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Gravitational entropy and global structure
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The underlying reason for the existence of gravitational entropy is traced to the impossibility of foliating
topologically non-trivial Euclidean spacetimes with a time function to give a unitary Hamiltonian evolution. In
d dimensions the entropy can be expressed in terms of thed22 obstructions to foliation, bolts and Misner
strings, by a universal formula. We illustrate with a number of examples including spaces with nut charge. In
these cases, the entropy is not just a quarter the area of the bolt, as it is for black holes.
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I. INTRODUCTION

The first indication that gravitational fields could ha
entropy came when investigations@1# of the Penrose proces
for extracting energy from a Kerr black hole showed th
there was a quantity called the irreducible mass which co
go up or stay constant, but which could never go dow
Further work@2# showed that this irreducible mass was pr
portional to the area of the horizon of the black hole and t
the area could never decrease in the classical theory, ev
situations where black holes collided and merged toget
There was an obvious analogy with the second law of th
modynamics, and indeed black holes were found to o
analogues of the other laws of thermodynamics as well@3#.
But it was Bekenstein who took the bold step@4# of suggest-
ing that the area actually was the physical entropy, and th
counted the internal states of the black hole. The incon
tencies in this proposal were removed when it was disc
ered that quantum effects would cause a black hole to rad
like a hot body@5,6#.

For years people tried to identify the internal states
black holes in terms of fluctuations of the horizon. Succ
seemed to come with the paper of Strominger and Vafa@7#
which was followed by a host of others. However, in light
recent work on anti–de Sitter space@8#, one could reinterpre
these papers as establishing a relation between the entro
the black hole and the entropy of a conformal field theory
the boundary of a related anti–de Sitter space. This w
however, left obscure the deep reason for the existenc
gravitational entropy. In this paper we trace it to the fact t
general relativity and its supergravity extensions all
spacetime to have more than one topology for given bou
ary conditions at infinity. By topology, we mean topology
the Euclidean regime. The topology of a Lorentzian spa
time can change with time only if there is some patholo
such as a singularity, or closed time-like curves. In either
these cases, one would expect the theory to break down

The basic premise of quantum theory is that time tran
tions are unitary transformations generated by the Ham
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tonian. In gravitational theories the Hamiltonian is given
a volume integral over a hypersurface of constant time, p
surface integrals at the boundaries of the hypersurface.
volume integral vanishes if the constraints are satisfied;
the numerical value of the Hamiltonian comes from the s
face terms. However, this does not mean that the energy
momentum reside on these boundaries. Rather it reflects
these are global quantities which cannot be localized.
shall argue that the same is true of entropy: it is a glo
property and cannot be localized as horizon states.

If the spacetime can be foliated by a family of surfaces
constant time, the Hamiltonian will indeed generate unita
transformations and there will be no gravitational entrop
However, if the topology of the Euclidean spacetime is no
trivial, it may not be possible to foliate it by surfaces that
not intersect each other and which agree with the usual
clidean time at infinity. In this situation, the concept of un
tary Hamiltonian evolution breaks down and mixed sta
with entropy will arise. We shall relate this entropy to th
obstructions to foliation. It turns out that the entropy of
d-dimensional Euclidean spacetime (d.2) can be expresse
in terms of bolts~d22 dimensional fixed point sets of th
time translation Killing vector! and Misner strings~Dirac
strings in the Kaluza-Klein reduction with respect to the tim
translation Killing vector! by the universal formula

S5
1

4G
~Abolts1AMS!2bHMS, ~1.1!

whereG is thed dimensional Newton’s constant,Abolts and
AMS are respectively thed22 volumes in the Einstein frame
of the bolts and Misner strings andHMS is the Hamiltonian
surface term on the Misner strings. Where necessary,
tractions should be made for the same quantities in a re
ence background which acts as the vacuum for that secto
the theory.

The plan of this paper is as follows. In Sec. II we descr
the Arnowitt-Deser-Misner~ADM ! formalism and the ex-
pression for the Hamiltonian in terms of volume and surfa
integrals. In Sec. III we introduce thermal ensembles a
give an expression for the action and entropy of Euclide
©1999 The American Physical Society25-1
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S. W. HAWKING AND C. J. HUNTER PHYSICAL REVIEW D59 044025
metrics with aU(1) isometry group. This is illustrated in
Sec. IV by some examples. In Sec. V we draw some con
sions.

II. HAMILTONIAN

Let M̄ be a d-dimensional Riemannian manifold wit
metricgmn and covariant derivative¹m , which has an imagi-
nary time coordinatet that foliatesM̄ into non-singular hy-
persurfaces$St% of constantt. The metric and covarian
derivative onSt arehi j andDi . If M̄ is non-compact, then
it will have a boundary]M̄, which can include interna
components as well as a boundary at infinity. Thed22 di-
mensional surfaces,Bt5]M̄ùSt , are the boundaries of th
hypersurfacesSt and a foliation of]M̄. We will use Greek
letters to denote indices onM̄ and Roman letters for indice
on St .

