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Quantum evolution of Schwarzschild–de Sitter „Nariai … black holes
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We calculate the one-loop effective action for conformal matter~scalars, spinors, and vectors! on spherically
symmetric background. Such an effective action~in the largeN approximation and expansion on curvature! is
used to study quantum aspects of Schwarzschild–de Sitter~SdS! black holes~BHs! in the nearly degenerated
limit ~Nariai BH!. We show that for all types of the above matter SdS BHs may evaporate or antievaporate in
accordance with a recent observation by Bousso and Hawking for minimal scalars. Some remarks about the
energy flow for SdS BHs in the regime of evaporation or antievaporation are also made. The study of the no
boundary condition shows that this condition supports antievaporation for nucleated BHs~at least in the frame
of our approximation!. That indicates the possibility that some pair created cosmological BHs may not only
evaporate but also antievaporate. Hence cosmological primordial BHs may survive much longer than expected.
@S0556-2821~99!03602-4#
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I. INTRODUCTION

In the absence of consistent quantum gravity, the nat
way to take into account quantum effects in the early U
verse or in black holes~BHs! is to consider matter quantum
field theory @say, some grand unified theory~GUT!# in a
curved background. The study of quantum GUTs in curv
space-time~see@1# for a review! shows the existence of
beautiful phenomenon: asymptotic conformal invariance~see
@2,1# for a review!. According to it, there exists a large cla
of asymptotically free GUTs that tend to conformally inva
ant free theory at high curvature or at high energies~i.e., in
the vicinity of BHs or in the early Universe!. Hence, for the
above background one can describe GUT as the collectio
free conformal fields. If one knows the effective action
such a system one can apply it to the investigation of
quantum evolution of strongly gravitating objects.

In recent work @3# the quantum evolution o
Schwarzschild–de Sitter~Nariai! BHs has been studied fo
Einstein gravity withN minimal quantum scalars. The larg
N ands-wave approximation has been used in such an inv
tigation. The possibility of quantum antievaporation of su
BHs ~in addition to well-known evaporation process@4#! has
been discovered. In@5# another model~of quantum confor-
mal scalars with Einstein gravity! has been considered in
better approach to the effective action~the largeN approxi-
mation, partial expansion on curvature, and partials-wave
reduction!. The possibility of Schwarzschild–de Sitter~SdS!
BH antievaporation has been confirmed as well in the mo
of Ref. @5#.

Having in mind the above remarks on the representa
of some GUT in the vicinity of BHs as a collection of fre
conformal fields, we continue to study the quantum dyna
ics of SdS BHs. We start from Einstein gravity with quantu
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conformal matter (N scalars,N1 vectors, andN1/2 fermions!.
Working in the largeN approximation~where only matter
quantum effects are dominant! we also use the partial deriva
tive expansion of effective action~EA! ~without s-wave re-
duction!. As a main qualitative result we find that extrem
SdS ~Nariai! BHs may indeed evaporate as well as an
evaporate. We also try to answer the question: Can the
boundary Hartle-Hawking condition be consistent with an
evaporation? This question may be really important for
estimation of primordial BH creation~see@6# and references
therein! ~and their existence in the present Universe! as SdS
BHs actually may appear through such a process.

II. EFFECTIVE ACTION FOR CONFORMAL MATTER

We first derive the effective action for conformally invar
ant matter~for a general review of effective action in curve
space see@1#!. Let us start from Einstein gravity withN
conformal scalarsx i , N1 vectors Am , and N1/2 Dirac
spinorsc i :

S52
1

16pGE d4xA2g~4!$R
~4!22L%1E d4xA2g~4!

3H 1

2(i 51

N S g~4!
ab]ax i]bx i1

1

6
R~4!x i

2D
2

1

4(
j 51

N1

F j mnF j
mn1 (

k51

N1/2

c̄kD” ckJ . ~1!

The convenient choice for the spherically symmetric spa
time is

ds25 f ~f!@ f 21~f!gmndxmdxn1r 0
2dV#, ~2!

wherem,n50,1, gmn and f (f) depend only onx0 and x1,
and r 0

2 is a constant.
©1999 The American Physical Society26-1
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Let us start the calculation of the effective action due
conformal matter on the background~2!. In the calculation of
the effective action, we present the effective action asG
5G ind1G@1,gmn

(4)#, whereG ind5G@ f ,gmn
(4)#2G@1,gmn

(4)# is the
conformal anomaly induced action, which is quite w
known @7# andgmn

(4) is the metric~2! without a multiplier in
front of it, i.e., gmn

(4) corresponds to

ds25@ g̃mndxmdxn1r 0
2dV#, g̃mn[ f 21~f!gmn . ~3!

