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Collision of boosted black holes: Second order close limit calculations
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We study the head-on collision of black holes starting from unsymmetrized, Brill-Lindquist type data for
black holes with non-vanishing initial linear momentum. Evolution of the initial data is carried out with the
“close limit approximation,” in which small initial separation and momentum are assumed, and second-order
perturbation theory is used. We find agreement that is remarkably good, and that in some ways improves with
increasing momentum. This work extends a previous study in which second order perturbation calculations
were used for momentarily stationary initial data, and another study in which linearized perturbation theory
was used for initially moving holes. In addition to supplying answers about the collisions, the present work has
revealed several subtle points about the use of higher order perturbation theory, points that did not arise in the
previous studies. These points include issues of normalization, and of comparison with numerical simulations,
and will be important to subsequent applications of approximation methods for collisions.
[S0556-282198)03822-3

PACS numbgs): 04.70.Bw, 04.25.Nx, 04.30.Nk

I. INTRODUCTION boost turns out to add several technical and conceptual com-
plications. These are important beyond their relevance to the

The accurate prediction of gravitational waveforms pro-specific collision studied here, since the cases of realistic
duced in the collisions of black holes has become a centrglhysical interes{collisions with spin and net angular mo-
topic of research in general relativity, due to their potentialmentun) all involve initial data that is not momentarily sta-
observability with modern interferometric gravitational wave tionary. This paper will therefore attempt to lay part of the
detectors. Given the lack of symmetries in a collision, it wasgroundwork for future investigations of more realistic situa-
believed for a long time that only a full numerical integration tions[5,6].
of the Einstein equations would lead to reliable answers. Re- One of the conclusions of paper will be that perturbative
cently it has been noticefll,2] that one can make some calculations can be a very reliable tool to get quantitative
progress in understanding the collisions by using black holg@redictions at a certain level of accuracy. If we wish to push
perturbation theory, especially for collisions in which the the accuracy to a few percent level, some questions remain.
holes start sufficiently close to each other for the collision toThis is in part due to the fact that numerical codes we use for
be considered to be the evolution of a single, distorted blackomparison cannot at present be trusted to that level of ac-
hole. Following this approach, called the “close limit ap- curacy either, and in part due to several technical complica-
proximation,” linearized perturbation theory has been showrtions that appear in perturbation theory. It is remarkable,
to provide a remarkably accurate picture of the head-on colhowever, that the addition of considerable amounts of boost
lision of momentarily stationary1,2] and boosted black to the black holes does not preclude the applicability of per-
holes[3]. turbation theory techniques.

If this technique is going to be considered a valid method This paper is closely related to two previous studies to
for cases in which full numerical simulations are still not which reference will frequently be made. The first is the
available, one needs to develop indicators for deciding whetinearized analysis for initially boosted holes, by Bakeal.
the approximation is trustworthy. Intuitive rules of thumb, [3]; we shall refer to this as BAABRPS. The present work
such as requiring that a single, almost spherical, horizon inirelies heavily on the second order formalism described in
tially surrounds both holes, turn out to be too conservative tdRefs.[7,8]), which we shall refer to collectively as GNPP.
be practical, as was demonstrated by the momentarily- In the present paper, Sec. Il gives the details of how our
stationary head-on collision results]. Recently[4], it was initial data is parametrized with a separatibrbetween the
suggested that the use of second order perturbation theory hwles, and a momentum parameferA discussion is given
provide “error bars” could be an effective way of estimating of the meaning of perturbation theory in a two parameter
the domain of validity of the first order results. For the space of solutions. It is also pointed out that a feature of our
head-on collision of momentarily stationary black holes theinitial data differs from that used in computations with nu-
proposal appeared to work very wéd]. merical relativity, and this difference hinders a perfect com-

The purpose of this paper is to explore the application oparison of results. We find, in this section, that to use the
second order calculations to an important case of initial dataecond order formalism of GNPP, we must make gauge
that is not momentarily stationary: the head on collision oftransformations that eliminate the first order monopole per-
initially “boosted” (i.e., moving holes. The introduction of turbation of the extrinsic curvature. This is the first of several
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technical issues that were not evident in the linearized worlginsic curvatureRabz #*K,p. In terms of these variables

of BAABRPS or the momentarily stationary data of GNPP. the injtial value constraint equatiorassuming maximal slic-
Section Ill shows how the initial data is evolved with a jhg Trk =0) read

wave equation that has the structure of a Zefdll equation

with a source term quadratic in the first order perturbations.

From these results, it is shown how one computes the gravi- V. K2=0 (1)

tational waveforms and energies correct to second order, and

the second-order correct results are presented and are com-

pared with results from numerical relativity. In this section a 1 RabR
discussion is given of a second order technical detail that has V2h=—= ab 2)
previously been ignored and that was of little consequence in 8 ¢

the evolution of momentarily stationary initial data. The

gauge fixing used in GNPP leaves unfixed a degree of free-

dom associated with time translations. This is not relevant tavhere all the derivatives are with respect to flat space.

the computation of radiated energy, but must be resolved if One can construdtl2] solutions to the first set of equa-

our waveforms are to be compared with those of numericalions (momentum constraintfor a single black hole with

relativity. In Sec. Ill a convenient method is given for fixing linear momentum,

this gauge freedom in the waveforms. With this choice, the

second order correct waveforms as well as energies are 3

2gzga}ore?§tiizt;xcellent agreement with the results of nu Kgge:?[zp(anb)_(aab_ n.np) PN, 3
The methods and results of the paper are briefly reviewed

in Sec. IV and the connection to future work is pointed out.Herer is the distance, in the conformally related flat space,
We use for the most part notation introduced infrom the origin andP, is a vector in that space and can be

BAABRPS and GNPP, which in turn is based on the notatiorshown to be the momentum of the hole in the asymptotically

of Regge and Wheel¢0]. In addition, we will use here the flat physical space. By superposing two such solutions one

convention of adding superscripts in parentheshen nec- obtains the conformally related extrinsic curvature represent-

essaryto indicate whether a quantity is first or second order,ing two moving black holegalthough the flat space vectors

and to indicate what multipole it refers to. Multipole indices P, in this case must be considered parameters that have a

will be distinguished with ‘t=." Thus, for example, clear interpretation as momentum only in the case that the
H{?(=2) would indicate the third order quadrupole Regge-holes are widely separatedSince the constraint equatiéh)
Wheeler perturbatioii . for the conformally related extrinsic curvature is linear, the
superposition still solves the constraint. As was done in
II. INITIAL DATA BAABRPS, we locate the two black holes on thexis of
the conformally related flat space, at positians=L/2 and
A. The conformal approach we choose the flat space vectdPy to be symmetrically

The momentarily-stationary Misngt1] initial solutionto  directed towards the origin and to have equal sze&The
the initial value problem of general relativity for a two black case of holes moving away from the origin is represented
hole situation has a convenient explicit analytical form; forWith a negative value oP.)
initially moving holes no such form is available and the first ~As in BAABRPS, we treat the separation paraméters
step in the problem is to find an appropriate initial valueOur perturbation parameter, and we expand the two-hole su-
solution. We use the conformal approasee[12] and ref-  perposed<,, in L. Due to the equal mass/opposite momen-
erences therejnin which one assumes the metric to be con-tum symmetry, only odd powers &f appear, and the first
formally flat g,,= ¢*8,, and constructs the conformal ex- two terms are

—4cog6 0 0
” T 0 R2(1+cos6) 0
0 0 R?sinf6(3cog6—1)
apLo 2(1—18co26+25c086) 4Rsingcosd(— 1+ 5cog6) 0
- 165 4Rsinfco(—1+5co026) R?(1+6cog6—15c086) 0
0 0 R?(—3+33cog0—65c08 6+ 35c080)

(4)
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HereR is the flat space distance to the origin, related to the C. Perturbative issues
flat space distance d to the holes by d
= (R*+2RLcos#+L?), and the expressions in E() are
valid only for R>L.

