PHYSICAL REVIEW D, VOLUME 59, 044025

Gravitational entropy and global structure
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The underlying reason for the existence of gravitational entropy is traced to the impossibility of foliating
topologically non-trivial Euclidean spacetimes with a time function to give a unitary Hamiltonian evolution. In
d dimensions the entropy can be expressed in terms oflth2 obstructions to foliation, bolts and Misner
strings, by a universal formula. We illustrate with a number of examples including spaces with nut charge. In
these cases, the entropy is not just a quarter the area of the bolt, as it is for black holes.
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[. INTRODUCTION tonian. In gravitational theories the Hamiltonian is given by
a volume integral over a hypersurface of constant time, plus
The first indication that gravitational fields could have surface integrals at the boundaries of the hypersurface. The
entropy came when investigatiofs] of the Penrose process Volume integral vanishes if the constraints are satisfied; so
for extracting energy from a Kerr black hole showed thatthe numerical value of the Hamiltonian comes from the sur-
there was a quantity called the irreducible mass which couldiace terms. However, this does not mean that the energy and
go up or stay constant, but which could never go downmomentum reside on these boundaries. Rather it reflects that
Further work[2] showed that this irreducible mass was pro-these are global quantities which cannot be localized. We
portional to the area of the horizon of the black hole and thaghall argue that the same is true of entropy: it is a global
the area could never decrease in the classical theory, even Rioperty and cannot be localized as horizon states.
situations where black holes collided and merged together. If the spacetime can be foliated by a family of surfaces of
There was an obvious analogy with the second law of therconstant time, the Hamiltonian will indeed generate unitary
modynamics, and indeed black holes were found to obejransformations and there will be no gravitational entropy.
analogues of the other laws of thermodynamics as {@ll However, if the topology of the Euclidean spacetime is non-
But it was Bekenstein who took the bold stefj of suggest- trivial, it may not be possible to foliate it by surfaces that do
ing that the area actually was the physical entropy, and that ftot intersect each other and which agree with the usual Eu-
counted the internal states of the black hole. The inconsisclidean time at infinity. In this situation, the concept of uni-
tencies in this proposa| were removed when it was discovtary Hamiltonian evolution breaks down and mixed states
ered that quantum effects would cause a black hole to radiat&ith entropy will arise. We shall relate this entropy to the
like a hot body([5,6]. obstructions to foliation. It turns out that the entropy of a
For years people tried to identify the internal states ofd-dimensional Euclidean spacetime 2) can be expressed
black holes in terms of fluctuations of the horizon. Succes# terms of bolts(d—2 dimensional fixed point sets of the
seemed to come with the paper of Strominger and Y&fa time translation Killing vector and Misner stringgDirac
which was followed by a host of others. However, in light of strings in the Kaluza-Klein reduction with respect to the time
recent work on anti—de Sitter spa@], one could reinterpret translation Killing vector by the universal formula
these papers as establishing a relation between the entropy of
the black hole and the entropy of a conformal field theory on
the boundary of a related anti—de Sitter space. This work,
however, left obscure the deep reason for the existence of
gravitational entropy. In this paper we trace it to the fact that
general relativity and its supergravity extensions allow
spacetime to have more than one topology for given boundwhereG is thed dimensional Newton’s constant,,;s and
ary conditions at infinity. By topology, we mean topology in Ay are respectively thd—2 volumes in the Einstein frame
the Euclidean regime. The topology of a Lorentzian spaceef the bolts and Misner strings ardy,s is the Hamiltonian
time can change with time only if there is some pathology,surface term on the Misner strings. Where necessary, sub-
such as a singularity, or closed time-like curves. In either ofractions should be made for the same quantities in a refer-
these cases, one would expect the theory to break down. ence background which acts as the vacuum for that sector of
The basic premise of quantum theory is that time translathe theory.
tions are unitary transformations generated by the Hamil- The plan of this paper is as follows. In Sec. Il we describe
the Arnowitt-Deser-MisnefADM) formalism and the ex-
pression for the Hamiltonian in terms of volume and surface
*Email address: S.W.Hawking@damtp.cam.ac.uk integrals. In Sec. Il we introduce thermal ensembles and
"Email address: C.J.Hunter@damtp.cam.ac.uk give an expression for the action and entropy of Euclidean

1
S= E(Abolts+Ams)—,3HMs, 1.1

0556-2821/99/5€4)/044025%10)/$15.00 59 044025-1 ©1999 The American Physical Society



S. W. HAWKING AND C. J. HUNTER PHYSICAL REVIEW D59 044025

metrics with aU(1) isometry group. This is illustrated in sity. Since the constraints all vanish on metrics that satisfy
Sec. IV by some examples. In Sec. V we draw some concluthe field equations, the volume term makes no contribution
sions. to the Hamiltonian when it is evaluated on a solution.

