy

I. INTRODUCTION AND SUMMARY otherwise the black hole fills the longitudinal direction and
becomes a black strifgWe will call the transition atN
XS a localization transition. Other geometrical, but non-

) ; . amongyngitudinal, effects of this sort may also be expedi@H
different phases reflect the dynamics via the stability or |t there existed a single framework—one description that

metastability of various configurations, while order param-ggjizes the different phases of M theory—then this theory
eters often characterize global properties. M or string theorgnould exhibit the critical phenomena associated with these
is no exception in this regard. various transitions. The matrix theory conjecture proposes
In particular, two thermodynamic transition mechanismssych a frameworkiU(N) SYM on a torus is supposed to
in M or string theories have recently been a focus of themanifest a rich structure of M or string theory phases such as
literature. One example occurs when the curvature near thglack holes, strings and D-brangd. SYM thermodynamics
horizon of a supergravity solution becomes of the order ofs then endowed with a cornucopia of critical behaviors.
the string scale; the state becomes “stringy,” and acquiresield theoretically, transitions between SYM phases are pos-
an alternative string theoretical description, either by a persible as functions of the size and shape of the torus, the YM
turbative string or by supersymmetric Yang-MillSYM)  coupling, the temperature, and the rank of the gauge group.
D-brane dynamicq1]. This metamorphosis might be re- A complementary recent conjecture of MaldacéBz9)
garded as a phase transition in the embedding theory, and jgovides us with the tools to study SYM thermodynamics in
known as the correspondence principle. A second transitiofegimes previously considered intractable. It states that the
mechanism is associated with the mechanics of localizing gacroscopic physics of M or string theory in the vicinity of
state in a compact direction. Of particular interest in discretgome large charge sour¢a regime accurately described by
light-cone quantizatioilDLCQ) is the localization effect in  supergravity, is equivalent to that of super Yang-Mills
the longitudinal directiorR,. [or Ry, in the infinite momen-  theory. Finite temperature SYM physics acquires in certain
tum frame(IMF)] [2,3,4,5. Particularly, a state with fixed regimes a geometrical description, that of the near horizon
rest massM andN units of DLCQ momentum satisfies the region of near-extremal supergravity solutions. Renormaliza-
condition tion group(RG) flow is mapped onto transport in the geom-
etry about the horizon; correlation functions in the SYM
probe different distances from the horizon as one changes the
=q L ) separation of operator insertions relative to the correlation
length (thermal wavelengthin the SYM.
. i _ Our plan is to use the Maldacena conjecture, along with
If the system characterizes an object of sigethen we need e interpretation of the SYM physics from the matrix theory
ro<R, to localize the object. For example, for a black hole perspective, to piece together the phase diagram of an object

The thermodynamic phase structure of a theory is an e

2|z

R, <

satisfying the equation of statdr,=S, we need in DLCQ M theory. In parallel, we will end up making state-
ments about the critical behavior of SYM thermodynamics
N>S, (2 on the torus well into non-perturbative field theory regimes.

IThis intuitive argument ignores the effects of gravity. The mo-

*Email address: mli@theory.uchicago.edu mentum of an object back-reacts on the nearby geometry and in
TEmail address: ejm@theory.uchicago.edu particular changes the available proper longitudinal volume; such
*Email address: isaak@theory.uchicago.edu effects do not affect the conclusi@f), however[5].
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“coexistence phase” of a matrix string with SYM vapor. On
FIG. 1. The proposed thermodynamic phase diagram fopthe the upper left part, the system evaporates into a weakly
+1d SYM on the torus, or the DLCQ IIA theory, obtained by coupled SYM gas, over sufficiently short time scales that one
tracking an object in matrix theory. On the horizontal axis is the IIA cannot think of the ensemble as that of a single object in
string coupling, which is the aspect ratio of the SYM torus. Thespacetime. There is a “triple point,” a thermodynamic criti-

vertical axis is the density of states of the object. cal point of the DLCQ string theory where the three transi-
tion manifolds coincide.
We focus on type IIA theory off? with p=4,5 (4+1d A brief description of the physics of the diagram is as

and 5+ 1d SYM theory. One reason for this is that gravita- follows: In type Il DLCQ string theory onTP, with p
tional interactions are longer-range, and sufficiently strong to=45, there exists alongitudinally wrappegl Dp-brane
be important for state transitions, in lower dimensionsphase; it is unstable at the Banks-Fischler-Klebanov-
(higher p). Also, the cases wittp=1 and p=2 require  Susskind(BFKS) point (the horizontal line aN~S in the
slightly more effort; and the case=3 is conformal—the diagram to the formation of a black hole because of longi-
SYM couplinggy is dimensionless, so that quantitative con-tudinal localization effects. Along another critical curithe
trol is required for some questions to be addressed. We contiagonal line abové&l~S), the Dp brane freezes its strongly
fine this report to a more qualitative sketch of the phaseoupled excitations onto a single direction of the torus, mak-
diagram; for example, we ignore numerical coefficients ining a transition to a perturbative string through the corre-
state equations. We hope to return to a discussion of thepondence principle. In this regime, the thermodynamics is
situation for p<3 elsewhere. In particular, the casps that of a near-extremal fundamentdB) string supergravity
=3,2 are relevant to both matrix theory and string theory insolution, with curvature at the horizon becoming of order the
anti—de Sitter space, and thus their phase diagrams should bgging scale. The correspondence mechanism also applies on
rather interesting. the other side of the BFKS transition; in this case, a matrix

Our main conclusions come in two pieces. The first con-black hole makes a transition to a matrix string when it ac-
sists of an overview of previous observatidds3,5,9,6, put  quires string scale curvature at the horizon. A coexistence
in a new unifying perspective. Figure 1 summarizes the situphase, where both matrix string and SYM gas excitations
ation. It is the phase diagram traced out bsiragle objectin contribute strongly to the thermodynamics, may exist in the
matrix theory onT* or T°. We are assuming that the differ- region indicated on the diagram; this depends on the extent
ent states we track are characterized by long enough lifeto which the object persists long enough to treat it using the
times so that it makes sense to describe them thermodynamisethods of equilibrium thermodynamics.
cally, as(metastable phases. In super Yang-Mills, one has in  Our second set of results concerns the dynamics that leads
mind starting the system with all scalar field vacuum expecto the correspondence transition, and is summarized by Fig.
tation values bounded in some appropriately small region2. The plot depicts the mutual gravitational interaction en-
such that the interactions sustain a long-lived cohesive statergy between a pair of points on a typi¢tiermally excited

In the figure, the limit of validity of the SYM description macroscopic matrix string, as a function of the world-sheet
for the DLCQ string theory is determined by the upper rightdistancex along the string separating the two points. This
curve. In the shaded region, the theory is sufficiently stronglypotential governs the dynamics of the matrix string near a
coupled at the scale of the temperature that it is not accuslack hole or black brane transition, as it is approached from
rately described by super Yang-Mills theory; rather, onethe weak coupling side. A bump in the potential occurs at the
must pass to the six-dimension@,0) theory [10] for p  thermal wavelengtiN/S for p=4,5 (five or four noncompact
=4, or the ill-understood “little string” theon{11,17 for  spatial directions in these dimensions, the correspondence
p=>5. We will see that the dynamics of interest to us occurgransition to a black hole is indeed caused by the string’s
outside this region. We identify several phases in SYM orself-interaction, as discussed fia3]. For smallerp (more
the torus; a black hole phase, a string phase, a phage of noncompact spatial directionghere is no bump; similarly,
+ 1-dimensional strongly interacting SYM, and perhaps ain [13] the self-interactions could not cause a spontaneous
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collapse to a black object. We will see that the height of the (i) This theory is equivalent to anM(,I,) theory on the

bump is proportional to the gravitational coupling, such thatDLCQ background we denote bptix TPxR®~P, where

it “confines” excitations of the string on the strong-coupling D*!is a 1+ 1 dimensional subspace compactified on a light-

side of the correspondence transition. like circle of radiusR, , and the torusT® has radiiR; (i
This result supports a suggestipty,15 to describe the =1...p). The map between the two theories is given by

black hole phase as clustered matrix SYM excitations of size

N/S. These correlated clusters were invoked in order that the |§| i

object withN>S can be localized in the longitudinal direc- R, VTR’ )

tion. Such a localization necessarily involves the longitudinal

momentum physics of matrix theory. We find that a plausiblewith N units of momentum along, .

