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Gravitational wave radiation from compact binary systems in the Jordan-Brans-Dicke theory
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In this paper we analyze the signal emitted by a compact binary system in the Jordan-Brans-Dicke theory.
We compute the scalar and tensor components of the power radiated by the source and study the scalar wave
form. Eventually we consider the detectability of the scalar component of the radiation by interferometers and
resonant-mass detectors.@S0556-2821~99!01202-3#

PACS number~s!: 04.30.Db, 04.50.1h
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I. INTRODUCTION

The detection of gravitational waves~GWs! is a field of
active research from the point of view of both the develo
ment of suitable detectors and of the study of poss
sources and signal analysis. The detectors now operatin
GW observatories are of the resonant-mass type and ha
sensitivity to typical millisecond GW bursts ofh'6
310219 (h is the wave amplitude! or, in spectral units,
10221 (Hz)21/2 over a bandwidth of a few Hz around 1 kH
@1#. The first bound is appropriate for describing the sen
tivity to gravitational collapses while the square of the s
ond bound represents the input GW spectrum that wo
produce a signal equal to the noise spectrum actually
served at the output of the detector. With this sensitivity i
possible to monitor the strongest potential sources of GW
our galaxy and in the local group~distances of'1 Mpc). In
order to improve the sensitivity of these instruments, m
advanced transducers and amplifiers are under develop
as well as new resonant-mass detectors of spherical sh
Furthermore a huge effort is under way to build large la
interferometers. It is widely believed that in the near futu
sensitivities of the order of 10223 (Hz)21/2 over a band-
width of several hundred Hz will be attained allowing th
observation of GW sources up to distances of the orde
100 Mpc @1#. It thus seems that the detection of GWs
highly probable at the beginning of the new millennium.
addition to information of astrophysical interest, the det
tion of GWs gives an opportunity to test the content of t
theory of gravity. In fact, it has been shown that a sin
spherical resonant-mass detector@2#, or an array of interfer-
ometers@3#, have the capability to probe the spin content
the incoming GWs.

One of the most intensively studied GW sources is
inspiralling compact binary system@4# made of neutron star
or black holes. In the Newtonian regime, the system ha
clean analytic behavior and emits a wave-form of increas
amplitude and frequency that can sweep up to the kHz ra
of frequencies. In this paper we study the radiation emit
by this source in the framework of the Jordan-Brans-Dic
~JBD! theory. We consider this theory to be of particul
interest, since the coupling between the scalar field and
metric has the same form of that of string theory, which
widely believed to give a consistent quantum extension
classical gravity. Our main motivation then comes from t
0556-2821/99/59~4!/044027~9!/$15.00 59 0440
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attempt to explore a possible experimental signature of st
theory as already discussed in Ref.@2#. Furthermore the re-
sults obtained here generalize to any theory with a JBD t
coupling between matter and gravitation.

There has been much work in this domain in the p
years. Before going to the plan of the paper, we shortly
view it. In Ref. @5# binary systems were first proposed
possible sources from which extract more stringent bou
on vBD @see Eq.~2.1! for its definition# than those obtained
from solar system data. An analysis of spherically symme
collapse of inhomogeneous dust was carried on in Ref.@3#
and later confirmed in Ref.@6#. The case of homogeneou
dust was treated in Ref.@7#. In Ref. @8# a test particle around
a Kerr black hole was studied and results very similar
those of our Sec. V A for interferometers were found.
Refs. @9,10# it was pointed out that deviations from gener
relativity can be much different in strong and weak gravi
In Ref. @10# these deviations were parametrized in a tw
dimensional space and exclusion plots were drawn out of
available data. Finally in Ref.@11# spherical collapses wer
studied in a formalism which kept in account strong grav
effects.

The plan of the paper is the following. In Sec. II w
describe the scalar and tensor GW solutions of the J
theory. In Sec. III we compute the power emitted in tens
and scalar GWs by a binary system. In Sec. IV we conc
trate on the scalar wave form. In Sec. V, we study the int
action between the scalar wave form and two types of ea
based detectors: interferometers and spherical resonant-
detectors, giving limits for the detectability of the signa
coming from typical binary sources. Eventually, in Sec. V
we draw some conclusions.

