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NUT charge, anti–de Sitter space, and entropy
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It has been proposed that spacetimes with aU(1) isometry group have contributions to the entropy from
Misner strings as well as from the area ofd22 dimensional fixed point sets. In this paper we test this proposal
by constructing Taub-NUT-AdS and Taub-bolt-AdS solutions which are examples of a new class of asymp-
totically locally anti–de Sitter space. We find that with the additional contribution from the Misner strings, we
exactly reproduce the entropy calculated from the action by the usual thermodynamic relations. This entropy
has the right parameter dependence to agree with the entropy of a conformal field theory on the boundary,
which is a squashed three-sphere, at least in the limit of large squashing. However, the conformal field theory
and the normalization of the entropy remain to be determined.@S0556-2821~99!06402-4#

PACS number~s!: 04.70.Dy, 04.60.2m
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I. INTRODUCTION

It has been known for quite some time that black ho
have entropy. The entropy is

S5
A

4G
, ~1.1!

whereA is the area of the horizon andG is Newton’s con-
stant. In any dimensiond, this formula holds for black holes
or black branes that have a horizon, which is ad22 dimen-
sional fixed point set of aU(1) isometry group. However, i
has recently been shown@1# that entropy can be associate
with a more general class of spacetimes. In these metrics
U(1) isometry group can have fixed points on surfaces
any even co-dimension, and the spacetime need not be
ymptotically flat or asymptotically anti–de Sitter space.
this more general class, the entropy is not just a quarter
area of thed22 dimensional fixed point set.

Among the more general class of spacetimes for wh
entropy can be defined, an interesting case is those with
charge. Nut charge can be defined in four dimensions@2# and
can be regarded as a magnetic type of mass. Solutions
nut charge are not asymptotically flat~AF! in the usual sense
Instead, they are said to be asymptotically locally flat~ALF!.
In the Euclidean regime, in which we shall be working, t
difference can be described as follows. An AF metric, su
as a Euclidean Schwarzschild metric, has a boundary a
finity that is anS2 of radiusr times anS1, whose radius is
asymptotically constant. To get finite values for the act
and Hamiltonian, one subtracts the values for periodica
identified flat space. In ALF metrics, on the other hand,
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boundary at infinity is anS1 bundle overS2. These bundles
are labeled by their first Chern number, which is proportio
to the nut charge. If the first Chern number is zero,
boundary is the productS23S1, and the metric is AF. How-
ever, if the first Chern number isk, then the boundary is a
squashedS3 with uku points identified around theS1 fibers.
Such ALF metrics cannot be matched to flat space at infin
to give a finite action and Hamiltonian, despite a number
papers that claim it can be done. The best that one can d
match to the self-dual multi-Taub-NUT~Newman-Unti-
Tamburins! solutions@3#. These can be regarded as defini
the vacuums for ALF metrics.

In the self-dual Taub-NUT solution, theU(1) isometry
group has a zero-dimensional fixed point set at the cen
called a nut. However, the same ALF boundary conditio
admit another Euclidean solution, called the Taub-bolt m
ric @4#, in which the nut is replaced by a two-dimension
bolt. The interesting feature is that, according to the n
definition of entropy, the entropy of the Taub-bolt metric
not equal to a quarter the area of the bolt, in Planck un
The reason is that there is a contribution to the entropy fr
the Misner string, the gravitational counterpart to a Dir
string for a gauge field.

The fact that black hole entropy is proportional to the a
of the horizon has led physicists to try to identify the m
crostates with states on the horizon. After years of failu
success seemed to come in 1996, with the paper
Strominger and Vafa@5#, which connected the entropy o
certain black holes with a system of D-branes. With hin
sight, this can now be seen as an example of a duality
tween a gravitational theory in asymptotically anti–de Sit
space and a conformal field theory on its boundary. It wo
be interesting if similar dualities could be found for solutio
with nut charge, so that one could verify that the contributi
of the Misner string was present in the entropy of a conf
mal field theory. This would be particularly significant fo
solutions like Taub-bolt, which do not have a spin structu
©1999 The American Physical Society33-1
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It would show that the duality between anti–de Sitter sp
and conformal field theories on its boundary did not depe
on supersymmetry or string theory.

