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Gravitational wave radiation from compact binary systems in the Jordan-Brans-Dicke theory
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In this paper we analyze the signal emitted by a compact binary system in the Jordan-Brans-Dicke theory.
We compute the scalar and tensor components of the power radiated by the source and study the scalar wave
form. Eventually we consider the detectability of the scalar component of the radiation by interferometers and
resonant-mass detectof§0556-282(99)01202-3

PACS numbe(s): 04.30.Db, 04.50:h

I. INTRODUCTION attempt to explore a possible experimental signature of string
theory as already discussed in Rgf]. Furthermore the re-
The detection of gravitational wavé&Ws) is a field of ~ Sults obtained here generalize to any theory with a JBD type
active research from the point of view of both the develop-coupling between matter and gravitation. o
ment of suitable detectors and of the study of possible 1here has been much work in this domain in the past

sources and signal analysis. The detectors now operating ¥§2'S: Before going to the plan of the paper, we shortly re-

GW observatories are of the resonant-mass type and haveV$W it. In Ref. [5] binary systems were first proposed as

sensitivity to typical millisecond GW bursts oh~6 possible sources from which extract more stringent bounds

%1071 (h is the wave amplitudeor, in spectral units, ©7 ©8D [see Eq.2.]) for its definition] than those obtained

1021 (Hz)~ Y2 over a bandwidth of a few Hz around 1 kHz from solar system data. An analysis of spherically symmetric

[1]. The first bound is appropriate for describing the sensi0!lapse of inhomogeneous dust was carried on in F3f.

tivity to gravitational collapses while the square of the sec-2nd later confirmed in Ref6]. The case of homogeneous

ond bound represents the input GW spectrum that WouléjUSI was treated in Reff7]. In 'Ref. [8] & test particle a_roynd

produce a signal equal to the noise spectrum actually ot Kerr black hole was stu@ed and results very similar to
served at the output of the detector. With this sensitivity it ist"oS€ Of our Sec. VA for interferometers were found. In
possible to monitor the strongest potential sources of GWs iﬁzefs_. [_9'10] It was pomte_d out that deviations from gene_ral
our galaxy and in the local groulistances of~1 Mpc). In relativity can be much different in strong and weak gravity.

order to improve the sensitivity of these instruments, mord" Ref- [10] these deviations were parametrized in a two-

advanced transducers and amplifiers are under developme‘qun.enSIonaI space and' exclusion plots were drawn out of the
vailable data. Finally in Ref11] spherical collapses were

as well as new resonant-mass detectors of spherical shap?e. died in a f i hich Keot i .
Furthermore a huge effort is under way to build large lasetudied in a formalism which kept in account strong gravity

interferometers. It is widely believed that in the near future,effeCts' . .
sensitivities of the order of IG® (Hz) %2 over a band- The plan of the paper is the following. In Sec. Il we
width of several hundred Hz will be attained allowing the describe the scalar and tensor GW solutions of the JBD

observation of GW sources up to distances of the order ot'heory. In Sec. lil we compute the power emitted in tensor

100 Mpc [1]. It thus seems that the detection of GWs isand scala;]r GWSI by a binfary s;llstesm. "\}SGC' Ideehcor_wcen-
highly probable at the beginning of the new millennium. |n rate on the scalar wave form. In Sec. V, we study the inter-

addition to information of astrophysical interest, the detec-2ction between t.h_e scalar wave form and two types of earth-
tion of GWs gives an opportunity to test the content of thebaSed detec_to_rs. |r.1te.rferometers and sphgrlcal resongnt-mass
theory of gravity. In fact, it has been shown that a Simg"edetectors, giving limits for the detectability of the signals

spherical resonant-mass deted®}, or an array of interfer- coming from typical bin_ary sources. Eventually, in Sec. VI,
ometerg 3], have the capability to probe the spin content of Ve draw some conclusions.
the incoming GWs.

