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Perturbative approach to the quasinormal modes of dirty black holes

P. T. Leung,1 Y. T. Liu,1 W. M. Suen,1,2 C. Y. Tam,1 and K. Young1
1Department of Physics, The Chinese University of Hong Kong, Hong Kong, China

2McDonnell Center for the Space Sciences, Department of Physics, Washington University, St. Louis, Missouri 63130
~Received 17 September 1997; published 28 January 1999!

Using a recently developed perturbation theory for quasinormal modes~QNM’s!, we evaluate the shifts in
the real and imaginary parts of the QNM frequencies due to a quasistatic perturbation of the black hole
spacetime. We show the perturbed QNM spectrum of a black hole can have interesting features using a simple
model based on the scalar wave equation.@S0556-2821~99!07702-4#

PACS number~s!: 04.30.Db
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I. INTRODUCTION

The observational consequences of black holes interac
with their astrophysical environments have been a subjec
much interest for the last 30 years. Within the next fe
years, it is expected that the new generation of gravitatio
wave observatories@Laser Interferometric Gravitationa
Wave Observatory~LIGO!, VIRGO# @1# will be able to de-
tect gravitational waves emitted by black holes excited
matter, or even other black holes, falling into them. It h
long been known that the gravitational waves emitted in s
a process will carry a signature associated with the w
defined quasinormal mode~QNM! frequencies of the black
hole @2#, and will, among other things, provide confirmatio
of the existence of black holes. Numerical simulations@3#
suggest that in some cases the QNM ringing may even do
nate the signal.

QNMs of black holes have been extensively studied w
the black hole perturbation theory@4#. If a black hole settles
down in an otherwise empty and asymptotically flat spa
time at the end point of dynamical evolution, it will be a Ke
black hole~Schwarzschild hole in the case of zero angu
momentum! @5#. Weak ~linearized! gravitational waves
propagating on the Kerr or Schwarzschild background can
described by the Klein-Gordon equation@4#

@] t
22]x

21V~x!#F~x,t !50, ~1.1!

wherex is a radial coordinate,F is the radial part of a com
bination of the linearized changes in the metric functio
representing the gravitational wave, and the outgoing w
boundary condition is appropriate for waves escaping to
finity. The potentialV(x) describes the scattering of th
gravitational waves by the background geometry. For
ample, in the case of a Schwarzschild~Schw! hole of mass
M , V is the Regge-Wheeler potential@4,6#,

V~x!5S 12
2M

r D F l ~ l 11!

r 2
1~12s2!

2M

r 3 G , ~1.2!

for each angular momentum sectorl , where x5r
12M ln(r/2M21), s is the spin of the field (s52 for gravi-
tational waves!, andr is the circumferential radius.

A single-frequency solution@F}exp(2ivt)# with the out-
going wave boundary condition is a QNM, with Imv,0.
0556-2821/99/59~4!/044034~14!/$15.00 59 0440
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The QNM spectra of Kerr and Schwarzschild black ho
have been extensively studied theoretically@7# and numeri-
cally @8,9#, and the positions of the QNM frequencies in th
v plane are known in detail@8,9#.

For each givenl in Eq. ~1.2!, the QNMs extend down-
wards in a string in thev plane, with Rev nearly constant
and Imv nearly uniformly spaced@8# ~Fig. 1!. The known
pattern of frequencies provides a template against which
can try to determine the nature of the source. For an isola
black hole, the no-hair theorem@5# implies that the spectrum
is described by only two parameters, the massM and the
angular momentumJ of the hole. However, the black hole
that are likely to be observed will not be isolated, but w
likely be situated at the centers of galaxies or will be s
rounded by massive accretion disks. Therefore the obse
spectra should not be matched against those of a pure Ke
Schwarzschild black hole, but to one perturbed by its s
rounding — adirty black hole. We should immediately cau
tion the reader that while gravitational waves from bla
holes are expected to be detected within the next few ye
a determination of the QNM spectrum with the frequenc
of a few modes included might not be an easy task. Indee
what extent the gravitational radiation fromrealistic black
hole events would be dominated the QNM spectrum is sti
matter of much controversy. However, inasmuch as the g
of the gravitational wave observatories is to obtain ast
physical information of our universe~the ‘‘O’’ in ‘‘LIGO’’ !,

FIG. 1. The distribution of QNMs of a Schwarzschild black ho
for l 5s52.
©1999 The American Physical Society34-1
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there is no doubt that we will eventually have to face t
problem of the QNM spectra ofdirty black holes.

We note that two kinds of perturbations are involved he
In the standard black hole perturbation theory@4#, Eq. ~1.1!
is obtained by linearizing the metric about the Kerr
Schwarzschild background, and the time-independent eig
value problem~with the outgoing wave boundary condition!
determines the QNM spectra of isolated holes. The sec
type of perturbations arethe perturbations that change th
backgroundon which the wave propagates, e.g., by the pr
ence of an accretion disk near the black hole. The pertu
tion of the background can often be regarded as quasist
and hence separable from that of the gravitational wave
turbation by the time scales involved~in a suitable gauge
choice!. In this paper we focus on time-independent pert
bation of the background described by Eq.~1.1! with a po-
tential V(x)5V0(x)1mV1(x), umu!1 ~a model problem is
given in Sec. IV below!. We are led to study the QNM fre
quencies of the following eigenvalue problem in powe
of m:

2f9~x!1@V0~x!1mV1~x!#f5v2f. ~1.3!

Equation~1.3! is appropriate for considering the perturb
Klein-Gordon wave equation describing the propagation
scalar waves in a gravitationally perturbed~dirty! black hole
spacetime~as will be shown below!. In this paper we show
how the disturbed QNM spectrum can be determined
such a system. This represents the first step towards d
mining the disturbed gravitational wave QNM spectrum o
dirty hole, the real case of physical interest. For a reali
black hole perturbed by an external matter fluid source,
gravitational wave QNM spectrum also involves the flu
modes. Just as in the case of the perturbation of fluid star
would expect two types of perturbations, with one stron
involving the fluid motion ~e.g., the polarf ,g,p modes!,
while the other only weakly involving the fluid~e.g., the
axial modes!. We expect the scalar perturbation studied
this paper to be more easily generalizable to the latter kin
modes. A more complicated set of equations would have
be used to describe the former type of perturbation involv
the ‘‘fluid’’ modes in the shell of matter outside the hol
While the calculation in this paper may not be easily gen
alizable to these more complicated situations involv
gravitational waves coupled to matter, we note that a
perturbation treatment of the gravitational wave case will
be possible without a thorough understanding of the beha
of the Klein-Gordon wave equation with a perturbed pote
tial, namely, the system studied in this paper.

