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Black holes and the SYM phase diagram
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Making combined use of the matrix and Maldacena conjectures, the relation between various thermody-
namic transitions in super Yang-Mills~SYM! theory and supergravity is clarified. The thermodynamic phase
diagram of an object in DLCQ M theory in four and five non-compact space dimensions is constructed; matrix
strings, matrix black holes, and blackp-branes are among the various phases. Critical manifolds are charac-
terized by the principles of correspondence and longitudinal localization, and a triple point is identified. The
microscopic dynamics of the matrix string near two of the transitions is studied; we identify a signature of
black hole formation from SYM physics.@S0556-2821~99!03604-8#

PACS number~s!: 04.70.Dy
e
n
o

m
o

m
th
t
o

ire
e

-
nd
tio
g
et

e

le

nd

n-

at
ory
ese
ses
o

as

rs.
os-
YM
up.

in
the

of
y

s
ain
zon
za-
-

M
the

ion

ith
ry
ject
-

ics
s.

o-
d in
uch
I. INTRODUCTION AND SUMMARY

The thermodynamic phase structure of a theory is an
cellent probe into the underlying physics. Transitions amo
different phases reflect the dynamics via the stability
metastability of various configurations, while order para
eters often characterize global properties. M or string the
is no exception in this regard.

In particular, two thermodynamic transition mechanis
in M or string theories have recently been a focus of
literature. One example occurs when the curvature near
horizon of a supergravity solution becomes of the order
the string scale; the state becomes ‘‘stringy,’’ and acqu
an alternative string theoretical description, either by a p
turbative string or by supersymmetric Yang-Mills~SYM!
D-brane dynamics@1#. This metamorphosis might be re
garded as a phase transition in the embedding theory, a
known as the correspondence principle. A second transi
mechanism is associated with the mechanics of localizin
state in a compact direction. Of particular interest in discr
light-cone quantization~DLCQ! is the localization effect in
the longitudinal directionR1 @or R11 in the infinite momen-
tum frame~IMF!# @2,3,4,5#. Particularly, a state with fixed
rest massM andN units of DLCQ momentum satisfies th
condition

R1,
N

M
[q21. ~1!

If the system characterizes an object of sizer 0 , then we need
r 0,R1 to localize the object. For example, for a black ho
satisfying the equation of stateMr 05S, we need

N.S, ~2!
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otherwise the black hole fills the longitudinal direction a
becomes a black string.1 We will call the transition atN
;S a localization transition. Other geometrical, but no
longitudinal, effects of this sort may also be expected@6#.

If there existed a single framework—one description th
realizes the different phases of M theory—then this the
should exhibit the critical phenomena associated with th
various transitions. The matrix theory conjecture propo
such a framework:U(N) SYM on a torus is supposed t
manifest a rich structure of M or string theory phases such
black holes, strings and D-branes@7#. SYM thermodynamics
is then endowed with a cornucopia of critical behavio
Field theoretically, transitions between SYM phases are p
sible as functions of the size and shape of the torus, the
coupling, the temperature, and the rank of the gauge gro

A complementary recent conjecture of Maldacena@8,9#
provides us with the tools to study SYM thermodynamics
regimes previously considered intractable. It states that
macroscopic physics of M or string theory in the vicinity
some large charge source~a regime accurately described b
supergravity!, is equivalent to that of super Yang-Mill
theory. Finite temperature SYM physics acquires in cert
regimes a geometrical description, that of the near hori
region of near-extremal supergravity solutions. Renormali
tion group~RG! flow is mapped onto transport in the geom
etry about the horizon; correlation functions in the SY
probe different distances from the horizon as one changes
separation of operator insertions relative to the correlat
length ~thermal wavelength! in the SYM.

Our plan is to use the Maldacena conjecture, along w
the interpretation of the SYM physics from the matrix theo
perspective, to piece together the phase diagram of an ob
in DLCQ M theory. In parallel, we will end up making state
ments about the critical behavior of SYM thermodynam
on the torus well into non-perturbative field theory regime

1This intuitive argument ignores the effects of gravity. The m
mentum of an object back-reacts on the nearby geometry an
particular changes the available proper longitudinal volume; s
effects do not affect the conclusion~2!, however@5#.
©1999 The American Physical Society35-1



-
t

n

n
co
s
in
th

i
ld

n

itu

r-
lif
am
in

ec
io
ta

h
g
c
n

ur
o
o

n
kly
ne

t in
ti-
si-

as

ov-

i-

y
ak-
re-
s is

he
s on

trix
c-

nce
ns

the
tent
the

ads
Fig.
n-

eet
is
r a
om
the

ce
g’s

ous

e
y
IA
he

of
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We focus on type IIA theory onTp with p54,5 (411d
and 511d SYM theory!. One reason for this is that gravita
tional interactions are longer-range, and sufficiently strong
be important for state transitions, in lower dimensio
~higher p!. Also, the cases withp51 and p52 require
slightly more effort; and the casep53 is conformal—the
SYM couplinggY is dimensionless, so that quantitative co
trol is required for some questions to be addressed. We
fine this report to a more qualitative sketch of the pha
diagram; for example, we ignore numerical coefficients
state equations. We hope to return to a discussion of
situation for p<3 elsewhere. In particular, the casesp
53,2 are relevant to both matrix theory and string theory
anti–de Sitter space, and thus their phase diagrams shou
rather interesting.

Our main conclusions come in two pieces. The first co
sists of an overview of previous observations@1,3,5,9,6#, put
in a new unifying perspective. Figure 1 summarizes the s
ation. It is the phase diagram traced out by asingle objectin
matrix theory onT4 or T5. We are assuming that the diffe
ent states we track are characterized by long enough
times so that it makes sense to describe them thermodyn
cally, as~meta!stable phases. In super Yang-Mills, one has
mind starting the system with all scalar field vacuum exp
tation values bounded in some appropriately small reg
such that the interactions sustain a long-lived cohesive s

In the figure, the limit of validity of the SYM description
for the DLCQ string theory is determined by the upper rig
curve. In the shaded region, the theory is sufficiently stron
coupled at the scale of the temperature that it is not ac
rately described by super Yang-Mills theory; rather, o
must pass to the six-dimensional~2,0! theory @10# for p
54, or the ill-understood ‘‘little string’’ theory@11,12# for
p55. We will see that the dynamics of interest to us occ
outside this region. We identify several phases in SYM
the torus; a black hole phase, a string phase, a phasep
11-dimensional strongly interacting SYM, and perhaps

FIG. 1. The proposed thermodynamic phase diagram for thp
11d SYM on the torus, or the DLCQ IIA theory, obtained b
tracking an object in matrix theory. On the horizontal axis is the I
string coupling, which is the aspect ratio of the SYM torus. T
vertical axis is the density of states of the object.
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‘‘coexistence phase’’ of a matrix string with SYM vapor. O
the upper left part, the system evaporates into a wea
coupled SYM gas, over sufficiently short time scales that o
cannot think of the ensemble as that of a single objec
spacetime. There is a ‘‘triple point,’’ a thermodynamic cri
cal point of the DLCQ string theory where the three tran
tion manifolds coincide.

A brief description of the physics of the diagram is
follows: In type II DLCQ string theory onTp, with p
54,5, there exists a~longitudinally wrapped! Dp-brane
phase; it is unstable at the Banks-Fischler-Kleban
Susskind~BFKS! point ~the horizontal line atN;S in the
diagram! to the formation of a black hole because of long
tudinal localization effects. Along another critical curve~the
diagonal line aboveN;S!, the Dp brane freezes its strongl
coupled excitations onto a single direction of the torus, m
ing a transition to a perturbative string through the cor
spondence principle. In this regime, the thermodynamic
that of a near-extremal fundamental~IIB ! string supergravity
solution, with curvature at the horizon becoming of order t
string scale. The correspondence mechanism also applie
the other side of the BFKS transition; in this case, a ma
black hole makes a transition to a matrix string when it a
quires string scale curvature at the horizon. A coexiste
phase, where both matrix string and SYM gas excitatio
contribute strongly to the thermodynamics, may exist in
region indicated on the diagram; this depends on the ex
to which the object persists long enough to treat it using
methods of equilibrium thermodynamics.

