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Hawking radiation by effective two-dimensional theories
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The recently proposed two-dimensional anomaly induced effective actions for the matter-gravity system are
critically reviewed. Their failure to reproduce correctly Hawking’s black hole radiation or the stability of
Minkowski space-time leads us to a modification of the relevant ‘‘quantum’’ matter stress energy tensor that
allows physically meaningful results to be extracted.
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I. INTRODUCTION

Hawking’s remarkable discovery@1# that black holes emit
quantum thermal radiation at a temperature inversely pro
tional to their mass~i.e., TH51/8pM in units where\5c
5G5kB51! triggered, in the mid 1970s, a large scale
vestigation of quantum effects in strong gravitational fie
~see for example@2#!. The framework used was quantu
field theory in curved space, a semiclassical approach
which only the matter fields are quantized, whereas gravit
still described classically according to general relativity.
dynamical evolution is driven by the expectation value of
renormalized energy-momentum tensor operator of the qu
tized matter fields, i.e.̂Tmn&, according to the semiclassica
Einstein equations

Gmn~gmn!58p^Tmn~gmn!&. ~1.1!

The left-hand side~LHS! is the Einstein tensor for the spac
time metricgmn , while the right-hand side RHS represen
the expectation value of the stress tensor of the matter fi
propagating on that space-time.

According to Wald’s axioms@3# ^Tmn& must be con-
served,¹m^Tn

m&50, and vanishing for Minkowski space
time, so that Eq.~1.1! can make sense. One further importa
thing to note is the presence in^Tmn& of a trace anomaly~see
for instance@4#!. For conformally invariant fields, the expec
tation value of the tracêTa

a& is nonzero, unlike its classica
counterpart, and independent of the state in which the ex
tation value is taken. It is completely expressed in terms
geometrical objects as

^Ta
a&5~2880p2!21$aCabgdCabgd

1b~RabRab2 1
3 R2!1chR1dR2%, ~1.2!

where the coefficients in front of each of the above geome
cal tensors are known and depend on the spin of the quan
field under consideration@2#. These features will be of fun
damental importance throughout the paper.
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Technically, one has to construct^Tmn(gmn)& for a suffi-
ciently large class of metrics~according, for example, to the
symmetry of the problem! and then solve Eq.~1.1! self-
consistently for the metric. Unfortunately, general expr
sions for^Tmn(gmn)& are not available, except when the d
gree of symmetry of the problem is sufficiently high, fo
instance conformally invariant fields in homogeneous a
isotropic space-times@5# where that the trace anomaly dete
mines completelŷ Tmn&. This is not the case, however, fo
black holes.^Tmn(gmn)& for a sufficiently arbitrary~even
spherically symmetric! black hole spacetime is not know
even approximately. So the evolution of the black hole a
Hawking emits~the so called backreaction! is an open prob-
lem. Much effort has been devoted to understand all the
tures of^Tmn& for the Schwarzschild black hole geometry
order to get some insight in the backreaction. Note, howe
that the Schwarzschild spacetime is not a solution to
~1.1! since the LHS vanishes, unlike the RHS.

Using analytical methods~which can be improved nu
merically! one can find reasonable approximations of^Tmn&
for various kinds of quantum fields propagating on t
Schwarzschild space-time~see for example@6#!. Within this
context, three quantum states might be proposed as a sui
candidate for the vacuum:

~i! the Boulware stateuB& @7#, defined by requiring norma
modes to be positive frequency with respect to the Killi
vector ]/]t, according to which the region exterior to th
horizon is static. The stress tensor in this zero tempera
state describes the vacuum polarization outside a static
whose radius is bigger than the Schwarzschild one~i.e.,
r .2M !. As r→`^BuTmnuB&→0. The Boulware state corre
sponds to our familiar concept of an empty state for la
radii. Symbolically, uB&→uM &, where uM & is Minkowski
vacuum. However,uB& is pathological at the horizon as
diverges when evaluated in a free falling frame.

~ii ! the Hartle-Hawking state@8#, defined by taking in-
coming modes to be positive frequency with respect to
canonical affine parameter on the future horizon~Kruskal
coordinate V! and outgoing modes to be positive frequen
with respect to the canonical affine parameter on the p
horizon ~Kruskal’s U!. ^HuTmnuH& is well behaved on both
future and past horizons. This state is not empty at infin
©1999 The American Physical Society31-1
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corresponding to a thermal distribution of quanta at
Hawking temperatureTH51/8pM , i.e.,

^HuTn
muH&;

1

2p2 E
0

` w2dw

e8pMw21 S 21 0 0 0

0 1/3 0 0

0 0 1/3 0

0 0 0 1/3

D .

~1.3!

That is, the stateuH& corresponds to a black hole in equilib
rium with an infinite reservoir of black body radiation.

~iii ! the Unruh stateuU& @9#, defined by taking modes tha
are incoming from past null infinity to be positive frequen
with respect to]/]t, while those that emanate from the pa
horizon to be positive frequency with respect toU. At infin-
ity this state corresponds to an outgoing flux of blackbo
radiation at the black hole temperatureTH

^UuTn
muU&;

L

4pr 2 S 21 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

D , ~1.4!

whereL is the luminosity factor of the hole.̂UuTmnuU& is
regular, in a free falling frame, on the future horizon, but n
on the past horizon. Asr→2M , the (r ,t) part reads

^UuTn
muU&;

L

4p S ~122M /r !21 2r 2

r 2~122M /r !22 2~122M /r !21D .

~1.5!

The stateuU& is supposed to best approximate the state of
quantum fields outside a collapsing star as its surface
proaches the horizon. This implies that the divergence on
past horizon is spurious, since this portion of the Schwa
child spacetime is not physical being covered by the colla
ing body.

Starting from these results attempts have been mad
solve at least perturbatively the backreaction for a black h
enclosed in a box@10#. The approach followed~Hartree-Fock
like! is to write the backreaction equations~1.1! as follows

Gmn~gmn
s 1dgmn!58p^HuTmn~gmn

s !uH&, ~1.6!

where gmn
s represents the Schwarzschild metric, and o

solves Eqs.~1.6! linearizing in the static spherically symme
ric perturbationdgmn . A similar approach is much mor
difficult to implement for an evaporating black hole. A
tempts have been made by modelling the time depen
geometry near the horizon~and also asymptotically! by a
Vaidya space-time and some insights in the evaporation
cess can be extracted@11#.

The main difficulty to attack the backreaction equatio
~1.1! is, as we already pointed out, the absence of an exp
expression of̂ Tmn& for a sufficiently general~for example
spherically symmetric! evaporating black hole geometry
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This fact can be circumvented in two space-time dimensio
For conformally invariant and minimally coupled scal
fields, one is able to obtain an expression for the tw
dimensional~2D! stress tensor̂Tab(gab)& for a generic 2D
metric gab @2#. This expression can be formally obtaine
starting from the well known Polyakov action@12#. Explicit
evaluation of̂ Tab& for a 2D Schwarzschild geometry in th
stateuB&, uH& anduU& gives results which are in good qual
tative agreement with the four-dimensional~4D! ^Tmn& de-
scribed earlier.

