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Quantum evolution of Schwarzschild-de Sitter (Nariai) black holes
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We calculate the one-loop effective action for conformal mattealars, spinors, and vectpm spherically
symmetric background. Such an effective actionthe largeN approximation and expansion on curvajuise
used to study quantum aspects of Schwarzschild—de $&t8 black holes(BHs) in the nearly degenerated
limit (Nariai BH). We show that for all types of the above matter SdS BHs may evaporate or antievaporate in
accordance with a recent observation by Bousso and Hawking for minimal scalars. Some remarks about the
energy flow for SdS BHs in the regime of evaporation or antievaporation are also made. The study of the no
boundary condition shows that this condition supports antievaporation for nucleate@8keast in the frame
of our approximation That indicates the possibility that some pair created cosmological BHs may not only
evaporate but also antievaporate. Hence cosmological primordial BHs may survive much longer than expected.
[S0556-282199)03602-4

PACS numbg(s): 04.60.Kz, 04.62+v, 04.70.Dy, 11.25.Hf

[. INTRODUCTION conformal matter {l scalarsN; vectors, andN,,, fermions.
Working in the largeN approximation(where only matter
In the absence of consistent quantum gravity, the naturajuantum effects are dominante also use the partial deriva-
way to take into account quantum effects in the early Uni-tive expansion of effective actiofEA) (without sswave re-
verse or in black hole@BHs) is to consider matter quantum duction. As a main qualitative result we find that extreme
field theory [say, some grand unified theoBUT)] in a  SdS (Naria) BHs may indeed evaporate as well as anti-
curved background. The study of quantum GUTSs in curvedtvaporate. We also try to answer the question: Can the no-
space-time(see[1] for a review shows the existence of a boundary Hartle—'Hawklng condition be congstent with anti-
beautiful phenomenon: asymptotic conformal invariageee ~ €vaporation? This question may be really important for the
[2,1] for a review. According to it, there exists a large class €stimation of primordial BH creatio(see[6] and references
of asymptotically free GUTSs that tend to conformally invari- therein (and their existence in the present Univeras SdS
ant free theory at high curvature or at high energies, in ~ BHs actually may appear through such a process.
the vicinity of BHs or in the early Univer$eHence, for the
above background one can describe GUT as the collection of ||, EFFECTIVE ACTION FOR CONFORMAL MATTER
free conformal fields. If one knows the effective action of _ ) ) _ ) _
such a system one can apply it to the investigation of the We first derive the effectlye action for. conforma!ly invari-
quantum evolution of strongly gravitating objects. ant matter(for a general review of effective action in curved
In recent work [3] the quantum evolution of SPace sedl]). Let us start from Einstein gravity WIIIN
Schwarzschild—de SitteiNaria) BHs has been studied for conformal scalarsy;, N, vectorsA,, and Ny, Dirac
Einstein gravity withN minimal quantum scalars. The large SPINOrsy;:
N ands-wave approximation has been used in such an inves-
tigation. The possibility of quantum antievaporation of such 1
B?—|s (in additign to weh/-kngwn evaporation Eroce[sE) has S=- mJ d*x\—g(){RY-2A}+ J d*xv—ga)
been discovered. If6] another modelof quantum confor- \
mal scalars with Einstein gravityhas been considered in a B 1 @) 2
better approach to the effective acti@the largeN approxi- X 5241 94)9aXidpXit gR Xi
mation, partial expansion on curvature, and parsialave

reduction). The possibility of Schwarzschild—de Sitt3d9 1M Niz
BH antievaporation has been confirmed as well in the model - ijl FiuFi+ k21 D iy g - 1)
of Ref.[5]. - B

Having in mind the above remarks on the representation _ _ _ .
of some GUT in the vicinity of BHs as a collection of free The convenient choice for the spherically symmetric space-

conformal fields, we continue to study the quantum dynam:‘Ime is

ics of SAS BHs. We start from Einstein gravity with quantum

ds?=f($)[f ()G, dx“dx"+r5dQ], @)
*Electronic address: nojiri@cc.nda.ac.jp whereu,»=0,1,9,, andf(¢) depend only orx® andx?,
TElectronic address: odintsov@tspi.tomsk.su andré is a constant.
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Let us start the calculation of the effective action due todid not write the subscript (4) for theinNote that after
conformal matter on the backgrou(®. In the calculation of calculation of Eq.(5) on the metric(3), we will get effec-
the effective action, we present the effective actionl'as tively two-dimensional gravitational theory.

