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Collision of boosted black holes: Second order close limit calculations

Carlos O. Nicasio,1 Reinaldo J. Gleiser,1 Richard H. Price,2 and Jorge Pullin3
1Facultad de Matema´tica, Astronomı´a y Fı́sica, Universidad Nacional de Co´rdoba, Ciudad Universitaria, 5000 Co´rdoba, Argentina

2Department of Physics, University of Utah, Salt Lake City, Utah 84112
3Center for Gravitational Physics and Geometry, Department of Physics, The Pennsylvania State University, 104 Davey Lab, Un

Park, Pennsylvania 16802
~Received 26 February 1998; published 26 January 1999!

We study the head-on collision of black holes starting from unsymmetrized, Brill-Lindquist type data for
black holes with non-vanishing initial linear momentum. Evolution of the initial data is carried out with the
‘‘close limit approximation,’’ in which small initial separation and momentum are assumed, and second-order
perturbation theory is used. We find agreement that is remarkably good, and that in some ways improves with
increasing momentum. This work extends a previous study in which second order perturbation calculations
were used for momentarily stationary initial data, and another study in which linearized perturbation theory
was used for initially moving holes. In addition to supplying answers about the collisions, the present work has
revealed several subtle points about the use of higher order perturbation theory, points that did not arise in the
previous studies. These points include issues of normalization, and of comparison with numerical simulations,
and will be important to subsequent applications of approximation methods for collisions.
@S0556-2821~98!03822-3#

PACS number~s!: 04.70.Bw, 04.25.Nx, 04.30.Nk
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I. INTRODUCTION

The accurate prediction of gravitational waveforms p
duced in the collisions of black holes has become a cen
topic of research in general relativity, due to their poten
observability with modern interferometric gravitational wa
detectors. Given the lack of symmetries in a collision, it w
believed for a long time that only a full numerical integratio
of the Einstein equations would lead to reliable answers.
cently it has been noticed@1,2# that one can make som
progress in understanding the collisions by using black h
perturbation theory, especially for collisions in which th
holes start sufficiently close to each other for the collision
be considered to be the evolution of a single, distorted bl
hole. Following this approach, called the ‘‘close limit a
proximation,’’ linearized perturbation theory has been sho
to provide a remarkably accurate picture of the head-on
lision of momentarily stationary@1,2# and boosted black
holes@3#.

If this technique is going to be considered a valid meth
for cases in which full numerical simulations are still n
available, one needs to develop indicators for deciding w
the approximation is trustworthy. Intuitive rules of thum
such as requiring that a single, almost spherical, horizon
tially surrounds both holes, turn out to be too conservative
be practical, as was demonstrated by the momenta
stationary head-on collision results@1#. Recently@4#, it was
suggested that the use of second order perturbation theo
provide ‘‘error bars’’ could be an effective way of estimatin
the domain of validity of the first order results. For th
head-on collision of momentarily stationary black holes
proposal appeared to work very well@4#.

The purpose of this paper is to explore the application
second order calculations to an important case of initial d
that is not momentarily stationary: the head on collision
initially ‘‘boosted’’ ~i.e., moving! holes. The introduction of
0556-2821/99/59~4!/044024~17!/$15.00 59 0440
-
al
l

s

e-

le

o
k

n
l-

d

n

i-
o
y-

to

e

f
ta
f

boost turns out to add several technical and conceptual c
plications. These are important beyond their relevance to
specific collision studied here, since the cases of reali
physical interest~collisions with spin and net angular mo
mentum! all involve initial data that is not momentarily sta
tionary. This paper will therefore attempt to lay part of th
groundwork for future investigations of more realistic situ
tions @5,6#.

One of the conclusions of paper will be that perturbat
calculations can be a very reliable tool to get quantitat
predictions at a certain level of accuracy. If we wish to pu
the accuracy to a few percent level, some questions rem
This is in part due to the fact that numerical codes we use
comparison cannot at present be trusted to that level of
curacy either, and in part due to several technical compl
tions that appear in perturbation theory. It is remarkab
however, that the addition of considerable amounts of bo
to the black holes does not preclude the applicability of p
turbation theory techniques.

This paper is closely related to two previous studies
which reference will frequently be made. The first is t
linearized analysis for initially boosted holes, by Bakeret al.
@3#; we shall refer to this as BAABRPS. The present wo
relies heavily on the second order formalism described
Refs.@7,8#!, which we shall refer to collectively as GNPP.

In the present paper, Sec. II gives the details of how
initial data is parametrized with a separationL between the
holes, and a momentum parameterP. A discussion is given
of the meaning of perturbation theory in a two parame
space of solutions. It is also pointed out that a feature of
initial data differs from that used in computations with n
merical relativity, and this difference hinders a perfect co
parison of results. We find, in this section, that to use
second order formalism of GNPP, we must make gau
transformations that eliminate the first order monopole p
turbation of the extrinsic curvature. This is the first of seve
©1999 The American Physical Society24-1



o
P.
a

n
av
a
co
a

h
e
e

re
t
d
ic
g
th
a

nu

e
ut
in
io

er
s

e

k
fo
rs
ue

n
-

s

-

ce,
e
lly

one
nt-
s
ve a
the

he
in

ted

su-
n-
t
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technical issues that were not evident in the linearized w
of BAABRPS or the momentarily stationary data of GNP

Section III shows how the initial data is evolved with
wave equation that has the structure of a Zerilli@9# equation
with a source term quadratic in the first order perturbatio
From these results, it is shown how one computes the gr
tational waveforms and energies correct to second order,
the second-order correct results are presented and are
pared with results from numerical relativity. In this section
discussion is given of a second order technical detail that
previously been ignored and that was of little consequenc
the evolution of momentarily stationary initial data. Th
gauge fixing used in GNPP leaves unfixed a degree of f
dom associated with time translations. This is not relevan
the computation of radiated energy, but must be resolve
our waveforms are to be compared with those of numer
relativity. In Sec. III a convenient method is given for fixin
this gauge freedom in the waveforms. With this choice,
second order correct waveforms as well as energies
found to be in excellent agreement with the results of
merical relativity.

The methods and results of the paper are briefly review
in Sec. IV and the connection to future work is pointed o

We use for the most part notation introduced
BAABRPS and GNPP, which in turn is based on the notat
of Regge and Wheeler@10#. In addition, we will use here the
convention of adding superscripts in parentheseswhen nec-
essaryto indicate whether a quantity is first or second ord
and to indicate what multipole it refers to. Multipole indice
will be distinguished with ‘‘l 5. ’’ Thus, for example,
H0

(3)(l 52) would indicate the third order quadrupole Regg
Wheeler perturbationH0 .

II. INITIAL DATA

A. The conformal approach

The momentarily-stationary Misner@11# initial solution to
the initial value problem of general relativity for a two blac
hole situation has a convenient explicit analytical form;
initially moving holes no such form is available and the fi
step in the problem is to find an appropriate initial val
solution. We use the conformal approach~see@12# and ref-
erences therein!, in which one assumes the metric to be co
formally flat gab5f4dab and constructs the conformal ex
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trinsic curvatureK̂ab5f2Kab . In terms of these variable
the initial value constraint equations~assuming maximal slic-
ing TrK50) read

¹aK̂ab50 ~1!

¹2f52
1

8

K̂abK̂ab

f7
~2!

where all the derivatives are with respect to flat space.
One can construct@12# solutions to the first set of equa

tions ~momentum constraint! for a single black hole with
linear momentum,

K̂ab
one5

3

2r 2 @2P~anb)2~dab2nanb!Pcnc. ~3!

Here r is the distance, in the conformally related flat spa
from the origin andPa is a vector in that space and can b
shown to be the momentum of the hole in the asymptotica
flat physical space. By superposing two such solutions
obtains the conformally related extrinsic curvature represe
ing two moving black holes~although the flat space vector
Pa in this case must be considered parameters that ha
clear interpretation as momentum only in the case that
holes are widely separated!. Since the constraint equation~1!
for the conformally related extrinsic curvature is linear, t
superposition still solves the constraint. As was done
BAABRPS, we locate the two black holes on thez axis of
the conformally related flat space, at positionsz56L/2 and
we choose the flat space vectorsPa to be symmetrically
directed towards the origin and to have equal sizeP. ~The
case of holes moving away from the origin is represen
with a negative value ofP.)