One of the most intensively studied GW sources is the 1l. SCALAR AND TENSOR GWs IN THE JBD THEORY
inspiralling compact binary systefd] made of neutron stars
or black holes. In the Newtonian regime, the system has a. ) .
clean analytic behavior and emits a wave-form of increasin 'g]] the metric but decouples from matter, the action reads
amplitude and frequency that can sweep up to the kHz ran
of fre_quencies._ln this paper we study the radiation em?tted S=Syal #.9,.,]+ Sul ¥n.9,..]
by this source in the framework of the Jordan-Brans-Dicke 5
(JBD) theory. We consider this theory to be of particular _ ¢ 4y _“BD .,
interest, since the coupling between the scalar field and the T 16w d’xV—g 4R @ 9" 0,bd,¢
metric has the same form of that of string theory, which is
widely believed to give a consistent quantum extension of
classical gravity. Our main motivation then comes from the

In the Jordan-Fierz frame, in which the scalar field mixes

1
#2 [ Xl a0, 2.1
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wherewgp is a dimensionless constant, whose lower boundhe total pressurp and the specific energy densitly (that is

is fixed to bewgp~600 by experimental dafd 3], g, is the
metric tensorg is a scalar field, andgr,, collectively denotes

the matter fields of the theory.

As a preliminary analysis, we perform a weak field ap- oo 1
proximation around the background given by a Minkowskian” ®o
metric and a constant expectation value for the scalar field

g,lLV: 77;LV+ h,uV ’
p=poté&. (2.2

The standard parametrizationpg=2(wgp+2)/G(2wpgp

the ratio of energy density to rest-mass densitg get(for a
more detailed derivation, see R¢14])

S —T 1 ! 6—2 d
T 2Qwept3d)\T 27 “g
p P Z2wgptl
—m 1+H—3;+mu . (2.11

+3), with G the Newton constant, reproduces GR in thegar from the source, Eq$2.5) and (2.6) admit wavelike

limit wgp—<°, which implies ¢o— 1/G. Defining the new

field

1 §
a,u,V:h,uV_En,uvh_n,u,V;OI (23)

whereh is the trace of the fluctuation
gauge

wy

d,0""=0 (2.4)

one can write the field equations in the following form:

5.9%0, = — 2T 2.5
@ wv ®o Tuvs .
ape 5T g 2.6
dq0 §—m ) (2.6
where
1
Tuv™— Q’TO(T,U.V—FtMv)! (27)
S= T 1 16 2§
T 2Qwppt+3)\T 27 g,
1 N 2 N 08
EE&“(% §)+‘70¢9a(§t9 & . (2.9

and choosing the

solutions, which are superpositions of terms of the form

0,,,(X) = A, (X, 0)exp(ik*x,) + c.C., (2.12
&(xX)= B()Z, w)expik*x,)+c.c..
(2.13

Without affecting the gauge conditid@.4), one can impose
h=—-2¢/ ¢, (so thatd,,=h,,,). Gauging away the superflu-
ous components, one can write the amplitédg in terms of

the three degrees of freedom corresponding to states with
helicities +2 and Q[15]. For a wave traveling in thedirec-

tion, one thus obtains

0 0 0 0
0 e;—b € 0

Aw=|0 e, -—ey-b 0] (2.149
0 0 0 0

whereb=B/¢,.

Ill. POWER EMITTED IN GWs

The power emitted by a source in GWs depends on the
stress-energy pseudo-tengéf according to the following
expression:

Pow= r2f ddO = rzf (%)%, dQ, (3.1

In Eq.(2.7), T, is the matter stress-energy tensor apgis _ . . .
the gravitational stress-energy pseudo-tensor, that is a fungherer is the radius of a sphere which contains the source,
tion of quadratic order in the weak gravitational fields, {2 is the solid angle® is the energy flux, and the angular
andé. The reason why we have written the field equations abrackets imply an average over a region of size much larger
the quadratic order i, and ¢ is that in this way, as we than the wavelength of the GW. At the quadratic order in the
will see later, the expressions f@r,, and ¢ include all the ~ Wweak fields we find