While the perturbed Klein-Gordon wave equation~1.3! is
superficially similar to standard textbook problems, e.g.,
usual Rayleigh-Schro¨dinger perturbation theory~RSPT!, we
note that the perturbation problem encountered here is
damentally different: the outgoing wave condition rend
the system physically nonconservative~energy escapes to in
finity! and the associated operator@2d2/dx21V(x)# non-
Hermitian; Hermiticity underpins the usual RSPT.

The difficulty coming from the non-Hermiticity can b
seen in several guises if one tries naively to transcribe
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usual formulas. Unlike the Hermitian case, now the unp
turbed eigenstates do not in general form a complete se
expansions@10,11#, at least not in the case of black hole
The usual RSPT formula in terms of a sum over intermed
eigenstates is therefore inapplicable. Even the first-or
shift, which does not involve a sum over intermediate sta
cannot be given by the usual formulâf0umV1uf0&/
^f0uf0&, in obvious notation — the usual inner produ
leads to ^f0uf0&5 *2`

` dxf0* f05` since a QNM wave
function extends over all space~and indeed grows exponen
tially at infinity!.

So far, the perturbation of black hole QNMs has attrac
little attention, partly because a perturbative formalism
the QNMs of an open system, as opposed to the nor
modes~NMs! of a conservative system, has not hitherto be
available. In this paper we develop such a formalism, wh
then opens the way to extracting information about the
trophysical environment of the black holes from the o
served signal, beyond the mass and the angular momen
of the hole.

This paper is a followup of@12#, which outlined some of
the results derived in this paper. In Sec. II of this paper,
develop a formulation for the perturbation of QNM system
As a first step in this direction, we limit ourselves to th
scalar wave case, in which the evolution is described b
single Klein-Gordon equation with a perturbed potential. T
shifts in both the real and imaginary parts of the QNM fr
quenciesv are obtained in quadratures in terms ofmV1(x),
in principle to arbitrary order inm. Given the precision of
the observational data that is possible in the near future~in-
deed at this point it is not clear how many QNMs one c
extracted from the waveforms of black hole events, given
S/N of even the advanced phase LIGO!, the emphasis is on
the first-order shift. The shifts when expressed in terms o
generalized inner product take a form similar to that
RSPT. The perturbative results for a Schwarzschild bla
hole are derived in Sec. III. We show that a functionH(x)
can be defined which dependsonly on the originalunper-
turbed system. We investigated and presented in detail
properties of this functionH for the black hole case. This
function controls the phase and magnitude of the first-or
shift of the spectrum forany given perturbation~not just for
the model problem in this paper!, hence providing insight
into the properties of the black hole spectra in general. S
tion IV illustrates these results with a model problem whe
the perturbation is due to a spherical shell of matter loca
at a fixed radius, and we study scalar wave propagating
this background. The frequency shifts are obtained using
perturbation formula and compared to numerical results.
show even in this simple case the spectra for shells locate
different radii contain very interesting features. These f
tures can be understood by the perturbation formula, dem
strating the power of the perturbation formula in providin
understanding of the perturbed spectra.

II. FORMULATION

Waves defined by differential equations such as Eq.~1.3!
or the optical analogues described by the wave equation@13#
4-2
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are open systems if the outgoing wave boundary conditio
imposed; as such they are physically nonconservative
mathematically non-Hermitian. The usual tools of ma
ematical physics based on the Hermiticity of the defin
operator would not, in general, be expected to apply. In
tempting to develop generalizations of the familiar form
isms for conservative systems, it is important to recogn
that these open systems fall into two broad classes. In
first, the potentialV(x) has discontinuities atx5a1 ,a2 , and
vanishes at infinity suitably fast~‘‘no tail’’ !; when these con-
ditions are satisfied, the QNMs form a complete set on
interval @a1 ,a2#, and the usual formalism can be carrie
over with minimal changes@10,14#. This is in itself some-
what surprising, in that the dynamics are controlled entir
by the resonances without the need to add any ‘‘ba
ground.’’ However, when the discontinuity or ‘‘no-tail’’ con
ditions are not satisfied — and this is the situation of inter
in this paper — the QNMs are in general not complete, a
the dynamics is not completely controlled by the QNMs. T
QNMs are manifested in the complex frequency plane
poles of the Green’s function; now, there is in addition a
along the negative Imv axis @15#. The cut arises from scat
tering by the asymptotic part of the potential@in the sense
that if V(x) is truncated at any finite distance, the cut disa
pears#. This is of course the case for the radial problem o
black hole, whereV(x) has no discontinuity and goes a
ymptotically as a centrifugal barrier plus; logx/x3; this tail
generates the cut in the complex frequency plane, exten
all the way to Imv→0, and consequently leads to the lon
time power-law behavior;t2a of the dynamics@15,16#. The
point to be stressed here is that since the QNMs are
complete, a perturbation formalism based on a sum over
termediate states will not be appropriate.

In this paper we need to rely on a different approa
which does not require a complete set of QNMs, by gen
alizing the logarithmic perturbation theory~LPT! @17–24#,
which focuses on the logarithmic derivativef (x)
5f8(x)/f(x). Three features are relevant in the pres
context. First, the numerical determination of QNMs
known to be difficult, essentially because the exponentia
growing solutions are numerically sensitive; this makes
important~indeed more important than would be the case
NMs! to develop analytic techniques, as well as semianal
techniques such as perturbation theory. Second, LPT d
not require a complete set of unperturbed states for exp
sion, and is therefore well suited to situations where QN
are not complete or circumstances where only a few QN
are known and others are not.~This is in practice often the
case, since QNMs with large2Im v are difficult to obtain,
even numerically. The case of gravitational waves propa
ing away from a black hole is precisely of this type.! Third,
QNMs, being complex, are not in general plagued by no
for realx, wheref (x) would be singular. In the case of NMs
the zeros of excited state wave functions require spe
treatment@21,23#; fortunately for QNMs, this is not a prob
lem.

In terms of f (x), Eq. ~1.3! becomes the Riccati equatio
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f 8~x!1 f 2~x!2@V0~x!1mV1~x!#1v250. ~2.1!

The functionf (x) satisfiesboth the left boundary condition
( f (x)→2 iv as x→2`) and the right boundary condition
( f (x)→1 iv as x→1`), with v in Eq. ~2.1! being the
eigenvaluev. However, for anyv ~whether or not an eigen
value!, we can define two solutionsf 6(v,x) by the bound-
ary conditionsf 6(v,x)→6 iv asx→6`. At an eigenvalue
v, f 1(v,x)5 f 2(v,x)5 f (x). We expand the eigenvaluev
and the eigenfunctionf in powers ofm:

v5v01mv11m2v21•••, ~2.2!

f [ f 01g5 f 01mg11m2g21•••, ~2.3!

where f 0 , assumed known, satisfies the Riccati equat
~2.1! with the potentialV0 and frequencyv0 .

