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Hawking radiation by effective two-dimensional theories
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The recently proposed two-dimensional anomaly induced effective actions for the matter-gravity system are
critically reviewed. Their failure to reproduce correctly Hawking's black hole radiation or the stability of
Minkowski space-time leads us to a modification of the relevant “quantum” matter stress energy tensor that
allows physically meaningful results to be extracted.
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I. INTRODUCTION Technically, one has to construct ,,(g,,)) for a suffi-
ciently large class of metricgccording, for example, to the
Hawking's remarkable discovefi] that black holes emit symmetry of the problejnand then solve Eq(1.1) self-
quantum thermal radiation at a temperature inversely proporconsistently for the metric. Unfortunately, general expres-
tional to their masgi.e., T, =1/87M in units wherefi=c  sions for(T,,(g,,)) are not available, except when the de-
=G=kg=1) triggered, in the mid 1970s, a large scale in-gree of symmetry of the problem is sufficiently high, for
vestigation of quantum effects in strong gravitational fieldsjnstance conformally invariant fields in homogeneous and
(see for exampld2]). The framework used was quantum jsotropic space-time] where that the trace anomaly deter-
field theory in curved space, a semiclassical approach i ines completely(T,,). This is not the case, however, for
which only the matter fields are quantized, whereas gravity ig, .\ holes.(TMV(gZV» for a sufficiently arbitrary(even

zt":] drtra]iscr:bevd |C|§S§'?ag¥ivacncgrdt'ﬂg tc)>( ger;etrialnrsla}tlvnyf. tlrgsspherically symmetricblack hole spacetime is not known
ynamical evolution 1S en by he expectation value oT th€,, o, approximately. So the evolution of the black hole as it
renormalized energy-momentum tensor operator of the qua

tized matter fields, i.&(T,,), according to the semiclassical ?;?T]Wl?\'/lnfcﬁ rg;z(rtthﬁaiob?glneget:/?)(;zrde?oct:ﬁﬁe?gt;ﬁggllpiﬁg_f ca-
Einstein equations '

tures of(T,,) for the Schwarzschild black hole geometry in
Gl 9,,) =8m(T ,,(9,))- (1.1)  order to get some insight in the backreaction. Note, however,
that the Schwarzschild spacetime is not a solution to Eq.
The left-hand sid€LHS) is the Einstein tensor for the space- (1.1) since the LHS vanishes, unlike the RHS.
time metricgw, while the right—hand side RHS represents Using ana|ytica| methods$which can be impro\/ed nu-
the expectation value of the stress tensor of the matter fieldserically) one can find reasonable approximations{ f,,)
propagating on that space-time. for various kinds of quantum fields propagating on the
According to Wald's axiomg3] (T,,) must be con-  gchwarzschild space-timee for examplé6]). Within this

served,V ,(T})=0, and vanishing for Minkowski space- context, three quantum states might be proposed as a suitable
time, so that Eq(1.1) can make sense. One further important .5ndidate for the vacuum:

thing to note is the presence(if,,) of a trace anomalysee
for instancd 4]). For conformally invariant fields, the expec- modes to be positive frequency with respect to the Killing

. o o .
tation value of the trac€T¢) is nonzero, unlike its classical vector a/dt, according to which the region exterior to the

counterpart, and independent of the state in which the expegiorizon s static. The stress tensor in this zero temperature
tation value is taken. It is completely expressed in terms o

. . tate describes the vacuum polarization outside a static star
geometrical objects as whose radius is bigger than the Schwarzschild ¢ie.,
o 2 -1 aBys r>2M). Asr—=(B|T,,|B)—0. The Boulware state corre-
(Te)=(2880m%) " HaCag,,C** sponds to our familiar concept of an empty state for large
+b(RaﬁR“ﬁ—%R2)+cDR+dR2}, (1.2  radii. Symbolically,|B)—|M), where|M) is Minkowski
vacuum. However|B) is pathological at the horizon as it
where the coefficients in front of each of the above geometridiverges when evaluated in a free falling frame.
cal tensors are known and depend on the spin of the quantum (ii) the Hartle-Hawking stat¢8], defined by taking in-
field under consideratiof2]. These features will be of fun- coming modes to be positive frequency with respect to the
damental importance throughout the paper. canonical affine parameter on the future horizéruskal
coordinate V and outgoing modes to be positive frequency
with respect to the canonical affine parameter on the past
*Email address: balbinot@bologna.infn.it horizon (Kruskal's U. (H|T,,|H) is well behaved on both
"Email address: afabbril@leland.stanford.edu future and past horizons. This state is not empty at infinity,

(i) the Boulware statgB) [7], defined by requiring normal
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corresponding to a thermal distribution of quanta at theThis fact can be circumvented in two space-time dimensions.

Hawking temperatur@=1/87M, i.e., For conformally invariant and minimally coupled scalar
fields, one is able to obtain an expression for the two-

-1 0 0 O dimensional(2D) stress tensofT.,(Jap)) for a generic 2D
<« wadw 0O 1/3 0 0 metric g,p [2]. This expression can be formally obtained

(H|Tﬁ|H>~%f 1l 0o o 13 0 starting from the well known Polyakov actigfi2]. Explicit
0 evaluation of( T,,,) for a 2D Schwarzschild geometry in the
0O 0 0 1 state|B), |H) and|U) gives results which are in good quali-
tative agreement with the four-dimensior@D) (T ,,) de-
(1.3 scribed earlier.
This nice agreement and the possibility of havingTa,)
for an arbitrary 2D metric has triggered extensive investiga-
tion of 2D versions of the backreaction equatiébdl) in the
hope of learning something about physi¢aé., 4D black
hole evaporation. In all such 2D models graviafso called
dilaton gravity is coupled to the(T,,) of quantized 2D
massless and minimal scalar fields by some sort of backre-
Yaction equation$13]. The physically more promising ones
are those in which the 2D dilaton gravity is the spherically
110 0 symmetric 2D reduction of 4D Einstein’'s general relativity
[14], where the dilatonp is simply related to the radius of

That is, the statéH) corresponds to a black hole in equilib-
rium with an infinite reservoir of black body radiation.