Our second set of results concerns the dynamics that le
to the correspondence transition, and is summarized by
2. The plot depicts the mutual gravitational interaction e
ergy between a pair of points on a typical~thermally excited!
macroscopic matrix string, as a function of the world-sh
distancex along the string separating the two points. Th
potential governs the dynamics of the matrix string nea
black hole or black brane transition, as it is approached fr
the weak coupling side. A bump in the potential occurs at
thermal wavelengthN/S for p54,5 ~five or four noncompact
spatial directions!; in these dimensions, the corresponden
transition to a black hole is indeed caused by the strin
self-interaction, as discussed in@13#. For smallerp ~more
noncompact spatial directions!, there is no bump; similarly,
in @13# the self-interactions could not cause a spontane

FIG. 2. The string self-interaction potential as a function
relative separationx along the string, forp54,5.
5-2
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BLACK HOLES AND THE SYM PHASE DIAGRAM PHYSICAL REVIEW D59 044035
collapse to a black object. We will see that the height of
bump is proportional to the gravitational coupling, such th
it ‘‘confines’’ excitations of the string on the strong-couplin
side of the correspondence transition.

This result supports a suggestion@14,15# to describe the
black hole phase as clustered matrix SYM excitations of s
N/S. These correlated clusters were invoked in order that
object withN.S can be localized in the longitudinal direc
tion. Such a localization necessarily involves the longitudi
momentum physics of matrix theory. We find that a plausi
argument for the dynamics with this potential gives the p
viously identified correspondence curves as the bounda
of validity of the matrix string phase. ForN,S, one finds
the transition to the interactingp11 SYM phase shown in
Fig. 1; while forN.S, one finds the transition to the matri
black hole phase. Accounting for the latter transition requi
taking into consideration longitudinal momentum transfer
fects as in@14#; we justify this by a string theory amplitud
calculation involving winding number exchange in a du
picture. We thus conclude that we have identified the ch
acteristics of the microscopic mechanism of black hole f
mation from the SYM point of view.

The plan of the presentation is as follows: in Sec. II,
review the two conjectures~matrix and Maldacena! we will
use in the analysis of the phase diagram. In Sec. III, we b
together previous observations with some new ones to
out the phase diagram for the DLCQ matrix string. Sect
IV extends our arguments at the triple point to the cases
singly and doubly charged black holes. We also discuss a
mechanism for clustering of SYM excitations for the sing
charged case, at the BFKS point. Section V discusses
self-interaction of the matrix string, the identification of th
bump potential and comments about its dynamics. We o
line in the Appendices the calculation of the potential, an
scattering amplitude calculation relevant to the issue of l
gitudinal momentum transfer physics.

As we were finalizing the manuscript, a paper discuss
related issues@16# came to our attention.

II. A COUPLE OF CONJECTURES

A. The matrix conjecture

A convenient way to summarize the matrix theory conje
ture is to say that DLCQ M theory onTp with N units of
longitudinal momentum is a particular regime of an auxilia
‘‘M̄ theory’’ which freezes the dynamics onto a subsecto
that theory. Consider such an M¯ theory, with eleven-
dimensional Planck scalel̄ pl @which we denote (M̄, l̄ pl)# on a
p11d dimensional torus of radiiR̄i , i 51 . . .p, and R̄ the
‘‘M theory circle’’ of reduction to typeIIA string theory, in
the limiting regime

l̄ pl→0, with x[
l̄ pl

2

R̄
and yi[

l̄ pl

R̄i

fixed, ~3!

andN units of KK momentum alongR̄. It is proposed that
@7,17#
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~i! This theory is equivalent to an (M ,l pl) theory on the
DLCQ background we denote byD1,13Tp3R92p, where
D1,1 is a 111 dimensional subspace compactified on a lig
like circle of radiusR1 , and the torusTp has radiiRi ( i
51 . . .p). The map between the two theories is given by

x5
l pl
2

R1
, yi5

l pl

Ri
, ~4!

with N units of momentum alongR1 .
~ii ! The dynamics of the M̄theory in the above limit can

be described by a subset of its degrees of freedom, thatN
D0 branes of theIIA theory, up to a certain UV cutoff.

The two propositions above, in conjunction, are referr
to as the matrix conjecture@7,17#.

T-dualizing on theR̄i ’s, we describe the D0 brane physic
by thep11d SYM of N Dp branes wrapped on the dualize
torus. We remind the reader of the dictionary needed in
process

R̄5ḡs8 l̄ s l̄ pl
3 5ḡs8 l̄ s

3 ,

ḡs5ḡs8
l̄ s

p

PR̄i

S i5
l̄ s

2

R̄i

. ~5!

The first line is the M̄2IIA relation, the second that o
T-duality. The limit ~3! then translates in the new variable
to

ā8→0, with gY
25~2p!p22ḡsā8~p23!/2 and S i fixed,

~6!

where the nomenclaturegY
2 andS i refers to the coupling and

radii of the correspondingp11d U(N) SYM theory, when-
ever it is well defined in this limit, i.e., forp<3.

For p.3, we see from Eq.~6! that ḡs→`, the dilaton at
infinity diverges~i.e., in the UV of the field theory, accord
ing to Maldacena’s conjecture@8#!; this is a statement of the
non-renormalizability of the corresponding SYM: New phy
ics sets in the UV. Forp54, the D-branes physics is the IR
limit of the six-dimensional~2,0! theory; while forp55, it is
that of a weakly coupled IIB Neveu-Schwarz 5-brane~NS5-
brane! @18,19#. We ignore hereafter all cases withp.5. In
summary, only at low enough energies the 411d and 5
11d SYM yield a proper coarse-grained description of t
needed dynamics.

B. The Maldacena conjecture

It is proposed@8# that in the limit~6!, one can identify the
physics of the SYM QFT at different energy scales with t
supergravity solution that is cast by the branes, whene
such a solution is well defined. One is to identify strin
theory excitations of the supergravity background with tho
of the quantum field theory~QFT!; this is essentially a cor-
respondence between closed and open string dynamics.

Here, we will study finite temperature physics. We w
therefore make use of the thermodynamic version of
5-3
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MIAO LI, EMIL MARTINEC, AND VATCHE SAHAKIAN PHYSICAL REVIEW D 59 044035
above statement, which identifies the finite temperat
vacuum of the SYM describingN Dp branes with the geom
etry of the horizon region of the near extremal supergrav
solution the branes cast about them, whenever such a s
tion is sensible@9#. In particular, we can extract the therm
dynamics of SYM at finite temperature in its no
perturbative regimes. Correlation functions in the SY
probe different distances from the horizon in the supergr
ity solution as one changes the separation of operator in
tions relative to the SYM correlation length~thermal wave-
length!; coarse graining the SYM theory to lower energi
corresponds to moving towards to the center of the su
gravity solution, up until the near extremal horizon@20#.

Our strategy will be to use the Maldacena conjecture a
tool, to study the thermodynamics of matrix strings a
black holes; and conversely, to learn about the phase
gram of supersymmetric Yang-Mills theory on the torus.

III. A THERMODYNAMIC ROAD MAP

A. Preliminaries

A DLCQ IIA theory descends from the DLCQM theory
described above; we choose string scale compactificatio

Ri; l s for i 51 . . .p21, ~7!

with

Rp5gsl s l pl
3 5gsl s

3 , ~8!

and a perturbative IIA regime

gs,1. ~9!

We can in principle relax Eq.~7! at the expense of introduc
ing new state variables, and a more complicated~and richer!
phase diagram; for simplicity, we will stick to this ‘‘IIA
regime.’’ Using the equations in the previous section, we
write the dictionary between our IIA theory and the mat
SYM

gY
25~2p!p22~ags!

p23,

S i5gsa for i 51 . . .p21,

Sp5a, ~10!

V[S i
p21Sp5gs

p21ap,

with

a[
a8

R1
. ~11!

We chose Eq.~9! so that we haveS i,Sp , simplifying our
analysis later.