This nice agreement and the possibility of having a^Tab&
for an arbitrary 2D metric has triggered extensive investi
tion of 2D versions of the backreaction equations~1.1! in the
hope of learning something about physical~i.e., 4D! black
hole evaporation. In all such 2D models gravity~also called
dilaton gravity! is coupled to thê Tab& of quantized 2D
massless and minimal scalar fields by some sort of bac
action equations@13#. The physically more promising one
are those in which the 2D dilaton gravity is the spherica
symmetric 2D reduction of 4D Einstein’s general relativi
@14#, where the dilatonf is simply related to the radius o
the two spheresr by means of the simple relationr 5e2f.
The effective theory one is then considering is described
a 2D action of the form

S5Scl1SP , ~1.7!

where

Scl5
1

2p E d2xA2g~2!e22f@R~2!12~¹f!212e2f#

~1.8!

is the spherically symmetric reduction of 4D Einstein grav
and SP is the so called Polyakov action@12# and will be
given in Sec. II. This approach may be criticized, since wh
the first term,Scl , has a real 4D origin, the same cannot
said for SP . Coupling 4D spherically symmetric gener
relativity to 2D quantum fields appears to be rather naive
a more solid approach to the spherically symmetric case a
the quantum fields should come from dimensional reduct
of 4D. The idea is then to start from 4D minimally couple
scalar fields, perform the dimensional reduction und
spherical symmetry and evaluate an effective 2D action
this kind matter to replaceSP in Eq. ~1.7! @15,16#. This 2D
effective action, which we will callSaind , is constructed by
functionally integrating the trace anomaly~see also
@17,18,19#!. The hope is to obtain in this way a more realis
picture of black hole evaporation. Unfortunately, for th
Schwarzschild space-time, the^Tab& so deduced is not eve
in qualitative agreement with the 4D̂Tmn&: it predicts a
negativeHawking flux for an evaporating black hole@15,18#.
This fact shades serious doubts on the validity of this m
‘‘sophisticated’’ @as compared to Eq.~1.7!# 2D approach.
Puzzled with this problem, the authors of Ref.@15# proposed
to add Weyl invariant nonlocal terms to the above effect
actionSaind . The resultinĝ Tab& has the desired feature fo
a Schwarzschild black hole and correctly reproduces
Hawking flux at infinity. However, for Minkowski space
1-2
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HAWKING RADIATION BY EFFECTIVE TWO- . . . PHYSICAL REVIEW D 59 044031
time, this ^Tab& badly diverges and Minkowski is not a so
lution of the backreaction equations.

The situation appears rather frustrating. Trying to impro
the simple Polyakov action to obtain a more accurate
scription of physical black holes, one gets unacceptable
sults. However, the physical motivations for these impro
ments seem very reasonable. The possibility
implementingSaind also by means of Weyl invariant term
should, nevertheless, lead to a stress tensor that in our o
ion has to satisfy the following requirements:

~i! conservation equations~in 4D!;
~ii ! vanishing in the vacuum Minkowski spacetime;
~iii ! a 4D trace anomaly that, like in Eq.~1.2!, does not

depend on the state in which the expectation values
taken.

In this paper we shall propose a^Tmn& derived in part by
Saind that indeed satisfies the above requirements and is
in good qualitative agreement with the 4D results.

In order to make our analysis more clear, in Secs. II a
III, we will rederive with some detail all the known resul
about the Polyakov theory applied to the Schwarzsch
black hole. We think that this part is necessary in order
understand better the rest of paper. In Sec. IV we will th
apply the two-dimensional techniques just introduced
Saind and see how they lead to physically inconsistent res
~such a systematic derivation of these results is not prese
the literature!. In Sec. V we show why we think that th
effection action proposed in@15# does not improve much th
situation. In the last two Secs., VI and VII, we will propos
a possible solution to the problem based on the four dim
sional interpretation.

II. MINIMALLY COUPLED 2D FIELDS

The action describing a conformally and minimal
coupled scalar fieldf in 2D is

Sm
~2!52

1

4p E d2xA2g~2!~¹ f !2, ~2.1!

leading to the field equation

h f 50. ~2.2!

Quantization is achieved by expanding the field operatorf̂ in
normal modes. Being every 2D metric locally conforma
flat, one can introduce a coordinate system~not unique! in
which the metric takes the form

ds252e2rdx1dx2. ~2.3!

We shall call this system the$x6% conformal frame. In this
frame normalized positive frequency mode functions are
the form

~4pw!21/2e2 iwx1
, ~4pw!21/2e2 iwx2

. ~2.4!

Expansion off̂ in the basis~2.4! selects a conformal state
call it ux6&, in which the expectation value of the renorma
ized stress energy tensor operator for the scalar fields is@20#
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^x6uT66ux6&52
1

12p
~]6r]6r2]6

2 r!,

^x6uT12ux6&52
1

12p
]1]2r. ~2.5!

This stress tensor, as can be easily checked, is conse
namely

]7^x6uT66ux6&1]6^x6uT12ux6&

2G66
6 ^x6uT12ux6&50 ~2.6!

but it has, unlike its classical counterpart, developed a tr

^x6uTux6&5
R~2!

24p
~2.7!

whereT[Ta
a andR(2) ~hereafterR! is the Ricci scalar asso

ciated to the metricgab
(2) . This is the so called trace anoma

@4#, which signals the breaking of conformal invariance
the quantum level.

The choice of the normal modes~2.4! is by no means
unique. One should equally well had chosen another se
normal modes, obtained by solving the field equation~2.2! in
another conformal frame, say$x̃6% wherex̃65 x̃6(x6), i.e.,

~4pw̃!21/2e2 iw̃x̃1
, ~4pw̃!21/2e2 iw̃x̃2

. ~2.8!

The expansion of the field operatorf̂ in terms of these new
modes selects a conformal stateux̃6&. The expectation value
of the energy momentum tensor~EMT! in this state is@21#

^x̃6uT66ux̃6&5^x6uT66ux6&1D6~x6!,

^x̃6uT12ux̃6&5^x6uT12ux6&. ~2.9!

Here

D1~x1!5
1

24p S G9

G
2

1

2

G82

G2 D , ~2.10!

where

G~x1!5
dx1

dx̃1 ~2.11!

and a prime indicates derivation with respect tox1. Simi-
larly,

D2~x2!5
1

24p S F9

F
2

1

2

F82

F2 D ~2.12!

and

F~x2!5
dx2

dx̃2 . ~2.13!

Note that in Eqs.~2.9! the components of the stress tens
are still expressed, as in Eq.~2.5!, in the$x6% frame, but the
expectation value is taken in theux̃6& state. From Eqs.
1-3
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~2.10!, ~2.12! we can see that theD6 is proportional to the
Schwarzian derivative betweenx6 and x̃6. From the physi-
cal point of view,D6 give the expectation values ofT66 in
the stateux̃6& normal ordered with respect toux6&.

We see from Eqs.~2.9! that D6 represents conserve
massless~i.e., trace free! radiation and is the only differenc
in the expectation values of^Tab& in two distinct conformal
states, being the trace anomaly state independent@see Eq.
~2.7!#. This difference is nonlocal in the sense that it does
depend on the local geometry, but rather on the global d
nition ~through the normal modes! of the states. Therefore
D6 represent a nonlocal contribution to^Tab& that depends
on the state in which the expectation values are taken.

The expectation values of the EMT@Eqs. ~2.5!# can also
be easily obtained by integrating the conservation equat
¹a^Tb

a&50 once the trace anomaly Eq.~2.7! is given@22#. In
the generic conformal frame of Eq.~2.3! the only nonvanish-
ing Christoffel symbols are

G66
6 52]6r. ~2.14!