II. SCALAR AND TENSOR GWs IN THE JBD THEORY

In the Jordan-Fierz frame, in which the scalar field mix
with the metric but decouples from matter, the action rea
@12#

S5Sgrav@f,gmn#1Sm@cm ,gmn#

5
c3

16pE d4xA2gFfR2
vBD

f
gmn]mf]nfG

1
1

cE d4xLm@cm ,gmn#, ~2.1!
©1999 The American Physical Society27-1
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wherevBD is a dimensionless constant, whose lower bou
is fixed to bevBD'600 by experimental data@13#, gmn is the
metric tensor,f is a scalar field, andcm collectively denotes
the matter fields of the theory.

As a preliminary analysis, we perform a weak field a
proximation around the background given by a Minkowsk
metric and a constant expectation value for the scalar fie

gmn5hmn1hmn ,

w5w01j. ~2.2!

The standard parametrizationw052(vBD12)/G(2vBD
13), with G the Newton constant, reproduces GR in t
limit vBD→`, which impliesw0→1/G. Defining the new
field

umn5hmn2
1

2
hmnh2hmn

j

w0
, ~2.3!

whereh is the trace of the fluctuationhmn , and choosing the
gauge

]mumn50 ~2.4!

one can write the field equations in the following form:

]a]aumn52
16p

w0
tmn , ~2.5!

]a]aj5
8p

2vBD13
S, ~2.6!

where

tmn5
1

w0
~Tmn1tmn!, ~2.7!

S52
T

2~2vBD13!S 12
1

2
u22

j

w0
D

2
1

16pF1

2
]a~u]aj!1

2

w0
]a~j]aj!G . ~2.8!

In Eq. ~2.7!, Tmn is the matter stress-energy tensor andtmn is
the gravitational stress-energy pseudo-tensor, that is a f
tion of quadratic order in the weak gravitational fieldsumn

andj. The reason why we have written the field equations
the quadratic order inumn and j is that in this way, as we
will see later, the expressions forumn and j include all the
terms of order (v/c)2, wherev is the typical velocity of the
source~Newtonian approximation!.

Let us now computet00 andS at the order (v/c)2. Intro-
ducing the Newtonian potentialU produced by the rest-mas
densityr,

U~xW ,t !5E r~xW8,t !

uxW2xW8u
d3x8, ~2.9!
04402
d

-

c-

t

the total pressurep and the specific energy densityP ~that is
the ratio of energy density to rest-mass density! we get~for a
more detailed derivation, see Ref.@14#!

t005
1

w0
r, ~2.10!

S.2
T

2~2vBD13!S 12
1

2
u22

j

w0
D

5
r

2~2vBD13!S 11P23
p

r
1

2vBD11

vBD12
U D . ~2.11!

Far from the source, Eqs.~2.5! and ~2.6! admit wavelike
solutions, which are superpositions of terms of the form

umn~x!5Amn~xW ,v!exp~ ikaxa!1c.c., ~2.12!

j~x!5B~xW ,v!exp~ ikaxa!1c.c..
~2.13!

Without affecting the gauge condition~2.4!, one can impose
h522j/w0 ~so thatumn5hmn). Gauging away the superflu
ous components, one can write the amplitudeAmn in terms of
the three degrees of freedom corresponding to states
helicities62 and 0@15#. For a wave traveling in thez direc-
tion, one thus obtains

Amn5S 0 0 0 0

0 e112b e12 0

0 e12 2e112b 0

0 0 0 0
D , ~2.14!

whereb5B/w0 .

III. POWER EMITTED IN GWs

The power emitted by a source in GWs depends on
stress-energy pseudo-tensortmn according to the following
expression:

PGW5r 2E FdV5r 2E ^t0k& x̂kdV, ~3.1!

wherer is the radius of a sphere which contains the sour
V is the solid angle,F is the energy flux, and the angula
brackets imply an average over a region of size much lar
than the wavelength of the GW. At the quadratic order in
weak fields we find

^t0z&52 ẑ
w0c4

32p F4~vBD11!

w0
2 ^~]0j!~]0j!&

1^~]0hab!~]0hab!&G . ~3.2!

Substituting Eqs.~2.12!, ~2.13! into Eq. ~3.2!, one gets
7-2
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GRAVITATIONAL WAVE RADIATION FROM COMPACT . . . PHYSICAL REVIEW D 59 044027
^t0z&52 ẑ
w0c4v2

16p F2~2vBD13!

w0
2

uBu2

1Aab* Aab2
1

2
uAa

au2G , ~3.3!

and, using Eq.~2.14!,

^t0z&52 ẑ
w0c4v2

8p
@ ue11u21ue12u21~2vBD13!ubu2#.