We study finite temperature physics of this IIA theo
with the finite temperature vacuum of the correspond
SYM. As mentioned in the introduction, we confine o
analysis top54 andp55.
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B. Validity of SYM

Given that we are working with matrix theory onT4 and
T5, the first question that must be addressed concerns
validity of the description, given that SYM 411d and 5
11d are non-renormalizable. New degrees of freedom
required to make sense of the SYM dynamics as we prob
in the UV, i.e. as we navigate outward in the correspond
supergravity solution. These new degrees of freedom
SYM 411d and 511d are associated with the onset
strong coupling dynamics; the validity of the theories at d
ferent energy scales is then determined by looking at the
of the dilaton vev at different locations in the supergrav
solution. For finite temperatures, physics at the therm
wavelength of the SYM is identified with physics at the h
rizon of the near extremal solution@9,21#

dshor
2 5a8S U ~72p!/2

gYAdpN
ds i

21gYAdpNU~p23!/2dV82p
2 D .

~12!

We are looking at a fixed time and radial slice; the rad
variable isU, the s i ’s are coordinates along the brane wi
identifications i;s i1S i ; dp is a numerical coefficient; and
Uo is the location of the horizon, related to the SYM entro
@9#

Uo
p29;~gY

2 !23S22NV2. ~13!

The dilaton VEV is

ef5~2p!22pgY
2S gY

2dpN

U72p D ~32p!/4

. ~14!

The finite temperature vacuum of the 411d and 511d
SYM is a valid thermodynamic description of the DLCQ II
theory ~by the two conjectures stated earlier! when

efuUo
!1⇒S!N~82p!/~72p!gs

21 . ~15!

Note that this is a purely geometric statement, in terms of
horizon area and string coupling; it will be seen to be ins
sitive to finite size effects due to the transverse torus.
then choose to work on a two dimensional cross section
the S-gs plane of the thermodynamic phase diagram, w
fixed N@1. In principle, one is to take the thermodynam
limit N→` with N/S fixed, to see criticality; transition be
tween phases at finiteN discussed here are smooth cros
overs. It is expected that, in the infiniteN limit, the physics
tends to the appropriate critical behavior.

Let us for a while ignore the effects of the transver
torus. In the regime where the curvature of the supergra
solution at the horizon is less than the string scale,

S@N~p26!/~p23!gs
21 , ~16!

the SYM statistical mechanics obeys the equation of s
@9,21,22#

Eint
p29;S2~p27!~gY

2 !p23N72pV52p. ~17!
5-4
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BLACK HOLES AND THE SYM PHASE DIAGRAM PHYSICAL REVIEW D59 044035
Beyond this regime, we have weakly coupled SYM, roug
a free gas ofN2 gluons. These statements are graphica
summarized in Fig. 3.

Our assumption that finite size effects, due to the comp
tification of thes i variables, are of no relevance is the sta
ment that, for high enough temperature~i.e. for thermal
wavelengths short enough with respect to the effective s
of the torus!, the local thermodynamics is similar to that
the uncompactified case. The rest of this section is the s
of the breakdown of this regime; we would like to paint ov
Fig. 3 new phases arising due to the compactification of
background. In particular, we will argue that the geome
describing the interactingp11d SYM phase gets modifie
due to the two transition mechanisms outlined in the Int
duction; consequently, the correspondence line of equa
~16! is changed.

C. Finite size effects

A finite size effect in the supergravity regime that w
determined in the work of@2,3,4,5# is the effect of the DLCQ
radiusR1 on the geometry. We saw from Eq.~2! that a black
hole is localized longitudinally whenN.S. The black hole
equation of state is

Ebh
p29;Eint

p29S N

SD 2

. ~18!

The process of minimizing the Gibbs energies between
black hole and interacting SYM phases yields a black h
phase as in Fig. 4, independent ofp, which is the BFKS
observation@2,3,4#; but we now see that the Maldacena co
jecture justifies the procedure.

The Schwarzschild black hole geometry will becom
stringy when its curvature near the horizon becomes of
order of the string scale; the emerging state is a matrix st
in the matrix conjecture language, i.e. a 111 state withZN
holonomy onSp . Minimizing the Gibbs energy between th
matrix string and matrix black hole phases leads to
Horowitz-Polchinski correspondence curve@1,13#

FIG. 3. The entropyS versusgs phase diagram showing th
region of validity of the SYM description, and the boundary b
tween the free and interacting phases, ignoring finite size effe
We assumeN,S@1, andgs,1, and fixN for a given diagram.
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S;gs
22 . ~19!

This is a statement independent ofN and p. At gc;N21/2

;Nosc
21/4, whereNosc is the string oscillator level, there exist

an interesting critical point.
We next deal with finite size effects in the interactingp

11d SYM phase which are due to the other radiiS i . This is
problematic since, unlike the free case, the strongly coup
SYM may acquire at finite temperature a nontrivial vacuu
for example, a vacuum characterized by a holonomy sew
branes together. It is in such a regime that Susskind obse
for the casep53 that the effective size of the SYM box i
bigger thanS i @6#. In the spirit of Susskind’s transition, an
inspired by the existence of a matrix string phase on the
of the phase diagram, we suggest that the finite size ef
can be probed by comparing the Gibbs energies of the in
acting 111d andp11d phases. Using Eq.~17!, we get a
critical line at

S;ANgs
21 , ~20!

independent ofp and matching2 onto the ‘‘triple point’’ of
correspondence. Even so, for these values ofS, N and gs ,
the 111d SYM is not described by the supergravity soluti
whose equation of state we used. The analogue of Fig. 3
p51 has the correspondence curve on the strong coup
side of the line whereef51; in other words, the D string
supergravity solution is strongly coupled, as noted in@9#.
However, the S-dual is the weakly coupled supergravity
lution of a fundamental IIB string source; its equation
state is the same as the one used above, given that the
tropy is to be calculated in the Einstein frame. The curvat
at the horizon of the S-dual solution becomes of order
string scale at precisely Eq.~20! @9#, beyond which a matrix
string description emerges. We can further check the corr

2Figuratively speaking; we have dropped numerical coefficient
this analysis; strictly speaking, this critical ‘‘point’’ may be a man
fold of dimension greater than 0.

ts.

FIG. 4. For the convenience of the reader, we reproduce Fig
The proposed thermodynamic phase diagram for thep11d SYM
on the torus, i.e., the DLCQ IIA theory.
5-5
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MIAO LI, EMIL MARTINEC, AND VATCHE SAHAKIAN PHYSICAL REVIEW D 59 044035
ness of this conclusion by matching thep11d interacting
SYM gas equation of state with that of the matrix string, t
latter being the dominant phase on the other side of
correspondence curve. The result is again Eq.~20!. We con-
clude that thep11d interacting SYM makes a transition to
matrix String at Eq.~20!. This is shown in Fig. 4.

From the supergravity side, we note that, both thep
11d SYM→111d SYM transition and the matrix blac
hole→matrix string transition are correspondence regim
where the geometry, that of a near extremal fundame
string and that of a black hole respectively, has curvatur
the horizon of order of the string scale@1#. On the other
hand, the BFKS transition is that of longitudinal localizatio
of the supergravity solution@5#.

We can now understand the observation of Susskind f
the phase diagram of Fig. 4. From the interactingp11d
SYM side, one can consider the effective box sizes~i.e. the
critical thermal wavelengths! as one approaches the vario
transitions. The effective box size is defined byTcSeff;1,
where as usual the temperature is determined fromT
;E/S. This yields for theN;S transition

Seff;Sp~Ngs
2!2/~92p!, ~21!

and for the matrix String/p11d SYM transition

Seff;S iAN5SpgsAN. ~22!

The bound of Susskind†equation~3.5! of @6#‡ is simply that,
starting with thep11d SYM phase at high temperature, o
c-

g
y.

i-
e

04403
is

s
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sees a transition to the matrix black hole phase as the t
perature is lowered only if~in the IIA variables!

gs.N21/2. ~23!

This is clear from Fig. 4.
Finally, we note that we assumed above that there exis

well defined matrix string description forN,S. In this re-
gime, the thermal wavelength on the matrix string is sma
than the UV cutoff imposed by the discretized nature of
matrices. Our procedure may be equivalent to an analyt
continuation of the matrix string phase into a regime wh
the description may not be fully justified; this is in the sam
spirit as the extension of the Van der Waals equation of s
into the gas-liquid coexistence region, which one uses
identify the emergence of the liquid phase@23#. For small
enough couplinggs , we expect the matrix string to evapo
rate into a perturbative SYM gas, as shown on Fig. 4. F
thermore, the regimeN,S is similar to the Hagedorn regim
@24,25#, in that the temperature remains constant as the
tem absorbs heat. We speculate that theN,S regime of the
matrix string near the triple point is characterized by a co
istent phase of a string with SYM vapor. We defer a detai
analysis of this issue to future work.

