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Trapped gravitational wave modes in stars withR>3M

Kjell Rosquist*
Department of Physics, Stockholm University, Box 6730, 113 85 Stockholm, Sweden

~Received 11 September 1998; published 26 January 1999!

The possibility of trapped modes of gravitational waves appearing in stars withR.3M is considered. It is
shown that the restriction toR,3M in previous studies of trapped modes, using uniform density models, is not
essential. Scattering potentials are computed for another family of analytic stellar models showing the appear-
ance of a deep potential well for one model withR.3M . However, the provided example, although having a
more realistic equation of state in the sense thatvsound,`, is unstable. On the other hand, it is also shown that
for some stable models belonging to the same family but havingR,3M , the well is significantly deeper than
that of the uniform density stars. Whether there are physically realistic equations of state which allow stable
configurations with trapped modes therefore remains an open problem.@S0556-2821~99!00204-0#

PACS number~s!: 04.30.Db, 04.20.Jb, 04.40.Dg
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I. INTRODUCTION

Examples of trapped modes of gravitational waves
compact stars were given by Chandrasekhar and Ferrar@1#
and calculations were subsequently also carried out by o
authors@2,3,4#. The fundamental reason behind the occ
rence of the trapped gravity wave modes is the stretchin
the geometry by the strong gravitational field leading to
bell-like geometrical structure inside the star. This pheno
enon is most clearly illustrated using the concept of the
tical geometry as developed by Abramowicz and co-work
~see@5# and references therein!. The optical geometry of the
vacuum Schwarzschild metric develops a neck precisel
R53M implying that for stars withR,3M there will be a
family of closed null geodesics in the stellar interior. It
natural to associate this behavior with the trapping of cer
modes of gravitational radiation although the relation b
tween the trapping and appearance of the neck in the op
geometry is only approximate. The optical geometry is u
ful not only for pedagogical purposes but can also be use
motivate an estimate of the eigenfrequencies of the re
nances@5#. In previous studies it has often been assumed
the appearance of a neck~and the consequent trapping
gravity waves! is only possible if the star is ultracompac
that is thecompactness, bªM /R, must lie in the range1

3

,b, 4
9 where the upper bound49 is Buchdahl’s limit @6#

representing the maximum compactness for any static
for which the energy density is decreasing outwards. T
compactness is usually given in terms of the inverse co
pactnessaªR/M which we will refer to as thetenuity. The
trapped modes found in@1# occur for tenuities in the rang
2.25,a&3. Realistic neutron stars are believed to have
nuities in the range 3&a&11 so they are at most marginal
ultracompact in this sense@7#. However, as will be shown in
this paper, trapped modes may occur in stars witha.3. This
opens up the possibility for real neutron stars to exhibit gr
ity wave trapping. In view of this result it seems like a go
idea to reserve the notion of ultracompactness for stars w
have a neck in their optical geometry and consequent
family of closed null geodesics in their interior. Ultracom
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pact stars would then be expected to exhibit gravity wa
resonances as well. As will become more clear later ul
compactness in this sense really applies to the stellar
rather than the entire star. Although the definition of ultr
compactness given here is unambiguous it is more difficul
calculate in practice. In the concluding remarks we w
touch upon possible rule of thumb criteria which could
used as a rough estimate of compactness.

It is not difficult to understand why stars withR.3M
could have an ultracompact core. The key is the behavio
the equation of state at low pressure. Consider a unifo
density model with radius less than 3M . Now replace a thin
shell ~its mass should be finite but be only a small fraction
the total mass! at the surface with some material with a so
equation state~for example a polytrope! such that the total
mass of the star remains the same. In physical terms we
think of this process as giving the star an atmosphere
transforming some of the matter near its surface. Clearly
gravitational field in the core is the same as it was befo
However, the radius will depend sensitively on the equat
of state of the atmosphere. In fact it can be made arbitra
large for example by letting the atmosphere be a polytrope
index 52e wheree!1. Another alternative would be to us
an envelope which, like the core matter, is of uniform de
sity but satisfyingrenvelope,rcore. Such double layer uniform
density models were recently considered by Lindblom@8# to
discuss phase transitions in compact stellar models.1 The ra-
dius could then be made arbitrarily large by letting the qu
tient renvelope/rcore be sufficiently small.

Although the argument given above should be suffici
to establish the existence of trapped gravity wave modes
stellar models withR.3M , there remains some critical is
sues concerning the realization of such models in nat
One such issue is the question of causality. Of course,
ready the unform density models are unrealistic in this se
having an infinite speed of sound. A second issue is tha
stability. The absence of a local mass maximum in the u

1Core envelope approaches have also been employed in a s
what different context to establish bounds on the maximum mas
neutron stars~see, for example@9#, and references therein!.
©1999 The American Physical Society22-1
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form density models shows that they are in fact stable. In
paper we will use thegeneralized Buchdahl n55 polytrope
~GB5! family of exact models@10,11# to illustrate the new
possibilities which occur when one considers softer eq
tions of state. This family generalizes the original Buchd
solution which behaves as a polytrope of index 5 at l
pressure. The generalized models, however, have an e
tion of state which is liquid-like at low pressure in the sen
of having rs.0 ~‘‘s’’ denoting the value at the stellar sur
face!.