~3.4!

From Eq. ~3.4! we see that the purely scalar contributio
associated tob, and the traceless tensorial contribution, a
sociated toemn , are completely decoupled and can thus
treated independently.

A. Power emitted in tensor GWs

Equation~2.7! differs from the corresponding tensor fie
in GR only by a multiplicative factor. Then we can direct
write the final result using the well-known expression for t
power emitted by a system of binary stars in GR:

~Pten!n5
1

Gw0
~PGR!n . ~3.5!

If we take vBD5600 in Eq.~3.5!, the multiplicative factor
1/Gw0 differs from one for one part in 103.

In ~3.5! (PGR)n is the power emitted at frequencynv0
~where v0 is the orbital frequency! by a system of binary
stars according to GR@16,17#, averaged over one period o
the elliptical motion and calculated in the Newtonian a
proximation

~PGR!n5
32

5

G4

c5

m1
2m2

2m

a5 g~n;e!, ~3.6!

wherem1 and m2 are the masses of the two stars,m is the
total massm5m11m2 , a is the major semiaxis, ande is the
eccentrity of the ellipse. The functiong(n;e) depends on the
Bessel functionsJk(ne):

g~n;e!5
n4

8
@Jn

2~ne!~e222!2/~n2e4!14Jn
2~ne!~12e2!3/e4

1Jn
2~ne!/~3n2!14Jn~ne!Jn8~ne!~e222!

3~12e2!/~ne3!28Jn~ne!Jn8~ne!

3~12e2!2/~ne3!#14Jn8
2~ne!~12e2!2/e2

14Jn8
2~ne!~12e2!/~n2e2!. ~3.7!

In the last phases of the binary system evolution, the o
becomes more and more circular, because the bodies ra
the most at their closest approach@16#. In the case of null
eccentricity e50, the functiong(n;e) reduces to a Kro-
04402
,
-
e

-

it
ate

necker delta,g(n;e50)5dn2 , and the tensor GW frequenc
is twice the orbital frequency. Summing over all the harmo
ics n @16#, one obtains

Pten5 (
n51

`

~Pten!n5
32

5

G3

w0c5

m1
2m2

2m

a5 f ~e!, ~3.8!

where

f ~e!5
1

~12e2!7/2S 11
73

24
e21

37

96
e4D . ~3.9!

Equations~3.6! and ~3.8! are obtained in the approximatio
of pointlike masses~weak self-gravity!. For compact binary
systems such as PSR 19131 16, they can be used upo
replacing the masses,m1 ,m2 , by the Schwarzschild masse
of the stars@18#.

B. Power emitted in scalar GWs

We now rewrite the scalar wave solution~2.13! in the
following way:

j~xW ,t !5j~xW ,v!e2 ivt1c.c. ~3.10!

In vacuo, the spatial part of the previous solution~3.10! sat-
isfies the Helmholtz equation

~¹21v2!j~xW ,v!50. ~3.11!

The solution of Eq.~3.11! can be written as

j~xW ,v!5(
jm

Xjmhj
~1!~vr !Yjm~u,w!, ~3.12!

wherehj
(1)(x) are the spherical Hankel functions of the fir

kind, r is the distance of the source from the observ
Yjm(u,w) are the scalar spherical harmonics, and the coe
cients Xjm give the amplitudes of the various multipole
which are present in the scalar radiation field. Solving
inhomogeneous wave equation~2.6!, we find

Xjm516p ivE
V

j l~vr 8!Ylm* ~u,w!S~xW ,v!dV, ~3.13!

where j l(x) are the spherical Bessel functions andr 8 is a
radial coordinate which assumes its values in the volumV
occupied by the source.

Substituting Eq.~3.2! in Eq. ~3.1!, considering the expres
sions~3.10! and~3.12!, and averaging over time, one finall
obtains

Pscal5
~2vBD13!c4

8pw0
(
jm

uXjmu2. ~3.14!