As a unifying probe for all the transitions, we observe th
the ‘‘mass per unit charge’’q defined in Eq.~1! scales on the
various transition curves as
Matrix String-p11d SYM Transition→q21;geffl s

Matrix String-Coexistence Phase Transition→q21; l s

Matrix String-Black Hole Transition→q21;geff
2 l s

Black Hole-p11d SYM Transition→q21;geff
2/~92p!l s
e
sent
bly
nt,

ies
sm
the

in
n-

y
ac-
with the effective coupling

geff
2 [gs

2N. ~24!

From the point of view of the DLCQ string theory chara
terized by the parametersgs , l s and N, this scaling on the
transition curves is a non-trivial signature of a unifyin
framework underlying the physics of criticality of the theor
Note also that thegs

2N combination isnot the ’t Hooft cou-
pling of the matrix SYM description, Eq.~10!; recall thatgs
is a modulus of the torus compactification.

From the point of view of field theory, the various trans
tions that we have identified are predictions about the th
modynamics of 411d, 511d SYM on the torus well into
non-perturbative field theory regimes.
r-

IV. COMMENTS ABOUT CHARGED PHASES

In this section, we will focus on the triple point, where th
correspondence and localization effects coincide, and pre
general considerations of relevance to singly and dou
charged black holes. We will see that, at the critical poi
charged black holes are characterized byN/S.1. For the
singly charged case, by making use of ’t Hooft holonom
on the torus, we will sketch a simple dynamical mechani
by which the system can cluster its SYM excitations at
triple point so as to account for the ratioN/S.

Let us begin by rephrasing part of our previous analysis
a slightly different language, using the IMF formalism. Co
sider a black hole inD dimensions arising from M theory on
Tp11, and defineD1p510. Denote the size of the M theor
circle by R, and suppose the other circles have the char
5-6
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teristic sizesRi as in Sec. II. The horizon radiusr 0 of a black
hole of massM is

r 0
D235

l pl
9

RR1¯Rp
M;S l pl

3

R D ~D23!/2

~25!

at the correspondence point where the horizon size is
string scalel s

2; l pl
3 /R. To reach the correspondence point f

a given mass black hole, one tunes the string couplinggs
;( l pl /R)3/2 while holding the size of the compactificatio
torus ~other than the M theory circle! fixed in string units.
Therefore let all theRi5l l s ; one finds

Ml s;ld21gs
22 . ~26!

At this point, the string entropy

Ss;ANosc ~27!

is of the same order of magnitude as the black hole entr
(GD is theD-dimensional Newton constant!

SBH;r 0
D22GD

21 . ~28!

To work at the triple point, we demand that the stri
coupling is tuned so that the horizon size is of order
string scale, as dictated by the correspondence principle,
that the black hole is placed in a small box and boosted to
black hole–black string transition@2,3,4,5,26,27#, so that it
can be described by matrix theory as a D-brane fluid. At
latter point, the entropy of an uncharged black hole is rela
to the momentumP5N/R of the boosted hole bySBH;N
5RP. In terms of general relativity, the effect of the boost
to expand the proper size of the box near the black hole
that it ‘‘just fits inside.’’ For a small box and a large blac
hole, the system is highly boosted at the string-hole tra
tion. In the IMF, the weak-coupling string that~according to
the correspondence principle! approximates the black hole
has an energy

ELC;ST2;
1

Pls
2 Nosc, ~29!

whereS is the length of the string,T is its temperature,Nosc
is the oscillator excitation number, andP5N/R is the lon-
gitudinal momentum. From this we find the temperature
given by

T;
RNosc

1/2

Nls
2 . ~30!

On the other hand, one expects the black hole to emit Ha
ing radiation at temperature3

3We remind the reader the IMF kinematicsELC;Me2a and P
;Mea.
04403
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TH;
e2a

r 0
;

R

r 0
2 , ~31!

wherea is the rapidity of the boost needed to fit the hole
the longitudinal box. The temperature of emitted quanta m
be the same as the temperature of the gas on the st
equating the two expressions~30! and ~31!, we find

Nosc
1/2

N
;

l s
2

r 0
2 . ~32!

Now the boost quantumN is the entropy of the black hole, a
is the square root of the oscillator number; the left-hand s
is of order unity, and therefore the black hole is of order t
string size. This is a rephrasing of the observation~19! of
Sec. III, at the triple point. Moving away from this point b
boosting toN.S is a canonical operation;S;ST for a
string, andS}N while T}1/N. Note that the number o
matrix partons in a thermal wavelength of the matrix stri
at the correspondence point is alwaysNcl;N/S, in agree-
ment with the proposal of@14#.

For a singly-charged hole, the mass, charge and entr
are given by

M;GD
21r 0

D23S ch2g1
1

D23D
Q;GD

21r 0
D23shgchg

S;GD
21r 0

D22chg ~33!

in terms of the ‘‘charge rapidity’’g. The Hawking tempera-
ture in the boosted frame is

TH;
e2a

r 0chg
; ~34!

again equating this temperature with the string tempera
~30! and setting the horizon size equal to the string sc
correctly yields

SBH;Nosc
1/2;

N

chg
. ~35!

This implies that, for the charged case, even at the BF
point, N/S.1. This ratio was interpreted in@14# as the size
of clusters of partons making up the black hole phase. Th
fore, the charged black hole is to be described at the BF
point as a gas of clusters of size chg.

We can see a mechanism for this dynamics with the
lowing argument. Consider the matrix string limit of matr
theory onT2. Matrix string transverse excitations are stor
in the scalars of the 211 SYM, on the diagonal of the ma
trices, with the eigenvalues sewn by boundary conditio
involving the shift operator@28#. Off-diagonal constant
modes describe the effect of the W bosons stretched betw
the strands of the string; their one-loop fluctuations give
effective gravitational interaction of the bits of the matr
string. Given a holonomy describing a singly charged ma
5-7
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string phase, one can ask what is the interaction poten
between two points on the strands, or between two ma
elements on the D-string. Fixing a winding chargeQ, a mag-
netic field must be turned on

B125
R

N
Q. ~36!

This induces a holonomy on the 2-torus, with ’t Hooft sty
boundary conditions@29#. Extending these conditions ont
the scalarsXi , we get

Xi5VkXiV2k

Xi~s1S!5UlXi~s!U2 l , ~37!

with Ui j 5d i , j 21 , Vi j 5diag@exp„2p i (m21)/N…#, m
51, . . . ,N; and kl5a8Q/Ri5 l sQ. This configuration de-
scribes a system consisting ofl strings, and requires the van
ishing of some of the off-diagonal elements between the
trix strands. This latter effect reduces the strength of
interaction of the strings when the off-diagonal modes
integrated, by aQ andl dependent factor. Modeling the sy
tem through the interaction of the zero modes, and tak
into account the multiplicity factor in the interaction resu
ing from the boundary conditions~37!, we find an energy for
the gas as a function ofl :

E~ l !;
N

lR
v22Kl S N

l D 2 Qls
N

GD

R3

v4

r 72d , ~38!

with K a numerical coefficient independent ofN and l . Ap-
plying the uncertainty principle and the virial theorem@5# at
the correspondence pointr 0; l s then yields the scaling

N

l
;chg, ~39!

in agreement with Eq.~35!; i.e., it is energetically favorable
for the system to settle into a phase of clusters of matrice
sizeN/S;chg.

Finally, a doubly-charged hole is obtained in the cor
spondence principle from a string carrying both winding a
momentum in compact directions. The IMF energy and
worldsheet temperatures of left- and right-movers are

ELC;S~TL
21TR

2 !;
NL

osc1NR
osc

Pls
2

TL,R;
RNL,R

1/2

Nls
2 . ~40!