argument for the dynamics with this potential gives the pre-  (ji) The dynamics of the Mheory in the above limit can

viously identified correspondence curves as the boundarigse described by a subset of its degrees of freedom, thist of

of validity of the matrix string phase. FOM<S, one finds  pg pranes of theﬁtheory, up to a certain UV cutoff.

the transition to the interacting+1 SYM phase shown in The two propositions above, in conjunction, are referred

Fig. 1; while forN>S, one finds the transition to the matrix {5 55 the matrix conjecturd, 17).

black hole phase. Accounting for the latter transition requires =

taking into consideration longitudinal momentum transfer ef- T-dualizing on theR;'s, we describe the DO brane physics
fects as in14]; we justify this by a string theory amplitude by thep+1d SYM of N Dp branes wrapped on the dualized

calculation involving winding number exchange in a dualtorus. We remind the reader of the dictionary needed in this

picture. We thus conclude that we have identified the charProcess

acteristics of the microscopic mechanism of black hole for- R=TT. =T

mation from the SYM point of view. “0sls Tp=0sls,
The plan of the presentation is as follows: in Sec. Il, we o

review the two conjecturegnatrix and Maldacenawe will b 12

use in the analysis of the phase diagram. In Sec. lll, we bring 09s=0s—— Ei::S- ®
together previous observations with some new ones to map
out the phase diagram for the DLCQ matrix string. Section _ o - )
IV extends our arguments at the triple point to the cases of N€ first line is the M-lIA relation, the second that of

singly and doubly charged black holes. We also discuss a to -duality. The limit(3) then translates in the new variables
mechanism for clustering of SYM excitations for the singly 1©

charged case, at the BFKS point. Section V discusses th ) _ _ ,
self-interaction of the matrix string, the identification of the %7%0, with g§=(2m)P ?gea’ P32 and 3, fixed,
bump potential and comments about its dynamics. We out- ®

line in the Appendices the calculation of the potential, and &here the nomenclatu@ and3, refers to the coupling and

scattering amplitude calculation relevant to the issue of Ion-radii of the corresponding +1d U(N) SYM theory, when-
gitudinal momentum transfer physics. P 9 Y,

S : . . ever it is well defined in this limit, i.e., fop=<3.
As we were finalizing the manuscript, a paper dlscussmge R, .
related issue§l16] came to our attention. For p>3, we see from Eq(6) thatgs— e, the dilaton at

infinity diverges(i.e., in the UV of the field theory, accord-
ing to Maldacena'’s conjectuf&]); this is a statement of the
Il. A COUPLE OF CONJECTURES non-renormalizability of the corresponding SYM: New phys-
A. The matrix conjecture ics sets in the UV. Fop=4, the D-branes physics is the IR
. . . _limit of the six-dimensiona(2,0) theory; while forp=>5, it is
A convenient way to summarize the matrix theory conjec-that of a weakly coupled 11B Neveu-Schwarz 5-brahiss-
ture is to say that DLCQ M theory ofi” with N units of  1,rang [18,19. We ignore hereafter all cases wig>5. In
Iog;itudinal momentum is a particular regime of an auxiliarysummary, only at low enough energies the-#d and 5
“M theory” which freezes the dynamics onto a subsector of+ 1d SYM yield a proper coarse-grained description of the
that theory. Consider such an Nheory, with eleven- needed dynamics.

dimensional Planck scaﬁ,, [which we denote (_I\/I_p|)] on a

p+1d dimensional torus of radR;,i=1...p, andR the B. The Maldacena conjecture
“M theory circle” of reduction to typellA string theory, in It is proposed 8] that in the limit(6), one can identify the
the limiting regime physics of the SYM QFT at different energy scales with the
supergravity solution that is cast by the branes, whenever
_ _ I_g |_pI _ such a solution is well defined. One is to identify string
lp—0, with x=— andy;=— fixed, (3) theory excitations of the supergravity background with those
R Ri of the quantum field theoryQFT); this is essentially a cor-
. respondence between closed and open string dynamics.
andN units of KK momentum alongr. It is proposed that Here, we will study finite temperature physics. We will
[7,17] therefore make use of the thermodynamic version of the
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above statement, which identifies the finite temperature B. Validity of SYM
vacuum of the SYM describinly Dp branes with the geom-  Gjyen that we are working with matrix theory aif and

etry of the horizon region of the near extremal supergravityrs e first question that must be addressed concerns the
solution the branes cast about them, whenever such a SO'Uélidity of the description, given that SYM 41d and 5

tion is gensible{g]. In partic_ul_ar, we can extract_the_ thermo- +1d are non-renormalizable. New degrees of freedom are
dynam|c§ of SYM at finite temperature inits - non- required to make sense of the SYM dynamics as we probe it
perturbe_ltlve regimes. Correlation functlons in the SYMj, the UV, i.e. as we navigate outward in the corresponding
probe different distances from the horizon in the supergravg,,e qravity solution. These new degrees of freedom for
ity solution as one changes the separation of operator iNSe&vM 4+1d and 5-1d are associated with the onset of
tions relative to the SYM correlation lengtthermal wave- strong coupling dynamics; the validity of the theories at dif-

length; coarse graining the SYM theory to lower ENergieStarant energy scales is then determined by looking at the size

corrgsponds. to moving towards to the center.of the SUP®I5¢ the dilaton vev at different locations in the supergravity
gravity solution, up until the near extremal horiz£0].

solution. For finite temperatures, physics at the thermal

Our strategy will be to use the _Maldacena _conje_cture S Gavelength of the SYM is identified with physics at the ho-
tool, to study the thermodynamics of matrix strings andrizon of the near extremal solutid®,21]

black holes; and conversely, to learn about the phase dia-

gram of supersymmetric Yang-Mills theory on the torus. u(7-pr2
dsyy=a’| —=—=do{+gyVd,NUP~32d0Z_ 1.
Ill. A THERMODYNAMIC ROAD MAP gy VdpN

(12
A. Preliminaries

A DLCQ IlA theory descends from the DLC®! theory
described above; we choose string scale compactification

We are looking at a fixed time and radial slice; the radial
variable isU, the g;'s are coordinates along the brane with
identificationo~ o+ 2 ; d, is a numerical coefficient; and
R~lg fori=1...p—1, ) Eé(]) is the location of the horizon, related to the SYM entropy
with
UP~9~(g?) 3S2NV2, (13
Rp:gsls |g|:9s|§: (8)

and a perturbative IIA regime

The dilaton VEV is

2 (3—p)/4
d,N
9vdp ) (14)

g.<1. 9 3¢:(277)2_p9\2/( g7 P

We can in principle relax Eq7) at the expense of introduc- The finite temperature vacuum of thet4d and 5+1d
ing new state variables, and a more complicatewtl richef  SyM is a valid thermodynamic description of the DLCQ 1A

phase diagram; for simplicity, we will stick to this “llA  theory (by the two conjectures stated earjiethen
regime.” Using the equations in the previous section, we can

write the dictionary between our lIA theory and the matrix e?|y, <1=S<NEP/(T=pg-t (15
SYM ?
) B B Note that this is a purely geometric statement, in terms of the
_ p—2 p—3 . . . . . .
gy=(2m)""“(ags)""", horizon area and string coupling; it will be seen to be insen-
. sitive to finite size effects due to the transverse torus. We
Yi=ga fori=1...p-1, then choose to work on a two dimensional cross section in
the S-g5 plane of the thermodynamic phase diagram, with
2p=2a, (10 fixed N>1. In principle, one is to take the thermodynamic
limit N—o with N/S fixed, to see criticality; transition be-
szfflzp:ggflap, tween phases at finitBl discussed here are smooth cross-
. overs. It is expected that, in the infiniké¢ limit, the physics
with tends to the appropriate critical behavior.
Let us for a while ignore the effects of the transverse
= (12) torus. In the regime where the curvature of the supergravity
R, solution at the horizon is less than the string scale,

a/

We chose Eq(9) so that we hav&; <X
analysis later.