To compute the power radiated in scalar GWs, one ha
determine the coefficientsXjm , defined in Eq.~3.13!. The
detailed calculations can be found in Appendix A, while he
we only give the final results. Introducing the reduced m
7-3
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of the binary systemm5m1m2 /m and the gravitational self
energy for the bodya ~with a51,2)

Va52
1

2EVa

r~xW !r~xW8!

uxW2xW8u
d3xd3x8 ~3.15!

one can write the Fourier components with frequencynv0 in
the Newtonian approximation as@see Eqs.~A15!, ~A23!,
~A31!, ~A32!#

~X00!n52
16A2p

3

iv0w0

vBD12

mm

a
nJn~ne!, ~3.16!

~X161!n52A2p

3

2iv0
2w0

vBD12S V2

m2
2

V1

m1
Dma

3F6Jn8~ne!2
1

e
~12e2!1/2Jn~ne!G , ~3.17!

~X20!n5
2

3
Ap

5

iv0
3w0

vBD12
ma2nJn~ne!, ~3.18!

~X262!n572Ap

30

iv0
3w0

vBD12
ma2

1

n
$~e222!Jn~ne!/~ne2!

12~12e2!Jn8~ne!/e72~12e2!1/2

3@~12e2!Jn~ne!/e22Jn8~ne!/~ne!#%. ~3.19!

Substituting these expressions in Eq.~3.14!, leads to the
power radiated in scalar GWs in thenth harmonic

~Pscal!n5Pn
j 501Pn

j 511Pn
j 52 , ~3.20!

where the monopole, dipole, and quadrupole terms are
spectively,

Pn
j 505

64

9~vBD12!

m3m2G4

a5c5 n2Jn
2~ne!

5
64

9~vBD12!

m3m2G4

a5c5 m~n;e!,

~3.21!

FIG. 1. Monopole function against the indexn for different
values of the eccentricitye.
04402
e-

Pn
j 515

4

3~vBD12!

m2m2G3

a4c3

3S V2

m2
2

V1

m1
D 2

n2FJn8
2~ne!

1
1

e2 ~12e2!Jn
2~ne!G

5
4

3~vBD12!

m2m2G3

a4c3 S V2

m2
2

V1

m1
D 2

d~n;e!,

~3.22!

Pn
j 525

8

15~vBD12!

m3m2G4

a5c5 g~n;e!. ~3.23!

In Figs. 1–3 we plot the monopolem(n;e), dipole d(n;e),
and quadrupoleg(n;e) functions against the indexn, for
different values of the eccentricitye.

From the figures one can infer the dominant harmonics
the scalar GW radiation. In the case of circular orbit, t
dipole functiond(n;e) reduces to a Kronecker deltad(n;e
50)5dn1 , while the monopole functionm(n;e) goes to
zero.

The total power radiated in scalar GWs by a binary s
tem is the sum of three terms

Pscal5Pj 501Pj 511Pj 52, ~3.24!

FIG. 2. Dipole function against the indexn for different values
of the eccentricitye.

FIG. 3. Quadrupole function against the indexn for different
values of the eccentricitye.
7-4
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where

Pj 505
16

9~vBD12!

G4

c5

m1
2m2

2m

a5

e2

~12e2!7/2S 11
e2

4 D ,

~3.25!

Pj 515
2

vBD12S V2

m2
2

V1

m1
D 2

3
G3

c3

m1
2m2

2

a4

1

~12e2!5/2S 11
e2

2 D , ~3.26!

Pj 525
8

15~vBD12!

G4

c5

m1
2m2

2m

a5

3
1

~12e2!7/2S 11
73

24
e21

37

96
e4D . ~3.27!

Note thatPj 50,Pj 51,Pj 52 all go to zero in the limitvBD
→`.

IV. SCALAR GWs

We now give the explicit form of the scalar GWs radiat
by a binary system. To this end, note that the major semi
a is related to the total energyE of the system through the
following equation:

a52
Gm1m2

2E
. ~4.1!

Let us consider the case of a circular orbit, remembering
in the last phase of evolution of a binary system this con
tion is usually satisfied. Furthermore we will also assu
m15m2 . With these positions only the quadrupole ter
~3.23! of the gravitational radiation is different from zero
The total power radiated in GWs, averaged over time, is t
given by Eq.~3.8!, ~3.25!–~3.27!

P5
8

15~vBD12!

G4

c5

m1
2m2

2m

d5 @6~2vBD13!11#,

~4.2!

whered is the relative distance between the two stars. T
time variation ofd in one orbital period is

ḋ52
Gm1m2

2E2 P. ~4.3!