(iii) the Unruh stat¢U) [9], defined by taking modes that
are incoming from past null infinity to be positive frequency
with respect tad/dt, while those that emanate from the past
horizon to be positive frequency with respectito At infin-
ity this state corresponds to an outgoing flux of blackbod
radiation at the black hole temperaturg

UIT#IU 100 14 the two spheres by means of the simple relatian=e~¢.
(UTyl >~47Tr? O 0 o0 ol (14 The effective theory one is then considering is described by
a 2D action of the form
0 0 0 O
whereL is the luminosity factor of the holgU|T,,|U) is S=Sait Se, (€7
regular, in a free falling frame, on the future horizon, but notWhere
on the past horizon. As—2M, the (r,t) part reads
<U|T/L|U> L (1—2M/r)71 —|’2 SC|:2if d2X /_g(Z)e—2¢[R(2)+2(v¢)2+2e2¢]
v 4w\ r2(1—-2M/r)"2 —(1—-2M/r)" ) 7 1.9

(1.5 is the spherically symmetric reduction of 4D Einstein gravity

The statdU) is supposed to best approximate the state of thénd Sp is the so called Polyakov actioii2] and will be
quantum fields outside a collapsing star as its surface agiven in Sec. Il. This approach may be criticized, since while
proaches the horizon. This implies that the divergence on th#he first term,S;;, has a real 4D origin, the same cannot be
past horizon is spurious, since this portion of the Schwarzssaid for Sp. Coupling 4D spherically symmetric general
child spacetime is not physical being covered by the collapsrelativity to 2D quantum fields appears to be rather naive. In
ing body. a more solid approach to the spherically symmetric case also,
Starting from these results attempts have been made fde quantum fields should come from dimensional reduction
solve at least perturbatively the backreaction for a black hol@®f 4D. The idea is then to start from 4D minimally coupled
enclosed in a bokL0]. The approach followe(Hartree-Fock  scalar fields, perform the dimensional reduction under

like) is to write the backreaction equatiof1) as follows ~ spherical symmetry and evaluate an effective 2D action for
this kind matter to replac& in Eq. (1.7) [15,16. This 2D

G095, 1 89,,)=87(H|T,,.(g;,)H), (1.6 effective action, which we will calB,jnq, is constructed by
functionally integrating the trace anomalysee also
where gfw represents the Schwarzschild metric, and ond17,18,19). The hope is to obtain in this way a more realistic
solves Eqs(1.6) linearizing in the static spherically symmet- picture of black hole evaporation. Unfortunately, for the
ric perturbationég,,. A similar approach is much more Schwarzschild space-time, t&,,) so deduced is not even
difficult to implement for an evaporating black hole. At- in qualitative agreement with the 40T ,,): it predicts a
tempts have been made by modelling the time dependemtegativeHawking flux for an evaporating black hdl&5,18.
geometry near the horizofand also asymptoticallyby a  This fact shades serious doubts on the validity of this more
Vaidya space-time and some insights in the evaporation prd‘sophisticated” [as compared to Eql.7)] 2D approach.
cess can be extractédl]. Puzzled with this problem, the authors of Ref5] proposed
The main difficulty to attack the backreaction equationsto add Weyl invariant nonlocal terms to the above effective
(1.1) is, as we already pointed out, the absence of an expliciaiction S,;,4. The resultingT,;,) has the desired feature for
expression ofT,,) for a sufficiently generalfor example a Schwarzschild black hole and correctly reproduces the
spherically symmetric evaporating black hole geometry. Hawking flux at infinity. However, for Minkowski space-
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time, this(T,,) badly diverges and Minkowski is not a so- 1
lution of the backreaction equations. (X Tes|x5)=— E(f?ipﬂip—ﬁip),
The situation appears rather frustrating. Trying to improve
the simple Polyakov action to obtain a more accurate de- 1
scription of physical black holes, one gets unacceptable re- (XF|T, _|x")=— Fa+a,p. (2.5
sults. However, the physical motivations for these improve- ™
ments seem very reasonable. The possibility Ofryig gress tensor, as can be easily checked, is conserved,
implementingS,;,q also by means of Weyl invariant terms namely
should, nevertheless, lead to a stress tensor that in our opin-

ion has to satisfy the following requirements: (X T | XY+ 0 (X T, _|XT)
(i) conservation equatiorn@ 4D); . . N
(i) vanishing in the vacuum Minkowski spacetime; —TZ (xF|T_[x*)=0 (2.9

(iii) a 4D trace anomaly that, like in E¢L.2), does not
depend on the state in which the expectation values ar
taken. (2)

In this paper we shall propose(@,,,) derived in part by (XF|TIX")= 75— (2.7
S.ing that indeed satisfies the above requirements and is also 24m
in good qualitative agreement with the 4D results.

In order to make our analysis more clear, in Secs. Il an
lll, we will rederive with some detail all the known results
about the Polyakov theory applied to the Schwarzschil
black hole. We think that this part is necessary in order tothe guantum level.

understand better the rest of paper. In Sec. IV we will thenuni-(l;| EZ C(gﬁie?esho(jutlzeeggglrl]yalwrgl??gi.dghijsgz Qr?otmhzfgset of
ly th -di ional hni ' i '
apply_the two-dimensional techniques just introduced to ormal modes, obtained by solving the field equat@.) in

S.ing @nd see how they lead to physically inconsistent resultd . ON R
(such a systematic derivation of these results is not present f"other conformal frame, sdy~} wherex™=%"(x7), i.e.,
the literature. In Sec. V we show why we think that the
effection action proposed ir15] does not improve much the
situation. In the last two Secs., VI and VII, we will propose . . A

a possible solution to the problem based on the foﬁr dloimenThe expansion of the field operiitbnn terms of th_ese new
sional interpretation. modes selects a conformal stéXe ). The expectation value

of the energy momentum tens@MT) in this state i§21]

Qut it has, unlike its classical counterpart, developed a trace

CYvhereTETg andR® (hereaftemR) is the Ricci scalar asso-
ciated to the metrig{3). This is the so called trace anomaly
O[4], which signals the breaking of conformal invariance at

(AmW) Y2 WX (4qy)~ Vo 1WX (2.9

IIl. MINIMALLY COUPLED 2D FIELDS (3| T o [X5) = (X T o |XT) + AL (XF),
The action describing a conformally and minimally o TN T +
coupled scalar field in 2D is (AT )= (T ). 29
1 Here
Sﬁ:‘ﬂj d’xy—g@(Vf)?, (2.) 1 /6" 1G2
A(xXN =5 =—-5—==|, (2.10
) ) i 247\ G 2 G
leading to the field equation
where
Of=0. (2.2
+

Quantization is achieved by expanding the field operﬁﬁor G(x")= axt (211

normal modes. Being every 2D metric locally conformally
flat, one can introduce a coordinate systémt unique in  and a prime indicates derivation with respectxto. Simi-

which the metric takes the form larly,
ds?=—e?’dx dx . (2.3 1 (F" 1F'?
A—(X):E<F_§?) (42
We shall call this system thix™} conformal frame. In this
frame normalized positive frequency mode functions are ofpg
the form
o dx”
(477W)—1/2e—iwx+' (47TW)—1/2e—iwx’. (2.4) F(x7)= - (2.13

Expansion off in the basis(2.4) selects a conformal state, Note that in Egs(2.9) the components of the stress tensor
call it [x™), in which the expectation value of the renormal- are still expressed, as in EQ.5), in the{x™} frame, but the
ized stress energy tensor operator for the scalar fielf0ls  expectation value is taken in th&") state. From Egs.
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(2.10, (2.12 we can see that th&a.. is proportional to the
Schwarzian derivative betweedt andX*. From the physi-
cal point of view,A .. give the expectation values ®f. . in
the statgX..) normal ordered with respect t&. ).

We see from EQgs(2.9 that A. represents conserved
masslessi.e., trace fregradiation and is the only difference

in the expectation values &fT,;,) in two distinct conformal
states, being the trace anomaly state indepengsmd Eq.