The conformal anomaly for the above matter is well know

T5bS F1
2

3
hRD1b8G1b9hR, ~4!

where b5(N16N1/2112N1)/120(4p)2,b852(N111N1/2
162N1)/360(4p)2, andb950, but, in principle,b9 may be
changed by the finite renormalization of the local count
term in the gravitational effective action,F is the square of
the Weyl tensor, andG is Gauss-Bonnet invariant.

The conformal anomaly induced effective actionG ind
may be written as@7#:

W5bE d4xA2gFs1b8E d4xA2g

3H sF2h214Rmn¹m¹n2
4

3
Rh1

2

3
~¹mR!¹mGs

1S G2
2

3
hRDsJ 2

1

12S b91
2

3
~b1b8! D

3E d4xA2g@R26hs26~¹s!~¹s!#2, ~5!

wheres5 1
2 lnf(f) ands-independent terms are dropped. A

four-dimensional quantities~curvatures and covariant deriva
tives! in Eq. ~5! should be calculated on the metric~3!. @We
i-
W

04402
l

:

-

did not write the subscript (4) for them.# Note that after
calculation of Eq.~5! on the metric~3!, we will get effec-
tively two-dimensional gravitational theory.

In the next step we calculateG@1,gmn
(4)#. This term corre-

sponds to the conformally invariant part of effective actio
In this calculation we may apply a Schwinger–DeW
~SDW! type of expansion of effective action withz regular-
ization @8# ~or other ultraviolet regularization!. This expan-
sion represents the expansion on powers of curvature inv
ants. Note that we add such EA to the Einstein grav
action. Hence the first two terms of the SDW expansion~the
cosmological and linear curvature terms! may be dropped as
they only lead to finite renormalization of the Hilber
Einstein action~redefinition of cosmological and gravita
tional coupling constants!. Then the leading~curvature qua-
dratic term of this expansion! may be read~see@1#!

G@1,gmn
~4!#5E d4xA2gH FbF1b8G1

2b

3
hRG ln R

m2J
1O~R3!, ~6!

wherem is mass-dimensional constant parameter and all
quantities are calculated on the background~3!. The condi-
tion of the application of the above expansion isuRu,R2 ~the
curvature is nearly constant!. In this case we may be limited
to only the first few terms.

III. QUANTUM DYNAMICS ON
SPHERICAL BACKGROUND

We now solve the equations of motion obtained from t
above effective LagrangiansS1G. In the following we use
g̃mn ands as a set of independent variables and we writeg̃mn

asgmn if there is no confusion.
G ind @W in Eq. ~5!# is rewritten after the reduction to two

dimensions as
G ind

4p
5

br0
2

3 E d2xA2gS ~R~2!1RV!21
2

3
RVR~2!1

1

3
RV

2 Ds1b8r 0
2E d2xA2gH sS 2h214R~2!mn¹m¹n2

4

3
~R~2!1RV!h

1
2

3
~¹mR~2!!¹mDs1S 2RVR~2!2

2

3
hR~2!DsJ 2

1

12H b91
2

3
~b1b8!J r 0

2

3E d2xA2g$~R~2!1RV26hs26¹ms¹ms!22~R~2!1RV!2%. ~7!
nt
the

e

ric
y

Here RV52/r 0
2 is the scalar curvature ofS2 with the unit

radius. The superscript~2! expresses the quantity in two d
mensions, but we abbreviate it if there is no confusion.
also note that in two dimensions the Riemann tensorRmnsr

and Rmn are expressed via the scalar curvatureR and the
metric tensor gmn as Rmnsr5 1

2 (gmsgnr2gmrgns)R and
Rmn5 1

2 gmnR.
e

Let us derive the equations of motion taking into accou
quantum corrections from the above effective action. In
following we work in the conformal gauge:g6752 1

2 e2r

and g6650 after considering the variation of the effectiv
actionG1S with respect togmn ands. Note that the tensor
gmn under consideration is the product of the original met
tensor and thes function e22s and the equations given b
6-2
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the variations ofgmn are the combinations of the equatio
given by the variation of the original metric ands equation.

Often we can drop the terms linear ins in Eq. ~7!. In
particular, one can redefine the corresponding source ter
04402
as

it is in the case of the infrared sector of four-dimension
~4D! quantum gravity@9#. In the following, we consider only
this case. Then the variation ofS1G ind1G@1,gmn

(4)# with re-
spect tog66 is given by
ith
int and
05
1

4p

d~S1G ind1G@1,gmn
~4!# !

dg66
52

r 0
2

16pG
e2r12s@~]6s!22]6

2 s12]6s]6r#1b8r 0
2F8e2r]6s]6~e22r]1]2s!

