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2D induced gravity from the canonically gauged WZNW system

M. Blagojević,* D. S. Popovic´,† and B. Sazdovic´‡

Institute of Physics, 11001 Belgrade, P.O. Box 57, Yugoslavia
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Starting from the Kac-Moody structure of the WZNW model for SL(2,R) and using the general canonical
formalism, we formulate a gauge theory invariant under local SL(2,R)3SL(2,R) and diffeomorphisms. This
theory represents a gauge extension of the WZNW system, defined by a difference of two simple WZNW
actions. By performing a partial gauge fixing and integrating out some dynamical variables, we prove that the
resulting effective theory coincides with the induced gravity in 2D. The geometric properties of the induced
gravity are obtained out of the gauge properties of the WZNW system with the help of the Dirac brackets
formalism.@S0556-2821~99!06902-7#

PACS number~s!: 04.60.Kz, 11.10.Ef, 11.10.Kk
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I. INTRODUCTION

The subject of two-dimensional~2D! gravity has twofold
interest: first, it describes important dynamical aspects
string theory as an effective theory induced by quant
string fluctuations, and second, it represents a useful the
ical model for the realistic theory of gravity in four dimen
sions. Being closely related to the Weyl anomaly in stri
theory @1#, the induced gravity features a deep analogy w
the usual Wess-Zumino action in gauge theories, and re
sents its gravitational analogue@2#. The effective action for
2D gravity was originally calculated in the conformal gaug
where it has the form of Liouville theory@1,3#. Analyzing
the dynamical structure of this theory in the light-co
gauge, Polyakov found an unexpected connection w
SL(2,R) current algebra@2#. The importance of this resul
has been confirmed by the existence of a canonical form
tion of the theory in terms of gauge-independent variab
the SL(2,R) currents@4,5#.

Inspired by the above results, Polyakov studied the c
nection between the Wess-Zumino-Novikov-Witte
~WZNW! model for SL(2,R) and the induced gravity in the
light-cone gauge, trying to understand how the geometr
structure of spacetime can be obtained out of the ch
SL(2,R) symmetry of the WZNW model@6# ~see also@7#!. A
similar approach based on theconformal gaugeshowed that
the related form of 2D induced gravity, Liouville theor
may be obtained from the SL(2,R) WZNW model by impos-
ing certain conformally invariant constraints. A consiste
approach to this reduction procedure has been formul
using a gauge extension of the WZNW model based on
gauge fields@8#.

In the present paper we shall use the general canon
formalism to construct a gauge theory invariant under lo
SL(2,R)3SL(2,R) transformations and diffeomorphism
which represents a gauge extension of the WZNW syste

I ~g1 ,g2!5I ~g1!2I ~g2!, g1 ,g2PSL~2,R!, ~1.1!
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defined by a difference of two simple WZNW actions for th
SL(2,R) group; then, we shall show, by performing a su
able gauge fixing and integrating out some dynamical v
ables, that the resulting effective theory coincides with
induced gravity in 2D:

I G~f,gmn!5E d2jA2g

3F1

2
gmn]mf]nf1

1

2
afR1M ~e2f/a21!G .

~1.2!

We are able to demonstrate this connection in a covar
way, fully respecting thediffeomorphism invarianceof the
induced gravity, generalizing thereby the results of Polyak
and others@6–8#.

We are going to use the general canonical method of c
structing gauge-invariant actions@9#. It is based on the fac
that the Lagrangian equations of motions are equivalen
the Hamiltonian equations derived from the action

I ~q,p,u!5E dj~p i q̇
i2H02umGm!, ~1.3a!

whereGm are primary constraints andH0 is the canonical
Hamiltonian. If Gm are first class constraints, satisfying th
Poisson brackets algebra

$Gm ,Gn%5Umn
rGr , $Gm ,H0%5Vm

rGr , ~1.3b!

then the canonical actionI (q,p,u) is invariant under the
following gauge transformations:

dF5«m$F,Gm%, F5F~q,p!,

dum5 «̇m1ur«sUsr
m1« rVr

m . ~1.4!