PHYSICAL REVIEW D 59 044031

namely Egs.(2.5. The functionst.(x*) can always be
added to(T,;,) because they are compatible with the conser-
vation equations. Furthermore, as before being the trace
anomaly state independef; is the same for every quantum
state. So the inclusion @f. is necessary to specify the state.
Within this respect, one should also note that the trace
anomaly determines only the Weyl noninvariant part of the
effective action, namelys, . The complete effective action

(2.7)]. This difference is nonlocal in the sense that it does notould in principle contain also Weyl invariant nonlocal
depend on the local geometry, but rather on the global defiterms. These, however, do not contribute to the t{dgeand
nition (through the normal modg®f the states. Therefore by requiring the conservation equations one concludes that

A . represent a nonlocal contribution ¢@,,) that depends

on the state in which the expectation values are taken.
The expectation values of the EMEgs. (2.5] can also

their contribution to(T-...) should be of the fornt.. (x*).
As a final remark, one should remind that the renormal-
ization procedure which leads & in principle also allows

be easily obtained by integrating the conservation equationfor the presence of a two dimensional cosmological constant

V«(TE)=0 once the trace anomaly E@Q.7) is given[22]. In

the generic conformal frame of E(R.3) the only nonvanish-

ing Christoffel symbols are

T, =2d.p. (2.14

Inserting this and the second of E¢®.5) in the conservation

equationg2.6), straightforward integration leads to

1
(Tes)=— E[‘%Patﬂ’_(ﬁp_tt(xi”- (2.19

term[12]. The importance of such a term will be considered
in Sec. VI.

Ill. THE 2D SCHWARZSCHILD BLACK HOLE

We now apply the results of the previous section to the
2D Schwarzschild black hole. In the Eddington-Finkelstein
null frame{u,v}, the metric reads

wheret.. (x™) are two arbitrary integration functions of their where
respective arguments. They signal the nonlocal character of

(T..) because of its state dependence. In view of the pre-
ceding discussiort,.. (x*) are related to the Schwarzian de-

rivatives A . (x*) of Egs. (2.9. Note that, as the trace and

anomaly does not depend on the quantum statet_tfve™)

are necessary, in Eq2.15, to specify in which quantum
state the expectation values are taken. Another way of seeing
the appearance of these terms is to consider that under t
transformatiork™ —X=, which is at the same time a confor-

2M
dsz=—<1—7)dudv, (3.1
v=t+r,, u=t-r, (3.2
—f—dr =r+2MI ' 1 3.3
El vy LTV B

r?\? represents the mass of the black hole. Expansion of the

mal and a coordinate transformatioff,,,) does not trans- field operatorf in the modes

form as a tensor. Because of the breaking of the conformal

invariance at the quantum level, the transformatior1of,)

(477_W)71/2e7iwv, (47TW)71/2e7iWU (34)

involves an anomalous contribution, namely the Schwarziafefines a conformal state known as the Boulware vacuum

derivative.

An elegant way of recovering the previous results is to

functionally integrate the trace anomaly E@g.7) obtaining
Polyakov’s nonlocal effective actigri.2]

1 1
- 2y JZgR=—
Sp= %WJd X gRD R,

where [0 is the covariant Dalambertian. Varying with
respect tag®® gives

(2.16

T.,)= 1 2V.V 1R \Y 1RV !
<ab>__@_ aVo| gR|+Va 5R| Vel gR

|

Choosing now a conformal frame E@®.3), where 1[1R=
—2p, we recover the previous expressions f6F,p),

2R 1V°
2

*+Jab (2.17)

|B). Application of Egs.(2.5) gives[23]

1 M 3 M2
<B|TUU|B>:<B|TUU|B>:E —aty )

(B|Ty,[B)=~

2M\ M
r

241 ( === (3.5
As one immediately sees, the modes in E3j4) reduce at
infinity to the usual Minkowski ingoing and outgoing plane
waves and theréB|T,,/B)=0. So the statéB) reproduces
at infinity the familiar notion of an empty vacuum state as
inferred from Minkowski field theory. One can think of this
feature as the reason for selectif§) among the various
candidates for a reasonable vacuum state of the theory.

If the behavior of|B) at infinity seems quite reasonable,

the same cannot be said for the horizegn2M. One expects
in fact that, if these regions belong to the physical space-time
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manifold,(T,p,) should be finite there with respect to a local wave atv =v, [25] (for the timelike case see for instance
orthonormal frame. It can be shown tR&t,;,) is regular on  [26]). In the “in” region v <v, the space-time is flat
the future horizon if as—2M [24]

o dsi=—dudvj,, (3.12)
T, <,

where u;, and v;, are the usual retarded and advanced
(r—2M) Ty <, Minkowski null coordinates
(r—2M) 2Ty <. (3.6 Uin=tin=Tin, Vin=t+Tj,. (3.12

The regularity on the past horizon is expressed by similafFo" v=>vo the “out” geometry describes a black hole of

inequalities withu andv interchanged. It is now clear that massM
(B|T4p|B) is not regular both on the future and the past d = —(1—2M/rdud 31
horizons. This behavior is connected to the fact that the state our= "~ ( ydudo. 313

|B> is defined in terms of thaj(v) modes in Eq(34) which Matching the two geometries at:UO, we have
oscillate infinitely on the horizon. Physically, the st is

supposed to describe the vacuum polarization of the space- U=0jn,
time exterior to a static massive body whose radius is bigger
than 2M. Vo~ Uin—4M
A coordinate system regular on the horizons is the U= uip—4M In( aAM )
Kruskal {U,V} one defined in terms of thgu,v} frame as (3.19
(for r>2M) . )
We choose the quantum state to correspond to Minkowski
U=—4Me YM  v=4Me’/*M, (3.7 vacuum on past null infinity. Call this statin). Therefore
(in|Taplin) =0 for v<wvy.
Expansion of the field operatdrin the Kruskal modes The evaluation of the expectation values forv, re-
. . quires the Schwarzian derivative betwaeandu;, . The net
(4mW) Yoo~ WV (4qiy) Ve WY (3.8 result is, forv>vy,
defines the Hartle-Hawking stat¢H). Evaluating the ) ) 1 M 3 M? 8M
Schwarzian derivatives betwe&h(V) andu(v), from Egs. (in[Tyulin)= E( Rty (Un—v0)

(2.9—-(2.13, we obtain

) 24M°2 )
2M —
(HITwlH)= (T M) = sgia 1- 51 Gn=vo)
2 . . 1 M 3 M2
X +ﬂ+12M ) <|n|Tvv|m>:E _r_3+§r_4 =<B|TUU|B>,
2 l
1 2M\ M (in[Ty,|in) L (1 2M>M (B|T,,|B)
mitylm=—o—|1l-— |73 = wlB)-
=——\1-— 241 rjr
(HITul) = 5| 1- 2 15 -

(3.9
In the limit u;,—v,—4M (i.e., the shell is close to crossing
This state leads therefore to expectation values regular ofhe horizon at infinity we find a net flux

both future and past horizons. The Kruskal modes, however,

do not reduce asymptotically to standard Minkowski plane- T 1 31
waves. As a consequendg]|T,,/H) does not vanish at in- (Tuw— 7687mM?2 (3.16

finity. |H) is a thermal state at the Hawking temperature
representing the Hawking flux of evaporation at the correct