Inserting this and the second of Eqs.~2.5! in the conservation
equations~2.6!, straightforward integration leads to

^T66&52
1

12p
@]6r]6r2]6

2 r2t6~x6!#, ~2.15!

wheret6(x6) are two arbitrary integration functions of the
respective arguments. They signal the nonlocal characte
^T66& because of its state dependence. In view of the p
ceding discussion,t6(x6) are related to the Schwarzian d
rivatives D6(x6) of Eqs. ~2.9!. Note that, as the trac
anomaly does not depend on the quantum state, thet6(x6)
are necessary, in Eq.~2.15!, to specify in which quantum
state the expectation values are taken. Another way of se
the appearance of these terms is to consider that unde
transformationx6→ x̃6, which is at the same time a confo
mal and a coordinate transformation,^Tab& does not trans-
form as a tensor. Because of the breaking of the confor
invariance at the quantum level, the transformation of^Tab&
involves an anomalous contribution, namely the Schwarz
derivative.

An elegant way of recovering the previous results is
functionally integrate the trace anomaly Eq.~2.7! obtaining
Polyakov’s nonlocal effective action@12#

SP52
1

96p E d2xA2gR
1

h
R, ~2.16!

where h is the covariant Dalambertian. VaryingSP with
respect togab gives

^Tab&52
1

96p H 22¹a¹bS 1

h
RD1¹aS 1

h
RD¹bS 1

hRD
1gabF2R2

1

2
¹cS 1

h
RD¹cS 1

h
RD G J . ~2.17!

Choosing now a conformal frame Eq.~2.3!, where 1/hR5
22r, we recover the previous expressions for^Tab&,
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namely Eqs.~2.5!. The functionst6(x6) can always be
added tô Tab& because they are compatible with the cons
vation equations. Furthermore, as before being the tr
anomaly state independent,SP is the same for every quantum
state. So the inclusion oft6 is necessary to specify the stat
Within this respect, one should also note that the tra
anomaly determines only the Weyl noninvariant part of t
effective action, namelySP . The complete effective action
could in principle contain also Weyl invariant nonloc
terms. These, however, do not contribute to the trace^T& and
by requiring the conservation equations one concludes
their contribution tô T66& should be of the formt6(x6).

As a final remark, one should remind that the renorm
ization procedure which leads toSP in principle also allows
for the presence of a two dimensional cosmological cons
term @12#. The importance of such a term will be consider
in Sec. VI.

III. THE 2D SCHWARZSCHILD BLACK HOLE

We now apply the results of the previous section to
2D Schwarzschild black hole. In the Eddington-Finkelste
null frame$u,v%, the metric reads

ds252S 12
2M

r Ddudv, ~3.1!

where

v5t1r * , u5t2r * ~3.2!

and

r * 5E dr

122M /r
5r 12M lnU r

2M
21U. ~3.3!

M represents the mass of the black hole. Expansion of
field operatorf̂ in the modes

~4pw!21/2e2 iwv, ~4pw!21/2e2 iwu ~3.4!

defines a conformal state known as the Boulware vacu
uB&. Application of Eqs.~2.5! gives @23#

^BuTuuuB&5^BuTvvuB&5
1

24p S 2
M

r 3 1
3

2

M2

r 4 D ,

^BuTuvuB&52
1

24p S 12
2M

r D M

r 3 . ~3.5!

As one immediately sees, the modes in Eq.~3.4! reduce at
infinity to the usual Minkowski ingoing and outgoing plan
waves and therêBuTabuB&50. So the stateuB& reproduces
at infinity the familiar notion of an empty vacuum state
inferred from Minkowski field theory. One can think of thi
feature as the reason for selectinguB& among the various
candidates for a reasonable vacuum state of the theory.

If the behavior ofuB& at infinity seems quite reasonabl
the same cannot be said for the horizonr 52M . One expects
in fact that, if these regions belong to the physical space-t
1-4
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manifold,^Tab& should be finite there with respect to a loc
orthonormal frame. It can be shown that^Tab& is regular on
the future horizon if asr→2M @24#

u^Tvv&u,`,

~r 22M !21u^Tuv&u,`,

~r 22M !22u^Tuu&u,`. ~3.6!

The regularity on the past horizon is expressed by sim
inequalities withu and v interchanged. It is now clear tha
^BuTabuB& is not regular both on the future and the pa
horizons. This behavior is connected to the fact that the s
uB& is defined in terms of the (u,v) modes in Eq.~3.4! which
oscillate infinitely on the horizon. Physically, the stateuB& is
supposed to describe the vacuum polarization of the sp
time exterior to a static massive body whose radius is big
than 2M .

A coordinate system regular on the horizons is
Kruskal $U,V% one defined in terms of the$u,v% frame as
~for r .2M !

U524Me2u/4M, V54Mev/4M. ~3.7!

Expansion of the field operatorf̂ in the Kruskal modes

~4pw̃!21/2e2 iw̃V, ~4pw̃!21/2e2 iw̃U ~3.8!

defines the Hartle-Hawking stateuH&. Evaluating the
Schwarzian derivatives betweenU(V) andu(v), from Eqs.
~2.9!–~2.13!, we obtain

^HuTuuuH&5^HuTvvuH&5
1

768pM2 S 12
2M

r D 2

3S 11
4M

r
1

12M2

r 2 D ,

^HuTuvuH&52
1

24p S 12
2M

r D M

r 3 .

~3.9!

This state leads therefore to expectation values regula
both future and past horizons. The Kruskal modes, howe
do not reduce asymptotically to standard Minkowski plan
waves. As a consequence,^HuTabuH& does not vanish at in
finity. uH& is a thermal state at the Hawking temperature

TH5
1

8pM
~3.10!

and describes the thermal equilibrium of a black hole
closed in a box with its radiation.

The last example we shall present deals, unlike the pr
ous ones, with a dynamical situation, namely the format
of a black hole by gravitational collapse. It will be of fund
mental relevance for the subsequent discussion. Let us
sider, to limit the mathematical complexity, the simple ca
where the black hole is formed by the collapse of a sho
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wave atv5v0 @25# ~for the timelike case see for instanc
@26#!. In the ‘‘in’’ region v,v0 the space-time is flat

dsin
2 52duindv in , ~3.11!

where uin and v in are the usual retarded and advanc
Minkowski null coordinates

uin5t in2r in , v in5t1r in . ~3.12!

For v.v0 the ‘‘out’’ geometry describes a black hole o
massM

dsout
2 52~122M /r !dudv. ~3.13!

Matching the two geometries atv5v0 , we have

v5v in ,

u5uin24M lnS v02uin24M

4M D .

~3.14!

We choose the quantum state to correspond to Minkow
vacuum on past null infinity. Call this stateu in&. Therefore
^ inuTabu in&50 for v,v0 .

The evaluation of the expectation values forv.v0 re-
quires the Schwarzian derivative betweenu anduin . The net
result is, forv.v0 ,

^ inuTuuu in&5
1

24p S 2
M

r 3 1
3

2

M2

r 4 2
8M

~uin2v0!3

2
24M2

~uin2v0!4D ,

^ inuTvvu in&5
1

24p S 2
M

r 3 1
3

2

M2

r 4 D5^BuTvvuB&,

^ inuTuvu in&52
1

24p S 12
2M

r D M

r 3 5^BuTuvuB&.

~3.15!