We study finite temperature physics of this IIA theory the SYM statistical mechanics obeys the equation of state
with the finite temperature vacuum of the correspondind9,21,22
SYM. As mentioned in the introduction, we confine our
analysis top=4 andp=5. Ef °~ S P (gh)P 3N PVETP, 17

o, simplifying our S>N(P-6/(p=3)g 1 (16)
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FIG. 3. The entropyS versusgs phase diagram showing the  FIG. 4. For the convenience of the reader, we reproduce Fig. 1:
region of validity of the SYM description, and the boundary be- The proposed thermodynamic phase diagram forpgheld SYM
tween the free and interacting phases, ignoring finite size effectsn the torus, i.e., the DLCQ IIA theory.

We assuméN,S>1, andgs<1, and fixN for a given diagram.

-2
. . S~9g,°. (19
Beyond this regime, we have weakly coupled SYM, roughly

a free gas ofN? gluons. These statements are graphicallyTnis is a statement independent fand p. At g.~N~2
summarized in Fig. 3. ~N, Y4, whereN,q.is the string oscillator level, there exists
Our assumption that finite size effects, due to the compac;, interesting critical point
tification of theo; variables, are of no relevance is the state- We next deal with finite. size effects in the interacting
ment that, for high enough temperatufee. for thermal

lenaths short h with t to the effecti . +1d SYM phase which are due to the other r&ii This is
wavelengins short enough with réspect to the eliecive SIZE§, o matic since, unlike the free case, the strongly coupled
of the torug, the local thermodynamics is similar to that of

. . Lo SYM may acquire at finite temperature a nontrivial vacuum;
the uncompactified case. The rest of this section is the stu y acd P

fthe breakd fhi S Id like t int r example, a vacuum characterized by a holonomy sewing
ot the breakdown of this regime; we would Tike 10 paint overy, , ,qq together. It is in such a regime that Susskind observed
Fig. 3 new phases arising due to the compactification of th

back d | el " that th t for the casep =3 that the effective size of the SYM box is
ackground. In particular, we wit argue that thé geome rybigger than3,; [6]. In the spirit of Susskind’s transition, and

describing the interacting+1d SYM phase gets modified inspired by the existence of a matrix string phase on the left

due _to the two transition mechanisms outlmgd in the Intrp-of the phase diagram, we suggest that the finite size effect
duction; consequently, the correspondence line of equatio

) Ban be probed by comparing the Gibbs energies of the inter-
(16) is changed. acting 1+1d andp+1d phases. Using Eq17), we get a

critical line at
C. Finite size effects

A finite size effect in the supergravity regime that was S~Ng. *, (20
determined in the work di2,3,4,3 is the effect of the DLCQ
radiusR, on the geometry. We saw from E@) that a black ~ independent op and matching onto the “triple point” of
hole is localized longitudinally wheN>S. The black hole correspondence. Even so, for these valueS,oN andgs,
equation of state is the 1+ 1d SYM is not described by the supergravity solution
whose equation of state we used. The analogue of Fig. 3 with
p=1 has the correspondence curve on the strong coupling
side of the line wher@®=1; in other words, the D string
supergravity solution is strongly coupled, as noted 9

The process of minimizing the Gibbs energies between th&lowever, the S-dual is the weakly coupled supergravity so-
black hole and interacting SYM phases yields a black holdution of a fundamental IIB string source; its equation of
phase as in Fig. 4, independent of which is the BFKS State Is the same as the one used above, given that the en-

observatior{2,3,4); but we now see that the Maldacena con-tropy is to be calculated in the Einstein frame. The curvature
jecture justifies the procedure. at the horizon of the S-dual solution becomes of order the

The Schwarzschild black hole geometry will becomeString scale at precisely E(R0) [9], beyond which a matrix
stringy when its curvature near the horizon becomes of th&tring description emerges. We can further check the correct-
order of the string scale; the emerging state is a matrix string
in the matrix conjecture language, i.e. &1 state withZy
holonomy onZ. ;. Minimizing the Gibbs energy between the 2riguratively speaking; we have dropped numerical coefficients in
matrix string and matrix black hole phases leads to thehis analysis; strictly speaking, this critical “point” may be a mani-
Horowitz-Polchinski correspondence curidel13] fold of dimension greater than 0.

N 2
Efn 9~Ei"m9(§) : (18

044035-5



MIAO LI, EMIL MARTINEC, AND VATCHE SAHAKIAN PHYSICAL REVIEW D 59 044035

ness of this conclusion by matching tipe- 1d interacting S€€s a transition to the matrix black hole phase as the tem-
SYM gas equation of state with that of the matrix string, theperature is lowered only ifin the IIA variable$
latter being the dominant phase on the other side of this
correspondence curve. The result is again 26). We con-
clude that thep+ 1d interacting SYM makes a transition to a g>N"12 (23
matrix String at Eq(20). This is shown in Fig. 4.

From the supergravity side, we note that, both fhe
+1d SYM—1+1d SYM transition and the matrix black This is clear from Fig. 4.
hole—matrix string transition are correspondence regimes Finally, we note that we assumed above that there exists a
where the geometry, that of a near extremal fundamentakell defined matrix string description fad<S. In this re-
string and that of a black hole respectively, has curvature &jime, the thermal wavelength on the matrix string is smaller
the horizon of order of the string scalé]. On the other than the UV cutoff imposed by the discretized nature of the
hand, the BFKS transition is that of |Ongitudina| localization matrices. Our procedure may be equiva|ent to an ana|ytica|
of the supergravity solutiofb]. _ continuation of the matrix string phase into a regime where

We can now understand the observation of Susskind fronge description may not be fully justified; this is in the same
the phase diagram of Fig. 4. From the interactingt 1d  spirit as the extension of the Van der Waals equation of state
SYM side, one can consider the effective box sifies the  into the gas-liquid coexistence region, which one uses to
critical thermal wavelengthsas one approaches the various identify the emergence of the liquid phaks]. For small
transitions. The effective box size is defined By .;~1, enough couplingys, we expect the matrix string to evapo-
where as usual the temperature is determined ff®m rate into a perturbative SYM gas, as shown on Fig. 4. Fur-

~E/S. This yields for theN~ S transition thermore, the regimil<S s similar to the Hagedorn regime
S S (NG2)2©-P o1 [24,24, in that the temperature remains constant as the sys-
et~ 2p(NG5) ' (22) tem absorbs heat. We speculate thatRhkeS regime of the

matrix string near the triple point is characterized by a coex-
istent phase of a string with SYM vapor. We defer a detailed
Sei~3iYN=3 g/N. (22)  analysis of this issue to future work.
ot =i pds As a unifying probe for all the transitions, we observe that
The bound of Susskingequation(3.5) of [6]] is simply that, the “mass per unit chargey defined in Eq(1) scales on the
starting with thep+1d SYM phase at high temperature, one various transition curves as

and for the matrix Stringd+1d SYM transition

Matrix String-p+1d SYM Transition-q 1~ gel

Matrix String-Coexistence Phase Transition *~1

1

Matrix String-Black Hole Transitior-q~ ~g§ﬁls

Black Holep+1d SYM Transition-q~*~g2ko Pl

with the effective coupling IV. COMMENTS ABOUT CHARGED PHASES

2 _ 2N (24) In this section, we will focus on the triple point, where the
et =JsN- correspondence and localization effects coincide, and present
general considerations of relevance to singly and doubly