In this paper, we will describe the progress we have m
towards establishing such a duality. We have found a fam
of Taub-bolt anti–de Sitter~AdS! solutions. These Euclidea
metrics are characterized by an integerk and a positive rea
parameters. The boundary at large distances is anS1 bundle
overS2, with first Chern numberk. If k50, the boundary is
a product,S13S2, and the space is asymptotically anti–
Sitter, in the usual sense. But ifk is not zero, the metrics ar
what may be called asymptotically locally anti–de Sit
~ALAdS!. The boundary is a squashedS3, with k points
identified around theU(1) direction. This is just like ALF
metrics. But unlike the ALF case, the squashing of theS3

tends to a finite limit as one approaches infinity. This me
that the boundary has a well-defined conformal structu
One can then ask whether the partition function and entr
of a conformal field theory on the boundary is related to
action and entropy of these ALAdS solutions.

To make this question well posed we have to specify
reference backgrounds with respect to which the actions
Hamiltonians are defined. Like in the ALF case, a squas
S3 cannot be embedded in Euclidean anti–de Sitter sp
Therefore one cannot use it as a reference backgroun
regularize the action and Hamiltonian. Instead, one ha
use Taub-NUT anti–de Sitter space, which is a limiting ca
of our family. If uku is greater than 1, there is an orbifo
singularity in the reference backgrounds, but not in the Ta
bolt anti–de Sitter solutions. These orbifold singularities
the backgrounds could be resolved by replacing a sm
neighborhood of the nut by an asymptotically local Eucl
ean~ALE! metric. We shall therefore take it that the orbifo
singularities are harmless.

Another issue that has to be resolved is what confor
field theory to use on the squashedS3. Here we are on
shakier ground. For five-dimensional anti–de Sitter spa
there are good reasons to believe that the boundary theo
a large-N Yang-Mills theory. But on the three-dimension
boundaries of four-dimensional anti–de Sitter space, Ya
Mills theory is not conformally invariant. The best that w
can do is calculate the determinants of free fields on
squashedS3, and see if they have the same dependence
the squashing as the action. Note that as the boundary is
dimensional, there is no conformal anomaly. The deter
nant of a conformally invariant operator will just be a fun
tion of the squashing. We can then interpret the squashin
the inverse temperature, and get the number of degree
freedom from a comparison with the entropy of ordina
black holes in four-dimensional anti–de Sitter space.

II. ENTROPY

We now turn to the question of how one can define
entropy of a spacetime. A thermodynamic ensemble is a
lection of systems whose charges are constrained
Lagrange multipliers. One such charge is the energy or m
M , with the Lagrange multiplier being the inverse tempe
ture,b. But one can also constrain the angular momentumJ
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and gauge chargesqi . The partition function for the en-
semble is the sum over all states,

Z5( e2m iKi, ~2.1!

where m i is the Lagrange multiplier associated with th
chargeKi . Thus, it can also be written as

Z5Tr e2Q. ~2.2!

HereQ is the operator that generates a Euclidean time tra
lation Dt5b, a rotationDf5bV and a gauge transforma
tion a i5bF i , whereV is the angular velocity andF i is the
gauge potential forqi . In other words,Q is the Hamiltonian
operator for a lapse that isb at infinity, a shift that is a
rotation throughDf, and gauge rotationsa i . This means
that the partition function can be represented by a Euclid
path integral over all metrics which are periodic at infini
under the combination of a Euclidean time translation byb,
a rotation throughDf, and a gauge rotationa i . The lowest
order contributions to the path integral for the partition fun
tion will come from Euclidean solutions with aU(1) isom-
etry that agree with the periodic boundary conditions at
finity.