In the limit uin→v024M ~i.e., the shell is close to crossin
the horizon! at infinity we find a net flux

^Tuu&→
1

768pM2 ~3.16!

representing the Hawking flux of evaporation at the corr
Hawking temperatureTH . In the above limit (uin→v0
24M ), all time dependence disappears

^ inuTuuu in&5
1

768pM2 S 12
2M

r D 2

3S 11
4M

r
1

12M2

r 2 D ~3.17!

and the stateu in& becomes what is called the Unruh sta
uU&, which is obtained by expanding the field operatorf̂ in
1-5
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R. BALBINOT AND A. FABBRI PHYSICAL REVIEW D 59 044031
modes obtained by using the coordinateU for the outgoing
modes and the coordinatev for the ingoing ones. Note tha
^UuTabuU& is regular on the future horizon@see Eqs.~3.6!#.
The singularity on the past horizon is completely spurio
since for the black hole formed by gravitational collap
there is no past horizon.

These three examples were given not only as an app
tion of the formalism, but rather to show how for th
Schwarzschild space-time, the two-dimensional^Tab& given
by the Polyakov action reproduces the basic qualitative
tures of the 4D^Tmn&. This qualitative agreement of th
simple two dimensional calculations with the more comp
cated four dimensional ones is quite amazing. It has stim
lated investigations of the backreaction problem, namely
evolution of the black hole as it emits Hawking radiation,
means of two dimensional models where the class
dilaton-gravity action is improved by adding the Polyak
term SP . This gives an effective action which describes t
effect of the quantized matter on the geometry, i.e., the ba
reaction. The same problem cannot even be attacked in
physical 4D context.

The coupling of the minimal 2D massless scalar fields
the spherically symmetric reduced Einstein-Hilbert action~or
similar! to evaluate the backreaction might sound too nai
One can cogently argue that in a ‘‘realistic’’ 2D matte
gravity theory also the matter sector should derive, throu
dimensional reduction, from a consistent 4D theory. Ho
ever, before embarking in backreaction calculations o
should assure that these more ‘‘sophisticated’’ 2D mod
produce â Tab& which for the Schwarzschild space-time is
least in qualitative agreement with the 4D^Tmn& as it was for
the naive Polyakov theory. Otherwise these ‘‘sophisticate
models suffer from physical inconsistency.

IV. MINIMALLY COUPLED 4D FIELDS

As we have seen, while the gravitational part of the act
has a four dimensional origin, the matter sector is two
mensional. It seems therefore natural, in the search fo
more physical model, to require that also the matter fie
should be definedab initio in 4D @15,16,17,18,19#. Restrict-
ing the attention to minimally coupled 4D scalar fields, o
has that the corresponding 4D action reads

SM
~4!52

1

~4p!2 E d4xA2g~4!~¹ f !2. ~4.1!

Under the assumption of spherical symmetry, the 4D me
can be written as

ds25gabdxadxb1e22fdV2, ~4.2!

wheregab(x
a), a,b51,2, is the two-dimensional metric an

dV2 the line element of the unit two-sphere. Performing t
dimensional reduction in Eq.~4.1! and using Eq.~4.2!, we
arrive at a 2D action for our scalar fields

SM
~2!52

1

4p E d2xA2g~2!e22f~¹ f !2, ~4.3!
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leading to the field equation

¹a~e22f¹a f !50. ~4.4!

Comparing the action~4.3! to Eq. ~2.1!, we see that the sca
lar fields, from a 2D point of view, are still conformal, bu
there is now a coupling between them and the dilatonf. This
makes the trace anomaly to differ from Eq.~2.7! by extraf
terms@15,16,17,18,19#

^T&5
1

24p
@R26~¹f!216hf#, ~4.5!

which is still state independent. The coefficient of the la
term in Eq.~4.5! is not unambiguously given in the literature
depending on the functional measure used for the sc
fields, i.e., genuine 2D versus spherically symmetric redu
4D. The last choice is the one which leads to our Eq.~4.5!.
In a generic conformal frame$x6%, we have

^T12&52
1

12p
~]1]2r13]1f]2f23]1]2f!.

~4.6!

The problem we have to face now is to construct the ot
components of̂Tab& for this improved theory. Following the
analysis of the previous section, one could integrate the
conservation equations¹a^Tb

a&50, obtaining~this is the ap-
proach of@18#!

^T66&52
1

12p
~]6r]6r2]6

2 r2t6!

2
1

4p S 1

]6
~2]6r]1f]2f!2

]6

]7
~]2f]1f! D

1
1

4p S 1

]7
~2]6r]1]2f!2]6

2 f D , ~4.7!

where we have used the shorthand notation

1

]6
5E dx6. ~4.8!

The functionst6(x6) in Eqs. ~4.7! are arbitrary integration
functions. Comparing Eqs.~4.7! with Eqs.~2.5!, we see the
appearance of dilaton dependent terms.
The other approach that we can follow, again as in the p
vious section, is to functionally integrate the trace anom
Eq. ~4.5! to obtain the 2D effective action~anomaly induced
effective action! @15,16,19#
1-6
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Saind52
1

2p E d2xA2gS 1

48
R

1

h
R

2
1

4
~¹f!2

1

h
R1

1

4
fRD . ~4.9!
q
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c
rm
ith
er
in

fo

b
.

04403
The first term in this action isSP of Eq. ~2.16!, the Polyakov
action. However, a new nonlocal term has now appeare
the effective action, the second one. The last term, on
contrary, is local. By varyingSaind with respect to the 2D
metric gab , we find
^Tab&5^Tab
P &1

1

8p H 2
gab

2 F ~¹f!2S 1

h
RD1¹cS 1

h
~¹f!2D¹cS 1

h
RD22~¹f!2G

1]af]bfS 1

h
RD1

1

2 F¹aS 1

h
~¹f!2D¹bS 1

h
RD1¹bS 1

h
~¹f!2D¹aS 1

h
RD G

2¹a¹bS 1

h
~¹f!2D J 2

1

8p
~gabhf2¹a¹bf!, ~4.10!
va-

d
D
cal,
tive
pre-

qs.

in
where ^Tab
P & was given Eqs.~2.17! and comes from the

Polyakov term inSaind . In the conformal frame$x6%, Eqs.
~4.10! read~see also@19#!

^T66&5^T66
P &1

1

2p S r]6f]6f1
1

2

]6

]7
~]1f]2f! D

2
1

4p
~22]6r]6f1]6

2 f! ~4.11!

and the trace is obviously Eq.~4.5!. Surprisingly, the two
expressions of̂ Tab& given, namely Eqs.~4.7! obtained by
integrating the 2D conservation equations¹a^Tb

a&50 and
Eqs. ~4.11! obtained by functional differentiation ofSaind ,
do not coincide~whatever the functionst6 might be!. We
shall see in Sec. VI that the procedure followed to get E
~4.7! is not justified. Therefore we shall discuss, here, o
the ^Tab& given by Eqs.~4.6! and ~4.11!.

Before starting the calculation of^Tab& for the Schwarzs-
child black hole, one has to implement Eq.~4.11! by a state
dependent term which selects the state in which the expe
tion values are taken. Naively, one could just add a te
t6(x6) as in the previous section, since it is compatible w
the 2D conservation equations satisfied by the Polyakov t
¹a^Tb

Pa&50. However more care is required. Extra terms
^T66& arise as a consequence of the ‘‘anomalous’’ trans
mation of ^Tab& under the transformationx6→ x̃6.

Let us identify the previous expression Eqs.~4.11! as ex-
pectation values ofTab in the stateux6&, i.e., ^x6uTabux6&.
Consider now, as we did before, theux̃6& state. We already
know how the first term in Eq.~4.11!, the Polyakov one,
transforms. It is also easy to verify that the terms obtained
variation offR in Saind ~like the trace! is state independent
We come now to the remaining term in Eq.~4.11!, the sec-
ond one; call itT66

(2) . We find

^x̃6uT22
~2! ux̃6&5^x6uT22

~2! ux6&1
1

4p S ]2f]2f ln~FG!