We have defined a two parametd? @nd L) family of
initial data that we could evolve into a two parameter family
of spacetimes. We are, of course, primarily interested in the
close limit, the limit of small initial separation, and hence of
B. Boundary conditions small L. In principle, we could use initial data correct to

One must now put this solution in the right hand side ofSecond order .. This would mean solving E7) for ¢reg
the Hamiltonian constraint?) and solve the resulting non- and expanding the solution in In practice, Eq(7) would
linear elliptic equation. In this process one needs to decidéequire numerical solution since the right hand side of Eq.
which boundary conditions to impose for the elliptic prob- (7) is regular, and the Green function for the equation is
lem. A common choice in numerical studies has been the us@imple, this would present no significant obstacle, but it
of symmetrization of the data through the two throats of thewould have the disadvantage that we would have the solution
black holes(see for instancg13] and references thergin  only numerically. In particular, this would mean that the de-
This kind of procedure is not very convenient if one is inter-pendence o would not be transparent. For that reason, we
ested in semi-analytic work as we are, chiefly because synfollow a different path. As in BAABRPS, we consider small
metrizing implies using the method of images an infiniteP and smallL. More specifically, we consider &= 7L
number of times and the expressions involved become quiteurve in the family of spacetimes, with a numerical factor
large and difficult to handle. On the other hand, nothing preof order one. This means, for example, that terms propor-
vents one from constructing unsymmetrized data for boostetional to P2, PL andL? are all of the same order, and are
black holes along the same lines as for the momentarilyour lowest order perturbations. Our second order perturba-
stationary caséthe Brill-Lindquist problem[14]). This was  tions will be of the formP#,P3L, . ... Due to thesymmetry
recently emphasized by Bymann and BrandtL5]. Here we  of our configuration, no terms arise of orde?,P2L, . ...
will take this latter approach. This is not completely incon- SinceK,, has a leading factor d?, the numerator on the
sequential, since the only numerical simulations available fOFight hand side of Eq(2) is proportional toP2. This point is
comparison are for symmetrized data; we will return to thisrather subtle, and there is a temptation to come to a wrong
pOint later. To generalize the Br|”—L|nqu|St construction to conclusion. The expressions in E(q) are O(PL) and sug-
the case with momentum, one assumes the conformal fact%rest that the numerator in E() is O(P2L?). It must be
to be composed of two pieces, understood, however, that the expressions in(Ecare valid
b= broit & 5) only for R>L. The solution of Eq.(2) does not depend
reg’ ¥BL- locally only on the largeR form of the right hand side. It
connects boundary conditions at infinity with boundary con-
One piece ditions of the throats, boundary conditions for which Re
>L condition does not hold. Due to this non-locality in Eq.
(2), or equivalently Eq(7), the conformal factor depends in
—— (6) a complicated, nonpolynomial, way on tRegparameter. Our
2|IR—Ry| 2|R—R,| “small P” assumption amounts to taking the numerator in
Eqg. (2), or equivalently Eq.(7), to be perturbative, at all

o LS points in space. This, and closely related issues, are further
is singular at the pointR=R, , in flat space, and represents giscussed i1 BAABRPS.

throats. That is, when one introduces a new radial coordinat . . .
The perturbative problem requires at several points the

of the form 1JR—R, 5 the "singular point” R=R, , of the specification of a “mass,” either of the spacetime or of the
conformally related flat space is seen to have the actual ggack holes. Let us discuss this in some detail. First, there is
ometry of space that is asymptotically flat [#&—R; J —0. the problem of what mass does one use for the background

m m

dpL=

The result of putting Eqg5) and(6) in Eq. (2) is Schwarzschild spacetime around which we are doing pertur-
bation theory. Our experience shows that one should use the
1 RabR Arnowitt-Deser-MisnerfADM) mass of the spacetime. We
Vi — o A (7)  saw a similar situation when we analyzed the radiation gen-
8 (gLt dreg) erated as an initially conformally flitBowen-York” [12])

spinning hole[16] settles into its Kerr final state. The spin
rate was taken to be small, and the problem was treated as a
. .- . perturbation away from the Schwarzschild geometry. For ap-
that ¢req IS regular atR: Riz and_ approache_s unity as parently moderate amounts of spin, the radiation generated
% NOt'fe Ehat the right hand side of E() is well b‘i’ was rather small, but the effect on the ADM mdss., the
haved atR=R;,; although the numerator diverges #  spin dependent increase over the Schwarzschild nuassd
—Rl,j:", the denominator increases |[&— R1,2|7. The main  be a factor of several. By computing exactly the effect of
difference between our approach and that of Brandt andpin on the ADM mass, we found we could successfully
Brugmann[15] is that we shall solve the initial value prob- apply perturbation theory for moderate spin.The only ques-
lem perturbatively. tion could be if one uses the ADM mass of the initial slice or

which is to be solved forpe4 with the boundary conditions

044024-3



NICASIO, GLEISER, PRICE, AND PULLIN PHYSICAL REVIEW 19 044024

that after the radiation has gone out, but for the cases dbsue was the source of significant confusion in this area

interest the difference is less than 1%, so we will consideinitially. In particular, the results df3] are not properly nor-

the ADM mass of the initial slice for our background. malized and therefore depart from our predictions in this
Then there is the issue of the initial data. The initial datapaper for moderate and large values of the momeriiuhen

for boosted black holes is characterized by the separation Mpy starts to differ significantly from twice the “bare

the momentun® and a “bare” mass for each holga, which  mass” of the holes

also serves as overall scale factor. This mass has no clear The concrete details of computation start with Ef. For

physical meaning, and no equivalent in the reflection symR>L and for computations only to second order, one needs

metric initial data used in numerical relativity. Because ofonly the portion linear irL of the extrinsic curvature. Keep-

this, we would prefer to have the initial data parametrized bying terms only to second order, and taking on the right hand

P,L,Mapm. Since P, L and m determine uniquely the side of the Hamiltonian constraint, the form @f= ¢g,

ADM mass, this is formally no problem. In practice we pro- given in Eq.(6), one gets th®(L?P?) piece of the confor-

ceed in the following way. The ADM masg$or a given set mal factor,

of parameters.,P,m) can be found from the monopole part 20 2 42 1 1

of our second order solution for the conformal facfai]. $reg= 1+ P“L°¢'*'+higher order terms, 9

One can then write an expansion forof the form,

by solving
2m=M ppy+ P2L2m+ - - - (8) _ 2
ADM 1 P2L2V2¢(2)=S(2)=—72P2L2R(1 2cog6 +:I7.300§0)
with m; a constant. One can then take the intial data, (2R+m)
go(P,L,m) and rewrite it asgy(P,L,M spm(P,L,m)) and (10)

use the above expansio(B) for_ the explicit .forrn of with the boundary conditiogs®—0 atR— . We can sim-
Mapum(P,L,m). As a result of this reparametrization, the ity the solution of this Poisson equation by decomposing
first and second order terms of the initial data are left invariiha squrce into multipoles:
ant. That is, one simply takes the initial data and where it
read “2m” one replacedM 5py . For the second order pieces 2)(1=0) 1056 P?L°R
this is also true, the second order pieces of E).only S T 5 (2R+m)’
contribute irrelevant=0 terms to second order and do not

change the initial data. Summarizing, we construct the per- 3072 P2L2R
turbative initial data, and wherever it said we replace S(Z)OZZ)Z_TW
Mapm/2 and this is consistent to the order of perturbation

theory we are considering. Therefore our problem is com- 7488 P2L2R
pletely parametrized now by the ADM mass, which also fa- S20=H=— 35 2R+m)”’
cilitates comparison with the full numerical data, which are

also parametrized and normalized by the ADM mass. ThisThe solution for the monopole and quadrupole parts are