=Tina+ 1119401, wherel',q=T[f,0()1-T[19{)] is the In the next step we calculate{1,9(;)]. This term corre-
conformal anomaly induced actlon which is quite well sponds to the conformally invariant part of effective action.
known [7] andg(4) is the metric(2) without a multiplier in  In this calculation we may apply a Schwinger—DeWitt
front of it, i.e. g corresponds to (SDW) type of expansion of effective action withregular-

ization [8] (or other ultraviolet regularization This expan-
dszz[ﬁwdx“dx“rrgdﬂ], éwszl((ﬁ)gw_ ®) sion represents the expansion on powers of curvature invari-
ants. Note that we add such EA to the Einstein gravity
The conformal anomaly for the above matter is well known:action. Hence the first two terms of the SDW expangite
cosmological and linear curvature ternmsay be dropped as
+b'G+b'OR, 4) th'ey qnly Igad to fi'ni.te; renormalization of the Hilbgrt-
Einstein action(redefinition of cosmological and gravita-

2
T=b(F+§DR

tional coupling constantsThen the leadingcurvature qua-
where b=(N+6Ny,+12N;)/120(4m)%b’=—(N+1INy,  dratic term of this expansigmmay be readsee[1])
+62N,)/360(47)2, andb”=0, but, in principleb” may be
changed by the finite renormalization of the local counter- 2b R
term in the gravitational effective actiof, is the square of I'[1g{)]= f d*x\—g{ | bF+b'G+ 3 UR |n—2]
the Weyl tensor, an is Gauss-Bonnet invariant. #

The conformal anomaly induced effective actidij,q +0O(R®), (6)
may be written a$7]:

whereu is mass-dimensional constant parameter and all the
W:bf d*V—=qa F"er’f d*V=qa quantities are calculated on the backgroy8d The condi-
9 9 tion of the application of the above expansiofR$< R? (the
curvature is nearly constgnin this case we may be limited

0| 202+ 4R*'V ,V ,— iRD + g(V“R)Vn o to only the first few terms.

3
G 2 OR
TR T
We now solve the equations of motion obtained from the
X f d*xy—g[R—60c—6(Vo)(Vo)]? (5) above effective Lagrangiar8+1I". In the following we use

gM ando as a set of independent variables and we vg;;g
whereo = 1Inf(¢) ando-independent terms are dropped. All asgw if there is no confusion.
four-dimensional quantitie@urvatures and covariant deriva-  T';,q [Win Eq. (5)] is rewritten after the reduction to two
tives) in Eqg. (5) should be calculated on the metf8). [We  dimensions as

) , lll. QUANTUM DYNAMICS ON
b"+ 3 (b+Db") SPHERICAL BACKGROUND

l;'”d:—f dzx\/_((R +RQ)2+2RQR<2>+3RQ o+b'r fdzx\/—_g(a(252+4R(2)“”VHV,,—g(R(Z)—FRQ)D
2 2 2
+ §(V“R(2))VM o+|2RoR? — §DR<2>H - 35| 0"+ 3(b+b) r
><J d?—g{(R?+Ry— 600 —6V*0V ,0)?— (R?+Rg)2}. 7
|
Here RQ=2/rS is the scalar curvature o with the unit Let us derive the equations of motion taking into account

radius. The superscrig®) expresses the quantity in two di- quantum corrections from the above effective action. In the
mensions, but we abbreviate it if there is no confusion. Weollowing we work in the conformal gaugey. = —1e?
also note that in two dimensions the Riemann terggy,, andg. . =0 after considering the variation of the effective
andR,, are expressed via the scalar curvat®end the actionl’ +S with respect tag,, ando. Note that the tensor
metrlc tensorgw as Ry,0p= z(gwgvp 9.,9,-)R and  g,, under consideration is the product of the original metric

R,,=30.R. tensor and ther function e 2 and the equations given by
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the variations ofg,,, are the combinations of the equationsit is in the case of the infrared sector of four-dimensional
given by the variation of the original metric amdequation. ~ (4D) quantum gravity9]. In the following, we consider only

Often we can drop the terms linear inin Eq. (7). In  this case. Then the variation 84 I';q+ F[l,g(“)] with re-
particular, one can redefine the corresponding source term apect tog™ = is given by

1 &(S+Ting+T[1g]) 15

- _ e2p+2(r . 2_ %_ +24. _pl+b’
=1 P e [(d+0) —d50+20.0d+p]+Dh

r3l 8e%°d.od.(e 29,9 o)

2 8 2
—80d%0d,d_p+ §e2p&i0'c?i{R40'}+ §e2pm9i Ryd.o|—{b"+ z(b+b) r3[4e%°9.00.Ry—4(3+0)%0,0_p

+126%9. 0. {e (9,0 0+, 00_0)}—120,0_0+d,00_0)(d+0)2]+{[—2p—2(d+p)?]