1
F8

F E dx1]1f]2f D ~4.12!
s.
y

ta-

m

r-

y

and similarly for T11
(2) by interchanging2 with 1 and F

with G. F and G are defined as in Eqs.~2.11! and ~2.13!.
Summing up, we have that for the theory described bySaind

^x̃6uT11ux̃6&5^x6uT11ux6&1
1

24p S G9

G
2

1

2

G82

G2 D
1

1

4p S ]1f]1f ln~FG!

1
G8

G E dx2]1f]2f D , ~4.13!

^x̃6uT22ux̃6&5^x6uT22ux6&1
1

24p S F9

F
2

1

2

F82

F2 D
1

1

4p S ]2f]2f ln~FG!

1
F8

F E dx1]1f]2f D , ~4.14!

^x̃6uT21ux̃6&5^x6uT21ux6&. ~4.15!

So going from one conformal state to another^Tab& does not
only acquire a term proportional to the Schwarzian deri
tive, but also the last two terms in Eqs.~4.13! and ~4.14!.
These do not represent, unliket6 , massless 2D radiation an
are much more complicated in this more ‘‘sophisticated’’ 2
model. Being these new state dependent terms nonlo
there is a serious danger that they destroy the nice qualita
agreement in a Schwarzschild background between the
diction of the Polyakov EMT̂ Tab

P & and the 4D^Tmn&. In
order to see if this is the case, we now calculate, using E
~4.13!, ~4.14! and~4.15!, the ^Tab& for the three states~uB&,
uH& and uU&! defined on the Schwarzschild space-time
Sec. III and compare the result we obtain to the 4D^Tmn&
described in the introduction.
1-7
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For the Boulware stateuB&, we have x̃65x65(u,v)
where (u,v) are Eddington-Finkelstein coordinates@see Eqs.
~3.2!#. Equations~4.13!, ~4.14! and ~4.15! give

^BuTuuuB&5^BuTvvuB&5
1

24p S 2
M

r 3 1
3

2

M2

r 4 D
1

1

16p S 12
2M

r D 2 1

r 2 lnS 12
2M

r D ,

^BuTuvuB&52
1

24p S 12
2M

r D M

r 3 1
1

8p S 12
2M

r D M

r 3 .

~4.16!

Note first that forM50 uB& becomes the usual Minkowsk
vacuumuM & and Eqs.~4.16! tell us that

^M uTabuM &50. ~4.17!

This result, as we shall see in the next section, is not
trivial as it appears. It implies that Minkowski space-time
a consistent solution of the semiclassical field equatio
Needless to say that any other choice in the coefficient of
hf term in the trace anomaly would lead to a nonvanish
^Tab& in Minkowski space. Coming back to the Schwarz
child case (MÞ0), we see that Eqs.~4.16! contain, in addi-
tion to the terms obtained by solelySP , a term proportional
to ( f 2/r 2)ln f, where f 5122M /r . This gives, in Kruskal
coordinates, a ‘‘weak’’ logarithmic divergence on the ho
zon @see eqs.~3.6!#. This divergence is however subleadin
when compared to the ‘‘strong’’ divergence;1/V2 or
;1/U2 coming from^BuTab

P uB&. Therefore, the physical fea
tures of the stateuB& remain unaltered; the ‘‘sophisticated
Saind introduces just extra vacuum polarization terms in
stress tensor in addition to those obtained bySP . uB& can
reasonably describe even in this theory the vacuum polar
tion of the space-time outside a static star. The qualita
agreement between̂BuTabuB& and the 4D̂ BuTmnuB& is still
satisfactory.

Let us now consider the stateuH& obtained by choosing
x̃65(U,V) @Kruskal coordinates, see Eqs.~3.7!# and x6

5(u,v). Here, as we shall see, things are not so ‘‘nice’’
before. In this state we get, from Eqs.~4.13!–~4.15!,

^HuTuuuH&5^HuTvvuH&5
1

768pM2 S 12
2M

r D 2

3S 11
4M

r
1

12M2

r 2 D1
1

16p F S 12
2M

r D 2 1

r 2

3S 2 ln r 2
r

2M D2
1

2M S 2
1

r
1

M

r 2 1
1

4M D G ,
^HuTuvuH&5^BuTuvuB&. ~4.18!

Inspection of Eqs.~4.18! reveals that theuu andvv compo-
nents of^HuTabuH& vanish like (r 22M )2 on the horizon.
Therefore^HuTabuH& is regular on both the future and pa
horizons r 52M , as expected. However its behavior asr
→` is quite surprising
04403
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^HuTuuuH&5^HuTvvuH&→
1

768pM2 ~126!, ~4.19!

where the first term on the RHS comes from^Tab
P &, whereas

the unexpected negative contribution~the 26! comes from
the second nonlocal term inSaind @see Eq.~4.9!# @15#. This
result looks rather unphysical, since it would suggest that
black hole is in thermal equilibrium with a thermal bath
negative energy. Some clarifications are necessary to un
stand the validity of Eqs.~4.18! and their asymptotic limit.
The lower boundr 0 of integration in ther integral present in
Eqs. ~4.13!, ~4.14! was taken to ber 052M . Any other
choice@some of them might eliminate the negativity of th
net flux in the asymptotic limit Eq.~4.19!# leads to a
^HuTabuH& singular on the horizon. For the stateuB& the
stress tensor does not depend on the choice ofr 0 . Further-
more, as said before, the coefficient in front of thehf term
in the trace anomaly in Eq.~4.5! has been source of debate
the literature. For the problem at hand, we stress that thehf
term affects only the local part of̂Tab& giving no extra
contribution to the Hawking radiation and, therefore, h
nothing to do with the puzzling result we have in Eq.~4.19!.
So we have firm evidence that the 2D stress tensor^Tab&
constructed fromSaind in the uH& state is in strong qualita
tive disagreement with the well established result of the
^HuTmnuH& which, we remind, describes a black hole in the
mal equilibrium with a positive energy bath of radiation
the temperatureTH .

One can indeed find an equilibrium stateux̃6& which is
regular on the horizons and unlikeuH& has a positive flux at
infinity @27#. Mathematically, this is done by fine tuning tw
constants. One is the lower boundr 0 in ther integration. The
second, saya, is related to the definition of the$x̃6% frame

x̃15aev/a, x̃252ae2u/a. ~4.20!

The choice of exponential relation is imposed by the need
having a constant Schwarzian derivative as required for e
librium. The outgoing flux can then be parametrized by
third constantb ~which depends onr 0 anda! as~in the limit
r→`!

^x̃6uTuuux̃6&5^x̃6uTvvux̃6&;
b

768pM2 . ~4.21!

According to the previous calculations, no regular soluti
for b51 exists. ForbÞ1 and positive, one can finda
(Þ4M ) and r 0 (Þ2M ) which allows regularity of
^ x̃6uTabux̃6& on the horizons. Needless to say that the st
so constructed has nothing to do withuH& and its physical
significance, if it exists, is completely obscure.

Complete disagreement between the prediction ofSaind
and the real 4D theory emerges also when considering
last example: the collapsing shell. Performing the calculat
along the lines of the previous section, we have

^ inuTabu in&50 ~4.22!

for v,v0 . When, instead,v.v0
1-8
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^ inuTuuu in&5
1

12p S f f 9

8
2

f 82

16
2

3

4

M2

r 4~u,v0!
1

M

2r 3~u,v0! D
1

1

16p

f 2

r 2 F ln
f

f ~u,v0!
2

f 2~u,v0!

r 2~u,v0!
1

2M

r 2~u,v0!