11 (8RmM+20R?>+m?) qq

(2(1=0)= _
¢ 50 (2RTmPR R
4 3 2p2 4
¢<2)(|:z):_ﬁ(m +10m*R+40m?R?+ 80mR*+ 80R*) s (11)
35 (2R+m)°R® R®
|
One can also solve for tHe=4 piece but we will not need it. To determine what values af, and g, give a regular

The solution contains two constanjg andg, represent-  solution, we start by noticing that from E@L1) we can see
ing the homogeneous solution of the Poisson equation. Thedbat the asymptotic form of the conformal factor is
constants determine, in effect, what boundary conditions are
being chosen for the conformal factor. The choice we have 2-0_%0 .
made is thatp 4, and hencep?, is regular everywhere. ¢ =g TO(LRY
The wrong choice ofjy or g, means that when the solutions
in Eq. (11) are continued tdR<L they will be singular, so
that ¢= ¢pg, does not contain all the information about the PpP1=2)= q_§+o(1/R4)
singularities.(This would be the case, for instance, if we R
took gg andqg, to have the values for the symmetrized solu-
tion.) pP1==0(1/R%). (12
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On the other hand, we know that the regular part of the These expressions are straightforward to evaluate, espe-

conformal factor admits an expansion of the form cially since to the order of interest we can replace the source
by
o An(6,P.L)
¢reg=1+ 2 nR(n—#—l) (13 1 K2
n=0 SPl=—=— (18)
8 g

Since the right hand side of E(j) falls off as 1R® one can

conclude that the first three coefficients of the above expanynerek? is the square of the trace of E@) and ¢, is the
sion are part of the homogeneous solution, and have the forgynformal factor evaluated foP=0. The integrals(17),
however, cannot be solved in closed form. Instead they were
computed numericallyin several different ways The nu-
merical treatment ofS(R, 6,P,L) requires some care. As

AO( G,P,L):Qo(P,L)

A.(6,P,L)=0 pointed out near the end of Sec. Il B, though the source term
is regular, both the numerator and denominator on the right
Az(6,P,L)=Q,(P,L)P2(cog 0)). (14 hand side diverge at the points representing the holes. The

) ) ~ results we get for the constants are
We therefore see that, andq, are just the leading coeffi-

cients in an expansion @, andQ, in terms of P andL. 0o=0.219Mm%, (,=0.224M. (19
One can obtain a closed form expression @y and Q,
by applying Gauss’ theorem to E¢7), and using the fact These numbers are in excellent agreement with an approxi-
that (by choicg ¢qis regular on the whol®, 6 plane3.2. mate calculation due to Brandt and Broann[15]. They
This takes the form obtain approximately the correction of the ADM mass due to
the momentum in the initial data. The leading term in the
= = 2 expansion inL of their formula is precisely ougg. Their
Lzzv‘/’reg' d= ngs(R’a'P’L)d S (19 result is 11/56-0.22. One can reproduce these formulas by
considering expansions of the integrals considered in powers
whereS(R, 6,P,L) represents the right hand side of K@), of L.
and the integral on the left is evaluated over the boundary of
the plane at infinity. It is clear that the only term that con- D. Casting the initial data in the Zerilli formalism
tributes to this integral is the leading term for the expansion
of ¢. From there we can therefore determi@g. Consider-
ing the same construction, now f&?¢ one can determine
Q5. The results are

Having the initial data for the problem, we now can input
it into the perturbation formalism and evolve it. The first
order perturbations are evolved with a Zerilli equation. The
second order perturbations are evolved with a Zerilli equa-
tion with a “source” term quadratic in first order perturba-

1= w
Qo(P,L)=~— EJ er d6R?sin( 6) tions. The details of how this is done for the momentarily
0 0 stationary Misnef11] initial data was described in GNPP.
X Py(cog 6))S(R, 6,P,L) (16) Those details, however, were rather specific to the Misner

case. In particular, the formalism in that work used the fact
1 (= . that in the Misner initial metric the only first order perturba-
Qo(P,L)=-— —j drf dOR*sin( 0) tions are quadrupolar, and hence the source in the second
2Jo 0 order Zerilli equation is constructed entirely frdns 2 first
order perturbations. Those details also assumed that certain
of the second order initial metric perturbations vanished.

It will be convenient to use gauge transformations to sat-
isfy these same conditions, so that the previous formalism
- - can be used. The initial metribecause it is conformally flat
f drf dOR?sin( 6) has the correct Misner-like second order form. The extrinsic

0 0 curvature, however, has a first orderO perturbation which
generated =0 perturbations in the evolved data. Thdse
(17) =0 perturbations would contribute to the source term of the
P—0L=0 second order Zerilli equation. Below we will use a first order
gauge transformation to eliminate this first order perturba-

X Py(cog0))S(R,6,P,L)
so therefore for the leading terms we get

1 a*
9=~ g 5P%L?

X Pgo(cog 0))S(R,6,P,L)}

1 & - = _ tion. This transformation, however, changes the second order
92~ ~ g 7p2L2 f dff d6R*sin( 6) initial metric, taking it out of “Misner form.” We then use a
0 0 second order gauge transformation to restore it to the Misner
form.
X P,(cog 0))S( R,G,P,L)} Let us start by writing the perturbations in the standard
P=0L=0 Regge-Wheelef10] notation for the multipolar decomposi-

044024-5



NICASIO, GLEISER, PRICE, AND PULLIN PHYSICAL REVIEW 19 044024

tion of a metric tensog,,, i.e.,
’ 9= [KO(r,H)+G(r 1)
T

—_(1_ (h
Ju=(1 2|v|/|r)2I HS(r,t)P,(cosd) (20 % (6%196%)1P(cosd) (25
_  2ai " M
gu=S HO(r,t)P,(cosd) 21) Ups=" sm202| [KDO(r,t)+G(r,1)
|
X cotb(dl 30) 1P, (cos). (26)
gio= > h§'(r,1)(39/960)P\(cosh) (22)  Inthese expressionsjs related toR, the radial coordinate in

! the conformally related flat space, byR=(\r

+Jr—2M)?/4. The “background mass'M, as previously
Uro= > hiD(r,t)(a/96)P,(cosh) (23)  discussed, is the ADM mass computed numerically for a
[ given choice ofm,L,P.
Since the initial geometry is conformally flat, the only
B 1 ) non-vanishing perturbations are those H3 and K. The
9rr =(1—2M/r) zlz Hz (r,t)Pi(cost) (24 quadrupole parts, to second order, of these perturbations are

16ML2 . 192m2L4 . 128.%P?q,
Jr(r+Jr=2M)5  7r(Jr+dr=a2m)® Jr(Jr+r—2m)°
256 12r2—9rM + M2+ (8r —3M)\r\r — 2M ]L2P?