The Euclidean action for a gravitational field coupled
both a Maxwell andN general matter fields is

I 52
1

16pG E
M

ddxAg@R2F21L~gmn ,fA!#

2
1

8pG E
M

dd21xAbQ~b!, ~2.1!

whereR is the Ricci scalar,Fmn is the Maxwell field tensor,
andL(gmn ,fA) is an arbitrary Lagrangian for the fieldsfA

(A51,...,N), where any tensor indices forfA are sup-
pressed. We assume that theL contains only first derivatives
and hence does not need an associated boundary term.

In order to perform the Hamiltonian decomposition of t
action, we write the metric in ADM form@9#:

ds25N2dt21hi j ~dxi1Nidt!~dxj1Njdt!. ~2.2!

This defines the lapse functionN, the shift vectorNi , and the
induced metric onSt , hi j . We can rewrite the action~see
@10,11# for details! as

I 5E dtF E
St

dd21xS Pi j ḣi j 1EiȦi1 (
A51

N

pAḟAD 1HG ,

~2.3!

where Pi j , Ei and pA are the momenta conjugate to th
dynamical variableshi j , Ai andfA respectively. The Hamil-
tonian, H, consists of a volume integral overSt and a
boundary integral overBt .

The volume term is

Hc5E
St

dd21xFNH1NiHi1A0~DiE
i2r!1 (

A51

M

lACAG ,

~2.4!

whereN, Ni , A0 andlA are all Lagrange multipliers for the
constraint termsH, Hi , DiE

i2r and CA. The number of
constraints,M , which arise from the matter Lagrangian d
pends on its exact form.r is the electromagnetic charge de
04402
u-
sity. Since the constraints all vanish on metrics that sat
the field equations, the volume term makes no contribut
to the Hamiltonian when it is evaluated on a solution.

The boundary term is

Hb52
1

8pG E
Bt

As@Nk1ui~Ki j 2Khi j !Nj

12A0F0iui1 f ~N,Ni ,hi j ,fA!#, ~2.5!

whereAs is the area element ofBt , k is the trace of the
second fundamental form ofBt as embedded inSt , ui is the
outward pointing unit normal toBt , Ki j is the second fun-
damental form ofSt in M̄, and f (N,Ni ,hi j ,fA) is some
function which depends on the form of the matter Lagran
ian.

Generally the surface term will make both the action a
the Hamiltonian infinite. In order to obtain a finite result, it
sensible to consider the difference between the action
Hamiltonian, and those of some reference background s
tion. We pick the background such that the solution a
proaches it at infinity sufficiently rapidly so that the diffe
ence in the action and Hamiltonian is well-defined and fin
This reference background acts as the vacuum for that se
of the quantum theory. It is normally taken to be flat space
anti–de Sitter space, but we will consider other possibiliti
We will denote background quantities with a tilde, althou
in the interest of clarity, they will be omitted for most ca
culations.

III. THERMODYNAMIC ENSEMBLES

In order to discuss quantities like entropy, one defines
partition function for an ensemble with temperatureT
5b21, angular velocityV and electrostatic potentialF as

Z5Tr e2b~E1V•J1FQ!5E D@g#D@f#e2I [g,f] , ~3.1!

where the path integral is taken over all metrics and fie
that agree with the reference background at infinity and
periodic under the combination of a Euclidean time trans
tion b, a rotation through an anglebV and a gauge transfor
mation bF. The partition function includes factors fo
electric-type charges such as mass, angular momentum
electric charge, but not for magnetic-type charges such as
charge and magnetic charge. This is because the boun
conditions of specifying the metric and gauge potential o
d21 dimensional surface at infinity do not fix the electri
type charges. Each field configuration in the path integ
therefore has to be weighted with the appropriate factor
the exponential of minus charge times the correspond
thermodynamic potential. Magnetic-type charges, on
other hand, are fixed by the boundary conditions and are
same for all field configurations in the path integral. It
therefore not necessary to include weighting factors
magnetic-type charges in the partition function.

The lowest order contribution to the partition functio
will be
5-2
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GRAVITATIONAL ENTROPY AND GLOBAL STRUCTURE PHYSICAL REVIEW D59 044025
Z5( e2I , ~3.2!

whereI are the actions of Euclidean solutions with the giv
boundary conditions. The reference background, periodic
identified, will always be one such solution and, by defi
tion, it will have zero action. However, we shall be co
cerned in this paper with situations where there are a
tional Euclidean solutions with different topology which al
have aU(1) isometry group that agrees with the period
identification at infinity. This includes not only black hole
and p-branes, but also more general classes of solution, a
shall show in the next section.