The Hamiltonian in general relativity or supergravity ca
be written as a volume integral over a surface of constant,
plus surface integrals over its boundaries. The notation u
will be that of @1#. The volume integral is

Hc5E
St

dd21xFNH1NiHi1A0~DiE
i2r!1 (

A51

M

lACAG ,

~2.3!

and vanishes by the constraint equations. Thus the nume
value of the Hamiltonian comes entirely from the surfa
terms,

Hb52
1

8pG E
Bt

As@Nk1ui~Ki j 2Khi j !Nj12A0F0iui

1 f ~N,Ni ,hi j ,fA!#. ~2.4!

The action can be related to the Hamiltonian in the us
way,

I 5E dtF E
St

dd21xS Pi j ḣi j 1EiȦi1 (
A51

N

pAḟAD 1HG .

~2.5!

Because the metric has aU(1) isometry, all quantities with
an overdot vanish. Thus

I 5bH. ~2.6!

If the solution can be foliated by a family of surfaces th
agree with Euclidean time at infinity, the only surface term
will be at infinity. In this case, a solution can be identifie
3-2
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NUT CHARGE, ANTI–de SITTER SPACE, AND ENTROPY PHYSICAL REVIEW D59 044033
under any time translation, rotation, or gauge transforma
at infinity. This means that the action will be linear inb, Df,
anda i ,

I 5bH`5bM1~Df!J1a iqi . ~2.7!

If one takes such a linear action to be (2 logZ), and applies
the standard thermodynamic relations, one finds the entr
is zero.

The situation is very different, however, if the solutio
cannot be foliated by surfaces of constantt, wheret is the
parameter of theU(1) isometry group that agrees with th
periodic identification at infinity. The breakdown of foliatio
can occur in two ways. The first is at fixed points of t
U(1) isometry group. These occur on surfaces of even
dimension. Fixed point sets of co-dimension 2 play a spe
role. We shall refer to them as bolts. Examples include
horizons of non-extreme black holes and p-branes, but th
can be more complicated cases, as in the Taub-bolt met

The other way the foliation by surfaces of constantt can
break down is if there are what are called Misner strings.
explain what they are, we write the metric in the Kaluz
Klein form with respect to theU(1) isometry group,

ds25expF2
4s

Ad22
G ~dt1v idxi !2

1expF 4s

~d23!Ad22
Gg i j dxidxj . ~2.8!

The one-form,v i , the dilaton,s, and the metric,g i j , can be
regarded as fields onJ, the space of orbits of the isometr
group. If J has homology in dimension 2, the Kaluza-Kle
field strengthF can have non-zero integrals over two-cycle
This means that the one-form,v i , will have Dirac strings in
J. In turn, this will mean that the foliation of the spacetim
M by surfaces of constantt will break down on surfaces o
co-dimension 2, called Misner strings.

In order to do a Hamiltonian treatment using surfaces
constantt, one has to cut out small neighborhoods of t
fixed point sets and the Misner strings. This modifies
treatment in two ways. First, the surfaces of constantt now
have boundaries at the fixed point sets and Misner strings
well as the usual boundary at infinity. This means there
be additional surface terms in the Hamiltonian. In fact,
surface terms at the fixed point sets are zero, because
shift and lapse vanish there. On the other hand, at a Mis
string the lapse vanishes, but the shift is non-zero. T
Hamiltonian can therefore have a surface term on the Mis
string, which is the shift times a component of the seco
fundamental form of the constantt surfaces. The tota
Hamiltonian will be

H5H`1HMS, ~2.9!

i.e., the sum of this Misner string Hamiltonian and t
Hamiltonian surface term at infinity. As before, the acti
will be bH. However, this will be the action of the spac
time with the neighborhoods of the fixed point sets and M
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ner strings removed. To get the action of the full spacetim
one has to put back the neighborhoods. When one does
the surface term associated with the Einstein-Hilbert act
will give a contribution to the action of minus area over 4G,
for both the bolts and Misner strings, that is,

I 5bH`1bHMS2
1

4G
~Abolt1AMS!. ~2.10!