As in BAABRPS, we treat the separation parameterL as
our perturbation parameter, and we expand the two-hole
perposedK̂ab in L. Due to the equal mass/opposite mome
tum symmetry, only odd powers ofL appear, and the firs
two terms are
K̂ab5
3PL

2R3F 24cos2u 0 0

0 R2~11cos2u! 0

0 0 R2sin2u~3cos2u21!
G

2
3PL3

16R5F 2~1218cos2u125cos4u! 4Rsinucosu~2115cos2u! 0

4Rsinucosu~2115cos2u! R2~116cos2u215cos4u! 0

0 0 R2~23133cos2u265cos4u135cos6u!
G .

~4!
4-2
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HereR is the flat space distance to the origin, related to
flat space distance d to the holes by d
5A(R262RLcosu1L2), and the expressions in Eq.~4! are
valid only for R.L.

B. Boundary conditions

One must now put this solution in the right hand side
the Hamiltonian constraint~2! and solve the resulting non
linear elliptic equation. In this process one needs to dec
which boundary conditions to impose for the elliptic pro
lem. A common choice in numerical studies has been the
of symmetrization of the data through the two throats of
black holes~see for instance@13# and references therein!.
This kind of procedure is not very convenient if one is inte
ested in semi-analytic work as we are, chiefly because s
metrizing implies using the method of images an infin
number of times and the expressions involved become q
large and difficult to handle. On the other hand, nothing p
vents one from constructing unsymmetrized data for boos
black holes along the same lines as for the momenta
stationary case~the Brill-Lindquist problem@14#!. This was
recently emphasized by Bru¨gmann and Brandt@15#. Here we
will take this latter approach. This is not completely inco
sequential, since the only numerical simulations available
comparison are for symmetrized data; we will return to t
point later. To generalize the Brill–Lindquist construction
the case with momentum, one assumes the conformal fa
to be composed of two pieces,

f5f reg1fBL . ~5!

One piece

fBL[
m

2uRW 2RW 1u
1

m

2uRW 2RW 2u
, ~6!

is singular at the pointsRW 5RW 1,2 in flat space, and represen
throats. That is, when one introduces a new radial coordin
of the form 1/uRW 2RW 1,2u the ‘‘singular point’’ RW 5RW 1,2 of the
conformally related flat space is seen to have the actual
ometry of space that is asymptotically flat asuRW 2RW 1,2u→0.
The result of putting Eqs.~5! and ~6! in Eq. ~2! is

¹2f reg52
1

8

K̂abK̂ab

~fBL1f reg!
7

, ~7!

which is to be solved forf reg with the boundary conditions
that f reg is regular atRW 5RW 1,2 and approaches unity asr
→`. Notice that the right hand side of Eq.~7! is well be-
haved atRW 5RW 1,2; although the numerator diverges asuRW

2RW 1,2u3, the denominator increases asuRW 2RW 1,2u7. The main
difference between our approach and that of Brandt
Brügmann@15# is that we shall solve the initial value prob
lem perturbatively.
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C. Perturbative issues

We have defined a two parameter (P and L) family of
initial data that we could evolve into a two parameter fam
of spacetimes. We are, of course, primarily interested in
close limit, the limit of small initial separation, and hence
small L. In principle, we could use initial data correct t
second order inL. This would mean solving Eq.~7! for f reg

and expanding the solution inL. In practice, Eq.~7! would
require numerical solution since the right hand side of E
~7! is regular, and the Green function for the equation
simple, this would present no significant obstacle, but
would have the disadvantage that we would have the solu
only numerically. In particular, this would mean that the d
pendence onP would not be transparent. For that reason,
follow a different path. As in BAABRPS, we consider sma
P and smallL. More specifically, we consider aP5hL
curve in the family of spacetimes, withh a numerical factor
of order one. This means, for example, that terms prop
tional to P2, PL and L2 are all of the same order, and a
our lowest order perturbations. Our second order pertur
tions will be of the formP4,P3L, . . . . Due to thesymmetry
of our configuration, no terms arise of orderP3,P2L, . . . .

SinceK̂ab has a leading factor ofP, the numerator on the
right hand side of Eq.~2! is proportional toP2. This point is
rather subtle, and there is a temptation to come to a wr
conclusion. The expressions in Eq.~4! areO(PL) and sug-
gest that the numerator in Eq.~2! is O(P2L2). It must be
understood, however, that the expressions in Eq.~4! are valid
only for R.L. The solution of Eq.~2! does not depend
locally only on the largeR form of the right hand side. It
connects boundary conditions at infinity with boundary co
ditions of the throats, boundary conditions for which theR
.L condition does not hold. Due to this non-locality in E
~2!, or equivalently Eq.~7!, the conformal factor depends i
a complicated, nonpolynomial, way on theP parameter. Our
‘‘small P’’ assumption amounts to taking the numerator
Eq. ~2!, or equivalently Eq.~7!, to be perturbative, at al
points in space. This, and closely related issues, are fur
discussed in BAABRPS.

The perturbative problem requires at several points
specification of a ‘‘mass,’’ either of the spacetime or of t
black holes. Let us discuss this in some detail. First, ther
the problem of what mass does one use for the backgro
Schwarzschild spacetime around which we are doing per
bation theory. Our experience shows that one should use
Arnowitt-Deser-Misner~ADM ! mass of the spacetime. W
saw a similar situation when we analyzed the radiation g
erated as an initially conformally flat~‘‘Bowen-York’’ @12#!
spinning hole@16# settles into its Kerr final state. The spi
rate was taken to be small, and the problem was treated
perturbation away from the Schwarzschild geometry. For
parently moderate amounts of spin, the radiation genera
was rather small, but the effect on the ADM mass~i.e., the
spin dependent increase over the Schwarzschild mass! could
be a factor of several. By computing exactly the effect
spin on the ADM mass, we found we could successfu
apply perturbation theory for moderate spin.The only qu
tion could be if one uses the ADM mass of the initial slice
4-3
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that after the radiation has gone out, but for the cases
interest the difference is less than 1%, so we will consi
the ADM mass of the initial slice for our background.

Then there is the issue of the initial data. The initial da
for boosted black holes is characterized by the separatioL,
the momentumP and a ‘‘bare’’ mass for each holem, which
also serves as overall scale factor. This mass has no
physical meaning, and no equivalent in the reflection sy
metric initial data used in numerical relativity. Because
this, we would prefer to have the initial data parametrized
P,L,MADM . Since P, L and m determine uniquely the
ADM mass, this is formally no problem. In practice we pr
ceed in the following way. The ADM mass~for a given set
of parametersL,P,m) can be found from the monopole pa
of our second order solution for the conformal factor@17#.
One can then write an expansion form of the form,

2m5MADM1P2L2m11••• ~8!

with m1 a constant. One can then take the intial da
g0(P,L,m) and rewrite it asg0„P,L,MADM(P,L,m)… and
use the above expansion~8! for the explicit form of
MADM(P,L,m). As a result of this reparametrization, th
first and second order terms of the initial data are left inva
ant. That is, one simply takes the initial data and wher
read ‘‘2m’’ one replacesMADM . For the second order piece
this is also true, the second order pieces of Eq.~8! only
contribute irrelevantl 50 terms to second order and do n
change the initial data. Summarizing, we construct the p
turbative initial data, and wherever it saidm we replace
MADM/2 and this is consistent to the order of perturbat
theory we are considering. Therefore our problem is co
pletely parametrized now by the ADM mass, which also
cilitates comparison with the full numerical data, which a
also parametrized and normalized by the ADM mass. T
.
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issue was the source of significant confusion in this a
initially. In particular, the results of@3# are not properly nor-
malized and therefore depart from our predictions in t
paper for moderate and large values of the momentum~when
MADM starts to differ significantly from twice the ‘‘bare
mass’’ of the holes!.

The concrete details of computation start with Eq.~7!. For
R.L and for computations only to second order, one ne
only the portion linear inL of the extrinsic curvature. Keep
ing terms only to second order, and taking on the right ha
side of the Hamiltonian constraint, the form off5fBL
given in Eq.~6!, one gets theO(L2P2) piece of the confor-
mal factor,

f reg511P2L2f~2!1higher order terms, ~9!

by solving

P2L2¹2f~2!5S~2!5272P2L2
R~122cos2u2113cos4u!

