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Perturbative approach to the quasinormal modes of dirty black holes
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Using a recently developed perturbation theory for quasinormal m@k#/’'s), we evaluate the shifts in
the real and imaginary parts of the QNM frequencies due to a quasistatic perturbation of the black hole
spacetime. We show the perturbed QNM spectrum of a black hole can have interesting features using a simple
model based on the scalar wave equat[@0556-282(99)07702-4

PACS numbe(s): 04.30.Db

[. INTRODUCTION The QNM spectra of Kerr and Schwarzschild black holes
have been extensively studied theoretically and numeri-
The observational consequences of black holes interactingglly [8,9], and the positions of the QNM frequencies in the
with their astrophysical environments have been a subject ab plane are known in detajB,9].
much interest for the last 30 years. Within the next few For each given in Eqg. (1.2), the QNMs extend down-
years, it is expected that the new generation of gravitationalvards in a string in thes plane, with Rew nearly constant
wave observatories/Laser Interferometric Gravitational and Imw nearly uniformly space@8] (Fig. ). The known
Wave ObservatoryLIGO), VIRGO] [1] will be able to de- pattern of frequencies provides a template against which one
tect gravitational waves emitted by black holes excited bycan try to determine the nature of the source. For an isolated
matter, or even other black holes, falling into them. It hasblack hole, the no-hair theoref] implies that the spectrum
long been known that the gravitational waves emitted in suclis described by only two parameters, the mbdssand the
a process will carry a signature associated with the wellangular momentund of the hole. However, the black holes
defined quasinormal mod&@NM) frequencies of the black that are likely to be observed will not be isolated, but will
hole[2], and will, among other things, provide confirmation likely be situated at the centers of galaxies or will be sur-
of the existence of black holes. Numerical simulati)8% rounded by massive accretion disks. Therefore the observed
suggest that in some cases the QNM ringing may even domspectra should not be matched against those of a pure Kerr or
nate the signal. Schwarzschild black hole, but to one perturbed by its sur-
QNMs of black holes have been extensively studied withrounding — adirty black hole. We should immediately cau-
the black hole perturbation theop]. If a black hole settles tion the reader that while gravitational waves from black
down in an otherwise empty and asymptotically flat spaceholes are expected to be detected within the next few years,
time at the end point of dynamical evolution, it will be a Kerr a determination of the QNM spectrum with the frequencies
black hole(Schwarzschild hole in the case of zero angularof a few modes included might not be an easy task. Indeed to
momentum [5]. Weak (linearized gravitational waves what extent the gravitational radiation frorealistic black
propagating on the Kerr or Schwarzschild background can bhole events would be dominated the QNM spectrum is still a
described by the Klein-Gordon equatipf matter of much controversy. However, inasmuch as the goal
of the gravitational wave observatories is to obtain astro-

[07 = 5+ V(x)]D(x,1)=0, (1.)  physical information of our universghe “O” in “LIGO” ),

wherex is a radial coordinated is the radial part of a com- 00 ‘ ‘ ‘ . . ‘ .
bination of the linearized changes in the metric functions ol . ©
representing the gravitational wave, and the outgoing wave ' o

boundary condition is appropriate for waves escaping to in- 20 ¢ R

finity. The potential V(x) describes the scattering of the
gravitational waves by the background geometry. For ex-
ample, in the case of a Schwarzschifschw) hole of mass
M, V is the Regge-Wheeler potential, 6],

I(1+1)
+
r

2M
) (1.2

V(X)Z(l—T

(1—52)r—3 )

for each angular momentum sectdr, where x=r
+2M In(r/2M — 1), sis the spin of the fieldg=2 for gravi-
tational waveg andr is the circumferential radius.

A single-frequency solutiopd «exp(—iwt)] with the out-
going wave boundary condition is a QNM, with lm<0.
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FIG. 1. The distribution of QNMs of a Schwarzschild black hole
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there is no doubt that we will eventually have to face thisusual formulas. Unlike the Hermitian case, now the unper-
problem of the QNM spectra dfirty black holes. turbed eigenstates do not in general form a complete set for
We note that two kinds of perturbations are involved hereexpansiond10,11], at least not in the case of black holes.
In the standard black hole perturbation thep#y, Eq.(1.1)  The usual RSPT formula in terms of a sum over intermediate
is obtained by linearizing the metric about the Kerr oreigenstates is therefore inapplicable. Even the first-order
Schwarzschild background, and the time-independent eigershift, which does not involve a sum over intermediate states,
value problemwith the outgoing wave boundary condition cannot be given by the usual formulégpg|uV.|do)/
determines the QNM spectra of isolated holes. The secon@ipy| #o), in obvious notation — the usual inner product
type of perturbations arthe perturbations that change the leads to({¢o|po)= J~..dXxe po=> since a QNM wave
backgroundon which the wave propagates, e.g., by the presfunction extends over all spac¢and indeed grows exponen-
ence of an accretion disk near the black hole. The perturbaially at infinity).
tion of the background can often be regarded as quasistatic, So far, the perturbation of black hole QNMs has attracted
and hence separable from that of the gravitational wave pelittle attention, partly because a perturbative formalism for
turbation by the time scales involve@h a suitable gauge the QNMs of an open system, as opposed to the normal
choice. In this paper we focus on time-independent pertur-modes(NMs) of a conservative system, has not hitherto been
bation of the background described by Ef.1) with a po-  available. In this paper we develop such a formalism, which
tential V(x) =Vg(x) + uV1(X), |r|<1 (a model problem is then opens the way to extracting information about the as-
given in Sec. IV below We are led to study the QNM fre- trophysical environment of the black holes from the ob-
quencies of the following eigenvalue problem in powersserved signal, beyond the mass and the angular momentum

of w: of the hole.
This paper is a followup of12], which outlined some of
— " (X)+[Vo(X)+ uV1(X)]p= 0. (1.3)  the results derived in this paper. In Sec. Il of this paper, we

develop a formulation for the perturbation of QNM systems.