Finally, substituting Eqs.~4.1!, ~4.2! in Eq. ~4.3! and inte-
grating over time, one obtains

d52S 2

15

12vBD119

vBD12

G3m1m2m

c5 D 1/4

t4, ~4.4!

where we have definedt5tc2t, tc being the time of the
collapse between the two bodies.
04402
is

at
i-
e

n

e

From Eqs.~3.12!, ~3.16!–~3.19! and~B3! one can deduce
the form of the scalar field~see Appendix B for details!
which, for equal masses, is

j~ t !52
2m

r ~2vBD13!Fv21
m

d
2~ n̂•vW !21

m

d3 ~ n̂•dW !G ,
~4.5!

wherer is the distance of the source from the observer, a
n̂ is the versor of the line of sight from the observer to t
binary system center of mass. Indicating withg the inclina-
tion angle, that is the angle between the orbital plane and
reference plane~defined to be a plane perpendicular to t
line of sight!, and withc the true anomaly, that is the ang
betweend and thex axis in the orbital planex-y, yields
n̂•dW 5dsing sinc. Then from Eq.~4.5! one obtains

j~ t !5
2Gmm

~2vBD13!c4dr
sin2g cos@2c~ t !#, ~4.6!

which can also be written as

j~t!5j0~t!sin@x~t!1x̄ #, ~4.7!

where x̄ is an arbitrary phase and the amplitudej0(t) is
given by

j0~t!5
2Gmm

~2vBD13!c4dr
sin2g

5
1

2~2vBD13!r S vBD12

12vBD119D
1/4S 15G

2c11D 1/4
Mc

5/4

t1/4
sin2g.

~4.8!

In the last expression, we have introduced the definition
the chirp massMc5(m1m2)3/5/m1/5.

V. DETECTABILITY OF THE SCALAR GWs

Let us now study the interaction of the scalar GWs w
two types of GW detectors.

As usual, we characterize the sensitivity of the detector
the spectral density of strainSh( f )@Hz#21. The optimum
performance of a detector is obtained by filtering the out
with a filter matched to the signal. The energy signal-
noise ratio SNR of the filter output is given by the we
known formula:

SNR5E
2`

1` uH~ f !u2

Sh~ f !
d f , ~5.1!

where, in our case,H( f ) is the Fourier transform of the
scalar gravitational wave formhs(t)5Gj0(t).

We must now take into account the astrophysical rest
tions on the validity of the wave form~4.7! which is obtained
in the Newtonian approximation for pointlike masses. In t
7-5
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following, we will take the point of view that this approxi
mation breaks down when there are five cycles remainin
collapse@24,25#.

The five-cycles limit will be used to restrict the range
Mc over which our analysis will be performed. From E
~4.4!, one can obtain

vg~t!52v052AGm

d3

52S 15c5

64G5/3D 3/8S vBD12

12vBD119D
3/8 1

Mc
5/8

t3/8.

~5.2!

Integrating Eq.~5.2! yields the amount of phase until coale
cence

x~t!5
16

5 S 15c5

64G5/3D 3/8S vBD12

12vBD119D
3/8S t

Mc
D 5/8

. ~5.3!

Setting Eq.~5.3! equal to the limit period,T5 cycles55(2p),
solving for t, and using Eq.~5.2! leads to

v5 cycles52p~6870 Hz!S vBD12

12vBD119D
3/5M (

Mc
. ~5.4!

Taking vBD5600, the previous limit reads

v5 cycles52p~1547 Hz!
M (

Mc
. ~5.5!

A. Interferometers

An interferometric detector measures the relative d
placements between the mirrored faces of test masse
ranged in the L-shaped configuration of a Michelson int
ferometer. The directivity antenna pattern for a tenso
wave is such that the maximum detector output is obtai
for a wave inpinging perpendicularly with respect to t
plane defined by the interferometer arms. On the contra
scalar JBD wave~which is also transverse! inpinging in the
same direction will give a null effect. In the case of a sca
wave, the maximum effect will be obtained for a wa
propagating along one interferometer arm. Assuming suc
direction and setting sing51 in Eq. ~4.8!, we can, for in-
stance, evaluate the SNR for the VIRGO interferome
presently under construction. We use forSh( f ) the VIRGO
noise spectrum as modeled in Ref.@19#, which is the sum of
three main components: thermal noise in the pendola, t
mal noise in the mirrors, shot noise at high frequency:

Sh~ f !510247Fa1S f

100 HzD
25

1a2S f

100 HzD
21

1a3S f

100 HzD
2GHz21, ~5.6!

wherea152.0, a2591.8, anda351.23.
04402
to

-
ar-
-
l
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a

r

a

r,

r-

Integrating Eq.~5.1! over the range 10–500 Hz, one ob
tains the following SNR:

SNR57.73104S r

MpcD
22S Mc

M (
D 5/3

3S vBD12

12vBD119D
1/2F 1

2~2vBD13!G
2

. ~5.7!

For vBD5600, we find

SNR53.831023S r

MpcD
22S Mc

M (
D 5/3

. ~5.8!

The inspiralling of two neutron stars of 1.4 solar masses e
will then give SNR51 at a source distancer .70 kpc. The
inspiralling of two black holes of 10 solar masses each w
give SNR51 at a distancer .300 kpc. To get this last limit
we have integrated Eq.~5.1! up to v5 cycles52p(178 Hz).

B. Spherical detectors

A GW excites those vibrational modes of a resonant bo
having the proper simmetry. Most people consider the n
generation of resonant-mass detectors will be of spher
shape. In the framework of the JBD theory the spheroi
modes withl 52 andl 50 are sensitive to the incoming GW
@2,20#. Thanks to its multimode nature, a single sphere
capable of detecting GWs from all directions and polariz
tions. We evaluate the SNR of a resonant-mass detecto
spherical shape for its quadrupole mode withm50 and its
monopole mode. In a resonant-mass detector,Sh( f ) is a reso-
nant curve and can be characterized by its value at reson
Sh( f n) and by its half height width@21#. Sh( f n) can thus be
written as

Sh~ f n!5
G

c3

4kT

snQnf n
. ~5.9!

Heresn is the cross section associated with thenth resonant
mode,T is the thermodynamic temperature of the detect
andQn is the quality factor of the mode.

The half height width ofSh( f ) gives the bandwidth of the
resonant mode

D f n5
f n

Qn
Gn

21/2. ~5.10!

Here,Gn is the ratio of the wideband noise in thenth reso-
nance bandwidth to the narrowband noise.

From the resonant-mass detector viewpoint, the chirp
nal can be treated as a transient GW, depositing energy
time-scale short with respect to the detector damping tim
We can then consider constant the Fourier transform of
wave form within the band of the detector and write@21#

SNR5
2pD f nuH~ f n!u2

Sh~ f n!
. ~5.11!
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The cross sections associated to the vibrational modes
l 50 andl 52, m50 are, respectively@22#,

s~n0!5Hn

GMvs
2

c3~vBD12!
, ~5.12!

s~n2!5
Fn

6

GMvs
2

c3~vBD12!
. ~5.13!

All parameters entering the previous equation refer to
detector:M is its mass,vs the sound velocity of the materia
and the constantsHn and Fn are given in Ref.@22#. The
signal-to-noise ratio can be calculated analytically by
proximating the wave form with a truncated Taylor expa
sion aroundt50, wherevg(t50)5vnl @23,24#

hs~ t !'Gj0~ t50!sinFvnlt1
1

2S dv

dt D
t50

t2G . ~5.14!

Using quantum limited readout systems, one finally obta

~SNRn! l 505
5321/3HnG5/3

32~vBD12!~12vBD119!\c3

Mc
5/3Mvs

2

r 2vn0
4/3

sin4g

~5.15!

~SNRn! l 525
5321/3FnG5/3

192~vBD12!~12vBD119!\c3

3
Mc

5/3Mvs
2

r 2vn0
4/3

sin4g, ~5.16!

which are respectively the signal-to-noise ratio for the mo
with l 50 andl 52, m50 of a spherical detector.

It has been proposed to realize spherical detectors
3m diameter, made of copper alloys, with mass of the or
of 100 tons@26#. This proposed detector has resonant f
quencies of v1252p3807 rad/s and v1052p
31655 rad/s. In the case of optimally oriented orbits~incli-
nation angleg5p/2) andvBD5600, the inspiralling of two
compact objects of 1.4 solar masses each will then be
tected with SNR 51 up to a source distancer (v10)
.30 kpc andr (v12).30 kpc.