35r3(\r+\r—2m)°8

To describe the perturbations of the extrinsic curvature we shall use a notation like that {2@g626), but shall prefix
extrinsic curvature quantities with aK'” Thus, for example,K”=E,(1—2M/r)KH(2')P,(coa9). The non-vanishing mono-
pole perturbations of the extrinsic curvature are

H=2=K(-2=

(27)

KHS = 9=2— (28)

_ P
KK“*O):—T; (29

and the quadrupole perturbations are

_4PL 16PL3(6r —11M +6.r{r—2M)

KHY=? + 30
2 r3 7172 \r +r—2Mm)° (30

KGl=2 PL+ 8PL3\r—2M 31
3 7+ r—2m)*

k=2 5PL  8PL3(3r—5M+3+ryr—2Mm) @
r3 7r7(\Jr+r—2m)°

3

. 32PL | 33

7r=2Mr32(Jr +Jr=2m)*

We start the process of gauge transformations by writing a gehefalandl =2 first order gauge transformation vector,

g=MPI=2p,(cog) + MP(I=0 (39
gr:Mgl)(lzz)Pz(Cogg)'i'Mg_l)(IZO) (35)
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_.,dP,(cod)
é—ﬂzM(al)U Z)T, (36)
and we choose all components to vanish except
Mgl><'=°>=—\ﬁ PL (37)
Mr—2M
r—2m
MPI=0= — ———tPL. (38)

r5/2

This gauge transformation eliminates the0 perturbation of the extrinsic curvature to first order, and leaves$ -t first

order initial data unchanged, but it introduces quadratic changes in the second order components of the initial data. To compute
these second order changes, we need a four dimensional metric, whereas up to now we have only dealt with the initial values.
We assume zero perturbative lapse and shift to all orders and use the initial data to write an expansion in powers of a fiducial
time t for the four dimensional metric arourie- 0,

g[.l,l/:(gMV)t:O+t({9tg/.LV)t:o+ o (39)

where @)= is constructed in a straightforward manner with the 3-metric and the chosen lapse and shift, and the time
derivative of the perturbative piece of the methig, is completely determined by the extrinsic curvature,

2M
(dthap)i=0= —2Kap\/ 1— - (40)

We then apply the formulas for gauge transformations to the above constructed metric and take theQirtotrecover the
initial data in the new gauge.

The second order changes due to quadratic combinations of the first order gauge transformatiba hared | =2
components. We will ignore the first, since they are non-radiative.| & second order metric that results from the gauge
transformation of Eqs(37),(38) is

8PL3t(r¥2—3Mr2—(r+2M)\r—2M)

h<12)<|=2): b
MAr—2Mr2(Jr + Jr—2m)*
2)(1=2 16PL°M 8tp2L 2
H@0=2— _ 4 @
r2Jr—2M(Jr+yr—-2m)®  r5
H@1=2)_ 8P2L2+ 16PL3t[rY%(r +4M)\r—2M+3M?+3rM —r?] w3
’ Mr3 MrA(Jr+r—2M)*
K(z)“:z)_lOPsz 8PL3t(2M2—5rM +2r2—2(r—3M)\r Jr —2M) w
Mr? FAM(JF+r—2M)4
2] 2 3 [T
G-z _2PL 16PL%t\r—2M "

+ .
Mr3  r3(Jr+\r—2m)°

In the formalism of GNPP the initial data was taken to h&lg=H;=hy=0 up to second order. This was true of our
perturbed metric before the gauge transformation of E2j8,(38), but is not true of the post-transformation metric of Egs.
(41)—(45). We now restore the conditiondg=H,=hy=0, for the quadrupole, with another, purely second order, gauge
transformation:

—6Lr3M + Ptyr—2M(Vr+ Vr—2m)®

4
M{ =2 = 5t2PL2|v| (46)

T 2M (k2w
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4Lr3M = Ptyr—2M (\r—2M + 1S
TN TIE

2y 2= BLTMAT—2M +PH(r —2M)(Jr +yr—2m)®

mi=2-Lp 2y

= 73 T T—2M)® | “9

With this transformation, the final form of the first and second order parts of the quadrupole metric perturbations read

M{ =2 =4tPL%\r—2M (47)

ML?
HD(=2) _ i (1)(1=2)_ 16 (49)
2 (Vr+r=2m)5\r

1
HE(1 =2 = — —CL2P?[1272°%+ 1240\ — 2Mr?+ 2480 — 2)r %%+ 2480r — 2M) ¥ + 12401 - 2M)?\r

128 2P2q2 192m2L4

(T2 72w

+248(r — 2M)52)/[ (Jr+r —2M)°r*M ] +

1
K072~ — | 2P 642 %%~ 1910Vr —2Mr?— 38201 — 2M)r®?-3820r — 2M)* —1910Qr —2M)*\r

128 2P?q2 192M2L4

_ _ 5/ _ 5.3
3821 —2M)32)/[(\r +\r—2M)°r M]+(\/F+m)5\ﬁ+7(\/ﬁ_m)1or

2P?L2
Mr3

G@1=2) =

and the extrinsic curvature is
KHDU=2=4pL/r3 (50)
KGMI=2=—pL/r3

KKD(=2= _5p| /3

(108Jr +52\r —2M)PL3

7(Jr+r—2M)°r¥2r —2Mm

2)(1=2) _
Kh(21=2) =

(2961 +184\r r —2M + 64M)P L3

T(Nr+\r=2m)°r 72

(48r —8\r\r—2M +16M)PL3
T(Nr+r=2m)5r 72

KK(2)_(4r+ 116yr\r—2M—16M)PL3
7(\r +r—2m)5r72

For perturbations satisfying the Misner conditioni$,&H,=hy=0) the first order, quadrupole, Zerilli function, in the
notation, of GNPP is given by

2)(1=2) _
KH(Z)( ) —

KG((1=2) =

r—2M _ _ _ _ r _
= m[rH(21)(I—2)+3rZG§1)(I—2)_r2K$1)(I 2)_6h(11)(| 2)]+ §K<1><|_2) (51)

and its time derivative by
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2yr—2M

W[—YZKK(]')“:Z)—Y(?)M - I')KG(]')(|=2)+(I'—2M)th_1)(|=2)]. (52)
r¢2r+

dip=

Here use has been made of the first order Einstein equations to simplify the occurrence of higher time derivatives.
With the notation and formalism of GNPP, the second orber2 Zerilli function y is computed to be

x=[—14r*p(—KG@r2+r2KK@ +3rKG @M —Kh?'r + 2Kh?'M) — 2r 9% 2r + 3M) (KV)2— 4r5p3h{ VKK D
+4KDrK KW p— 4r*h(VKK DM p+ 2r KK DHY p+ 6r°p(5r + OM)KGHGD + 4r5p(—2r + M)KGHHEY
—r8p(=3r+4M)KKDG +r8p(—13r +20M)KGIGY - 2r5p(8r + IM)K VK GV + 4r4p(—r +5M)KGPhH
—2r%p(7r+6M)KKPGW +r5p3KhHGIY + 2r8p3K G VK M + 4r®p°KhiVK P + 4rSp3K K P hiY — 6r4p3G UK h (Y
—2r7p*KGIVKY = 2r pPKKW G — 2r3pSKhiVhit — 2r4p3h{VKHSY +16p3GIVK HEY + 4r3pSKh{Ph i
—7r*p3Kh{PHY +2p3r2(7TM +22r) KhVh(Y — 8 (2r +3M) p*(h(Y) 2+ r4p3(M — 26r )Kh{V GV — 24r5p3K GV h (V)
+12r5p%h{VKGY +12r"pPK G MG + 2r 83K GIVH LY — 4r 94 2r + 3M) p?G VK (M + 8r®2(2r +3M) p*h (VG
+8r%%(2r +3M) p?h{VK D — 2r92(2r + 3M) p*(GM)2][ 7r ¥ 2r + 3M) ] * (53

wherep=+r—2M, and the time derivative of the second ordet,2, Zerilli function is given by