II. STELLAR MODELS

The metric ofstatic spherically symmetric~SSS! models
is usually given in the Schwarzschild form

g52e2ndt21e2ldr21r 2~du21sin2 udf2!. ~1!

For our purposes we also need to write the metric of a S
system in a general radial gauge as

g52Y2dt21N2dx21S2~du21sin2 udf2!, ~2!

whereY, N, andS are functions of the radial variablex. The
Schwarzschild radial variable is then given by the relat
r 5S(x). Before proceeding we need to deal with a possi
source of confusion relating to the metrics~1! and ~2!. The
time coordinate isa priori only defined up to a scaling and
translation. The scaling gauge can be fixed by the requ
ment that the time coordinate should correspond to
proper time of a static observer at infinity. We shall refer
this gauge as the proper time gauge. This gauge is usu
but not always imposed when writing down the metric
exact solutions. It is assumed here that the metrics~1! and~2!
refer to the proper time gauge. Correspondingly the formu
given below are also given in this gauge. However, sin
exact solutions are not automatically given in the proper ti
gauge it is useful to write down the relevant transformat
formula for a metric written in a general time gauge. To
that we first note that for the Schwarzshild exterior metric~as
usual expressed in the proper time gauge! kªA122M /R
5ens5Ys. Therefore, we must haveens5k for the stellar
model. Now let t̃ be an arbitrary time coordinate andñ ~or
Ỹ! the corresponding metric function. Then the required
lations are

en5keñ2 ñs, Y5kỸs
21Ỹ, d t̃5kỸs

21dt. ~3!

The gravity wave modes discussed in@1# are equivalent to
non-radial axial~i.e., odd parity! perturbation modes of SS
fields. Such axial perturbations do not couple to fluid m
tions in the star; a fact which accounts for their alternat
interpretation as gravitational wave modes. The axial mo
with frequencyv and mode numberl>2 are governed by
the equation@12#

2
d2Z

dr
*
2 1VZ5v2Z, ~4!
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where the potentialV5Vl1Vd is here written formally as a
sum of a centrifugal and a dynamical part~cf. @13#! in the
form

Vl5 l ~ l 11!e2nr 22,
~5!

Vd5e2n@r 21~l ,r2n ,r12r 21!e22l22r 22#,

and r * is the tortoise radial variable defined by

dr* 5el2ndr5Y21Ndx. ~6!

To express the potential in a general radial gauge we use
relationsen5Y, el5NS821, and

l ,r5N21N8S8212S822S9,
~7!

n ,r5Y21Y8S821,

where the primes denote differentiation with respect tox.
The potentials then become

Vl5 l ~ l 11!Y2S22,

Vd5Y2N22S22

3@~N21N82Y21Y8!SS82SS912S8222N2#. ~8!

Using the Einstein equations the dynamical part of the
tential can be written in the form

Vd5Ge2nF4p~r2p!2
6m~r !

r 3 G , ~9!

where

m~r !54pE
0

r

rr 2dr54pE
xc

x

rS2S8dx, ~10!

is the mass within radiusr . We are using units in whichc
51 but keep the gravitational constant,G, for convenience
in some formulas. Geometric units can be obtained by set
G51.

The exterior Schwarzschild solution

In this case

e2n512
2GM

r
, ~11!

andm(r )5M leading to

Vl5
l ~ l 11!~122GM/r !

r 2 , Vd52
6GM~122GM/r !

r 3 ,

~12!

V5
~122GMr !@ l ~ l 11!26GM/r #

r 2 .

The interior Schwarzschild solution

Schwarzschild’s uniform density model is characteriz
by
2-2
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en5 1
2 ~3k2y!, el5y21,

~13!

yªA12
2Gb3r 2

M2 , r5
3b3

4pM2 , k5A122Gb,

wherebªM /R. The potentials then become

Vl5
l ~ l 11!~3k2y!2

4r 2 ,

Vd524pGkren52
3Gb3k~3k2y!

2M2 . ~14!

The GB5 interior solutions

The family of exact interior solutions which we focus o
in this paper is the GB5 family@10,11# given by ~using a
non-proper time gauge!

Ỹ5
T2X

T1X
, N5S5~T1X!2, ~15!

where

T~x!5A l23b

cosh~x2D!
, X~x!5A b

coshx
. ~16!

The constantsb and l characterize the equation of sta
while D is the single nontrivial integration constant appe
ing in all SSS models. The equation of state can be writte
the form

p5
a~u62l6!

~11u!5~12u!
, r5

3a~u51l6!

~11u!5 , ~17!

where aª1/(8pGb2), uªX/T and lªus. Defining
xªuc5l3/2eD/2 ~‘‘c’’ denoting value at the center! we have

0,l5us,u,uc5x,1. ~18!