VI. SUMMARY AND CONCLUSIONS

In this paper we have studied the wave forms emitted
a system of binary stars in the framework of the JBD the
and computed the power emitted in GWs for the tensor
scalar components. Eventually we derived limits for the
tectability of such signals by interferometers and reson
mass detectors. In the former case we left aside the que
of the detectability and discrimination of the scalar comp
nent of the GW@3# and we have concentrated on wav
impinging from the most favourable direction. The dete
ability ranges obtained in Secs. V A and V B for the sca
component of the GWs emitted by a binary system, v
from few tens to few hundreds kpc for masses ranging fr
04402
ith

e

-
-

s

s
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r
-

e-

y
y
d
-

nt
ion
-

-
r
y

those of typical neutron stars (1.4M () to those of typical
black holes (10M (). We remind the reader that for th
purely tensorial component~in this case the results obtaine
in the framework of the JBD theory are practically the sa
of those of GR! the detectability range~for 1.4M () is r
.120 Mpc for spherical detectors@25# andr .300 Mpc for
interferometers@19#. The expected rate of coalescence eve
is of the order of 1 per year up to 100 Mpc@27#. We can thus
conclude that binary systems look less promising than gr
tational collapses@22# as sources of detectable scalar GW
from the next generation of earth-based detectors.

APPENDIX A:

In order to calculate the coefficientsXjm defined in Eq.
~3.13!, let us first expressXjm as a sum of Fourier compo
nents

Xjm~ t !5 (
n52`

1`

~Xjm!neinb, ~A1!

whereb is the mean anomaly which, in terms of the orbit
frequencyv0 and of the time of periastron passageT0 ~or
equivalently in terms of the eccentric anomalya and the
eccentricity!, results

b5v0~ t2T0!5a2esina. ~A2!

In the so-called quadrupole approximationy5vd/c!1, the
spherical Bessel functionsj l(y), which appear in Eq.~3.13!,
can be written as

j l~y!5 (
k50

`
~21!kyl 12k

2kk! ~2l 12k11!!!
. ~A3!

Making use of the Newtonian approximation@including only
two terms of the series~A3!#, from ~2.11! and~3.13! one can
obtainX00 as

X005
4p ivw0

vBD12 EV
S 12

~vr 8!2

6 D
3Y00rS 11P23

p

r
1

2vBD11

vBD12
U DdV. ~A4!

To simplify Eq.~A4! we use the post-Newtonian expressio
of the conserved quantities@14#

P05E rS 11v21
5vBD14

2~vBD12!
U1P DdxW , ~A5!

Pi5E rS 11v21
5vBD14

2~vBD12!
U1P1

p

r D v idxW

2
1

2E rS 11
v2

2
1

3~vBD11!

vBD12
U DWidxW , ~A6!

where
7-7
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Wi5E r8
@vW 8•uxW2xW8u#~x2x8! i

uxW2xW8u3
dxW8. ~A7!

To the required accuracy and modulo constants, one
obtains

X0052
A4p ivw0m

vBD12 S v21
~vd!2

6
1

m

r D . ~A8!

In terms of the eccentric anomalya, the above expressio
reads

X00~ t !52
A4p ivw0mm

a~vBD12!
Gj 50 , ~A9!

where

Gj 505
11ecosa

12ecosa
1

n2

6
~12ecosa!21

1

12ecosa
.

~A10!

Let us expressGj 50 as a sum of Fourier components

Gj 505 (
n50

`

Ancos~nb!, ~A11!

whereb is the mean anomaly defined in Eq.~A2!. Using the
integral expression of the Bessel functions

Jn~x!5
1

pE0

p

cos~na2x sin a!da ~A12!

and the recursion formula

Jn11~x!1Jn21~x!5
2n

x
Jn~x! ~A13!

results in

An5
2

pE0

p

Gj 50cos~nb!db5
16

3
Jn~ne!. ~A14!

Then one finally has

~X00!n52
16A2p

3

iv0w0

vBD12

mm

a
nJn~ne!. ~A15!

Choosing the orbital plane as thex-y plane, yieldsX1050
and

X1615
4p ivw0

vBD12 EV

vr 8

3
Y161* ~u,f!r

3S 11P23
p

r
1

2vBD11

vBD12
U D . ~A16!