In d dimensions the Killing vectorK5]/]t will have
zeros on surfaces of even codimension which will be fix
points of the isometry group. Thed22 dimensional fixed
points sets will play an important role. We shall general
the terminology of@12–14# and call them bolts.

Let t with periodb be the parameter of theU(1) isometry
group. Then the metric can be written in the Kaluza-Kle
form

ds25expF2
4s

Ad22
G ~dt1v idxi !2

1expF 4s

~d23!Ad22
Gg i j dxidxj , ~3.3!

wheres, v i andg i j are fields on the spaceJ of orbits of the
isometry group.J would be singular at the fixed point, an
so one has to leave them out and introduced22 boundaries
to J.

The coordinatet can be changed by a Kaluza-Klein gau
transformation

t85t1l, ~3.4!

wherel is a function onJ. This changes the one-formv by
dl but leaves the field strengthF5dv unchanged. If the
orbit spaceJ has non-trivial homology in dimension 2, the
the two-formF can have non-zero integrals over two-cycl
in J. In this case, the one-form potentialv will have Dirac-
like string singularities on surfaces of dimensiond23 in J.
The foliation of the spacetime by surfaces of constantt will
break down at the fixed points of the isometry. It will als
break down on the string singularities ofv which we call
Misner strings, after Charles Misner who first realized th
nature in the Taub-NUT~Newman-Unti-Tamburino! solution
@15#. Misner strings are surfaces of dimensiond22 in space-
timeM.

In order to do a Hamiltonian treatment using surfaces
constantt, one has to cut out small neighborhoods of t
fixed point sets and of any Misner strings leaving a manif
M̄. OnM̄ one has the usual relation between the action
Hamiltonian:
04402
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I 5E dtF E
St

dd21xS Pi j ḣi j 1EiȦi1(
A

pAḟAD 1HG .
~3.5!

Because of theU(1) isometry, the time derivatives will al
be zero. Thus the action ofM̄ will be

I ~M̄!5bH. ~3.6!

To get the action of the whole spacetimeM, one now has to
put back the small neighborhoods of the fixed point sets
the Misner strings that were cut out. In the limit that th
neighborhoods shrink to zero, their volume contributions
the action will be zero. However, the surface term associa
with the Einstein-Hilbert action will give a contribution t
the action ofM of

I ~M2M̄!52
1

4G
~Abolts1AMS!, ~3.7!

whereAbolts andAMS are respectively the total area of th
bolts and the Misner strings in the spacetime. The contri
tion of the Einstein-Hilbert term to the action from lowe
dimensional fixed points will be zero. The contribution
bolts and Misner strings from higher order curvature terms
the action will be small in the large area limit.

The Hamiltonian in Eq.~3.6! will come entirely from the
surface terms. In a topologically trivial spacetime, the s
faces oft will have boundaries only at infinity. However, i
more complicated situations, the surfaces will also ha
boundaries at the fixed point sets and Misner strings. T
Hamiltonian surface terms at the fixed points will be ze
because the lapse and shift vanish there. On the other h
although the lapse is zero, the shift will not vanish on
Misner string. Thus there will be a Hamiltonian surface te
on a Misner string given by the shift times a component
the second fundamental form of the constantt surfaces. The
action ofM is therefore

I ~M!5b~H`1HMS!2
1

4G
~Abolts1AMS!. ~3.8!

On the other hand, by thermodynamics,

log Z5S2b~E1V•J1FQ!. ~3.9!

But

H`5E1V•J1FQ, ~3.10!

and so

S5
1

4G
~Abolts1AMS!2bHMS. ~3.11!

The areas and Misner string Hamiltonian in Eq.~3.11! are to
be understood as differences from the reference backgro

In order for the thermodynamics to be sensible, it must
invariant under the gauge transformation~3.4! which rotates
the imaginary time coordinate. Because the action~3.8! is
5-3
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S. W. HAWKING AND C. J. HUNTER PHYSICAL REVIEW D59 044025
gauge invariant, we see that the entropy will also be, p
vided thatH` is independent of the gauge. In the Append
we show thatH` is indeed gauge invariant, and hence t
entropy is well-defined, for metrics satisfying asymptotica
flat ~AF!, asymptotically locally flat~ALF! or asymptotically
locally Euclidean~ALE! boundary conditions.

Previous expositions of gravitational entropy have not
cluded ALF and ALE metrics. This is presumably becau
these metrics contain Misner strings, and hence do not o
the simple ‘‘quarter-area law,’’ but rather the more comp
cated expression~3.11!.