28s]6
2 s]1]2r1

2

3
e2r]6s]6$R4s%1

8

3
e2rs]6R4]6s G2H b91

2

3
~b1b8!J r 0

2@4e2r]6s]6R424~]6s!2]1]2r

112e2r]6s]6$e22r~]1]2s1]1s]2s!%212~]1]2s1]1s]2s!~]6s!2#1H @2]6
2 r22~]6r!2#

2
1

4
]6

2 1
3

2
]6

2 r1
3

2
]6r]6J F16

3
b8r 0

2~2s]1]2s1]1s]2s!2H b91
2

3
~b1b8!J r 0

2~]1]2s1]1s]2s!G
1r 0

2F2
1

3
be2r]6H lnS R4

m2D J ]6R414H @2]6
2 r22~]6r!2#2

1

4
]6

2 1
3

2
]6

2 r1
3

2
]6r]6J S 8

3
b]1]2r lnS R4

m2D
1b]1]2H lnS R4

m2D J 1H bF32

3
e22r~]1]2r!21

2e2r

3r 0
2

2
4

3
]1]2R41

16

r 0
2S b

3
1b8D G J 1

R4
D G . ~8!

HereR4[8e22r]1]2r12/r 0
2 . Usually the equation given byg11 or g22 can be regarded as the constraint equation w

respect to the initial or boundary conditions. The equations obtained here, however, are combinations of the constras
equation of the motion since the tensorgmn under consideration is the product of the original metric tensor and thes function
e22s.

The variations with respect tor are given by

05
1

4p

d~S1G ind1G@1,gmn
~4!# !

dr
52

r 0
2

16pGF4]1]2e2s22e2r14sL1
4

r 0
2 e2r12sG1b8r 0

2H 232~]1]2s!2e22r

2
128

3
e22r]1]2r~s]1]2s!1

64

3
]1]2~e22rs]1]2s!J 2

16

3
$22]1s]2se22r]1]2r1]1]2~]1s]2se22r!%

2H b91
2

3
~b1b8!J r 0

2@16]1]2$e22r~]1]2s1]1s]2s!%248e22r~]1]2s1]1s]2s!2#

1r 0
2S 2

64

3
be22r~]1]2r!2lnS R4

m2D1
64

3
b]1]2H e22r]1]2r lnS R4

m2D J 1
4be2r

3r 0
2

lnS R4

m2D1
16

r 0
2S b

3
1b8D ]1]2lnS R4

m2D
1

64

3
be22r]1]2r]1]2H lnS R4

m2D J 2
64

3
b]1]2Fe22r]1]2H lnS R4

m2D J G2
16e22r]1]2r

R4
H 32

3
be22r~]1]2r!2

1
2be2r

3r 0
2

2
4

3
b]1]2R41

16

r 0
2S b

3
1b8D ]1]2rJ 2]1]2F8e22r

R4
H 32

3
be22r~]1]2r!21

2be2r

3r 0
2

2
4

3
b]1]2R4

1
16

r 0
2S b

3
1b8D ]1]2rJ G D . ~9!

The variations with respect tos may be found as
6-3
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05
1

4p

d~S1G ind1G@1,gmn
~4!# !

ds
52

r 0
2

16pGF8e2s$3]1]2s13]1s]2s1]1]2r%24e2r14sL1
4

r 0
2 e2r12sG

1b8r 0
2F32]1]2~e22r]1]2s!1

64

3
@e22r]1]2r]1]2s1]1]2~se22r]1]2r!#1

32

3r 0
2 ]1]2s

1
2

3
$]1R4]2s1]2R4]1s%G2H b91

2

3
~b1b8!J r 0

2@2]1]2R422$]1R4]2s1]2R4]1s%148]1]2

3$e22r~]1]2s1]1s]2s!%248]1$e22r]2s~]1]2s1]1s]2s!%248]2$e22r]1s~]1]2s1]1s]2s!%#.
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Note that now the real four-dimensional metric is given
ds252e2s12rdx1dx21r 0

2e2sdV. The above equation
give the complete system of quantum corrected equation
motion for the system under discussion.

IV. EVOLUTION OF SCHWARZSCHILD –DE SITTER
BLACK HOLES DUE TO QUANTUM CONFORMAL

MATTER BACK REACTION

We now consider the Schwarzschild–de Sitter family
black holes and its nearly degenerated case, the so-c
Nariai solution@10#. We follow here the work of Bousso an
Hawking @3#. The Schwarzschild type of black hole solutio
in de Sitter space has two horizons: One is the usual e
horizon and the other is the cosmological horizon, which
the proper one in de Sitter space. The Nariai solution is gi
by a limit of the Schwarzschild–de Sitter black hole whe
two horizons coincide with each other. In the limit, the tw
horizons have the same temperature since the temperatu
proportional to the inverse root of the horizon area. The
fore, two horizons are in thermal equilibrium in the limit. W
are now interested in the instability of the Nariai limit. Ne
the limit the temperature of the event horizon is higher th
that of the cosmological one since the area of the event
rizon is smaller than that of the cosmological horizon. T
implies that there would be a thermal flow from the eve
horizon to the cosmological one. This means that the sys
would become unstable and the black hole would evapor
We also have to note that the above cosmological bl
holes may naturally appear through quantum pair crea
@11,6#, which may occur in the inflationary universe@12#.

