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Trapped gravitational wave modes in stars withR>3M
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The possibility of trapped modes of gravitational waves appearing in starsRwtBM is considered. It is
shown that the restriction 8<3M in previous studies of trapped modes, using uniform density models, is not
essential. Scattering potentials are computed for another family of analytic stellar models showing the appear-
ance of a deep potential well for one model wRb-3M. However, the provided example, although having a
more realistic equation of state in the sense thgf,q<«, is unstable. On the other hand, it is also shown that
for some stable models belonging to the same family but haRia@M, the well is significantly deeper than
that of the uniform density stars. Whether there are physically realistic equations of state which allow stable
configurations with trapped modes therefore remains an open prof#&556-282(199)00204-7

PACS numbe(s): 04.30.Db, 04.20.Jb, 04.40.Dg

[. INTRODUCTION pact stars would then be expected to exhibit gravity wave
resonances as well. As will become more clear later ultra-
Examples of trapped modes of gravitational waves incompactness in this sense really applies to the stellar core
compact stars were given by Chandrasekhar and Féfrhri rather than the entire star. Although the definition of ultra-
and calculations were subsequently also carried out by oth@ompactness given here is unambiguous it is more difficult to
authors[2,3,4. The fundamental reason behind the occur-calculate in practice. In the concluding remarks we will
rence of the trapped gravity wave modes is the stretching alouch upon possible rule of thumb criteria which could be
the geometry by the strong gravitational field leading to aysed as a rough estimate of compactness.
bell-like geometrical structure inside the star. This phenom- |+ is not difficult to understand why stars witR>3M
enon is most clearly illustrated using the concept of the 0pgqy|d have an ultracompact core. The key is the behavior of
tical geometry as developed by Abramowicz and co-workergpe equation of state at low pressure. Consider a uniform
(see[5] and references therginThe optical geometry of the density model with radius less tha3 Now replace a thin

\Flza—cglli/lmiicrvi\:]arzt?](:t":‘grrzte;gvsifr\gfg:/l athrzgkwri)|r|et(;észly Ehell (its mass should be finite but be only a small fraction of
N plying the total massat the surface with some material with a soft

family of closed null geodesics in the stellar interior. It is uation statéfor example a polytropesuch that the total
natural to associate this behavior with the trapping of certait J np poly .
mass of the star remains the same. In physical terms we can

modes of gravitational radiation although the relation be- ) L
tween the trapping and appearance of the neck in the opticHlink Of this process as giving the star an atmosphere by
geometry is only approximate. The optical geometry is useLrans_for.mmg some of the matter near its surfaee. Clearly the
ful not only for pedagogical purposes but can also be used tgravitational f|eId_|n the core is the same as it was befqre.
motivate an estimate of the eigenfrequencies of the resdiowever, the radius will depend sensitively on the equation
nanceg5]. In previous studies it has often been assumed thz@f state of the atmosphere. In fact it can be made arbitrarily
the appearance of a necand the consequent trapping of large for example by letting the atmosphere be a polytrope of
gravity waves is only possible if the star is ultracompact, index 5—¢€ wheree<1_. Another alternat|ve. would pe to use
that is thecompactnessg:=M/R, must lie in the rangé an envelope V\_/hlch, like the core matter, is of unlfor_m den-
<B<#% where the upper bound is Buchdahl's limit[6] Sity but satisfyinGoenyeiops=pcore- SUCh double layer uniform
representing the maximum compactness for any static stlensity models were recently considered by Lindb(@fto
for which the energy density is decreasing outwards. Théliscuss phase transitions in compact stellar mod@tse ra-
compactness is usually given in terms of the inverse comdius could then be made arbitrarily large by letting the quo-
pactnessy:=R/M which we will refer to as th¢enuity The €Nt Penvelopd Peore € Sufficiently small. N
trapped modes found ifl] occur for tenuities in the range  Although the argument given above should be sufficient
2.25< a<3. Realistic neutron stars are believed to have tel0 establish the existence of trapped gravity wave modes for
nuities in the range 3 =11 so they are at most marginally Stellar models wittrR>3M, there remains some critical is-
ultracompact in this seng@]. However, as will be shown in Sues concerning the realization of such models in nature.
this paper, trapped modes may occur in stars with3. This ~ One such issue is the question of causality. Of course, al-
opens up the possibility for real neutron stars to exhibit gravi€ady the unform density models are unrealistic in this sense
ity wave trapping. In view of this result it seems like a good "aving an infinite speed of sound. A second issue is that of
idea to reserve the notion of ultracompactness for stars whiciability. The absence of a local mass maximum in the uni-
have a neck in their optical geometry and consequently a
family of closed null geodesics in their interior. Ultracom-
1Core envelope approaches have also been employed in a some-
what different context to establish bounds on the maximum mass of
*Email address: kr@physto.se neutron stargsee, for exampl€9], and references thergin
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form density models shows that they are in fact stable. In thisvhere the potentiadV/ =V,+V is here written formally as a
paper we will use thgeneralized Buchdahls15 polytrope  sum of a centrifugal and a dynamical p#ef. [13]) in the
(GB5) family of exact model§10,11]] to illustrate the new form
possibilities which occur when one considers softer equa- o —2
tions of state. This family generalizes the original Buchdahl Vi=l(+21)er s,

