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It has been proposed that spacetimes witl(4) isometry group have contributions to the entropy from
Misner strings as well as from the areadbf 2 dimensional fixed point sets. In this paper we test this proposal
by constructing Taub-NUT-AdS and Taub-bolt-AdS solutions which are examples of a new class of asymp-
totically locally anti—de Sitter space. We find that with the additional contribution from the Misner strings, we
exactly reproduce the entropy calculated from the action by the usual thermodynamic relations. This entropy
has the right parameter dependence to agree with the entropy of a conformal field theory on the boundary,
which is a squashed three-sphere, at least in the limit of large squashing. However, the conformal field theory
and the normalization of the entropy remain to be determif80556-282(199)06402-4

PACS numbdrs): 04.70.Dy, 04.60-m

. INTRODUCTION boundary at infinity is ars! bundle overS?. These bundles
are labeled by their first Chern number, which is proportional
It has been known for quite some time that black holesto the nut charge. If the first Chern number is zero, the

have entropy. The entropy is boundary is the produ@?x St, and the metric is AF. How-
ever, if the first Chern number iIs then the boundary is a
o= A (1.1) squasheds® with |k| points identified around th& fibers.
4G’ ' Such ALF metrics cannot be matched to flat space at infinity

to give a finite action and Hamiltonian, despite a number of
where A is the area of the horizon ar@ is Newton’s con-  papers that claim it can be done. The best that one can do is
stant. In any dimensiod, this formula holds for black holes match to the self-dual multi-Taub-NUTNewman-Unti-
or black branes that have a horizon, which id-a2 dimen-  Tamburing solutions[3]. These can be regarded as defining
sional fixed point set of & (1) isometry group. However, it the vacuums for ALF metrics.
has recently been shown] that entropy can be associated In the self-dual Taub-NUT solution, the/(1) isometry
with a more general class of spacetimes. In these metrics, thffoup has a zero-dimensional fixed point set at the center,
U(1) isometry group can have fixed points on surfaces otalled a nut. However, the same ALF boundary conditions
any even co-dimension, and the spacetime need not be asemit another Euclidean solution, called the Taub-bolt met-
ymptotically flat or asymptotically anti—de Sitter space. Inric [4], in which the nut is replaced by a two-dimensional
this more general class, the entropy is not just a quarter thisolt. The interesting feature is that, according to the new
area of thed—2 dimensional fixed point set. definition of entropy, the entropy of the Taub-bolt metric is

Among the more general class of spacetimes for whichhot equal to a quarter the area of the bolt, in Planck units.

entropy can be defined, an interesting case is those with ndthe reason is that there is a contribution to the entropy from
charge. Nut charge can be defined in four dimensj@hand  the Misner string, the gravitational counterpart to a Dirac
can be regarded as a magnetic type of mass. Solutions witttring for a gauge field.
nut charge are not asymptotically fl@F) in the usual sense. The fact that black hole entropy is proportional to the area
Instead, they are said to be asymptotically locally fRtF).  of the horizon has led physicists to try to identify the mi-
In the Euclidean regime, in which we shall be working, thecrostates with states on the horizon. After years of failure,
difference can be described as follows. An AF metric, suctsuccess seemed to come in 1996, with the paper of
as a Euclidean Schwarzschild metric, has a boundary at irStrominger and Vafd5], which connected the entropy of
finity that is anS? of radiusr times anS', whose radius is certain black holes with a system of D-branes. With hind-
asymptotically constant. To get finite values for the actionsight, this can now be seen as an example of a duality be-
and Hamiltonian, one subtracts the values for periodicallfween a gravitational theory in asymptotically anti—de Sitter
identified flat space. In ALF metrics, on the other hand, thespace and a conformal field theory on its boundary. It would

be interesting if similar dualities could be found for solutions

with nut charge, so that one could verify that the contribution

*Email address:  S.W.Hawking@damtp.cam.ac.uk of the Misner string was present in the entropy of a confor-
"Email address: C.J.Hunter@damtp.cam.ac.uk mal field theory. This would be particularly significant for
*Email address: don@phys.ualberta.ca solutions like Taub-bolt, which do not have a spin structure.
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It would show that the duality between anti—de Sitter spacand gauge chargeg;. The partition function for the en-
and conformal field theories on its boundary did not dependgemble is the sum over all states,
on supersymmetry or string theory.