From the point of view of the DLCQ string theory charac- charged black holes. We will see that, at the critical point,
terized by the parametery, | andN, this scaling on the charged black holes are characterized N8> 1. For the
transition curves is a non-trivial signature of a unifying singly charged case, by making use of 't Hooft holonomies
framework underlying the physics of criticality of the theory. on the torus, we will sketch a simple dynamical mechanism
Note also that th«ggN combination isnot the 't Hooft cou- by which the system can cluster its SYM excitations at the
pling of the matrix SYM description, Eq10); recall thatgs;  triple point so as to account for the rafN/S.
is a modulus of the torus compactification. Let us begin by rephrasing part of our previous analysis in
From the point of view of field theory, the various transi- a slightly different language, using the IMF formalism. Con-
tions that we have identified are predictions about the thersider a black hole i® dimensions arising from M theory on
modynamics of 4 1d, 5+1d SYM on the torus well into TP"1, and defineD + p=10. Denote the size of the M theory
non-perturbative field theory regimes. circle by R, and suppose the other circles have the charac-
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teristic sizesR; as in Sec. Il. The horizon radiug of a black e R
hole of masM is Ty~ T 2 (31)
0

whereq is the rapidity of the boost needed to fit the hole in
the longitudinal box. The temperature of emitted quanta must
be the same as the temperature of the gas on the string;

at the correspondence point where the horizon size is thequating the two expressiofi30) and(31), we find

19 13
D-3_ pl “pl

"o TRR-R, N(R

(D-3)/2
) (25

string scald§~lg,/R. To reach the correspondence point for 12 12
a given mass black hole, one tunes the string coupting Nosc~|_3 (32)
~(I,/R)*? while holding the size of the compactification N rg
torus (other than the M theory circlefixed in string units.
Therefore let all theR;=\l,; one finds Now the boost quantum is the entropy of the black hole, as
is the square root of the oscillator number; the left-hand side
MIg~Ad-1g 2. (26) is of order unity, and therefore the black hole is of order the

string size. This is a rephrasing of the observati@8) of
Sec. Ill, at the triple point. Moving away from this point by
boosting toN>S is a canonical operationS~3T for a
S~ N, 27) string, and3%«N while T«1/N. Note that the number of
0s¢ matrix partons in a thermal wavelength of the matrix string

t the correspondence point is alwayg~N/S, in agree-

ent with the proposal dfL4].

For a singly-charged hole, the mass, charge and entropy

At this point, the string entropy

is of the same order of magnitude as the black hole entrop
(Gp is the D-dimensional Newton constant

SBHNV('TZGBl- (28) are given by
1
To work at the triple point, we demand that the string M~GD1r83(chzy+ m)
coupling is tuned so that the horizon size is of order the
string scale, as dictated by the correspondence principle, and Q~G: 2 3shych
that the black hole is placed in a small box and boosted to the Do Y
black hole—black string transitiof2,3,4,5,26,27, so that it S~G51r8’20hy (33

can be described by matrix theory as a D-brane fluid. At the
latter point, the entropy of an uncharged black hole is relategin terms of the “
to the momentunP=N/R of the boosted hole bzy~N
=RP. In terms of general relativity, the effect of the boost is
to expand the proper size of the box near the black hole so e @

that it “just fits inside.” For a small box and a large black Th~ (34
hole, the system is highly boosted at the string-hole transi- altd

tion. In the IMF, the weak-coupling string theccording 0 again equating this temperature with the string temperature
the correspondence principlapproximates the black hole, (30) and setting the horizon size equal to the string scale

charge rapidity”y. The Hawking tempera-
ture in the boosted frame is

has an energy correctly yields
ELc~3T?~ ! N 29 1 N
LC ﬁg 0sc! (29 SgH~ Nosc™ m (35
where3, is the length of the stringT is its temperaturely e This implies that, for the charged case, even at the BFKS

is the oscillator excitation number, ati=N/R is the lon-  point, N/S>1. This ratio was interpreted i14] as the size
gitudinal momentum. From this we find the temperature isof clusters of partons making up the black hole phase. There-
given by fore, the charged black hole is to be described at the BFKS
point as a gas of clusters of sizeych
RNY2 We can see a mechanism for this dynamics with the fol-
~“NEZ (30 lowing argument. Consider the matrix string limit of matrix
s theory onT2. Matrix string transverse excitations are stored
in the scalars of the 21 SYM, on the diagonal of the ma-
kt'rices, with the eigenvalues sewn by boundary conditions
involving the shift operator[28]. Off-diagonal constant
modes describe the effect of the W bosons stretched between
the strands of the string; their one-loop fluctuations give the
3We remind the reader the IMF kinemati&s.~Me~¢ andP  effective gravitational interaction of the bits of the matrix
~Me®. string. Given a holonomy describing a singly charged matrix

On the other hand, one expects the black hole to emit Haw
ing radiation at temperatute
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string phase, one can ask what is the interaction potential chPyy+ Chz'yp
between two points on the strands, or between two matrix B T —
elements on the D-string. Fixing a winding chaf@ea mag-

netic field must be turned on between the longitudinal boost quantum and the entropy.
R Note thatS~ N3z, +N2&gecchy,chy,, while the Hawking
B,=—Q. (36)  temperature must be Ty=2T, Tr/(T +Tg)
N oc(chywchyp)*l. A consistent assignment of worldsheet os-
cillator numbers with respect to these quantities is

chy,chy, (42)

This induces a holonomy on the 2-torus, with 't Hooft style
boundary conditiong29]. Extending these conditions onto N, g~ (Gglrg_zch( Ya Yo))?, (43)
the scalarsX', we get ’ P

so that the oscillator entropy agrees with the black hole en-
tropy (41), and the Hawking temperature determined from
Eq. (40) is of the right ordef. We note that we have again
N/S>1 at the triple point due to the presence of Kaluza-
Klein (KK) charges.

_ . _ _ . ! : Thus, in general it is necessary that the matrix black hole
=1...N; and kl=a .Q/.R‘_|SQ.‘ This conf|g_urat|on de- consist of coherent clusters of matrix partons even at the
scribes a system consistinglostrings, and requires the van- BFKS transition; and that, at the correspondence point, the
ishing of some of the off-diagonal elements between the M35 umber of parto’ns ina cll,Jster is the same as the numb,er of
fcrix stra_nds. fTuiS Iat_ter eﬁiCt rer:j uceﬁs dt_he str?ngthd of thestrands of the matrix string lying within a thermal wave-
interaction of the strings when the off-diagonal modes ar .

integrated, by & andl dependent factor. Modeling the sys- efength. Both of these facts support the analysigl

tem through the interaction of the zero modes, and taking

into account the multiplicity factor in the interaction result- V. THE INTERACTING MATRIX STRING

ing from the boundary condition87), we find an energy for
the gas as a function of

Xi:VkXiV_k
X (oc+3)=U'X(c)U™", (37

W|th Uij:5i,j*lv V”:dlaq:eXFXZ’]ﬂ(m_l)/N)], m

In this section, we come back to the neutral case, away
from the triple point, attempting to probe the dynamics in
greater detail from the matrix string side. [&4], it was

2 4
E(I)~£v2—K E) Q_IS'G_gl;__d (3g)  argued that the matrix black hole phase, as a SYM field
IR ) N R configuration, can be thought of as a gasSaflusters of DO

branes, the zero modes of the SYM, each cluster consisting
of N/S partons. The system is self-interacting through the
v4/r" interaction, or its smeared form on the torus.