At the string-hole transition, one has

P;GD
21r 0

D23~ch2gw1ch2gp!ea

S;GD
21r 0

D22chgwchgp , ~41!

from which one finds the relation
04403
ial
ix

a-
e
e
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e

N;S
ch2gw1ch2gp

chgwchgp
~42!

between the longitudinal boost quantum and the entro
Note thatS;Nosc,L

1/2 1Nosc,R
1/2 }chgwchgp , while the Hawking

temperature must be TH52TLTR /(TL1TR)
}(chgwchgp)21. A consistent assignment of worldsheet o
cillator numbers with respect to these quantities is

NL,R;„GD
21r 0

D22ch~gw6gp!…2, ~43!

so that the oscillator entropy agrees with the black hole
tropy ~41!, and the Hawking temperature determined fro
Eq. ~40! is of the right order.4 We note that we have agai
N/S.1 at the triple point due to the presence of Kaluz
Klein ~KK ! charges.

Thus, in general it is necessary that the matrix black h
consist of coherent clusters of matrix partons even at
BFKS transition; and that, at the correspondence point,
number of partons in a cluster is the same as the numbe
strands of the matrix string lying within a thermal wav
length. Both of these facts support the analysis of@14#.

V. THE INTERACTING MATRIX STRING

In this section, we come back to the neutral case, aw
from the triple point, attempting to probe the dynamics
greater detail from the matrix string side. In@14#, it was
argued that the matrix black hole phase, as a SYM fi
configuration, can be thought of as a gas ofS clusters of D0
branes, the zero modes of the SYM, each cluster consis
of N/S partons. The system is self-interacting through t
v4/r 7 interaction, or its smeared form on the torus.

This phase of clustered D0 branes may be an effec
description, i.e. thermodynamically strongly correlated
gions of a metastable state; or more optimistically, it mig
be a microscopic description associated with formation
bound states like in BCS theory. We will try here to inve
tigate the matrix string dynamics so as to reveal the signa
of the clusters as we approach the correspondence curve
aim is to identify a possible dynamical mechanism for bla
hole formation, and determine the correspondence cu
from such a microscopic consideration.

In Sec. V A, we derive the potential between two poin
on the matrix string; in view of the matrix conjecture, we c
do this by expanding the DBI action of a D-string in th
background of a D-string. We then evaluate the expecta
value of this potential in the free string ensemble at fix
temperature. In Sec. V B, we analyze the characteristic
tures of the potential, particularly noting the bump forp
54,5 that we alluded to in the Introduction. In Sec. V C, w

4These expressions are somewhat different than those in@1#; the
point is that one is free to adjust the smaller of the two temperatu
TL,R without appreciably affecting the entropy or the charges. O
choice is compatible with the Bogomol’nyi-Prasad-Sommerfi
~BPS! limit r 0→0 with gw;gp and the charges fixed, whereas th
one in @1# does not give vanishingTR .
5-8
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BLACK HOLES AND THE SYM PHASE DIAGRAM PHYSICAL REVIEW D59 044035
comment on the dynamics implied by the potential, parti
larly in regard to the phase diagram derived earlier.

A. The potential

In this section, we derive the potential between two poi
on the matrix string by expanding the DBI action for
D-string probe in the background geometry of a D-strin
We then check the validity of the DBI expansion, and eva
ate the expectation value of the potential in the thermal
semble of highly excited matrix strings. The details of t
finite temperature field theory calculations are collected
Appendix A.

A IIA string in matrix string theory is constructed in
sector of field configurations described by diagonal matric
with a holonomy inZN ; a nonlocal gauge transformatio
converts this into ’t Hooft-like twisted boundary condition
on the transverse excitations of the eigenvalues of the m
ces, as described in detail in@28,30,31,32#. The conclusion is
that the eigenvalues are sewn together into a long string,
a IIA string emerges as an object looking much like a coil
‘‘slinky’’ wrapped on Sp . The self-interactions of this string
are described by integrating out off-diagonal modes betw
the well-separated strands. Alternatively, making use of
matrix conjecture, this effective action can be obtained fr
supergravity, by expanding the Born-Infeld action of
D-string in the background of a D-string.5 We will follow
this prescription to calculate the gravitational self-interact
potential between two points on a highly excited mat
string.

The Born-Infeld action for N D-strings is given by@33#

S52
1

2ā8ḡs
F E d2se2f Tr Det1/2~Gab1Bab12pa8Fab!

2NE CRR
~2!G , ~44!

where we have assumed commuting matrices so that the
no ambiguity in matrix orderings in the expansion, andḡs is
the dilaton vev at infinity. We chooses1 to have radiusSp ,
turn off gauge and NS-NS fluxes,

Bab5Fab50, ~45!

and choose the static gauge

X05s01,

X15s11. ~46!

A single D-string background in the string frame is given
@34#

5Note that, for D-string strands closer to each other than
Planck scale, the W bosons cannot be integrated out of the prob
the physics is described by the full non-abelian degrees of freed
We are assuming here that this ‘‘UV’’ physics does not effect
analysis done at a larger length scale.
04403
-

s
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-

n

s,

ri-

nd
r

n
e

n

is

ds10
2 5h21/2~2dt21dx2!1h1/2~dxW !2

ef5h1/2

C015h21

h5S r 0

r D 72p

~47!

~recall p is the torus dimension! and we defineD[72p.
The string is taken to have no polarizations on the torus,
any KK charges. Here, we have followed the prescription
@35,36#, where we T-dualized the D-string solution to a D
brane, lifted to 11 dimensions, compactified on a lightli
direction, and T-dualized the solution to the one above. T
only change is in replacing 11(r 0 /r )72p→(r 0 /r )72p. By
Gauss’ law,

r 0
D5cD

gs
2

R1
2 l s

92p ,

cD[
~2p!7

2pD/2 G~D/2!, ~48!

where we have made use of the needed dualities to exp
things in our IIA description. Putting in the background, w
have

S52
1

a8
ESpN

h21~11hK1h2V!1/22h21

K[X822Ẋ254]1X•]2X

V[4„~]1X•]2X!22~]1X!2~]2X!2
…. ~49!

We note that, as the limit of the action indicates, we ha
made use of theZN holonomy that sews the rings of th
slinky together. Expanding the square root yields the Ham
tonian

H5ESpN 1

2a8
~Ẋ21X82!1cD8

gs
2l s

72p

R1
2 r 72p $~]1X!2~]2X!2

2@~]1X!21~]2X!2#~]1X•]2X!%. ~50!

Let us check the validity of the DBI expansion we ha
performed. We would like to study dynamics of the strin
squeezed at most up to the string scale, the correspond
point; settingr; l s in h, we get

h;S gsl s

R1
D 2

. ~51!

From elementary string dynamics@Eqs.~27!,~29!#, we have

^K&;S R1S

l sN
D 2

, ~52!

where brackets indicate thermal averaging at fixed entr
S. It can be shown from the results of the next section th

e
m;
m.
e
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^V&max;^K&2, ~53!

and that^V& will have a definite maximum for allp. We
now see from Eqs.~49!, ~51!, ~52!, and ~53!, that our DBI
expansion is a perturbative expansion in

«5gs

S

N
. ~54!

We then need
r-

ap
lf-
tu

in
n
dy
o
-
ta
on

n
e

-
es
fe

t,

on
e
tin
Ap

04403
S!Ngs
21 . ~55!

A glance at Fig. 4 reveals that we are well within the regi
of interest.

The potential in this expression is the interaction ene
between a D-string probe and a D-string source. Using
residual Galilean symmetry in the DLCQ, and assum
string thermal wavelengths.Sp ~the ‘‘slinky regime’’!, we
deduce that the potential between two points on the ma
strings denoted by the labels 1 and 2 is
V125KD

gs
2l s

52p

R1

$~]1Xr !
2~]2Xr !

22@~]1Xr !
21~]2Xr !

2#~]1Xr .]2Xr !%

~Xr
2!D/2 , ~56!
in-
n

ics
n-
real

ro
e a
tion
ted
ack-

ach

o

where

Xr[X22X1 ~57!

and KD is a horrific numerical coefficient we are not inte
ested in.