In this paper, we will describe the progress we have made
towards establishing such a duality. We have found a family
of Taub-bolt anti—de SittefAdS) solutions. These Euclidean
metrics are characterized by an integeand a positive real where u; is the Lagrange multiplier associated with the
parametes. The boundary at large distances is$irbundle chargeK; . Thus, it can also be written as
over S?, with first Chern numbek. If k=0, the boundary is
a product,S*x S?, and the space is asymptotically anti—de Z=Tre ©. (2.2
Sitter, in the usual sense. Butkifis not zero, the metrics are
what may be called asymptotically locally anti—de SitterHereQ is the operator that generates a Euclidean time trans-
(ALAdS). The boundary is a squash&}, with k points  lation A 7= 3, a rotationA ¢=8Q and a gauge transforma-
identified around theJ(1) direction. This is just like ALF tion a;=8®,, whereQ is the angular velocity and; is the
metrics. But unlike the ALF case, the squashing of 8%  gauge potential fog; . In other wordsQ is the Hamiltonian
tends to a finite limit as one approaches infinity. This meangperator for a lapse that i at infinity, a shift that is a
that the boundary has a well-defined conformal structuregotation throughA¢, and gauge rotations;. This means
One can then ask whether the partition function and entropyhat the partition function can be represented by a Euclidean
of a conformal field theory on the boundary is related to thepath integral over all metrics which are periodic at infinity
action and entropy of these ALAdS solutions. under the combination of a Euclidean time translationgpy

To make this question well posed we have to specify thea rotation throughA¢, and a gauge rotation; . The lowest
reference backgrounds with respect to which the actions angrder contributions to the path integral for the partition func-
Hamiltonians are defined. Like in the ALF case, a squashegon will come from Euclidean solutions with (1) isom-

S® cannot be embedded in Euclidean anti—de Sitter spacestry that agree with the periodic boundary conditions at in-
Therefore one cannot use it as a reference background fnity.

regularize the action and Hamiltonian. Instead, one has to The Hamiltonian in general relativity or supergravity can
use Taub-NUT anti—de Sitter space, which is a limiting casebe written as a volume integral over a surface of constant

of our family. If |k| is greater than 1, there is an orbifold plus surface integrals over its boundaries. The notation used
singularity in the reference backgrounds, but not in the Taubwill be that of[1]. The volume integral is

bolt anti—de Sitter solutions. These orbifold singularities in

2= e HiKi 2.0

the backgrounds could be resolved by replacing a small _ _ M
neighborhood of the nut by an asymptotically local Euclid- chf d9=Ix| NH+NH, +Ag(D;E' — p)+ D, NACH|,
ean(ALE) metric. We shall therefore take it that the orbifold 3, A=1

singularities are harmless. 2.3

Another issue that has to be resolved is what conformal . . . .
field theory to use on the squash&d. Here we are on and vanishes by the constraint equations. Thus the numerical

shakier ground. For five-dimensional anti—de Sitter spacevaIue of the Hamiltonian comes entirely from the surface

there are good reasons to believe that the boundary theory qgrms,
a largeN Yang-Mills theory. But on the three-dimensional 1
boundaries of four-dimensional anti—de Sitter space, Yang- p, — — _f Vo[ Nk+u; (K —Kh)N;+2A,F%y,
Mills theory is not conformally invariant. The best that we 87G JB,

can do is calculate the determinants of free fields on the
squashed?, and see if they have the same dependence on
the squashing as the action. Note that as the boundary is od . L
dimensional, there is no conformal anomaly. The determi-' '€ action can be related to the Hamiltonian in the usual
nant of a conformally invariant operator will just be a func- W&
tion of the squashing. We can then interpret the squashing as