X 1= — 4 TM —6r)pPHYGY + 16Mr7p%(2r + 3M)K VK G - 4r 172510k GV K h{Y + 28H 2 r ¥4 M + 1) p®
+2r ¥ 18M 2+ 17rM — 8r2) pSG VK M + 4r ¥4 5r + 9M) pSGVHEY — 4r ¥ M + 12r) pBK G VK h (Y + 4r ¥/ 2r
+3M)pBGIHGY +4r 3 3M +50r) pPK GIVKh( — 4r 173 17M + 15 ) p8(KG™) 2+ 8r 194 3M — 1) pSK G VKK
+4r13/2(6M _ 5r)pGG(1)K(1)_ 12.11/2(2r +3M )p8hf.r)G(1)_48r21/2p8(KG(r1))2_ 116 13/2[)8(th_1))2_ 28 15/2p6K(2)
— 12r1928(KK )2+ 14¢ 152p8(K D)2 — 6r 133 12M 2+ 19rM — 6r2) pSG MGV — 24r 94 10M — 3r) pBh Y h{V
+4r19%2M —3r) pPK GVK KV + 14r 152V pBK (2) — 12r "2 42M 2 — 14rM — 3r2) p8(h{Y)2+ 3r 154 54M2— 30rM
+r2)p6(G§1))2+ 2r17/2p8H(2:!})K|(,1)_2&9/2(6M 24 5rM _2r2)p6hi_3r17/2p8(K51))2_r13/2(2M _5r)p6(H(21))2
— 28114 2r +3M) p®n 2+ Ar YA AM — 7r) pPhYHEY + 16r2Y%BK G VKK + 48 192p8(G M) 2+ 16r8pS( 2r
+3M)KKOKD +64r4p%(2r +3M)Kh{Ph{V + 16r8p7(2r + BM)KKV G —32Mr5p7(2r + 3M)KG P h(Y
+16r8p7(2r +3M)KGIWKW +2r 54 3M — 1) p8G M HSY + 16 "M p (2r +3M)KG VG - 32r8p°(2r
+3M)Kh{MGM —32r8p7(2r + 3M)KK Ph{P + 16r8p°(2r + 3M)KGVGY — 32r8p7(2r + 3M ) Kh{MK (D — 12r 1317 2r
+3M)(M—r1)pSGMKM — 40r WZpBh VK 4+ 12r 193 10M — 3r) pPGVh (Y + 12r A 8M 2+ 11rM — 7r2) pPh MGV
+8Mr¥34M —7r) pPh{PHSY + 36r ¥ 4M2 - 2r2+ 1M ) p®h{V G + 4r ¥4 5M2 + 2rM — 2r2) p°K G VK h{?
—Ar™A3M — 1) pPH MY — 12r 958K GV K HEY — 4r Y4 35M 2 — 19rM +12) pPK (P hit + 1672 8K hi KK Y
—2r 154 27M2—7r2) pPGIVK (M + 8r 1¥28n K (V) + 32r 158K h{V K HEY — 4r 193 10M — 3r) pBh VK (Y
+16r152M pSK VKK M + 4r A M + 12 ) pPK G VK H G — 4r 15725 K WHEY — 14r ¥4 6M 2~ 3rM — 2r2) p°G |2
+ArYA17M + 16r) pPK G VKK — 4r 153m pSK (DK (Y — 8r 1325 10K h{V K h{Y — 2r 192581 SV H Y
—4r'9% — 13+ 20M) p°K G VK G(M - 8r192p 8K HEVK K (V) — 32r 172p8K K (MK hi — 32r 6p%(2r + 3M)K G Vh{"]

X [14p*(2r +3M)rt7?-1 (54)

where a subscript denotes differentiation. To arrive at the expressions in Eg@. and (54) the second order Einstein
equations have been used to eliminate higher order time derivatives. The above expressions were automatically computed with
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Maple computer algebra codes. It is impractical to give more details of their construction in print. The source codes and
documentation can be found in our anonymous ftp sefri@}.

When the explicit 3-geometry and extrinsic curvature of E48),(50) are put into the expressions of E¢S3) and (54),
we arrive at the following initial data for the first and second order Zerilli equations:

8 ML*5{r—2M+7\nr
V=073 (T vr—2M)5(2r + 3M)

_\/r—ZMPL(8r+6M)

rS42r+3Mm)

512 M2L4 +16(9\/F+17\/r—2M)\/r—2MMPL3 -
X0 T (Jrer—2M) 7 (Jr+r—2M)5(2r +3M)r™?

. _64M2(1Or—10M+38\/F\/r—2M)\/r—2ML4 64 (4r+14M)\r—2MMPL3
Xi=o 7(Jr+ T —2M)2(4r + 6M)ro2 T (Jr+r—2M)ar®

64M(5\/F—3\/r—2M)\/r—2M L2P%q2 16

+—\r—2ML2P?(1750M*— 9849 M 3+ 2331r’M?+ 7182 M
(Jr+r—2m)%2r+3m)r2 35

—2892%— \rr —2M (3148 3— 4130 2M — 4935 M 2+ 437513))/((2r + 3M) (\Jr +r —2M)°r ®). (59

(59

Yo (56)

We are now ready to evolve the initial data and compute waveforms and radiated powers.

11l. EVOLUTION
A. The Zerilli equations

The initial data generated in the previous section is now fed to the first and second order Zerilli equations

Py Py
— ot oz V() $=0 (59)

192)( (92)(
— W'ﬁ‘ R‘FV(r)X—S (60)

wherer . is the usual “tortoise” coordinate covering the exterior of the black hole,
r,=r+2Min(r/2M—1) (61)

so the horizon is at, = — and spatial infinity at, =<, and the potential and source terms in the Zed@li equations are
given by

vinz|1 2M\ | 4r2[ 72m3 12|\/|I a1 3M +2(|—1)(|+2)|(|+1) 62
(N={1-— 2| s r_3( J(1+2){ 1= —— A (62
12 43 12(r2+Mr+M?)2 , (2r3+4r’M+9rM?+6M?)
7 Al rAuZA W4 A e
(112°+480r*M + 692 M2+ 762 2M 3+ 441r M * + 144M ®)
+ I’S,LL2A3 ‘p'ﬂat_S_rZ‘prt(ﬂ:rrr
18r3—4r°M —33rM?—48Mm° 12r3436r’M +59rM 2+ 90M 3
7 2 by tht 5 (4.0)?
3riucA 3ru

+1,)(2r5+ 9r*M +6r3mM2—2r2M3—15rM*—15M°%) 2 4(r2+ ™M +M?)

rB,LLZA r3#/2 'Jj!tdf!tr
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(32r°+88r*M + 296 3M? + 510r2M 3+ 561r M 4+ 270M °) 1
-2 7 2 ‘/"%r"'_ilpar‘patrr
r'ul 3r
2r2—Mm? . 8r2+12rM +7M? 3r—7M M
W‘pvt‘/’arr I’4,LLA 'p'//’tr"' 3r3,u wvrwvtr_ﬁ'ﬁ‘/fvtrr
4(3r?+5rM +6M?) wA , 2r+3m )
+ 3r5 wvrwvrr—i_?(lpvrr) _W(lﬁ,tr) (63)

where A=(Ar+3M) with A=(1—-21)(1+2)/2 and u=(r zero momentum the numerical simulations correspond to the
—2M). The potential is given for generdlin Eg. (62) but 1960 Misner[11] initial data, and our results correspond to
we will use it only forl =2. the Brill-Lindquist[14] initial data.