Equation(1.3) is appropriate for considering the perturbed As a first step in this direction, we limit ourselves to the
Klein-Gordon wave equation describing the propagation oﬁcalar wave case, in which the evolution is described by a
scalar waves in a gra\/itationa”y perturb@ﬂrty) black hole single Klein-Gordon equation with a perturbed potential. The
spacetimdas will be shown be|o\)v In this paper we show shifts in both the real and imaginary parts of the ONM fre-
how the disturbed QNM spectrum can be determined fofluenciesw are obtained in quadratures in termsuo¥;(x),
such a system. This represents the first step towards detdp principle to arbitrary order inu. Given the precision of
mining the disturbed gravitational wave QNM spectrum of athe observational data that is possible in the near fuiure
dirty hole, the real case of physical interest. For a realisti¢leed at this point it is not clear how many QNMs one can
black hole perturbed by an external matter fluid source, th@xtracted from the waveforms of black hole events, given the
gravitational wave QNM spectrum also involves the fluid S/N of even the advanced phase LIz@e emphasis is on
modes. Just as in the case of the perturbation of fluid star, wée first-order shift. The shifts when expressed in terms of a
would expect two types of perturbations, with one stronglygeneralized inner product take a form similar to that in
involving the fluid motion(e.g., the polarf,g,p modes, RSPT. The perturbative results for a Schwarzschild black
while the other only weakly involving the fluide.g., the hole are derived in Sec. Ill. We show that a functidiix)
axial modes We expect the scalar perturbation studied incan be defined which dependsly on the originalunper-
this paper to be more easily generalizable to the latter kind ofurbed system. We investigated and presented in detail the
modes. A more complicated set of equations would have t@roperties of this functiord for the black hole case. This
be used to describe the former type of perturbation involvingunction controls the phase and magnitude of the first-order
the “fluid” modes in the shell of matter outside the hole. shift of the spectrum foany given perturbatiorinot just for
While the calculation in this paper may not be easily generthe model problem in this paperhence providing insight
alizable to these more complicated situations involvinginto the properties of the black hole spectra in general. Sec-
gravitational waves coupled to matter, we note that a fulltion 1V illustrates these results with a model problem where
perturbation treatment of the gravitational wave case will nothe perturbation is due to a spherical shell of matter located
be possible without a thorough understanding of the behavicit a fixed radius, and we study scalar wave propagating in
of the Klein-Gordon wave equation with a perturbed poten-this background. The frequency shifts are obtained using the
tial, namely, the system studied in this paper. perturbation formula and compared to numerical results. We

While the perturbed Klein-Gordon wave equatidnd) is ~ show even in this simple case the spectra for shells located at
superficially similar to standard textbook problems, e.g., thedifferent radii contain very interesting features. These fea-
usual Rayleigh-Schbnger perturbation theorfgRSPT), we  tures can be understood by the perturbation formula, demon-
note that the perturbation problem encountered here is furstrating the power of the perturbation formula in providing
damentally different: the outgoing wave condition rendersunderstanding of the perturbed spectra.
the system physically honconservatiemergy escapes to in-
finity) and the associated operafor d%/dx?+V(x)] non-
Hermitian; Hermiticity underpins the usual RSPT.

The difficulty coming from the non-Hermiticity can be  Waves defined by differential equations such asE®)
seen in several guises if one tries naively to transcribe ther the optical analogues described by the wave equftigh

Il. FORMULATION
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are open systems if the outgoing wave boundary conQition is f/(x)+ f2(X) = [Vo(X) + uVi(X) ]+ @?=0. (2.1
imposed; as such they are physically nonconservative and

mathematically non-Hermitian. The usual tools of math-The functionf(x) satisfiesboth the left boundary condition
ematical physics based on the Hermiticity of the defining(f(X)— —iw asx— —=) and the right boundary condition
operator would not, in general, be expected to apply. In at{f(X)— +iw asx—+=), with w in Eq. (2.1) being the
tempting to develop generalizations of the familiar formal-eigenvaluew. However, for any» (whether or not an eigen-
isms for conservative systems, it is important to recognize/alu®, we can define two solutiors. (w,x) by the bound-
that these open systems fall into two broad classes. In th@"y conditionsf . (w,x) — =i asx— = . Atan eigenvalue
first, the potentiaM(x) has discontinuities at=a,,a,, and @ f+(@.X)=f_(0,x)=f(x). We expand the eigenvalue
vanishes at infinity suitably fagtno tail” ): when these con- and the eigenfunctiofiin powers ofu.:

ditions are satisfied, the QNMs form a complete set on the
interval [a;,a,], and the usual formalism can be carried
over with r_ni_nimgl change§10,14). _This is in itself some- f=fot+g="fo+ugy+ugo+---, (2.3
what surprising, in that the dynamics are controlled entirely

by the resonances without the need to add any “backwhere fy, assumed known, satisfies the Riccati equation
ground.” However, when the discontinuity or “no-tail” con- (2.1) with the potentialV, and frequencyw,.

ditions are not satisfied — and this is the situation of interest Putting Egs(2.2) and(2.3) into the Riccati equatiof2.1)

in this paper — the QNMs are in general not complete, andnd upon comparing powers of, one finds, in a straight-
the dynamics is not completely controlled by the QNMs. Theforward manner, that

QNMs are manifested in the complex frequency plane as / _

poles of the Green’s function; now, there is in addition a cut Gn*2fogn + 20000 =Vn, @4

along the negative I axis[15]. The cut arises from scat- for n=1,2,.., inwhich V; is the perturbing potential in Eq.

tering by the asymptotic part of the potentfa the sense (1.3), andV,,n>1, is the effectiventh-order potential, de-

that if V(x) is truncated at any finite distance, the cut disap-ined in terms of a combination of lower-order quantities:

pearg. This is of course the case for the radial problem of a

black hole, whereV(x) has no discontinuity and goes as-

ymptotically as a centrifugal barrier pluslogx/x®; this tail Vn(X) =~ ,21 [9i(X)Gn-i(X) + wjwni]. (2.

generates the cut in the complex frequency plane, extending

all the way to Imw—0, and consequently leads to the long- Using the integrating factor ei@fdxfy(x)], Eq. (2.4) can be

time power-law behavior-t~“ of the dynamic$15,16. The  solved, but since the resultagt, related to an eigenfunc-

point to be stressed here is that since the QNMs are ndton, must satisfytwo boundary conditions, this imposes a

complete, a perturbation formalism based on a sum over ircondition on the remaining free parameigy. The details of

termediate states will not be appropriate. the derivation will be given elsewhef24]. I_gnoring conver-
In this paper we need to rely on a different approach9ence p_rob_lems for the_m(_)m_e_nt, and noting that the logarith-

which does not require a complete set of QNMs, by generMiC dgrlvatlves at_ sp_aual infinity are unaffected _b_y the per-

alizing the logarithmic perturbation theoy.PT) [17-24, turbe_1t|on, by deﬁmhon of the boun.dary cor_1d|t|ons, one

which focuses on the logarithmic derivativef(x) obtains the f0||OWII‘?g formal expressions, which constitute