, 3, 3 16
— g0t 5Pt 5.pd | b

2
ré(—0&+&_0'+¢9+0'z9_0')—{b"+ 3(b+ b')}rg(a+a_a+ d.0d_0)

4 3
be2 il 22 Vo, R+ 4 2 ot 3 3 % in[
+r0 = (9+ n Iu, 19+ 4+ [ (9+p ((9+p) ] _(9++ 2(9+P+ 2(9+p(9+ § (9+z9_pn F
+b in 2] L p| Zema 2 28 A R B |1 8
a+‘9— n /.LZ 3 € (‘9+a—p) rO 3(9_'.(‘7_ 4 rg 3 R4 . ( )

Here R458e‘2pa+a,p+2/r§. Usually the equation given by" " or g~ ~ can be regarded as the constraint equation with
respect to the initial or boundary conditions. The equations obtained here, however, are combinations of the consdraint and
equation of the motion since the tengpy, under consideration is the product of the original metric tensor and tluaction

—20'
e

The variations with respect to are given by

1 8(SH+Ting+TILgD) 1 |

4
_ _ 20 _ 2p+4o 4 2p+20
0 4o op 16#G[4a+ﬁfe 2e A roze

+b'r3l =320, 0_0)%e "%

8 , 64 _2 16 _2 y
-3 Po,0_p(ad, d_o)+ —= 6?+¢9 (e"“Pod,d_o) —3{—2&4)’&_0’8 P9, d_p+d,d_(d,od_oe “P)}

2
— 10"+ 3(b+b) r3[16d,9_{e 2*(d,0_o+d,00_ o) —48 2"(9,d_o+d,00_0)?]
w2l -8 ~20(9, 9_p)>?l <R4 L r “209. 9 _pl (R4) +4be2p| (R4)+16(b+b’)a J_| (R“)
r ——=Dne _ n— - _Je _pin| — n— —| = _Inf —
0 3 +0-p ,uz 3 "o+ +0-p MZ rg Mz r(z) 3 + M2
64 R, 64 R, 16e 29, d_p| 32
- 2p _ 2p R A S —2p 2
+3be %99 pa.o (In(ﬂ )] 3 Ddd- 9,0 (In(M )H R, 3 0e *(d,9_p)
+2bezp 4b J_R +16 b+b' 9,0 340 ge * 32b “20(9.0 2+2be2p bo.d_R
3I’(2) 3 d19-Ry r_g 3 +0-p - TR, 3 e “P(d+d-p) 2 3 d+9-Ry
6/ b
+ >z +b' o, p 9)
ro\3

The variations with respect t@ may be found as
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1 8(S+Ting+T[Lg},]) o [, 2 4
T 4n —=- 7 — ptéo 2p+20
Am o0 16776[86 {30,0_0+30,00_0+d,.d_p}—4e A+r_§e

) s 64 s s 32
+b'r(320.,.9_(e7 %0, 0_0)+ e 9,9 pdd_c+d.0 (o€ %0.0_p)l+ 350,00
0

2
+ §{&+ R4&_O'+ J_ R4&+ O'}

2
—{b"+ 3(b+ b’)} 12020, 0_Ry—2{d.Ryd_o+3d_Ryd, o} +489,3_

x{e %(d,d_o+d, 00 _0)}—48).{e ?J_o(d,d_o+d,0d_0)}—48)_{e ?Pd.0(d,d_o+d,0d_o)}].