1 Hawking temperatureTy. In the above limit ¢;,—uvq
TH:W (3.10 —4M), all time dependence disappears
and describes the thermal equilibrium of a black hole en- (in[Toiny= S ﬂ)z
closed in a box with its radiation. uu 7687M? r
The last example we shall present deals, unlike the previ- )
ous ones, with a dynamical situation, namely the formation w| 1+ ﬂ+ 12m ) (3.17)
of a black hole by gravitational collapse. It will be of funda- r r ’

mental relevance for the subsequent discussion. Let us con- ) _
sider, to limit the mathematical complexity, the simple caseand the statéin) becomes what is called the Unruh state
where the black hole is formed by the collapse of a shockjU), which is obtained by expanding the field operatdn
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modes obtained by using the coordinatefor the outgoing leading to the field equation
modes and the coordinatefor the ingoing ones. Note that
(U|T4p|U) is regular on the future horizdisee Eqs(3.6)].
The singularity on the past horizon is completely spurious,
since for the black hole formed by gravitational collapse
there is no past horizon.

These three examples were given not only as an applic

Ve(e 24V f)=0. (4.4)

Comparing the actiof.3) to Eqg.(2.1), we see that the sca-
. t the f i b h h h ¢ h 3ar fields, from a 2D point of view, are still conformal, but
tion of the formalism, but rather to show how for the y,o e s now a coupling between them and the dilatofhis

Schwarzschild space-time, the two-dimensiofil,) given kes the t v to differ f by ext
by the Polyakov action reproduces the basic qualitative feag?mi?lsigigel%nfpmay o differ from H@.7) by extra

tures of the 4D(T,,). This qualitative agreement of the
simple two dimensional calculations with the more compli-
cated four dimensional ones is quite amazing. It has stimu- 1
lated investigations of the backreaction problem, namely the (T)= E[R—G(V@ZﬂL 6L ¢], (4.9
evolution of the black hole as it emits Hawking radiation, by
means of two dimensional models where the classical
dilaton-gravity action is improved by adding the Polyakovwhich is still state independent. The coefficient of the last
term Sp. This gives an effective action which describes theterm in Eq.(4.5) is not unambiguously given in the literature,
effect of the quantized matter on the geometry, i.e., the backdepending on the functional measure used for the scalar
reaction. The same problem cannot even be attacked in tHtelds, i.e., genuine 2D versus spherically symmetric reduced
physical 4D context. 4D. The last choice is the one which leads to our Eg5).

The coupling of the minimal 2D massless scalar fields tan a generic conformal framfx=}, we have
the spherically symmetric reduced Einstein-Hilbert actian
similar) to evaluate the backreaction might sound too naive. L
One can cogently argue that in a “realistic” 2D matter- _
gravity theory also the matter sector should derive, through (Te)==15,(0:0-p+30, $7-¢=39.9-¢).
dimensional reduction, from a consistent 4D theory. How- (4.6)
ever, before embarking in backreaction calculations one
should assure that these more “sophisticated” 2D models )
produce &T ;) which for the Schwarzschild space-time is at The problem we have to fe_lce now is to construct _the other
least in qualitative agreement with the 4D,,,) as it was for ~ COMPonents ofTap) for this improved theory. Following the
the naive Polyakov theory. Otherwise these “sophisticated@nalysis of the previous S‘fft'on' one could integrate the 2D
models suffer from physical inconsistency. conservation equatior’8,(Tg) =0, obtaining(this is the ap-

proach of{18])

IV. MINIMALLY COUPLED 4D FIELDS

As we have seen, while the gravitational part of the action (T..)=
has a four dimensional origin, the matter sector is two di- o
mensional. It seems therefore natural, in the search for a

1 2
- E(atpatp_atp_tt)

. - . 1 17
more physical model, to require that also the matter fields - _(_ 20.00. b9 ) — —(9_bd )
should be definedb initio in 4D [15,16,17,18,1p Restrict- ar | 5. (20=p 05 909 = 52040 D)
ing the attention to minimally coupled 4D scalar fields, one 11
has that the corresponding 4D action reads + yp (9_(2(94,(9“97 ¢,)_(92+¢), 4.7
o T - -
1
Sw=-— zf d*xy—g® (V)2 (4.2)
(4m) where we have used the shorthand notation
Under the assumption of spherical symmetry, the 4D metric
can be written as 1
a—_J’ dx* (48)
ds?=g,,dx2dx°+e~2%d0?, (4.2) =

whereg,,(x?), a,b=1,2, is the two-dimensional metric and The functionst..(x*) in Egs.(4.7) are arbitrary integration
dQ2 the line element of the unit two-sphere. Performing thef,nctions. Comparing Eq$4.7) with Egs. (2.5), we see the
dimensional reduction in Eq4.1) and using Eq(4.2), we appearance of dilaton dependent terms.
arrive at a 2D action for our scalar fields The other approach that we can follow, again as in the pre-
1 vious sectionb, i; tohfugtl:jtio?fallyt( integ:laot‘gi the trlac_edanorgaly
2)_ 20 [T a2 2 Eqg. (4.5 to obtain the effective actio@nomaly induce
Sg\")__ﬂf d*x =g #X(V )%, (4.3 ef?ef:tivst)a action [15,16,19 g
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1 1 1 The first term in this action iSp of Eq. (2.16), the Polyakov
Saing=— 53— | d*VJ—g|zR=R i .
aind 2 g 2870 action. However, a new nonlocal term has now appeared in
the effective action, the second one. The last term, on the
contrary, is local. By varyinds,;,q With respect to the 2D
metric g,,, we find

OIS )
~7(V$)? SR+ 7¢R|. (4.9

1 . 1 1 1
<Tab>:<T§b>+§ —% (V¢>)2(ER +V© 5(V¢)2>VC(ER)—2(V¢)2}
1 1 1 ’ 1 1 ’ 1
+daddhd| GRI+ 5| Va| 5(V)T| V| gR|+Vy| 5(VE)7| V4 5R
1 1
_Vavb(a(v¢)2)]_S_W(gabD¢_VaVb¢)1 (4.10

where (T5,) was given Egs.2.17 and comes from the and similarly for T?, by interchanging— with + and F
Polyakov term inS,;q. In the conformal framgx™}, Eqs.  with G. F and G are defined as in Eq$2.11) and (2.13.

(4.10 read(see alsq19]) Summing up, we have that for the theory describedy
1 10
T++ = TE+ + — (9-# 194— +_; 0 (9_ ) i~ ~+ + + G” 1 G’Z
(Teo) =(Tea)t g | PO bdudt 5 5 (00900 TR =0T, ) + | o= 5 o7

1 2
— - (720:pi- ¢+ ) (4.12) +%(ﬁ+¢&+¢m(FG)

and the trace is obviously E@4.5). Surprisingly, the two G’
expressions of T,p) given, namely Eqs(4.7) obtained by _f - )
integrating the 2D conservation equatiolg(T;)=0 and * G dx"0.¢d-¢ |, 4.13
Egs. (4.11) obtained by functional differentiation &,;,q,
do not coincide(whatever the functions. might be. We 1 (F" 1FE'?
shall see in Sec. VI that the procedure followed to get Egs. (X7 |T__[X™)=(x"|T__|x")+ T(F_ 5 Fg-)
(4.7) is not justified. Therefore we shall discuss, here, only &
the (T,p,) given by Eqs(4.6) and(4.112).