As can be seen, Eq&59) and (60) have the same form, For the range of separations we are going to discuss the
including the same potentials, but the second order equatiofiscrepancies between these two types of data are insignifi-
has a source term that is quadratic in the first order Z¢8illi  cant.(Although we are working in the “close-limit,” we will
function and its time derivatives. We have written a fortranconsider sets of data far apart enough to make the extra terms
code to evolve these equations by a simple leapfrog algaarising from symmetrization very smalbut since the prob-
rithm. Convergence to second order was checked and specigm is a multi-parametric one, it is not obvious that this is
care was taken to avoid noise from the high derivative ordetrue in all the ranges of parameters we will be discussing.
of the source term. More careful studies will be needed if one wants higher ac-

To find the gravitational waveforms and power a transfor-curacies than the ones we are going to discuss here. We have
mation must be made to a gauge that is asymptotically flat talso modified the Potsdam/NCSA/WashU code to run for
first and second order. The details of this process were disinsymmetrized data, and for limited tests the results agree
cussed in GNPP and will not be repeated here. The result igery well with the symmetrized ones in the range we are
that the transverse-traceless perturbations, in the asymptotionsidering. This situation arose due to historical reasons:
cally flat gauge, correct to second order, are encoded in thédne numerical code was written before our work with non-
guantity symmetrized boundary conditions, whereas perturbation

theory becomes very cumbersome if one starts carrying
Iy 19 Jy around the extra terms due to symmetrization.
f(r.t)= EJF[XJF 795 ’/’E) One particular problem that one faces when comparing
Brill-Lindquist (unsymmetrizedand symmetrized data sets
(where it is understood that all quantities 4re2) and this IS that the sets are parametrized in different ways. There is
is the quantity we shall plot below when we give waveformstherefore ambiguity in how to compare the results. Abrahams
of the outgoing gravitational radiation. The first order part ofand Price[19] have discussed this in some detail, and show
the radiation is given by the leading term in E64); the that there are different identifications one can take that yield
terms in square brackets are second order. From the Landagensible results along a good range of parameters, so we will
Lifschitz pseudo-tensor in the asymptotically flat gagge Not repeat the discussion here. We just state the convention
discussed in GNPPRwe find that the radiated power is we are following: For one of our results with momentum
parameteP and throat separatidn we compare a numerical
2 relativity result with the same ADM mass and same numeri-
} (65 cal value of the momentum parameter, and with a separation
parametef, given by

: (64)

P 3y 19 ¢
owel=10 E_’_ X"‘?E H

[Note that the perturbation parametethat appeared ifil7]
is now incorporated into the definition of the Zerilli functions L=2MV4k,(1q). (66)
we have used in the paper, as can be seen in fornibfas

(58). We have also directly computed the “renormalized” Here u, is a parameter originally introduced by Misrfér]

second order Zerilli function in Eq53).] that is commonly used to parametrize symmetrized binary
Before we move on to present our results and comparg|ack hole initial data sets, and

with the numerical relativity simulations of the Potsdam/

NCSA/WashU grougsee BAABRPS, it is worth pointing

out, again, that the numerical relativity simulations are for 1

cotinpug)'

i (

“symmetrized” initial data, in which an infinite number of i(4o) (43! 1a=1 sinnpg (67)
“image charges” is used to construct initial data represent-

ing two throats connecting two isometric asymptotically flat ®

universes. By contrast, the problem we are solving corre- 2152 _ 1 _ (68)
sponds to three asymptotically flat universes. In the limit of T sinmug
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With these choices, the radiated waveforms agree very well Fortunately, it is not difficult to eliminate the time-shift

when P=0. Notice that the discussion of Abrahams andambiguity in the metric. To do this we separate the wave-

Price[19] is only for theP=0 case. The “best” identifica- form f(r,t) given in Eq.(64) into first and second order parts

tion between symmetrized and unsymmetrized data could® andf(®) and we construct the quantity

probably be &P-dependent notion. We will ignore this issue

here, but it clearly requires further study. ©
f dtfM(r,t)f@(r,t)

B. Fixing t=0 Co=

(72)

In the formalism of GNPP we chose to fix the coordinates f_wdt[f(l)(r,t)]z
by requiring that the metric be in the Regge-Wheg!Ed]
gauge to first and second order. This can always be done, but . _ .
it turns out that the coordinates are not quite uniquely fixed'W& then perform the time translatiar-t+c,, arriving at
The problem is quite generic and it has to do with howthe “Physical” value for the second order waveform
perturbation theory handles time translations in situations

where the background spacetime is time-translation invari- ol T D=FA(r ) —cofM(r,t) . (73
ant. Consider an exact quantiffr,t) approximated by a
perturbative series expansion, Equivalently, we adjust the zero of time, and hence
(2) i i i -
Fr, )= FO) + ef O(r 1)+ fD(r ) +---, (69) f1)(r,t) until the integral in the numerator of E(72) van

ishes. The same coordinate fixing must be done to the nu-

and perform now a first order gauge transformation corremgr'ca”y compufcla)d wavefornhm{m. To do this we define
fro to bef,,n— f'*). We then adjust the zero of time so that

sponding to a pure time translation, num )
the integral off ), f*) vanishes.
t—t'=t+ec, (70) These observations about time-shifts are also true in the
time-symmetric case. We have recomputed the resulg]of
with c a constant, independent pandr. Rep|acing’ by the with the zero of time fixed as above and have found that the

above expressiofand noticing thadt=dt’), we get results are changed by less than 1%. For boosted black
holes, on the other hand, this time fixing is crucial for seeing
fr,t)=fO>r)+efD(r,t')+ @ (r,t')+ O(€3) the high accuracy agreement of the perturbative and numeri-

_ cal relativity results.
=fO(r)+ ef V(r,t)+ e2(cfV(r,t)

+ f(z)(r,t))+0(e3). 72 C. Results: radiated energies

We start to summarize our results by computing the radi-
So we see that the “second order term” in the expansion ofited energy as a function of momentum for head-on colli-
the metric depends on the origin chosen for time. If onesions of black holes released from a separation ugf
starts with perturbations in the Regge-Wheeler gauge, & 1.5 and a physical separation ofy,,J (0.5M ppy) =5.5.
transformation of typg70) leaves the perturbations in the  The figure shows the characteristic “dip” at low values
Regge-Wheeler gauge, but the second-order metric ief the momentum that was first noticed in BAABRPS. An
changed, and in fact depends onaahitrary constant. This  important difference between that paper and the present re-
indicates that a comparison of guantities to second order inults is that here, as explained in Sec. Il C, we are normaliz-
perturbation theory around stationary backgrounds can bimg both the numerical and the perturbative results using the
quite misleading: the same metric can have very differensame ADM mass. This leads to a much better agreement
second order terms depending on the origin of time choserfor large values of the momentum than that observed
Worse, these terms can be quite large, and are completely BAABRPS. As an example of the size of the difference,

artificial. for P/Mpapw=1, P/(2m)=3 and for P/Mapwm
It is interesting to notice that if one computes the radiated=2.44, P/(2m)~15.
energies using the formula we discussed previo(&8hy, the A remarkable fact is that first order perturbation theory

results are unchanged —as expected— by time translatioreggrees very well even for large values of the momentum, and
(the additional term turns out to be a total derivative thatsecond order perturbation theory confirms this fact. This at
does not affect the computation of energiddut we wantto  first seems puzzling since our initial data was obtained
go beyond giving perturbative results for radiated energythrough a “slow” approximation in which the momentum
We want also to compare perturbative waveforms with thosevas assumed to be small. However, as was observed in
of numerical relativity. Since these waveforms are secondBAABRPS, for large values of the momentum the initial
order correct quantities given as a function of time at a pardata is “momentum dominated,’meaning that the extrinsic
ticular “observation” radius, we must be sure that we arecurvature completely dominates the initial data. Therefore
using the same zero of time for both waveforms, that fromthe errors made in computing the conformal factor via the
perturbation theory and that computed with numerical relaslow approximation become less relevant than might be sup-
tivity. posed.
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FIG. 1. Radiated energy in head-on black hole collisions as FIG. 2. We depict energies for black hole collisions in which
function of the momentum for a separation qgiy=1.5, black holes were initially boosted towards each other and also for
Lpnyd (0.5M 5pw) =5.5. Depicted are the close-slow approximation the case in which they were boosted away from each other. The
and the full numerical results of the Potsdam/NCSA/WashU group:‘dip” effect is only present when the black holes are moving to-
Even for large values of the momentum, the first order results overwards each other. The approximation given by first order perturba-
shoot and the first plus second order undershoot the numerical réion theory is slightly worse in that case, since leading terms in the
sults by only 20%. The inset shows the “dip” region. calculation are cancelling each other to produce the suppression.