This phase of clustered DO branes may be an effective
N description, i.e. thermodynamically strongly correlated re-
—~chy, (39 gions of a metastable state; or more optimistically, it might
' be a microscopic description associated with formation of
bound states like in BCS theory. We will try here to inves-
) . tjgate the matrix string dynamics so as to reveal the signature
f(.)r the system to settle into a phase of clusters of matrices f the clusters as we approach the correspondence curve. The
sizeN/S~chy. aim is to identify a possible dynamical mechanism for black

Finally, a doubly-charged hole is obtained in the corre-y 10 fomation, and determine the correspondence curve
spondence principle from a string carrying both winding andfrom such a microscopic consideration

momentum in compact directions. The IMF energy and the || gac. VA, we derive the potential between two points

worldsheet temperatures of left- and right-movers are on the matrix string; in view of the matrix conjecture, we can
do this by expanding the DBI action of a D-string in the
background of a D-string. We then evaluate the expectation
value of this potential in the free string ensemble at fixed
temperature. In Sec. VB, we analyze the characteristic fea-
RNHZR tures of the potential, particularly noting the bump for

with K a numerical coefficient independent fand!. Ap-
plying the uncertainty principle and the virial theor¢5] at
the correspondence poing~ 1 then yields the scaling

in agreement with Eq35); i.e., it is energetically favorable

, , NESC-F NcR)sc
ELCNE(TL+TR)~ —PZ_
s

LR~ 7 - (40 =45 that we alluded to in the Introduction. In Sec. VC, we
NIg
At the string-hole transition, one has
“These expressions are somewhat different than thobgl;inhe
-1,D-3 ’
P~Gp'rg *(chPy,+chfy,)e point is that one is free to adjust the smaller of the two temperatures
) T, r without appreciably affecting the entropy or the charges. Our
S~G,51rg_ chy,chyp, (41 choice is compatible with the Bogomol'nyi-Prasad-Sommerfield
(BP9 limit ro—0 with y,,~ vy, and the charges fixed, whereas the
from which one finds the relation one in[1] does not give vanishingg.
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comment on the dynamics implied by the potential, particu- dsi=h"Y4 —dt®+dx?) + h¥4dx)?
larly in regard to the phase diagram derived earlier.
eb=hl2
A. The potential .
In this section, we derive the potential between two points Cor=h
on the matrix string by expanding the DBI action for a r\7-p
D-string probe in the background geometry of a D-string. h:(%) 47

We then check the validity of the DBI expansion, and evalu-
ate the expectation value of the potential in the thermal en

. . . . : (recall p is the torus dimensignand we defineD=7—p.
semble of highly excited matrix strings. The details of th.eThe string is taken to have no polarizations on the torus, nor

finite temperature field theory calculations are collected 'nany KK charges. Here, we have followed the prescription in
Appendix A. [35,36], where we T-dualized the D-string solution to a DO

At IIAfo.trllrcljg In ffnat”? stnr:jg the_gr;(/j 's c(?nstructled Itn' a brane, lifted to 11 dimensions, compactified on a lightlike
Sector orfield configurations aescribed Dy diagonal ma rICesdirection, and T-dualized the solution to the one above. The

with a holonomy inZy; a nonlocal gauge transformation i ; 7- 7—
L P2 ) o only change is in replacing &(ro/r)" "P—(ro/r)’"?. B
converts this into 't Hooft-like twisted boundary conditions o . g placing & (ro/r)" = (ro/r) y

o . Gauss’ law,
on the transverse excitations of the eigenvalues of the matri-
ces, as described in detail i88,30,31,32 The conclusion is 92
. . . D__ S 19-p
that the eigenvalues are sewn together into a long string, and ro —CDR—2|S ,
+

a llA string emerges as an object looking much like a coil or
“slinky” wrapped on . The self-interactions of this string
are described by integrating out off-diagonal modes between
the well-separated strands. Alternatively, making use of the

matrix conjecture, this effective action can be obtained from h h q f th ded dualities t
supergravity, by expanding the Born-Infeld action of aVhere we have made use ol the needed gualities 1o express

D-string in the background of a D-strifigWe will follow things in our IIA description. Putting in the background, we
this prescription to calculate the gravitational self-interactionhave
potential between two points on a highly excited matrix 1 [N
string. S:__,f h*l(l+hK+h2V)l/2_hfl
The Born-Infeld action for N D-strings is given §@3] @

(2m)’
Cp= WF(D/Z), (48)

1 K=X'2—X2=49,X-9_X

2a'gs

f d’ce ¢ TrDet’A(G,,+ B,y +2ma’Fyy)
V=4((9,X-9_X)2— (9. X)2(3_X)?). (49)

—Nf c2, (44)  We note that, as the limit of the action indicates, we have
made use of th&y holonomy that sews the rings of the

where we have assumed commuting matrices so that there §4Nky together. Expanding the square root yields the Hamil-

no ambiguity in matrix orderings in the expansion, @gds ~ tonian
the dilaton vev at infinity. We choose! to have radiu§p, SN 1 gz|7—p
turn off gauge and NS-NS fluxes, H:J P 2—0(,()'(2+X'2)+céﬁ%{(a+X)2(0,X)2
+
Bab=Fap=0, 45
a0=Fab 49 ~[(04X)2+(3_X)?)(3.X- 9_X)}. (50)

and choose the static gauge Let us check the validity of the DBI expansion we have

X0= 591 performed. We would like to study dynamics of the string
' squeezed at most up to the string scale, the correspondence
point; settingr ~I¢ in h, we get

Xi=c1. (46)
| 2
A single D-string background in the string frame is given by h~(%) . (51
[34] *
From elementary string dynami€¢ggs.(27),(29)], we have
°Note that, for D-string strands closer to each other than the (K)~ R.S|? (52)
Planck scale, the W bosons cannot be integrated out of the problem; IN

the physics is described by the full non-abelian degrees of freedom.
We are assuming here that this “UV” physics does not effect thewhere brackets indicate thermal averaging at fixed entropy
analysis done at a larger length scale. S. It can be shown from the results of the next section that
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(V)max=(K)?, (53) S<Ng; L. (55)

and that(V) will have a definite maximum for alp. We A glance at Fig. 4 reveals that we are well within the region
now see from Eqs(49), (51), (52), and (53), that our DBI  of interest.

expansion is a perturbative expansion in The potential in this expression is the interaction energy
between a D-string probe and a D-string source. Using the
S residual Galilean symmetry in the DLCQ, and assuming
e=0syy- (54) string thermal wavelengthsX., (the “slinky regime”), we
deduce that the potential between two points on the matrix
We then need strings denoted by the labels 1 and 2 is

Q2127 P {(0.X)2(0_X) 2= [(3:X) 2+ (0_X)2](04 X, .0_X,)
Vi=Ko" = 1e.x [ X" I L (56)

where B. The thermal free string

The thermodynamic properties of the matrix string at in-
X=X—Xg (57)  verse temperaturg are determined by the Green’s function
of the Laplacian on the worldsheet torus of sid@sp),
andKp, is a horrific numerical coefficient we are not inter- where =3 N. It is known from conformal field theory

ested in. (CFT) on the torus that this is given H38,39
Ideally, one should self-consistently determine the shape

distribution of the string in the presence of this self- 0 (E -

interaction; however, this is rather too complicated to actu- 1 ! 1

z 2
G12=—Zln W +2—T2(Im§) , (60)

ally carry out. To first order in smaly,, the effect of the
potential is to weigh different regions of the energy shell in
phase spac€37] by a factor derived from its expectation \where
value in the free string ensemble. We will discuss the dy-
namics in the presence of the potential in somewhat more B . i

detail below. For now, in light of this weak-coupling ap- T=IS =TT (61)
proximation scheme, we would like to calculate the expecta-

tion value of the potential in a thermodynamic ensemble conHere 8 can be obtained from the free string thermodynamics
sisting of a highly excitedree string with fixed entropyS.  of Eq. (30). All correlators and their derivatives must even-
From the matrix string theory point of view, this is essen-tually be evaluated on a time slice corresponding to the real
tially a problem in finite temperature field theory, where we axis in thez plane.