Before starting the calculation & ,;,) for the Schwarzs-
child black hole, one has to implement Eg.11) by a state
dependent term which selects the state in which the expecta-

1
+E(a_¢ﬁ_¢ln(FG)

tion values are taken. Naively, one could just add a term F_' +

t.(x™) as in the previous section, since it is compatible with + F dx" . da- |, (4.1
the 2D conservation equations satisfied by the Polyakov term

V.(TE?=0. However more care is required. Extra terms in (K| T L [%5) = (| T4 x5). (4.15

(T..) arise as a consequence of the “anomalous” transfor-
mation of (T ,p) under the transformation™ —X=.

Let us identify the previous expression E¢$.11) as ex-
pectation values o, in the statedx™), i.e., (X™|Tp|X™).
Consider now, as we did before, the") state. We already
know how the first term in Eq(4.11), the Polyakov one,

So going from one conformal state to anotli€g,) does not
only acquire a term proportional to the Schwarzian deriva-
tive, but also the last two terms in Eqgl.13 and (4.14).
These do not represent, unlike, massless 2D radiation and

transforms. It is also easy to verify that the terms obtained b'® much more complicated in this more “sophisticated” 2D

variation of R in S,iq (like the trace is state independent. model- Being these new state dependent terms nonlocal,
We come now to the remaining term in E@.11), the sec- there is a serious danger that they destroy the nice qualitative
ond one: call itT®. . We find agreement in a Schwarzschild background between the pre-

diction of the Polyakov EMTTE,) and the 4D(T,,). In

1 order to see if this is the case, we now calculate, using Egs.
T2 %2 = (2| T2 = S ! '
GETELR) = O TEL ) + At ( J-¢9-#In(FG) (4.13), (4.14 and(4.15), the(T,y) for the three state§B),
|H) and |U)) defined on the Schwarzschild space-time in

F' Sec. Il and compare the result we obtain to the @D),,)
— + ' v
TF fdx &+¢‘9‘¢) (4.12 described in the introduction.
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For the Boulware stat¢B), we haveX™=x"=(u,v)

where {u,v) are Eddington-Finkelstein coordinafese Egs.

(3.2)]. Equations(4.13), (4.14 and(4.15 give

1 M 3M?2
<B|Tuu|B>:<B|Tvv|B>:m —aty

1 2M\? 1 2M
+—1-—| SIn[1-—],
r r r

167
BIT IB)= 1 1 2M\M 1 2M\ M
ElTulB=" 2| 3t er 2 7

(4.19

Note first that forM =0 |B) becomes the usual Minkowski

vacuum|M) and Eqgs.(4.16 tell us that

(M|Tap/M)=0. (4.17

PHYSICAL REVIEW D 59 044031

1

where the first term on the RHS comes fréii},), whereas
the unexpected negative contributi¢the —6) comes from

the second nonlocal term i8,;,4 [see Eq.(4.9)] [15]. This
result looks rather unphysical, since it would suggest that the
black hole is in thermal equilibrium with a thermal bath of
negative energy. Some clarifications are necessary to under-
stand the validity of Eqs(4.18 and their asymptotic limit.
The lower bound  of integration in the integral present in
Egs. (4.13, (4.14 was taken to bey,=2M. Any other
choice[some of them might eliminate the negativity of the
net flux in the asymptotic limit Eq(4.19] leads to a
(H|Tap/H) singular on the horizon. For the stafB) the
stress tensor does not depend on the choice,ofFurther-
more, as said before, the coefficient in front of the term

in the trace anomaly in E¢4.5) has been source of debate in

This result, as we shall see in the next section, is not sehe literature. For the problem at hand, we stress thaftite
trivial as it appears. It implies that Minkowski space-time isterm affects only the local part ofT,,) giving no extra

a consistent solution of the semiclassical field equationsgontribution to the Hawking radiation and, therefore, has
Needless to say that any other choice in the coefficient of theothing to do with the puzzling result we have in £4.19.

[¢ term in the trace anomaly would lead to a nonvanishingSo we have firm evidence that the 2D stress ter3qg)
(Tap) in Minkowski space. Coming back to the Schwarzs-constructed fron,;,q in the |H) state is in strong qualita-

child case M #0), we see that Eq$4.16) contain, in addi-

tion to the terms obtained by sole8x, a term proportional
to (f2/r?)Inf, wheref=1—2M/r. This gives, in Kruskal

tive disagreement with the well established result of the 4D
(H|T,,/H) which, we remind, describes a black hole in ther-
mal equilibrium with a positive energy bath of radiation at

coordinates, a “weak” logarithmic divergence on the hori- the temperaturd .

zon[see eqs(3.6)]. This divergence is however subleading

when compared to the “strong” divergence 1NV? or

One can indeed find an equilibrium std#&") which is
regular on the horizons and unlikel) has a positive flux at

~1/U? coming from(B|T5,|B). Therefore, the physical fea- infinity [27]. Mathematically, this is done by fine tuning two
tures of the statéB) remain unaltered; the “sophisticated” constants. One is the lower bourglin ther integration. The
S.ing introduces just extra vacuum polarization terms in thesecond, sayy, is related to the definition of thgx*} frame

stress tensor in addition to those obtainedSpy. |B) can

reasonably describe even in this theory the vacuum polariza-

Xt=ae"?, X =—ae Ve

(4.20

tion of the space-time outside a static star. The qualitative

agreement betwee(B|T,;|B) and the 40(B|T ,,|B) is still
satisfactory.

Let us now consider the statel) obtained by choosing

%*=(U,V) [Kruskal coordinates, see Eq3.7)] and x*

The choice of exponential relation is imposed by the need of
having a constant Schwarzian derivative as required for equi-
librium. The outgoing flux can then be parametrized by a
third constaniB (which depends ony and @) as(in the limit

=(u,v). Here, as we shall see, things are not so “nice” asf —®)

before. In this state we get, from Eq4.13—(4.15),
2M |2

r
1 L 2M\2 1
Tlen |\t T ) 12

r ) 1 ( 1
“Inr—s -5 — -+
r

(H[TylH)=(H|T,,[H)

= 7687m2 | 1

4M  12M?2
r r

x| 1+

X
2M

(H[Ty[H)=(B[Ty,|B).

Inspection of Eqs(4.18) reveals that theu andvv compo-
nents of(H|T,,/H) vanish like ¢ —2M)? on the horizon.

Therefore(H|T,,/H) is regular on both the future and past
horizonsr=2M, as expected. However its behavior ias

—o0 S quite surprising

B

X Ty X5) = (X5 T, [X5) ~ Z68 M2

(4.2)
According to the previous calculations, no regular solution
for B=1 exists. ForB#1 and positive, one can find
(#4M) and ry (#2M) which allows regularity of
(X*|T4p[X™) on the horizons. Needless to say that the state
so constructed has nothing to do witH) and its physical
significance, if it exists, is completely obscure.