~2R1m!7

~10!

with the boundary conditionf (2)→0 atR→`. We can sim-
plify the solution of this Poisson equation by decompos
the source into multipoles:

S~2!~ l 50!52
1056

5

P2L2R

~2R1m!7

S~2!~ l 52!52
3072

7

P2L2R

~2R1m!7

S~2!~ l 54!52
7488

35

P2L2R

~2R1m!7 .

The solution for the monopole and quadrupole parts are
f~2!~ l 50!52
11

50

~8Rm120R21m2!

~2R1m!5R
1

q0

R

f~2!~ l 52!52
8

35

~m4110m3R140m2R2180mR3180R4!

~2R1m!5R3 1
q2

R3 . ~11!
One can also solve for thel 54 piece but we will not need it
The solution contains two constantsq0 andq2 represent-

ing the homogeneous solution of the Poisson equation. Th
constants determine, in effect, what boundary conditions
being chosen for the conformal factor. The choice we h
made is thatf reg, and hencef (2), is regular everywhere
The wrong choice ofq0 or q2 means that when the solution
in Eq. ~11! are continued toR,L they will be singular, so
that f5fBL does not contain all the information about th
singularities.~This would be the case, for instance, if w
took q0 andq2 to have the values for the symmetrized so
tion.!
se
re
e

-

To determine what values ofq0 and q2 give a regular
solution, we start by noticing that from Eq.~11! we can see
that the asymptotic form of the conformal factor is

f~2!~ l 50!5
q0

R
1O~1/R4!

f~2!~ l 52!5
q2

R3 1O~1/R4!

f~2!~ l 54!5O~1/R4!. ~12!
4-4
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On the other hand, we know that the regular part of
conformal factor admits an expansion of the form

f reg.11 (
n50

`
An~u,P,L !

R~n11! . ~13!

Since the right hand side of Eq.~7! falls off as 1/R6 one can
conclude that the first three coefficients of the above exp
sion are part of the homogeneous solution, and have the f

A0~u,P,L !5Q0~P,L !

A1~u,P,L !50

A2~u,P,L !5Q2~P,L !P2„cos~u!…. ~14!

We therefore see thatq0 andq2 are just the leading coeffi
cients in an expansion ofQ0 andQ2 in terms ofP andL.

One can obtain a closed form expression forQ0 andQ2
by applying Gauss’ theorem to Eq.~7!, and using the fact
that ~by choice! f reg is regular on the wholeR,u planeS2.
This takes the form

E
]S2

¹W f reg•dSW5E
S2

S~R,u,P,L !d2S, ~15!

whereS(R,u,P,L) represents the right hand side of Eq.~7!,
and the integral on the left is evaluated over the boundar
the plane at infinity. It is clear that the only term that co
tributes to this integral is the leading term for the expans
of f. From there we can therefore determineQ0 . Consider-
ing the same construction, now forR2f one can determine
Q2 . The results are

Q0~P,L !52
1

2E0

`

drE
0

p

duR2sin~u!

3P0„cos~u!…S~R,u,P,L ! ~16!

Q2~P,L !52
1

2E0

`

drE
0

p

duR4sin~u!

3P2„cos~u!…S~R,u,P,L !

so therefore for the leading terms we get

q052
1

8

]4

]P2]L2F E
0

`

drE
0

p

duR2sin~u!

3P0„cos~u!…S~R,u,P,L !GU
P50,L50

~17!

q252
1

8

]4

]P2]L2F E
0

`

drE
0

p

duR4sin~u!

3P2„cos~u!…S~R,u,P,L !GU
P50,L50

.
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These expressions are straightforward to evaluate, e
cially since to the order of interest we can replace the sou
by

S~P!52
1

8

K̂2

f0
7

, ~18!

whereK̂2 is the square of the trace of Eq.~4! andf0 is the
conformal factor evaluated forP50. The integrals~17!,
however, cannot be solved in closed form. Instead they w
computed numerically~in several different ways!. The nu-
merical treatment ofS(R,u,P,L) requires some care. A
pointed out near the end of Sec. II B, though the source t
is regular, both the numerator and denominator on the r
hand side diverge at the points representing the holes.
results we get for the constants are

q050.219/m3, q250.224/m. ~19!

These numbers are in excellent agreement with an appr
mate calculation due to Brandt and Bru¨gmann @15#. They
obtain approximately the correction of the ADM mass due
the momentum in the initial data. The leading term in t
expansion inL of their formula is precisely ourq0 . Their
result is 11/50;0.22. One can reproduce these formulas
considering expansions of the integrals considered in pow
of L.

D. Casting the initial data in the Zerilli formalism

Having the initial data for the problem, we now can inp
it into the perturbation formalism and evolve it. The fir
order perturbations are evolved with a Zerilli equation. T
second order perturbations are evolved with a Zerilli eq
tion with a ‘‘source’’ term quadratic in first order perturba
tions. The details of how this is done for the momentar
stationary Misner@11# initial data was described in GNPP
Those details, however, were rather specific to the Mis
case. In particular, the formalism in that work used the f
that in the Misner initial metric the only first order perturb
tions are quadrupolar, and hence the source in the sec
order Zerilli equation is constructed entirely froml 52 first
order perturbations. Those details also assumed that ce
of the second order initial metric perturbations vanished.

It will be convenient to use gauge transformations to s
isfy these same conditions, so that the previous formal
can be used. The initial metric~because it is conformally flat!
has the correct Misner-like second order form. The extrin
curvature, however, has a first orderl 50 perturbation which
generatesl 50 perturbations in the evolved data. Thesel
50 perturbations would contribute to the source term of
second order Zerilli equation. Below we will use a first ord
gauge transformation to eliminate this first order pertur
tion. This transformation, however, changes the second o
initial metric, taking it out of ‘‘Misner form.’’ We then use a
second order gauge transformation to restore it to the Mis
form.

Let us start by writing the perturbations in the standa
Regge-Wheeler@10# notation for the multipolar decompos
4-5
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tion of a metric tensorgab , i.e.,

gtt5~122M /r !(
l

H0
~ l !~r ,t !Pl~cosu! ~20!

gtr5(
l

H1
~ l !~r ,t !Pl~cosu! ~21!

gtu5(
l

h0
~ l !~r ,t !~]/]u!Pl~cosu! ~22!

gru5(
l

h1
~ l !~r ,t !~]/]u!Pl~cosu! ~23!

grr 5~122M /r !21(
l

H2
~ l !~r ,t !Pl~cosu! ~24!
04402
guu5r 2(
l

@K ~ l !~r ,t !1G~ l !~r ,t !

3~]2/]u2!#Pl~cosu! ~25!

gff5r 2sin2u(
l

@K ~ l !~r ,t !1G~ l !~r ,t !

3cotu~]/]u!#Pl~cosu!. ~26!

In these expressions,r is related toR, the radial coordinate in
the conformally related flat space, byR5(Ar
1Ar 22M )2/4. The ‘‘background mass’’M, as previously
discussed, is the ADM mass computed numerically fo
given choice ofm,L,P.

Since the initial geometry is conformally flat, the on
non-vanishing perturbations are those inH2 and K. The
quadrupole parts, to second order, of these perturbations
-

r,
H2
~ l 52!5K ~ l 52!5

16ML2

Ar ~Ar 1Ar 22M !5
1

192M2L4

7r ~Ar 1Ar 22M !10
1

128L2P2q2

Ar ~Ar 1Ar 22M !5

2
256@12r 229rM 1M21~8r 23M !ArAr 22M #L2P2

35r 3~Ar 1Ar 22M !6
. ~27!

To describe the perturbations of the extrinsic curvature we shall use a notation like that in Eqs.~20!–~26!, but shall prefix
extrinsic curvature quantities with a ‘‘K. ’’ Thus, for example,Krr 5( l(122M /r )KH2

( l )Pl(cosu). The non-vanishing mono
pole perturbations of the extrinsic curvature are

KH2
~ l 50!52

PL

r 3 ~28!

KK ~ l 50!52
PL

r 3 ~29!

and the quadrupole perturbations are

KH2
~ l 52!5

4PL

r 3
1

16PL3~6r 211M16ArAr 22M !

7r 7/2~Ar 1Ar 22M !5
~30!

KG~ l 52!52
PL

r 3
1

8PL3Ar 22M

7r 7/2~Ar 1Ar 22M !4
~31!