IV. EXAMPLES

In this section we calculate the entropy of some four a
five dimensional spacetimes. We setG51. The first example
considers the Taub-NUT and Taub-bolt metrics, which
ALF. We then move to solutions of Einstein-Maxwe
theory, the Israel-Wilson metrics, and calculate the entr
in both the AF and ALF sectors. The Eguchi-Hanson inst
ton then provides us with an ALE example. Finally, we c
culate the entropy ofS5 for two different U(1) isometry
groups, one with a bolt and the other with no fixed points
a Misner string, obtaining the same result both ways. T
action calculations, reference backgrounds and match
conditions for Taub-NUT, Taub-bolt and Eguchi-Hanson a
all presented in@14# and will not be repeated here.

A. Taub-NUT and Taub-bolt instantons

ALF solutions have a nut charge, or magnetic type ma
N, as well as the ordinary electric type mass,M . The nut
charge isbC1/8p, whereC1 is the first Chern number of th
U(1) bundle over the sphere at infinity, in the orbit spaceJ.
If the Chern number is zero, then the boundary at infinity
S13S2 and the spacetime is AF. The black hole metrics
saddle points in the path integral for the partition functio
They have a bolt on the horizon but no Misner strings, a
hence Eq.~3.11! gives the usual result for the entropy. How
ever, if the Chern number is nonzero, the boundary at infin
is a squashedS3, and the metric cannot be analytically co
tinued to a Lorentzian metric. Nevertheless, one can form
interpret the path integral over all metrics with these bou
ary conditions as giving the partition function for an e
semble with a fixed value of the nut charge or magnetic-t
mass.

The simplest example of an ALF metric is the Taub-NU
instanton@16#, given by the metric

ds25V~r !~dt12N cosudf!21
1

V~r !
dr2

1~r 22N2!~du21sin2 udf2!, ~4.1!

whereV(r ) is

VTN~r !5
r 2N

r 1N
. ~4.2!
04402
-
,

-
e
ey

d

e

y
-

-

t
e
g

e

s,

s
e
.
d

y

ly
-

e

In order to make the solution regular, we consider the reg
r>N and let the period oft be 8pN. The metric has a nut a
r 5N, with a Misner string running along thez-axis from the
nut out to infinity.

The Taub-bolt instanton@17# is also given by the metric
~4.1!. However, the functionV(r ) is different:

VTB~r !5
~r 22N!~r 2N/2!

r 22N2 . ~4.3!

The solution is regular if we consider the regionr>2N and
let t have periodb58pN. Asymptotically, the Taub-bolt
instanton is also ALF. There is a bolt of area 12pN2 at r
52N which is a source for a Misner string along thez-axis.

In order to calculate the Hamiltonian of the Taub-bo
instanton, we need to use a scaled Taub-NUT metric as
reference background. We can then calculate the Ha
tonian at infinity,

H`5
N

4
, ~4.4!

and the contribution from the boundary around the Misn
string,

HMS52
N

8
. ~4.5!

The area of the Misner string is212pN2 ~that is, the area of
the Misner string is greater in the Taub-NUT backgrou
than in Taub-bolt!. Combining the Hamiltonian, Misne
string and bolt contributions yields an action and entropy

I 5pN2 and S5pN2. ~4.6!

It would be interesting to relate this entropy to the entro
of a conformal field theory defined on the boundary of t
spacetime. This may be possible by considering Euclid
Taub-NUT anti–de Sitter and other spacetimes asymptoti
it. The boundary at infinity is a squashed three-sphere,
the squashing tends to a constant at infinity. One would t
compare the entropy of asymptotically Taub-NUT anti–
Sitter spaces with the partition function of a conformal fie
theory on the squashed three sphere. Work on this is
progress@18#.

B. Israel-Wilson metrics

The Euclidean Israel-Wilson family of metrics@19,20# are
solutions of the Einstein-Maxwell equations with line el
ment

ds25
1

UW
~dt1v idxi !21UWg i j dxidxj , ~4.7!

whereg i j is a flat three-metric andU, W and v i are real-
valued functions. The electromagnetic field strength is

F5] iF~dt1v jdxj !`dxi1UWAge i jkgkl] lxdxi`dxj ,
~4.8!
5-4
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with complex potentialsF andx given by

F5
1

2 H S 1

U
2

1

WD cosa1S 1

U
1

1

WD i sin aJ ~4.9!

and

x52
1

2 H S 1

U
1

1

WD cosa1S 1

U
2

1

WD i sin aJ .

~4.10!

For F2 to be real, we need to takeF and x to be either
entirely real or purely imaginary. Taking them to be real,
obtain the magnetic solution

Fmag5
1

2 S 1

U
2

1

WD and xmag52
1

2 S 1

U
1

1

WD .

~4.11!