3S 2
1

r
1

M

r 2 1
1

r ~u,v0!
2

M

r 2~u,v0! D G ,
^ inuTvvu in&5^BuTvvuB&,

^ inuTuvu in&5^BuTuvuB&, ~4.23!

wheref 5122M /r andr (u,v0)5(v02uin)/2. In the first of
Eqs. ~4.23! the lower bound in thev integration has been
taken asv0 , the position of the shell, since this appears
the more natural choice. The stress tensor is regular on
future horizon. As the shell approaches the horizon, the
going flux at infinity looks like Eq.~4.19! ~as in @15#!

^ inuTuuu in&→
1

768pM2 ~126! ~4.24!

indicating that the black hole ‘‘antievaporates’’ absorbi
energy from the vacuum. On the other hand, asr→2M

^ inuTvvu in&→2
1

768pM2 , ~4.25!

i.e., one has the usual negative energy inflow, which ma
the interpretation even more puzzling.

Finally, it is worth noting that if we used thêTab& of eqs.
~4.7!, the one constructed by integrating the conservat
equations¹a^Tb

a&50, we would obtain~see@18#!, instead of
Eq. ~4.24! and in the same limit,

^Tuu&→
1

768pM2 ~123! ~4.26!

which unfortunately does not improve the situation.
Concluding this section, we arrive at the unsatisfact

situation in which the ‘‘sophisticated’’ 2D theory describe
by Saind produces â Tab& for the Schwarzschild black hol
which, apart from theuB& state, not only is in qualitative
disagreement with all that is known about the 4D^Tmn&, but,
04403
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even more seriously, it is physically unacceptable. Its use
backreaction models is therefore highly questionable.

V. AN IMPROVED THEORY

As already said, the conformal anomaly determines o
the Weyl noninvariant part of the effective action, name
Saind . The complete effective action should also contain
part invariant under Weyl transformations. The authors
Ref. @15# tried to calculate this part perturbatively, since u
like Saind it cannot be computed exactly. Using a simp
classical approximation to the heat kernel, they propose
add toSaind the following nonlocal Weyl invariant term o
the Coleman-Weinberg type

Swi5
1

8p E d2xA2gF2~¹f!2
1

h
R1fR

1[ 2hf1~¹f!2] S 12 ln
@2hf1~¹f!2#

m2 D G ,
~5.1!

wherem is an arbitrary renormalization scale. One sees t
the nonlocal term in Eq.~5.1! cancels exactly the secon
nonlocal term inSaind @see eq.~4.9!#, leaving as unique non
local term the Polyakov one

Simp5Saind1Swi5
1

8p E d2xA2gF2
1

12
R

1

h
R

1[ 2hf1~¹f!2] S 12 ln
@2hf1~¹f!2#

m2 D G .
~5.2!

At first sight, the advantage of this new formulation of th
2D theory is clear: the second nonlocal term inSaind , re-
sponsible for the appearance of the unphysical26 in the
Hawking flux @see eqs.~4.19! and ~4.24!# has disappeared
This is the main argument used in@15# to show the accor-
dance of this model with the 4D picture of Hawking blac
hole evaporation. The flux at infinity is now given by th
Polyakov term as in the naive theory of Secs. II and
leading to the expected value 1/768pM2. However, let us
analyze in some detail the components of^Tab

imp& in this
theory. We have
^Tab
imp&5^Tab

P &1
1

4p F2
gab

2 S 2hf1~¹f!22~¹f!2 ln
@2hf1~¹f!2#

m2

2¹cf¹c ln
@2hf1~¹f!2#

m2 D2]af]bf ln
@2hf1~¹f!2#

m2

2
1

2
]af]b ln

@2hf1~¹f!2#

m2 2
1

2
]bf]a ln

@2hf1~¹f!2#

m2 G . ~5.3!
1-9
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As usual, choosing a conformal frame$x6%, we find

^T66
imp&5^T66

P &2
1

4p H ]6f]6f ln
@2hf1~¹f!2#

m2

1]6f]6 ln
@2hf1~¹f!2#

m2 J ,

^T12
imp&5^T12&, ~5.4!

where the RHS of the second of Eqs.~5.4! is still given by
Eq. ~4.6!, sinceSwi does not alter, by construction, the tra
anomaly. In the above

@2hf1~¹f!2#54e22r~]1]2f2]1f]2f!. ~5.5!

From Eqs.~5.4! we see that being the term in the curl brac
ets local, the difference of̂Tab

imp& between two states is sim
ply the Schwarzian derivative as in Eqs.~2.9!–~2.13!. Insert-
ing the Schwarzschild solution in Eq.~5.4!, we find (f 51
22M /r )

^Tuu
imp&5^Tuu

P &1
1

16p F2
f 2

r 2 ln
f 8

m2r
1

f 2

r S f 9

f 8
2

1

r D G ,
^Tvv

imp&5^Tvv
P &1

1

16p F2
f 2

r 2 ln
f 8

m2r
1

f 2

r S f 9

f 8
2

1

r D G ,
~5.6!

where a prime indicates derivative with respect tor and
^Tuu

P &, ^Tvv
P & are given in Sec. III for the different states. A

first sight the above expression seems reasonable, just
vacuum polarization added to the Polyakov term. Let us c
sider, however, the casef 51, i.e., Minkowski space-time
One immediately sees in Eqs.~5.6! that the argument of the
ln vanishes and^Tab

imp& diverges. Therefore Minkowsk
vacuum is no longer a solution of the theory. The calculat
in the shell collapse case of^ inuTab

impu in& for v,v0 ~i.e., in
the flat portion of the spacetime inside the shell! becomes
meaningless in this context. This divergence is analogou
the infrared divergence of the Coleman-Weinberg poten
in the massless case.

However, in addition to the Minkowski problem, we wi
have dangerous divergences of^Tab

imp& for static spacetimes
in regions where the surface gravityf 8 vanishes. Nonex-
treme Reissner-Nordstro¨m spacetime is one such examp
The surface gravity vanishes forr 5Q2/M which lies be-
tween the inner and the outer horizon and there^Tab& di-
verges. A similar situation happens for th
Schwarzschild–de Sitter spacetime. All such features are
expected on physical ground and up to now there is no
evidence of such phenomena.

VI. THE FOUR DIMENSIONAL INTERPRETATION

For the reasons previously explained~Minkowski as
ground state!, we prefer to come back to the actionSaind and
try to understand whether it is possible or not to extr
physically sensible results. Let us consider the^Tab& in Eqs.
04403
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~4.11! and ~4.6! and calculate its covariant divergenc
¹a^Tb

a&. As expected on the basis of the difference betwe
Eqs.~4.7! and ~4.11!, the result is nonzero and reads, in t
conformal frame$x6%,

¹a^T6
a &5

N

2p
~2r]6f]1]2f1]6f]6f]7r

1]6f]7f]6r1]6f]1]2r!. ~6.1!

The RHS of these equations are proportional to the quan
part ~not to all! of the equation of motion off. We can in
fact rewrite them in a more elegant form

]7^T66&1]6^T12&2G66
6 ^T12&1]6f

dSaind

df
50.

~6.2!

Equation~6.2! can be written in covariant way as

¹a^Tb
a&1

1

A2g

dS

df
¹bf50. ~6.3!

This relation has a general validity and applies for all the
ries described by an actionS5S@gmn ,f#.1 It shows, for in-
stance, that the 2D conservation equations are automatic
satisfied by^Tab

P & for the simple reason that the Polyako
action SP does not depend onf. For the other theories we
are concerned with in this paper a similar result is no lon
valid.