(10
|
Note that now the real four-dimensional metric is given by 1 ) o 1
ds?=—e?"*2rdx"dx +r3e?’dQ). The above equations dSZZW cospy (At Hdro)+ +dQ. (13
give the complete system of quantum corrected equations of
motion for the system under discussion. This form corresponds to the conformal gauge in two dimen-
sions. Note that the transformatiqd2) has a one to one
IV. EVOLUTION OF SCHWARZSCHILD -DE SITTER correspondence betweert,(y) and (,r) if we restrict y to
BLACK HOLES DUE TO QUANTUM CONFORMAL 0<y<m (r runs from—o to +).
MATTER BACK REACTION Now we solve the equations of motion. Since the Nariai

solution is characterized by the constattor o), we now
sume thatr is a constant even when including the quan-
um correction

We now consider the Schwarzschild—de Sitter family of
black holes and its nearly degenerated case, the so-call
Nariai solution[10]. We follow here the work of Bousso and
Hawking[3]. The Schwarzschild type of black hole solution
in de Sitter space has two horizons: One is the usual event
horizon and the other is the cosmological horizon, which is ' . . .
the proper one in de Sitter space. The Nariai solution is giverw(f also first con_S|der static solutions am_:i repl@ge_ by
by a limit of the Schwarzschild—de Sitter black hole where= 2% - Then we find that the total constraint equation ob-
two horizons coincide with each other. In the limit, the two @ined by Eq(8) is trivially satisfied.
horizons have the same temperature since the temperatured's'o‘ss‘u.mlng that a solution is given by a constant two-
proportional to the inverse root of the horizon area. Theredimensional scalar curvature
fore, two horizons are in thermal equilibrium in the limit. We
are now interested in the instability of the Nariai limit. Near
the limit the temperature of the event horizon is higher than ) ) ) o
that of the cosmological one since the area of the event hdhe equations of motions given by EgS) (variation overp)
rizon is smaller than that of the cosmological horizon. Thisand(10) (variation overs) become the two algebraic equa-
implies that there would be a thermal flow from the eventtions
horizon to the cosmological one. This means that the system )
would become unstable and the black hole would evaporate. o
We also have to note that the above cosmological black - 8776(
holes may naturally appear through quantum pair creation
[11,6], which may occur in the inflationary univer§g2].

o=0, (cons). (14

R=—2e 2*9’p=R, (cons}, (15)

2
4 2
Ae™o+ —e "0>
I'o

In the Nariai limit, the space-time has the topology of R2 Ro+ 2
oo 2 o 4 o
S'x S? and the metric is given by +rgy bl — 5+ ==]/In
1
dsz=X(sin2Xd¢2—dX2—dQ). (11
Here the coordinatg has periodr. If we change the coor- b R_3+i L 8fb b IR 0 16
dinates variables by 3 3rg) r§\3 0 2 ("
Ro+ 2
0
r=|ntan)—(, t=—, (12
2 4 4
0=Ry—4A€70+ —. (17
we obtain o
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The above equations can be solved with respeojtandR,  HereC is a constant of integration.
in general, although it is difficult to get the explicit expres- We now consider the perturbation around the Nariai type
sion. of solution(14) and(18),

Equation(15) can be integrated to be
p=pot+eR(t,r), o=oy+eS(t,r). (19
@20 = g2P0= 2 (18)  Hereeis an infinitesimally small parameter. Then we obtain
Ro cost?(r+C Jo) the linearizedp and o equations
0=4mb'r} 6R AS+ 32R0 A(AS){ —4m(b+b’ 210R A AS)— 2 €270 8AS BAC oo, R+2S
+16C N J|2C[ 2bR ( . b e AR R2 4\ 2 8(b+b,) 4R, 2R3
rgRo( T4 R T T3 Ry O 3rf ERETH I R, RZ
IRRH AR + 8b| R“ L3BR 4b R(2’+ LAl - 2roR+ 2R0AR
RET AR F T T RIR T Tan R

32b RoAA 2RR+4ROAR o 4RO+ 16 | R, 4bRj 8b 2R, 32b+b, 2R§C
T3 CrA A TARRY = ~3 Tair, M2 3R 32 R 23T R, [ CRe)

3 CR, c 3  3rgRy

(20)

,[16 Ro 32 8 4R, ,Ro

0=47b'r3] = RoAS+16—A(AS)+ 5 AS+ — oA —2RR+ ——AR| | — 47X 16(b+b')r2—A(AS)

3 C 327773 C C
2 200 8AS+AR+CS eac e290(R+29) + 1eC R+S 21
167G ° 2 . ( ) 2R, (RT9))- @Y

Here

A=coshA(r\/C)d, d_ (22)

and R, becomes constai,=Ry+ 2/r8. Equations(20) and (21) can be solved by assuming tHatand S are given by the
eigenfunctions ofA:

R(t,r)=Pfa(t,r), S(t,r)=Qf(t,r), Afa(t,r)=Afa(t,r). (23

Note thatA can be regarded as the Laplacian on the two-dimensional hyperboloid and the explicit expression for the
eigenfunctions is given later. Using E@3), we can rewrite Eqs.20) and (21) [using Eqg.(17)] as

_ [64mb’ 0gRy A+2A2) 64mw(b+b" )Ry A2 1 2roioa— ool 2C 2ROI Ry . b 2 4\1
- 3 c 3 C anGe X QT4 = |~ 3 M 2] TR TRt 3R,
+b R3+ 4\2 2 b+b, 4Ry ZRO 2R+4ROA . 8b (R, 323R0+ R§+ 1\4

RZ\3 " 3rd)v2 7 12\3 R, R T M) T3 M w3 R, 1360 00k R2

16 (b | 4R, L\ 3R, , 4Ry . 4R, 16 R, 4beJ
TiRl3 TP ](_ZRoA C A) 3CR,| 2RATT AT Bl T3 TR N u2) T 3R

8b 2 8(b+b,>2RS T e R I

3rZR, r2|3 R, 87G 2R,
=Mqu(A)Q+Mp(A)P
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0= 64mb'Ry| A+ = A2| + 20 b A Gam(b+b') A2 e 6A—C— =
| AP Ro| AT AT g T AT 4G 7R,/ | @
64’7Tb, O-ORO 2 2 62”0
g ~A+ gA%| = 15 (2A=C)[P=Ng(A)Q+Np(A)P. (24)
|
In order for the above two algebraic equations to have non- 1, 2
trivial solutions forP andQ, A should satisfy 0=17.G¢ 70(2A—-C)
0=F(A)=Mq(ANp(A)~Mp(ANg(A).  (25) C , &%l 4C
87G° 4nG| A C iR @9

Before analyzing Eq€16), (17), and(25), we now briefly
discuss how(antjevaporation is described. As I5], we  sinceR,=4r2 in the classical case, the solution of E89)
consider the following function as an eigenfunction/ofin is given byA= C/2. Therefore, the horizon does not develop

Eq. (23): in time and the black hole does not evaporate or antievapo-
rate. The result is, of course, consistent with that3if
_a(a—1)C In general, it is very difficult to analyze Eq&L6), (17),
fA(t,r)zcoshta\/Ecosh’r\/E, A= 4 : and (25). The equations, however, become simple in the
(26)  limit of ro—o. Note thatry, the radius ofS,, is a free

parameter and the SDW type of expansion in Ej. be-
Note that there is a one to one correspondence between comes exact in the limit sinc®~O(ry?). In order to con-
and « if they are restricted tA>0 and @<0. Any linear  sider the limit, we now redefinR, and o as
combination of two solutions is a solution. The perturbative
equations of motiori24) are always linear differential equa-

tions. The horizon is given by the condition Ro:%HO' o= —In(uro) +So. (30
Vo-Vo=0. (27) Then Eq.(16) is rewritten as

Substituting Eq(26) into Eq. (27), we find that the horizon 5

is given byr=at. Therefore, on the horizon, we obtain 0=Ho— W2° S+4. (31

S(t,r(t))=Q cosH**tay/C. This tells us that the system is

unstable if there is a solution>®a>—1, i.e., 0<KA<C/2. Substituting Eq(31) into Eqg.(17), we obtain

On the other hand, the perturbation becomes stable if there is

a solution wherea<—1, i.e., A>C/2. The radius of the 2 _

horizonr,, is given byr,=e”=g%*"<Str(t) | et the initial (—Hg+4)in(uro)+0(1)=0. (32

perturbation be negativ®)<0. Then the radius shrinks

monotonically, i.e., the black hole evaporates in the case o

0>a>—1. On the other hand, the radius increases in time

and approaches the Nariai limit asymptoticalBft,r(t))

—Qell*atel\T jn the case ofx< —1. The latter case cor-

responds to the antievaporation of the black hole observed b Ince we can expect that~2 wou!d correspond to the

Bousso and Hawkingg]. lassical limit wherd40=4, we .con5|der only the case of
We should be more careful in the casefot C/2. When ~ Ho~2. Then using Eq(31), we find