The dual of the magnetic solution is the electric one, w
imaginary potentials. Calculating the square of the fi
strengths:

Fmag
2 5~DU21!21~DW21!252Felec

2 . ~4.12!

We consider only the magnetic solutions here. The ac
and entropy calculations for the electric case are similar.

U, W andv i are determined by the equations

DiD
iU505DiD

iW,

1

Ag
g i j e

jkl]kv l5WDiU2UDiW, ~4.13!

whereDi is the covariant derivative forg i j . The solutions
for U and W are simply three-dimensional harmonic fun
tions, and we will take them to be of the form

U511(
I 51

N
aI

ux2yI u
and W511 (

J51

M
bJ

ux2zJu
,

~4.14!

where yI and zJ are called the mass and anti-mass poi
respectively, and comprise the fixed point set of]t . We
assume that the points have positive mass, i.e.,aI ,bJ.0.

There will generically be conical singularities in the me
ric at the mass and anti-mass points. In order to remove t
we must apply the constraint equations

U~zJ!bJ5
b

4p
5W~yI !aI , ~4.15!

where b is the periodicity oft. Note that these equation
hold for each value ofI andJ; i.e., no summation is implied
While the resulting spacetime is non-singular, emanat
from each fixed point there will be Misner string singulariti
in the metric and Dirac string singularities in the electroma
netic potential. These string singularities will end on eith
another fixed point or at infinity.

The Einstein-Maxwell action is
04402
d
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I 52
1

16p E
M

d4xAg~R2F2!2
1

8p E
]M

d3xAbQ~b!,

~4.16!

which we can divide up into a gravitational~Einstein-
Hilbert! and an electromagnetic term,I 5I EH1I EM.

Since the Ricci scalar,R, is zero, the gravitational contri
bution to the action is entirely from the the surface term
infinity,

I EH52
1

8p E
]M

d3xAbQ~b!. ~4.17!

Substituting in the metric, we can evaluate this on a hyp
surface of radiusr ,

I EH52br 2
b

16p E
]J

d2xAs
uiDi~UW!

UW
, ~4.18!

wheres i j is the metric induced on the boundary fromg i j ,
andui is the unit normal to the boundary.

We can write the electromagnetic contribution to the a
tion integral as

I EM5
1

16p E
M

d4xAgF2

5
b

32p E
J

d3xAgFDiD
iW

U
1

DiD
iU

W G
2

b

32p E
]J

d2xAsuiDi~UW!F 1

U2 1
1

W2G , ~4.19!

where]J is the boundary ofJ at infinity ~since the internal
boundaries about the fixed points will make no contributio!.
We can evaluate the volume integral by using the delta fu
tion behavior of the Laplacians ofU andW,

I EM52
p

2 S (
I 51

N

aI
21 (

J51

M

bJ
2D

2
b

32p E
]J

d2xAsuiDi~UW!F 1

U2 1
1

W2G .
~4.20!

Note that the sum is only over mass and anti-mass po
which are not coincident.

Suppose that we consider metrics with an equal num
of nuts and anti-nuts,

U511(
I 51

N
aI

ux2yI u
and V511(

I 51

N
bI

ux2zI u
.

~4.21!

Applying the constraint equations, we see that

(
I 51

N

aI5(
I 51

N

bI[A. ~4.22!
5-5
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Hence, the scalar functions asymptotically look like

U;11
A

r
1O~r 22! and W;11

A

r
1O~r 22!,

~4.23!

while the vector potential vanishes,

v i;O~r 22!. ~4.24!

Thus, at large radius the metric is

ds2;S 12
2A

r Ddt21S 11
2A

r DdE 3
2 , ~4.25!

so that the boundary at infinity isS13S2, and the metric is
AF.

The background is simply flat space which is scaled
that it matches the Israel-Wilson metric on a hypersurface
constant radiusR,

ds̃25S 12
2A

R Ddt21S 11
2A

R DdE 3
2 , ~4.26!

and has the same period fort. There is no background elec
tromagnetic field.

Using formula~4.18! for the gravitational contribution to
the action, we obtain, after subtracting off the backgrou
term,

I EH5
b

2
A. ~4.27!

From Eq.~4.20! for the electromagnetic action we get

I EM52
p

2 (
I 51

N

~aI
21bI

2!1
b

2
A. ~4.28!

Note that the constraint equations imply thatI EM is positive.
The total action is therefore positive, and given by

I 5bA2
p

2 (
I 51

N

~aI
21bI

2!. ~4.29!