The situation could seem therefore rather unsatisfact
we started from a 4D classical theory, reduced it to 2D
assuming spherical symmetry and we are now left with a
effective theory where the basic ingredient, the matter ene
momentum tensor, is not conserved. Equation~6.3! has how-
ever an elegant interpretation as seen from the 4D poin
view. Consider the 4D actionSaind

(4) which, by dimensional
reduction under spherical symmetry, givesSaind . We can
then define the 4D energy momentum tensor^Tmn

(4)& ~see also
@15#!

^Tmn
~4!&5

1

A2g~4!

dSaind
~4!

dg~4!
mn . ~6.4!

Under spherical symmetry, these equations translate into
following definitions (a,b51,2)

^Tab
~4!&5

^Tab
~2!&

4pe22f ,

^Tuu&5
^Tff&
sin2 u

5
1

8pA2g~2!

dSaind

df
,

~6.5!

1This, as W. Kummer pointed out to us, is a consequence
diffeomorphism invariance and holds in any dimension for an a
trary dilaton gravity theory.
1-10
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where we have explicitly inserted the superscripts(2) and (4)

for clarification. These allow us to reinterpret Eqs.~6.3! as
the conservation equations of the 4D stress tensor^Tmn

(4)&, i.e.,
Eqs.~6.3! can be rewritten simply as

¹m^Tn
~4!m&50. ~6.6!

From the explicit form ofSaind Eq. ~4.9! we obtain, in a
conformal frame$x6%,

8p^Tuu&52
1

2pA2g~2!
~2r]1]2f1]2r]1f

1]1r]2f1]1]2r!. ~6.7!

The above discussion and the 4D interpretation of the fai
of the 2D conservation equations can be repeated ste
step for the improved theory of Eq.~5.2!. In that case the
angular component of̂Tmn

(4)& is

8p^Tuu&52
1

4pA2g~2! F22]1]2fS 22r

1 ln
@4~]1]2f2]1f]2f!#

m2 D
2]1f$22]2r1]2 ln@4~]1]2f2]1f]2f!#%

2]2f$22]1r1]1 ln@4~]1]2f2]1f]2f!#%

12]1]2r2]1]2 ln@4~]1]2f2]1f]2f!#G .
~6.8!

Let us finally write in full the action of the theories we hav
examined. The first model~anomaly induced! is described by

S5Sg1Saind , ~6.9!

where

Sg5
1

2p E d2xA2ge22f@R12~¹f!212e2f22L#

~6.10!

~L is the 4D cosmological constant! and

Saind52
1

2p E d2xA2gS 1

48
R

1

h
R

2
1

4
~¹f!2

1

h
R1

1

4
fRD . ~6.11!

The resulting field equations are

2r¹a¹br 1gabS 12~¹r !222r hr 1
1

2
Lr 2D52p^Tab&,

r hr 2
1

2
r 2R2

Lr 2

2
524p2^Tuu&, ~6.12!
04403
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where we have usedr[e2f, ^Tab& is given in Eqs.~4.10!
and ^Tuu& in Eq. ~6.7!. The improved theory of Sec. V is
described by

S5Sg1Simp , ~6.13!

where

Simp5
1

8p E d2xA2gF2
1

12
R

1

h
R1@2hf1~¹f!2#

3S 12 ln
@2hf1~¹f!2#

m2 D G ~6.14!

and the field equations are the same@with obvious substitu-
tion of the source terms with Eqs.~5.3! and ~6.8!#. For the
improved theory Minkowski, as we have said, is not a se
consistent solution of the equations of motion. The LHS
Eqs. ~6.12! vanishes identically ~for L50! whereas
^Tuu

(4)imp& and ^Tab
imp& diverge, as can be seen explicitly i

Eqs.~6.8! and~5.3!. However, the improved theory has oth
interesting solutions.

The presence of a scale in the theory depletes, in this c
Minkowski space-time of its central role in favor of othe
geometries. Let us consider de Sitter spacetime, which
classical solution ofSg with LÞ0. One can then show, b
fine tuning the arbitrary renormalization scalem in Eq. ~5.2!
~i.e., m25 2

3 L! and the 2D cosmological constant~that can
always be added to the Polyakov termSP!, that for the de
Sitter spacetime

^dSuTab
impudS&50,

^dSuTuu
impudS&50, ~6.15!

where udS& means de Sitter invariant state, obtained
choosing$x̃6% as Gibbons-Hawking null coordinates@28#.
The de Sitter spacetime does not acquire, in the impro
theory of Eq.~6.13!, quantum corrections and is therefore
self-consistent solution of the semiclassical equations.
spite this fact, we feel rather uneasy with the unphysi
results that this improved theory predicts for Minkows
space. The same can be said for Hawking black hole eva
ration as described bySaind . In the next section we shal
outline how, in our opinion, an effective 2D theory whic
can positively deal with black hole evaporation should lo
like.

VII. THE PHYSICAL STRESS TENSOR: A PROPOSAL

The satisfactory interpretation of̂Tab
(2)& and dS/df as

part of ^Tmn
(4)& along with the conservation equations~6.6!

encourage us to adopt a 4D point of view. An ‘‘acceptabl
2D effective action deduced from the trace anomaly (Saind)
and additional Weyl invariant terms should reproduce
least the qualitative features of^Tmn

(4)& for the Schwarzschild
space time. We stress that the comparison can only be q
tative, since the exact analytic expression can of course
be met by a simple 2D theory. In particular, the 4D anom
lous tracê Ta

(4)a& is a local expression involvingR(4), Rmn
(4) ,
1-11
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Cabgd @see Eq.~1.2!#: a much more complicated expressio
than our 2D analogous Eq.~4.5!. Nevertheless, we requir
that some characteristic features of^Tmn

(4)& should be repro-
duced by an ‘‘acceptable’’ 2D theory, namely, in the spirit
the Wald’s axioms,

~i! conservation equations¹m^Tn
(4)m&50;

~ii ! vanishing of^Tmn
(4)& for Minkowski vacuum;

~iii ! locality ~by this we mean state independence! of the
4D trace^Ta

(4)a&.
Using the definitions given in Eqs.~6.5!, we have

^T~4!&5e2fS ^T~2!&
4p

12^Tuu& D . ~7.1!

Since the 2D trace anomalŷT(2)& given by Eq. ~4.5! is
already local, one has to require, in order to satisfy~iii !, that
^Tuu& has to enjoy the same property. Let us consider
^Tuu& given by Saind , namely Eq.~6.7!. Under the scaling
$x6%→$x̃6%, it transforms in an ‘‘anomalous’’ way, i.e.,

^x̃6uTuuux̃6&5^x6uTuuux6&2
e22r

8p2 S ~]1]2f!ln FG

1
1

2
]2f

G8

G
1

1

2
]1f

F8

F D . ~7.2!

Because of the curl brackets term,^Tuu& and, hence,̂Ta
(4)a&

is state dependent, contrary to our assumption~iii !. Note that
^Tuu

imp& of Eq. ~6.8! is state independent, however we do n
consider it as a good starting point since it diverges
Minkowski spacetime, making the improved theory of S
V incompatible with the requirement~ii !.

Our task will be to find a modified version of the stre
tensor, call it ^Tmn

(4)new&, which does indeed fulfill all our
three requirements. This tensor should in principle derive
an effective actionSnew which is obtained implementing, a
in Sec. V,Saind with Weyl invariant terms. We are not abl
to constructSnew explicitly, but we shall give a sketch o
how the new tensor should look like.