solution which behaves as a polytrope of index 5 at low Vy=e?[r Y\ ,— v, +2r YHe 2 —2r 2], ©)
pressure. The generalized models, however, have an equa- ’ '

tion of state which is liquid-like at low pressure in the senseéangr, is the tortoise radial variable defined by

of having ps>0 (“s” denoting the value at the stellar sur-
face. dr,=e " "dr=Y"INdx (6)

To express the potential in a general radial gauge we use the
relationse”’=Y, e*=NS !, and

The metric ofstatic spherically symmetricSSS models N =N"IN'S l-g 25
is usually given in the Schwarzschild form ! '

II. STELLAR MODELS

—v—-1lyrcor—-1 (7)

g=—e2’dt®+e? dr?+r?(d#*+sir? 6dg?). (1) vamY YIS

where the primes denote differentiation with respecixto
For our purposes we also need to write the metric of a SS$he potentials then become
system in a general radial gauge as _ 22
V,=1(1+1)Y*S ~,
V2412 4 N2d w2 1 Q20 A 92 - i 2

g=—Y2dt?+ N2dx?+ S?(d 6%+ sir? 6d ¢?), 2) Vi Y2N-252
whereY, N, andS are functions of the radial variable The X[(N"IN'—Y 1Y')SS—-SI+252-2N?]. (8
Schwarzschild radial variable is then given by the relation
r=3S(x). Before proceeding we need to deal with a possibléUsing the Einstein equations the dynamical part of the po-
source of confusion relating to the metrich and(2). The tential can be written in the form
time coordinate is priori only defined up to a scaling and a
translation. The scaling gauge can be fixed by the require- Vy=Ge?
ment that the time coordinate should correspond to the
proper time of a static observer at infinity. We shall refer to
this gauge as the proper time gauge. This gauge is usuallyhere
but not always imposed when writing down the metric of ; «
exact solutions. It is assumed here that the me(ficand(2) m(r):47TJ perr:4T,j pS?S'dx, (10)
refer to the proper time gauge. Correspondingly the formulas 0 Xc
given below are also given in this gauge. However, since
exact solutions are not automatically given in the proper timds the mass within radius. We are using units in whick
gauge it is useful to write down the relevant transformation=1 but keep the gravitational consta@, for convenience
formula for a metric written in a general time gauge. To doin some formulas. Geometric units can be obtained by setting
that we first note that for the Schwarzshild exterior mefais  G=1.
usual expressed in the proper time gauge-y1—-2M/R