This paper represents not only an extension of the res
obtained in a previous Letter@10#, but also a significant sim-
plification of the basic dynamical structure; it also gives
natural explanation of the gauge origin of the geometry
spacetime. The Hamiltonian approach presented here i
complete agreement with a recent Lagrangian analysis@11#.
©1999 The American Physical Society21-1
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We begin our exposition in Sec. II by recalling some b
sic facts about the WZNW model for SL(2,R). Then, we use
the Hamiltonian formalism to derive the related SL(2,R) cur-
rents, by choosingt5j2 and t5j1 as the time variables
These currents are used to define the energy-momen
componentsT6 as the first class constraints corresponding
diffeomorphisms. In Sec. III we study the problem of gau
ing the internal SL(2,R)3SL(2,R) symmetry of the WZNW
theory by doubling the number of phase space variables.
ter defining a new set of currentsI 6a , we apply the canoni-
cal gauge procedure to the set of first class constraintsGm
5(T6 ,I 6a), and obtain our basic model — canonical
gauged action of the WZNW system~1.1!. In Sec. IV we
define a restriction of the theory based on a subset of
class constraintsGm , choose a set of gauge-fixing condition
that do not affect the diffeomorphism invariance, formula
the quantum action using the Becchi-Rouet-Stora-Tyu
~BRST! formalism, and finally integrate out some variabl
to obtain an effective theory that coincides with the induc
gravity ~1.2!. In Sec. V we use the Dirac brackets to sho
how geometric properties of the induced gravity follow fro
gauge properties of the WZNW system, and Sec. VI is
voted to concluding remarks. Some technical details are
sented in the Appendixes.

II. WZNW MODEL FOR SL „2,R… AND KAC-MOODY
CURRENTS

Dynamical properties of the SL(2,R) WZNW model can
be naturally analyzed in the Hamiltonian formalism based
t5j2 or j1 as the evolution parameters@12#. The related
Kac-Moody ~KM ! structure of the model plays an essent
role in the canonical formalism for constructing gaug
invariant theories.

WZNW action. The two-dimensional WZNW model is
field theory in which the basic fieldg is a mapping fromS to
G, S being a two-dimensional Riemannian spacetime anG
being a semisimple Lie group. The model is defined by
action

I ~g!5I 01nG5
1

2
kE

S
~ * v,v !1

1

3
kE

M
~v,v2!,

v5g21dg, ~2.1!

where the first term is the action of the nonlinears model,
while the second one is the topological Wess-Zumino te
defined over a three-manifoldM whose boundary is the
spacetime:]M5S. Here,k5nk0 (n is an integer andk0 a
normalization constant!, v is the Lie algebra valued one
form,* v is the dual ofv, and (X,Y)5 1

2 Tr (XY).
Now, in the caseG5SL(2,R) one can use the fact tha

any elementg of SL(2,R) in a neighborhood of identity ad
mits the Gauss decomposition, defined in Appendix A
terms of the group coordinatesqa5(x,w,y), and derive the
following form of the WZNW action:

I 5kE
S
d2j~]1w]2w14]1x]2ye2w!. ~2.2!
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Kac-Moody currents. Following the investigations of 2D in-
duced gravity@13,5# and the WZNW model@12#, we shall
use the Hamiltonian approach based onj2 and j1 as the
time variables, to derive a set of currents, satisfying
SL(2,R) KM algebra.

Let us first consider the choicet5j2, s5j1. The defi-
nition of momenta (px ,pw ,py), conjugate to the Lagrang
ian variablesqa5(x,w,y) in Eq. ~2.2!, leads to a set of pri-
mary constraints, which we denote byJ2a

5(J2x ,J2w ,J2y). It is convenient to transform these con
straints into the tangent space basis by writingJ2a

5Ēa
aJ2a , whereĒa

a are the vielbein components on th
SL(2,R) manifold ~Appendix A!:

J2~1 !5px ,

J2~0!5xpx1~pw2kw8!,

J2~2 !52x2px22x~pw2kw8!24kx81pye
w, ~2.3!

where prime denotes the space (s) derivative.
Now, we consider the second choicet5j1, s52j2

~the minus sign is adopted in order to preserve the orie
tion of the manifold!. The primary constraints in the tange
space basisJ1a5Ea

aJ1a have the form

J1~1 !5y2py12y~pw1kw8!24ky82pxe
w,

J1~0!52ypy2~pw1kw8!,

J1~2 !52py . ~2.4!