The boundary term is

Il. HAMILTONIAN 1
Let M be ad-dimensional Riemannian manifold with Hp=— 817G fB \/;[Nk”Lui(K”_Kh”)Nj
metricg,,, and covariant derivativ€ , , which has an imagi- o ! . A
nary time coordinate that foliatesM into non-singular hy- +2A0F™ Ui+ F(N,N by, ™) ], (2.9

persurfaceq> ,} of constantr. The metric and covariant
derivative on. ; areh;; andD; . If M is non-compact, then
it will have a boundaryd M, which can include internal
components as well as a boundary at infinity. The2 di- damental form of., in M, and f(N,N‘,hij &%) is some

mensional surface®,=dMNZX, are the boundaries of the nction which depends on the form of the matter Lagrang-
hypersurface& ; and a foliation ofo M. We will use Greek jan.

letters to denote indices o and Roman letters for indices Generally the surface term will make both the action and

where o is the area element &, , k is the trace of the
second fundamental form &, as embedded iB ., u; is the
outward pointing unit normal t®,, K;; is the second fun-

ons .. the Hamiltonian infinite. In order to obtain a finite result, it is
The Euclidean action for a gravitational field coupled tosensible to consider the difference between the action or
both a Maxwell andN general matter fields is Hamiltonian, and those of some reference background solu-

tion. We pick the background such that the solution ap-

1 proaches it at infinity sufficiently rapidly so that the differ-
I=- 167G JMddx\/ﬁ[R— F2+ L9, ¢™)] ence in the action and Hamiltonian is well-defined and finite.
This reference background acts as the vacuum for that sector
1 1 /b of the quantum theory. It is normally taken to be flat space or
T 8nG Md x\b® (), (2.9 anti—de Sitter space, but we will consider other possibilities.

We will denote background quantities with a tilde, although
whereR is the Ricci scalarF ,, is the Maxwell field tensor, in the interest of clarity, they will be omitted for most cal-
and£(g,,,,¢") is an arbitrary Lagrangian for the fields®  culations.

(A=1,...N), where any tensor indices fop”" are sup-
pressed. We assume that theontains only first derivatives, 1. THERMODYNAMIC ENSEMBLES
and hence does not need an associated boundary term.

In order to perform the Hamiltonian decomposition of the In order to discuss quantities like entropy, one defines the
action, we write the metric in ADM fornfi9]: partition function for an ensemble with temperatufe

o _ _ =B~1, angular velocity) and electrostatic potentidh as
ds’=N?d7*+h;;(dX +N'd7)(dX+Nld7). (2.2

This defines the lapse functid\y the shift vectoiN', and the Z=Tr e_B(Em‘JWQ):f D[gID[¢]e 'l%4], (3.1)
induced metric or ., h;;. We can rewrite the actiofsee
[10,17 for detaily as where the path integral is taken over all metrics and fields

that agree with the reference background at infinity and are
| :j dr J periodic under the combination of a Euclidean time transla-
s tion B, a rotation through an angje() and a gauge transfor-
(2.3 mation B®. The partition function includes factors for
o electric-type charges such as mass, angular momentum and
where P/, E' and 7* are the momenta conjugate to the electric charge, but not for magnetic-type charges such as nut
dynamical variables;; , A; and ¢ respectively. The Hamil- charge and magnetic charge. This is because the boundary
tonian, H, consists of a volume integral ove&X, and a conditions of specifying the metric and gauge potential on a

+H

N
dd‘lx( Ph;+EA+ X, 7h¢h
A=1

e

boundary integral oveB.. d—1 dimensional surface at infinity do not fix the electric-
The volume term is type charges. Each field configuration in the path integral
M therefore has to be weighted with the appropriate factor of
_ i i the exponential of minus charge times the corresponding
He= LTdd X NHJFNIHiJFAO(DiEI_pHAZl )‘ACA}' thermodynamic potential. Magnetic-type charges, on the
(2.4)  other hand, are fixed by the boundary conditions and are the
. same for all field configurations in the path integral. It is
whereN, N/, A, and\* are all Lagrange multipliers for the therefore not necessary to include weighting factors for
constraint termsH, H;, D;E'—p and CA. The number of magnetic-type charges in the partition function.
constraintsM, which arise from the matter Lagrangian de- The lowest order contribution to the partition function
pends on its exact fornp. is the electromagnetic charge den- will be
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zZ=> e, (3.2 |=f dr +H