=¢'(X)/p(x). Three features are relevant in the presentthe core of LPTL25]

context. First, the numerical determination of QNMs is (ol V| do)

known to be difficult, essentially because the exponentially wnzm- (2.6)

growing solutions are numerically sensitive; this makes it ATOITo

important(indeed more important than would be the case forHere we have introduced the suggestive notation

NMs) to develop analytic techniques, as well as semianalytic

techniques such as perturbation theory. Second, LPT does - 2

not require a complete set of unperturbed states for expan- (olVal bo) = ﬁwvn(x)%(x)dx, 27

sion, and is therefore well suited to situations where QNMs

are not complete or circumstances where only a few QNMs *

are known and others are ndthis is in practice often the (ol po)= J_qug(x)dx. (2.8

case, since QNMs with large Im « are difficult to obtain,

even numerically. The case of gravitational waves propagat- These results express tiih-order correction to the ei-

ing away from a black hole is precisely of this typ&hird, = genvalue in quadrature in terms of lower-order quantities.

QNMs, being complex, are not in general plagued by node3he nth-order correction to the logarithmic derivative is

for realx, wheref(x) would be singular. In the case of NMs, given by

the zeros of excited state wave functions require special iy

Lr;;;l'tmem[Zl,Z?i, fortunately for QNMs, this is not a prob- gn(X):[ J’iwdy[vn(y)—ZwownMg(y) b5 2(x).

In terms off(x), Eq. (1.3) becomes the Riccati equation (2.9

0=t po;+ plo,+- -, (2.2

n-1
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Wheng, is substituted back in Eq2.5) to obtainV,,.;, the  sion that relates most directly to the actual numerical imple-
cycle of iteration is complete, and one can in principle obtainmentation of the program. To do so, we return to Exj4),
the corrections to any order. The strategy outlined here ifnsert the integrating factor ej®yf dxfo(x)]=¢(2,(x), and inte-
basically the same as in the conventional LPT for Hermitiangrate fromL_ to L :
systems.
The above expressions are formal and suggestive, but, L L+ 2 L+ 2
hide an essential problem: because the unperturbed wa\/éo(x)gn(XHLerzwownfL_ dX¢0(X)=fL dxeg(X)V(X).
functions go ase™'“o* asx— +, the integrands contain . (2.10
factors ¢o(x)2ce2?X as|x|—o (yo=—Im wy), rendering
the integrals2.7) and (2.8) divergent. It is therefore critical (Had we takerl .=+« instead of finite values, we would
to handle the asymptotic regions carefully, which, as weeturn to the formal result stated above.
shall see, may be regarded as a way of giving meaning to or Now it has to be noticed tha, contains implicitly the
regularizing these formally divergent expressions. unknownnth-order frequency shifib,,. To see this, we note
One can deal with the asymptotic regions in severathatg(L.) is to be matched td. (w,L.)—fo(L.); conse-
slightly different wayg24], and we here give a simple ver- quently itsnth-order part is

Mngn:[ft(a’iLr)_fo(l—t)]n:[fr(‘”’l—r)_ft(wO:Lt)]n

J
=[fi(wotpw+--- +Mn71wn—1-|—r)_ft(woth)]n"'ann%fr(wOaLr)

J
Elu‘n Ain—i_wn%fi(a)OaLi) ’ (211)

where the subscript on the square brackets indicates takin@.13 must be separately independent lof , simply be-
the nth-order part, and we have separated out the term thatause Eq.(2.13 relates only to the unperturbed state,
depends onw,,. The quantitiesA .., express the difference whereas Eq(2.12) depends on the arbitrary perturbation.
between two logarithmic derivatives at the asymptoticThis independence can be verified both analytically by dif-
points. Thus, collecting the terms that do and do not contaiffierentiating the expressions with respect.to and using the
w,, we obtain from Eq(2.10 again an expression like Eq. Riccati equation or, numerically, by evaluating the expres-
(2.6), except that the matrix element and norm are now giversions for different values df - .

by

Ill. GENERAL PROPERTIES

Ly
Y, =| Vv 2(x)dx+A_,p3(L_
(ol Vil b0) fL_ n(X)do(x)dx nfo(lk-) The properties of the perturbed QNM'’s can be discussed

) at three levels of generalitya) properties about open sys-
—A (L), (212 tems in generalin contrast to conservative systemeb)
properties for any perturbation of a Schwarzschild black
(ol cbo) = fL+¢2(x)dx+ L hole, and(c) results for a specific perturbation. This section
ory’o L 0 2w deals with the first two, and a specific model of perturbation
is presented in Sec. IV. Although the LPT is valid to all

orders, for the present application we focus on the first-order

d
X ¢S(L+)£f+(wo,|-+) shift.

J
— ¢S(|——)a—f—(w01|——) . (2.13 A. Open systems in general
w

The result in Eq(2.6) has been written in a way formally
Thus, provided we have a way of calculating the values osimilar to the Hermitian case. The factowg occurs because
f.(w,L.) at the asymptotic positionk. , these alternate the eigenvalue i®? rather tharw. Since the numerator and
expression$2.12 and(2.13 then provide practical ways of the denominator in Eq(2.6) are separately independent of
evaluating the matrix element and the norm, without infiniteL .., they can be given physical interpretations as a general-
integrals or divergent expressions. In other words, the diffiized matrix element and a generalized norm, respectively.
culties alluded to earlier have been eliminated. The choices The generalized norm has been introduced previously in a
of L. are arbitrary, and the shifis, must be independent of restricted form[26] applicable only to cases where the po-
these choices; in fact, it is easy to see that Egsl2 and tential has “no tail”; in that caseA. can be obtained
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readily, sincef.(w,L.)==*iw. In that restricted form, the TABLE I. The normalizing factoiK/(2M) (expressed as mag-
perturbation theory for the QNMs of the wave equation hagdvitude and phagefor the lowest QNMs of the Schwarzschild black
been developed and applig2i7]. For systems such as black hole with massM.
holes, the “no-tail” condition must be removed, as sketched
in Sec. II. In either case, the generalized norm has some  !=0s=0 I=1s=0 |=2s=2
unusual propertiesa) It involves ¢% rather thar| ¢0|27 and | Magnitude Phase Magnitude Phase Magnitude Phase
is in general complex(b) It involves surface terms & o 54461 36.5° 45155 36.7° 5.5397 18.7°
=L., though the value of the gntlre expression is mdepenl 193.24 18.4° 20544 68.1° 6.9371 82.7°
dent of the choice of .. . Th_u_s, it is not a norm in the strict , 6.9935 12.9° 12.319 227° 22770 —66.9°
sense, but rather a useful bilinear map. In the cases where the g9, 17  _192° 33553 101°  9.4942 39 4°
system par.ameters can be tuned so that the Igakage of tge 12.059 8.4° 18.945 205° 63.958 _89.7°
wave function approaches ze[e.g.,vo'(x) contains a tall 5 29790 —104° 60316 —142° 14.358 25 g
barrier on both siddsthen the generalized norm reduces to6 17.087 6.7° 25087 26.6° 66.779 —100.9°
the usual(real and positive-definijenorm for a NM. ' ' ' ' ) '
It is useful to define a functiohl(x) for each QNM which
depends only on the original unperturbed system:

and to investigate their meaning beyond the perturbation cal-
Sw ho(X)? culation (noting thatK has nothing to do with the perturba-
Vi) 20n(doldgy B ton.
Next consider the functiondH(x). Figure 2 shows
ReH(x) and ImH(x) for | =1 scalar waves, versus the co-

Both the magnitude and the phasettfx) are well defined ordinatex/(2M). The diagrams refer to the lowest QNMs

and physically significant. The magnitude implies that we o .
can now give a precise meaning to the normalization of labeled asj=0,1,..,5) of that angular momentum. Since

: ; - the wave functions grow exponentially pg—~, we have
QNM, even though the wave function diverges at infinity. L i
The phase oH(x) determines the phase of the first-order MultiPlied H(x) by exg—2I'v1+(x/2M)7] (I'=—Im

shift w; for a real and positive localized perturbativn(x). ~ 2Mwo) for ease of plotting. These figures show an essen-

The phase is intriguing because it has no counterpart for 42!l plane wave behavior for largkx|, but the phases are
Hermitian system — in that casél(x) must be real and nontrivial. We note that for a localized perturbation
non-negative. For an open systeH(x) can be negative or #V1(X)=ud(X=xy), the first-order shift in frequenay, is
indeed have any phase, so that a positive perturbation coufiven byH(x1), and therefore can be read out directly from
lead to adecreaseof the frequency. the figures. For example, Table Il lists the magnitude and

The functionsH(x) are then convenient objects for dis- Phases OH(XZ for 'Z_l' s=0, and the_lowest fey’s at a
cussing the effect of any perturbation on the QNMs of afixed valuex=x, (r=ry), for x,/2M=0, 5, 10 {./2M
=1.28,3.93,8.0p r;/2M=1.02 and 1.08 X;/2M = —2.89,

given system. We next present some propertiesl of) for :
—1.49. The patterns are different for these valuesptind

the Schwarzschild black hole. , . ! : i
not simple, demonstrating that a localized perturbation will
. push the QNMs along different directions in the complex
B. Schwarzschild black holes frequency plane.
First consider the normalization of these QNMs, made There is a more complicated structureHifx) for smaller
possible by the introduction of the generalized norm. Sincex, best exhibited if the same data are plotted ver¢2Hl, as
Eq. (2.9 is independent of .. , it is particularly convenient in Fig. 3. (The regionr/2M<2.0 corresponds to/2M

if we takeL_=L_=0: <2.0.) The many oscillations for<O are compressed into
L a small region near/2M =1 and are not visible in this plot.
_ o 9 d One interesting feature is that both Réx) and ImH(x)
(ol $0) = z_wod)(’(O) £f+(wo,0)— %f*(wo’o) alternate in sign as{1)! near the event horizon. The mag-
5 nitude and phase oH(x) at the sample positions=r;
= pp(0)K. (32  where r;/2M=1.02 (x;/2M~—2.89) and r,/2M=1.08
(X1/2M ~ —1.45) are also shown in Table II.
The logarithmic derivatives at=0 can be obtained by inte- The results here described depend onlyHyx), i.e., on

grating the differential equations from==*=«~, and are the properties of the unperturbed system. These examples
readily calculated making use of Leaver's solut[@8] (see indicate that localized perturbations can generate a rich pat-
Appendix B. The parameteK is a convenient way of ex- tern of frequency shift$in contrast to shifts all of the same
pressing the normalization, and Table | lists the values ophase in the case of the NMs of a conservative systém
K/(2M) for the lowest few QNMs(labeled byj) of the  turn, this means that there are much better prospects of learn-
Regge-Wheeler potential for each angular momentum ing something about the perturbing potential from the ob-
They increase asincreases and show clear patterns, e.g., foserved shifts.

=0, s=0; K is large for oddj, while for1=2,s=2; K is Of course, the richness of the pattern could be diluted if
large for evenj. It is interesting to ask in what way the the perturbation is not localized iy but has a spatial extent
values ofK can characterize the Regge-Wheeler potentialg\x large compared to the typical wavelengttof oscillation
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FIG. 2. Graph of ReH(x)e 2IV1+(¥2W)* (jeft) and ImH(x)e~ 251+ (¥2W)* (right) vs x/2M for =1, s=0, andj=0,1,.. 6.

of H(x), A~2m/Rew,~ a fewM (see Fig. 2, for example ~ study the shifts as a function of andrs. .
In the next section we evaluate and discuss the perturbation A static and spherically symmetric metric can be written
that arises from the presence of a dust shell, which leads to@°
perturbation potential extending over a rangexof ds2= — A(r)dt2+ B(r)dr2+ r(dg?+ sir? 62de?).
4.1

IV. A MODEL PROBLEM
As usual, we define the mass functiorfr) such that

m(r)

r

A. Description of the model

We consider a Schwarzschild black hole surrounded by a -1

static spherical shell of matter at a certain radius outside the 9 =B(r)=

hole. The equation of state of the matter making up the shell

is chosen so that the shell remains static at the given radiughe functionsm(r) andA(r) satisfy the equations

This example demonstrates that even such a simple model

can lead to intriguing features in the QNM spectrum of the dm

perturbed system. ar =90 s, (4.3
There are two mass parameters in the black hole plus shell

system: the total Arnowitt-Deser-MisnéhDM ) mass of the 1 dA m

system measured at infinityl; and the mass of the black - -

hole as measured by its horizon surface ava (i.e., the 2A dr  r(r—2m)

surface area of the event horizon is7d2). In the limit of

M,— Mg, we return to the unperturbed case of a bare blac

hole. Thus the parametgr=(My—M_,)/M, is a measure of

the perturbation. The perturbation further depends on the cir- m(r)= Mo, r>Ts, (4.5)

cumferential radiugs =r s where the shell is placed. We shall M., r<rg, '

1—

4.2

(4.4

Wence we have

TABLE II. The value ofH(x) (expressed as magnitude and phdseseveral sample positions @& x; (r=r,), for =1 scalar waves
propagating on a Schwarzschild black hole.