HereG is Newton’s constant in the dimension one is cons
ering. The surface terms around lower dimensional fix
point sets make no contribution to the action.

The action of the spacetime,I , will be the lowest order
contribution to (2 logZ). But

logZ5S2bH` . ~2.11!

So the entropy is

S5
1

4
~Abolt1AMS!2~Dc!HMS. ~2.12!

In other words, the entropy is the amount by which the
tion is less than the value,bH` , that it would have if the
surfaces of constantt foliated the spacetime.

Formula~2.12! for the entropy applies in any dimensio
and for any class of boundary conditions at infinity. In pa
ticular, we can apply it to ALF metrics in four dimension
that have nut charge. In this case, the reference backgro
is the self-dual Taub-NUT solution. The Taub-bolt solutio
has the same asymptotic behavior, but with the ze
dimensional fixed point replaced by a two-dimensional bo
The area of the bolt is 12pN2, whereN is the nut charge.
The area of the Misner string is212pN2. That is to say, the
area of the Misner string in Taub-bolt is infinite, but it is le
than the area of the Misner string in Taub-NUT, in a we
defined sense. The Hamiltonian on the Misner string
2N/8. Again the Misner string Hamiltonian is infinite, bu
the difference from Taub-NUT is finite. And the period,b, is
8pN. Thus the entropy is

S5pN2. ~2.13!

Note that this is less than a quarter the area of the bolt, wh
would give 3pN2. It is the effect of the Misner string tha
reduces the entropy.

III. ENTROPY OF THE TAUB-BOLT-AdS METRIC

The Taub-NUT-AdS metric can be obtained as a spe
case of the complex metrics given in@6# ~see also@7#!. The
line element is

ds25b2EF F~r !

E~r 221!
~dt1E1/2cosudf!21

4~r 221!

F~r !
dr2

1~r 221!~du21sin2 udf2!G , ~3.1!

where
3-3
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FN~r ,E!5Er41~426E!r 21~8E28!r 1423E, ~3.2!

E is an arbitrary constant which parametrizes the squash
b2523/4L, and L,0 is the cosmological constant. Th
Euclidean time coordinate,t, has periodb54pE1/2 and has
a nut atr 51, which is the origin of thec-r plane. Asymp-
totically, the metric is ALAdS since the boundary is
squashedS3, rather thanS13S2.

We can obtain another family of metrics from@6# that
have the same asymptotic behavior. They are the Taub-b
AdS metrics, which have the same form as Eq.~3.1! but the
function F(r ) is

FB~r ,s!5Er41~426E!r 2

1F2Es31~6E24!s1
3E24

s G r 1423E,

~3.3!

where

E5
2ks24

3~s221!
, ~3.4!

k is the Chern number of theS1 bundle ands is an arbitrary
parameter. In order to avoid curvature singularities, we m
takes.1, s.2/k andr .s. The periodicity of the imaginary
time is 4pE1/2/k, and it has a bolt atr 5s, with area

Abolt5
8

3
b2p~ks22!. ~3.5!

The boundary at infinity is a squashedS3 with uku points
identified on theS1 fiber.

The action calculation is a fairly trivial combination of th
original Schwarzschild-AdS action calculation@8# and the
more recent understanding of the actions of metrics with
charge@9#. As mentioned in Sec. I, in order to regularize t
action and Hamiltonian calculations, we need to choos
reference background. Since the Taub-bolt-AdS metric c
not be embedded in AdS space, we cannot use this
background. However, we can use a suitably identified
scaled Taub-NUT-AdS metric as a reference backgrou
We need the periodicity of the imaginary time coordinates
agree. This means that for a Taub-Bolt-AdS metric with p
rameters (k,s) we must take the orbifold obtained by iden
fying k points on theS1 as the reference background, rath
than just the Taub-NUT-AdS metric. This will have a conic
singularity at the origin; however, as mentioned before,
can smooth it out in a simple way, and hence we can
ignore it, and treat the space as non-singular. We then n
to scale the background imaginary time byE1/2/Ẽ1/2 so that
both imaginary time coordinates have the same periodic
namely b54pE1/2/k. Finally, we require that the induce
metrics agree sufficiently well on a hypersurface of const
radiusR, as we takeR to infinity. This yields equations for
both theS1 and theS2 metric components,
04403
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EFB~r ,s!

r 221
5

ẼFN~ r̃ ,Ẽ!

r̃ 221
~3.6!

and

E~r 221!5Ẽ~ r̃ 221!. ~3.7!