(3.9

(1) isometry, the time derivatives will all
¥>e zero. Thus the action g¥1 will be

J dd‘1x< Pihij+EA+ Y, m¢”
A

e

wherel are the actions of Euclidean solutions with the givengacause of tha)
boundary conditions. The reference background, periodicall
identified, will always be one such solution and, by defini-
tion, it will have zero action. However, we shall be con- |(M)= gH 3.6
cerned in this paper with situations where there are addi- ' '

tional Euclidean solutions with different topology which also get the action of the whole spacetimyé, one now has to

have aU(1) isometry group that agrees with the periodic i hack the small neighborhoods of the fixed point sets and
identification at infinity. This includes not only black holes o misner strings that were cut out. In the limit that the

and p-branes, but also more general classes of solution, as Wgighporhoods shrink to zero, their volume contributions to

shall show in the next section. the action will be zero. However, the surface term associated

In d dimensions the Killing vectoK=d/d7 will have ity the Einstein-Hilbert action will give a contribution to
zeros on surfaces of even codimension which will be f|xeqhe action of M of

points of the isometry group. Theé—2 dimensional fixed
points sets will play an important role. We shall generalize _ 1
the terminology of12—14 and call them bolts. HM=M) == 7= (Avorst Aus), 3.7
Let rwith period 8 be the parameter of tHé(1) isometry
group. Then the metric can be written in the Kaluza-Kleinywhere A, and Ay are respectively the total area of the
form bolts and the Misner strings in the spacetime. The contribu-
tion of the Einstein-Hilbert term to the action from lower

4 dimensional fixed points will be zero. The contribution at
d=exg — —0 (d7+ w;dx')?2 bolts and Misner strings from higher order curvature terms in
vd—2 the action will be small in the large area limit.

The Hamiltonian in Eq(3.6) will come entirely from the
+ex 4o surface terms. In a topologically trivia] sp_acetime, the sur-
(d—3)yd—2 faces ofr will have boundaries only at infinity. However, in
more complicated situations, the surfaces will also have
boundaries at the fixed point sets and Misner strings. The
whereo, w; andy;; are fields on the spacg of orbits of the  Hamiltonian surface terms at the fixed points will be zero
isometry group= would be singular at the fixed point, and because the lapse and shift vanish there. On the other hand,
so one has to leave them out and introddee2 boundaries although the lapse is zero, the shift will not vanish on a

’yijdXide, (33)

to E. _ _ Misner string. Thus there will be a Hamiltonian surface term
The coordinater can be changed by a Kaluza-Klein gaugeon a Misner string given by the shift times a component of
transformation the second fundamental form of the constasturfaces. The

action of M is therefore

T'=7+N\, (3.9 1
[(M)=B(H.+ HMS)_E(AbOIts_l'AMS)- (3.9

where\ is a function onZ. This changes the one-form by

d\ but leaves the field strength=dw unchanged. If the On the other hand, by thermodynamics,
orbit spaceE has non-trivial homology in dimension 2, then
the two-formF can have non-zero integrals over two-cycles
in Z. In this case, the one-form potentialwill have Dirac-

: : : o . . L But

like string singularities on surfaces of dimensidr 3 in E.

The foliation of the spacetime by surfaces of constawill H.=E+Q.J+®0, (3.10
break down at the fixed points of the isometry. It will also

break down on the string singularities af which we call  gnd so

Misner strings, after Charles Misner who first realized their

nature in the Taub-NUTNewman-Unti-Tamburinpsolution 1

[15]. Misner strings are surfaces of dimensiba 2 in space- S= E(Abolts"' Awms) —BHus - (3.1)

time M.