Complete disagreement between the predictiorBgf
and the real 4D theory emerges also when considering our
last example: the collapsing shell. Performing the calculation
along the lines of the previous section, we have

(in|Taplin)=0 (4.22

for v<vy. When, insteady >v
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HAWKING RADIATION BY EFFECTIVE TWO-. .. PHYSICAL REVIEW D 59 044031

_ _ 1 (ff" f'2 3 M2 M even more seriously, it is physically unacceptable. Its use in
(in[Tyylin)= 1278 16 4ruug) 2r3(u,vo) backreaction models is therefore highly questionable.
1 f2 f f2(u,vq) oM V. AN IMPROVED THEORY
tl6nr2| Nt 2 2 : .
ul (Uvg)  r(u,vg) r<(U,vo) As already said, the conformal anomaly determines only
the Weyl noninvariant part of the effective action, namely

1 M 1 M . . .
x| —Z 4+ =z + - — S.ing- The complete effective action should also contain a
r r(u,vo) r<(u,vo) part invariant under Weyl transformations. The authors of

. L Ref.[15] tried to calculate this part perturbatively, since un-
(in[Tyu[in)=(B|T.|B), like S,ing it cannot be computed exactly. Using a simple

: Co classical approximation to the heat kernel, they proposed to
(in[Tylin)=(B|Tw[B), (423 add toS,;,q the following nonlocal Weyl invariant term of

wheref=1—2M/r andr (u,v0) = (vo—Uj,)/2. In the firstof ~ the Coleman-Weinberg type
Egs. (4.23 the lower bound in the integration has been 1 1
taken asv, the position of the shell, since this appears as S\Nizs—f d2X\/—_g[—(V¢)ZER+ ¢R
the more natural choice. The stress tensor is regular on the m

future horizon. As the shell approaches the horizon, the out-

going flux at infinity looks like Eq(4.19 (as in[15]) +[-O¢+(Ve)?] ( 1

[—D¢+(V¢)Z]”
M

(5.9

(in| Ty lin)— (1-6) (4.29

1
7687M?
where u is an arbitrary renormalization scale. One sees that
indicating that the black hole “antievaporates” absorbingthe nonlocal term in Eq(5.1) cancels exactly the second

energy from the vacuum. On the other handr as2M nonlocal term inS;n4 [see eq(4.9)], leaving as unique non-
local term the Polyakov one

i iny————— . 1
([T, fin)— = 7eg 2 (4.29 Simp=Saing+ Swi= fdzx\/—_{_l—zRDR
i.e.,_one has t_he usual negative energy inflow, which makes [—O¢+ (V)2
the interpretation even more puzzling. +[-O¢+(Ve)? ( 1—In—2”.
Finally, it is worth noting that if we used th@ ,;,) of egs. M
(4.7), the one constructed by integrating the conservation (5.2)
equationsV ,(Ta)y=0, we would obtair(see[18]), instead of
Eq. (4.24 and in the same limit, At first sight, the advantage of this new formulation of the

2D theory is clear: the second nonlocal term3g,,4, re-
(4.26 sponsible for the appearance of the unphysied@ in the

Hawking flux [see eqs(4.19 and (4.24)] has disappeared.

This is the main argument used [it5] to show the accor-
which unfortunately does not improve the situation. dance of this model with the 4D picture of Hawking black

Concluding this section, we arrive at the unsatisfactoryhole evaporation. The flux at infinity is now given by the

situation in which the “sophisticated” 2D theory described Polyakov term as in the naive theory of Secs. Il and I,
by S,ing Produces dT,;,) for the Schwarzschild black hole leading to the expected value 1/76812. However, let us
which, apart from thgB) state, not only is in qualitative analyze in some detail the components(@t;P) in this
disagreement with all that is known about the 4D, ), but,  theory. We have

1
<TUU>4) 7687 M 2 (1_ 3)

1 a O+ (V)2
(T =(Te+ 4 { g"( O+ (V)2— (V)2 [‘X’M—z(‘m
_ 2 _ 2
_chwcm[ 04+(V9) ])_ammm[ 04+ (V)]
) 7
[-0¢+(V9)?] 1 [-O¢+(V¢)?]
9y IN 7 2 bbdaln=——7——|. (5.3
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As usual, choosing a conformal franie™}, we find (4.1) and (4.6) and calculate its covariant divergence
5 VTh). As expected on the basis of the difference between
(TP = (TP .y — i[a ba ¢|n[_D¢+(V¢) ] Egs.(4.7) and(4.11), the result is nonzero and reads, in the
== ==L Qg [T w? conformal frame{x*},

_ 2
+ ‘91 ¢‘9t In w,

N
' Va<Ti>:E(ZP&id’aJraJﬁ"'(;iﬁbﬂt(ﬁﬁiP

<Tif1_p>:<T+_>, (5.9 T Ppdzpdptdhpdid_p). (6.9

where the RHS of the second of EdS.4) is still given by The RHS of these equations are proportional to the quantum

Eq. (4.6), sinceS,,; does not alter, by construction, the trace P&'t (not to al) of the equation of motion of. We can in
anomaly. In the above fact rewrite them in a more elegant form

[—O¢+(V$)?]=4e ?(d,d_¢p—d.pi_$). (5.5 ‘9:<Tt:>+&:<T+—>_Fit<T+_>+&i¢5Saind:O,

From Eqs.(5.4) we see that being the term in the curl brack- (6.2
ets local, the difference dfT,,°) between two states is sim-
ply the Schwarzian derivative as in Eq8.9—(2.13. Insert-
ing the Schwarzschild solution in E¢5.4), we find (f=1

Equation(6.2) can be written in covariant way as

1 6S
—2M/r ayy = 7% -
) V(T + = 53 V000 (6.3
impy /P 1 2 f f2fr 1
(Te)=(Tu) + 167 r‘z'”;ﬁ*‘ T\ This relation has a general validity and applies for all theo-
ries described by an actid®~= S[gw,cﬁ].l It shows, for in-
_ 1 £2 0 f2(f 1 stance, that the 2D conservation equations are automatically
(TIMPy=(TP Y+ E[— r—zlner T(f_’_ At satisfied by(T5,) for the simple reason that the Polyakov

(5.6) action Sp does not depend o. For the other theories we
' are concerned with in this paper a similar result is no longer
where a prime indicates derivative with respectrtand ~ Valid. ,
<-|—P ) <-|—P ) are given in Sec. Ill for the different states. At The situation could seem therefore rather unsatisfactory:
uu/ vV " . . .
first sight the above expression seems reasonable, just loc4f Started from a 4D classical theory, reduced it to 2D by
vacuum polarization added to the Polyakov term. Let us con@SSuming spherical symmetry and we are now left with a 2D
sider, however, the case=1, i.e., Minkowski space-time. effective theory where the basic ingredient, the matter energy

One immediately sees in Eq&.6) that the argument of the Momentum tensor, is not conserved. Equat@) has how-