A=C/2, fa(r,t) is, in general, given by

his tells us that

Ho==2+0(In(uro)]1 . (33

3 2
© %= % (34
cosh(t+a)yC
fa(r,t)= it+a) ]+sinr(w6)tanr(rJ6)].
costir/C) Then the metric in the quantum Nariai type of solution has
(28 the form

Then the conditiori27) givest+a= + (r —b). Therefore, on 3C 3C
the horizon, we obtairs(t,r (t))=Q coshb. This is a con- =—————— (—dt®+drd)+ =—dQ. (35
stant, that is, evaporation or antievaporation does not occur. 2\ cosh?(r/C) 2A
The radius of the horizon does not develop in time. In the
classical case, Eq25) has the form Substituting Egs(33) and (34) into Eqg. (25), we obtain
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1 ) 1287b’\? Minkowski, we will consider the radial component in the
0=F(A)= ) [In(uro)] ( 3 ) flow of the energyT,, =T, ,—T__.
0 Usually the Einstein equation can be written as
A2 2
X| —A+— +O(1)]. (36) 1 1
C R Rl/-V_EglLVR ZT;V'FTZV. (39

Equation(36) tells us thatA=0,C/2. WhenA=0, Sis con- . ]

stant and evaporation or antievaporation does not occur. Agere T, is the classical part of the matter energy momen-
discussed before, the horizon does not develop in time whel!m tensor, which vanishes in the case under consideration,
A=C/2, either. The result, however, might be an artifact inand T}, is the quantum part, which we are now interested in.
the limit of ro—o. In order to consider physically reliable Comparing Eq(39) with Eqg. (8), we find

results, we start from the next order pih(urg)] 2. Then 2
using Egs(16) and(17), we find 192" 2ot o) Rt 20,0920}, (40
327G
_,[2b+3b’ 9
Ho=2-+[In(uro)] b + 51272bGA )’ (37 Substituting the solution of the perturbati@6), we find
Ba(at+l)e
1 3,u,2 B q_ _ .
UOZ_In(Mr0)+§ In(ﬁ +[|ﬂ(/,br0)] 1 Ttr 327GA Slnr(ta\/a)

M2(2b+3b’ 9 ) X sinh(r /C)cosi (1 /C) +O(€?). (41)

X — + >
8A b 512m°bGA T{ is positive when 0>a>—1 and negative whemx<

Since we are now interested in the problem of antievapora-_l’ l.e., there is a flow from the event horizon to the cos-

tion, we consider the solution oAi~C/2. The solutionA mological horizon when B a>—1. The direction of the
~0 would correspond to usual evaporation. Assumg flow changes whea< — 1. It exactly corresponds to evapo-

—C/2+ -1 . : _ ration for > a>—1 and antievaporation far<<—1. -
Cl2+ [Inuro)] "2 and substituting Eq:37) into Eq. (25), Let us turn now to the study of no boundary condition in

we find the evolution of black holes. As is known, the cosmological
(b+b")C BH does not appear after the gravitational collapse of a star
a;=0, a;=-— : (39 since the background space-time is not de Sitter space but

8b’ flat Minkowski space. Bousso and Hawking, however, con-

i . ) .. jectured that the cosmological black holes could be pair cre-
In the first solution, the horizon does not develop in timeqaq py the quantum process in an inflationary universe since
again and we would need the analysis of the higher order gk niverse is similar to de Sitter space. They have also
[I”({“_rO)]_l- An important point is that the second solution is gho\n that no boundary conditi¢t3] determines the fate of
positive when N+7Ny,>26N;. Whena is positive,A  tha plack holes and they should always evapot&emini-
>C/2, i.e., antievaporation occurs. Let us consider théS5U 5| scalars Now we make a similar analysis for conformal
group withNg scalar multiplets andl; fermion multiplets in- magter. In our case, the analytic continuation to Euclidean
the adjoint representation of the gauge group. Then, thgy,ce-time is given by replacing:i . By the further chang-
above relation looks like s+ 7N;>26. We see that for ing the variables- andr by
SU(5) GUT with three spinor multiplets and three scalar
multiplets antievaporation is expected for SdS BHs. Simi- 1
larly, one can estimate the chances for antievaporation in the v= TJE, sinu= ————, (42
arbitrary GUT under discussion. On the other hand, when coshr\/C
2N+7N,,,<26N,, evaporation occurs. For example, for the . . .
above GUT with two spinor multiplets and two scalar mul- f[he metric in the quantum Nariai type of solution correspond-
tiplets we expect that matter quantum effects induce thd"d to Eq.(35) has the form
evaporation of SdS BHs. This result would be nonperturba- 3
tive and exact in the leading order of théNléxpansion. Of ds?=——(du?+sirf udv?+dQ). (43
course,A goes toC/2 in the limit of ry— +o, when the 2A
SDW type of expansion becomes exact, and the black hol . . . .
does n)g: evaporgte or antievaporate in the limit. If there i:silahe metric (43) tells us that four-dimensional Euclidean