We can calculate the Hamiltonian by integrating Eq.~2.5!
over the boundaries at infinity and around the Misner stri
~note that in the background space there are no Mis
strings!. The gravitational contribution from infinity is

H`5A, ~4.30!

while the electromagnetic contribution from infinity is zer
because there is no electric charge. On the boundary aro
the Misner strings, the Hamiltonian is

HMS5
R

4
2

p

2b (
I 51

N

~aI
21bI

2!, ~4.31!

whereR is the total length of the Misner string. The area
the Misner strings is thus
04402
o
f

d

s
er

nd

f

A5bR. ~4.32!

Hence we see that the entropy is

S5
p

2 (
I 51

N

~aI
21bI

2!. ~4.33!

It is interesting to note that theN51 case is in fact the
charged Kerr metric subject to the constraintbV52p. This
condition implies that, unlike the generic Kerr solution, t
time translation orbits are closed. In a purely bosonic the
this means that the Kerr metric withbV52p contributes to
the partition function,

Z5tr e2bH, ~4.34!

for a non-rotating ensemble. However, the partition funct
will now not contain the factor exp(2bV•J). This means that
the entropy will be less than one-quarter the area of the
rizon by 2pJ. The path integral for the partition functio
will also have saddle points at two Reissner-Nordstro¨m so-
lutions, one extreme and the other non-extreme. Both
have the same magnetic charge. The non-extreme solu
will have the sameb while the extreme one can be identifie
with periodb. The actions will obey

I extreme.I Kerr.I non-extreme. ~4.35!

Thus, the non-extreme Reissner-Nordstro¨m solution will
dominate the partition function.

The situation is different, however, if one takes fermio
into account. In this case, the rotation throughbV52p
changes the sign of the fermion fields. This is in addition
the normal reversal of fermions fields under time translat
b. Thus, fermions in charged Kerr withbV52p are peri-
odic under theU(1) time translation group at infinity, rathe
than anti-periodic as in the Reissner-Nordstro¨m solution.
This means that the charged Kerr solution contributes to
ensemble with partition function

Z5tr~21!Fe2bH. ~4.36!

The extreme Reissner-Nordstro¨m solution identified with the
same periodic spin structure also contributes to this parti
function, but it will be dominated by the Kerr solution. O
the other hand, the non-extreme Reissner-Nordstro¨m solution
contributes to the normal thermal ensemble with partit
function

Z5tr e2bH. ~4.37!

If we take a solution withN nuts andM anti-nuts, where
K[N2M.0, then the metric asymptotically approaches

ds2;S 12
A1B

r D @dt1~A2B!cosudf#2

1S 11
A1B

r D @dr21r 2dV2
2#, ~4.38!

where
5-6
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A5(
I 51

N

aI and B5 (
J51

M

bJ . ~4.39!

Applying the constraint equations, we see that

A2B5K
b

4p
, ~4.40!

where K5M2N.0. Thus, the boundary at infinity wil
have the topology of a lens space withK points identified,
and hence the metric is ALF.

If we takeF andx to be real, then the Maxwell field wil
also be real, and will now have both electric and magne
components. The choice of gauge is then quite importan
it affects how the electromagnetic Hamiltonian is split b
tween the boundary at infinity and the boundary around
Misner strings. We can fix the gauge by requiring the pot
tial to be non-singular on the boundary at infinity. Asym
totically, the field is

Amdxm;FAt
`2

A2B

2r Gdt1FAf
`1

1

2
~A1B!Gcosudf,

~4.41!

where At
` and Af

` are the gauge dependent terms that
have to fix. By writing the potential in terms of an orthono
mal basis, we see that in order to avoid a singularity we m
set

At
`5

A1B

2~A2B!
and Af

`50. ~4.42!

We can take the background metric to be the multi-Ta
NUT metric @21# with K nuts. This will have the same
boundary topology as the Israel-Wilson ALF solution, a
has the asymptotic metric

ds2;S 12
2NK

r D @dt12NK cosudf#21S 11
2NK

r DdE 3
2 ,

~4.43!

where the periodicity oft is 8pN. By scaling the radial
coordinate and defining the nut charge of each nut,N, ap-
propriately, we can match this to the Israel-Wilson ALF m
ric on a hypersurface of constant radiusR. The metric is then

ds2;S 12
2B

R
2

A2B

r D @dt1~A2B!cosudf#2

1S 11
2B

R
1

A2B

r DdE 3
2 , ~4.44!

where the periodicity oft is b.
Calculating the action, we find that the Einstein-Hilbe

contribution is

I EH5
b

4
~A1B!2

b2

16p
K, ~4.45!

while the electromagnetic contribution is
04402
ic
as
-
e
-

e

st

-

-

t

I EM52
p

2 F(
I 51

N

aI
21 (

J51

M

bJ
2G1

b

4
~A1B!. ~4.46!