Ideally, one should self-consistently determine the sh
distribution of the string in the presence of this se
interaction; however, this is rather too complicated to ac
ally carry out. To first order in smallgs , the effect of the
potential is to weigh different regions of the energy shell
phase space@37# by a factor derived from its expectatio
value in the free string ensemble. We will discuss the
namics in the presence of the potential in somewhat m
detail below. For now, in light of this weak-coupling ap
proximation scheme, we would like to calculate the expec
tion value of the potential in a thermodynamic ensemble c
sisting of a highly excitedfree string with fixed entropyS.
From the matrix string theory point of view, this is esse
tially a problem in finite temperature field theory, where w
will deal with a two dimensional Bose gas~ignoring super-
symmetry; the fermion contribution is similar! on a torus
with sidesSpN and b51/T, b being the period of the Eu
clidean time. Using Wick contractions, we can then expr
the potential in terms of the free Green’s functions; we de
the details to Appendix A. We get

V125aDgs
2

l s
52p

R1

K12
zzK12

z̄z̄

~2K12!
D/2 , ~58!

whereaD is a dimension dependent numerical coefficien

K12[KD[2a8^X1X2&[2a8G12, ~59!

is the Green’s function of the two dimensional Laplacian
the torus, andK12

zz is its double derivative with respect to th
z complex coordinate of the Riemann surface represen
the Euclideanized world-sheet. We refer the reader to
pendix A for the derivation of this equation.
e

-

-
re

-
-

-

s
r

g
-

B. The thermal free string

The thermodynamic properties of the matrix string at
verse temperatureb are determined by the Green’s functio
of the Laplacian on the worldsheet torus of sides~S,b!,
where S[SpN. It is known from conformal field theory
~CFT! on the torus that this is given by@38,39#

G1252
1

2p
lnUu1S z

S Ut D
u18~0ut!

U1
1

2t2
S Im

z

S D 2

, ~60!

where

t[ i
b

S
[ i t25

i

S
. ~61!

Hereb can be obtained from the free string thermodynam
of Eq. ~30!. All correlators and their derivatives must eve
tually be evaluated on a time slice corresponding to the
axis in thez plane.

Divergences will be seen in correlators due to infinite ze
point energies. The conventional approach is to introduc
normal ordering scheme giving the vacuum zero expecta
value in such situations, i.e. throwing away disconnec
vacuum bubbles. In our case, the string has a classical b
ground due to its thermal excitation. To renormalize finiteT
correlators, we subtract the zero temperature limit from e
propagator. This corresponds to

^ f ~X!&; f S d

dJD ln ZT@J#→ f S d

dJD ln ZT@J#

2 f S d

dJD ln ZT50@J#5 f S d

dJD lnS ZT@J#

ZT50@J# D .

~62!

From the expression forZ@J#, we see that this amounts t
correcting the Green’s functions as

K→KT2KT50 . ~63!
5-10
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This subtraction removes the divergent zero-point fluct
tions of nearby points on the string, while leaving the effe
due to thermal fluctuations.

Defining

x[
z

S
, ~64!

we then have, subtracting the zero temperature part,

KD→a8S 1

4p
ln gḡ1

1

8t2
~x2 x̄!2D , ~65!

with

ln g5 (
n51

lnS 122qn cos~2px!1q2n

~12qn!2 D . ~66!

We can now make use oft2!1 for S@1, to write this sum
as an integral

ln g5
1

2pt2
E

0

e22pt2 dv
v

lnS 122v cos~2px!1v2

~12v !2 D .

~67!

This integral can be evaluated to yield

ln g5
1

2pt2
~2Li 2e22pt22Li 2e22pt212pxi

2Li 2e22pt222pxi!, ~68!

whereLi 2 is the PolyLog function of base 2, related to th
Lerch F function @40#. We then have

KD5
a8

2p
ln g, ~69!

with x here being real, and representing the equal-time se
ration between two points on the string,x5x12x2 , as a
fraction of the total lengthS (0,x,1). The asymptotics are

FIG. 5. 2KD as a function of the string separation parameterx;
we see the change of scaling fromx2 to x.
04403
-
s

a-

KD.F a8Sx for t2!1

a8

p
S2x2 for 2px!1,

~70!

The first line is a well-known result of Mitchell and Turo
@41# calculated originally using the microcanonical e
semble. It shows random walk scalingA^R2&;Nosc

1/4x1/2. The
second line is new and valid for small separations on
string; it is the statement that within the thermal wavelen
b of the the excited string, the string is stretched, scaling
A^R2&;Nosc

1/2x. This is intuitively expected, as regions on th
string within the typical thermal wavelength will be strong
correlated in the thermodynamic sense. This change in
scaling is crucial to what we will soon see in the behavior
the potential between strands.2KD is plotted in Fig. 5.

Next, consider the derivatives of the correlators, evalua
on the real axis. We have

]xKD5] x̄KD5
2 ia8

2~2p!2t2
lnS 12e22pt222p ix

12e22pt212p ixD . ~71!

We also have

FIG. 6. KD
zz as a function of the string separation parameterx;

we see the flattening of the correlation at largex. For smallx, small
relative stretching or motion is implied; for largerx, the flattening
indicates a constant correlation in the relative stretching of
string.

FIG. 7. The potential as a function ofx for dimensionsp53 and
p52.
5-11
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]x] x̄KD5
2a8

4t2
, ~72!

or

KD
zz̄→0, ~73!

since we subtract the zero temperature result. The most
evant term is

]x
2KD5] x̄

2KD52
a8

t2

12e2pt2 cos~2px!

e4pt222e2pt2 cos~2px!11
1

a8

4t2
,

~74!
t
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04403
el-

or

S2KD
zz5S2KD

z̄z̄→2
a8

t2

12e2pt2 cos~2px!

e4pt222e2pt2 cos~2px!11

2
a8

t2

1

e2pt221
~75!

~again we subtract the zero temperature part!.
This yields the asymptotics
~NSp!2KD
zz.F a8S21

p

12
„51cos~2px!…„csc~px!…21O~t2

2!→a8S2 for t2!1,

a8S4x2 for 2px!1.

~76!
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zz is plotted in Fig. 6 as a function ofx.

C. The bump potential

We now put together Eqs.~69! and~75! in the potential of
Eq. ~58! to get the asymptotics

V12.gs
2

R1
3

a83N4 FS~82D !/2x2D/2 for t2!1,

S82Dx42D for 2px!1.
~77!

For p.3, V12→0 asx→0; at largerx, it decays asx2D/2.
At the thermal wavelengthx;1/S, both expressions give

Vmax.gs
2

R1
3

a83N4 S4. ~78!

Note that in this expression the dimension dependence in
power of S conspires to vanish. Forp53, V12;S4 for x
→0, while for p,3, V12→` for x→0; in both of these
latter cases, the potential decays asx2D/2 for largerx.

The conclusion can be summarized as follows. Forp54
andp55, there exists a bump in the potential of height p
portional toS4 at the thermal wavelength on the string; f
p53, the bump smoothes to a flat configuration where
difference between the potential at the thermal wavelen
separation and atx50 is of order unity. Finally, forp,3,
the bump disappears altogether and the potential blows u
the origin signaling the breakdown of the description. T
potential is plotted in various cases in Fig. 2 of the Introdu
tion and Fig. 7.

The presence or absence of the bump is a result of
competing effects: First of all, the increasingly singu
short-distance behavior of the Coulomb potential~56! with
increasing dimensionD; and secondly, the strong correlatio
of neighboring points on the string, which makes (]X1
he

-

e
th

at
s
-

o
r

2]X2) decrease as the separation along the string decre
~inside a thermal wavelength!.

We observe that:
The bump occurs at separations of 1/S of a fraction of the

whole length of the string; in the matrix language, this co
responds to a bump about matrices of sizeN/S.

The presence or absence of the bump as a function of
number of non-compact space dimensions correlates with
observations of@13#, given that in the DLCQ, the light-like
direction reduces the number of non-compact dimensions
one.

As described in@14#, a matrix black hole can be describe
by SYM excitations clustered within matrices of sizeN/S,
the location of the bump. Furthermore, we will shortly repr
duce, from scaling arguments regarding the dynamics of
potential, the two correspondence lines determined fr
thermodynamic considerations above.
We then conclude that we have identified the characteri
signature of black hole formation in the matrix SYM.

D. Dynamical issues and criticality

The dynamics of this potential near a phase transit
point is certainly complicated. Intuitively, we expect that
we approach a critical point, instabilities develop, an ord
parameter fluctuates violently, perhaps related to some m
sure of theZN symmetry; it is reasonable to expect the ch
acteristic feature of the potential, the confining bump, play
crucial role in the dynamics of the emerging phase. Deferr
a more detailed analysis of these issues to the future, le
try to extract from these results the scaling of the corresp
dence curves.