Putting Eqs.~2.2! and~2.3! into the Riccati equation~2.1!
and upon comparing powers ofm, one finds, in a straight-
forward manner, that

gn812 f 0gn12v0vn5Vn, ~2.4!

for n51,2,..., in which V1 is the perturbing potential in Eq
~1.3!, andVn ,n.1, is the effectiventh-order potential, de-
fined in terms of a combination of lower-order quantities:

Vn~x!52 (
i 51

n21

@gi~x!gn2 i~x!1v ivn2 i #. ~2.5!

Using the integrating factor exp@2*dxf0(x)#, Eq. ~2.4! can be
solved, but since the resultantgn , related to an eigenfunc
tion, must satisfytwo boundary conditions, this imposes
condition on the remaining free parametervn . The details of
the derivation will be given elsewhere@24#. Ignoring conver-
gence problems for the moment, and noting that the logar
mic derivatives at spatial infinity are unaffected by the p
turbation, by definition of the boundary conditions, o
obtains the following formal expressions, which constitu
the core of LPT@25#:

vn5
^f0uVnuf0&
2v0^f0uf0&

. ~2.6!

Here we have introduced the suggestive notation

^f0uVnuf0&5E
2`

`

Vn~x!f0
2~x!dx, ~2.7!

^f0uf0&5E
2`

`

f0
2~x!dx. ~2.8!

These results express thenth-order correction to the ei
genvalue in quadrature in terms of lower-order quantiti
The nth-order correction to the logarithmic derivative
given by

gn~x!5H E
2`

x

dy@Vn~y!22v0vn#f0
2~y!J f0

22~x!.

~2.9!
4-3
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Whengn is substituted back in Eq.~2.5! to obtainVn11 , the
cycle of iteration is complete, and one can in principle obt
the corrections to any order. The strategy outlined here
basically the same as in the conventional LPT for Hermit
systems.

The above expressions are formal and suggestive,
hide an essential problem: because the unperturbed w
functions go ase6 iv0x as x→6`, the integrands contain
factorsf0(x)2}e2g0uxu as uxu→` (g052Im v0), rendering
the integrals~2.7! and ~2.8! divergent. It is therefore critica
to handle the asymptotic regions carefully, which, as
shall see, may be regarded as a way of giving meaning t
regularizing these formally divergent expressions.

One can deal with the asymptotic regions in seve
slightly different ways@24#, and we here give a simple ve
ki
th
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e

o

f
ite
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f
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sion that relates most directly to the actual numerical imp
mentation of the program. To do so, we return to Eq.~2.4!,
insert the integrating factor exp@2*dxf0(x)#5f0

2(x), and inte-
grate fromL2 to L1 :

f0
2~x!gn~x!uL2

L112v0vnE
L2

L1

dxf0
2~x!5E

L2

L1

dxf0
2~x!V~x!.

~2.10!

~Had we takenL656` instead of finite values, we would
return to the formal result stated above.!

Now it has to be noticed thatgn contains implicitly the
unknownnth-order frequency shiftvn . To see this, we note
that g(L6) is to be matched tof 6(v,L6)2 f 0(L6); conse-
quently itsnth-order part is
mngn5@ f 6~v,L6!2 f 0~L6!#n5@ f 6~v,L6!2 f 6~v0 ,L6!#n

5@ f 6~v01mv11•••1mn21vn21 ,L6!2 f 6~v0 ,L6!#n1mnvn

]

]v
f 6~v0 ,L6!

[mnFD6n1vn

]

]v
f 6~v0 ,L6!G , ~2.11!
e,
n.
if-

es-

sed
-

ck
n
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ll
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d
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ral-

y.
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o-
where the subscript on the square brackets indicates ta
the nth-order part, and we have separated out the term
depends onvn . The quantitiesD6n express the difference
between two logarithmic derivatives at the asympto
points. Thus, collecting the terms that do and do not con
vn , we obtain from Eq.~2.10! again an expression like Eq
~2.6!, except that the matrix element and norm are now giv
by

^f0uVnuf0&5E
L2

L1

Vn~x!f0
2~x!dx1D2nf0

2~L2!

2D1nf0
2~L1!, ~2.12!

^f0uf0&5E
L2

L1

f0
2~x!dx1

1

2v0

3Ff0
2~L1!

]

]v
f 1~v0 ,L1!

2f0
2~L2!

]

]v
f 2~v0 ,L2!G . ~2.13!

Thus, provided we have a way of calculating the values
f 6(v,L6) at the asymptotic positionsL6 , these alternate
expressions~2.12! and~2.13! then provide practical ways o
evaluating the matrix element and the norm, without infin
integrals or divergent expressions. In other words, the d
culties alluded to earlier have been eliminated. The cho
of L6 are arbitrary, and the shiftsvn must be independent o
these choices; in fact, it is easy to see that Eqs.~2.12! and
ng
at

in

n

f

-
s

~2.13! must be separately independent ofL6 , simply be-
cause Eq.~2.13! relates only to the unperturbed stat
whereas Eq.~2.12! depends on the arbitrary perturbatio
This independence can be verified both analytically by d
ferentiating the expressions with respect toL6 and using the
Riccati equation or, numerically, by evaluating the expr
sions for different values ofL6 .

III. GENERAL PROPERTIES

The properties of the perturbed QNM’s can be discus
at three levels of generality:~a! properties about open sys
tems in general~in contrast to conservative systems!, ~b!
properties for any perturbation of a Schwarzschild bla
hole, and~c! results for a specific perturbation. This sectio
deals with the first two, and a specific model of perturbat
is presented in Sec. IV. Although the LPT is valid to a
orders, for the present application we focus on the first-or
shift.