KK ~ l 52!52
5PL

r 3
2

8PL3~3r 25M13ArAr 22M !

7r 7/2~Ar 1Ar 22M !5
~32!

Kh1
~ l 52!52

32PL3

7Ar 22Mr 3/2~Ar 1Ar 22M !4
. ~33!

We start the process of gauge transformations by writing a generall 50 andl 52 first order gauge transformation vecto

j t5M0
~1!~ l 52!P2~cosu!1M0

~1!~ l 50! ~34!

j r5M1
~1!~ l 52!P2~cosu!1M1

~1!~ l 50! ~35!
4-6
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ju5Ma
~1!~ l 52!

]P2~cosu!

]u
, ~36!

and we choose all components to vanish except

M0
~1!~ l 50!5

Ar

MAr 22M
PL ~37!

M1
~1!~ l 50!52

Ar 22M

r 5/2
tPL. ~38!

This gauge transformation eliminates thel 50 perturbation of the extrinsic curvature to first order, and leaves thel 52 first
order initial data unchanged, but it introduces quadratic changes in the second order components of the initial data. To
these second order changes, we need a four dimensional metric, whereas up to now we have only dealt with the initi
We assume zero perturbative lapse and shift to all orders and use the initial data to write an expansion in powers of
time t for the four dimensional metric aroundt50,

gmn5~gmn! t501t~] tgmn! t501••• ~39!

where (gmn) t50 is constructed in a straightforward manner with the 3-metric and the chosen lapse and shift, and t
derivative of the perturbative piece of the metrichmn is completely determined by the extrinsic curvature,

~] thab! t50522KabA12
2M

r
. ~40!

We then apply the formulas for gauge transformations to the above constructed metric and take the limitt→0 to recover the
initial data in the new gauge.

The second order changes due to quadratic combinations of the first order gauge transformation havel 50 and l 52
components. We will ignore the first, since they are non-radiative. Thel 52 second order metric that results from the gau
transformation of Eqs.~37!,~38! is

h1
~2!~ l 52!5

8PL3t~r 3/223Mr 1/22~r 12M !Ar 22M !

MAr 22Mr 2~Ar 1Ar 22M !4
~41!

H1
~2!~ l 52!52

16PL3M

r 2Ar 22M ~Ar 1Ar 22M !5
1

8tP2L2

r 5
~42!

H2
~2!~ l 52!52

8P2L2

Mr 3
1

16PL3t@r 1/2~r 14M !Ar 22M13M213rM 2r 2#

Mr 4~Ar 1Ar 22M !4
~43!

K ~2!~ l 52!5
10P2L2

Mr 3
2

8PL3t~2M225rM 12r 222~r 23M !ArAr 22M !

r 4M ~Ar 1Ar 22M !4
~44!

G~2!~ l 52!5
2P2L2

Mr 3
1

16PL3tAr 22M

r 3~Ar 1Ar 22M !5
. ~45!

In the formalism of GNPP the initial data was taken to haveH05H15h050 up to second order. This was true of o
perturbed metric before the gauge transformation of Eqs.~37!,~38!, but is not true of the post-transformation metric of Eq
~41!–~45!. We now restore the conditionsH05H15h050, for the quadrupole, with another, purely second order, ga
transformation:

M0
~ l 52!5

4

3
t2PL2M

26Lr 3M1PtAr 22M ~Ar 1Ar 22M !5

r 7Ar 22M ~Ar 1Ar 22M !5
~46!
044024-7
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M1
~ l 52!54tPL2Ar 22MF4Lr 3M2PtAr 22M ~Ar 22M1Ar !5

r 6~Ar 1Ar 22M !5 G ~47!

Ma
~ l 52!5

1

3
PL2Mt3

28Lr 3MAr 22M1Pt~r 22M !~Ar 1Ar 22M !5

r 10~Ar 1Ar 22M !5 . ~48!

With this transformation, the final form of the first and second order parts of the quadrupole metric perturbations

H2
~1!~ l 52!5K ~1!~ l 52!516

ML2

~Ar 1Ar 22M !5Ar
~49!

H2
~2!~ l 52!52

1

35
L2P2@1272r 5/211240Ar 22Mr 212480~r 22!r 3/212480~r 22M !3/2r 11240~r 22M !2Ar

1248~r 22M !5/2#/@~Ar 1Ar 22M !5r 3M #1
128L2P2q2

~Ar 1Ar 22M !5Ar
1

192M2L4

7~Ar 1Ar 22M !10r

K ~2!~ l 52!52
1

35
L2P2@642r 5/221910Ar 22Mr 223820~r 22M !r 3/223820~r 22M !3/2r 21910~r 22M !2Ar

2382~r 22M !5/2#/@~Ar 1Ar 22M !5r 3M #1
128L2P2q2

~Ar 1Ar 22M !5Ar
1

192M2L4

7~Ar 1Ar 22M !10r

G~2!~ l 52!5
2P2L2

Mr 3

and the extrinsic curvature is

KH2
~1!~ l 52!54PL/r 3 ~50!

KG~1!~ l 52!52PL/r 3

KK ~1!~ l 52!525PL/r 3

Kh1
~2!~ l 52!5

~108Ar 152Ar 22M !PL3

7~Ar 1Ar 22M !5r 3/2Ar 22M

KH2
~2!~ l 52!52

~296r 1184ArAr 22M164M !PL3

7~Ar 1Ar 22M !5r 7/2

KG~2!~ l 52!52
~48r 28ArAr 22M116M !PL3

7~Ar 1Ar 22M !5r 7/2

KK ~2!5
~4r 1116ArAr 22M216M !PL3

7~Ar 1Ar 22M !5r 7/2
.

For perturbations satisfying the Misner conditions (H05H15h050) the first order, quadrupole, Zerilli function, in th
notation, of GNPP is given by

c5
r 22M

3~2r 13M !
@rH 2

~1!~ l 52!13r 2Gr
~1!~ l 52!2r 2Kr

~1!~ l 52!26h1
~1!~ l 52!#1

r

3
K ~1!~ l 52! ~51!

and its time derivative by
044024-8
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] tc5
2Ar 22M

Ar ~2r 13M !
@2r 2KK ~1!~ l 52!2r ~3M2r !KG~1!~ l 52!1~r 22M !Kh1

~1!~ l 52!#. ~52!

Here use has been made of the first order Einstein equations to simplify the occurrence of higher time derivative
With the notation and formalism of GNPP, the second order,l 52 Zerilli function x is computed to be

x5@214r 4r~2KG~2!r 21r 2KK ~2!13rKG ~2!M2Kh1
~2!r 12Kh1

~2!M !22r 9/2~2r 13M !~K ~1!!224r 5r3h1,r
~1!KK ~1!

14K ~1!r 6KK ~1!r24r 4h1
~1!KK ~1!Mr12r 6KK ~1!H2

~1!r16r 5r~5r 19M !KG~1!G~1!14r 5r~22r 1M !KG~1!H2
~1!

2r 6r~23r 14M !KK ~1!Gr
~1!1r 6r~213r 120M !KG~1!Gr

~1!22r 5r~8r 19M !K ~1!KG~1!14r 4r~2r 15M !KG~1!h1
~1!

22r 5r~7r 16M !KK ~1!G~1!1r 5r5Kh1,r
~1!Gr

~1!12r 6r3KG~1!Kr
~1!14r 5r3Kh1

~1!Kr
~1!14r 5r3KKr

~1!h1
~1!26r 4r3G~1!Kh1

~1!

22r 7r3KGr
~1!Kr

~1!22r 7r3KKr
~1!Gr

~1!22r 3r5Kh1,r
~1!h1

~1!22r 4r3h1
~1!KH2

~1!1r 6r3Gr
~1!KH2

~1!14r 3r5Kh1
~1!h1,r

~1!

27r 4r3Kh1
~1!H2

~1!12r3r 2~7M122r !Kh1
~1!h1

~1!28Ar ~2r 13M !r4~h1
~1!!21r 4r3~M226r !Kh1

~1!Gr
~1!224r 5r3KGr

~1!h1
~1!

112r 5r3h1,r
~1!KG~1!112r 7r3KGr

~1!Gr
~1!12r 6r3KGr

~1!H2
~1!24r 9/2~2r 13M !r2Gr

~1!K ~1!18r 5/2~2r 13M !r4h1
~1!Gr

~1!