In order to do a Hamiltonian treatment using surfaces ofrhe areas and Misner string Hamiltonian in E8.11) are to
constantr, one has to cut out small neighborhoods of thepe understood as differences from the reference background.
fixed point sets and of any Misner strings leaving a manifold  |n order for the thermodynamics to be sensible, it must be
M. On M one has the usual relation between the action anthvariant under the gauge transformati@4) which rotates
Hamiltonian: the imaginary time coordinate. Because the acti@®) is

log Z=S—B(E+Q-J+®Q). (3.9
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gauge invariant, we see that the entropy will also be, proin order to make the solution regular, we consider the region
vided thatH., is independent of the gauge. In the Appendix,r=N and let the period of be 87N. The metric has a nut at
we show thatH,, is indeed gauge invariant, and hence ther =N, with a Misner string running along theaxis from the
entropy is well-defined, for metrics satisfying asymptotically nut out to infinity.

flat (AF), asymptotically locally flatALF) or asymptotically The Taub-bolt instantofil7] is also given by the metric

locally Euclidean(ALE) boundary conditions. (4.1). However, the functioV(r) is different:
Previous expositions of gravitational entropy have not in-
cluded ALF and ALE metrics. This is presumably because _ (r=2N)(r—N/2)
these metrics contain Misner strings, and hence do not obey Vre(r) = re—N? 4.3
the simple “quarter-area law,” but rather the more compli-
cated expressiofB.11). The solution is regular if we consider the regios 2N and

let 7 have period3=8wN. Asymptotically, the Taub-bolt
instanton is also ALF. There is a bolt of areard¥’ at r
= 2N which is a source for a Misner string along thaxis.

In th|s Section we Ca|cu|ate the entropy Of some four and In Ol’del’ to Calculate the Ham”tonian Of the Taub'bolt
five dimensional spacetimes. We €t 1. The first example instanton, we need to use a scaled Taub-NUT metric as the
considers the Taub-NUT and Taub-bolt metrics, which ardeference background. We can then calculate the Hamil-
ALF. We then move to solutions of Einstein-Maxwell tonian at infinity,
theory, the Israel-Wilson metrics, and calculate the entropy
in both the AF and ALF sectors. The Eguchi-Hanson instan- H, =
ton then provides us with an ALE example. Finally, we cal-
culate the entropy of° for two different U(1) isometry o .
groups, one with a bolt and the other with no fixed points bu@"d the contribution from the boundary around the Misner
a Misner string, obtaining the same result both ways. Thétring,
action calculations, reference backgrounds and matching N
conditions for Taub-NUT, Taub-bolt and Eguchi-Hanson are Hus= — = (4.5
all presented i14] and will not be repeated here. 8

IV. EXAMPLES

N
o 4.9

_ The area of the Misner string is 127N? (that is, the area of
A. Taub-NUT and Taub-bolt instantons the Misner string is greater in the Taub-NUT background

ALF solutions have a nut charge, or magnetic type masshan in Taub-bojt Combining the Hamiltonian, Misner
N, as well as the ordinary electric type masé, The nut string and bolt contributions yields an action and entropy of
charge is8C,/8m, whereC, is the first Chern number of the 2 2
U(1) bundle over the sphere at infinity, in the orbit spate |=oN" and S=aN-. (4.6
If the Chern number is zero, then the boundary at infinity is
S'x $? and the spacetime is AF. The black hole metrics ar
saddle points in the path integral for the partition function

It would be interesting to relate this entropy to the entropy
f a conformal field theory defined on the boundary of the

They have a bolt on the horizon but no Misner strings, an pacetime. This may be possible by considering Euclidean

. aub-NUT anti—de Sitter and other spacetimes asymptotic to
hencg Eq(3.11) gives the usual result for the entropy. HO.W.' it. The boundary at infinity is a squashed three-sphere, and

%he squashing tends to a constant at infinity. One would then
compare the entropy of asymptotically Taub-NUT anti—de
itter spaces with the partition function of a conformal field
heory on the squashed three sphere. Work on this is in

is a squashe®®, and the metric cannot be analytically con-
tinued to a Lorentzian metric. Nevertheless, one can formall
interpret the path integral over all metrics with these bound—t
ary conditions as giving the partition function for an en-

semble with a fixed value of the nut charge or magnetic-typé)rogress{ls]'
mass. ' .
The simplest example of an ALF metric is the Taub-NUT B. Israel-Wilson metrics

instanton[16], given by the metric The Euclidean Israel-Wilson family of metri€$9,2Q are

solutions of the Einstein-Maxwell equations with line ele-
2 1 2 ment
ds®=V(r)(dr+ 2N cos fd¢)2+ Wdr
1 ) S
+(r2—N2)(d62+sir? 0d¢?), 4.1 ds’= Gy (A7 @idx) >+ UWy;dxdx, (4.7

whereV(r) is where y;; is a flat three-metric antd, W and w; are real-

valued functions. The electromagnetic field strength is
VTN(r): r_N. (42) F=z9i(IJ(dT+w]-de)/\dXi+UW\/;eijk'yklzﬂ)(dXi/\de,