A. Open systems in general

The result in Eq.~2.6! has been written in a way formally
similar to the Hermitian case. The factor 2v0 occurs because
the eigenvalue isv2 rather thanv. Since the numerator an
the denominator in Eq.~2.6! are separately independent
L6 , they can be given physical interpretations as a gene
ized matrix element and a generalized norm, respectivel

The generalized norm has been introduced previously
restricted form@26# applicable only to cases where the p
tential has ‘‘no tail’’; in that caseD6 can be obtained
4-4
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readily, sincef 6(v,L6)56 iv. In that restricted form, the
perturbation theory for the QNMs of the wave equation h
been developed and applied@27#. For systems such as blac
holes, the ‘‘no-tail’’ condition must be removed, as sketch
in Sec. II. In either case, the generalized norm has so
unusual properties:~a! It involves f0

2 rather thanuf0u2, and
is in general complex.~b! It involves surface terms atx
5L6 , though the value of the entire expression is indep
dent of the choice ofL6 . Thus, it is not a norm in the stric
sense, but rather a useful bilinear map. In the cases wher
system parameters can be tuned so that the leakage o
wave function approaches zero@e.g., V0(x) contains a tall
barrier on both sides#, then the generalized norm reduces
the usual~real and positive-definite! norm for a NM.

It is useful to define a functionH(x) for each QNM which
depends only on the original unperturbed system:

dv

d„mV1~x!…
[H~x!5

f0~x!2

2v0^f0uf0&
. ~3.1!

Both the magnitude and the phase ofH(x) are well defined
and physically significant. The magnitude implies that
can now give a precise meaning to the normalization o
QNM, even though the wave function diverges at infini
The phase ofH(x) determines the phase of the first-ord
shift v1 for a real and positive localized perturbationV1(x).
The phase is intriguing because it has no counterpart f
Hermitian system — in that case,H(x) must be real and
non-negative. For an open system,H(x) can be negative o
indeed have any phase, so that a positive perturbation c
lead to adecreaseof the frequency.

The functionsH(x) are then convenient objects for di
cussing the effect of any perturbation on the QNMs o
given system. We next present some properties ofH(x) for
the Schwarzschild black hole.

B. Schwarzschild black holes

First consider the normalization of these QNMs, ma
possible by the introduction of the generalized norm. Sin
Eq. ~2.8! is independent ofL6 , it is particularly convenient
if we takeL25L150:

^f0uf0&5
1

2v0
f0~0!2H ]

]v
f 1~v0,0!2

]

]v
f 2~v0,0!J

[f0
2~0!K. ~3.2!

The logarithmic derivatives atx50 can be obtained by inte
grating the differential equations fromx56`, and are
readily calculated making use of Leaver’s solution@28# ~see
Appendix B!. The parameterK is a convenient way of ex
pressing the normalization, and Table I lists the values
K/(2M ) for the lowest few QNMs~labeled by j ) of the
Regge-Wheeler potential for each angular momentuml .
They increase asj increases and show clear patterns, e.g.,
l 50, s50; K is large for oddj , while for l 52, s52; K is
large for evenj . It is interesting to ask in what way th
values ofK can characterize the Regge-Wheeler potent
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and to investigate their meaning beyond the perturbation
culation ~noting thatK has nothing to do with the perturba
tion!.

Next consider the functionsH(x). Figure 2 shows
ReH(x) and ImH(x) for l 51 scalar waves, versus the co
ordinatex/(2M ). The diagrams refer to the lowest QNM
~labeled asj 50,1,...,5) of that angular momentum. Sinc
the wave functions grow exponentially asuxu→`, we have
multiplied H(x) by exp@22GA11(x/2M )2# (G52Im
2Mv0) for ease of plotting. These figures show an ess
tially plane wave behavior for largeuxu, but the phases are
nontrivial. We note that for a localized perturbatio
mV1(x)5md(x2x1), the first-order shift in frequencyv1 is
given byH(x1), and therefore can be read out directly fro
the figures. For example, Table II lists the magnitude a
phases ofH(x) for l 51, s50, and the lowest fewj ’s at a
fixed value x5x1 (r 5r 1), for x1/2M50, 5, 10 (r 1/2M
51.28,3.93,8.05!; r 1/2M51.02 and 1.08 (x1/2M522.89,
21.45!. The patterns are different for these values ofx1 and
not simple, demonstrating that a localized perturbation w
push the QNMs along different directions in the compl
frequency plane.

There is a more complicated structure inH(x) for smaller
x, best exhibited if the same data are plotted versusr /2M , as
in Fig. 3. ~The region r /2M,2.0 corresponds tox/2M
,2.0.) The many oscillations forx,0 are compressed into
a small region nearr /2M51 and are not visible in this plot
One interesting feature is that both ReH(x) and ImH(x)
alternate in sign as (21) j near the event horizon. The mag
nitude and phase ofH(x) at the sample positionsr 5r 1
where r 1/2M51.02 (x1/2M'22.89) and r 1/2M51.08
(x1/2M'21.45) are also shown in Table II.

The results here described depend only onH(x), i.e., on
the properties of the unperturbed system. These exam
indicate that localized perturbations can generate a rich
tern of frequency shifts~in contrast to shifts all of the sam
phase in the case of the NMs of a conservative system!. In
turn, this means that there are much better prospects of le
ing something about the perturbing potential from the o
served shifts.

Of course, the richness of the pattern could be diluted
the perturbation is not localized inx, but has a spatial exten
Dx large compared to the typical wavelengthl of oscillation

TABLE I. The normalizing factorK/(2M ) ~expressed as mag
nitude and phase! for the lowest QNMs of the Schwarzschild blac
hole with massM .

l 50,s50 l 51,s50 l 52,s52
j Magnitude Phase Magnitude Phase Magnitude Pha

0 2.4461 36.5° 4.5155 36.7° 5.5397 18.7
1 193.24 18.4° 20.544 68.1° 6.9371 82.7
2 6.9935 12.9° 12.319 22.7° 22.770 266.9°
3 894.17 210.2° 33.553 10.1° 9.4942 39.4
4 12.059 8.4° 18.945 20.5° 63.958 289.7°
5 2279.0 210.4° 60.316 214.2° 14.358 25.8°
6 17.087 6.7° 25.087 26.6° 66.779 2100.9°
4-5
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FIG. 2. Graph of ReH(x)e22GA11(x/2M )2
~left! and ImH(x)e22GA11(x/2M )2

~right! vs x/2M for l 51, s50, and j 50,1,...,6.
ti
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of H(x), l'2p/Rev0; a fewM ~see Fig. 2, for example!.
In the next section we evaluate and discuss the perturba
that arises from the presence of a dust shell, which leads
perturbation potential extending over a range ofx.

IV. A MODEL PROBLEM

A. Description of the model

We consider a Schwarzschild black hole surrounded b
static spherical shell of matter at a certain radius outside
hole. The equation of state of the matter making up the s
is chosen so that the shell remains static at the given rad
This example demonstrates that even such a simple m
can lead to intriguing features in the QNM spectrum of t
perturbed system.