We also see the cancellation of second order contributions that

. . inti ntum case. There, first
The overall picture of the energy therefore is very encour—takeS place for the outward pointing mome ’

. th imati ted to b Ki order results undershoot the results for small valueB ahd over-
aging, the apprQX|ma lons presented seem 1o De workingy, . j later, the second order corrections vanishing at the point of
even beyond their expected realm, and second order pertu(gfossing_

bation theory is capable of tracking this fact, playing the
expected role of “error bars.” This approach is not without , i i .
Another issue to be mentioned is how crucial it is to have

pitfalls, however. In order to illustrate these, we turn to Fig. h h f the initial sli h f th
2, which shows a close up look at the energy picture and alsp'0S€n the ADM mass of the initial slice as the mass of the

includes results for black holes initially boostaday from background spacetime used in the perturbative calculations.
each other Our previous(first-orde)y work on boosted black holes used

The first thing we notice is, that for black holes boostedthe. “t.)are”.mas.s(ADl\_/I mass forP=0) for the ba_lckgr_ound.
This is quite visible if one compares Fig. 1 with Fig. 2 of

away fro_lr_rk: e%gh .Othe}r tr:ered|s, af? e)t(‘gﬁ c:eid, dno td'p mnthel_BAABRPS. In the latter, first order perturbation results ap-
energy. The dip 1S a first order efiect that 1S due 10 a cancel,y ;o g 14 disagree with the numerical results by over an or-

lation between terms that are momentum independent argier of magnitude foP/M ,py,=3. That was entirely due to

terms that are linear in momentum. The cancellation turns t‘ﬂwe poor choice of background mass. In the present paper
addition in the case of negativeutwards P. We also see using the numerically computed ADM mass of the initial

that first order calculations are less accurate at the dip than abta. we see that firgand secondorder results differ by
higher values of the momentum. This is somewhat puzzlin%nly’zo% from the numerical results B{M -3
since our approximation should work better the smaller the ADM™ =

momentum. What seems to be happening is that first order
theory does not accurately reproduce the higher order terms
that make important contributions to the energy after the Let us now turn to the examination of waveforms. The
leading terms cancel in order to produce the dip. This immumerical code of the Potsdam/NCSA/WashU group extracts
confirmed by the fact that first plus second order results arevaveforms at slightly different values of the radial variable
indeed very accurate at the dip. for varying P’s. We took this effect into account and ex-
An instructive feature of these results is that for blacktracted perturbative waveforms at the same radii as was used
holes boosted away from each other a cancellation of théor the numerical relativity work. In all cases the full numeri-
second order terms takes place around/(2m) cal code has a very limited range of spacetime covered in the
=0.9, P/Mapu=0.36. Clearly one cannot regard secondevolution. This forces the extraction to be done in a rather
order perturbation theory as giving error bars when it is cansmall range of radii around 20,p), or so. With perturba-
celling out. Moreover, it shows that second order redodts  tion calculations we could have extracted much further away,
yondthat value ofP can only be taken as rough indicators. but we performed the extraction at exactly the same radius as
We will return to this cancellation in somewhat more detailthose used by the numerical code. Waveforms were observed
in connection with waveforms. to change shape rather significantly from one extraction ra-

D. Results: waveforms

044024-13



NICASIO, GLEISER, PRICE, AND PULLIN PHYSICAL REVIEW 19 044024

/ \ 04 T T T
\
03 N\
02 r
0.1
-0.1 00 +
Full numeric
=== st Order
-03 1st+2nd Order ] 02 L
e == st order
\/ —— Ist+2nd order
v = full numeric
-0.5
0.0 50.0 )
M -04 . ! L
M ipu 0 20 40 60 80

FIG. 3. Comparison of waveforms for large values of the mo-  FIG. 4. Comparison of waveforms for intermediate values of the
mentum, P/(2m)=15P/Mapy=2.44. There is good overall momentum,P/M,pu~1.32. Here one can see that second order
agreement, but there is some slight disagreement in the details @fieory not only acts as an “error bar,” but when added to the first
the waveforms. As one expects for large values of the parametersyder calculation, actually allows a reasonably accurate prediction
second order perturbations can at most be regarded as an estimagfrthe waveforms.
of error, rather than a way to improve the accuracy of the wave-
forms. It is still remarkable that perturbation theory would work agreement. Notice thdtaking into account the “time-shift”
well for such a large value of the parameker gauge fixing discussed abgveur procedure in the end has

no free parameteri.e., phases and amplitudes are predeter-
dius to another even in such a close range, but we observedined in all cases, which makes the agreement more remark-
that as long as we extracted the perturbative waveform at thable. If one looks carefully at the curves in the inset, which
same radius as the full numerical res@s opposed to, say, enlarges the region around the second positive peak, one sees
extracting farther out and then shifting the result baitie  that there are slight phase and amplitude disagreements. First
agreement was roughly independent of extraction radiusorder results tends to overshoot the waveform, whereas add-
However, this starts to hint at a main problem in comparinging the second order correction tends to undershoot. There
waveforms: one needs not only to match amplitudes but it iare slight differences in shapes as well. For large values of
also crucial to match the phase, at least if one is interested ithe momentum, we can take second order predictions as “er-
high accuracy. The phase is determined by, among otheor bars” only. However, for intermediate values, it is quite
things, the extraction radius. Determining the extraction raclear that first plus second order calculations offer a very
dius, in turn, requires knowing the ADM massince one accurate prediction of the waveforms.
measures radii in units of ADM massOur full numerical The reader should exercise care when comparing the re-
code for computing the ADM mass, in its present implemen-sults for waveforms with those of energies. This is due to a
tation, is accurate to a few percerffhis could be made peculiarity of the formula for the radiated powés5). As
better with more computer power than what is presentlydiscussed in GNPP, the square that appeaté5hinvolves
available to us; the runs we made had 300 radial zones antdrms that are of “third order” in perturbation theory. There-
30 angular zones.This limits the accuracy with which we fore, to keep things consistent, when squaring the expression
know the ADM mass, and hence the accuracy with which wen curly braces, we only keep the mixed term and omit the
can determine the phases. The technique, discussed in Seerm that is the square of the second order part. &s a
11 B, of fixing the zero of time is helpful in giving an objec- consequence, the second order correction for the radiated
tive way of comparing phases. energy depends mostly on correlations of phases of the first

Let us turn to the results. We present, below, the resultand second order waveforms rather than on their amplitudes.
for the waveformf(r,t) as defined in Eq(64). This is di- For instance, for the case we are studyiff(2m)
rectly comparabléup to a time derivativewith the output of =5,P/M,pu~1.32, the second order waveforms are only
the full numerical relativity code, which outputs a Zerii]  slightly smaller than the numerical ones, but the computed
function via the radiation extraction technique of assumingenergy is 12% lower.
that the spacetime is a perturbation of Schwarzschild and We now turn our attention to the area of the dip,
reading off the perturbations from the full numerical results.P/M ,p,,~0.05P/(2m)=0.12. In Fig. 5 we show the wave-

Our presentation of waveform comparisons starts with théorms for the inward boosted caéhe case with a dip in the
most disfavorable cases and moves to more favorable onesnergy. We see that second order corrections improve the
Figure 3 shows the comparison of waveforms Ri(2m)  accuracy markedly. Clearly there are strange effects taking
=15P/Mpu~2.44 and Fig. 4 corresponds tB/(2m) place for this value of the parameter. In particular, it should
=5P/M pu~1.32. As we see, there is very good overall be noticed how first order theory overshoots the waveforms
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FIG. 5. Waveforms in the “dip” regionP/Mspu~0.05, for FIG. 6. Waveforms foP/(2m)=—0.9P/M spy~ —0.36, i.e.,

inward boosted black holgthe case where there is a “dip” in the for outward boosted black holéthe case where there is no “dip”
energy. Second order corrections improve the accuracy in the amin the energy. Second order corrections cancel out and therefore
plitudes significantly, but first order calculations exhibit an erraticare not reliable as “error estimators” nor to improve the accuracy

behavior. Since the energy arises as a correlation between bodf first order calculations(The first and first plus second order
waveforms, this translates itself into a rather large relative error ircurves are both plotted but are indistinguishgble.