r+N 4.9
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with complex potentialsb and y given by 1 1
|l=——— d4x\/§(R—F2)—5J d3x\bO(b),
M

b= g + ! + —]|i si 4.9 o 4.1
=5 U—V—VCOSa U V—VISIna (4.9 (4.16
which we can divide up into a gravitationgEinstein-

and Hilbert) and an electromagnetic terrn= 1 EH+ | EM,

1(/1 1 1 1 Since the Ricci scalaR, is zero, the gravitational contri-

=— _{|l=+ Z|cosa+| —— —|i sin a!. bution to the action is entirely from the the surface term at
X S
2\Uu- W u w infinity,
(4.10
2 H EH 1 3
For F< to be real, we need to také and y to be either |=N=— Fy d x\/BG)(b). (4.17
™ JoMm

entirely real or purely imaginary. Taking them to be real, we

obtain the magnetic solution Substituting in the metric, we can evaluate this on a hyper-

1/1 1) surface of radius,

1
and Xmag:_i (U+W

(I)mag: E

1 1

U w

B u'D;(UW)
(4.11) |EH=_,BI’—E 0Ed2X\/; W’ (4.18

The dual of the magnetic solution is the electric one, with

imaginary potentials. Calculating the square of the fieldWheréo; is the metric induced on the boundary frop),
strengths: andu' is the unit normal to the boundary.

We can write the electromagnetic contribution to the ac-
Fﬁqag:(DU—l)ZjL (DW 1)2=— Fglec (4.12 tion integral as
We consider only the magnetic solutions here. The actiorPEM: 1 j d“x\/—FZ
and entropy calculations for the electric case are similar. 167 ) m g
U, W and w; are determined by the equations

D,DIU=0=D,D'W BE fDiDiW D:D'U
PE=R=RR “327 )YV TTw
1
—=7%ij € dw=WD,U - UD;W, (4.13 B dzx\/EuiD-(UW)ivLi (4.19
Jy 327 )= ' Uz’ wa|’

whereD; is the covariant derivative fof;; . The solutions whered= is the boundary oE at infinity (since the internal
for U and W are simply three-dimensional harmonic func- boundaries about the fixed points will make no contribution
tions, and we will take them to be of the form We can evaluate the volume integral by using the delta func-

" tion behavior of the Laplacians &f andW,

N
U=1+S —2 and w=1+ b , N M
i1 x=yil =1 |x—1zy IEM:_Z E a2+2 bz)
(4.19 2\ &
wherey, and z; are called the mass and anti-mass points B ) i 1 1
respectively, and comprise the fixed point setogf We T 3r ﬁad xyou Di(UW) UZ+ W2
assume that the points have positive mass, a,gh;>0.
There will generically be conical singularities in the met- (4.20

ric at the mass and anti-mass points. In order to remove the

; . Note that the sum is only over mass and anti-mass points
we must apply the constraint equations

which are not coincident.

B Suppose that we consider metrics with an equal number
U(zJ)bJ=E=W(y,)a| , (4.15  of nuts and anti-nuts,
N N
where 8 is the periodicity ofr. Note that these equations U=1+> & and V=1+> L
hold for each value of andJ; i.e., no summation is implied. =1 Ix=yil i“1 Ix—1z|
While the resulting spacetime is non-singular, emanating (4.21

from each fixed point there will be Misner string singularities Vi h ) . h

in the metric and Dirac string singularities in the electromag-/\PPIYing the constraint equations, we see that

netic potential. These string singularities will end on either N N

another fixed point or at infinity. > a=2> b=A. (4.22
The Einstein-Maxwell action is =1 =1
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Hence, the scalar functions asymptotically look like

A A
U~1+?+O(r‘2) and w~1+?+c9(r—2),

4.23
while the vector potential vanishes,
wi~0O(r=?). (4.24
Thus, at large radius the metric is
2A 2A
ds*~| 1-——|dr*+ 1+T)d€§, (4.29

so that the boundary at infinity i8'x S?, and the metric is
AF.
The background is simply flat space which is scaled s

PHYSICAL REVIEW D59 044025

A=pBR. (4.32
Hence we see that the entropy is
. N
S=- 2 (af+b)). (4.33
1=1

It is interesting to note that th=1 case is in fact the
charged Kerr metric subject to the constrag#fd =2 7. This
condition implies that, unlike the generic Kerr solution, the
time translation orbits are closed. In a purely bosonic theory
this means that the Kerr metric wih() =27 contributes to
the partition function,