There are two mass parameters in the black hole plus s
system: the total Arnowitt-Deser-Misner~ADM ! mass of the
system measured at infinityM0 and the mass of the blac
hole as measured by its horizon surface areaMa ~i.e., the
surface area of the event horizon is 16pMa

2). In the limit of
Ma→M0 , we return to the unperturbed case of a bare bl
hole. Thus the parameterm[(M02Ma)/Ma is a measure of
the perturbation. The perturbation further depends on the
cumferential radiusr 5r s where the shell is placed. We sha
04403
on
a

a
e
ll
s.
el

ell

k

ir-

study the shifts as a function ofm and r s .
A static and spherically symmetric metric can be writt

as

ds252A~r !dt21B~r !dr21r 2~du21 sin2 u2dw2!.
~4.1!

As usual, we define the mass functionm(r ) such that

grr 5B~r !5F12
2m~r !

r G21

. ~4.2!

The functionsm(r ) andA(r ) satisfy the equations

dm

dr
50, rÞr s , ~4.3!

1

2A

dA

dr
5

m

r ~r 22m!
. ~4.4!

Hence we have

m~r !5H M0 , r .r s ,

Ma , r ,r s ,
~4.5!
hase
TABLE II. The value ofH(x) ~expressed as magnitude and phase! for several sample positions atx5x1 (r 5r 1), for l 51 scalar waves
propagating on a Schwarzschild black hole.

x1/2M50 x1/2M55 x1/2M510 r 1/2M51.02 r 1/2M51.08
j Magnitude Phase Magnitude Phase Magnitude Phase Magnitude Phase Magnitude P

0 2.2131021 236.7° 9.1831021 2122.2° 6.443100 2147.1° 4.1631021 4.8° 2.6631021 238.7°
1 4.8731022 268.1° 5.233101 109.8° 2.403104 52.1° 2.693101 2141.1° 2.1431021 150.9°
2 8.1231022 222.7° 2.883103 268.0° 1.283108 2165.3° 3.143101 39.1° 1.033100 228.5°
3 2.9831022 210.1° 2.273105 96.8° 1.6031012 230.4° 4.203102 2139.9° 3.323100 156.4°
4 5.2831022 220.5° 2.283107 299.7° 2.5131016 112.4° 6.003103 40.2° 1.193101 219.2°
5 1.6631022 14.2° 2.613109 65.9° 4.5631020 297.0° 9.013104 2140.2° 4.273101 164.0°
6 3.9931022 218.0° 3.2231011 2126.3° 8.9131024 59.6° 1.403106 39.4° 1.573102 13.6°
4-6
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A~r !55 12
2M0

r
, r>r s ,

aS 12
2Ma

r D , r ,r s ,

~4.6!
e
e

ur
r

04403
where

a5
122M0 /r s

122Ma /r s
. ~4.7!

The metric~4.1! becomes
ds255 2S 12
2M0

r Ddt21S 12
2M0

r D 21

dr21r 2~du21 sin2 udw2! r .r s ,

2aS 12
2Ma

r Ddt21S 12
2Ma

r D 21

dr21r 2~du21 sin2 udw2!, r ,r s .

~4.8!
m,

a-
The physical meanings of the parametersr , M0 , andMa are
now clear from Eq.~4.8!. We see explicitly that in the limit
M0→Ma , the value ofa reduces to unity, and Eq.~4.8!
reduces to the familiar Schwarzschild metric.

Next we consider waves propagating on this perturb
Schwarzschild background. In this paper for simplicity w
focus on the case of scalar wave@s50 in Eq. ~1.2!#, de-
scribed by

]m]mc5A2g]m~A2ggmn]nc!50. ~4.9!

To obtain the Klein-Gordon equation suitable for the pert
bation analysis, we separatec into the radial and angula
parts:

c~r ,t !5(
l 50

`

(
m52 l

l

Rl~r ,t !Ylm~u,w!. ~4.10!

The radial function satisfies

A

B
Rl91S 2A

rB
1

A8

2B
2

AB8

2B2 D Rl82
Al~ l 11!

r 2
Rl5] t

2Rl ,

~4.11!

where 8[d/dr. Next introduce the tortoise coordinate

x5E rAB

A
dr ~4.12!

to push the event horizon (r 52Ma) to 2`. We leave the
zero point ofx to be specified later. The equation forRl
becomes

]x
2Rl1

2

r
AA

B
]xRl2

Al~ l 11!

r 2
Rl5] t

2Rl . ~4.13!
d

-

To cast the equation into the standard Klein-Gordon for
we introduce a functionF(x,t) ~hereafter the labell will be
suppressed! such that

R~x,t !5h~x!F~x,t !, ~4.14!

with

]xh1
1

r
AA

B
h50. ~4.15!

This functionF(x,t) then satisfies the Klein-Gordon equ
tion ~1.1! with the effective potential

V~r !5
Al~ l 11!

r 2
1

A8

2Br
2

AB8

2rB2
. ~4.16!

Substituting in the expressions forA andB, we get

FIG. 3. Graph of ReH(x)e22GA11(x/2M )2
~solid line! and

Im H(x)e22GA11(x/2M )2
~dashed line! vs r /2M .
4-7
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V~r !55
S 12

2M0

r D F l ~ l 11!

r 2
1

2M0

r 3 G[VSC~M0 ,r !, r .r s ,

r 5r s ,

k rd~r 2r s!aS 12
2Ma

r D F l ~ l 11!

r 2
1

2Ma

r 3 G5aVSC~Ma ,r !, r ,r s ,

~4.17!
a

e

a

ent
whereVSC(M ,r ) is the standard unperturbed potential for
Schwarzschild black hole with massM @i.e., Eq.~1.2! with
s50]. The strength of thed function at the position of the
shell r s is given by

k r5 lim
e→01

E
r s2e

r s1e

V~r !dr52S 12
2M0

r s
DmMa

r s
2

. ~4.18!

The remaining degree of freedom in setting up the p
turbed problem is the zero-point of the tortoise coordinatex.
We choose it so that the effective potential is the stand
unperturbed formoutside the shell, in terms of the ADM
mass. The zero point is then determined by the requirem
of continuity of x:
x

th
tt
s
It
io
th
il
i

04403
r-

rd

x5H r 12M0 ln@r /2M021#, r>r s ,

1

Aa
@r 12Ma ln~r /2Ma21!#1xc , r ,r s ,

~4.19!

wherexc is the constant which makesx continuous.
Thus we arrive at the perturbation problem~1.3! as dis-

cussed in the sections above withx being the tortoise coor-
dinate,
V0~x!5VSC~M0 ,x!, ~4.20!

mV1~x!5H 0, for x.xs ,

kd~x2xs!1aVSC~Ma ,r !2VSC~M0 ,r !, otherwise,
~4.21!
e-
t
r’s

e
of

l

the

ry

d

where

xs5r s12M0 lnS r s

2M0
21D , ~4.22!

and

k5 lim
e→01

E
xs2e

xs1e

V~x!dx52
2mMa

r s
2~111/Aa!