X1/2M =0 X1/2M =5 X1/2M =10 ry/2M=1.02 r,/2M=1.08
j Magnitude Phase Magnitude Phase Magnitude Phase Magnitude Phase Magnitude Phase
0 221x10Y -36.7° 9.1&10' -—122.2° 64«10 -147.1° 4.1&10°? 48° 26610 -38.7°
1 487x10%2 -68.1° 52%10 109.8° 2.4 10 52.1° 2.6%10 -141.1° 2.14«10°!  150.9°
2 8.12x10°%2 —22.7° 2.8&10° -68.0° 1.2810° —165.3° 3.1«10 39.1°  1.0x1d —28.5°
3 29810°%2 -10.1° 22KI1CP 96.8° 1.60<10%  —-30.4° 42107 -139.9° 3.3x 10 156.4°
4 528102 -205° 2.28&10 -99.7° 2510 112.4° 6.0 10° 40.2°  1.1%10 -19.2°
5 1.66x10°? 14.2° 26Xx10° 65.9° 4.56<107° -97.0° 9.0x 10 —140.2° 4.2% 10" 164.0°
6 399102 -18.0° 3.2x10% -126.3° 8.9K10* 59.6° 1.40<10° 39.4° 15K10 13.6°
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2Mgq where
1-—, r=rg,
r _1-2Mg/rg A
A(I’)— (46) a’—m. ( 7)

The metric(4.1) becomes

2M 2Mg\ 7t
—(1—70)dt2+(1—70) dr2+r2(d6?+ sir? 6de?)  r>r,
ds’= . (4.9
2M 2M,\ "~
—a(l—Ta)dtz-F(l—Ta) dr2+r2(de?+ sir? 0dg?), r<rs.

The physical meanings of the parameterd/,, andM, are  To cast the equation into the standard Klein-Gordon form,
now clear from Eq(4.8). We see explicitly that in the limit we introduce a functiod (x,t) (hereafter the labdlwill be
Mo—M,, the value ofa reduces to unity, and Eq4.8)  suppressedsuch that
reduces to the familiar Schwarzschild metric.

Next we consider waves propagating on this perturbed R(x,t) =h(x)®(x,t), (4.14
Schwarzschild background. In this paper for simplicity we
focus on the case of scalar wajie=0 in Eq. (1.2)], de- With

i 1 /A
scribed by agh+ —\ﬁh:o. (4.15
r vB
3, 0" p=\—93,(N—99""d,4)=0. (4.9  This function®(x,t) then satisfies the Klein-Gordon equa-
tion (1.1) with the effective potential
To obtain the Klein-Gordon equation suitable for the pertur- Al(I+1) A" AB’
bation analysis, we separate into the radial and angular V(r)= —r2 + 5Br B2’ (4.19
parts:
Substituting in the expressions férandB, we get
00 |
prn=2 3 RLDYim(6e). (410 oy i 040 il
0.00 [ ,,/”/ 4000 b7 1
The radial function satisfies NP ’ el
-0.20 L -0.10 L
1.0 1.5 2.0 1.0 15 2.0
A [2A A" AB'|_, Al(I+1) ) j=2 j=3
§R|+ E+E_E ,—r—2R|=(?tR|, 0.10 —— : 0.03 ‘ .
(4.19 0.00 0.00 t
where '=d/dr. Next introduce the tortoise coordinate 0.10 - P 003 L !
1.0 15 2.0 1.0 15 2.0
r B j=4 j=5
X= f —dr (4.12 0.03 . 0.02 .
A
to push the event horizormr £2M,) to —». We leave the = 000 0.00
zero point ofx to be specified later. The equation By
becomes -0.03 : -0.02 L s
1.0 1.5 2.0 1.0 15 2.0
2T (22 -
&§R|+z\/E&X l_AI(Ijl) R=#R. (413 FIG. 3. (?raph of ReH(x)e 21+ (2M)* (50lid line) and
r vB r Im H(x)e~ 21+ 2W)? (dashed lingvs r/2M.
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( 2Mo\[1(1+1)  2M,
1_ + EVsc(Mo,r), r>r51
r r2 r3
V(r)=<¢ r=rs, (4.17)
2M \ | 1(1+1)  2M,
K o(r—rgya|l— =aVsd(M,,r), r<rg,
L r r? rs
|
whereVg(M,r) is the standard unperturbed potential for a r+2Mgln[r/2Mq—1], r=r,
Schwarzschild black hole with mas4 [i.e., Eq.(1.2) with 1
_ ; e X=
s=0]. 'I-'he-strength of the& function at the position of the L [r+2M,IN(F2M— 1)]+ %, T<Ts,
shellrg is given by Ja
(4.19
rote 2M M
K= lim f V(r)dr=—(1— 0)“ 2. 418
E~>0+ rs—s rS rS

wherex, is the constant which makescontinuous.

The remaining degree of freedom in setting up the per- Thus we arrive at the perturbation probld3) as dis-
turbed problem is the zero-point of the tortoise coordinate cussed in the sections above wkltbeing the tortoise coor-
We choose it so that the effective potential is the standardinate,
unperturbed formoutsidethe shell, in terms of the ADM
mass. The zero point is then determined by the requirement
of continuity of x:

Vo(X)=Vsd(Mg,X), (4.20
0, for x>Xxq,
#V100= KS(X—Xg)+ aVgd(M,,r)—VsdMg,r), otherwise, (4.23
|
where B. Numerical solution

The full potentialV can be cast into a standard Regge-
X=T+2M, In( 's _ 1), (4.22 Wheeler potential fqr both<<xq and?<>xs, and hgnce exact,
2My QNMs can be obtained by numerically evaluating Leaver’s
solutions of the Regge-Wheeler equati@mee[28] and Ap-

and pendix B. The numerical solution will be used to examine

the accuracy and validity of the perturbative result. Details of
_ Xgte 2uM, the numerical scheme are sketched as follows.
k= lim J V(x)dx=— —5———. (4.23 First, as there is & function in the effective potential
€0t XsTE r{(1+1Na) V(x), the logarithmic derivatives at=x¢ are related by