some external perturbation, which gives effectively fimie zpﬁg?:slgzex g’;m Igethr:gélrjdc?igegi g;engtrgiucthgf (;[Wgrattvgf'
however, antievaporation may occur. P ' 9 ' P

(4/C)A becomes the Laplacian on the unit two-sph&fe

The nucleation of the black hole is described by cutting the
V. ENERGY FLOW AND NO BOUNDARY CONDITION two-sphere atu==/2 and joining to it a Lorentzian

We now briefly discuss Hawking radiation. Since the(1+1)-dimensional de Sitter hyperbol[@] by analytically
space-time that we are now considering is not asymptoticallgontinuingu by u= 7/2+it and regarding as the time co-
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ordinate. In the Euclidean signature, the eigenfunctiorevaporate or antievaporate in the nearly degenerate limit. No
fA(t,r) in Eq.(26) is not single valued unlessis an integer. boundary condition is shown to be consistent with the anti-
Therefore, f5(t,r) is not adequate when we discuss theevaporation of SdS BHs. Other boundary conditions may be
nucleation of the black holes. Insteadfq{t,r), we consider discussed in the same way as a generalization of this work.

the following eigengfunctior (t,r) in the Euclidean signa- Some rem.arks abo!“ energy rovv_ in the regime of evapora-
ture: tion or antievaporation are also given.

Let us now compare our results with these of other papers
5 »(v+1) [3,5], where similar questions have been investigated.
fa(u,v)=Ffycoqv)Pi(cosu), A=—"-C. (44 Bousso and Hawking treated the quantum effects of 4D
4 minimal scalars using-wave and largé&l approximations. In
our other papef5], the scale ¢) dependent part of the ef-
fective action is given by the large trace anomaly induced
effective action(without using thes-wave approximation
but the scale independent part is determined using-thave
approximation, i.e., spherical reduction. That wpsk deals
1-v+n)l(2+v+ n)/ 1—x\n with conformal quantum scalars only. In the present wqu we
(n+ )in! \ 2/ - (45 used the effective action Whose_ scale dep_endent part is given
o by a largeN trace anomaly as in the previous papg} but
We can assume=0 without any loss of generality. Note WNOSe scale independent part is given by a Schwinger—De
~ ) i 1 Witt type of expansion, which is essentially the power series
that f(u,v) vanishes at the south pole=0 since P,(X  expansion on the curvature invariants corresponding to the
=cosu=1)=0. Therefore,f(u,v) is single valued on the rescaled metri¢3). Since the curvature in the Nariai limit
hemisphere and does not conflict with the no boundary conand the perturbation around it is almost constant, the rescaled

dition [13]. We should also note th&fu,v) is not real when ;carl]lar curva[t)urewlit z;dway@f(roz). This tells us f(ﬂf”‘t the
) o _ P . chwinger—De Witt type of expansion given in this paper
a_nalyt|cally contm_umg.l by u= W/Zt't into the I__orent2|an would become exact in the limit afy— +. Therefore, the
signature but, as if8], we can make (u,v) real in the late  analysis given here using thg— +2 limit would also be
Lorentzian time(larget) by the suitable choice of the con- exact. Moreover, the results of the present work are given for
stantf, since arbitarary conformal mattéscalars, spinors, and vectprin
all these works, the same qualitative result is found: the pos-

Here f, is a constant an(ﬂ’,l,(x) is given by the associated
Legendre function

PL(x)=sin my(1—x?)2

X, I¢
n=0

1 sibility that SdS(Nariai) BHs may antievaporate. As we see
R r V+§ A from the estimation above, such antievaporation may be
P,l,(cosu)z Pll,(—i sinht)~ ———(—i)"e" quite general for many GUTs. Moreover, pair creatpd-
Val(v) mordia) BHs may antievaporate due to conformal quantum
when 1— 4. (46) matter effects when applying no boundary condition.