18r 5/2~2r 13M !r2h1
~1!K ~1!22r 9/2~2r 13M !r4~Gr

~1!!2#@7r 9/2~2r 13M !#21 ~53!

wherer5Ar 22M , and the time derivative of the second order,l 52, Zerilli function is given by

x ,t524r 15/2~7M26r !r6H2
~1!Gr

~1!116Mr 7r5~2r 13M !K ~1!KG~1!24r 17/2r10KGr
~1!Kh1,r

~1!128H2
~2!r 13/2~M1r !r6

12r 13/2~18M2117rM 28r 2!r6G~1!Kr
~1!14r 13/2~5r 19M !r6G~1!H2

~1!24r 15/2~M112r !r8KG~1!Kh1,r
~1!14r 13/2~2r

13M !r8G~1!H2,r
~1!14r 15/2~3M150r !r8KGr

~1!Kh1
~1!24r 17/2~17M115r !r6~KG~1!!218r 19/2~3M2r !r6KG~1!KKr

~1!

14r 13/2~6M25r !r6G~1!K ~1!212r 11/2~2r 13M !r8h1,r
~1!G~1!248r 21/2r8~KGr

~1!!22116r 13/2r8~Kh1
~1!!2228r 15/2r6K ~2!

212r 19/2r6~KK ~1!!2114r 15/2r6~K ~1!!226r 13/2~12M2119rM 26r 2!r6Gr
~1!G~1!224r 9/2~10M23r !r8h1,r

~1!h1
~1!

14r 19/2~2M23r !r6KGr
~1!KK ~1!114r 15/2Mr6Kr

~2!212r 7/2~42M2214rM 23r 2!r6~h1
~1!!213r 15/2~54M2230rM

1r 2!r6~Gr
~1!!212r 17/2r8H2,r

~1!Kr
~1!228r 9/2~6M215rM 22r 2!r6h1

223r 17/2r8~Kr
~1!!22r 13/2~2M25r !r6~H2

~1!!2

228r 11/2~2r 13M !r8hr
1,214r 11/2~4M27r !r8h1,r

~1!H2
~1!116r 21/2r8KGr

~1!KKr
~1!148r 15/2r6~G~1!!2116r 8r5~2r

13M !KK ~1!K ~1!164r 4r9~2r 13M !Kh1
~1!h1

~1!116r 8r7~2r 13M !KK ~1!Gr
~1!232Mr 5r7~2r 13M !KG~1!h1

~1!

116r 8r7~2r 13M !KGr
~1!K ~1!12r 15/2~3M2r !r8Gr

~1!H2,r
~1!116r 7Mr7~2r 13M !KG~1!Gr

~1!232r 6r9~2r

13M !Kh1
~1!Gr

~1!232r 6r7~2r 13M !KK ~1!h1
~1!116r 8r9~2r 13M !KGr

~1!Gr
~1!232r 6r7~2r 13M !Kh1

~1!K ~1!212r 13/2~2r

13M !~M2r !r6Gr
~1!K ~1!240r 11/2r8h1

~1!K ~1!112r 13/2~10M23r !r8Gr
~1!h1,r

~1!112r 11/2~8M2111rM 27r 2!r6h1
~1!Gr

~1!

18Mr 9/2~4M27r !r6h1
~1!H2

~1!136r 9/2~4M222r 21rM !r6h1
~1!G~1!14r 13/2~5M212rM 22r 2!r6KG~1!Kh1

~1!

24r 11/2~3M2r !r8H2,r
~1!h1

~1!212r 19/2r8KGr
~1!KH2

~1!24r 11/2~35M2219rM 1r 2!r6Kr
~1!h1

~1!116r 17/2r8Kh1,r
~1!KK ~1!

22r 15/2~27M227r 2!r6Gr
~1!Kr

~1!18r 13/2r8h1,r
~1!K ~1!132r 15/2r8Kh1

~1!KH2
~1!24r 13/2~10M23r !r8h1,r

~1!Kr
~1!

116r 15/2Mr6Kh1
~1!KK ~1!14r 17/2~M112r !r6KG~1!KH2

~1!24r 15/2r6K ~1!H2
~1!214r 13/2~6M223rM 22r 2!r6Gr

~2!

14r 17/2~17M116r !r6KG~1!KK ~1!24r 15/2Mr6Kr
~1!K ~1!28r 13/2r10Kh1,r

~1!Kh1
~1!22r 15/2r8H2

~1!H2,r
~1!

24r 19/2~213r 120M !r6KG~1!KGr
~1!28r 19/2r6KH2

~1!KK ~1!232r 17/2r8KKr
~1!Kh1

~1!232r 6r9~2r 13M !KGr
~1!h1

~1!]

3@14r4~2r 13M !r 17/2#21 ~54!

where a subscriptr denotes differentiation. To arrive at the expressions in Eqs.~53! and ~54! the second order Einstei
equations have been used to eliminate higher order time derivatives. The above expressions were automatically comp
044024-9
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Maple computer algebra codes. It is impractical to give more details of their construction in print. The source cod
documentation can be found in our anonymous ftp server@18#.

When the explicit 3-geometry and extrinsic curvature of Eqs.~49!,~50! are put into the expressions of Eqs.~53! and ~54!,
we arrive at the following initial data for the first and second order Zerilli equations:

c t505
8

3

ML2~5Ar 22M17Ar !r

~Ar 1Ar 22M !5~2r 13M !
~55!

ċ t505
Ar 22M PL~8r 16M !

r 5/2~2r 13M !
~56!

x t5052
512

7

M2L4

~Ar 1Ar 22M !10r
1

16

7

~9Ar 117Ar 22M !Ar 22MM PL3

~Ar 1Ar 22M !5~2r 13M !r 5/2
~57!

ẋ t505
64M2~10r 210M138ArAr 22M !Ar 22ML4

7~Ar 1Ar 22M !10~4r 16M !r 5/2
2

64

7

~4r 114M !Ar 22MM PL3

~Ar 1Ar 22M !5r 5

264
M ~5Ar 23Ar 22M !Ar 22ML2P2q2

~Ar 1Ar 22M !5~2r 13M !r 5/2
1

16

35
Ar 22ML2P2

„1750M429849rM 312331r 2M217182r 3M

22892r 42ArAr 22M ~3148r 324130r 2M24935rM 214375M3!…/„~2r 13M !~Ar 1Ar 22M !5r 6
…. ~58!

We are now ready to evolve the initial data and compute waveforms and radiated powers.

III. EVOLUTION

A. The Zerilli equations

The initial data generated in the previous section is now fed to the first and second order Zerilli equations

2
]2c

]t2 1
]2c

]r
*
2 1V~r !c50 ~59!

2
]2x

]t2 1
]2x

]r
*
2 1V~r !x5S ~60!

wherer * is the usual ‘‘tortoise’’ coordinate covering the exterior of the black hole,

r * 5r 12M ln~r /2M21! ~61!

so the horizon is atr * 52` and spatial infinity atr * 5`, and the potential and source terms in the Zerilli@9# equations are
given by

V~r !5S 12
2M

r D H 4r 2

D2 F72M3

r 5
2

12M

r 3
~ l 21!~ l 12!S 12

3M

r D G1
2~ l 21!~ l 12!l ~ l 11!

rD J ~62!

S5
12

7

m3

D F2
12~r 21Mr 1M2!2

r 4m2D
~c,t!

224
~2r 314r 2M19rM 216M3!

r 6D
cc,rr

1
~112r 51480r 4M1692r 3M21762r 2M31441rM 41144M5!

r 5m2D3 cc,t2
1

3r 2 c,tc,rrr

1
18r 324r 2M233rM 2248M3

3r 4m2D
c,rc,t1

12r 3136r 2M159rM 2190M3

3r 6m
~c,r !

2

112
~2r 519r 4M16r 3M222r 2M3215rM 4215M5!

r 8m2D
c224

~r 21rM 1M2!

r 3m2 c,tc,tr
044024-10
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22
~32r 5188r 4M1296r 3M21510r 2M31561rM 41270M5!

r 7mD2 cc,r1
1

3r 2 c,rc,trr

2
2r 22M2

r 3mD
c,tc,rr 1

8r 2112rM 17M2

r 4mD
cc,tr1

3r 27M

3r 3m
c,rc,tr2

M

r 3D
cc,trr

1
4~3r 215rM 16M2!