Z=tre A4, (4.39

for a non-rotating ensemble. However, the partition function

Quill now not contain the factor exp{B8Q-J). This means that

that it matches the Israel-Wilson metric on a hypersurface of,,o entropy will be less than one-quarter the area of the ho-

constant radiug,

2A\ ,
1- = |dr+ de2,  (4.26

2A
d‘sz=( 1+E

and has the same period farThere is no background elec-
tromagnetic field.
Using formula(4.18 for the gravitational contribution to

rizon by 27wJ. The path integral for the partition function
will also have saddle points at two Reissner-Nordstreo-
lutions, one extreme and the other non-extreme. Both will
have the same magnetic charge. The non-extreme solution
will have the same3 while the extreme one can be identified
with period 8. The actions will obey

(4.39

I extreme> I Kerr> I non-extreme

the action, we obtain, after subtracting off the background

term,

B
IEH—EA. (4.2

From Eq.(4.20 for the electromagnetic action we get

B
SA.

N

2, (af+b))+

=1

a
EM_ _
I 5 (4.28
Note that the constraint equations imply th&¥ is positive.
The total action is therefore positive, and given by

N
I=ﬁA—g|21 (a2+b?). 4.29

We can calculate the Hamiltonian by integrating Ef5
over the boundaries at infinity and around the Misner string

(note that in the background space there are no Misn
stringg. The gravitational contribution from infinity is

H.,=A, (4.30

while the electromagnetic contribution from infinity is zero, K
because there is no electric charge. On the boundary around

the Misner strings, the Hamiltonian is

R
Hmszz—ﬁ

v

N
> (aZ+b)), (4.30)

I=1

whereR is the total length of the Misner string. The area of

the Misner strings is thus

S

Thus, the non-extreme Reissner-Nordstrsolution will
dominate the partition function.

The situation is different, however, if one takes fermions
into account. In this case, the rotation througlt)=2
changes the sign of the fermion fields. This is in addition to
the normal reversal of fermions fields under time translation
B. Thus, fermions in charged Kerr witBQ) =2 are peri-
odic under thdJ (1) time translation group at infinity, rather
than anti-periodic as in the Reissner-Nordstrsolution.
This means that the charged Kerr solution contributes to the
ensemble with partition function

(4.36

The extreme Reissner-Nordstncsolution identified with the
same periodic spin structure also contributes to this partition
function, but it will be dominated by the Kerr solution. On
the other hand, the non-extreme Reissner-Nordssolution

Z=tr(—1)Fe A",

contributes to the normal thermal ensemble with partition

efrunction

Z=tre PH, (4.37)

If we take a solution wittN nuts andM anti-nuts, where
N—M>0, then the metric asymptotically approaches

ds’~| 1— AJ:—B [d7+(A—B)cos 8d¢]?

+ (4.38

A+B
1+T)[dr2+r2dﬂg],

where
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N M N M
=> a and B=), b;. (4.39 |EM=— E 2 —(A+B) (4.46
= J=1 = J=
Applying the constraint equations, we see that Hence the total action is
B 5 N M
A-B=K-—, (4.40 B B 2
4 == - k-
T |=5(A+B)— 7—K— 5 Z J§=)1 b2|,
where K=M—N>0. Thus, the boundary at infinity will (4.47
have the topology of a lens space wkhpoints identified, o N
and hence the metric is ALF. which is always positive. o
If we taked and y to be real, then the Maxwell field will If we calculate the Hamiltonian at infinity, we get
also be real, and will now have both electric and magnetic 3
components. The choice of gauge is then quite important, as H,=> (A+B)— ﬁK (4.48

it affects how the electromagnetic Hamiltonian is split be-

tween the boundary at infinity and the boundary around the

Misner strings. We can fix the gauge by requiring the potenwhile the contribution from the Misner string is
tial to be non-singular on the boundary at infinity. Asymp-

totically, the field is A+B B

2 2} T

A;Z+ ;(A+ B)}cos 0do, (4.49

Adxi| Ar— 2Bl
udXx T 2r 4

(4.41) Since the net area of the Misner string is zero, the entropy is

where A” and A’ are the gauge dependent terms that wesimply given by the negative of the Misner string Hamil-

have to fix. By writing the potential in terms of an orthonor- tonian,
mal basis, we see that in order to avoid a singularity we must - ,32
set s=5[2 a?+ >, b2|+ (A+B)— 16K (450
| J
. A+B -
A7_2(A— B) and A,=0. (4.42 This formula has some strange consequences. Consider the