In the Nariai limit, the space-time has the topology
S13S2 and the metric is given by

ds25
1

L
~sin2 xdc22dx22dV!. ~11!

Here the coordinatex has periodp. If we change the coor-
dinates variables by

r 5 ln tan
x

2
, t5

c

4
, ~12!

we obtain
04402
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ds25
1

L cosh2 r
~2dt21dr2!1

1

L
dV. ~13!

This form corresponds to the conformal gauge in two dim
sions. Note that the transformation~12! has a one to one
correspondence between (c,x) and (t,r ) if we restrictx to
0<x,p (r runs from2` to 1`).

Now we solve the equations of motion. Since the Nar
solution is characterized by the constantf ~or s), we now
assume thats is a constant even when including the qua
tum correction

s5s0 ~const!. ~14!

We also first consider static solutions and replace]6 by
6 1

2 ] r . Then we find that the total constraint equation o
tained by Eq.~8! is trivially satisfied.

Assuming that a solution is given by a constant tw
dimensional scalar curvature

R522e22r] r
2r5R0 ~const!, ~15!

the equations of motions given by Eqs.~9! ~variation overr)
and ~10! ~variation overs) become the two algebraic equa
tions

052
r 0

2

8pGS 2Le4s01
2

r 0
2e2s0D

1r 0
2H bS 2

R0
2

3
1

4

3r 0
4D lnS R01

2

r 0
2

m2
D

2H bS R0
2

3
1

4

3r 0
4D 1

8

r 0
2S b

3
1b8DR0J R0

R01
2

r 0
2

J , ~16!

05R024Le2s01
4

r 0
2 . ~17!
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The above equations can be solved with respect tos0 andR0
in general, although it is difficult to get the explicit expre
sion.

Equation~15! can be integrated to be

e2r5e2r0[
2C

R0

1

cosh2~rAC!
. ~18!
04402
HereC is a constant of integration.
We now consider the perturbation around the Nariai ty

of solution ~14! and ~18!,

r5r01eR~ t,r !, s5s01eS~ t,r !. ~19!

Heree is an infinitesimally small parameter. Then we obta
the linearizedr ands equations
for the
054pb8r 0
2H 2

16

3
R0s0DS1

32

3

R0s0

C
D~DS!J 24p~b1b8!r 0

2 16

3

R0

C
D~DS!2

r 0
2

16pG
e2s0F8DS2

8LC

R0
e2s0~R12S!

1
16C

r 0
2R0

~R1S!G14pr 0
2F2C

R0
H 2

2bR0

3
lnS R4

m2D1
b

R4
S 2R0

21
4

3r 0
4D 1bS R0

2

3
1

4

3r 0
4D 2

r 0
2R4

22
8

r 0
2S b

3
1b8D H 4R0

R4
2

2R0
2

R0
2 J J

3S 22R0R1
4R0

C
DRD1H 8b

3
lnS R4

m2D1
32b

3

R0

R4
1

4b

R4
2S R0

2

3
1

4

3r 0
4D J DS 22R0R1

4R0

C
DRD

2
32b

3

R0

CR4
DFDS 22R0R1

4R0

C
DRD G1H bS 2

4R0

3
1

16

3r 0
4R0

D lnS R4

m2D2
4b

3

R0
2

R4
2

8b

3r 0
2

2R0

R4
1

32

r 0
2S b

3
1b8D2R0

2

R4
J CR0G ,

~20!

054pb8r 0
2H 16

3
R0DS116

R0

C
D~DS!1

32

3r 0
2 DS1

8

3
s0DS 22R0R1

4R0

C
DRD J 24p316~b1b8!r 0

2 R0

C
D~DS!

2
r 0

2

16pG
e2s0H 8DS1DR1

C

2
S2

16LC

R0
e2s0~R12S!1

16C

r 0
2R0

~R1S!J . ~21!

Here

D5cosh2~rAC!]1]2 ~22!

andR4 becomes constantR45R012/r 0
2 . Equations~20! and ~21! can be solved by assuming thatR andS are given by the

eigenfunctions ofD:

R~ t,r !5P fA~ t,r !, S~ t,r !5Q fA~ t,r !, D f A~ t,r !5A fA~ t,r !. ~23!