3r 5 c,rc,rr 1
mD

3r 4 ~c,rr !
22

2r 13M

3r 2m
~c,tr !

2 ~63!
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where D[(lr 13M ) with l5( l 21)(l 12)/2 and m[(r
22M ). The potential is given for generall in Eq. ~62! but
we will use it only for l 52.

As can be seen, Eqs.~59! and ~60! have the same form
including the same potentials, but the second order equa
has a source term that is quadratic in the first order Zerilli@9#
function and its time derivatives. We have written a fortr
code to evolve these equations by a simple leapfrog a
rithm. Convergence to second order was checked and sp
care was taken to avoid noise from the high derivative or
of the source term.

To find the gravitational waveforms and power a transf
mation must be made to a gauge that is asymptotically fla
first and second order. The details of this process were
cussed in GNPP and will not be repeated here. The resu
that the transverse-traceless perturbations, in the asymp
cally flat gauge, correct to second order, are encoded in
quantity

f ~r ,t !5
]c

]t
1Fx1

1

7

]

]tS c
]c

]t D G , ~64!

~where it is understood that all quantities arel 52) and this
is the quantity we shall plot below when we give waveform
of the outgoing gravitational radiation. The first order part
the radiation is given by the leading term in Eq.~64!; the
terms in square brackets are second order. From the Lan
Lifschitz pseudo-tensor in the asymptotically flat gauge~as
discussed in GNPP! we find that the radiated power is

Power5
3

10H ]c

]t
1Fx1

1

7

]

]tS c
]c

]t D G J 2

. ~65!

@Note that the perturbation parametere that appeared in@17#
is now incorporated into the definition of the Zerilli function
we have used in the paper, as can be seen in formulas~55!–
~58!. We have also directly computed the ‘‘renormalized
second order Zerilli function in Eq.~53!.#

Before we move on to present our results and comp
with the numerical relativity simulations of the Potsda
NCSA/WashU group~see BAABRPS!, it is worth pointing
out, again, that the numerical relativity simulations are
‘‘symmetrized’’ initial data, in which an infinite number o
‘‘image charges’’ is used to construct initial data represe
ing two throats connecting two isometric asymptotically fl
universes. By contrast, the problem we are solving co
sponds to three asymptotically flat universes. In the limit
04402
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zero momentum the numerical simulations correspond to
1960 Misner@11# initial data, and our results correspond
the Brill-Lindquist @14# initial data.

For the range of separations we are going to discuss
discrepancies between these two types of data are insig
cant.~Although we are working in the ‘‘close-limit,’’ we will
consider sets of data far apart enough to make the extra te
arising from symmetrization very small!, but since the prob-
lem is a multi-parametric one, it is not obvious that this
true in all the ranges of parameters we will be discussi
More careful studies will be needed if one wants higher
curacies than the ones we are going to discuss here. We
also modified the Potsdam/NCSA/WashU code to run
unsymmetrized data, and for limited tests the results ag
very well with the symmetrized ones in the range we a
considering. This situation arose due to historical reaso
the numerical code was written before our work with no
symmetrized boundary conditions, whereas perturba
theory becomes very cumbersome if one starts carry
around the extra terms due to symmetrization.

One particular problem that one faces when compar
Brill-Lindquist ~unsymmetrized! and symmetrized data se
is that the sets are parametrized in different ways. Ther
therefore ambiguity in how to compare the results. Abraha
and Price@19# have discussed this in some detail, and sh
that there are different identifications one can take that y
sensible results along a good range of parameters, so we
not repeat the discussion here. We just state the conven
we are following: For one of our results with momentu
parameterP and throat separationL, we compare a numerica
relativity result with the same ADM mass and same nume
cal value of the momentum parameter, and with a separa
parameterm0 given by

L52MA4k2~m0!. ~66!

Herem0 is a parameter originally introduced by Misner@11#
that is commonly used to parametrize symmetrized bin
black hole initial data sets, and

k l~m0![
1

~4S1! l 11(n51

`
~cothnm0! l

sinhnm0
~67!

S1[(
1

`
1

sinhnm0
. ~68!
4-11
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With these choices, the radiated waveforms agree very
when P50. Notice that the discussion of Abrahams a
Price @19# is only for theP50 case. The ‘‘best’’ identifica-
tion between symmetrized and unsymmetrized data co
probably be aP-dependent notion. We will ignore this issu
here, but it clearly requires further study.

B. Fixing t50

In the formalism of GNPP we chose to fix the coordina
by requiring that the metric be in the Regge-Wheeler@10#
gauge to first and second order. This can always be done
it turns out that the coordinates are not quite uniquely fix
The problem is quite generic and it has to do with ho
perturbation theory handles time translations in situati
where the background spacetime is time-translation inv
ant. Consider an exact quantityf (r ,t) approximated by a
perturbative series expansion,

f ~r ,t !5 f ~0!~r !1e f ~1!~r ,t !1e2f ~2!~r ,t !1•••, ~69!

and perform now a first order gauge transformation co
sponding to a pure time translation,

t→t85t1ec, ~70!

with c a constant, independent oft andr. Replacingt8 by the
above expression~and noticing thatdt5dt8), we get

f ~r ,t8!5 f ~0!~r !1e f ~1!~r ,t8!1e2f ~2!~r ,t8!1O~e3!

5 f ~0!~r !1e f ~1!~r ,t !1e2
„c ḟ ~1!~r ,t !

1 f ~2!~r ,t !…1O~e3!. ~71!

So we see that the ‘‘second order term’’ in the expansion
the metric depends on the origin chosen for time. If o
starts with perturbations in the Regge-Wheeler gauge
transformation of type~70! leaves the perturbations in th
Regge-Wheeler gauge, but the second-order metric
changed, and in fact depends on anarbitrary constantc. This
indicates that a comparison of quantities to second orde
perturbation theory around stationary backgrounds can
quite misleading: the same metric can have very differ
second order terms depending on the origin of time chos
Worse, these terms can be quite large, and are comple
artificial.

It is interesting to notice that if one computes the radia
energies using the formula we discussed previously~65!, the
results are unchanged —as expected— by time translat
~the additional term turns out to be a total derivative th
does not affect the computation of energies!. But we want to
go beyond giving perturbative results for radiated ener
We want also to compare perturbative waveforms with th
of numerical relativity. Since these waveforms are seco
order correct quantities given as a function of time at a p
ticular ‘‘observation’’ radius, we must be sure that we a
using the same zero of time for both waveforms, that fr
perturbation theory and that computed with numerical re
tivity.
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Fortunately, it is not difficult to eliminate the time-shi
ambiguity in the metric. To do this we separate the wa
form f (r ,t) given in Eq.~64! into first and second order part
f (1) and f (2) and we construct the quantity

c05

E
2`

`

dt ḟ ~1!~r ,t ! f ~2!~r ,t !

E
2`

`

dt@ ḟ ~1!~r ,t !#2

. ~72!

We then perform the time translationt→t1c0 , arriving at
the ‘‘physical’’ value for the second order waveform

f phys
~2! ~r ,t !5 f ~2!~r ,t !2c0 ḟ ~1!~r ,t ! . ~73!

Equivalently, we adjust the zero of time, and hen
f (2)(r ,t) until the integral in the numerator of Eq.~72! van-
ishes. The same coordinate fixing must be done to the
merically computed waveformf num. To do this we define
f num

(2) to be f num2 f (1). We then adjust the zero of time so th

the integral off num
(2) ḟ (1) vanishes.

These observations about time-shifts are also true in
time-symmetric case. We have recomputed the results o@4#
with the zero of time fixed as above and have found that
results are changed by less than 1%. For boosted b
holes, on the other hand, this time fixing is crucial for see
the high accuracy agreement of the perturbative and num
cal relativity results.

C. Results: radiated energies

We start to summarize our results by computing the ra
ated energy as a function of momentum for head-on co
sions of black holes released from a separation ofm0
51.5 and a physical separation ofLphys/(0.5MADM)55.5.

The figure shows the characteristic ‘‘dip’’ at low value
of the momentum that was first noticed in BAABRPS. A
important difference between that paper and the presen
sults is that here, as explained in Sec. II C, we are norma
ing both the numerical and the perturbative results using
same ADM mass. This leads to a much better agreem
for large values of the momentum than that observ
in BAABRPS. As an example of the size of the differenc
for P/MADM51, P/(2m)'3 and for P/MADM
52.44, P/(2m)'15.