+f(N,N' hjj, ¢™)]. (2.9

N
the inverse temperature, and get the number of degrees of _J J d-10| piit o Ein ATA
freedom from a comparison with the entropy of ordinary I=] d7 Td x| P h'J+EA'+A§=:1 T FH
black holes in four-dimensional anti—de Sitter space. (2.5

Because the metric hasl&(1) isometry, all quantities with
an overdot vanish. Thus

We now turn to the question of how one can define the
entropy of a spacetime. A thermodynamic ensemble is a col- I =pBH. (2.6
lection of systems whose charges are constrained by
Lagrange multipliers. One such charge is the energy or mass If the solution can be foliated by a family of surfaces that
M, with the Lagrange multiplier being the inverse tempera-agree with Euclidean time at infinity, the only surface terms
ture, B. But one can also constrain the angular momendum will be at infinity. In this case, a solution can be identified

Il. ENTROPY
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under any time translation, rotation, or gauge transformatiomer strings removed. To get the action of the full spacetime,
at infinity. This means that the action will be linearnAdg, one has to put back the neighborhoods. When one does so,

and a; , the surface term associated with the Einstein-Hilbert action
will give a contribution to the action of minus area oves 4
I=pBH.=BM+(Ap)I+a;q; . (2.7 for both the bolts and Misner strings, that is,
If one takes such a linear action to belpg 2), and applies 1
the standard thermodynamic relations, one finds the entropy I=pH..+ BHus~ 75 (Abort Aws)- (2.10

is zero.

The situation is very different, however, if the solution HereG is Newton’s constant in the dimension one is consid-
cannot be foliated by surfaces of constantvhere is the  ering. The surface terms around lower dimensional fixed
parameter of theJ(1) isometry group that agrees with the point sets make no contribution to the action.
periOdiC identification at Inflnlty The breakdown of foliation The action of the Spacetim@’ will be the lowest order
can occur in two ways. The first is at fixed points of the contribution to (- log Z). But
U(1) isometry group. These occur on surfaces of even co-
dimension. Fixed point sets of co-dimension 2 play a special log Z=S—BH.,. (2.11
role. We shall refer to them as bolts. Examples include the )
horizons of non-extreme black holes and p-branes, but ther0 the entropy is
can be more complicated cases, as in the Taub-bolt metric. 1

The other way the foliation by surfaces of constaman i _
break down is if there are what are called Misner strings. To S 4 (Aparct Avs) ~(A¢)Hs. 212
explain what they are, we write the metric in the Kaluza-
Klein form with respect to théJ(1) isometry group,

dSZ_ ;{_4_0-
B N

In other words, the entropy is the amount by which the ac-
tion is less than the valuggH.., that it would have if the
surfaces of constant foliated the spacetime.
(d7+ w;dx')? Formula(2.12 for the entropy applies in any dimension
and for any class of boundary conditions at infinity. In par-
ticular, we can apply it to ALF metrics in four dimensions
+ex;{ 4o (2.9 that have nut charge. In this case, the reference background
(d—3)yd—2 is the self-dual Taub-NUT solution. The Taub-bolt solution
has the same asymptotic behavior, but with the zero-
The one-formw; , the dilaton,o, and the metricy;;, can be  dimensional fixed point replaced by a two-dimensional bolt.
regarded as fields oF, the space of orbits of the isometry The area of the bolt is Z2N?, whereN is the nut charge.
group. If 2 has homology in dimension 2, the Kaluza-Klein The area of the Misner string is127N2. That is to say, the
field strengthF can have non-zero integrals over two-cycles.area of the Misner string in Taub-bolt is infinite, but it is less
This means that the one-form, , will have Dirac strings in  than the area of the Misner string in Taub-NUT, in a well-
Z. In turn, this will mean that the foliation of the spacetime defined sense. The Hamiltonian on the Misner string is
M by surfaces of constantwill break down on surfaces of —N/8. Again the Misner string Hamiltonian is infinite, but
co-dimension 2, called Misner strings. the difference from Taub-NUT is finite. And the perig8l,is
In order to do a Hamiltonian treatment using surfaces o8#N. Thus the entropy is
constantr, one has to cut out small neighborhoods of the
fixed point sets and the Misner strings. This modifies the S=mN?. (213

treatment in two ways. First, the surfaces of constanow . .
have boundaries at the fixed point sets and Misner strings, Note that this is less than a quarter the area of the bolt, which