To sufficient order, this has the solutionẼ5hE and r̃
5lr , where

h512
2r

R3 , l511
r

R3 ,

r5
~s21!2@E~s21!~s13!14#

2sE
. ~3.8!

Hence the matched background metric is

ds25b2hEF FN~lr ,hE!

E~l2r 221!
~dc1E1/2cosu df!2

1
4~l2r 221!

FN~lr ,hE!
l2dr21~l2r 221!~du21sin2 u df2!G ,

~3.9!

with the function

FN~lr ,hE!5Ehl4r 41~426Eh!l2r 21~8Eh28!lr

1423Eh. ~3.10!

Calculating the action, we find that the surface terms c
cel, just like in the Schwarzschild-AdS case, so that the
tion is given entirely by the difference in volumes of th
metrics,

I 52
2pb2

9k

~ks22!@k~s212s13!24~2s11!#

~s11!2 .

~3.11!

We see that the action will have zeros at up to 3 points,

s65
42k6A1624k22k2

k
and s05

2

k
. ~3.12!

For the casek51, there will only be one valid zero,s153
1A10. The action will be positive fors,s1 , and negative
for s.s1 . When k52, all the zeros will coincide at the
lowest value ofs51, and the action is negative for any oth
value ofs. For larger values ofk, s6 will be imaginary,s0
,1, and hence the action will always be negative. The ac
for k51 is plotted in Fig. 1.

The Hamiltonian calculation is more complicated than t
simple action calculation completed above. There will
two non-zero contributions to the Hamiltonian—from th
boundary at infinity and from the boundary along the Misn
string. There is a third boundary, around the bolt, but
3-4
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Hamiltonian will vanish there. Using the matched Tau
NUT-AdS metric from above, we find that

H`5
b2

9

~s21!~ks22!@k~s13!14#

E1/2~s11!2 ~3.13!

and

HMS5
b2

3

~k22s!~ks22!

E1/2~s11!2 . ~3.14!

The area of the Misner string is larger in the background,
hence the net area is negative,

AMS52
32pb2

3

ks22

s11
, ~3.15!

while the area of the bolt is

Abolt5
8pb2

3
~ks22!. ~3.16!

Substituting these values into the formula for the act
~2.10! we regain the expression~3.11!.

We are now in a position to use Eq.~2.12! for the entropy.
We find that

S5
2pb2

3k

~ks22!@k~s212s21!24#

~s11!2 . ~3.17!

Similar to the action, the entropy will have three possib
zeros,

s65
2k6A2k214k

k
and s05

2

k
. ~3.18!

For k51, all the zeros satisfys<2, while fork52, the zeros
are ats<1. Hence in these cases the entropy is never ne
tive, and is only zero at (s52,k51) and (s51,k52),

FIG. 1. The actionI as a function ofs for k51 and b2

59/2p, as given by Eq.~3.11!. The zero is ats531A10.
04403
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which are exactly the two points where the action vanish
For larger values ofk, the zeros are all strictly less than
and hence the entropy is always positive.

One can regardZ as the partition function at a tempera
ture

T5b215
k

4pE1/2. ~3.19!

If one then assumes that mass is the only charge tha
constrained by a Lagrange multiplier~nut charge is fixed by
the boundary conditions and hence does not need a Lagr
multiplier!, then one can calculate the entropy from the st
dard thermodynamic relation

S5b
]I

]b
2I 52E

]I

]E
2I , ~3.20!

where we have made the approximationI 52 logZ. This
yields the same value as in Eq.~3.17! and so acts as a con
sistency check on our formula for entropy.