case of a single nut and no anti-nuts. Then the solution is the
We can take the background metric to be the multi-TaubTaub-NUT instanton with an anti-self-dual Maxwell field on
NUT metric [21] with K nuts. This will have the same it. Being self-dual, the Maxwell field has a zero energy-
boundary topology as the Israel-Wilson ALF solution, andmomentum tensor and hence does not affect the geometry,
has the asymptotic metric which is therefore just that of the reference background. Yet
according to Eq(4.50), the entropy is3%/327. This entropy
1+ 2N_K>d £2, can be traced to the fact that althougl is everywhere
r regular, the ADM Hamiltonian decomposition introduces a
(443 non-zero Hamiltonian surface term on the Misner string.
S . . . This may indicate that intrinsic entropy is not restricted to
where the periodicity ofr is 8wN. By scaling the radial gravity, %ut can be possessed by gapl}lge fields as well. An

coordjnate and defining the.nut charge of egch NULAP-  aiternative viewpoint would be that the reference background
propriately, we can match this to the Israel-Wilson ALF met-gp, 514 he muiti-Taub-NUT with its self-dual Maxwell field.
ric on a hypersurface of constant radRisThe metric is then This would change the entrofi.50 to

2NK
ds2~(1— — [d7+2NK cos fd¢ ]2+

2B A-B

~l_——__ 2 T 32
ds?~( 1 = [dr+(A—B)cos 8d¢] S=§[E 221> b2+ _(A+B)_ B 3 k. sy
2B - )
+| 1+ —+ ——|dé&3, (4.49
R r C. Eguchi-Hanson metric
where the periodicity ofris 8. A non-compact instanton which is a limiting case of the

Calculating the action, we find that the Einstein-Hilbert Taub-NUT solution is the Eguchi-Hanson metf&2],
contribution is

N* [ r |2
ds?=|1— )(8N> (d7+4N cos 6d¢)?

B B
|EH=Z(A+ B)_FK (4.49 4

N4 1 1
+ 1—r—4) dr2+Zr2dQZ. (4.52

while the electromagnetic contribution is
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The instanton is regular if we consider the regieaN, and  the background string has been subtracted, is simply minus
let 7 have period 8N. The boundary at infinity i§3/ 2, and  the area of the bolt. Hence the action and entropy are both
hence the metric is ALE. There is a bolt of are&? atr zero,
=N, which gives rise to a Misner string along thexis.

To calculate the Hamiltonian for the Eguchi-Hanson met- I=0 and S=0. (4.595
ric we use as a reference background an orbifold obtained by
identifying Euclidean flat space ma#,. This has a nut at Thjs is what one would expect, because the Eguchi-Hanson
the orbifold point at the origin, with a Misner string lying metric has the the same supersymmetry as its reference back-
along thez-axis. The Hamiltonian at infinity vanishes, ground. It is only when the solution has less supersymmetry
than the background that there is entropy.

H.=0, (4.53
as does the Hamiltonian on the Misner string, D. Five-sphere
Hpys=0. (4.54) Finally, to show that the expression we propose for the

entropy, Eq(3.11), can be applied in more than four dimen-
We then find that the area of Misner string, when the area o$ions, consider a five-sphere of radRs

ds?=R2(dy?+sir? x{dn?+sir? p[dy?+sir? y(de>+sir? 6d¢?)]}). (4.56
|
This can be regarded as a solution of a five-dimensional A=472R3, (4.60
theory with cosmological constat=6/R?. If we consider
dimensional reduction with respect to tbi§1) isometryd,,  Calculating the Hamiltonian surface term on the Misner

then the fixed point set is a three sphere of ra®usThere  string, we find
are no Misner strings; so our formula gives an entropy equal

to the area of the bolt, mR?
Hus=—=. 4.6
W2R3 MS 4G ( -D
S= : (4.57) _
2G Hence, we see that the entropy is
However, one can choose a differetf(1) isometry, A R2
whose orbits are the Hopf fibration of the five-sphere. In this S= E_BHMS:f' (4.62
case, we want to write the metric as
ds2= (dr+ w dx )2 While this example is rather trivial, it does demonstra_\te that
(dr+widx) the entropy formuld3.11) can be extended to higher dimen-
R? o o sions.
+ T daz+sin2§ o2+ 0§+CO§§0§) :
(4.59 V. CONCLUSIONS