In vanishes and(T"" diverges. Therefore Minkowski EVer an elegant interpretation ;a)s seen from the 4D point of

vacuum is no longer a solution of the theory. The calculation’!€W- Consider the 4D actio;ing which, by dimensional

in the shell collapse case 6in|T™?|in) for v<uv, (ie., in  'eduction under spherical symmetry, giv6§m),. We can

the flat portion of the spacetime inside the sheltcomes then define the 4D energy momentum tensHf)) (see also

meaningless in this context. This divergence is analogous )

the infrared divergence of the Coleman-Weinberg potential (4)

in the massless case. (T = 1 SSiing 6.4)
However, in addition to the Minkowski prpblem, we will p J—g@® gl '

have dangerous divergences(af,p") for static spacetimes

in regions where the surface gravify vanishes. Nonex- Under spherical symmetry, these equations translate into the

treme Reissner-Nordstm spacetime is one such example. following definitions @,b=1,2)

The surface gravity vanishes for=Q? M which lies be-

tween the inner and the outer horizon and th€fg,) di- (T&y = (T3

verges. A similar situation happens for the bl fAge2¢
Schwarzschild—de Sitter spacetime. All such features are not

expected on physical ground and up to now there is no 4D (Tga) 1 5Saind

evidence of such phenomena. (Too)=g7g = g 3@ 06
——

6.
VI. THE FOUR DIMENSIONAL INTERPRETATION €3
For the reasons previously explaindtMinkowski as

ground statg we prefer to come back to the actig,q and 1This, as W. Kummer pointed out to us, is a consequence of
try to understand whether it is possible or not to extracidiffeomorphism invariance and holds in any dimension for an arbi-
physically sensible results. Let us consider ¢fig;,) in Eqs.  trary dilaton gravity theory.
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where we have explicitly inserted the superscriptsand (¥ where we have used=e %, (T,,) is given in Egs.(4.10
for clarification. These allow us to reinterpret E(8.3) as  and (T, in Eqg. (6.7). The improved theory of Sec. V is
the conservation equations of the 4D stress te(i{fy), i.e.,  described by

Egs. (6.3 can be rewritten simply as

S=Sy+ Simp, (6.13
(Hpy —
V. T,7#)=0. (6.6 where
From the explicit form ofS,;,q EQ. (4.9 we obtain, in a 1 1 1
conformal frame{x*}, Sﬁmngf dzx\/—g[— 1—2RER+[—D¢+(V¢)2]

1 2

—_ [-O¢+ (V)]
87T<T00> ZWW(ZP(L—&—QS"'&—P&#(# Xl 1l-In————— (6.14

+d1pd_p+d.d_p). (6.7 and the field equations are the safadth obvious substitu-

The above discussion and the 4D interpretation of the failur%ggrgflézetﬁ g :rr;?\/lgﬁrkrgvsvsvlgthas(\q/vsz.:}i)asgdsg.d&]i;s Fnc())rt t: eself-
of the 2D conservation equations can be repeated step tz:y ' '

. onsistent solution of the equations of motion. The LHS of
step for the improved theory of E@5.2). In that case the Egs. (6.12 vanishes identically (for A=0) whereas

(4 i . :
angular component dfT ;) is (TSHIMPY and (TIMP) diverge, as can be seen explicitly in
Eqgs.(6.8) and(5.3). However, the improved theory has other
87(Tpy)=— —2[_23+3_¢< -2p interesting solutions. _ o
47—g? The presence of a scale in the theory depletes, in this case,

Minkowski space-time of its central role in favor of other
+|n[4(‘9+5—d’_‘9+¢‘7— d’)]) geometries. Let us consider de Sitter spacetime, which is a
w? classical solution of5; with A #0. One can then show, by
_ _ _ fine tuning the arbitrary renormalization scalen Eq. (5.2
Iy Pl =20-p+9-IN[4(d.0-p— 3+ pd-¢)]} (i.e., u>=2A) and the 2D cosmological constafthat can

—0_p{—20,p+d, IN[4(d,0_Pp— 3, pd_P)]} always be added to the Polyakov tefp), that for the de
Sitter spacetime

+20,9_p—d40- |n[4((9+(9¢—r7+¢r9¢)]} <dSTng|dS>=O,

(6.8) (dgTiPldS) =0, (6.19

Let us finally write in full the action of the theories we have

where |dS) means de Sitter invariant state, obtained b
examined. The first modéanomaly induceyis described by 149 y

choosing{X“} as Gibbons-Hawking null coordinat¢28].

S=S +S.. 6.9 The de Sitter spacetime does not acquire, in the improved

g " “aind: theory of Eq.(6.13, quantum corrections and is therefore a
where self-consistent solution of the semiclassical equations. De-
spite this fact, we feel rather uneasy with the unphysical

1 ) 24 ) 26 results that this improved theory predicts for Minkowski
Sg_ﬂJ’ d X\/—_ge [R+2(Vp)°+2e77—2A] space. The same can be said for Hawking black hole evapo-

(6.10  ration as described b$,ihq. In the next section we shall
outline how, in our opinion, an effective 2D theory which
(A is the 4D cosmological constarand can positively deal with black hole evaporation should look

L L1 like.
Sai =——Jd2x\/— (—R—R
aind 2 9 48 [ VII. THE PHYSICAL STRESS TENSOR: A PROPOSAL

1

1 1 ' ' ' (2)
_Z(V¢)ZER+Z¢R)‘ 6.11) The satisfactory interpretation dfT,;) and 6S/6¢ as

part of (Tff,,) along with the conservation equatiofs.6)
encourage us to adopt a 4D point of view. An “acceptable”
The resulting field equations are 2D effective action deduced from the trace anomay;{;)
and additional Weyl invariant terms should reproduce at
1—(Vr)2—2rOr+ EAr2> =27(T o), least thg gualitative features ()TE?,}) for Fhe Schwarzschild .
2 space time. We stress that the comparison can only be quali-
tative, since the exact analytic expression can of course not
be met by a simple 2D theory. In particular, the 4D anoma-

lous trace(TY) is a local expression involving®), R(*)|

2rVaVr+dap

1, Ar? X
rDr—Er R—T:—47T <T99>, (612'
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C.pys [see Eq(1.2]: a much more complicated expression where F=dF/dU and G=dG/dV. Using Eq.(7.2) andp
than our 2D analogous E@4.5). Nevertheless, we require — ;4 1|nFG, one can show that
that some characteristic features(dﬁﬂ) should be repro-
duced by an “acceptable” 2D theory, namely, in the spirit of
the Wald’s axioms, e 20 1

(i) conservation equatiorf,(T(V)=0; T )=~ 4= ( (dudyP)p+ 5 uddyp

(i) vanishing of( T(")) for Minkowski vacuum;

(ii ) locality (by this we mean state independenoéthe 1 1 . .
4D trace(T). + 59, Pdupt Eauavl’) = (X[ T el x7).