terms of order ¢/c)?, wherev is the typical velocity of the

source(Newtonian approximation A<PoC4[ 4(wppt1)
Let us now compute® andS at the order ¢/c)?. Intro- (toy) = _Zgzﬂ o2 ((808)(908))
ducing the Newtonian potenti&l produced by the rest-mass 0
densityp,
A +((dohap) (doh*P)) |. 3.2
U= [ 28D g 2.9 o _
|x—x'| Substituting Egs(2.12, (2.13 into Eq.(3.2), one gets
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A¢Oc4wz[ 2(2wgp+3) necker deltag(n;e=0)= é,,, and the tensor GW frequency
(toy)=—2 16 > |B| is twice the orbital frequency. Summing over all the harmon-
4 { ®o ics n [16], one obtains
1 o 3 22

aB* — a |2 32 G mlmzm

A Aa’g 2|A a| ’ 33 Pien= E (Pten)nzg (POCS as f(e), (3.9
and, using Eq(2.14), where
4 2

~¢oC w 1 73 37

(to)=—2 8 [|e11l®+|e1d*+ (2wgp+3)|b|?]. f(e)= (1——ez)7’2< 1+ e+ 96¢ ) (3.9
(3.9

~ Equations(3.6) and(3.8) are obtained in the approximation
From Eq.(3.4) we see that the purely scalar contribution, of pointlike masse$weak self-gravity. For compact binary
associated td, and the traceless tensorial contribution, as-systems such as PSR 19%3 16, they can be used upon
sociated toe,,, are completely decoupled and can thus bereplacing the masses);,m,, by the Schwarzschild masses
treated independently. of the stard18].

A. Power emitted in tensor GWs B. Power emitted in scalar GWs

Equation(2.7) differs from the corresponding tensor field  We now rewrite the scalar wave solutigg.13 in the
in GR only by a multiplicative factor. Then we can directly following way:
write the final result using the well-known expression for the

power emitted by a system of binary stars in GR: §(>Z,t)=§(>2,w)e’i“’t+ c.C. (3.10
In vacuq the spatial part of the previous solutiGh 10 sat-

(Pren)n= Goo Go. (Pern- (3.9 isfies the Helmholtz equation
If we take wgp=600 in Eq.(3.5), the multiplicative factor (V2+ w?)é(x,0)=0. (3.1

1/G ¢, differs from one for one part in £0

In (3.5 (PgRr)n is the power emitted at frequencywg
(where wg is the orbital frequengyby a system of binary
stars according to GIRL6,17], averaged over one period of EX,0) =2 Ximh{P(0r)Y|n(6,9), (3.12
the elliptical motion and calculated in the Newtonian ap- jm
proximation

The solution of Eq(3.11) can be written as

Wherehl(l)(x) are the spherical Hankel functions of the first
32 G* m2m2m kind, r is the distance of the source from the observer,
(PGR)nZE 5 ! 2 ——=—g(n;e), (3.6) Y_jm(e,go) are the scalar spherical harmonic;, and thg coeffi-
cients X;,, give the amplitudes of the various multipoles

. which are present in the scalar radiation field. Solving the
wherem; andm, are the masses of the two stamsis the  jnnomogeneous wave equati¢6), we find

total massm=m;+m,, ais the major semiaxis, arglis the
eccentrity of the ellipse. The functia(n;e) depends on the i . R -
Bessel functions,(ne): ij=1677|wfvl|(wf )Yin(0,0)S(X,0)dV, (3.13

4

n . . . .
g(n:e)= i [Jﬁ(ne)(ez—2)2/(n2e4)+4Jﬁ(ne)(1—e2)3/e4 where j,(x) are the spherical Bessel functions ardis a

radial coordinate which assumes its values in the vold¥me
occupied by the source.

+Ja(ne)/(3n%)+4J,(ne)Jj(ne) (e’ 2) Substituting Eq(3.2) in Eq. (3.1), considering the expres-
) 3 / sions(3.10 and(3.12, and averaging over time, one finally
X(1—e%)/(ne’)—8J,(ne)Jy(ne) obtains
X(1—e?)2 3144’2 1—e?)2/2
(1—-e)%(ne’)]+4Jp%(ne)(1-e)7e (2wgo+3)C )
+43/%(ne)(1—e?)/(n%e?). (3.7) Pscar™ 8m¢q ,E Ximl* (319