This perturbation consists of two parts:safunction at the o P (wxste) @' (w,Xs—€)

position of the shell, plus a contribution inside the shell ex- lim dloxte) dloxe—e | © (4.24

tending all the way to the horizorx{s—o or r—2M,). e—0”

There is no perturbation outside the shell. . . o
We should make one further comment concerning thE‘Second, outside the shell, the effective potential is the

setup of the problem. As the equation of state of the matte gge-Wheeler P°te”“?' W'th mass pa_ramém{ and the
shell is chosen to make the shell static, one needs to ensu M. wave funct|on'sa.t|sf|e's the outgoing wave boundary
that the equation of state satisfies the energy conditions. It igondltlon at the spatial infinitx—c. Hence,

straightforward to show that the dominant energy condition

is the first to be violated if the shell is placed too close to the ¢(0,X)= ¢ (2Mow,x/12My), (4.29
horizon, as shown in Appendix A. Thus, the discussion will s

be limited to the perturbations that do not violate the domi-where ¢, (w,X) is the outgoing wave solution of the scaled
nant energy condition. Klein-Gordon equation

044034-8
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j0 =1 -2
T -0.190 -0.595 -1.055
® op
05 @ o
om % *
15 oa
o8B
25 0 B
o & o o o
-35 . -0.196 -0.615 -1.085
0.30 0.50 0.70 0.56855 0.5875 0.525 0.545 0.455 0.485
j=3 j=4 j=5 =6
-1.535 -2.030 -2.530 -3.000
a
o o
a
*4A & * a
%
fo) o
o Q

-1.580 -2.090 -2.600 -3.100

0.400 0.445 0.360 0.420 0.340 0.410 0.30 0.40

FIG. 4. The perturbed QNM spectrum of a black hole plus shell systenh=fdr scalar wave with=0.02 andr;=2.52M,. The
horizontal axis is Re Mlyw and the vertical axis is ImIi@,w. The zeroth-, first-, and second-order perturbation results are indicated by
circles, squares, and triangles, respectively. The exact numerical result is represented by stars. The diagram on the upper left shows the
distribution of QNMs of the lowest damping modéom j=0 to j =6). The other diagrams are the magpnification of the region around each
mode.

2 5 s and
—5t o= V(r) | ¢(w,x)=0, (4.26
dx
X 2|v||(—r 1) Ja(x—x0).  (4.30
) X=r+ n —1l|=vVa(X—Xc). .
with 2 2M, ¢
~ 1\ [1(1+1) 1
ViN=|1-Z|| —=—+=|. (4.27  Hence
r r r
and P(,X)=_(2M qolJa,xI2M ). (4.3)
X=r+ In(r—1). (4.28
Note that the quantities with a tilde are dimensionless.
Third, inside the shell, it is also easy to show that the 10
wave function¢ satisfies
0.600
d? w 2 E
ﬁ'f’ \/_E —VSC(Ma,r) $=0, Xx<Xg (4.29 E
Jj=
0.0 T r .
o o g 0537 |
-2.0 | oo 9°°9 | 8 . . . . ‘ ‘
o © O ~ 0.00 0.30 0.60 0.90 1.20 1.50 1.80
= o [u] Re(2M,w)
X I o ] :
g -4.0 o - A0 ° FIG. 6. The trajectory of the lowest QNMs bf 1 scalar waves
=3 o A for ©=0.01 andrg/M, varies from 2.26 to 60 based on exact
- 4 numerical calculation. The circles are QNMs of a bare Schwarzs-
6.0 1 “ i child black hole with mas#/,; the squares are the QNMs fog
A =2.26M, (the dominant energy condition is violated wheg
. ‘ . . <2.26M,); the triangles show the positions of QNMs ”Y/M,
'8'0_3_0 25 20 15 1.0 05 from 6 to 60 in intervals of 6. The upper and lower insets show the
log, gt regions neaj=0 andj=1 in detail, respectively. We stopped the

calculation when the QNMs approach the imaginargxis because
FIG. 5. The magnitude of the error in the frequencies of theit is difficult to compute it accurately in that region. Thus, some
zeroth-, first-, and second-order perturbation lferl, s=0, j=1, triangles appear “missing” for some higher damping QNMs be-
andrg=2.5M,. cause they have already moved to the imaginargxis.
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0190 and the prime represents the derivative with respext fthe
e functions¢, and¢_ can be computed by Leaver’s solutions
of the Regge-Wheeler equatigsee[28] and Appendix B.
0194 1 \‘ Therefore, exact QNMs can be obtained by solving the non-
N i linear equatior(4.32 by standard root-searching methods.
=
X o198 |
E C. Dependence oru and convergence
Given the perturbation functiomV; in Eq. (4.21), the
-0.202 ¢ shifts w; and w, can be evaluated by Ed2.6). Detailed
treatments will be given in Appendix C.
. L Figure 4 shows the zeroth-, first- and second-order pertur-
-0.208 o5 0585 R0 osm . oso0 bation results fot =1 scalar waves together with the exact
Re(2M,) numerical results for a black hole plus shell system. The

i . parameters arg.=0.02, r;=2.52M, (xs~0). This figure
_ FIG. 7. Trajectory of =0 mode based on exa@olid lin§) and  ghq\ys that the perturbation formalism does give the correct
first-order (dash ling calculations. The zeroth-order result is indi- shifts for smallu
cated by a circlg and the square represents the_r_nodersfor To see the convergence more clearly, we plot in Fig. 5 the
=2.26M,. The triangles thc.’w the mode for the positions of themagnitude of the error in the frequencies in the zeroth-, first-,
shell atr;/M, from 6 to 36 in intervals of 6 for the exact result, and d d-ord it The plot sh th
the plus symbols show the first-order result for the shell at the2Nd Secon 'O_r er r_esu S \_/ersws € po shows (he case
corresponding positions. ofI=1,s=0, j=1 (first excited statg with the shell located
atrs=252M,. The error of thenth-order result goes as
n+1 H

~ o~ L . , as it should.
Here ¢_(w,X) is the ingoing wave solution of E@4.26 at K
X— —00,

Therefore, by connecting the two logarithmic derivatives

at x= X, with Eq. (4.24), the QNM condition can be written ~ We next study the dependence on the parameters of the
as shell. Figure 6 shows the trajectories of the lowest damping

QNMs (j=0,1,..,6) as the position of the shell moves away
, = from the event horizon. The plot shows the casel ofL
2Mow/p,X . . .

— Pé-(2Mow/p )‘ scalar waves withu=0.01 based on numerical calculation.