First let us motivate the use of the expectation value
the potential in the free string ensemble. We indicated ear
that this quantity is qualitatively related to the effect of t
interactions, assuming they are weak enough, on the en
shell in phase space covered by the free string. The parti
5-12
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function becomes, schematically

Z;Tr eH01V;e^V&0 Tr eH0, ~79!

so that phase space is weighed by an additional factor rel
to the expectation value of the potential in the free ensem
^V&0 . This is also similar to the RG procedure applied to t
2D Ising model, where the context and interpretation
slightly different @37#.

Using Eq.~58!, the potential energy content of the matr
string is given by

V;E
0

NSp
ds2S S4gs

2
R1

3

a83N4D ~NSp!v12, ~80!

where we have integrated over one of the two integrals of
translationally invariant two-body potential, and scaledv12
such that its maximum is of order 1, independent of any s
variables; however, the shape ofv12 still depends onN and
S. This expression represents the interaction energy betw
two points on the coiled matrix string at fixed separati
s2 . From the point of view of matrix theory physics, th
string’s fundamental dynamical degrees of freedom are
windings on the coil; we expect a transition in the dynam
of the object when there is a competition between forces
an individual winding. In the present case, the two forces
nearest neighbor elastic interaction and the gravitational
teraction. A single string winding being wrapped onSp
worth of world-sheet, the maximum potential energy it fe
can be read from Eq.~80!

vmax;S4gs
2

R1
3

a83N4 NSp
2 , ~81!

and is due to its interaction with strands a thermal wa
length away. Its thermal energy caused by nearest neig
interactions is read off Eq.~52!

k;
^K&
a8

Sp . ~82!

The two forces compete when

S;ANgs
21 . ~83!

At stronger coupling, the forces due to the gravitational
teraction dominate those of the nearest neighbor stretc
and decohere neighboring strands’ velocities. The free st
evaluation of the interaction, Eq.~58!, is no longer valid; one
expects a phase transition to occur. Equation~83! is our
matching result of Eq.~20! between the string andp11d
interacting SYM phase. Here, we are assuming an analy
continuation of the matrix string phase to the regionN,S in
the phase diagram; our suggestion that this region is ass
ated with a coexistence phase is consistent with this pro
dure.

To account for the correspondence curve forN.S, we
now recall that in the discussion of clustered D0 branes
@14#, the virial treatment of thev4/r 7 interaction had to be
04403
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corrected by a factor in order to reproduce the black h
equation of state; the origin of this correction was argued
be interaction processes between the clusters involving
exchange of longitudinal momentum. Under the assump
that these effects are of the same order as zero momen
transfer processes, a correction factor ofN/S was applied.
Using a chain of dualities, we can quantify the effect
longitudinal momentum transfer physics by studying t
scattering amplitude in IIB string theory with winding num
ber exchange. We do this in Appendix B, where we find th
for exchanges of windings up to orderN/S, the winding
exchange generates an interaction identical to that of z
longitudinal momentum exchange; for higher winding e
changes, the interactions are much weaker. These win
modes, represent the sections of the matrix string within
thermal wavelength,N/S worth of D-string windings. Thus
we modify thev12 potential above by the factorN/S, which
accounts in the scaling analysis for the effect of longitudi
momentum transfer physics in the matrix string se
interaction potential. Applying the virial theorem betwee
Eq. ~82! and N/S times Eq.~81! yields the matrix string–
matrix black hole correspondence point at

S;gs
22 , ~84!

as needed.
We can now interpret our results as follows. The bum

potential accounts for the matching of the string phase o
both N,S andN.S phases, one involving partons interac
ing without longitudinal momentum exchange@the matrix
string–(p11d) SYM curve in Fig. 4#, and the other being
the matrix black hole phase of parton clusters of sizeN/S
.1 interacting in addition by exchange of longitudinal m
mentum ~the matrix string–matrix black hole correspo
dence curve of Fig. 4!. In the latter case, the location of th
confining bump correlates with matrices of sizeN/S. In the
former case, the correlations are finer than the UV ma
cutoff; a better understanding of this latter issue obviou
needs a more quantitative analysis of theN,S matrix string
regime. This analysis further substantiates the identifica
of the bump potential as the signature of black hole form
tion from matrix SYM, as well as justifying the new matri
string-p brane transition microscopically.
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APPENDIX A: CALCULATION OF THE POTENTIAL

We need to evaluate
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V[K $~]1Xr !
2~]2Xr !

22@~]1Xr !
21~]2Xr !

2#~]1Xr •]2Xr !%

~Xr
2!D/2 L , ~A1!
pt

y

d

ur

k

to
f

in the finite temperature vacuum of the SYM. Let subscri
~123456! denote the argument ofX, e.g.X1[X(s1). Writ-
ing Xr[X52X6 , we will encounter in the numerator onl
factors of the form

]aX1
i ]aX2

i ]bX3
j ]gX4

j , ~A2!

with the target indicesi , j summed over;a, b, g are world-
sheet indices6; and the labels~1234! are set equal to 5 an
6 in various ways. By expanding the numerator of Eq.~A1!,
we get 3316 terms of the form claimed. We can write o
desired ‘‘monomial’’ ~A2! as

]a
1]a

2]b
3]g

4K X1
i X2

i X3
j X4

j

„~X52X6!2
…

D/2L . ~A3!

Consider

K X1
i X2

i X3
j X4

j

„~X52X6!2
…

D/2L 5
p2d/2

G~D/2!
E

0

`

dsE ddps~D/2!21

3e2p2
d1

i d2
i d3

j d4
j ^e* J̃•X&

5
p2d/2

G~D/2!
E

0

`

dsE ddps~D/2!21

3e2p2
d1

i d2
i d3

j d4
j eD ~A4!

where

J̃i[Ji12iAs„d~s2s5!2d~s2s6!…pi ~A5!

and

D[
1

4 E J̃KJ̃5
1

4 E JKJ1 iAsE J•pKx22sp2f 2.

~A6!

We have defined

Kx[Kx52Kx6 ~A7!

f 2[K2K56. ~A8!

Here Kab meansK(a2b), the Green’s function of the two
dimensional Laplacian

Kab[2a8^XaXb&, ~A9!

andK[Kaa . The rest is an exercise in combinatorics, ma
ing use of

da
i eD5F1

2 E GaxJ
i1 iAspiKaGeD ~A10!
04403
s
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where thex subscript is integrated over and it is implied
be the argument of theJ as well. Denoting the number o
polarizations in the Lorentz indices byd, we get

K X1
i X2

i X3
j X4

j

„~X52X6!2
…

D/2L 5
p2d/2

G~D/2!
E dsE ddpe2p2

e22sp2f 2

3FT1s~D/2!212
1

2
p2sD/2T2

1~p2!2s~D/2!11T4G ~A11!

where we have defined

T1[
d2

4
K12K341

d

4
K13K241

d

4
K23K14 ~A12!

T2[dK1K2K341dK3K4K121K1K3K241K1K4K23

1K2K3K141K2K4K13 ~A13!

T4[K1K2K3K4 . ~A14!

Evaluating thes integral, we get

K X1
i X2

i X3
j X4

j

„~X52X6!2
…

D/2L 5
p2d/2

2D/2~ f 2!D/2 E ddpe2p2
~p2!2D/2

3FT12
D

8 f 2 T21
~D12!D

16~ f 2!2 T4G .
~A15!

Evaluating thep integrals, we get

K X1
i X2

i X3
j X4

j

„~X52X6!2
…

D/2L 5
p2d/2

2~D/2!11~ f 2!D/2Vd21GS d2D

2 D
3FT12

D

8 f 2 T21
~D12!D

16~ f 2!2 T4G
~A16!

whereVd21 is the volume of thed21 unit sphere.
Going back to Eq.~A3!, we need to differentiateT1 , T2

andT4 , according to the map 1234→aabg. Let us denote
the derivatives by superscripts on theK ’s. We then have

T1
aabg5

d2

4
K12

aaK34
bg1

d

4
K13

abK24
ag1

d

4
K23

abK14
ag ,

~A17!