In the last phases of the binary system evolution, the orbiTo compute the power radiated in scalar GWs, one has to
becomes more and more circular, because the bodies radiatetermine the coefficient¥;,, defined in Eq.(3.13. The

the most at their closest approaktf]. In the case of null detailed calculations can be found in Appendix A, while here
eccentricity e=0, the functiong(n;e) reduces to a Kro- we only give the final results. Introducing the reduced mass
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FIG. 1. Monopole function against the indexfor different
values of the eccentricitg.

of the binary systenx=m;m,/m and the gravitational self-

energy for the bodyw (with a=1,2)

0 :_gj p(¥)p(x')
a 2 Vs |)Z_)'(’/|

one can write the Fourier components with frequenay; in
the Newtonian approximation gdsee Eqs.(A15), (A23),
(A31), (A32)]

d3xd3x’ (3.15

16V27 iwgpg Mu

(Xooh== "5~ o155 (NS, (316
/2772|w0<p0 Q, Qg
(Xltl)n__ 3 wBD+2 m_2_m_1 ,LLa
' 1 2\1/2
X tJn(ne)—E(l—e) Jn(ne)|, (3.17
2 [miedeo
(Xzo)n=§\[5 5 kaindy(ne), (3.18

[ 1
(Xgs2)n= n@%ua {(€-2)3,(ne)l(ne)

+2(1—62)J,’1(ne)/e1 2(1—e?)12
X[(1-€*)Ju(ne)/e’~Jj(ne)/(ne)]}.  (3.19

Substituting these expressions in .14, leads to the
power radiated in scalar GWSs in timth harmonic

(3.20

(Pscaln= |Djn:O"' PL=1+ |:>jn=2!

where the monopole, dipole, and quadrupole terms are, re-

spectively,

64 mu’G*
9((UBD+ 2) aSCS

pl=0= n2J2(ne)

64 mu’G’
- 9(wgpt2) a’c®

m(n;e),

(3.2)

PHYSICAL REVIEW [39 044027

FIG. 2. Dipole function against the indexfor different values

of the eccentricitye.

4 Z,LLZGg
3(wBD+ 2) a403
Q, 91) 2

n

pi-i=

X

2J/2ne
2ot e

1
+?(1—e2)Jﬁ(ne)

_ 4 mZMZGg/QZ Ql 2d .
B 3((1)BD+2) a4C3 \mz ml (n,e),
(3.22

8 3,24

m>u-G
15 wpp+2)

pl=2= g(n:e). (3.23

a’c®

In Figs. 1-3 we plot the monopola(n;e), dipoled(n;e),
and quadrupolgy(n;e) functions against the inder, for
different values of the eccentricity

From the figures one can infer the dominant harmonics in
the scalar GW radiation. In the case of circular orbit, the
dipole functiond(n;e) reduces to a Kronecker deltfn;e
=0)= 6,1, while the monopole functionom(n;e) goes to
zero.

The total power radiated in scalar GWs by a binary sys-
tem is the sum of three terms

PscaI: Pj=0+ Pj=l+ Pj=2,

(3.29

FIG. 3. Quadrupole function against the indexor different
values of the eccentricitg.

044027-4
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where
pi=0_ 16 G_“mfm%m e? /1+e_2
Nwgpt2) ¢® a (1-e?)7R " 4/
(3.25
2
pi=1= 2 &_&
a)BD+2 m2 ml
GImimi; 1 e? -
“F T e it 2) (3.29
pi=2_ 8 G_4 mim3m
15 wgp+2) c® a°
X 1+ 3 2+ {ot 3.2
(1-)7? 24e 96e . (3.2

Note thatP!=0 PI=1 PI=2 all go to zero in the limitwgp

— 00,

IV. SCALAR GWs

We now give the explicit form of the scalar GWs radiated

PHYSICAL REVIEW D 59 044027

From Egs(3.12), (3.16—(3.19 and(B3) one can deduce
the form of the scalar fieldsee Appendix B for details
which, for equal masses, is

m - -y m . .
+E—(n-v) +Eg(nd) s
(4.5

wherer is the distance of the source from the observer, and

n is the versor of the line of sight from the observer to the
binary system center of mass. Indicating wittthe inclina-

tion angle, that is the angle between the orbital plane and the
reference planédefined to be a plane perpendicular to the
line of sighy, and with¢ the true anomaly, that is the angle
betweend and thex axis in the orbital planex-y, yields

n-d=dsiny sin ¢. Then from Eq.4.5 one obtains

2
6= 170 53)"