. 2 . . .
well as the usual boundary at infinity. This means there caf/0uld give 3mN”. It is the effect of the Misner string that

be additional surface terms in the Hamiltonian. In fact, the'€duces the entropy.

surface terms at the fixed point sets are zero, because the

shift and lapse vanish there. On the other hand, at a Misner |ll. ENTROPY OF THE TAUB-BOLT-AdS METRIC
string the lapse vanishes, but the shift is non-zero. The
Hamiltonian can therefore have a surface term on the Misn((aig

’yijdXide.

The Taub-NUT-AdS metric can be obtained as a special
ase of the complex metrics given|if] (see alsd7]). The

string, which is the shift times a component of the secon ine element is

fundamental form of the constant surfaces. The total

Hamiltonian will be 4(r2—1)

(d7+EY?cosfd ¢)?+ ————dr?

S=b%E| —5——
E(r2—1) F(r)

H:HOCJFHMs, (29)

i.e., the sum of this Misner string Hamiltonian and the
Hamiltonian surface term at infinity. As before, the action
will be BH. However, this will be the action of the space-
time with the neighborhoods of the fixed point sets and Mis-where

+(r2—1)(d#?+sir? d¢?) |, (3.1
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Fn(r,E)=Er*+(4—6E)r2+(8E—8)r+4—3E, (3.2 EFg(r,s) EF\F.E)
21 121

(3.6
E is an arbitrary constant which parametrizes the squashing,

b?=—3/4A, and A<O is the cosmological constant. The gnq

Euclidean time coordinate, has periog3=4xE? and has

a nut atr =1, which is the origin of they-r plane. Asymp- E(r2—1)=E(F2-1). 3.7)
totically, the metric is ALAdS since the boundary is a
squashed®, rather tharS! x S2.

i i ; To sufficient order, this has the solutidf=»E and T
We can obtain another family of metrics froff] that utnict ! uti 7

have the same asymptotic behavior. They are the Taub—bolf“’ where
AdS metrics, which have the same form as Ej1) but the 2p p
function F(r) is »,7:1_5, )\:1+¥,
_ 4 _ 2
Fg(r,s)=Er*+(4—6E)r (s—1)2[E(s—1)(s+3)+4]
3E—-4 pP= 2SE . (3.8)
+| —ES*+(6E—4)s+ r+4-3E,
(33 Hence the matched background metric is
where d2—p2pg| VAT TE) (d+EY2cos0d )2
= — cos
T
2ks—4 4()\2['2_1)
E=o (3.4 +———— T \2dr2+ (N2r2—1)(d 62 +sir? 0dp?) |,
361 Fn(AT,7E)
k is the Chern number of th®* bundle ands is an arbitrary 3.9
parameter. In order to avoid curvature singularities, we must . .
takes>1, s>2/k andr>s. The periodicity of the imaginary \}\”th the function
. . 1/2 . _ .
time is 47E*9k, and it has a bolt at=s, with area FyOAT, 7E) =Eg\*r4+ (4— 6E 7)\2r2+ (8E— 8)\r
+4—-3E7. (3.10

8
Abo|t=§b21-r(ks—2). (3.5
Calculating the action, we find that the surface terms can-
cel, just like in the Schwarzschild-AdS case, so that the ac-

The boundary at infinity is a squash&d with k| points o given entirely by the difference in volumes of the

identified on theS! fiber.