the perturbative computation of the energy. Notice that waveforms

for this particular value of the momentum differ markedly from _ . . .
waveforms for other values, the “enveloping” amplitude curve de- P in perturbation theory. A further study of this issue could

creasing much more slowly, allowing several oscillations to be vis-therefore yield interesting results.
ible.
IV. DISCUSSION

rather sianificantly in th nd and third itiv K of We have seen that the use of combined first and second
ather significantly in the second a ' POSILVE peaK Of, jq perturbation theory can give excellent results for wave-
the waveform, but not in the first one. In view of the fact that

the energy is given by the correlation of the first and seconcfiormS and energies of radiation emitted in the head on colli-

order waveforms, those discrepancies in the first order wave> " of wo equal mass, initially boosted, black holes. The

forms would seem to be responsible for the large reIativéesu!tS show, hovyever, _that there are some subtleties, not
error in the calculation for the energy, even to second ordefPr€viously appreciated, in the use of higher order perturba-
This is so, in spite of the fact that second order calculationdOn theory and in the comparison with results from numeri-
yield very accurate waveforms. cgl relgnwty. The_ foIIovymg points (_jesgrve attention, espe-
Figure 6 shows the case Bf(2m) = — 0.9 (holes moving cially in connection with the application of higher order
initially aparf. As could be predicted from the energy plot, a Perturbation theory to further problems.
cancellation of the second order terms is taking place. In this (&) The comparison of perturbation results and numerical
case, therefore, one cannot regard second order correctiofrgativity results has pitfalls when comparisons are made be-
as “error bars,” since it is clear that higher order terms aretween problems that are not identical. In our case we com-
important. It is worthwhile pointing out that the cancellation pared our perturbation result for an “unsymmetrize@ill-
is highly nontrivial, the initial data having the same ampli- Lindquist [14] type) initial data, with numerical relativity
tude for both inward and outward momenta. The cancellatiomesults for “symmetrized” (Misner [11] type) initial data.
takes place in the evolution, with the source terms of theHad we been comparing with unsymmetrized initial data, the
second order Zerill{9] equation playing a significant role. parametersn,L,P for the data sets would have had identical
A simple way to understand the cancellation is to breakmeaning. Since the data sets were not identical, a mapping of
up the evolution into three separate Zefi8] equations with  one parameter set to the other had to be imposed. One degree
three different initial sources, proportional td, PL3, and  of freedom in this mapping was subsumed in the choice to
P2L? respectively. What one sees is that the cancellatiomompare cases of equal ADM mass, but the remaining ele-
occurs between thBL® term and the other two, and clearly ment of choice in the mapping is a source of uncertainty in
depends on the sign & (for our simulations negative is  the high accuracy comparisons we are makiivge empha-
outward pointing. One can then infer that there is a curve of size that the choice of mapping was made before any results
cancellations in thé®,L parameter space that isolates a re-were considered; there was no “fine tuning” to improve the
gion in parameter space where second order perturbatiocomparison. The excellent agreement between the numerical
theory does not help. One cannot reach points in that regioand perturbative results then must be considered to be,
unless one changes the relative counting of powelsaid  among other things, an indication that there is no great sen-
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sitivity to the manner in which this mapping of parameters iswhen anomalous cancellatioiibke the “dip”) occur. Al-
done) though perturbation results end up in excellent agreement
(b) There is no unique result that is correct to secondwith numerical relativity results, a perturbative analysis
order. Different ways in which details are handled will pro- based on small, but without smallP (especially if it could
duce results that are the same to second order, but differ 8 compared with numerical results for unsymmetrized
higher order. These different results can have differenflatd, might be useful in improving our understanding of the
ranges of validity and can exhibit different accuracy whenhature of errors. _ .
compared with numerical work near the limit of validity.  (f) The current state of the art of numerical relativity pre-
One example of this feature of perturbation theory is the>Nts limitations, both in accuracy and in range of simula-
dependence on parametrizatid®]. In our perturbative re- tions Of. the codes. As a consequence, we were I|m|_teq to
sults we have seen another simple example: The secon§®mparing yvaveforms which are not really in the radiation
order correct waveform consists of a first order and a secong®n€: This is a dangerous exercise when it comes to second

order piece. When radiated energy is computed by squarin rdgr perturbation theqry. In particular, the formula for the
this waveform one can choose simply to take the square, diated poweftfrom which we extracted the concept of sec-

to truncate the result and omit the fourth order contributionOnd orde.r \(vaveform assumes that one s in the radlatlon.
one. This is true also of the extraction techniques used in

arising from the square of the second order contribution td . .
the waveform.(We have made the latter “conservative” the numerical c_odes to produc_e a Z_elﬁﬂﬂ function as out-
choice) Both results, of course, are equally justifiable for thePut. In short: with the current limitations we cannot rule out

order of perturbation theory we are doing, but the results argq.at the d|$C(epanC|es We See in waveforms_and energies
noticeably different. might be within the error margins of the numerical results.

(c) In the present paper we have seen a particularly inter- A general c;onclusmn of this work is t.hat the synergy be_—
esting example of the importance of higher order terms an@Ve€N numerical results and perturbative calculations will
the detailed way in which perturbation theory is applied. ToProPably be one of the major tools that we will have to use to

make the comparison between symmetrized and unsymm@—ddﬁssk"\gﬂ: any accuralcy lthg .pro\l/J\}em oft;c]hetclglllﬂo? of
trized initial data we found that it is important to compare WO Plack holes in general relativity. We see this taking place

cases of equal ADM mass, but the ADM mafs fixed m) right now.
varies quickly with increasing initial momentum. If one com-
putes this momentum dependence perturbatively the agree-
ment of perturbation theory and numerical relativity is lim- ~ We wish to thank Peter Anninos and Steve Brandt for
ited. With the ADM mass computed exactlfi.e., help in providing the full numerical results from the NCSA
numerically the agreement is greatly improved. This sug-group, and for allowing us to use the Potsdam/NCSA/WashU
gests that ara priori physical understanding of the depen- code. We are grateful to John Baker for several insights con-
dence on the perturbations can be a very useful guide to agerning the normalization with the ADM mass and to Gaurav
efficient perturbation scheme. Khanna for pointing out several typos in an earlier version of
(d) In addition to the numerical computation of ADM this paper. This work was supported in part by grants NSF-
mass, another useful new technical detail was developed IINT-9512894, NSF-PHY-9423950, NSF-PHY-9507719, by
the present work. A method was found of fixing the zero offunds of the University of Caloba, the University of Utah,
time in the same manner for both perturbative and numericahe Pennsylvania State University and its Office for Minority
waveforms. This fixing of zero had not been important inFaculty Development, and the Eberly Family Research Fund
previous perturbation studies, but was crucial to comparisoat Penn State. We also acknowledge support of CONICET
of waveforms for initially boosted holes. and CONICOR(Argenting. J.P. also acknowledges support
(e) Perturbation analysis in the present paper was carrieffom the Alfred P. Sloan Foundation. Part of this work was
out for both small separation and small momentdfthe  done while C.O.N. was visiting Penn State with support from
close slow limit”). This makes it particularly difficult to un- CONICET (Argenting. RJG is a member of CONICE{Ar-
ravel the sources of disagreement with numerical resultgenting.
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