Hence the total action is

I 5
b

2
~A1B!2

b2

16p
K2

p

2 F(
I 51

N

aI
21 (

J51

M

bJ
2G ,

~4.47!

which is always positive.
If we calculate the Hamiltonian at infinity, we get

H`5
3

4
~A1B!2

b

8p
K, ~4.48!

while the contribution from the Misner string is

HMS52
p

2b F(
I 51

N

aI
21 (

J51

M

bJ
2G2

A1B

4
1

b

16p
K.

~4.49!

Since the net area of the Misner string is zero, the entrop
simply given by the negative of the Misner string Ham
tonian,

S5
p

2 F(
I

aI
21(

J
bJ

2G1
b

4
~A1B!2

b2

16p
K. ~4.50!

This formula has some strange consequences. Conside
case of a single nut and no anti-nuts. Then the solution is
Taub-NUT instanton with an anti-self-dual Maxwell field o
it. Being self-dual, the Maxwell field has a zero energ
momentum tensor and hence does not affect the geom
which is therefore just that of the reference background.
according to Eq.~4.50!, the entropy isb2/32p. This entropy
can be traced to the fact that althoughAm is everywhere
regular, the ADM Hamiltonian decomposition introduces
non-zero Hamiltonian surface term on the Misner strin
This may indicate that intrinsic entropy is not restricted
gravity, but can be possessed by gauge fields as well.
alternative viewpoint would be that the reference backgrou
should be multi-Taub-NUT with its self-dual Maxwell field
This would change the entropy~4.50! to

S5
p

2 F(
I

aI
21(

J
bJ

2G1
b

4
~A1B!2

3b2

32p
K. ~4.51!

C. Eguchi-Hanson metric

A non-compact instanton which is a limiting case of t
Taub-NUT solution is the Eguchi-Hanson metric@22#,

ds25S 12
N4

r 4 D S r

8ND 2

~dt14N cosudf!2

1S 12
N4

r 4 D 21

dr21
1

4
r 2dV2. ~4.52!
5-7



et
d

g

inus
oth

son
ack-
try

the
-

S. W. HAWKING AND C. J. HUNTER PHYSICAL REVIEW D59 044025
The instanton is regular if we consider the regionr>N, and
let t have period 8pN. The boundary at infinity isS3/Z2 and
hence the metric is ALE. There is a bolt of areapN2 at r
5N, which gives rise to a Misner string along thez-axis.

To calculate the Hamiltonian for the Eguchi-Hanson m
ric we use as a reference background an orbifold obtaine
identifying Euclidean flat space modZ2 . This has a nut at
the orbifold point at the origin, with a Misner string lyin
along thez-axis. The Hamiltonian at infinity vanishes,

H`50, ~4.53!

as does the Hamiltonian on the Misner string,

HMS50. ~4.54!

We then find that the area of Misner string, when the area
n

u

hi

on
rb

-

i

04402
-
by

of

the background string has been subtracted, is simply m
the area of the bolt. Hence the action and entropy are b
zero,

I 50 and S50. ~4.55!

This is what one would expect, because the Eguchi-Han
metric has the the same supersymmetry as its reference b
ground. It is only when the solution has less supersymme
than the background that there is entropy.

D. Five-sphere

Finally, to show that the expression we propose for
entropy, Eq.~3.11!, can be applied in more than four dimen
sions, consider a five-sphere of radiusR,
ds25R2
„dx21sin2 x$dh21sin2 h@dc21sin2 c~du21sin2 udf2!#%…. ~4.56!
er

hat
-

this
on
e-

opy
c-
is

o-
he
for
ies
n is
an
the
s
um
This can be regarded as a solution of a five-dimensio
theory with cosmological constantL56/R2. If we consider
dimensional reduction with respect to theU(1) isometry]f ,
then the fixed point set is a three sphere of radiusR. There
are no Misner strings; so our formula gives an entropy eq
to the area of the bolt,

S5
p2R3

2G
. ~4.57!

However, one can choose a differentU(1) isometry,
whose orbits are the Hopf fibration of the five-sphere. In t
case, we want to write the metric as

ds25~dt1v idxi !2

1
R2

4 Fds21sin2
s

2 S s1
21s2

21cos2
s

2
s3

2D G ,
~4.58!

where

v5
R

2 S 2cos2
s

2
s31cosudf D , ~4.59!

the periodicity oft is 2pR, the range ofs andu is @0,p# and
the periodicities ofc andf are 4p and 2p respectively. The
isometry ]t has no fixed points. So the usual connecti
between entropy and fixed points does not apply. The o
space of the Hopf fibration isCP2 with the Kaluza-Klein
two-form, F5dv, equal to the harmonic two-form onCP2.
The one-form potential,v, has a Dirac string on the two
surface in the orbit space given byu50,p. When promoted
to the full spacetime, this becomes a three-dimensional M
ner string of area
al

al

s

it

s-

A54p2R3. ~4.60!