Note that D can be regarded as the Laplacian on the two-dimensional hyperboloid and the explicit expression
eigenfunctions is given later. Using Eq.~23!, we can rewrite Eqs.~20! and ~21! @using Eq.~17!# as

05 H 64pb8s0R0

3 S 2A12
A2

C D2
64p~b1b8!R0

3

A2

C
2

1

4pG
e2s0~2A2C!J Q1F4pS 2C

R0
F2

2R0

3
lnS R4

m2D1
b

R4
S 2R0

21
4

3r 0
4D 1

R4

1
b

R4
2S R0

2

3
1

4

3r 0
4D 2

r 0
22

2

r 0
2S b

3
1b8D H 4R0

R4
2

2R0
2

R4
2 J G S 22R01

4R0

C
AD1H 8b

3
lnS R4

m2D1
32b

3

R0

R4
1S R0

2

360
1

1

90r 0
4D 4

R4
2

1
16

r 0
2R4

S b

3
1b8D J S 22R0A1

4R0

C
A2D2

32bR0

3CR4
S 22R0A21

4R0

C
A3D1H bS 2

4R0

3
1

16

3r 0
4R0

D lnS R4

m2D2
4bR0

2

3R4

2
8b

3r 0
2

2

R4
2

8

r 0
2S b

3
1b8D2R0

2

R4
J CD 2

C

8pG
e2s0S 211

4

r 0
2R0

D GP

[MQ~A!Q1M P~A!P,
6-5
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05H 64pb8R0S 1

3
A1

1

C
A2D1

128p

3r 0
2 b8A264p~b1b8!

R0

C
A22

e2s0

4pGS 6A2C2
4C

r 0
2R0

D J Q

1H 64pb8s0R0

3 S 2A1
2

C
A2D2

e2s0

4pG
~2A2C!J P[NQ~A!Q1NP~A!P. ~24!
on

n

ive
-

in
s

re

s

m

-
d

cu
th

op
po-

he

f

as
In order for the above two algebraic equations to have n
trivial solutions forP andQ, A should satisfy

05F~A![MQ~A!NP~A!2M P~A!NQ~A!. ~25!

Before analyzing Eqs.~16!, ~17!, and~25!, we now briefly
discuss how~anti!evaporation is described. As in@5#, we
consider the following function as an eigenfunction ofD in
Eq. ~23!:

f A~ t,r !5coshtaAC cosha rAC, A[
a~a21!C

4
.

~26!

Note that there is a one to one correspondence betweeA
and a if they are restricted toA.0 anda,0. Any linear
combination of two solutions is a solution. The perturbat
equations of motion~24! are always linear differential equa
tions. The horizon is given by the condition

¹s•¹s50. ~27!

Substituting Eq.~26! into Eq. ~27!, we find that the horizon
is given by r 5at. Therefore, on the horizon, we obta
S„t,r (t)…5Q cosh11a taAC. This tells us that the system i
unstable if there is a solution 0.a.21, i.e., 0,A,C/2.
On the other hand, the perturbation becomes stable if the
a solution wherea,21, i.e., A.C/2. The radius of the
horizon r h is given byr h5es5es01eS„t,r (t)…. Let the initial
perturbation be negativeQ,0. Then the radius shrink
monotonically, i.e., the black hole evaporates in the case
0.a.21. On the other hand, the radius increases in ti
and approaches the Nariai limit asymptoticallyS„t,r (t)…
→Qe(11a)tuauAC in the case ofa,21. The latter case cor
responds to the antievaporation of the black hole observe
Bousso and Hawking@3#.

We should be more careful in the case ofA5C/2. When
A5C/2, f A(r ,t) is, in general, given by

f A~r ,t !5H cosh@~ t1a!AC#

cosh~rAC!
1sinh~bAC!tanh~rAC!J .

~28!

Then the condition~27! givest1a57(r 2b). Therefore, on
the horizon, we obtainS„t,r (t)…5Q coshb. This is a con-
stant, that is, evaporation or antievaporation does not oc
The radius of the horizon does not develop in time. In
classical case, Eq.~25! has the form
04402
-

is

of
e

by

r.
e

05 H 1

4pG
e2s0~2A2C!J 2

2
C

8pG
e2s0

e2s0

4pGS 6A2C2
4C

r 0
2R0

D . ~29!

SinceR054r 0
2 in the classical case, the solution of Eq.~29!

is given byA5C/2. Therefore, the horizon does not devel
in time and the black hole does not evaporate or antieva
rate. The result is, of course, consistent with that of@3#.