The Poisson brackets algebra of the primary constraintsJ7a
defines an SL(2,R) KM algebra with central chargec75
72k:

$J7a ,J7b%5 f ab
cJ7cd72kgabd8. ~2.5!

Diffeomorphisms. Now, we return to the usual formulatio
with t5j0, and discuss how the KM structure of th
WZNW model can be used to build the covariant extens
~with respect to diffeomorphisms! of the WZNW model~2.2!
@10# ~see also Ref.@14#!.

Using the above expressions for the KM currents, we c
construct the related SL(2,R) invariant expressions, the com
ponents of the energy-momentum tensor:

T2~q,p!5
1

4k
gabJ2aJ2b

5
1

4k
@pxpye

w1~pw2kw8!2#2x8px ,

T1~q,p!52
1

4k
gabJ1aJ1b

52
1

4k
@pxpye

w1~pw1kw8!2#2y8py .

~2.6!
1-2
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2D INDUCED GRAVITY FROM THE CANONICALLY . . . PHYSICAL REVIEW D59 044021
These components satisfy two independent Virasoro a
bras,

$T7~s1!,T7~s2!%52@T7~s1!1T7~s2!#d8, ~2.7!

equivalent to the algebra ofdiffeomorphisms~see, e.g., Ref.
@5#!.

Using the general canonical formalism, we can constr
a covariant theory, in whichH050, Gm5(T2 ,T1). This is
done by introducing the canonical Lagrangian

L~q,p,h!5paq̇a2h2T22h1T1 . ~2.8!

To see the usual content of this Lagrangian, one can el
nate the momentum variables with the help of the equati
of motion. Then, after introducing new variables (h1,h2)
→g̃mn, one obtains the covariant generalizations of
WZNW theory @10#. In the light-cone basis~Appendix B!,
the covariant Lagrangian has the form

L~q,h!5kA2ĝ@ ]̂1w]̂2w14]̂1x]̂2ye2w#. ~2.9!

Note that the Lagrangian~2.9! is invariant under conforma
rescalings of the metric.

III. GAUGING SL „2,R…3SL„2,R… AND THE WZNW
SYSTEM

Now, we consider the possibility of gauging theinternal
SL(2,R)3SL(2,R) symmetry. One should observe that t
currentsJ6a are not of the first class, since the related K
algebras have central chargesc6562k. We wish to find a
set of generators satisfying two independent SL(2,R) alge-
bras without central charges. To this end we double the n
ber of dynamical variables,q→(q1 ,q2),p→(p1 ,p2), and
introduce two sets of currents,

J6a
~1!5J6a~q1 ,p1!, J6a

~2!5J6a~q2 ,p2!uk→2k , ~3.1!

satisfying two SL(2,R) KM algebras with opposite centra
charges:c6

(1)562k, c6
(2)572k. Then, we introduce new

currents

I 6a5J6a
~1!1J6a

~2! , ~3.2!

which are easily seen to satisfy two independent SL(2R)
algebras withvanishing central charges. The new currents
are of the first class, and can be used to gauge the inte
SL(2,R)3SL(2,R) symmetry.

In order to include the diffeomorphisms into this proc
dure, we introduce the energy-momentum components
two sectors, defined in terms ofJ(1) andJ(2) as in Eq.~2.6!,

T6
~1!5T6~q1 ,p1!, T6

~2!5T6~q2 ,p2!uk→2k . ~3.3!

The complete energy-momentum is defined by

T65T6
~1!1T6

~2! . ~3.4!

The Poisson brackets algebra betweenI 6a and T6 has the
form
04402
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$I 6a~s1!,I 6b~s2!%5 f ab
cI 7c~s2!d,

$T6~s1!,I 6a~s2!%52I 6a~s1!d8,

$T6~s1!,T6~s2!%52@T6~s1!1T6~s2!#d8, ~3.5!

and represents two copies of the semi-direct product of
SL(2,R) and Virasoro algebras. The collection (T6 ,I 6a)
can be taken as a set offirst class constraintsin the general
canonical construction based on Eqs.~1.3!. Together
with diffeomorphisms, we have here an addition
SL(2,R)3SL(2,R) structure.

We display here the complete set of constraints, multip
ers and gauge parameters:

Gm5T2 ,T1 ,I 2a ,I 1a ,

um5h2,h1,a1
a ,a2

a ,

«m5«2,«1,h1
a ,h2

a .