€)

em(r
4m(p—p)— rg )},

=e"s=Y,. Therefore, we must have’s=k for the stellar The exterior Schwarzschild solution

model. Now left be an arbitrary time coordinate afid(or In this case

?).the corresponding metric function. Then the required re- 2GM

lations are ev=1— , (12)

r

e'=ke" %, Y=kY; 1Y, di=kY;ldt. 3) _
andm(r)=M leading to

The gravity wave modes discussed 1 are equivalent to [(1+1)(1-2GM/r) 6GM(1-2GM/r)
non-radial axiaki.e., odd parity perturbation modes of SSS  V|= r2 ' d= 3 '
fields. Such axial perturbations do not couple to fluid mo- (12)
tions in the star; a fact which accounts for their alternative v (1-2GMN)[I(1+1)—6GM/r]

interpretation as gravitational wave modes. The axial modes = r2 :

with frequencyw and mode numbekr=2 are governed by
the equatiorf12]
5 The interior Schwarzschild solution
- g_rZZ_+VZ: 0?Z, (4) ] Schwarzschild’s uniform density model is characterized
* y
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e’=3(3k-y), e'=y L The GB5 parameter space with R/M contours
(13) 1.0 1
[ 2Gp%r?2 38° !N
= —_— = =\1— / ~—23-
y 1 Mz y pP 47TM2, k 1 ZGB, Ix 23
0.8 TN
where 8:=M/R. The potentials then become \ 24 —
Vv I(1+1)(3k—y)? 0.6 e / \—-2.5:
1= 2 ) "t X K
ar u \
3GB3k(3k—y) 0.4 N
Vyg=—4nwGkpe"'=— —————. (14 S s —"
2M .
0.2 X 4
The GBS5 interior solutions 7~ s ——
The family of exact interior solutions which we focus on 00 al '
in this paper is the GB5 family10,11 given by (using a 00 02 04 06 08 10
non-proper time gauge I3
~ —-X T Causal limit
- —S= - - - Stability limit
Y T+X' N=S=(T+X)%, (15 ® Models with potential plots
where FIG. 1. Thexu parameter space of the GB5 family. The pres-

=3 b sure and energy density satisfy the physical requiremerts, p

_ A _ =0 anddp/dp=0. Contours are shown for some values of the

T(x) v X(X) — (16 . o . _
coshix—A) coshx tenuity «=R/M. Specifying the value of fixes the equation of

state up to a scaling. The corresponding sequence of stellar models
The constantd and A characterize the equation of state can then be followed along the=const line starting from the
while A is the single nontrivial integration constant appear-Newtonian limit atw=0. The mass increases along such a sequence
ing in all SSS models. The equation of state can be written imup to the dashed curve after which it decreases. The dashed curve

the form therefore represents the transition to unstable models. The stable
616 5.6 region is consequently located to the lower right of the stability
p= a(u . \°) p= 3a(u +); ) (17) limit. The dotted curve is the causal limit. A model is classified as
(1+u)*(1—u)’ (1+u)® causal if the equation of state satisfigp/dp=<1 throughout the

interior of the star. For acausal models the speed of sound as de-
where a:=1/(8wGb?), u:=X/T and \:=us. Defining fined byuv.,,.4=dp/dp is therefore larger than the speed of light
x=U.=\>%*"2 (“c” denoting value at the cent¢mwe have in some part of the stellar interior. The causal GB5 systems are
(18) located at the lower left side of the dotted curve in parameter space.
The two marks in the figure are the points which correspond to the
models for which potential plots are given in this paper.

O<A=ug<u<u.=y<1l.

The two parametera and\ which characterize the equation

of state in Eq.(17) can be interpreted as a scaling and a
stiffness parameter, respectively. The scaling parameter

just represents a change of overall scale. All other physic

characteristics in the model are unaffected by changes in

which can be any positive number. It is convenient to replace (1+N)2(x2—\3)2

x by another parametegr defined by the relatiory=\+ u a= NN D) =N
—Au. In that way thexu section of the parameter space is X X
exactly the unit square, OA<1, O<p<1 (see Fig. 1 In order to usex as an input parameter we solve this equa-
However, in order not to complicate the formulas unnecesg e which vields put p q
sarily we keep using but think of it as a function ok and X y

In calculations we wish to use the set,@,M) as input
arameters to specify the stellar model. The tenuity is given
y the expression

(21)

. For our purposes it is also useful to replacby the mass 147\ V4 1= 22\ a(a—=2)
of the star. Expressing (or b) andA in terms ofM, \, and x=\%? r§ . = (1+)\2 ) — (1“\ )2. (22
x we have 4 ( Ja—( )
2x%b In the radial gaug®&\ =S the expression fo¥4 reduces to
TOO= oy e 19
X Vy=Y25435'2-Y 1Y’'SS-S9-25%). (23
where

s i3 2 L33 Inserting the GB5 function¥ andS in this expression gives
b= (XA (X" —A%)°M (20 the potential in an explicit but complicated form and we do
Ax(x>— N2 P —\H3> not write it down here.