T2
aabg5dK1

aK2
aK34

bg1dK3
bK4

gK12
aa1K1

aK3
bK24

ag1K1
aK4

gK23
ab

1K2
aK3

bK14
ag1K2

aK4
gK13

ab , ~A18!
5-14



n
er

e
ng
f

av

d
.

u-

BLACK HOLES AND THE SYM PHASE DIAGRAM PHYSICAL REVIEW D59 044035
T4
aabg5K1

aK2
aK3

bK4
g . ~A19!

We have used here the translational invariance and even
of the Green’s function to interpret the derivatives as diff
entiations with respect to the argumenti 2 j of the Green’s
functions ~and therefore note some flip of signs!; further-
more, we assume thatK, Ka andKab are zero, i.e. becaus
of subtraction of the zero temperature limits, or throwi
away bubble diagrams. This, it turns out, is not necessary
the potential we calculate, since all expressions would h
come out as differences, sayK12

ab2Kab; it is just convenient
for notational purposes to throw them out from the start. W
also note the identitiesK12

ab5K21
ab andK5

a52K56
a 5K6

a . For
ry
e

ou
-

, t
n
in

a
tu
ng
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each term in Eqs.~A17!–~A19!, we have 16 terms associate
with taking a map from~1234! to a sequence of 5’s and 6’s
This combinatorics yields

K ]aXr
i ]aXr

i ]bXr
j ]gXr

j

~Xr
2!D/2 L .

K56
abK56

ag1
d

2
K56

aaK56
bg

~2K56!
D/2 .

~A20!

Note thatT2 and T4 cancelled; we have also dropped n
merical coefficients. There are three terms in Eq.~A1! of this
type; this yields
V.
K56

12K56
121

d

2
K56

11K56
222S d

2
11D ~K56

11K56
121K56

22K56
12!

~2K56!
D/2 . ~A21!
pli-

me.
Using the equation of motion~delta singularity subtracted!
K56

1250, we get

V.
K56

11K56
22

~2K56!
D/2 . ~A22!

Using Euclidean timei t5t, we haves65s6t5z,z̄; fi-
nally, we get for Eq.~56!

V125aDgs
2

l s
52p

R1

K12
zzK12

z̄z̄

~2K12!
D/2 . ~A23!

APPENDIX B: LONGITUDINAL MOMENTUM
TRANSFER EFFECTS

Consider the scattering of two wound strings in IIB theo
with winding number exchange. We will find that, in th
regime of small momentum transfer, the interaction is C
lombic for resonances involving low enough winding num
ber exchange, and much weaker otherwise; furthermore
Coulombic interaction is winding number independent, a
the cumulative strength of this potential suggests modify
the matrix string potential by a factor ofN/S for N.S.

For simplicity, consider the polarizations of the extern
states to be that of the dilaton, and T-dualize the momen
in the compact direction to winding number. The resulti
four string amplitude is given by@42#

Am;KabgdKabgd

3
G~2Sa8/4!G~2Ta8/4!G~2Ua8/4!

G~11Sa8/4!G~11Ta8/4!G~11Ua8/4!
,

~B1!

where S[2(k11k2)2, T[2(k21k3)2, U[2(k11k3)2,
with S1T1U50, and
-

he
d
g

l
m

Kabgd52
1

2
~SThaghbd1SUhbghad1TUhabhgd!

1S~k4
ak2

ghbd1k3
bk1

dhag1k3
ak2

dhbg1k4
bk1

ghad!

1T~k4
gk2

ahbd1k3
dk1

bhag1k4
bk3

ahgd1k1
gk2

dhab!

1U~k2
ak3

dhbg1k4
gk1

bhad1k4
ak3

bhgd1k2
gk1

dhab!.

~B2!

This gives the amplitude

Am;@~S1T!41S41T4#

3
G~2Sa8/4!G~2Ta8/4!G~2Ua8/4!

G~11Sa8/4!G~11Ta8/4!G~11Ua8/4!
.

~B3!

We want to accord windingn1 , n2 , n3 and n4 to the four
strings, on a circle of radiusR; without any momenta along
this cycle, we can extract easily this process from the am
tude above by

s5S1M2, ~B4!

t5T1m2[2q2, ~B5!

with

M2[S R~n11n2!

a8 D 2

, ~B6!

m2[S R~n32n2!

a8 D 2

. ~B7!

For largem1 ,m2 , and smallm, q2 is the spatial momentum
transfer between the strings in the center-of-mass fra
5-15
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Thus M@m, and we are in the non-relativistic regimeEcm
2

@q2. From Eqs.~B4! and~B5!, we see thatS@T. Using this
and the identitiesG(z)G(12z)sin(pz)5p and G(11z)
5zG(z), one obtains the amplitude

Am;~s2M2!2 sin„p~q21m2!a8/4…„G@~q21m2!a8/4#…2.
~B8!

In the energetic regime considered,

s2M2;m1m2v rel
2 [AT, ~B9!

wherev rel is the relative velocity of strings 1 and 2 in the la
frame.

Equation ~B8! has poles atq21m254n/a8 with n<0.
We consider scattering processes probing distancesr much
larger than the string scale,qmax;1/r !1/l s ; we also assume
that it is possible to haveR! l s , which we will see is nec-
essary. Given that these poles space the masses of the
nances by the string scale, the dominant term to the am
tude is the one corresponding to the exchange of a wo
ground state, i.e. then50 pole. Measuring quantities in
string units, the amplitude then becomes

Am;T
sin~q21m2!

~q21m2!2 . ~B10!

The effective potential between the strings is the Fou
transform of this expression with respect toq. Let us con-
sider various limits. Takem!q; we then havem!1. The
amplitude becomes

Am
~1!;

T
q2 . ~B11!

Next considerm@q, but m!1. The amplitude becomes

Am
~2!;

T
q21m2 . ~B12!

Finally, for m@q andm@1, we have a constant

Am
~3!;T

sinm2

m4 . ~B13!

The effective potentials are then (d[92p)

Ve f f
~1!;E ddqeiq•xAm

~1!;
T

r d22 . ~B14!

The result is a Coulomb potential, independent ofm. The
second case gives
ys

J

04403
so-
li-
d

r

Ve f f
~2!;T~2p!d/2S m

r D d/221A p

2mr
e2mr, ~B15!

which is weaker thanVe f f
(1) since we havemr@1. Finally, we

have

Ve f f
~3!;T

sinm2

m4

1

r d . ~B16!

In addition to a larger power inr , we havem@1; this inter-
action is much weaker than Eqs.~B14!,~B15!, especially af-
ter averaging over a range of winding transfersm.

We conclude that, formr5Rr(n32n2)/a8!1, we have a
Coulombic potential independent of the winding exchan
m; for mr@1, we have much weaker potentials. This impli
that in a gas of winding strings bound in a ball of size
most of order the string scale, the dominant potential is C
lombic with a multiplicative factor given byw0[a8/(Rr),
provided a mechanism restricts winding exchange proce
to n32n2!n11n2 .

The S-dual of this amplitude describes the scattering
wound D-strings at strong coupling, with winding numb
exchange. Under a further T duality, and lifting to M theor
this amplitude encodes a good measure of the effects of
gitudinal momentum exchange in the problem of a se
interacting matrix string. The bound on the winding numb
translates in our language to

w05
ā8ḡs

Sr
5

R11

r
;

N

S
, ~B17!

i.e. the resolution in the longitudinal direction. We also no
that, under this chain of dualities, the string scale used to
a bound on the impact parameterr transforms asa8→a8,
where the latter string scale is that of the matrix string. T
justifies our implied equivalence between the scale ofr and
that of the size of the black hole.

In the single matrix string case we study, we saw th
regions of sizeN/S were strongly correlated and ‘‘rigid’’ in
a statistical sense. The self-interaction of the large string
then involve processes of coherent exchange of D-st
winding up to the winding numberN/S!N. For larger wind-
ing, the D-string is not coherent; one expects a suppres
both from the emission vertex and from the highly off-sh
propagator. We saw above that all such processes, u
N/S, are of equal strength and scale Coulombically. T
implies that the potential between the string strands ca
lated from the DBI expansion must be enhanced by a fa
of N/S for N.S, and justifies the scaling arguments used
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