will deal with a two dimensional Bose gdgnoring super- Divergences will be seen in correlators due to infinite zero
symmetry; the fermion contribution is simijabn a torus point energies. The conventional approach is to introduce a
with sidesX ;N and 8=1/T, B being the period of the Eu- normal ordering scheme giving the vacuum zero expectation
clidean time. Using Wick contractions, we can then expressalue in such situations, i.e. throwing away disconnected
the potential in terms of the free Green’s functions; we defeacuum bubbles. In our case, the string has a classical back-

the details to Appendix A. We get ground due to its thermal excitation. To renormalize fifite
o correlators, we subtract the zero temperature limit from each
|5 P KIZKZZ propagator. This corresponds to
Vis=ap0? 5 b7 (58)
12~ @pYsg R ( KlZ)D '

S S
(f( X))~f( )InZT[J]—>f(5 )InZT[J]
whereap is a dimension dependent numerical coefficient,

[fnze-dor=t{ ol 7y
Kip=Ka=—a'(X;X)=—a’Gp, (59 Mg/l =T )i 7 o)

. . . ) . 62
is the Green'’s function of the two dimensional Laplacian on (62

the torus, ank 3 is its double derivative with respect to the From the expression faZ[J], we see that this amounts to
z complex coordinate of the Riemann surface representingorrecting the Green’s functions as

the Euclideanized world-sheet. We refer the reader to Ap-

pendix A for the derivation of this equation. K—K:—Ks_p. (63
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X

0 /S

FIG. 5. =K, as a function of the string separation paramater
we see the change of scaling froth to x.

This subtraction removes the divergent zero-point fluctua
tions of nearby points on the string, while leaving the effects

due to thermal fluctuations.
Defining

M| N

(64)

we then have, subtracting the zero temperature part,

’ 1 | . 1 2
Ka—a E“QQJFS—Tz(X—?) : (65
with
1-2qg" cog2mx)+q>"
Ing= >, In( a S(nﬂz) d (66)
=1 (1—9q"

We can now make use of,<1 for S>1, to write this sum
as an integral

1 (e?mdv (1—2vcog2mwx)+v?
Ing= f —In 5
277y Jo v (1-v)
(67)
This integral can be evaluated to yield
— P am 2Ty | i@ 2Tyt 27Xi
Ing _2777-2(2“28 Li,e
_ Li2672w7272wxi), (68)

wherelLi, is the PolyLog function of base 2, related to the
Lerch @ function[40]. We then have

!

o
Ky=5-Ing, (69

with x here being real, and representing the equal-time sepa-

ration between two points on the string=x;—X,, as a
fraction of the total lengt®, (0<x<1). The asymptotics are

PHYSICAL REVIEW D59 044035

KZZ

1/8

FIG. 6. Ki* as a function of the string separation parameter
we see the flattening of the correlation at lakxgd-or smallx, small
relative stretching or motion is implied; for larger the flattening
indicates a constant correlation in the relative stretching of the
string.

a'Sx  for 7,<1

Ka= (70)

!
o
— S22 for 2mwx<1,
ar

The first line is a well-known result of Mitchell and Turok
[41] calculated originally using the microcanonical en-
semble. It shows random walk scalifgR?) ~ Nx*2. The
second line is new and valid for small separations on the
string; it is the statement that within the thermal wavelength
B of the the excited string, the string is stretched, scaling as
WR?~N¥2. This is intuitively expected, as regions on the
string within the typical thermal wavelength will be strongly
correlated in the thermodynamic sense. This change in the
scaling is crucial to what we will soon see in the behavior of
the potential between strandsK, is plotted in Fig. 5.

Next, consider the derivatives of the correlators, evaluated
on the real axis. We have

1— e—2777'2—277ix

—ia’
(?XKA:&;KAZZ(ZW)ZTZ ln(l_e2w72+2mx)' (71)

We also have

0

X ——»

1/8

FIG. 7. The potential as a function nffor dimensiong=3 and
p=2.
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(7x(7;KA: 47_2 '

(72

or

o,

(73

since we subtract the zero temperature result. The most rel-

evant term is

a' 1—e?""2 cog27X) N a'
T, €4T2—2e?"2coq27X)+1 4T,
(74)

2 2
HKaA= K=~

(N3 ) ?KE=
a' $*%?

K%?is plotted in Fig. 6 as a function of.

C. The bump potential

We now put together Eq$69) and(75) in the potential of
Eq. (58) to get the asymptotics

Vo o? RS [SB-DV2-D2 for r,<1, ,
12705 73N 8Dy D for 2mx<1. g

For p>3, V,;,—0 asx—0; at largerx, it decays as P’

At the thermal wavelengtk~ 1/S, both expressions give

3

VmanggaT}r\lzlS“- (78

au
a'sz+1—2(5+cos(277x))(csc(wx))2+O(Tg)—m/sz for 7,<1,

PHYSICAL REVIEW D 59 044035

or

’ 27T
oz L 17" cos 2m)
K=K T, €4772— 2?2 cog 2mX) +1

a’ 1 -
7, -1 (79
(again we subtract the zero temperature )part
This yields the asymptotics
(76)

for 2mx<<1.

—0X,) decrease as the separation along the string decreases
(inside a thermal wavelength

We observe that:

The bump occurs at separations o df a fraction of the
whole length of the string; in the matrix language, this cor-
responds to a bump about matrices of dWé&.

The presence or absence of the bump as a function of the
number of non-compact space dimensions correlates with the
observations of13], given that in the DLCQ, the light-like
direction reduces the number of hon-compact dimensions by
one.

As described ii14], a matrix black hole can be described
by SYM excitations clustered within matrices of sikéS,
the location of the bump. Furthermore, we will shortly repro-
duce, from scaling arguments regarding the dynamics of this
potential, the two correspondence lines determined from
thermodynamic considerations above.

Note that in this expression the dimension dependence in thwe then conclude that we have identified the characteristic

power of S conspires to vanish. Fap=3, V;,~S* for x

—0, while for p<3, V;,— for x—0; in both of these

latter cases, the potential decaysxa®’? for largerx.
The conclusion can be summarized as follows. per4

signature of black hole formation in the matrix SYM.

D. Dynamical issues and criticality

The dynamics of this potential near a phase transition

andp=5, there exists a bump in the potential of height pro-point is certainly complicated. Intuitively, we expect that as
portional toS* at the thermal wavelength on the string; for we approach a critical point, instabilities develop, an order
p=3, the bump smoothes to a flat configuration where thgyarameter fluctuates violently, perhaps related to some mea-
difference between the potential at the thermal wavelengtBure of thezy symmetry; it is reasonable to expect the char-

separation and at=0 is of order unity. Finally, forpp<3,

acteristic feature of the potential, the confining bump, plays a

the bump disappears altogether and the potential blows up atucial role in the dynamics of the emerging phase. Deferring

the origin signaling the breakdown of the description. Thisa more detailed analysis of these issues to the future, let us
potential is plotted in various cases in Fig. 2 of the Introduc-ry to extract from these results the scaling of the correspon-
tion and Fig. 7. dence curves.