Using the definitions given in Eq$6.5), we have 7.5

(2)
(TW)= e2¢( <Z—> + 2(T00>) : (7.)
m This means that in every state the expectation value of
(THe™ is given by(x™|T4-x"). So we have achieved the
state independence: under the conformal transformation
éxi}—>{7<i}<T99> remains unchanged as required Giy).
The reference statx™) is chosen, in view of the require-
ment (i), such that{x*} are Minkowskian coordinates at

infinity. For the Schwarzschild spacetime this implies that

Since the 2D trace anomakT(?)) given by Eq. (4.5 is
already local, one has to require, in order to sat{gfy, that
(Tye) has to enjoy the same property. Let us consider th
(Tyg) given by S,i,q, namely Eq.(6.7). Under the scaling
{x*}—{x}, it transforms in an “anomalous” way, i.e.,

+ + + + e—2p |Xi>:|B>
(X7 TgalX7) = (X7 Tgqlx™) — W((ﬂﬂ H)InFG Having defined(T%S" which allows (T} to be state
independent, in order to enforce the conservation equations
1 G 1 F V (T¥#y =0, as required byi), we have to redefinéT .. )
u— —_ J— R M 14 1 ) + +
- Za‘d) G - 2a+¢ F ) (7.2 as well. In the{X*=U,V} frame, we then have

Because of the curl brackets ter,y,) and, hence(T®)
is state dependent, contrary to our assumptioh Note that ., _ ... 1 o 1

(TsP) of Eq. (6.9 is state independent, however we do not{X ITOu1%™) = o (du)p+ Eﬁuf dVay¢dve
consider it as a good starting point since it diverges for L

Minkowski spacetime, making the improved theory of Sec. :

\Y incompatitﬁe with the requi?emerﬁii).p Y - E((O’u(ﬁ)z INnFG+ FJ dV0v¢<9u¢’)

Our task will be to find a modified version of the stress
tensor, call it(T()"*"), which does indeed fulfill all our
three requirements. This tensor should in principle derive by
an effective actior8"¢" which is obtained implementing, as
in Sec. V,S,inq With Weyl invariant terms. We are not able
to constructS"¢" explicitly, but we shall give a sketch of
how the new tensor should look like.

Let us select a conformal fran{ai:uyv} of reference where the last term is giVen in detail in Sec. Il. S|m||ar|y,
which we will specify later. In an arbitrary conformal frame
{X*=U,V}, related to the previous one by the functidhs
andG as in Egs(2.11), (2.13, we have, in the stati™),

1
— 7 (—200pdud+ 55 ¢)

+(X* | Tu[X™) (7.6)

+ ~ 1
(TN =5

1
((3v¢’)277+ Eavf dU¢9U¢5v¢)

e‘29< 1
XENT %Y= — PIyIyP+ = dyPdyp -
(X[ T golX™) 152 | PIudvdt 5 dydivp - ((9V¢)2InFG+Gde&V¢0"u¢)
L ¢a~+1aa”) (7.3 L
5 0vPoypT 50yoyp |- . "
2 2 - 4—( —20ypayd+d5h)
v
Now define (X TEIXT). (7.7

ezf’( 1

XE|TOEMX Y= (X T | XV + —= | (dydyd) =INFG .

T XY= (KA ToX)+ 722 | (Gudvd) 3 Note that under the conformal transformatifid,V}—{x*

1 E o 5 =u,v} the terms under curl brackets transform like a tensor,

2 (yd) =+ > (dud) = |, (7.4 wh(_area_s the Polyakqv term picks up the usual Schwarzian
4 F 4 G derivative. Summarizing, from E¢7.6) and(7.7) we have
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et Finally, for the dynamical situation of a black hole formed
X T %)= ((5’ $)? P35 (7 J dvd,¢d, ¢>) by the gravitational collapse of a shock-wavevatv, we
have, from Eq(7.8), (for v>v)

1
— 7 (—20updu+¢)

, (in [T fin)= (ff” fr2 M?2 M )
1 1 (F" 1F' njlygftn Y-S 3
+ o up—aupaup)+24 (F_E Fz) 8 16 4riu, UO) 2r°(u,vo)
(f UU()))
O L 1F'2 2N 2y
_<X | UU|X >+24 F_E F2
(7.9
(in|T,,lin)=(B|T,,|B). (7.12

and similarly foru interchanged withh andF with G. The
2D trace part remains unchanged
As the shell radius approaches the horifior) —|U) and we

(R TUEMRT) = (X7 T [X ). (7.9  have
One can check tha(T},;") is conserved, has a trace which , ,
does not depend on the state and vanishes for Minkowski (U[T,]U)= (M aM T
space-time, defined byp=0 and e *=(v—u)/2: w7687 M2 r r r?
(M|TIE" M) =0. (7.13

We should remind that ouT,5" is defined modulo ad-
ditional local terms which come from local Weyl invariant
contributions that can be added to the 2D effective actionleading to the expected flux at infinityn the limit u— + )
These extra terms have to vanish in Minkowski space and
being local do not contribute to the Hawking radiation.
Let us now see how our procedure works for the
Schwarzschild black hole. Being the reference vacuum the <TUU>_’W' (7.14
Boulware one(B|T,5"IB) has the same form as given in
Sec. IV, in particularomitting the superscript “newy’

1 ff” frZ 1 f2 VIII. CONCLUSIONS
(BITw(B) 1277( 8 16) " T6n r2|n f The purpose of this paper was to extend the analysis of
quantum black holes from the framework of Polyakov theory
ff" fr2 1 f? to more appealing 2D theorieS{ing,Simp) Whose link to
(B|T,,[B)= E(g 16 Fr_zm f, the physical four dimensions appears more direct. Despite
the appeal of these ‘“sophisticated theories,” their predic-
, tions turned out to be unacceptable: negative Hawking flux
1 1 ff . . i
(B|Ty,|B)= _ff”+ —_ (7.10 (Saing)—nonzero(diverging renormalized stress tensor for
167 r Minkowski space-time $m,)-

Given these astonishing results, we have attempted to
wheref=1-2M/r. As expected, these expressions vanishmodify the matter stress energy tensor by imposing three
for M=0, confirming that Minkowski space-time is a solu- requirements on it. The first two, conservation equations and
tion of the backreaction equations. In the Hartle-Hawkingyanishing in Minkowski space, are quite obvious; the third
state, we have (state independence of the 4D traescapes from the strict

two-dimensional point of view of all these models. However,
as the discussion of the conservation equations has clearly
7687rM?2° shown, a correct handling and understanding of these theo-
(7.11 ries can only be four dimensional. Within our approach sen-
sible results emerge that can be positively compared to the
As r—o the first term on the RHS of the above equation4D ones. We are well aware that our method may appear
vanishes, confirming thaH) asymptotically describes radia- rather rough being not based on an elegant effective action
tion in thermal equilibrium at the correct Hawking tempera-like S,j,q and S, ,. Unfortunately, as they star8,,q and
ture Ty . Note that we have a logarithmic divergence on theS,,,, cannot be the final answer.
horizon(in Kruskal coordinatés This is however integrable One should however not exclude the possibility that there
and does not affect the regularity of the semiclassical geoms no way of extracting sensible results from these hybrid
etry. lower dimensional theories and the only true improvement of

<H|Tuu|H>(:<H|Tvv|H)):<B|Tuu|B>+
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