A remarkable fact is that first order perturbation theo
agrees very well even for large values of the momentum,
second order perturbation theory confirms this fact. This
first seems puzzling since our initial data was obtain
through a ‘‘slow’’ approximation in which the momentum
was assumed to be small. However, as was observe
BAABRPS, for large values of the momentum the initi
data is ‘‘momentum dominated,’’meaning that the extrins
curvature completely dominates the initial data. Theref
the errors made in computing the conformal factor via
slow approximation become less relevant than might be s
posed.
4-12
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The overall picture of the energy therefore is very enco
aging, the approximations presented seem to be work
even beyond their expected realm, and second order pe
bation theory is capable of tracking this fact, playing t
expected role of ‘‘error bars.’’ This approach is not witho
pitfalls, however. In order to illustrate these, we turn to F
2, which shows a close up look at the energy picture and
includes results for black holes initially boostedaway from
each other.

The first thing we notice is, that for black holes boost
away from each other there is, as expected, no ‘‘dip’’ in t
energy. The dip is a first order effect that is due to a can
lation between terms that are momentum independent
terms that are linear in momentum. The cancellation turn
addition in the case of negative~outwards! P. We also see
that first order calculations are less accurate at the dip tha
higher values of the momentum. This is somewhat puzz
since our approximation should work better the smaller
momentum. What seems to be happening is that first o
theory does not accurately reproduce the higher order te
that make important contributions to the energy after
leading terms cancel in order to produce the dip. This
confirmed by the fact that first plus second order results
indeed very accurate at the dip.

An instructive feature of these results is that for bla
holes boosted away from each other a cancellation of
second order terms takes place aroundP/(2m)
50.9, P/MADM50.36. Clearly one cannot regard seco
order perturbation theory as giving error bars when it is c
celling out. Moreover, it shows that second order resultsbe-
yond that value ofP can only be taken as rough indicator
We will return to this cancellation in somewhat more det
in connection with waveforms.

FIG. 1. Radiated energy in head-on black hole collisions
function of the momentum for a separation ofm051.5,
Lphys/(0.5MADM)55.5. Depicted are the close-slow approximati
and the full numerical results of the Potsdam/NCSA/WashU gro
Even for large values of the momentum, the first order results o
shoot and the first plus second order undershoot the numerica
sults by only 20%. The inset shows the ‘‘dip’’ region.
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Another issue to be mentioned is how crucial it is to ha
chosen the ADM mass of the initial slice as the mass of
background spacetime used in the perturbative calculati
Our previous~first-order! work on boosted black holes use
the ‘‘bare’’ mass~ADM mass forP50) for the background.
This is quite visible if one compares Fig. 1 with Fig. 2
BAABRPS. In the latter, first order perturbation results a
peared to disagree with the numerical results by over an
der of magnitude forP/MADM53. That was entirely due to
the poor choice of background mass. In the present pa
using the numerically computed ADM mass of the initi
data, we see that first~and second! order results differ by
only 20% from the numerical results atP/MADM53.

D. Results: waveforms

Let us now turn to the examination of waveforms. T
numerical code of the Potsdam/NCSA/WashU group extra
waveforms at slightly different values of the radial variab
for varying P’s. We took this effect into account and ex
tracted perturbative waveforms at the same radii as was u
for the numerical relativity work. In all cases the full numer
cal code has a very limited range of spacetime covered in
evolution. This forces the extraction to be done in a rat
small range of radii around 20MADM or so. With perturba-
tion calculations we could have extracted much further aw
but we performed the extraction at exactly the same radiu
those used by the numerical code. Waveforms were obse
to change shape rather significantly from one extraction

s

.
r-
re-

FIG. 2. We depict energies for black hole collisions in whi
black holes were initially boosted towards each other and also
the case in which they were boosted away from each other.
‘‘dip’’ effect is only present when the black holes are moving t
wards each other. The approximation given by first order pertur
tion theory is slightly worse in that case, since leading terms in
calculation are cancelling each other to produce the suppres
We also see the cancellation of second order contributions
takes place for the outward pointing momentum case. There,
order results undershoot the results for small values ofP and over-
shoot it later, the second order corrections vanishing at the poin
crossing.
4-13



rv
t t
,

iu
in
it
d
th
ra

n

tl
a

w
S

-

ul

in
an
lts
th
n

al

s
ter-
ark-
ich
sees
First
add-
ere

s of
‘‘er-
te
ery

re-
o a

e-
sion
he

ated
first
des.

ly
ted

p,
-

the
ing

uld
ms

o
l
ls
te
m
ve
rk

the
der
rst
tion

NICASIO, GLEISER, PRICE, AND PULLIN PHYSICAL REVIEW D59 044024
dius to another even in such a close range, but we obse
that as long as we extracted the perturbative waveform a
same radius as the full numerical result~as opposed to, say
extracting farther out and then shifting the result back! the
agreement was roughly independent of extraction rad
However, this starts to hint at a main problem in compar
waveforms: one needs not only to match amplitudes but
also crucial to match the phase, at least if one is intereste
high accuracy. The phase is determined by, among o
things, the extraction radius. Determining the extraction
dius, in turn, requires knowing the ADM mass~since one
measures radii in units of ADM mass!. Our full numerical
code for computing the ADM mass, in its present impleme
tation, is accurate to a few percent.~This could be made
better with more computer power than what is presen
available to us; the runs we made had 300 radial zones
30 angular zones.! This limits the accuracy with which we
know the ADM mass, and hence the accuracy with which
can determine the phases. The technique, discussed in
III B, of fixing the zero of time is helpful in giving an objec
tive way of comparing phases.

Let us turn to the results. We present, below, the res
for the waveformf (r ,t) as defined in Eq.~64!. This is di-
rectly comparable~up to a time derivative! with the output of
the full numerical relativity code, which outputs a Zerilli@9#
function via the radiation extraction technique of assum
that the spacetime is a perturbation of Schwarzschild
reading off the perturbations from the full numerical resu

Our presentation of waveform comparisons starts with
most disfavorable cases and moves to more favorable o
Figure 3 shows the comparison of waveforms forP/(2m)
515,P/MADM;2.44 and Fig. 4 corresponds toP/(2m)
55,P/MADM;1.32. As we see, there is very good over

FIG. 3. Comparison of waveforms for large values of the m
mentum, P/(2m)515,P/MADM52.44. There is good overal
agreement, but there is some slight disagreement in the detai
the waveforms. As one expects for large values of the parame
second order perturbations can at most be regarded as an esti
of error, rather than a way to improve the accuracy of the wa
forms. It is still remarkable that perturbation theory would wo
well for such a large value of the parameterP.
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agreement. Notice that~taking into account the ‘‘time-shift’’
gauge fixing discussed above! our procedure in the end ha
no free parameter, i.e., phases and amplitudes are prede
mined in all cases, which makes the agreement more rem
able. If one looks carefully at the curves in the inset, wh
enlarges the region around the second positive peak, one
that there are slight phase and amplitude disagreements.
order results tends to overshoot the waveform, whereas
ing the second order correction tends to undershoot. Th
are slight differences in shapes as well. For large value
the momentum, we can take second order predictions as
ror bars’’ only. However, for intermediate values, it is qui
clear that first plus second order calculations offer a v
accurate prediction of the waveforms.

The reader should exercise care when comparing the
sults for waveforms with those of energies. This is due t
peculiarity of the formula for the radiated power~65!. As
discussed in GNPP, the square that appears in~65! involves
terms that are of ‘‘third order’’ in perturbation theory. Ther
fore, to keep things consistent, when squaring the expres
in curly braces, we only keep the mixed term and omit t
term that is the square of the second order part off. As a
consequence, the second order correction for the radi
energy depends mostly on correlations of phases of the
and second order waveforms rather than on their amplitu
For instance, for the case we are studyingP/(2m)
55,P/MADM;1.32, the second order waveforms are on
slightly smaller than the numerical ones, but the compu
energy is 12% lower.