Let us select a conformal frame$x65u,v% of reference
which we will specify later. In an arbitrary conformal fram
$x̃65U,V%, related to the previous one by the functionsF
andG as in Eqs.~2.11!, ~2.13!, we have, in the stateux̃6&,

^x̃6uTuuux̃6&52
e22r̃

4p2 S r̃]U]Vf1
1

2
]Uf]Vr̃

1
1

2
]Vf]Ur̃1

1

2
]V]Ur̃ D . ~7.3!

Now define

^x̃6uTuu
newux̃6&5^x̃6uTuuux̃6&1

e22r̃

4p2 S ~]U]Vf!
1

2
ln FG

1
1

4
~]Vf!

Ḟ

F
1

1

4
~]Uf!

Ġ

G
D , ~7.4!
04403
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where Ḟ[dF/dU and Ġ[dG/dV. Using Eq.~7.2! and r̃
5r1 1

2 ln FG, one can show that

^x̃6uTuu
newux̃6&52

e22r

4p2 S ~]u]vf!r1
1

2
]uf]vr

1
1

2
]vf]ur1

1

2
]u]vr D5^x6uTuuux6&.

~7.5!

This means that in every state the expectation value
^Tuu

new& is given by ^x6uTuuux6&. So we have achieved th
state independence: under the conformal transforma
$x6%→$x̃6%^Tuu& remains unchanged as required by~iii !.
The reference stateux6& is chosen, in view of the require
ment ~ii !, such that$x6% are Minkowskian coordinates a
infinity. For the Schwarzschild spacetime this implies th
ux6&5uB&.

Having defined̂ Tuu
new& which allows ^Ta

(4)a& to be state
independent, in order to enforce the conservation equat
¹m^Tn

(4)m&50, as required by~i!, we have to redefinêT66&
as well. In the$x̃65U,V% frame, we then have

^ x̃6uTUU
newux̃6&5

1

2p F S ~]Uf!2r̃1
1

2
]UE dV]Uf]Vf D

2
1

4p
S ~]Uf!2 ln FG1ḞE dV]Vf]Uf D

2
1

4p
~22]Ur̃]Uf1]U

2 f!G
1^x̃6uTUU

P ux̃6& ~7.6!

where the last term is given in detail in Sec. II. Similarly,

^x̃6uTVV
newux̃6&5

1

2p F S ~]Vf!2r̃1
1

2
]VE dU]Uf]Vf D

2
1

4p
S ~]Vf!2 ln FG1ĠE dU]Vf]Uf D

2
1

4p
~22]Vr̃]Vf1]V

2f!G
1^ x̃6uTVV

P ux̃6&. ~7.7!

Note that under the conformal transformation$U,V%→$x6

5u,v% the terms under curl brackets transform like a tens
whereas the Polyakov term picks up the usual Schwarz
derivative. Summarizing, from Eq.~7.6! and ~7.7! we have
1-12
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^x̃6uTuu
newux̃6&5

1

2p S ~]uf!2r1
1

2
]uE dv]uf]vf D

2
1

4p
~22]ur]uf1]u

2f!

1
1

12p
~]u

2r2]ur]ur!1
1

24p S F9

F
2

1

2

F82

F2 D
5^x6uTuuux6&1

1

24p S F9

F
2

1

2

F82

F2 D
~7.8!

and similarly foru interchanged withv andF with G. The
2D trace part remains unchanged

^x̃6uTuv
newux̃6&5^x̃6uTuvux̃6&. ~7.9!

One can check that̂Tmn
new& is conserved, has a trace whic

does not depend on the state and vanishes for Minkow
space-time, defined by r50 and e2f5(v2u)/2:
^M uTmn

newuM &50.
We should remind that our̂Tmn

new& is defined modulo ad-
ditional local terms which come from local Weyl invaria
contributions that can be added to the 2D effective acti
These extra terms have to vanish in Minkowski space
being local do not contribute to the Hawking radiation.

Let us now see how our procedure works for t
Schwarzschild black hole. Being the reference vacuum
Boulware one,̂ BuTmn

newuB& has the same form as given
Sec. IV, in particular~omitting the superscript ‘‘new’’!

^BuTuuuB&5
1

12p S f f 9

8
2

f 82

16D1
1

16p

f 2

r 2 ln f ,

^BuTvvuB&5
1

12p S f f 9

8
2

f 82

16D1
1

16p

f 2

r 2 ln f ,

^BuTuvuB&5
1

96p
f f 91

1

16p

f f 8

r
, ~7.10!

where f 5122M /r . As expected, these expressions van
for M50, confirming that Minkowski space-time is a sol
tion of the backreaction equations. In the Hartle-Hawki
state, we have

^HuTuuuH&~5^HuTvvuH&!5^BuTuuuB&1
1

768pM2 .

~7.11!

As r→` the first term on the RHS of the above equati
vanishes, confirming thatuH& asymptotically describes radia
tion in thermal equilibrium at the correct Hawking temper
ture TH . Note that we have a logarithmic divergence on t
horizon~in Kruskal coordinates!. This is however integrable
and does not affect the regularity of the semiclassical ge
etry.
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Finally, for the dynamical situation of a black hole forme
by the gravitational collapse of a shock-wave atv5v0 we
have, from Eq.~7.8!, ~for v.v0!

^ inuTuuu in&5
1

12p S f f 9

8
2

f 82

16
2

3

4

M2

r 4~u,v0!
1

M

2r 3~u,v0! D
1

1

16p S f 2

r 2 ln f 2
f 2~u,v0!

r 2~u,v0! D ,

^ inuTvvu in&5^BuTvvuB&. ~7.12!

As the shell radius approaches the horizonu in&→uU& and we
have

^UuTuuuU&5
1

768pM2 S 12
2M

r D 2S 11
4M

r
1

12M2

r 2 D
~7.13!

leading to the expected flux at infinity~in the limit u→1`!

^Tuu&→
1

768pM2 . ~7.14!

VIII. CONCLUSIONS

The purpose of this paper was to extend the analysis
quantum black holes from the framework of Polyakov theo
to more appealing 2D theories (Saind ,Simp) whose link to
the physical four dimensions appears more direct. Des
the appeal of these ‘‘sophisticated theories,’’ their pred
tions turned out to be unacceptable: negative Hawking fl
(Saind)—nonzero~diverging! renormalized stress tensor fo
Minkowski space-time (Simp).

Given these astonishing results, we have attempted
modify the matter stress energy tensor by imposing th
requirements on it. The first two, conservation equations
vanishing in Minkowski space, are quite obvious; the th
~state independence of the 4D trace! escapes from the stric
two-dimensional point of view of all these models. Howev
as the discussion of the conservation equations has cle
shown, a correct handling and understanding of these th
ries can only be four dimensional. Within our approach s
sible results emerge that can be positively compared to
4D ones. We are well aware that our method may app
rather rough being not based on an elegant effective ac
like Saind and Simp . Unfortunately, as they standSaind and
Simp cannot be the final answer.

One should however not exclude the possibility that th
is no way of extracting sensible results from these hyb
lower dimensional theories and the only true improvemen
1-13
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the Polyakov theory for the description of quantum bla
holes has to be genuinely 4D.

Note added.Following our analysis Lombardoet al. @29#
have recently argued that an expansion of the Weyl invar
part of the effective action in powers of the operatorP
5hf2(¹f)2 might solve the problems that the ‘‘improve
theory’’ of our Sec. V has when dealing with Minkowsk
space-time.
d
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