The action calculation is a fairly trivial combination of the metrics,
original Schwarzschild-AdS action calculati¢g] and the 2mb? (ks—2)[k(s*+2s+3)—4(2s+1)]
more recent understanding of the actions of metrics with nut |=— )
chargeg[9]. As mentioned in Sec. |, in order to regularize the 9k (s+1)2
action and Hamiltonian calculations, we need to choose a (311

reference background. Since the Taub-bolt-AdS metric can-,
not be embedded in AdS space, we cannot use this as
background. However, we can use a suitably identified and \/72

scaled Taub-NUT-AdS metric as a reference background. s _4_ki 16— 4k—2k and s _E (3.12

We need the periodicity of the imaginary time coordinates to = k Ok’ ’

agree. This means that for a Taub-Bolt-AdS metric with pa-

rameters K,s) we must take the orbifold obtained by identi- For the casé=1, there will only be one valid zers, =3
fying k points on theS! as the reference background, rather + J10. The action will be positive fos<s. , and negative
than just the Taub-NUT-AdS metric. This will have a conical for s>s, . Whenk=2, all the zeros will coincide at the
singularity at the origin; however, as mentioned before, Weowest value of=1, and the action is negative for any other
can smooth it out in a simple way, and hence we can jusfalue ofs. For larger values ok, s.. will be imaginary,s,
ignore it, and treat the space as non-singular. We then needj and hence the action will always be negative. The action
to scale the background imaginary time BYYE'? so that  for k=1 is plotted in Fig. 1.

both imaginary time coordinates have the same periodicity, The Hamiltonian calculation is more complicated than the
namely 8=4=7EY?/k. Finally, we require that the induced simple action calculation completed above. There will be
metrics agree sufficiently well on a hypersurface of constantwo non-zero contributions to the Hamiltonian—from the
radiusR, as we takeR to infinity. This yields equations for boundary at infinity and from the boundary along the Misner
both theS! and theS? metric components, string. There is a third boundary, around the bolt, but the

e see that the action will have zeros at up to 3 points,
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FIG. 2. The temperaturé=1/\E as a function ofs for k=1

. , _ 2
FIG. 1. The actionl as a function ofs for k=1 and b andb2=9/27. The minimum value is as=2+v3.

=9/2m, as given by Eq(3.11). The zero is as= 3+ /10.

which are exactly the two points where the action vanishes.
For larger values ok, the zeros are all strictly less than 1,
and hence the entropy is always positive.

Hamiltonian will vanish there. Using the matched Taub-
NUT-AdS metric from above, we find that

b2 (s—1)(ks—2)[k(s+3)+4] One can regar& as the partition function at a tempera-
0= (3.13  ture
9 EY4s+1)?
k
and T:ﬂil=m. (3.19

b? (k—2s)(ks—2) _ _
Hys=— (3.14 If one then assumes that mass is the only charge that is

3 EYqs+1)? constrained by a Lagrange multipligrut charge is fixed by

e boundary conditions and hence does not need a Lagrange
ultiplier), then one can calculate the entropy from the stan-
dard thermodynamic relation

The area of the Misner string is larger in the background, angt{:|
hence the net area is negative,

4 32mh? ks—2 (3.19 a1 Jl
MS: —_—— y . = —_— = —_—
3 st1 S=p 5 1=2E 51, (3.20
while the area of the bolt is where we have made the approximatibs —log Z. This
8ab? yields the same value as in E@®.17) and so acts as a con-
-Abolt:ﬂ-_(ks_z)- (3.1  sistency check on our formula for entropy.
3 One can also calculate the energy or mass of the system,
Substituting these values into the formula for the action al  b?(s—1)(ks—2)[k(s+3)+4]
(2.10 we regain the expressidi.11). M= —=— o 5 =H.,,.
We are now in a position to use E@.12 for the entropy. B 9 EY4(s+1)
We find that (3.21)
27b? (ks—2)[k(s?+2s—1)— 4] Again, this agrees with the Hamiltonian calculation.
= . (3.17 Identical to the AdS case, there is a phase transition in the
3k (s+1)? ALAdS system(for k=1). This can be seen by considering

o _ ) . the behavior of the Taub-NUT-AdS and Taub-bolt-AdS so-
Similar to the action, the entropy will have three possible|ytions as a function of temperature. There are no restrictions