In general, it is very difficult to analyze Eqs.~16!, ~17!,
and ~25!. The equations, however, become simple in t
limit of r 0→`. Note thatr 0 , the radius ofS2 , is a free
parameter and the SDW type of expansion in Eq.~6! be-
comes exact in the limit sinceR;O(r 0

22). In order to con-
sider the limit, we now redefineR0 ands0 as

R05
1

r 0
2 H0 , s052 ln~mr 0!1s0 . ~30!

Then Eq.~16! is rewritten as

05H02
4L

m2 e2s014. ~31!

Substituting Eq.~31! into Eq. ~17!, we obtain

~2H0
214!ln~mr 0!1O~1!50. ~32!

This tells us that

H05621O„@ ln~mr 0!#21
…. ~33!

Since we can expect thatH0;2 would correspond to the
classical limit whereH054, we consider only the case o
H0;2. Then using Eq.~31!, we find

e2s05
3m2

2L
. ~34!

Then the metric in the quantum Nariai type of solution h
the form

ds25
3C

2L

1

cosh2~rAC!
~2dt21dr2!1

3C

2L
dV. ~35!

Substituting Eqs.~33! and ~34! into Eq. ~25!, we obtain
6-6
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05F~A!5
1

r 0
4H @ ln~mr 0!#2S 128pb8

3 D 2

3S 2A1
2A2

C D 2

1O~1!J . ~36!

Equation~36! tells us thatA50,C/2. WhenA50, S is con-
stant and evaporation or antievaporation does not occur
discussed before, the horizon does not develop in time w
A5C/2, either. The result, however, might be an artifact
the limit of r 0→`. In order to consider physically reliabl
results, we start from the next order of@ ln(mr0)#

21. Then
using Eqs.~16! and ~17!, we find

H0521@ ln~mr 0!#21S 2b13b8

b
1

9

512p2bGL D , ~37!

s052 ln~mr 0!1
1

2
lnS 3m2

2L D1@ ln~mr 0!#21

3
m2

8LS 2b13b8

b
1

9

512p2bGL D .

Since we are now interested in the problem of antievapo
tion, we consider the solution ofA;C/2. The solutionA
;0 would correspond to usual evaporation. AssumingA
5C/21@ ln(mr0)#

21a1 and substituting Eq.~37! into Eq.~25!,
we find

a150, a152
~b1b8!C

8b8
. ~38!

In the first solution, the horizon does not develop in tim
again and we would need the analysis of the higher orde
@ ln(mr0)#

21. An important point is that the second solution
positive when 2N17N1/2.26N1 . When a1 is positive, A
.C/2, i.e., antievaporation occurs. Let us consider the SU~5!
group withNs scalar multiplets andNf fermion multiplets in
the adjoint representation of the gauge group. Then,
above relation looks like 2Ns17Nf.26. We see that for
SU~5! GUT with three spinor multiplets and three sca
multiplets antievaporation is expected for SdS BHs. Sim
larly, one can estimate the chances for antievaporation in
arbitrary GUT under discussion. On the other hand, wh
2N17N1/2,26N1 , evaporation occurs. For example, for th
above GUT with two spinor multiplets and two scalar mu
tiplets we expect that matter quantum effects induce
evaporation of SdS BHs. This result would be nonpertur
tive and exact in the leading order of the 1/N expansion. Of
course,A goes toC/2 in the limit of r 0→1`, when the
SDW type of expansion becomes exact, and the black h
does not evaporate or antievaporate in the limit. If there
some external perturbation, which gives effectively finiter 0 ,
however, antievaporation may occur.

V. ENERGY FLOW AND NO BOUNDARY CONDITION

We now briefly discuss Hawking radiation. Since t
space-time that we are now considering is not asymptotic
04402
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Minkowski, we will consider the radial component in th
flow of the energyTtr5T112T22 .

Usually the Einstein equation can be written as

1

16pGS Rmn2
1

2
gmnRD5Tmn

c 1Tmn
q . ~39!

HereTmn
c is the classical part of the matter energy mome

tum tensor, which vanishes in the case under considera
andTmn

q is the quantum part, which we are now interested
Comparing Eq.~39! with Eq. ~8!, we find

T66
q 5

r 0
2

32pG
e2s$~]6s!22]6

2 s12]6s]6r%. ~40!

Substituting the solution of the perturbation~26!, we find

Ttr
q 52

3a~a11!e

32pGL
sinh~ taAC!

3sinh~rAC!cosha21~rAC!1O~e2!. ~41!

Ttr
q is positive when 0.a.21 and negative whena,

21, i.e., there is a flow from the event horizon to the co
mological horizon when 0.a.21. The direction of the
flow changes whena,21. It exactly corresponds to evapo
ration for 0.a.21 and antievaporation fora,21.