=——————sir? 2 :
0= S ghar ST cof2u), (4
which can also be written as
()= &o(sin x(7)+ x1, 4.7

by a binary system. To this end, note that the major semiaxi#/here x is an arbitrary phase and the amplitugg(7) is
a is related to the total energy of the system through the given by

following equation:

Gmym,
2E

a=—

4.1

Let us consider the case of a circular orbit, remembering that
in the last phase of evolution of a binary system this condi-
tion is usually satisfied. Furthermore we will also assume
m;=m,. With these positions only the quadrupole term

2Gum )
50(7'):—4 sm2y
(2wpp+3)cTdr
1 [ wgp+2 \¥156) M ”
T 22wept 31| 12w +19] | o1t s oY
(4.8

(3.23 of the gravitational radiation is different from zero. In the last expression, we have introduced the definition of
The total power radiated in GWs, averaged over time, is thetthe chirp mas$v ;= (m;m,) ¥ m®,

given by Eq.(3.8), (3.25—(3.27

4 ~a2qn2
8 G* mim;m

P Bwogpt2) &

[6(2wBD+ 3) + 1],
4.2

V. DETECTABILITY OF THE SCALAR GWs

Let us now study the interaction of the scalar GWs with
two types of GW detectors.
As usual, we characterize the sensitivity of the detector by

whered is the relative distance between the two stars. Thdéhe spectral density of straiS,(f)[Hz] *. The optimum

time variation ofd in one orbital period is

o Sz 4.3
- 2E2 . ( )

Finally, substituting Eqs(4.1), (4.2) in Eq. (4.3) and inte-
grating over time, one obtains

2 120gp+19 G®mymm\|**
d=2| ¢ ) = ™, (4.9

where we have defined=t.—t, t. being the time of the
collapse between the two bodies.

performance of a detector is obtained by filtering the output
with a filter matched to the signal. The energy signal-to-
noise ratio SNR of the filter output is given by the well-
known formula:

MR
SNR‘J_m 5, af

(5.9

where, in our caseH(f) is the Fourier transform of the
scalar gravitational wave formg(t) = G&q(t).

We must now take into account the astrophysical restric-
tions on the validity of the wave forrf#.7) which is obtained
in the Newtonian approximation for pointlike masses. In the

044027-5
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following, we will take the point of view that this approxi-

PHYSICAL REVIEW [39 044027

Integrating Eq.5.1) over the range 10-500 Hz, one ob-

mation breaks down when there are five cycles remaining ttains the following SNR:

collapse[24,25.

The five-cycles limit will be used to restrict the range of
M. over which our analysis will be performed. From Eq.

(4.4), one can obtain

Gm
wy(7)=2we=2 ra

1505 )3/8(

_ wBD+2
=2 6465/3

12wgp+ 19

3/8

3/8 1
M 5% T
(5.2

Integrating Eq(5.2) yields the amount of phase until coales-

cence

16 3/8 T 5/8
x(r)=g< (M—) . (5.3

Setting Eq.(5.3) equal to the limit periodTs ¢yces=5(27),
solving for 7, and using Eq(5.2) leads to

(UBD+ 2
12wBD+ 19

1&5 3/8
6465/3> (

(6870 Hp| 222 )Mo g,
W5 cycles™ 27 ( 2 12055+ 19 M_c (5.9
Taking wgp=600, the previous limit reads
Mo
5 cycles= 2m(1547 Hz)M—. (5.5

C

A. Interferometers

r -2 M 5/3
SNR=7.7x 10* M_pC) M;
( wBD+2 1/2[ 1 2 (5 7)
120pp+19) |2(2wgp+3)] '
For wgp=600, we find
r -2 M 5/3
SNR=3.8x 10—3(M—IDC M; (5.8

The inspiralling of two neutron stars of 1.4 solar masses each
will then give SNR=1 at a source distange=70 kpc. The
inspiralling of two black holes of 10 solar masses each will
give SNR=1 at a distance=300 kpc. To get this last limit
we have integrated E@5.1) up t0 ws ¢ygies= 27(178 Hz).