One can also calculate the energy or mass of the sys

M5
]I

]b
5

b2

9

~s21!~ks22!@k~s13!14#

E1/2~s11!2 5H` .

~3.21!

Again, this agrees with the Hamiltonian calculation.
Identical to the AdS case, there is a phase transition in

ALAdS system~for k51). This can be seen by considerin
the behavior of the Taub-NUT-AdS and Taub-bolt-AdS s
lutions as a function of temperature. There are no restricti
on the temperature of the Taub-NUT-AdS metric, but as c
be seen from Fig. 2, the temperature of the Taub-bolt-A
metric has a minimum value T05A613)/(4p)
'0.836516303738/p.

Hence, if we haveT,T0 , the system will be in the Taub
NUT-AdS ground state. As we increaseT aboveT0 , there
are two possible Taub-bolt metrics with different mass v
ues but the same temperature. The one with lowers will be

FIG. 2. The temperatureT51/AE as a function ofs for k51
andb259/2p. The minimum value is ats521).
3-5
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thermodynamically unstable, since it has negative spec
heat,]M /]T, while the one with largers has positive spe-
cific heat, and hence will be stable. The lowers branch has
positive action, and hence will be less likely than the Tau
NUT-AdS background. The behavior of the largers branch
will depend on T. At temperatures below T1

5A712A10/(4p)'0.912570384968/p, the action will be
positive and the Taub-NUT-AdS background will be f
vored. But forT greater thanT1 , the negative action implies
that the Taub-bolt-AdS solution is preferred, and hence
Taub-NUT-AdS background will inevitably decay into it.

We can compare the local temperatures at the phase
sition for the Schwarzschild-AdS (k50) and the Taub-bolt-
AdS (k51 and the degenerate casek52) metrics. In order
to compare the temperatures in the different metrics, we w
to rescale them so that the radii of theS2 parts of their
boundaries at infinity are 1. Hence, rescaling theS23S1

boundary of the Schwarzschild-AdS case corresponds
multiplying the temperatures given in@8# by the quantityb
5A23/L used in that paper, which is twice theb used in
our present paper. In that case one getsT0

k505)/(2p) and
T1

k5051/p. In the Taub-bolt-AdS case, the temperature
the boundary with this rescaling is simply (4pAE)21, as we
have defined it above. The corresponding temperatures

the k51 metric areT0
k515A21)T0

k50/2'0.96593T0
k50

and Tk515A712A10/(4p)T1
k50'0.91257T1

k50 respec-
tively. For k52, the minimum and critical temperatures c
incide, and they areTk525T0

k50/&5A3/8T1
k51. The results

are summarized in the table below:

k pT0 pT1

0 0.86660 1.0
1 0.83652 0.91257
2 0.61237 0.61237
04403
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It is interesting that the first two results are much clos
together than they are to thek52 value.

IV. CONFORMAL FIELD THEORY

Formally at least, one can regard Euclidean conform
field theory on the squashedS3 as a twisted 211 theory on
an S2 of unit radius at a temperatureT5b21. Thus, one
would expect the entropy to be proportional tob22 for small
b. This dependence agrees with the expression that we h
for the gravitational entropy of the Taub-bolt-AdS metric. T
go further and obtain the normalization and sub-leading
pendence onb would require a knowledge of the conform
field theory that we do not have. The best that we can d
calculate the determinants of conformally invariant fr
fields on the squashedS3 and compare with the results fo
S23S1 and Schwarzschild-AdS space. OnS23S1 the deter-
minants of conformally invariant free fields will be the sam
function ofb, but this cannot be the case on the squashedS3

because fermions have zero modes at an infinite numbe
values of the squashing, whereas a scalar field has a
mode only at one value. Furthermore, Taub-bolt-AdS so
tions withk odd do not have spin structures. Thus, if they a
dual to a conformal field theory, it should be one witho
fermions.

Similar work on Taub-NUT-AdS and Taub-bolt-AdS me
rics for k51 has been performed independently@10#.
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