Let us turn now to the study of no boundary condition
the evolution of black holes. As is known, the cosmologic
BH does not appear after the gravitational collapse of a
since the background space-time is not de Sitter space
flat Minkowski space. Bousso and Hawking, however, co
jectured that the cosmological black holes could be pair c
ated by the quantum process in an inflationary universe s
the universe is similar to de Sitter space. They have a
shown that no boundary condition@13# determines the fate o
the black holes and they should always evaporate~for mini-
mal scalars!. Now we make a similar analysis for conform
matter. In our case, the analytic continuation to Euclide
space-time is given by replacingt5 i t. By the further chang-
ing the variablest and r by

v5tAC, sin u5
1

coshrAC
, ~42!

the metric in the quantum Nariai type of solution correspon
ing to Eq.~35! has the form

ds25
3

2L
~du21sin2 udv21dV!. ~43!

The metric ~43! tells us that four-dimensional Euclidea
space-time can be regarded as the product of two t
spheresS23S2. In the Euclidean signature, the operat
(4/C)D becomes the Laplacian on the unit two-sphereS2.
The nucleation of the black hole is described by cutting
two-sphere atu5p/2 and joining to it a Lorentzian
(111)-dimensional de Sitter hyperbolid@3# by analytically
continuingu by u5p/21 i t̂ and regardingt̂ as the time co-
6-7



io

he

-

d

e

o

-

a-
t
t

f

o
en
a
a
tte

nd
o
a

No
nti-
be

ork.
ra-

ers
ed.
4D

-

we
iven

De
ies
the
t
aled

er

for

os-
e
be

m

, it
is a
for
s

ti-
on

for
ork.
2-

SHIN’ICHI NOJIRI AND SERGEI D. ODINTSOV PHYSICAL REVIEW D59 044026
ordinate. In the Euclidean signature, the eigenfunct
f A(t,r ) in Eq. ~26! is not single valued unlessa is an integer.
Therefore, f A(t,r ) is not adequate when we discuss t
nucleation of the black holes. Instead off A(t,r ), we consider
the following eigengfunctionf̃ A(t,r ) in the Euclidean signa
ture:

f̃ A~u,v !5 f 0 cos~v !Pn
1~cosu!, A5

n~n11!

4
C. ~44!

Here f 0 is a constant andPn
1(x) is given by the associate

Legendre function

Pn
1~x!5sin pn~12x2!1/2

3 (
n50

`
G~12n1n!G~21n1n!

~n11!!n! S 12x

2 D n

. ~45!

We can assumen>0 without any loss of generality. Not
that f̃ (u,v) vanishes at the south poleu50 since Pn

1(x

5cosu51)50. Therefore, f̃ (u,v) is single valued on the
hemisphere and does not conflict with the no boundary c
dition @13#. We should also note thatf̃ (u,v) is not real when
analytically continuingu by u5p/21 i t̂ into the Lorentzian
signature but, as in@3#, we can makef̃ (u,v) real in the late
Lorentzian time~large t̂ ) by the suitable choice of the con
stant f 0 since

Pn
1~cosu!5Pn

1~2 i sinht̂ !;

GS n1
1

2D
ApG~n!

~2 i !nen t̂

when t̂→1`. ~46!

SinceA.C/2 whenn.1, we can expect that antievapor
tion would occur in the pair created black holes. In order
confirm it, we consider the behavior of the horizon in the la
Lorentzian time~large t̂ ). By using Eq.~46! we find that the
condition of the horizon~27! gives cosv}e2t̂. Therefore, we
find on the horizonf̂ „v( t̂ ), t̂…}e(n21) t̂. This tells us, as in the
case of Sec. IV, that the perturbation is stable whenA
.C/2 (n.1) and unstable whenA,C/2 (0,n,1). The
previous analysis in~38! implies that there is a solution o
A.C/2. Therefore, the antievaporation~stable mode! can
occur even in the nucleated black holes and some black h
do not evaporate and can survive. This result is differ
from that of Bousso and Hawking, who claimed that the p
created cosmological black holes most probably evapor
~Note, however, that they considered another type of ma
minimal scalar, while we deal with conformal matter.! In any
case, this question deserves further investigation.

VI. DISCUSSION

In summary, we studied the largeN effective action for
conformal matter on a spherically symmetric backgrou
The application of this effective action to the investigation
quantum evolution of SdS BHs shows that such BHs m
04402
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evaporate or antievaporate in the nearly degenerate limit.
boundary condition is shown to be consistent with the a
evaporation of SdS BHs. Other boundary conditions may
discussed in the same way as a generalization of this w
Some remarks about energy flow in the regime of evapo
tion or antievaporation are also given.