. ~4.23!

This perturbation consists of two parts: ad function at the
position of the shell, plus a contribution inside the shell e
tending all the way to the horizon (x→2` or r→2Ma).
There is no perturbation outside the shell.

We should make one further comment concerning
setup of the problem. As the equation of state of the ma
shell is chosen to make the shell static, one needs to en
that the equation of state satisfies the energy conditions.
straightforward to show that the dominant energy condit
is the first to be violated if the shell is placed too close to
horizon, as shown in Appendix A. Thus, the discussion w
be limited to the perturbations that do not violate the dom
nant energy condition.
-

e
er
ure
is
n
e
l
-

B. Numerical solution

The full potentialV can be cast into a standard Regg
Wheeler potential for bothx,xs andx.xs , and hence exac
QNMs can be obtained by numerically evaluating Leave
solutions of the Regge-Wheeler equation~see@28# and Ap-
pendix B!. The numerical solution will be used to examin
the accuracy and validity of the perturbative result. Details
the numerical scheme are sketched as follows.

First, as there is ad function in the effective potentia
V(x), the logarithmic derivatives atx5xs are related by

lim
e→01

Ff8~v,xs1e!

f~v,xs1e!
2

f8~v,xs2e!

f~v,xs2e! G5k. ~4.24!

Second, outside the shell, the effective potential is
Regge-Wheeler potential with mass parameterM0 and the
QNM wave function satisfies the outgoing wave bounda
condition at the spatial infinityx→`. Hence,

f~v,x!5f1~2M0v,x/2M0!, ~4.25!

wheref1(ṽ,x̃) is the outgoing wave solution of the scale
Klein-Gordon equation
4-8
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FIG. 4. The perturbed QNM spectrum of a black hole plus shell system forl 51 scalar wave withm50.02 andr s52.52Ma . The
horizontal axis is Re 2M0v and the vertical axis is Im 2M0v. The zeroth-, first-, and second-order perturbation results are indicate
circles, squares, and triangles, respectively. The exact numerical result is represented by stars. The diagram on the upper left
distribution of QNMs of the lowest damping modes~from j 50 to j 56). The other diagrams are the magnification of the region around e
mode.
he

th

ct
rzs-

the
e

e
e-
F d2

dx̃2
1ṽ22V~ r̃ !Gf~ṽ,x̃!50, ~4.26!

with

V~ r̃ !5S 12
1

r̃
D F l ~ l 11!

r̃ 2
1

1

r̃ 3G , ~4.27!

and

x̃5 r̃ 1 ln~ r̃ 21!. ~4.28!

Note that the quantities with a tilde are dimensionless.
Third, inside the shell, it is also easy to show that t

wave functionf satisfies

F d2

dx̄2
1S v

Aa
D 2

2VSC~Ma ,r !Gf50, x,xs ~4.29!

FIG. 5. The magnitude of the error in the frequencies of
zeroth-, first-, and second-order perturbation forl 51, s50, j 51,
and r s52.52Ma .
04403
and

x̄5r 12Ma lnS r

2Ma
21D5Aa~x2xc!. ~4.30!

Hence

f~v,x!5f2~2Mav/Aa,x̄/2Ma!. ~4.31!

e

FIG. 6. The trajectory of the lowest QNMs ofl 51 scalar waves
for m50.01 andr s /Ma varies from 2.26 to 60 based on exa
numerical calculation. The circles are QNMs of a bare Schwa
child black hole with massM0 ; the squares are the QNMs forr s

52.26Ma ~the dominant energy condition is violated whenr s

,2.26Ma); the triangles show the positions of QNMs atr s /Ma

from 6 to 60 in intervals of 6. The upper and lower insets show
regions nearj 50 and j 51 in detail, respectively. We stopped th
calculation when the QNMs approach the imaginaryv axis because
it is difficult to compute it accurately in that region. Thus, som
triangles appear ‘‘missing’’ for some higher damping QNMs b
cause they have already moved to the imaginaryv axis.
4-9
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Heref2(ṽ,x̃) is the ingoing wave solution of Eq.~4.26! at
x̃→2`.

Therefore, by connecting the two logarithmic derivativ
at x5xs with Eq. ~4.24!, the QNM condition can be written
as

f18 ~2M0v,x̃!

f1~2M0v,x̃!
U

x̃5xs/2M0

2
pf28 ~2M0v/p,x̃!

f2~2M0v/p,x̃!
U

x̃5 x̄s/2Ma

52M0k, ~4.32!

wherep5AaM0 /Ma ,

x̄s5r s12Ma lnS r s

2Ma
21D5Aa~xs2xc!, ~4.33!

FIG. 7. Trajectory ofj 50 mode based on exact~solid line! and
first-order ~dash line! calculations. The zeroth-order result is ind
cated by a circle and the square represents the mode for s

52.26Ma . The triangles show the mode for the positions of t
shell atr s /Ma from 6 to 36 in intervals of 6 for the exact result, an
the plus symbols show the first-order result for the shell at
corresponding positions.

FIG. 8. Same as Fig. 7 but forj 51,2,...,6. For thesej , the
perturbation breaks down before a spiral forms.
04403
and the prime represents the derivative with respect tox̃. The
functionsf1 andf2 can be computed by Leaver’s solution
of the Regge-Wheeler equation~see@28# and Appendix B!.
Therefore, exact QNMs can be obtained by solving the n
linear equation~4.32! by standard root-searching methods

C. Dependence onµ and convergence

Given the perturbation functionmV1 in Eq. ~4.21!, the
shifts v1 and v2 can be evaluated by Eq.~2.6!. Detailed
treatments will be given in Appendix C.

Figure 4 shows the zeroth-, first- and second-order per
bation results forl 51 scalar waves together with the exa
numerical results for a black hole plus shell system. T
parameters arem50.02, r s52.52Ma (xs'0). This figure
shows that the perturbation formalism does give the cor
shifts for smallm.

To see the convergence more clearly, we plot in Fig. 5
magnitude of the error in the frequencies in the zeroth-, fir
and second-order results versusm. The plot shows the cas
of l 51, s50, j 51 ~first excited state!, with the shell located
at r s52.52Ma . The error of thenth-order result goes a
mn11, as it should.