We now turn our attention to the area of the di
P/MADM;0.05,P/(2m)50.12. In Fig. 5 we show the wave
forms for the inward boosted case~the case with a dip in the
energy!. We see that second order corrections improve
accuracy markedly. Clearly there are strange effects tak
place for this value of the parameter. In particular, it sho
be noticed how first order theory overshoots the wavefor

-

of
rs,
ator
-

FIG. 4. Comparison of waveforms for intermediate values of
momentum,P/MADM;1.32. Here one can see that second or
theory not only acts as an ‘‘error bar,’’ but when added to the fi
order calculation, actually allows a reasonably accurate predic
of the waveforms.
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COLLISION OF BOOSTED BLACK HOLES: SECOND . . . PHYSICAL REVIEW D 59 044024
rather significantly in the second and third positive peak
the waveform, but not in the first one. In view of the fact th
the energy is given by the correlation of the first and sec
order waveforms, those discrepancies in the first order wa
forms would seem to be responsible for the large rela
error in the calculation for the energy, even to second or
This is so, in spite of the fact that second order calculati
yield very accurate waveforms.

Figure 6 shows the case ofP/(2m)520.9 ~holes moving
initially apart!. As could be predicted from the energy plot,
cancellation of the second order terms is taking place. In
case, therefore, one cannot regard second order correc
as ‘‘error bars,’’ since it is clear that higher order terms a
important. It is worthwhile pointing out that the cancellatio
is highly nontrivial, the initial data having the same amp
tude for both inward and outward momenta. The cancella
takes place in the evolution, with the source terms of
second order Zerilli@9# equation playing a significant role.

A simple way to understand the cancellation is to bre
up the evolution into three separate Zerilli@9# equations with
three different initial sources, proportional toL4, PL3, and
P2L2 respectively. What one sees is that the cancella
occurs between thePL3 term and the other two, and clear
depends on the sign ofP ~for our simulations negativeP is
outward pointing!. One can then infer that there is a curve
cancellations in theP,L parameter space that isolates a
gion in parameter space where second order perturba
theory does not help. One cannot reach points in that reg
unless one changes the relative counting of powers ofL and

FIG. 5. Waveforms in the ‘‘dip’’ region,P/MADM;0.05, for
inward boosted black holes~the case where there is a ‘‘dip’’ in the
energy!. Second order corrections improve the accuracy in the
plitudes significantly, but first order calculations exhibit an erra
behavior. Since the energy arises as a correlation between
waveforms, this translates itself into a rather large relative erro
the perturbative computation of the energy. Notice that wavefo
for this particular value of the momentum differ markedly fro
waveforms for other values, the ‘‘enveloping’’ amplitude curve d
creasing much more slowly, allowing several oscillations to be v
ible.
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P in perturbation theory. A further study of this issue cou
therefore yield interesting results.

IV. DISCUSSION

We have seen that the use of combined first and sec
order perturbation theory can give excellent results for wa
forms and energies of radiation emitted in the head on co
sion of two equal mass, initially boosted, black holes. T
results show, however, that there are some subtleties,
previously appreciated, in the use of higher order pertur
tion theory and in the comparison with results from nume
cal relativity. The following points deserve attention, esp
cially in connection with the application of higher orde
perturbation theory to further problems.

~a! The comparison of perturbation results and numeri
relativity results has pitfalls when comparisons are made
tween problems that are not identical. In our case we co
pared our perturbation result for an ‘‘unsymmetrized’’~Brill-
Lindquist @14# type! initial data, with numerical relativity
results for ‘‘symmetrized’’~Misner @11# type! initial data.
Had we been comparing with unsymmetrized initial data,
parametersm,L,P for the data sets would have had identic
meaning. Since the data sets were not identical, a mappin
one parameter set to the other had to be imposed. One de
of freedom in this mapping was subsumed in the choice
compare cases of equal ADM mass, but the remaining
ment of choice in the mapping is a source of uncertainty
the high accuracy comparisons we are making.~We empha-
size that the choice of mapping was made before any res
were considered; there was no ‘‘fine tuning’’ to improve t
comparison. The excellent agreement between the nume
and perturbative results then must be considered to
among other things, an indication that there is no great s

-

th
in
s

-
-

FIG. 6. Waveforms forP/(2m)520.9,P/MADM;20.36, i.e.,
for outward boosted black holes~the case where there is no ‘‘dip’
in the energy!. Second order corrections cancel out and theref
are not reliable as ‘‘error estimators’’ nor to improve the accura
of first order calculations.~The first and first plus second orde
curves are both plotted but are indistinguishable.!
4-15



i

n
o-
r

en
en
.

th

on
on
ri
,

io
t

’’
he
a

te
an
To
m
re

-
re
-

g
n-
o

d
o
ic
in
so

rie

ul

ent
is

ed
e

e-
la-
to

on
ond

he
c-
n
in

ut
gies
s.
e-
ill
to
of
ce

for
A
hU
on-
av
of
F-

by
,
ity
und
ET
rt
as
m
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sitivity to the manner in which this mapping of parameters
done.!

~b! There is no unique result that is correct to seco
order. Different ways in which details are handled will pr
duce results that are the same to second order, but diffe
higher order. These different results can have differ
ranges of validity and can exhibit different accuracy wh
compared with numerical work near the limit of validity
One example of this feature of perturbation theory is
dependence on parametrization@19#. In our perturbative re-
sults we have seen another simple example: The sec
order correct waveform consists of a first order and a sec
order piece. When radiated energy is computed by squa
this waveform one can choose simply to take the square
to truncate the result and omit the fourth order contribut
arising from the square of the second order contribution
the waveform.~We have made the latter ‘‘conservative
choice.! Both results, of course, are equally justifiable for t
order of perturbation theory we are doing, but the results
noticeably different.

~c! In the present paper we have seen a particularly in
esting example of the importance of higher order terms
the detailed way in which perturbation theory is applied.
make the comparison between symmetrized and unsym
trized initial data we found that it is important to compa
cases of equal ADM mass, but the ADM mass~for fixed m)
varies quickly with increasing initial momentum. If one com
putes this momentum dependence perturbatively the ag
ment of perturbation theory and numerical relativity is lim
ited. With the ADM mass computed exactly~i.e.,
numerically! the agreement is greatly improved. This su
gests that ana priori physical understanding of the depe
dence on the perturbations can be a very useful guide t
efficient perturbation scheme.

~d! In addition to the numerical computation of ADM
mass, another useful new technical detail was develope
the present work. A method was found of fixing the zero
time in the same manner for both perturbative and numer
waveforms. This fixing of zero had not been important
previous perturbation studies, but was crucial to compari
of waveforms for initially boosted holes.

~e! Perturbation analysis in the present paper was car
out for both small separation and small momentum~‘‘the
close slow limit’’!. This makes it particularly difficult to un-
ravel the sources of disagreement with numerical res
, J

et

R
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when anomalous cancellations~like the ‘‘dip’’ ! occur. Al-
though perturbation results end up in excellent agreem
with numerical relativity results, a perturbative analys
based on smallL, but without smallP ~especially if it could
be compared with numerical results for unsymmetriz
data!, might be useful in improving our understanding of th
nature of errors.

~f! The current state of the art of numerical relativity pr
sents limitations, both in accuracy and in range of simu
tions of the codes. As a consequence, we were limited
comparing waveforms which are not really in the radiati
zone. This is a dangerous exercise when it comes to sec
order perturbation theory. In particular, the formula for t
radiated power~from which we extracted the concept of se
ond order waveform! assumes that one is in the radiatio
zone. This is true also of the extraction techniques used
the numerical codes to produce a Zerilli@9# function as out-
put. In short: with the current limitations we cannot rule o
that the discrepancies we see in waveforms and ener
might be within the error margins of the numerical result

A general conclusion of this work is that the synergy b
tween numerical results and perturbative calculations w
probably be one of the major tools that we will have to use
address with any accuracy the problem of the collision
two black holes in general relativity. We see this taking pla
right now.
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distance between the minimum area throats in the Misner
tial data of Ref.@11#. It is given by the relation ofm0 andLphys

presented in P. Anninar, D. Hobill, E. Seidel, L. Smarr a
W.-M. Suen, Phys. Rev. D52, 2044~1995!, in which Lphys is
denotedL. We do this to keep in line with the literature, whe
most of the work is done with symmetrized initial date. Th
is, starting from one of our Brill-Lindquist-type initial date
families, we computem0 via the prescription described in th
text and from there computeLphys as we just explained.
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