D. Dependence on shell position

¢ (2Mow,X)

¢+ (Mo X)|5_, o B (2Mow/p,X) ‘;:;,ZM The regions near th¢=0 andj=1 modes are shown in
S 0 S a - . . . .
greater detail in the insets. The calculation is terminated
=2Myx, (4.32  when the QNM is near the imaginary axis, since it is
difficult to perform the numerical calculation with sufficient
wherep=\aMy/M,, accuracy in that region. It is seen that there are interesting

changes in signs with increasing Some QNMs move to-
— rs ward the imaginaryw axis, and the higher damping QNMs
Xs=Ts+2M,In| 52— —1] = Ja(xs=X;), (433  gither move toward the imaginary axis or move upward
2M, . . ;
toward the origin. It is also seen that when the shell is placed
far away from the event horizon, the QNMs move away from

05 ‘ = ‘ -1.00 . = . their unperturbed positions, with the higher damping modes
moving with higher speed. This behavior can be understood
08T 2y | A0 / 1 from the perturbation formul&2.6). When x¢/2M>1, we
(/ ! have, according to Eq$4.21) and(2.6),

0 7O 40 0.45 0.50 0.55 . '200.35 0.40 (;145 0.50 2i 2

j= =4 w1~ e 0%s/xs  for Xxg/2M > 1. (4.39
1.4 T -2.00 T T
a5 E Hence QNMs move more rapidly away from the unperturbed

el LT 208 \j ] positions when the shell is far away from the event horizon

. (Xs/2M ;> 1) and the higher damping modes [m 2M ,wq

“o40 0.45 050 0.55 0.25 030 035 0.40 >1) move with higher speed.

25 i 500 = Figure 7 shows the first-order perturbation result for the
L/ j=0 mode for different values of,. At large x,, the tra-
26| — 1 sos| jectory shows a spiral structure, which can be explained from

, the first-order perturbation formula. According to K4.34),
2703 04 04 o5 %z 028 081 0.36

do dw; %0
FIG. 8. Same as Fig. 7 but fgr=1,2...,6. For thesq, the _—~
perturbation breaks down before a spiral forms.

for x>1. (4.3

044034-10
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The exponential factoe? “o*s leads to the spiral structure. A A2 B’ A'B’ A"

For largerj modes, there is no such spiral structirey. 6) GYi=G¢= - - - + ,

because the higher-order corrections become large before the ¥ 2rAB  4a’B  2rB® 4AB® 2AB

spiral appears, as shown in Fig. 8. (A4)
V. CONCLUSION - _1_B (A5)

r86 r2 rB?’
We have applied the LPT for the QNMs of open systems
to the study of gravitatio_na_l waves propggating away fromyhere "=d/dr. The componentG”. is nonzero only if it
black holes. QNM gravitational wave signals from black contains terms involving the second derivativeobr the
holes will be detected soon, and many black holes are €X5.t derivative ofB. Hence

pected to be perturbed by their astrophysical environment,
e.g., by an accretion disk. The study in this paper of scalar

waves represents the first step in the study of the QNM specs.ff= Szi lim jrsﬂ B dr (AB)

tra of waves propagating in a dirty black hole background, 87TEH0+ r—e rB3?

perturbed by the astrophysical environment. Its further de-

velopment can be of interest to gravitational wave as- Mo—M, 2M, 2M,) 1

tronomy, among other applications. =- —2( \/ - + \/1— ) (A7)
Although the QNMs of any system can in principle be 2mrg s s

obtained through brute force numerical integration, it is nev- | ) ) o b e

ertheless highly desirable to have a convenient set of pertutSing the Einstein equatio, =8 T, . Similarly, we have

bation formulas that one can understand the system with. We

note that the Rayleigh-Schiimger perturbation theory for G h 1 / 1-Molrs  1-My/rs

NMs is tremendously valuable, even though the NM systems o= 87-rrs\ JI=2My/ry  V1-2My/rg

are more easily handled numerically than QNM systems. (A8)
We have shown in a simple example that a perturbed

black hole spectrum can have interesting features and dem- Equation(Al) together with Eqs(A7) and(A8) implies a

onstrated how these features can be understood with the pdower bound orrg for a givenu. For w=0.01, it is found

turbation formula. In summary, we raise the importance ofthat the minimunr is 2.26M .

studying QNMs of dirty black holes and show how it can be

done in a perturbative formulation. APPENDIX B: LEAVER'S SOLUTIONS

In the analytic study of the Regge-Wheeler equation, it is
convenient to rewrite the Regge-Wheeler equation in terms
This work is supported in part by Hong Kong Researchof the coordinate :
Grants Council grant 452/95P and U.S. NSF grant PHY 96-
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Institute of Mathergatical Science of The Chinese University r(r=D¢n+é,— ﬂﬂ(l +1)+ T ¢=0, (BY
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wherep=—iw, £&=1—s2. For simplicity, we have set¥
APPENDIX A: DOMINANT ENERGY CONDITION =1. Equation(B1) can be transformed to the generalized

spheroidal wave equatid28]. For an arbitrary frequency,
The shell cannot be placed too near to the black holewe define two solutions . (w,r) which satisfy the boundary

otherwise, the dominant energy condition conditions
|S;E|>|Saa| (no sum onq) (A1) poce™ X for x—*o, (B2)
will be violated, Wherefq denotes any unit specelike vector, The analytic solutions of these two functions are given by
and [28]
ret m r—1\"
" . sTe_ - - —(r—1)Pr 2pa—pPr N
S;’= lim f T, dr. (A2) ¢-(or)=(r—1)r e go an| ) . (B3
€—>0+ rs—f
It is straightforward to compute all the nontrivial compo- Py =rlts(r—1)Perr a(2p+1
nents of the Einstein tensor for the metfit1): ¢+ (@) (r=1) ngo (21
Ao L1 XU(s+1+2p+n,2s+1,2or), (B4)
G=—+——-—, (A3)
" TAB (2B (2 where
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I'(2p+1+n) (2p+n)(2p+n+1)T(E)

—(2p+n+1)(1+4p+2n+2pr)T(
is the Pochhammer’s symbadl is the irregular confluent B (=) _
hypergeometric functiofi30], and a,, is determined by the F(st1+2p+n)(2p+n=s+1)Tn1=0,
following three-term recursion relation: (B15)
an+1t Bnant vnan-1=0, n=12,.., B6
apdni1t Brant Ynan-_1 (B6) and
with