The presence or absence of the bump is a result of two First let us motivate the use of the expectation value of
competing effects: First of all, the increasingly singularthe potential in the free string ensemble. We indicated earlier
short-distance behavior of the Coulomb poten(&8) with  that this quantity is qualitatively related to the effect of the
increasing dimensioD®; and secondly, the strong correlation interactions, assuming they are weak enough, on the energy
of neighboring points on the string, which makegX({ shell in phase space covered by the free string. The partition
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function becomes, schematically corrected by a factor in order to reproduce the black hole
Ho V. (V) H equation of state; the origin of this correction was argued to
Z~Trero i~etl/oTrer, (79 pe interaction processes between the clusters involving the

so that phase space is weighed by an additional factor relat egchange of longitudinal momentum. Under the assumption

to the expectation value of the potential in the free ensemblt at tfhese effects are of thet_samfe clrdﬁ;gs Zero m(IJ_mdentum
(V). This is also similar to the RG procedure applied to the fanster processes, a correction factoriui> was appied.
Using a chain of dualities, we can quantify the effect of

2D Ising model, where the context and interpretation is

slightly different[37]. longitudinal momentum transfer physics by studying the
Using Eq.(58), the potential energy content of the matrix Scattering amplitude in 11B string theory with winding num-
string is given by ber exchange. We do this in Appendix B, where we find that,

for exchanges of windings up to ord&/S, the winding
NS R3 :axchandge ?enerates an intehraction fider;]t_icre]ll to 'thF of zero
N P 2_ 4 ongitudinal momentum exchange; for higher winding ex-
v fo dU(S‘lgSa’SN"’)(NEp)UlZ’ (80 changes, the interactions are much weaker. These winding
modes, represent the sections of the matrix string within the
where we have integrated over one of the two integrals of théhermal wavelengthiN/S worth of D-string windings. Thus
translationally invariant two-body potential, and scaled  we modify thev,, potential above by the factdt/S, which
such that its maximum is of order 1, independent of any stataccounts in the scaling analysis for the effect of longitudinal
variables; however, the shape of; still depends orN and  momentum transfer physics in the matrix string self-
S. This expression represents the interaction energy betweénteraction potential. Applying the virial theorem between
two points on the coiled matrix string at fixed separationEq. (82) and N/S times Eqg.(81) yields the matrix string—
o_ . From the point of view of matrix theory physics, the matrix black hole correspondence point at
string’s fundamental dynamical degrees of freedom are the
windings on the coil; we expect a transition in the dynamics
of the object when there is a competition between forces on S~g;2, (84)
an individual winding. In the present case, the two forces are
nearest neighbor elastic interaction and the gravitational in-
teraction. A single string winding being wrapped &) a5 needed.

can be read from Eq80) potential accounts for the matching of the string phase onto
3 both N<S andN>S phases, one involving partons interact-
D S'G2 Ry NS 2 81) ing without longitudinal momentum exchandithe matrix
max Sa/3N* TP string—(+1d) SYM curve in Fig. 4, and the other being

) o ) ) the matrix black hole phase of parton clusters of W&
and is due to its interaction with strands a thermal wave-, 1 interacting in addition by exchange of longitudinal mo-
length away. Its thermal energy caused by nearest neighb@kentum (the matrix string—matrix black hole correspon-
interactions is read off Eq52) dence curve of Fig. ¥ In the latter case, the location of the

confining bump correlates with matrices of si¥éS. In the
N@E (g2)  former case, the correlations are finer than the UV matrix
cutoff; a better understanding of this latter issue obviously
needs a more quantitative analysis of Nh& S matrix string
regime. This analysis further substantiates the identification
S~ Ng: ! 83 of the bump potential as the signature of black hole forma-
9~ (83) tion from matrix SYM, as well as justifying the new matrix
stringp brane transition microscopically.

K p-

The two forces compete when

At stronger coupling, the forces due to the gravitational in-
teraction dominate those of the nearest neighbor stretching
and decohere neighboring strands’ velocities. The free string
evaluation of the interaction, E¢58), is no longer valid; one ACKNOWLEDGMENTS

expects a phase transition to occur. Equatig8) is our We are grateful to H. Awata for discussions. V.S. is very
matching result of Eq(20) between the string and+1d girateful to S. Coppersmith for particularly helpful sugges-
interacting SYM phase. Here, we are assuming an analyticgjons regarding the condensed matter literature. This work

continuation of the matrix string phase to the reghoiSin  \yas supported by DOE grant DE-FG02-90ER-40560 and
the phase diagram; our suggestion that this region is assoqsr grant PHY 91-23780.

ated with a coexistence phase is consistent with this proce-
dure.

To account for the correspondence curve for S, we
now recall that in the discussion of clustered DO branes of
[14], the virial treatment of the*/r’ interaction had to be We need to evaluate

APPENDIX A: CALCULATION OF THE POTENTIAL
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_ 0 X0)2(0-X0) = [(9+ X2+ (9-X0) 2] (9 X, - 9-Xp)}
(XP)P"2 ’

(A1)

in the finite temperature vacuum of the SYM. Let subscriptswhere thex subscript is integrated over and it is implied to
(123456 denote the argument of, e.g.X;=X(o4). Writ- be the argument of thd as well. Denoting the number of
ing X,=Xs— Xg, we will encounter in the numerator only polarizations in the Lorentz indices loy we get

factors of the form

XIXEXEX s . , ,
i i j j - —p2,—2sp?f
3 X10,X50 gX53, XY, (A2) <((x5— XG)Z)D/2> r(D72) ds f dpePe

with the target indices, j summed overy, B, y are world-
sheet indicest; and the label§1234) are set equal to 5 and
6 in various ways. By expanding the numerator of &),

1
< Tls(D/z)—l_ EpzSD/2-|—2

we get 3X 16 terms of the form claimed. We can write our 2\2(DI2)+1
desired “monomial”’ (A2) as +(p9)’s Ta (A1D)
X XXX where we have defined
923 <%> (A3)
"\ (X5—X6)) d2 d d
Ti=—KoKgst = KigKos+ =KoK Al2
COnSlder 1 4 12"\34 4 1324 4 23N 14 ( )
X4 XEXEX, a2 e T,=dK ;KoK g4+ dKaK 4K 1o+ K KK ot K K 4Kz
D2 = f dsf dipsP21
(X5—X6)?) I'(D/2) + KoK 3K 14+ KoK 4K 13 (A13)
_ 2 . . . . N.
x e P 5, 5,5k oh( e X) T,=K KKKy (A14)
a2 f dsf dips®- Evaluating thes integral, we get
“T(D2)
XEXEXEX! 7 2
-5 si sisled T\ 2\D72 Z—D/m/ifddpefp(pz)fw
xe P8 8,68 (A4) ((Xs—Xg)?) 2P72(£2)
where D (D+2)D
X|T1— WTZ'F WTA'
=3+ 2i\s(8(o— 0o5) — (o — 0g))p' (A5) (A15)
and

Evaluating thep integrals, we get

1. -~ 1 RVARVIRVY —dr2
A== | IKI== [ IKI+i J-pK, —2sp?f2. X1 XoX5X4 w d-D
4j 4f I\/gf PBx sz < =2(D/2)+1(f2)o/29d—1r —

(A6) ((Xs—Xg)H)P" 2
. D (D+2)D
We have defined X|T,— WTZJF WTA}
Kx=Kyxs—Kyxe (A7) (A16)
f2=K—Ksgg. (A8)  whereQq_, is the volume of thed— 1 unit sphere.