The two parametersa andl which characterize the equatio
of state in Eq.~17! can be interpreted as a scaling and
stiffness parameter, respectively. The scaling parametea
just represents a change of overall scale. All other phys
characteristics in the model are unaffected by changesa
which can be any positive number. It is convenient to repl
x by another parameterm defined by the relationx5l1m
2lm. In that way thelm section of the parameter space
exactly the unit square, 0,l,1, 0,m,1 ~see Fig. 1!.
However, in order not to complicate the formulas unnec
sarily we keep usingx but think of it as a function ofl and
m. For our purposes it is also useful to replacea by the mass
of the star. Expressinga ~or b! andD in terms ofM , l, and
x we have

T~x!5A 2x2b

l6ex1x4e2x, ~19!

where

b5
~x21l3!~x22l3!3M

4x~x22l2!3/2~x22l4!3/2. ~20!
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In calculations we wish to use the set (l,a,M ) as input
parameters to specify the stellar model. The tenuity is giv
by the expression

a5
~11l!2~x22l3!2

2l~x22l2!~x22l4!
. ~21!

In order to usea as an input parameter we solve this equ
tion for x which yields

x5l3/2S 11z

12z D 1/4

, zª
~12l2!Aa~a22!

~11l2!a2~11l!2 . ~22!

In the radial gaugeN5S the expression forVd reduces to

Vd5Y22S24~3S822Y21Y8SS82SS922S2!. ~23!

Inserting the GB5 functionsY andS in this expression gives
the potential in an explicit but complicated form and we
not write it down here.

FIG. 1. Thelm parameter space of the GB5 family. The pre
sure and energy density satisfy the physical requirementsp>0, r
>0 and dp/dr>0. Contours are shown for some values of t
tenuity a5R/M . Specifying the value ofl fixes the equation of
state up to a scaling. The corresponding sequence of stellar mo
can then be followed along thel5const line starting from the
Newtonian limit atm50. The mass increases along such a seque
up to the dashed curve after which it decreases. The dashed c
therefore represents the transition to unstable models. The s
region is consequently located to the lower right of the stabi
limit. The dotted curve is the causal limit. A model is classified
causal if the equation of state satisfiesdp/dr<1 throughout the
interior of the star. For acausal models the speed of sound as
fined byvsoundªAdp/dr is therefore larger than the speed of lig
in some part of the stellar interior. The causal GB5 systems
located at the lower left side of the dotted curve in parameter sp
The two marks in the figure are the points which correspond to
models for which potential plots are given in this paper.
2-3
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III. DISCUSSION

We now consider the new possibilities which occur wh
using an equation of state with non-uniform density using
GB5 family as a theoretical laboratory. The parameter sp
of the GB5 models is shown in Fig. 1. One of the two mod
marked in Fig. 1 hasa55. The scattering potential for tha
model is shown in Fig. 2. This clearly illustrates the fact th
the potential may have a minimum in the stellar interior ev
though the outer parts of the star extend to regions well
yond a53. We also mention without proof that this mod
admits a family of closed null geodesics in its interior. It m
be objected that the model is unstable~as indicated in Fig. 1!
and that this result therefore has little physical relevan
However, the instability is closely connected with the so
ness of the equation of state. Taking instead the double l
uniform density models mentioned in the Introduction
should be possible to provide examples of stable models
ing a potential with a minimum in the interior. A secon
comment we wish to make on this issue is that resonance
unstable models may, in principle, be important in gravi
tional collapse situations where short-lived unstable equi
rium states could perhaps form en route to the final collap

The second model indicated in Fig. 1 hasa52.4 and lies
in the stable region of the parameter space. The corresp
ing potential is plotted in Fig. 3. The phenomenon we w
to illustrate here is that the GB5 potential has a significan
deeper potential well than a uniform density model with t
same mass andR/M ratio. The quasi-normal modes of th
uniform density model witha52.4 were calculated in@1#. It
would be interesting to calculate the modes for the G
model. The deeper minimum is an indication of long

FIG. 2. The GB5 potential for the model marked on thea55
contour in Fig. 1 is plotted forl 52 along with the exterior poten
tial. For comparison the potential of the uniform density model w
the same mass and radius is shown as the dashed curve.
J.
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damping times compared to the uniform density case.
The question of whether realistic stellar models can

ultracompact~in the sense defined in this paper! remains
open. In@7#, Iyer, Vishveshwara, and Dhurandar searched
stable and causal models satisfyingR,3M . In view of the
results given in the present work it would be more relevan
look for stable and causal models which are ultracompac
the sense of having a family of closed null geodesics in
stellar interior. It would be very useful to have a simp
rough criterion of ultracompactness expressed in terms
dimensionless combination of easily computable quantit
Examples of criteria of compactness include the central r
shift ~defined as the redshift of a hypothetical speed of lig
signal sent from the center of the star and received by a s
observer at infinity! and the central four-dimensional curva
ture, for example (RabgdRabgd)c or (RabRab)c . The red-
shift is already dimensionless while the curvature measu
need to be properly normalized for example by multiplyi
by a power of the total mass. However, it is not clear whet
any of these measures, either by themselves or by ta
combinations, could serve as criteria for ultracompactnes
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FIG. 3. The potential for the second GB5 model marked in F
1 is plotted forl 52. As in Fig. 2 the dashed curve is the potent
of the corresponding uniform density model.
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