D. Dependence on shell position

We next study the dependence on the parameters of
shell. Figure 6 shows the trajectories of the lowest damp
QNMs (j 50,1,...,6) as the position of the shell moves aw
from the event horizon. The plot shows the case ofl 51
scalar waves withm50.01 based on numerical calculatio
The regions near thej 50 and j 51 modes are shown in
greater detail in the insets. The calculation is termina
when the QNM is near the imaginaryv axis, since it is
difficult to perform the numerical calculation with sufficien
accuracy in that region. It is seen that there are interes
changes in signs with increasingj . Some QNMs move to-
ward the imaginaryv axis, and the higher damping QNM
either move toward the imaginaryv axis or move upward
toward the origin. It is also seen that when the shell is pla
far away from the event horizon, the QNMs move away fro
their unperturbed positions, with the higher damping mod
moving with higher speed. This behavior can be underst
from the perturbation formula~2.6!. When xs/2Ma@1, we
have, according to Eqs.~4.21! and ~2.6!,

v1;e2iv0xs/xs
2 for xs/2Ma@1. ~4.34!

Hence QNMs move more rapidly away from the unperturb
positions when the shell is far away from the event horiz
(xs/2Ma@1) and the higher damping modes (2Im 2Mav0
@1) move with higher speed.

Figure 7 shows the first-order perturbation result for t
j 50 mode for different values ofxs . At large xs , the tra-
jectory shows a spiral structure, which can be explained fr
the first-order perturbation formula. According to Eq.~4.34!,

dv

dxs
'

dv1

dxs
;

e2iv0xs

xs
2

for xs@1. ~4.35!

e
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The exponential factore2iv0xs leads to the spiral structure
For largerj modes, there is no such spiral structure~Fig. 6!
because the higher-order corrections become large befor
spiral appears, as shown in Fig. 8.

V. CONCLUSION

We have applied the LPT for the QNMs of open syste
to the study of gravitational waves propagating away fr
black holes. QNM gravitational wave signals from bla
holes will be detected soon, and many black holes are
pected to be perturbed by their astrophysical environm
e.g., by an accretion disk. The study in this paper of sc
waves represents the first step in the study of the QNM sp
tra of waves propagating in a dirty black hole backgrou
perturbed by the astrophysical environment. Its further
velopment can be of interest to gravitational wave
tronomy, among other applications.

Although the QNMs of any system can in principle b
obtained through brute force numerical integration, it is n
ertheless highly desirable to have a convenient set of pe
bation formulas that one can understand the system with.
note that the Rayleigh-Schro¨dinger perturbation theory fo
NMs is tremendously valuable, even though the NM syste
are more easily handled numerically than QNM systems

We have shown in a simple example that a perturb
black hole spectrum can have interesting features and d
onstrated how these features can be understood with the
turbation formula. In summary, we raise the importance
studying QNMs of dirty black holes and show how it can
done in a perturbative formulation.
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APPENDIX A: DOMINANT ENERGY CONDITION

The shell cannot be placed too near to the black h
otherwise, the dominant energy condition

uSt̂
t̂u.uSq̂

q̂u ~no sum onq! ~A1!

will be violated, whereq̂ denotes any unit specelike vecto
and

Sm̂
n̂5 lim

e→01

E
r s2e

r s1e

Tm̂
n̂dr̂. ~A2!

It is straightforward to compute all the nontrivial comp
nents of the Einstein tensor for the metric~4.1!:

Gr
r5

A8

rAB
1

1

r 2B
2

1

r 2
, ~A3!
04403
the

s

x-
t,
r

c-
,
-
-

-
r-
e

s

d
m-
er-
f

-
e
y

;

Gu
u5Gw

w5
A8

2rAB
2

A82

4A2B
2

B8

2rB2
2

A8B8

4AB2
1

A9

2AB
,

~A4!

Gt
t5

1

r 2B
2

1

r 2
2

B8

rB2
, ~A5!

where 8[d/dr. The componentGm
n is nonzero only if it

contains terms involving the second derivative ofA or the
first derivative ofB. Hence

St̂
t̂5St

t5
1

8p
lim

e→01

E
r s2e

r s1e2B8

rB3/2
dr ~A6!

52
M02Ma

2pr s
2 SA12

2M0

r s
1A12

2Ma

r s
D 21

~A7!

using the Einstein equationsGm
n 58pTm

n . Similarly, we have

Sû
û5Sf̂

f̂5
1

8pr s
S 12M0 /r s

A122M0 /r s

2
12Ma/r s

A122Ma/r s
D .

~A8!

Equation~A1! together with Eqs.~A7! and~A8! implies a
lower bound onr s for a givenm. For m50.01, it is found
that the minimumr s is 2.26Ma .

APPENDIX B: LEAVER’S SOLUTIONS

In the analytic study of the Regge-Wheeler equation, i
convenient to rewrite the Regge-Wheeler equation in te
of the coordinater :

r ~r 21!f ,rr 1f ,r2F r2r 3

r 21
1 l ~ l 11!1

j

r Gf50, ~B1!

wherer52 iv, j512s2. For simplicity, we have set 2M
51. Equation~B1! can be transformed to the generaliz
spheroidal wave equation@28#. For an arbitrary frequencyv,
we define two solutionsf6(v,r ) which satisfy the boundary
conditions

f6}e6 ivx for x→6`. ~B2!

The analytic solutions of these two functions are given
@28#

f2~v,r !5~r 21!rr 22re2rr (
n50

`

anS r 21

r D n

, ~B3!

f1~v,r !5r 11s~r 21!re2rr (
n50

`

an~2r11!n

3U~s1112r1n,2s11,2rr !, ~B4!

where
4-11
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~2r11!n[
G~2r111n!

G~2r11!
~B5!

is the Pochhammer’s symbol,U is the irregular confluen
hypergeometric function@30#, and an is determined by the
following three-term recursion relation:

anan111bnan1gnan2150, n51,2,..., ~B6!

with

an50 for n,0. ~B7!

The value ofa0 is arbitrary and is related to the normaliz
tion of f6 . The quantitiesan ,bn , andgn are defined to be

an5~n11!~n12r11!, ~B8a!

bn52@2n21~8r12!n18r214r1 l ~ l 11!1j#,
~B8b!

gn5n214rn14r21j21. ~B8c!

In most cases, we only need the logarithmic derivative

f 6~v,x!5
1

f6

df6

dx
. ~B9!

While f 2(v,x) can be easily obtained from Eq.~B3!, the
calculation off 1(v,x) is less straightforward as it involves
sum of irregular confluent hypergeometric functions, wh
are notoriously different to evaluate@28#. In the following,
we develop a numerical algorithm to calculatef 1(v,x).