Zeros, on the temperature of the Taub-NUT-AdS metric, but as can
be seen from Fig. 2, the temperature of the Taub-bolt-AdS
(912
S :m and s :E (3.18 metric has a minimum value To=6+3v3/(4m)
- K S ' ~0.836516303738/.

Hence, if we havd <T,, the system will be in the Taub-
Fork=1, all the zeros satisfg< 2, while fork=2, the zeros NUT-AdS ground state. As we increa3eaboveT,, there
are ats<1. Hence in these cases the entropy is never negare two possible Taub-bolt metrics with different mass val-
tive, and is only zero at§=2,k=1) and 6=1,k=2), ues but the same temperature. The one with losvedll be
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thermodynamically unstable, since it has negative specifitt is interesting that the first two results are much closer
heat,dM/dT, while the one with larges has positive spe- together than they are to the=2 value.

cific heat, and hence will be stable. The lovgebranch has
positive action, and hence will be less likely than the Taub-
NUT-AdS background. The behavior of the largebranch
will depend on T. At temperatures below T,

=\7+2+/10/(47)~0.912570384968f, the action will be Formally at least, one can regard Euclidean conformal

positive and the Taub-NUT-AdS background will be fa- field theory on the squashesf as a twisted 2 1 theory on

vored. But forT greater thaT;, the negative action implies an S? of unit radius at a temperatuf®= 8~ 1. Thus, one

that the Taub-bolt-AdS solution is preferred, and hence thevould expect the entropy to be proportional@o? for small

Taub-NUT-AdS background will inevitably decay into it. 8. This dependence agrees with the expression that we have
We can compare the local temperatures at the phase trafor the gravitational entropy of the Taub-bolt-AdS metric. To

sition for the Schwarzschild-Adsk(=0) and the Taub-bolt-  go further and obtain the normalization and sub-leading de-

AdS (k=1 and the degenerate case 2) metrics. In order pendence o8 would require a knowledge of the conformal

to compare the temperatures in the different metrics, we warife|q theory that we do not have. The best that we can do is

to rescale them so that the radii of t# parts of their cajculate the determinants of conformally invariant free

. . . . . 1
boundaries at infinity are 1. Hence, rescaling ®&<S'  fio|ds on the squashe®® and compare with the results for
boundary of the Schwarzschild-AdS case corresponds @2y 5l and Schwarzschild-AdS space. Ghx St the deter-

muLpIying the temperatures given [i8] by the quantityb minants of conformally invariant free fields will be the same
= V—3/A used in that paper, which is l\g"'ce theused in - ¢nction of B, but this cannot be the case on the squas$ted
OELOpresent paper. In that case one g&fs’=v3/(2) and because fermions have zero modes at an infinite number of
Ty "=1/m. In the Taub-bolt-AdS case, the temperature al 5 es of the squashing, whereas a scalar field has a zero
the boundary with this rescaling is S'mp|¥(T4/E) L, aswe mode only at one value. Furthermore, Taub-bolt-AdS solu-
have defined it above. The corresponding temperatures fQfons withk odd do not have spin structures. Thus, if they are
the k=1 metric areT§ *=2+v3Ty °/2~0.9659F§°  dual to a conformal field theory, it should be one without

and T 1=\7+210/(4m) T~ °~0.91257%° respec- fermions.
tively. For k=2, the minimum and critical temperatures co-  Similar work on Taub-NUT-AdS and Taub-bolt-AdS met-

incide, and they aré-kzzz-rlézo/‘/?: ﬁs-l-lizll The results  fics fork=1 has been performed independeritly].
are summarized in the table below:

IV. CONFORMAL FIELD THEORY
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