There are three conclusions that can be drawn from this
work. The first is that gravitational entropy just depends on
R the Einstein-Hilbert action. It does not require supersymme-
R i try, string theory, or p-branes. Indeed, one can define entropy
“=3 ( cos 2 73+ Cos 0d¢)’ (4.59 for the Taub-bolt solution which does not admit a spin struc-
ture, at least of the ordinary kind. The second conclusion is
the periodicity ofris 27R, the range ofrand@is[0,m] and  that entropy is a global quantity, like energy or angular mo-
the periodicities ofy and ¢ are 47 and 27 respectively. The mentum, and should not be localized on the horizon. The
isometry ¢, has no fixed points. So the usual connectionvarious attempts to identify the microstates responsible for
between entropy and fixed points does not apply. The orbiblack hole entropy are in fact constructions of dual theories
space of the Hopf fibration i€P? with the Kaluza-Klein that reside in separate spacetimes. The third conclusion is
two-form, F=dw, equal to the harmonic two-form atP?. that entropy arises from a failure to foliate the Euclidean
The one-form potentialw, has a Dirac string on the two- regime with a family of time surfaces. In these situations the
surface in the orbit space given 8= 0,7. When promoted Hamiltonian will not give a unitary evolution in time. This
to the full spacetime, this becomes a three-dimensional Misraises the possibility of the loss of information and quantum
ner string of area coherence.

where
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Applying the gauge transformation and then calculating the

APPENDIX: GAUGE INVARIANCE OF H, Hamiltonian yields

We are interested in making gauge transformations which Ho=—r. (A12)
shift the Euclidean time coordinate:

Thus we see that the physical Hamiltonian is

dr=dr—2\ ;dx. (A1)
Under this transformation the Hamiltonian variables trans- He=M, (A13)
form as S . .
which is gauge invariant.
Q2= pN2 (A2) We now want to consider the value of the Hamiltonian at
P infinity for ALF spaces. The general asymptotic form of the
N ) K ALF metric is
Ni=N;+2(N2+NNOA 5, (A3)
. _ _ 2M )
Ri=p(1+ 2N (NN +2pN2\ T, (Ad) ds’~| 1— —|(d7+2aN cos fd¢)
A k 2M
hij_hij+2N(i)\,j)+4(N2+NkN ))\J)\,j, —[1-== [dr2+r2dQ§]_ (A14)
(A5) r
hil = Ril + p[2N2NINI — 4N2N I\ If we calculate the Hamiltonian after applying a gauge trans-
o formation, then we find that, identical to the AF case,
—2(1+2\ (NONOND], (AB)
where Ho=—r+M. (A15)
1 In order calculate the background value, we need the
- matched ALF background metric,
PT 2NN+ (1+ 21 N9 (A7) ?
2 i . . . 2N 2(M—N)
and\“=\ ;\''. Indices for terms with a caret are raised and dg=|1- T R (d7+2aN cos 6d¢)?

lowered withh; j » While those without are raised and lowered
by h;; . The total Hamiltonian is not invariant under such a
transformation. However, the Hamiltonian contribution at in- +
finity will be shown to be invariant for AF, ALF and ALE
metrics.

The general asymptotic form of the AF metric is

2N 2(M-N)
e

)[dr2+r2dQ§], (A16)
which has the gauge independent Hamiltonian

H.=—r+N. (A17)

2M 2M
d32~(1— T)d#—(u - [dr2+r2dQ3]. (A8)

Thus we see that the physical Hamiltonian is gauge invari-

We can apply a general gauge transformatiidd) to this, ant,

where we asymptotically expandas .
H.=M—N. (A18)

Ay _
A~Not+ = +0(r ). (A9) The general asymptotic form of the ALE metric is
If we calculate the Hamiltonian after applying this gauge _ M 2 —5
transformation, we find that ds’=| 1+ (g ]dEG+O0 ™). (AL9)
H.=—-r+M. (A10)  We note that the asymptotic background metric is simply the

M=0 case of the general metric, and hence the physical
In order calculate the background value, we need to scale flddamiltonian is
space so that the metrics agree of a surface of constant radius
R. The metric is H,=H(M)—H(0). (A20)
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If we calculate the Hamiltonian after applying the gaugeThus, the background subtraction will cancel the Hamil-
transformation, then we get a very complicated function oftonian up toO(r ~?), and hence
M, R and\. However, if we differentiate with respect i,

we find that -
H.=0, (A22)
M. O(r2 A21
—=0(r 9. S . . .
M (=) (2D which is obviously gauge invariant.
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