Defining G5V2 /m22V1 /m1 , one then obtains to the re
quired order
04402
en

X1615
4p iv2w0mG

A6p~vBD12!
d~cosc7 i sin c!, ~A17!

where c is the true anomaly. In terms of the eccentr
anomalya, Eq. ~A17! results in

X16152A2p

3

2iv2w0Gma

vBD12
Gj 51 , ~A18!

where

Gj 5156~cosa2e!2 i ~12e2!1/2sina. ~A19!

The binary system center of mass calculated with respec
the gravitational self-energiesVa does not coincide with the
center of mass with respect to the inertial massesma of the
two bodies, if the masses are different~Nordtvedt effect!: the
resulting dipole moment is, as we have seen, a sourc
scalar radiation. If we expressGj 51 as a sum of Fourier
components

Gj 515B01 (
n51

`

@Bncos~nb!1Cnsin~nb!#, ~A20!

we obtain

Bn56
2

n
Jn8~ne! ~A21!

~where the prime indicates derivative with respect to the
gumentne) and

Cn5
2

pE0

p

Gj 51sin~nb!db52
2i

ne
~12e2!1/2Jn~ne!.

~A22!

Then thenth component of the coefficientX161 is

~X161!n52A2p

3

2iv0
2w0

vBD12
Gma

3F6Jn8~ne!2
1

e
~12e2!1/2Jn~ne!G . ~A23!

Finally, in the casej 52 one obtainsX26150 and

X205
4p iv3w0

15~vBD12!
E

V
r 82Y20* ~u,f!rdV, ~A24!

X2625
4p iv3w0

15~vBD12!
E

V
r 82Y262* ~u,f!rdV, ~A25!

and in terms ofa, using the Newtonian approximation,

X20~ t !5Ap

5

iv3w0ma2

3~vBD12!
~12cosa!2, ~A26!

X26257Ap

30

iv3w0ma2

~vBD12!
Gj 52 , ~A27!
7-8



ar

e

GRAVITATIONAL WAVE RADIATION FROM COMPACT . . . PHYSICAL REVIEW D 59 044027
where

Gj 525D01 (
n51

`

@Dncos~nb!1Ensin~nb!#. ~A28!

CalculatingDn andEn

Dn52
4

nF 1

ne2 ~22e2!Jn~ne!1
2

e
~e221!Jn8~ne!G , ~A29!

En57
8i

n F12e2

e2 Jn~ne!2
1

ne
Jn8~ne!G , ~A30!

the nth components result in

~X20!n5
2

3
Ap

5

iv0
3w0

vBD12
ma2nJn~ne!, ~A31!

~X262!n572Ap

30

iv0
3w0

vBD12
ma2

1

n
$~e222!Jn~ne!/~ne2!

12~12e2!Jn8~ne!/e72~12e2!1/2

3@~12e2!Jn~ne!/e22Jn8~ne!/~ne!#%. ~A32!

APPENDIX B:

We want to determine explicitly the form of the scal
GWs radiated by a binary system. From Eqs.~3.12! and
~A8!, ~A17!, ~A24!, ~A25!, and taking into account that in
the limit r→` the spherical Hankel functions become
di
E

F.

ev

e

,

04402
hl
~1!~vr !;

ei [vr 2~ l 11!p/2]

vr
, ~B1!

one can easily obtain

j~xW ,v!52
2m

~2vBD13!Gr
eivr$v21m/d1~vd!2/6

12iv~V2 /m22V1 /m1!n̂•dW 2v2d2~3nz
221!/12

1v2@~ n̂•dW !22~nxdy2nydx!
2#/4%v , ~B2!

where the subscriptv indicates that all the quantities in th
right member of the above expression~B2! are to be consid-
ered as Fourier components with frequencyv @for example,
v→v(v)#.

The time dependent amplitude is@14#

j~xW ,t !5j~xW ,v!e2 ivt1c.c.52
2m

~2vBD13!Gr

3Fv21
m

d
2

1

6

d2

dt2
~dkd

k!S 12
3nz

221

2 D
22Gn̂•vW 2

d2

dt2
~ n̂•dW !22

~nxdy2nydx!
2

4 G
52

2m

~2vBD13!GrFv21
m

d
22Gn̂•vW

2~ n̂•vW !21
m

d3n̂•dW G , ~B3!

where we have setv5v(v)e2 iv(t2r )1c.c., etc.
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