B. Spherical detectors

A GW excites those vibrational modes of a resonant body
having the proper simmetry. Most people consider the next
generation of resonant-mass detectors will be of spherical
shape. In the framework of the JBD theory the spheroidal
modes with =2 andl =0 are sensitive to the incoming GWs
[2,20]. Thanks to its multimode nature, a single sphere is
capable of detecting GWs from all directions and polariza-
tions. We evaluate the SNR of a resonant-mass detector of
spherical shape for its quadrupole mode witl=0 and its
monopole mode. In a resonant-mass dete&gf) is a reso-
nant curve and can be characterized by its value at resonance
Sy(f,) and by its half height widtfi21]. S,(f,)) can thus be

An interferometric detector measures the relative diswritten as
placements between the mirrored faces of test masses ar-

ranged in the L-shaped configuration of a Michelson inter-
ferometer. The directivity antenna pattern for a tensorial

G 4kT

_—. 5.9
c® 0,Qnfhn ®9

Sh(fn)=

wave is such that the maximum detector output is obtained

for a wave inpinging perpendicularly with respect to the Here ) is the cross section associated with tik resonant
plane defined by the interferometer arms. On the contrary ghode, T is the thermodynamic temperature of the detector,

scalar JBD wavdwhich is also transversénpinging in the

same direction will give a null effect. In the case of a scalar

andQ,, is the quality factor of the mode.
The half height width of5,(f) gives the bandwidth of the

wave, the maximum effect will be obtained for a wave resonant mode
propagating along one interferometer arm. Assuming such a

direction and setting siy=1 in Eq. (4.8, we can, for in-

stance, evaluate the SNR for the VIRGO interferometer,

presently under construction. We use &y(f) the VIRGO
noise spectrum as modeled in Rgf9], which is the sum of

three main components: thermal noise in the pendola, ther-

mal noise in the mirrors, shot noise at high frequency:

foys £yt
“1(100 Hz) +“2(1oo H;)

Hz 1,

Sn(f)=10""

+0[3 (56)

f 2
100 Hz)

wherea,=2.0, ¢,=91.8, anda;=1.23.

fn

A=y
n

—-1/2
r;%

(5.10

Here,I',, is the ratio of the wideband noise in tim¢h reso-
nance bandwidth to the narrowband noise.

From the resonant-mass detector viewpoint, the chirp sig-
nal can be treated as a transient GW, depositing energy in a
time-scale short with respect to the detector damping time.
We can then consider constant the Fourier transform of the
wave form within the band of the detector and wifigd]

2mAfH(f,)]

SNR= S.(f) (5.11

044027-6
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The cross sections associated to the vibrational modes witthose of typical neutron stars (M4,) to those of typical

=0 andl=2, m=0 are, respectivelj22], black holes (1My). We remind the reader that for the
purely tensorial componerin this case the results obtained
GMU§ in the framework of the JBD theory are practically the same
U(nO):Hnm’ (512 of those of GR the detectability rangéfor 1.4AM ) is r

=120 Mpc for spherical detectofg5] andr=300 Mpc for

2 interferometer$19]. The expected rate of coalescence events
E GMug (5.13 is of the order of 1 per year up to 100 Mp27]. We can thus
6 c3(wgpt2) ' ' conclude that binary systems look less promising than gravi-

tational collapse$22] as sources of detectable scalar GWs

All parameters entering the previous equation refer to thérom the next generation of earth-based detectors.
detector:M is its massy the sound velocity of the material
and the constantsl,, and F, are given in Ref[22]. The APPENDIX A:
signal-to-noise ratio can be calculated analytically by ap-
proximating the wave form with a truncated Taylor expan- In order to calculate the coefficienk,, defined in Eq.