We define two sequences

Tn
~2 !5~2r11!nU~s1112r1n,2s11,2rr !, ~B10!

Tn
~1 !5

G~2r111n!

G~2r1n2s11!
M ~s1112r1n,2s11,2rr !,

~B11!

where M is the regular confluent hypergeometric functio
Hence we have

f1~v,r !5r 11s~r 21!re2rrh~v,r !, ~B12!

where

h~v,r !5 (
n50

`

anTn
~2 ! . ~B13!

f 1(v,x) can then be expressed in terms ofh as follows:

f 1~v,x!5S 12
1

r D 1

f1

df1

dr

5S 12
1

r D F11s

r
1

r

r 21
2r1

1

h

dh

dr G . ~B14!

It can be shown, from the recursion formulas of the co
fluent hypergeometric functions@30,31#, that
04403
.

-

~2r1n!~2r1n11!Tn21
~6 !

2~2r1n11!~114r12n12rr !Tn
~6 !

1~s1112r1n!~2r1n2s11!Tn11
~6 ! 50,

~B15!

and

dTn
~2 !

dr
5

s1112r1n

r F2r1n112s

2r1n11
Tn11

~2 ! 2Tn
~2 !G . ~B16!

For largen, Tn
(6) approaches the asymptotic expressions@31#

Tn
~2 !'

ApG~2r111n!

G~2r11!G~2r111n1s!S n

2rr D
s

3~2nrr !21/4errexp@22~2nrr !1/2#, ~B17!

Tn
~1 !'

G~2s11!G~2r111n!

2ApG~2r111s1n!
S n

2rr D
s

3~2nrr !21/4errexp@12~2nrr !1/2#. ~B18!

The general solution of the difference equation~B15! is a
linear combination ofTn

(6) . It follows from Eqs.~B17! and
~B18! that Tn

(1) increases withn, while Tn
(2) decreases with

n. Hence any linear combination ofTn
(6) will eventually be

dominated by the term containingTn
(1) asn→`. The com-

putation ofTn11
(2) from Tn

(2) andTn21
(2) is therefore unstable

The recursion relation~B15! must be used in the revers
direction. In practice, we choose an arbitrary value ofTN

(2)

(N@1) and set

TN21
~2 ! 5

TN21
~2 !

TN
~2 !

TN
~2 !

'TN
~2 !

2r1N1s

2r1N S N21

N D s21/4

expF 2~2rr !1/2

AN1AN21
G .

~B19!

The values ofTn
(2) for n,N21 are then calculated by th

recursion formula~B15!. HereTn
(2) determined in this way

will differ from its original definition in Eq.~B10! by a mul-
tiplicative constant. This does not concern us since we
only interested in the logarithmic derivative off1 , which is
independent of the constant factor and is readily evaluated
Eq. ~B14!.

Leaver’s solutions can be applied to compute the logar
mic derivatives f 0(L6) in Eq. ~2.13! and to evaluate the
QNMs of the shell model of dirty black hole described
Sec. IV.
4-12
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APPENDIX C: EVALUATION OF THE PERTURBATION
FORMULAS

For simplicity we focus on the first-order perturbation c
culation, which is given by

v15
^f0uV1uf0&
2v0^f0uf0&

. ~C1!

We have discussed the evaluation of the generalized n
^f0uf0& in Sec. III B. It suffices to evaluate the generaliz
matrix element̂ f0uV1uf0&. For V1 given by Eq.~4.21!, the
generalized matrix element is

^f0uV1uf0&5E
L2

xs
V1~x!f0

2~x!dx1kf0~xs!
2

1f0
2~L2!

]

]m
f 2~v0 ,L2!um50 , ~C2!

whereL2 is any real number smaller thanxs . It has been
argued earlier that this expression is independent of
choice ofL2 , and for any finiteL2 the expression is finite
Thus the entire perturbation scheme requires no regula
tion.

However, the last term in Eq.~C2! involves the change o
f 2 due to the presence ofV1 . This calculation can be by
passed by the following trick. First, since the entire expr
sion is independent ofL2 , we pushL2 to 2` and define a
function

Z~v!5 lim
L2→2`

F E
L2

xs
f02

2 ~v,r * !V1~r * !dr*

1f02
2 ~v,L2!

]

]m
f 2~v,L2!um50G1kf02

2 ~v,xs!,

~C3!

where f02(v,r * ) is a function satisfying the unperturbe
Regge-Wheeler equation with the ingoing wave bound
04403
m

e

a-

-

y

condition on the event horizon. This expression as a whol
finite for everyv, but for Im(v).0, each term is separatel
finite; in fact the surface term vanishes asL2→2` because
the factorf02

2 (v,L2)}e22ivL2 now decays exponentially
Evaluating in this domain, we have

Z~v!5E
2`

xs
f02

2 ~v,r * !V1~r * !dr* 1kf02
2 ~v,xs!

for Im~v!.0. ~C4!

The prescription is therefore to evaluate in this domain a
analytically continue tov0:

^f0uV1uf0&5Z~v0!5E
2`

xs
f0

2~r * !V1~r * !dr* 1kf0
2~xs!.

~C5!

We note that this merely provides an alternate evaluation
an expression that was manifestly finite to start with.

The integral can be easily carried out analytically by n
ticing that the potentialVSC(M ,x) in Eq. ~4.17! can be ex-
pressed as a sum of exponentials at negativex; the calcula-
tion is sketched below and the details of the straightforw
arithmetic can be found in Ref.@32#:

VSC~M ,x!5
1

4M2
VSCS 1

2
,

x

2M D , ~C6!

VSC~1/2,x!5 (
k51

`

cke
kx̃ for x̃,0, ~C7!

where

ck5 l ~ l 11!g3,k1~12s2!g4,k , ~C8!

gn,m5e2m(
p50

m

m~p,n,m!. ~C9!
Herem(0,n,1)512n, m(1,n,1)5n, m(p,n,m)50 for p,0 andp.m, and

m~p,n,m!52
~n1p1m22!m~p21,n,m21!1~m21!m~p,n,m21!

m
for m>2. ~C10!

It can be shown that the unperturbed wave functionf0 can be expressed as@29#

f0~x!5 (
k50

`

dk~v0!ekx/~2M0!, ~C11!

where

dk~v0!5
1

k~k22iv0! (m50

k21

dk~v0!ck2m, ~C12!

andd0 is a constant related to the normalization of the wave function.
It is obvious thatV1 given by Eq.~4.21! can also be expressed as a sum of exponentials plus ad function. Hence the

integration in Eq.~C2! can be performed analytically, giving the generalized matrix element and the first-order shiftv1 .
4-13
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