Going back to Eq(A3), we need to differentiaté,, T,
HereK,, meansK(a—b), the Green’s function of the two andT,, according to the map 1234aaBy. Let us denote

dimensional Laplacian the derivatives by superscripts on tkés. We then have
Kap=—a' (X Xp), A9 d? d d
ab (XaXp) (A9) Tiva_ArK K +4K K +4K Kl4,
andK=K,,. The rest is an exercise in combinatorics, mak- (A17)

ing use of
TSP =dK{KSKEY + dKEK JK S + KEKEK S+ KK JK 58

i ol —
0,87 =

1 R
Ef Gad +iVspK,|ed (A10) +K§K§K§}+ KSKIKSE, (A18)
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T§PY=KIKIKEK]. (A19)  eachtermin Eq9A17)—(A19), we have 16 terms associated
with taking a map from{(1234 to a sequence of 5's and 6's.

We have used here the translational invariance and evenneghis combinatorics yields
of the Green’s function to interpret the derivatives as differ-
entiations with respect to the argument of the Green’s
functions (and therefore note some flip of signgurther-
more, we assume th#t, K¢ andK“? are zero, i.e. because
of subtraction of the zero temperature limits, or throwing (X7)PP2 (—Kse)®”
away bubble diagrams. This, it turns out, is not necessary for (A20)
the potential we calculate, since all expressions would have
come out as differences, s&f5—K<?; it is just convenient Note thatT, and T, cancelled; we have also dropped nu-
for notational purposes to throw them out from the start. Wemerical coefficients. There are three terms in &d.) of this
also note the identitiek {¥=K5f andK&=—Kg&=Kg. For  type; this yields

34X 00X 0 X130, X]

d
> KEFKed+ EKga KEY

d d
KgG_KE:G_”LEK;eJrKE:s__ >+1 (Kss' Kgg +Kss Ksg )
V= (_ K56)D/2 (AZ]—)
|
Using the equation of motiofdelta singularity subtracted 1
Kis =0, we get KeBr0= — S (ST P2+ SUnfTy**+ TUn* P 97)
_ K;6+K5_S_2 A2 + S(K2KY 7P+ KEKO 7+ Kk 7P 7+ KBK] 7*?)
(—Kgg) ™'

+T(kks 770+ k3kE 7+ Kekg 7+ kK37 *?)
Using Euclidean time r=t, we haveoc"=oc=*t=27 fi-

a8 BY L 1 VB a8 L LB Y8y 1 VS aB
nally, we get for Eq(56) +U(kzk3 7”7+ kikin*"+ kakg 7"+ kgkin ™).

_ (B2)
5 KiKE
V= aDggR— — . (A23)  This gives the amplitude
+ (_Klz)

An~[(S+T)*+S*+T4]

. T(=Sa'/T(~Ta' [T (~Ua'/4)
T(1+Sa'IHT(1+Ta' /AT (1+Ua'/d)

APPENDIX B: LONGITUDINAL MOMENTUM
TRANSFER EFFECTS

Consider the scattering of two wound strings in 11B theory
with winding number exchange. We will find that, in the (B3)
regime of small momentum transfer, the interaction is CouWe want to accord winding;, n,, ns andn, to the four

lombic for resonances involving low enough winding num- strings, on a circle of radiug: without any momenta along

ber exchange, and much weaker otherwise; furthermore, thi; cycle, we can extract easily this process from the ampli-
Coulombic interaction is winding number independent, an ude above by

the cumulative strength of this potential suggests modifying

the matrix string potential by a factor &f/S for N>S. S=S+M2 (B4)
For simplicity, consider the polarizations of the external
states to be that of the dilaton, and T-dualize the momentum t=T+m?=—0¢? (B5)
in the compact direction to winding number. The resulting
four string amplitude is given bj42] with
AmNKaﬁ'ySKaBWS M2§< R(nl‘t'nz) 2, (BG)
I'(—Sa'IHT(—Ta'IHT(—Ua'ld) @
T+ Sa AT (1+Ta AT (14 Ua'/4)’ R(ny—ny) |2
mzz(#> . (B7)
(B1) a'

where S=— (k;+ky)%, T=—(k,+k3)?, U=—(k,+k3)?,  For largem;,m,, and smalim, g2 is the spatial momentum
with S+ T+U=0, and transfer between the strings in the center-of-mass frame.
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ThusM>m, and we are in the non-relativistic regini,,
>q?. From Eqgs(B4) and(B5), we see thaB>T. Using this
and the identitiesT'(2)T'(1—2)sin(m)== and I'(1+2)
=1zI'(z), one obtains the amplitude

A~ (s—M?)?sin(m(g2+m?) a’ 14T [(g%+m?) a' 14])2.
(B8)

In the energetic regime considered,

s—M2~mmu2,=T, (B9)

PHYSICAL REVIEW D 59 044035

dr—-1
m 13
V@~ T(27T)d’2( T) \/ e ™ (B1Y)

which is weaker thaiv'¥} since we havenrs>1. Finally, we
have
sinm?

m4

(3) 1
VeffNT E (816)

In addition to a larger power in, we havem>-1; this inter-
action is much weaker than Eq814),(B15), especially af-

wherev ¢ is the relative velocity of strings 1 and 2 in the lab ter averaging over a range of winding transfars

frame.
Equation (B8) has poles afg?+m?=4n/a’ with n<0.
We consider scattering processes probing distanamsich

larger than the string scalgy,,,~ 1/r <1/l5; we also assume
that it is possible to hav®<lg, which we will see is nec-

We conclude that, fomr=Rr(n;—n,)/a’<1, we have a
Coulombic potential independent of the winding exchange
m; for mr>1, we have much weaker potentials. This implies
that in a gas of winding strings bound in a ball of size at
most of order the string scale, the dominant potential is Cou-

essary. Given that these poles space the masses of the reksmbic with a multiplicative factor given by,=«a'/(Rr),

nances by the string scale, the dominant term to the ampliprovided a mechanism restricts winding exchange processes
tude is the one corresponding to the exchange of a wounth n;—n,<n;+n,.

ground state, i.e. th@=0 pole. Measuring quantities in

string units, the amplitude then becomes

sin(g%+ m?)

A= T @zt

(B10)

The S-dual of this amplitude describes the scattering of
wound D-strings at strong coupling, with winding number
exchange. Under a further T duality, and lifting to M theory,
this amplitude encodes a good measure of the effects of lon-
gitudinal momentum exchange in the problem of a self-
interacting matrix string. The bound on the winding number

The effective potential between the strings is the Fouriek ansiates in our language to

transform of this expression with respectdo Let us con-

sider various limits. Taken<(q; we then havan<1. The
amplitude becomes

T
AQ)~?.

Next considem>q, butm<1. The amplitude becomes

(B11)

(2) T
An'~ e m? (B12)
Finally, for m>q andm>1, we have a constant
- sinm?
A ~T e (B13)
The effective potentials are thed£9—p)
(1) dgqgia-xa (1) T
Vet~ | d°qe9An Nr_d—_z- (B14)

The result is a Coulomb potential, independentnof The
second case gives

@8 Ry N
==r -7 s (B17)

Wo

i.e. the resolution in the longitudinal direction. We also note
that, under this chain of dualities, the string scale used to set
a bound on the impact parametetransforms asy’ —a’,
where the latter string scale is that of the matrix string. This
justifies our implied equivalence between the scale ahd
that of the size of the black hole.

In the single matrix string case we study, we saw that
regions of sizeN/S were strongly correlated and “rigid” in
a statistical sense. The self-interaction of the large string will
then involve processes of coherent exchange of D-string
winding up to the winding numbeM/S<N. For larger wind-
ing, the D-string is not coherent; one expects a suppression
both from the emission vertex and from the highly off-shell
propagator. We saw above that all such processes, up to
N/S, are of equal strength and scale Coulombically. This
implies that the potential between the string strands calcu-
lated from the DBI expansion must be enhanced by a factor
of N/S for N>S, and justifies the scaling arguments used in
Sec. VD.
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