On2)~

sion around =0, wherewy(t=0)= wp, [23,24 (3.13, let us first expresX,, as a sum of Fourier compo-
nents
) 1/dw
hy(t)~G&(t=0)sin wnt+ 5| t?|. (5.19 +20 _
t=0 Xim(D= 2 (Xjm)ne™, (A1)

Using quantum limited readout systems, one finally obtains
where 8 is the mean anomaly which, in terms of the orbital
5x 213, G5B M PMou2 frequencyw, and of the time of periastron passafg (or
SIn“y ; ; .
32 wpp+2)(120pp+ 19)4C3 20" eqU|vaI9ntIy in terms of the eccentric anomalyand the
(5.15 eccentricity, results

(SNRy)|=0=

5% 213 G5/3 B=wo(t—Ty) = a—esina. (A2)
SNR))|_p= L
(SNRo-2 192 wgp+2)(12wgp+ 1973 In the so-called quadrupole approximatips wd/c<<1, the
) spherical Bessel functiorjg(y), which appear in Eq3.13),
MSPMo?Z can be written as
XWSIHL")/, (5.16

M wno % (—1)kyl+2

which are respectively the signal-to-noise ratio for the modes J'(y):go 2KK1 (214 2k+ 1)1 (A3)

with =0 andl=2, m=0 of a spherical detector.

It has been proposed to realize spherical detectors witlyaking use of the Newtonian approximatifincluding only

3m diameter, made of copper alloys, with mass of the ordefq terms of the seriegA3)], from (2.11) and(3.13 one can
of 100 tons[26]. This proposed detector has resonant fre-piain X, as

quencies of w;,=27X807 rad/s and w=27
X 1655 rad/s. In the case of optimally oriented orlgitli- Amiwe, (wr’)?
nation angley= 7/2) andwgp=600, the inspiralling of two Oosz ( "6 )
compact objects of 1.4 solar masses each will then be de- BD v

tected with SNR=1 up to a source distance(wqg) P 2wgpt1l
=30 kpc andr(w,5)=30 kpc. XYoo 1+H—3—+—U)dv. (A4)
p wppt2
VI. SUMMARY AND CONCLUSIONS To simplify Eq.(A4) we use the post-Newtonian expressions

In this paper we have studied the wave forms emitted b)pf the conserved quantitiga4]
a system of binary stars in the framework of the JBD theory
and computed the power emitted in GWs for the tensor and pozf p( 1424+
scalar components. Eventually we derived limits for the de-
tectability of such signals by interferometers and resonant

Sosth L ek A5
2agor2) O TH[Ax (A9

mass detectors. In the former case we left aside the question pi_ 1442 Swgpt U+H+p idx

of the detectability and discrimination of the scalar compo- -]r VT 2 (wept 2) 5V 9%
nent of the GW[3] and we have concentrated on waves L > 4 1

impingi irecti - v wgpt -
impinging from the_ mos_t favourable direction. The detect il —+(LU Widx, (A6)
ability ranges obtained in Secs. VA and V B for the scalar 2 2 wppt2

component of the GWs emitted by a binary system, vary
from few tens to few hundreds kpc for masses ranging fronwhere

044027-7
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w-{,

o X=Xx"|J(x=x"); -
,[v | 11( )ldX'. (A7)

X—x'|?

PHYSICAL REVIEW [39 044027

_ Ami w?eouG

Xypg =
1= \/67T((1)BD+ 2)

d(cosy=i sin ), (A17)

To the required accuracy and modulo constants, one thewhere ¢ is the true anomaly. In terms of the eccentric

obtains
\/47Tiw<po,u,/ ) (od)2 m
Xoo— - (UBD+2 \U + 6 + T . (AS)
In terms of the eccentric anomaly, the above expression
reads
VAmiwpgum
Xoo(t)=— Talwggt2) Ci=0: (A9)
where
s _1+ecosaJr n? L 2, 1
i=0=T ecosa | 6 (170N T orhes
(A10)

Let us expres$; -, as a sum of Fourier components

Gj_o= ngo A.cognp), (A11)

whereg is the mean anomaly defined in Eé&2). Using the
integral expression of the Bessel functions

1 (=
Jn(X)= ;J cogna—Xxsin a)da (A12)
0
and the recursion formula
2n
In+1(X) F+In-1(X) =~ In(x) (AL3)

results in

2 (= 16
A= f Gj-ocognp)dB= EJn(ne). (Al14)
0

T
Then one finally has

X ) = 16V27 iwgey Mu ]
Xoohn= = =3 15 5 Mh(ne):