As a very interesting generalization of the above work, it
Since A>C/2 whenv>1, we can expect that antievapora- could be helpful to understand whether antievaporation is a
tion would occur in the pair created black holes. In order tosPecific feature of SdS BHs or it may be realized also for
confirm it, we consider the behavior of the horizon in the lateother BHs with multiply horizons. In order to clarify this
Lorentzian time(largef). By using Eq.(46) we find that the issue we studied Reissner-Nordsirede Sitter BHs where a

. . . _; preliminary investigation shows also the possibility of anti-
c.ondmon of th? horizori27) gives cowxe - Thereforg, W€ evaporation due to quantum effects. We hope to report on
find on the horizorf (v (t),t)<e* ' This tells us, as in the  this in the future.

case of Sec. IV, that the perturbation is stable when

>C/2 (v>1) and unstable whe®<C/2 (0<wv<1). The ACKNOWLEDGMENTS
previous analysis i{38) implies that there is a solution of
A>C/2. Therefore, the antievaporatidstable modge can
occur even in the nucleated black holes and some black hol
do not evaporate and can survive. This result is differen
from that of Bousso and Hawking, who claimed that the pai
created cosmological black holes most probably evaporate.
(Note, however, that they considered another type of matter-
minimal scalar, while we deal with conformal matjdn any String presentation of 4D Einstein scalar theory

case, this question deserves further investigation. Starting from Einstein gravity wittN minimal scalars,

We are indebted to A. Sugamoto and T. Kadoyoshi for
iscussions and collaboration at the early stage of this work.
is work is partially supported by RFBR, project n96-02-

6017.

APPENDIX

VI. DISCUSSION 1

S J X" gm
In summary, we studied the lard¢ effective action for 16wG
conformal matter on a spherically symmetric background. N
The application of this effective action to the investigation of _ 167G E apy . 4
guantum evolution of SAdS BHs shows that such BHs may 2 341 9(a)%aXalpXa

(R®—2A7)

: (A1)
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one can consider the spherically symmetric space-time  \working in the conformal gauggw_e%gw, we may
present the actiofA4) as ac model

ds?=g,,,dx“dx"+ f($)dQ. (A2)
. . , 1 _ R
Reducing the actioiA1) for the metric(A2), we get S:f dzx\/_g{zc;ij(x)g“”aﬂx'apxl+ RP(X)+T(X)|,
S (AB)
=~ 2
=T Gfdx\/ {f(R 2A)+
where
N
F2ATAR(T, 9= 00 Z (VX aka- “{goxa BO=C(d), TX)=V($)e,
(A3) Z(¢) 2C'(¢) O
The reduced action belongs to the class of actions described G — 2C' (o) 0 0 A7
by ij= 5 : (A7)
0 0 —f()

1
s:f dzx\/—_g[ C(HR+TV(P)+ 52($)g""9, b9,

Thus we presented reduced 4D Einstein scalar theoryaas a
model. Similarly, one can present 4D Einstein conformal

N
_ ;?(d’)gl VaXaVaXa] ' (A4) scalar reduced theory
1
where from Eq(A3) we get S=J d2x\/—g[ C(¢p)R+V(9)+ EZ(¢)9“V<7#¢<9V¢
C(¢)=—w V(¢)=—i[2—2/\f(¢)] 1. 1
4G’ 4G ’ - 2
(A5) 2 ¢)2 (V XaVaXxat 6Xa J (A8)
1 f/2 _ . . . . i
Z(¢)=— e F( )= —arf(b). Lg’z_ir:form like Eq.(A6) with slightly changed metriG;; and

1.
P(X)=C(¢)— 5 (), T(X)=V(¢)e*,

1. N
2(4) 2¢'(¢) -3 2 X
, 2.,
Gy = 2C'(¢) 0 —3f(dxa |, (A9)
1. & 2. -
—3T@O2Z xi —3Txa —f(¢)
a=1

One can show(see[14]) that the off-shell effective action in the stringy parametrizatié®) is different from the one
calculated in dilatonic gravityA4) in a covariant gauge. However, on shell all such effective actions coincide, as they should
(see[14]). The main qualitative result of this appendix is that one can study quantum evolution of black holes using also the
o model approach.
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