044022-3



KJELL ROSQUIST PHYSICAL REVIEW D 59 044022

R/M =5, A = 0.1294 R/M = 2.4, A = 0.61

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 1 8 9 10
r/M r/M
FIG. 2. The GB5 potential for the model marked on the 5 FIG. 3. The potential for the second GB5 model marked in Fig.

contour in Fig. 1 is plotted for=2 along with the exterior poten- 1 is plotted forl =2. As in Fig. 2 the dashed curve is the potential
tial. For comparison the potential of the uniform density model withof the corresponding uniform density model.

the same mass and radius is shown as the dashed curve. . . . .
damping times compared to the uniform density case.

The question of whether realistic stellar models can be
IIl. DISCUSSION ultracompact(in the sense defined in this papeemains
We now consider the new possibilities which occur when@P€n- InL7], Iyer, Vishveshwara, and Dhurandar searched for

using an equation of state with non-uniform density using theStablle ar_ld ca_usal models satisll‘yiﬁg:3ll\(/jl .bln view O‘; the
GBS family as a theoretical laboratory. The parameter spacieSults given in the present work it would be more relevant to

of the GB5 models is shown in Fig. 1. One of the two models|°°k for stable and causal models which are ultracompact in

marked in Fig. 1 hagr=5. The scattering potential for that the sense O.f having a family of closed null geOdeSiCS. in the
model is shown in Fig. 2. This clearly illustrates the fact thatStéllar interior. It would be very useful to have a simple

the potential may have a minimum in the stellar interior everf ©U9N criterion of ultracompactness expressed in terms of a
dimensionless combination of easily computable quantities.

though the outer parts of the star extend to regions well beExamples of criteria of compactness include the central red
yond «=3. We also mention without proof that this model shift (defined as the redshift of a hypothetical speed of light

admits a family of closed null geodesics in its interior. It may °. I i f th ter of the st d ved b o
be objected that the model is unstalds indicated in Fig. )L signal sent from the center ot the star and received by a stalic
observer at infinity and the central four-dimensional curva-

and that this result therefore has little physical relevance; ¢ lo RYBYOR RAER The red
However, the instability is closely connected with the soft-ture, for example R . wpys)c or ( ap)c- The red-
ness of the equation of state. Taking instead the double lay&Ift IS already dimensionless while the curvature measures
uniform density models mentioned in the Introduction it "€€d o be properly normalized for example by multiplying

should be possible to provide examples of stable models ha\P—y a p?vvher of the total mas;.hHovgever:, itis TOt cleart\)/vhetlr(lgr
ing a potential with a minimum in the interior. A second any of these measures, either by themselves or by taking
comment we wish to make on this issue is that resonances ﬁ,pmblnatlons, could serve as criteria for ultracompactness.

unstable models may, in principle, be important in gravita-
tional collapse situations where short-lived unstable equilib-
rium states could perhaps form en route to the final collapse. This work could not have been carried out without the
The second model indicated in Fig. 1 has 2.4 and lies influence of a number of colleagues. | would like to thank in
in the stable region of the parameter space. The correspongdarticular Marek Abramowicz, Joachim Almergren, Ingemar
ing potential is plotted in Fig. 3. The phenomenon we wishBengtsson, Emanuele Berti, Valeria Ferrarir&oHolst, and
to illustrate here is that the GB5 potential has a significantlyRemo Ruffini for their interest and valuable comments.
deeper potential well than a uniform density model with theMany thanks are also due to Giuseppe Pucacco and the
same mass anB/M ratio. The quasi-normal modes of the ICRA group at the University of Rome for providing the
uniform density model withe= 2.4 were calculated ifil]. It ~ stimulating environment where this work was completed. Fi-
would be interesting to calculate the modes for the GB5nancial support was given by the Swedish Natural Science
model. The deeper minimum is an indication of longerResearch Council.
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