(A15)

Choosing the orbital plane as they plane, yieldsX;;=0
and

dmioey [(or"
X1+1= wBD+2fvT 1+1(60,9)p
2wgpt+1
| 14m-32+ 2987251 (a16)
p wppt2

Defining G=Q,/m,—Q,/m;, one then obtains to the re-

quired order

anomalya, Eq.(A17) results in

27 2i wlpGua
Xp+1=— \/_—(PO - Gj-1,
3 wBD+2

Gj_1=*(cosa—e)—i(1-e*) =sina.

(A18)

where
(A19)

The binary system center of mass calculated with respect to
the gravitational self-energi&€3, does not coincide with the
center of mass with respect to the inertial massgsf the

two bodies, if the masses are differéNbrdtvedt effeck the
resulting dipole moment is, as we have seen, a source of
scalar radiation. If we expres§;_; as a sum of Fourier
components

Gj_1=Bo+ 21 [BycognB)+Cysin(ng)], (A20)
we obtain
(A21)

2 !
Bn=iﬁJn(ne)

(where the prime indicates derivative with respect to the ar-
gumentne) and

2 (m 2i
Cn:;fo Gj-isin(nB)dp=——(1-e*) A (ne).
(A22)

Then thenth component of the coefficien; ., is
2 2i wg(po
(Xiz)n=—\ ?wBDJrZQMa

tJr',(ne)—%(l—ez)l’an(ne). (A23)

X

Finally, in the casg =2 one obtains<,..,=0 and

) TIO%00 £12Y% (6, ) pdV (A24)
207 15wgpt2) )y 20T PPTE
4w, .
Xosp= mj\/f Y2:2( 0,¢4)pdV, (A25)

and in terms ofw, using the Newtonian approximation,

miwpoua®
= - _ 2
Xoo(t) \[53(w8D+2) (1—cosa)?,

(A26)
_ [mielpoua’
Xpxo=+ \/;)(COBD—+2)GJ'2, (A27)

044027-8
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where eiler—(1+1)m/2]
” hf”(wr)~T, (B1)
Gj_,=Do+ n§=‘,l [D,cognB)+E,sinnB)]. (A28)

one can easily obtain

CalculatingD dE - 2 )
NG AR S(X.w)=—me'”’{vvam/dJr(wd)Z/G
4 1 2
Dn:—ﬁW(Z—eZ)Jn(ne)JrE(eZ_1)J,’1(ne) , (A29) +2iw(Qz/m2—Qllm1)ﬁ-&—w2d2(3n§—1)/12
8i[1—e? 1 +w?[(N-d)2— (n,dy—nyd,)?)/4},,, (B2)
L J”(ne)_n_eJ;i(ne) . (A30)  where the subscripb indicates that all the quantities in the

right member of the above expressi@®R) are to be consid-

the nth components result in ered as Fourier components with frequengyfor example,

v—v(w)].
. 3 The time dependent amplitude[i$4]
2 |7 iwgeq 5
(X20)n= §\[§wBD+2Ma nJy(ne), (A31) . - i 2u
Ext)=¢(x,w)e +C.C.——m
3
- 7 lwgpo L1, m 1d? 3n2-1
(Xgs2)n= %2 \Q,wwﬂa {(€-2)3,(ne)/(ne?) S W(dkdﬂ( - T)
+2(1-e?)J)(ne)/eF 2(1—e?)M? LA . . (ndy—ndy?
2 2 1 —20n-v - (n-d)2 - = }
X[(1—e?)J (ne)/e’—J/(ne)/(ne)]}. (A32) dt 4
2u , M n -
APPENDIX B: :_(Zw—BD+3)Gr v +E—2Qn-v
We want to determine explicitly the form of the scalar A | P
GWs radiated by a binary system. From E@¢3.12 and —(n-v) +¥n-d : (B3)
(A8), (A17), (A24), (A25), and taking into account that in A
the limit r —oc the spherical Hankel functions become where we have set=v(w)e '*("D+c.c., etc.
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