Let us now compare our results with these of other pap
@3,5#, where similar questions have been investigat
Bousso and Hawking treated the quantum effects of
minimal scalars usings-wave and largeN approximations. In
our other paper@5#, the scale (s) dependent part of the ef
fective action is given by the largeN trace anomaly induced
effective action~without using thes-wave approximation!,
but the scale independent part is determined using thes-wave
approximation, i.e., spherical reduction. That work@5# deals
with conformal quantum scalars only. In the present work
used the effective action whose scale dependent part is g
by a largeN trace anomaly as in the previous paper@5# but
whose scale independent part is given by a Schwinger–
Witt type of expansion, which is essentially the power ser
expansion on the curvature invariants corresponding to
rescaled metric~3!. Since the curvature in the Nariai limi
and the perturbation around it is almost constant, the resc
scalar curvature is alwaysO(r 0

22). This tells us that the
Schwinger–De Witt type of expansion given in this pap
would become exact in the limit ofr 0→1`. Therefore, the
analysis given here using ther 0→1` limit would also be
exact. Moreover, the results of the present work are given
arbitarary conformal matter~scalars, spinors, and vectors!. In
all these works, the same qualitative result is found: the p
sibility that SdS~Nariai! BHs may antievaporate. As we se
from the estimation above, such antievaporation may
quite general for many GUTs. Moreover, pair created~pri-
mordial! BHs may antievaporate due to conformal quantu
matter effects when applying no boundary condition.

As a very interesting generalization of the above work
could be helpful to understand whether antievaporation
specific feature of SdS BHs or it may be realized also
other BHs with multiply horizons. In order to clarify thi
issue we studied Reissner-Nordstro”m–de Sitter BHs where a
preliminary investigation shows also the possibility of an
evaporation due to quantum effects. We hope to report
this in the future.
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APPENDIX

String presentation of 4D Einstein scalar theory

Starting from Einstein gravity withN minimal scalars,

S52
1

16pGE d4xA2g~4!F ~R~4!22L!

2
16pG

2 (
a51

N

g~4!
ab]axa]bxaG , ~A1!
6-8
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one can consider the spherically symmetric space-time

ds25gmndxmdxn1 f ~f!dV. ~A2!

Reducing the action~A1! for the metric~A2!, we get

S

4p
52

1

16pGE d2xA2gH f ~R22L!12

12~¹m f 1/2!~¹m f 1/2!2
16pG

2 (
a51

N

f ~f!¹axa¹axaJ .

~A3!

The reduced action belongs to the class of actions descr
by

S5E d2xA2gH C~f!R1V~f!1
1

2
Z~f!gmn]mf]nf

2
1

2
f̃ ~f! (

a51

N

¹axa¹axaJ , ~A4!

where from Eq.~A3! we get

C~f!52
f ~f!

4G
, V~f!52

1

4G
@222L f ~f!#,

~A5!

Z~f!52
1

4G

f 82

f
, f̃ ~f!524p f ~f!.
n.

04402
ed

Working in the conformal gaugegmn5e2sḡmn , we may
present the action~A4! as as model

S5E d2xA2ḡF1

2
Gi j ~X!ḡmn]mXi]nXj1R̄F~X!1T~X!G ,

~A6!

where

Xi5$f,s,xa%, F~X!5C~f!, T~X!5V~f!e2s,

Gi j 5S Z~f! 2C8~f! 0

2C8~f! 0 0

0 0 2 f̃ ~f!
D . ~A7!

Thus we presented reduced 4D Einstein scalar theory ass
model. Similarly, one can present 4D Einstein conform
scalar reduced theory

S5E d2xA2gH C~f!R1V~f!1
1

2
Z~f!gmn]mf]nf

2
1

2
f̃ ~f! (

a51

N S ¹axa¹axa1
1

6
xa

2D J ~A8!

in a form like Eq.~A6! with slightly changed metricGi j and
F,T:
hould
lso the
F~X!5C~f!2
1

2
f̃ ~f!, T~X!5V~f!e2s,

Gi j 5S Z~f! 2C8~f! 2
1

3
f̃ 8~f! (

a51

N

xa
2

2C8~f! 0 2
2

3
f̃ ~f!xa

2
1

3
f̃ 8~f! (

a51

N

xa
2 2

2

3
f̃ ~f!xa 2 f̃ ~f!

D . ~A9!

One can show~see @14#! that the off-shell effective action in the stringy parametrization~A6! is different from the one
calculated in dilatonic gravity~A4! in a covariant gauge. However, on shell all such effective actions coincide, as they s
~see@14#!. The main qualitative result of this appendix is that one can study quantum evolution of black holes using a
s model approach.
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