Calculating the Hamiltonian surface term on the Misn
string, we find

HMS5
pR2

4G
. ~4.61!

Hence, we see that the entropy is

S5
A

4G
2bHMS5

pR2

2G
. ~4.62!

While this example is rather trivial, it does demonstrate t
the entropy formula~3.11! can be extended to higher dimen
sions.

V. CONCLUSIONS

There are three conclusions that can be drawn from
work. The first is that gravitational entropy just depends
the Einstein-Hilbert action. It does not require supersymm
try, string theory, or p-branes. Indeed, one can define entr
for the Taub-bolt solution which does not admit a spin stru
ture, at least of the ordinary kind. The second conclusion
that entropy is a global quantity, like energy or angular m
mentum, and should not be localized on the horizon. T
various attempts to identify the microstates responsible
black hole entropy are in fact constructions of dual theor
that reside in separate spacetimes. The third conclusio
that entropy arises from a failure to foliate the Euclide
regime with a family of time surfaces. In these situations
Hamiltonian will not give a unitary evolution in time. Thi
raises the possibility of the loss of information and quant
coherence.
5-8
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APPENDIX: GAUGE INVARIANCE OF H `

We are interested in making gauge transformations wh
shift the Euclidean time coordinate:

dt̂5dt22l ,idxi . ~A1!

Under this transformation the Hamiltonian variables tra
form as

N̂25rN2, ~A2!

N̂i5Ni12~N21NkN
k!l ,i , ~A3!

N̂i5r~112l ,kN
k!Ni12rN2l ,i , ~A4!

ĥi j 5hi j 12N( il , j )14~N21NkN
k!l ,il , j ,

~A5!

ĥi j 5hi j 1r@2l2NiNj24N2l ,il , j

22~112l ,kN
k!N( il , j )#, ~A6!

where

r5
1

2l2N21~112l ,kN
k!2 , ~A7!

andl25l ,il
,i . Indices for terms with a caret are raised a

lowered withĥi j , while those without are raised and lowere
by hi j . The total Hamiltonian is not invariant under such
transformation. However, the Hamiltonian contribution at
finity will be shown to be invariant for AF, ALF and ALE
metrics.

The general asymptotic form of the AF metric is

ds2;S 12
2M

r Ddt22S 11
2M

r D @dr21r 2dV2
2#. ~A8!

We can apply a general gauge transformation~A1! to this,
where we asymptotically expandl as

l;l01
l1

r
1O~r 22!. ~A9!

If we calculate the Hamiltonian after applying this gau
transformation, we find that

Ĥ`52r 1M . ~A10!

In order calculate the background value, we need to scale
space so that the metrics agree of a surface of constant ra
R. The metric is
04402
n
d

h

-

-

at
ius

ds̃25S 12
2M

R Ddt21S 12
2M

R D @dr21r 2dV2
2#.

~A11!

Applying the gauge transformation and then calculating
Hamiltonian yields

Ĥ̃`52r . ~A12!

Thus we see that the physical Hamiltonian is

Ĥ`5M , ~A13!

which is gauge invariant.
We now want to consider the value of the Hamiltonian

infinity for ALF spaces. The general asymptotic form of th
ALF metric is

ds2;S 12
2M

r D ~dt12aN cosudf!2

2S 12
2M

r D @dr21r 2dV2
2#. ~A14!

If we calculate the Hamiltonian after applying a gauge tra
formation, then we find that, identical to the AF case,

Ĥ`52r 1M . ~A15!

In order calculate the background value, we need
matched ALF background metric,

ds̃25S 12
2N

r
2

2~M2N!

R D ~dt12aN cosudf!2

1S 12
2N

r
1

2~M2N!

R D @dr21r 2dV2
2#, ~A16!

which has the gauge independent Hamiltonian

Ĥ̃`52r 1N. ~A17!

Thus we see that the physical Hamiltonian is gauge inv
ant,

Ĥ`5M2N. ~A18!

The general asymptotic form of the ALE metric is

ds25S 11
M

r 4 DdE 4
21O~r 25!. ~A19!

We note that the asymptotic background metric is simply
M50 case of the general metric, and hence the phys
Hamiltonian is

H`5H~M !2H~0!. ~A20!
5-9



ge
o

il-

S. W. HAWKING AND C. J. HUNTER PHYSICAL REVIEW D59 044025
If we calculate the Hamiltonian after applying the gau
transformation, then we get a very complicated function
M , R andl. However, if we differentiate with respect toM ,
we find that

]Ĥ`

]M
5O~r 22!. ~A21!
th

d

04402
f
Thus, the background subtraction will cancel the Ham
tonian up toO(r 22), and hence

Ĥ`50, ~A22!

which is obviously gauge invariant.
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