N dT07) s+1+2p+n[2p+n+l-s_ _
an—O for n<O0. (B7) 5 — . { 2p+n+1 T(n+)l_T|('1 ) ) (Blﬁ)
The value ofay is arbitrary and is related to the normaliza-

tion of ¢.. . The quantitiesy,,B,, andy, are defined to be For largen, Tﬁf) approaches the asymptotic expressias

ap=(n+1)(n+2p+1), (B8a)

Val'(2p+1+n) / n\s
=_ 2 2 (=) —
Bo=—[2n%+(8p+2)n+8p +4p+|(|+1)+§],(88b) T F(2p+1)r(2p+1+n+s)\2pr)

X (2npr)~ Y exy —2(2npr)Y B1
'}’n:n2+4pn+4p2+§_l- (BBC) ( npr) € eXF[ ( npr) 2]1 ( 7)

In most cases, we only need the logarithmic derivatives

) F(2s+ DI (2p+1+ n)/ n )S

+ n 2—
fi(w,x)= ! dd)*. (B9) 2\/;F(2p+1+s+n)\ pr

X (2npr)~Yerrexd +2(2npr)¥?]. (B18)
While f_(w,x) can be easily obtained from E@3), the

calculation off , (w,X) is less straightforward as it involves a The general solution of the difference equati®ib) is a
sum of irregular confluent hypergeometric functions, whichjinear combination Oﬂ'gi)_ It follows from Eqs.(B17) and
are notoriously different to evaluaf@8]. In the following, (B18) thatTE]” increases witm, while Tgf) decreases with

Wevsgvgek%ﬂ:tcv%msz”ﬂnilggnthm to calculdte(w,x). n. Hence any linear combination ('ﬂf) will eventually be
q dominated by the term containink},”) asn—c. The com-

T =(2p+1),U(s+1+2p+n,25+1,20r), (810)  putation of ), from T{™) and T{) is therefore unstable.
The recursion relatioriB15) must be used in the reverse
) I'(2p+1+n) direction. In practice, we choose an arbitrary vaIueT{qT)
Tn —mM(s+l+2p+n,25+l,2pr), (N>1) and set
(B11)
. . . (=)
where M is the regular confluent hypergeometric function. T — TNflTH
Hence we have N-1 T N
¢i(@0)=r"(r—1)*e *h(w,r),  (B12) 2PN N—1)s-l/4 2(2pr) 2
~ —_ — exg ————|.
where N 2p+N N N+ N-1
o (B19)
h(w,r)=2, a,T, . (B13)
n-0 The values ofT{~) for n<N—1 are then calculated by the
f,(w,x) can then be expressed in termshoés follows: recursion formulaB15). HereTf() determined in this way
will differ from its original definition in Eq.(B10) by a mul-
1\ 1 do, tiplicative constant. This does not concern us since we are
folox)=|1-+ b, dr only interested in the logarithmic derivative @f. , which is
independent of the constant factor and is readily evaluated by
1+s 1 dh Eq. (B14).

1 p

- ( 1- oy + r—1 —pt h drl (B14) Leaver’s solutions can be applied to compute the logarith-
mic derivativesfy(L.) in Eg. (2.13 and to evaluate the

It can be shown, from the recursion formulas of the con-QNMs of the shell model of dirty black hole described in

fluent hypergeometric functio80,31], that Sec. IV.
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APPENDIX C: EVALUATION OF THE PERTURBATION condition on the event horizon. This expression as a whole is

FORMULAS finite for everyw, but for Im(w)>0, each term is separately
finite; in fact the surface term vanisheslas— — because
the factor¢3_(w,L_)xe 2“'~ now decays exponentially.
Evaluating in this domain, we have

For simplicity we focus on the first-order perturbation cal-
culation, which is given by

on (dolV1l do)
L 200 dol o)

We have discussed the evaluation of the generalized norm

{¢ol do) in Sec. Il B. It suffices to evaluate the generalized for Im(w)>0. (C4)
matrix element ¢o| V4| ¢o). ForV, given by Eq.(4.21), the
generalized matrix element is

(cD Z(w)=f_xl¢g_(w,r*)v1(r*)dr*+K¢§_(w,xs)

The prescription is therefore to evaluate in this domain and
analytically continue taw:

Xs
<¢0|V1|¢0>:j V1(X) ¢5(X)dX+ K po(Xs)? Xs
. S (GolValdo)=2(w0)= | AT Va(r ), + rixe).
2 d (CH
+¢O(L,)(9—f,(w0,L,)|#:0, (C2
K We note that this merely provides an alternate evaluation of
whereL_ is any real number smaller thaq. It has been an expression that was manifestly finite to start with.
argued earlier that this expression is independent of the The integral can be easily carried out analytically by no-
choice ofL _, and for any finiteL _ the expression is finite. ticing that the potentia¥s(M,x) in Eq. (4.17 can be ex-
Thus the entire perturbation scheme requires no regularizéressed as a sum of exponentials at negativihe calcula-
tion. tion is sketched below and the details of the straightforward
However, the last term in EGC2) involves the change of arithmetic can be found in Reff32]:
f_ due to the presence &f,. This calculation can be by-

passed by the following trick. First, since the entire expres- 1 1l x
sion is independent df _ , we pushL_ to —<« and define a VsdM,x)= 4M2VSC 2'2M /" (C6)
function
Xg = ~
Z(w)=lim “ b5 (0,1, )V4(r,)dr, Vsc(1/2,><)=k21 c e for x<0, (C7)
L_—»—x L_ =
) d ) where
+ ¢O—(w1L—)@f—(va—)|p:O + K¢O—(wvxs);
c=1(1+1) yapt (1= 59 ya, (Cy)
(C3
m
where ¢g_(w,r,) is a.functi_on satis:fying the unperturbed yn’m:eme w(p,n,m). (C9)
Regge-Wheeler equation with the ingoing wave boundary p=0
|
Here u(0,n,1)=1—n, u(1n,1)=n, x(p,n,m)=0 for p<0 andp>m, and
n+p+m-—2 —1nm—-1)+(m—1 ,nm—1
M(p,n,m):_( p ) (p . )+( ) (p ) for m=2. (€10
It can be shown that the unperturbed wave functigncan be expressed §29]
po(X)= 2 dy(wp)e M0, (C1Y)
k=0
where 1 o1
dk( w0)= k(k——ZIwO)mz:o dk(wO)Ckfm! (C12)

andd, is a constant related to the normalization of the wave function.
It is obvious thatV; given by Eq.(4.21) can also be expressed as a sum of exponentials pliguaction. Hence the
integration in Eq(C2) can be performed analytically, giving the generalized matrix element and the first-ordes ghift
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