Now, using H050, Gm5(T2 ,T1 ,I 2a ,I 1a), one can
construct the canonical Lagrangian

L~qi ,p i ,h!5p1aq1
a1p2aq2

a2h2T22h1T12a1
a I 2a

2a2
a I 1a , ~3.6!

representing a gauge theory invariant under both lo
SL(2,R)3SL(2,R) transformations and diffeomorphisms.

Using the general rule~1.4!, one finds that the gaug
transformations have the form

dh65~]01h7]1!«62«6]1h6,

da6
c 5~]01h7]1!h6

c 2 f ab
ca6

a h6
b 2«7]1a6

c .

dq1
a52Ēa

ah1
a 2Ea

ah2
a 1~«1J1

a 2«2J2
a !/2k, ~3.7!

while dq2 is obtained by changingk to 2k.
As before, we can eliminate the momentap1a andp2a in

order to clarify the usual Lagrangian content of the theo
The resulting Lagrangian describes the gauge extensio
the WZNW system~1.1!, in complete agreement with th
results of Ref.@11#.

IV. GAUGE EXTENSION OF THE WZNW SYSTEM
AND INDUCED GRAVITY

In this section we shall show that 2D induced gravity c
be obtained from the canonical gauge extension of
WZNW system, by~a! performing a suitable gauge fixin
and~b! integrating out some dynamical variables in the fun
tional integral.

A. Canonical H 13H 2 gauge theory

Let us consider a restriction of the canonical theory~3.6!,
defined by the following subset of first class constraints:
1-3
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Gm8 5~T2 ,T1 ,I n!, I n[@ I 2~1 ! ,I 2~0! ,I 1~2 ! ,I 1~0!#,
~4.1!

representing a subalgebra of Eqs.~3.5!. This restriction can
be obtained from the full canonical theory~3.6! by imposing
the following gauge conditions:

a1
~2 !50, a2

~1 !50. ~4.2!

The restricted algebra describes diffeomorphisms comb
with the internal symmetry

H5H13H2 , ~4.3!

whereH1 andH2 are subgroups of SL(2,R) defined by the
generators (t1 ,t0) and (t0 ,t2), respectively.

The canonical action of the restricted theory takes
form

L~qi ,p i ,h!5p1aq̇1
a1p2aq̇2

a2h2T22h1T12anI n ,
~4.4!

where an[@a1
(1) ,a1

(0) ,a2
(2) ,a2

(0)#. Here, the energy-
momentum components are given by Eq.~3.4!, in conjunc-
tion with Eqs.~3.3! and~2.6!, while the currentsI n are of the
form

I 2~1 !5px1
1px2

,

I 2~0!5@x1px1
1~pw1

2kw18!#1@x2px2
1~pw2

1kw28!#,

I 1~2 !52py1
2py2

,

I 1~0!5@2y1py1
2~pw1

1kw18!#

1@2y2py2
2~pw2

2kw28!#.

It is clear that the canonical action~4.4! represents a
gauge extension of the WZNW system~1.1!. Indeed, by
choosing the gauge fixingan50, and eliminating the mo-
mentap1a andp2a , the action~4.4! reduces to the form

L~q1 ,q2 ,h!5L~q1 ,h!2L~q2 ,h!,

whereL(q,h) is given by Eq.~2.9!, representing the covari
ant extension of Eq.~1.1!.

B. Effective theory in the canonical form

Quantum action. In order to demonstrate that the actio
~4.4! can be effectively reduced to the induced gravity~1.2!,
we begin by choosing the gauge conditions correspondin
the first class constraintsI n :

Vn[@V2~1 ! ,V2~0! ,V1~2 ! ,V1~0!#,

V7~6 !5J7~6 !
~1! 2m750, V7~0!5J7~0!

~2! 2l750.
~4.5!

To impose these conditions on the functional integral, we
the BRST formalism and introduce a set of ghost fie
04402
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(e2,e1,cn), antighostsc̄ n, and new multipliersbn. While
ghost fields correspond to gauge parameters, antighosts
multipliers are associated with the gauge conditions. Si
the diffeomorphisms are not gauge fixed, the related an
hosts and multipliers are not present in the formalism. T
BRST transformationsX of a dynamical variableX, X
5(q1 ,q2 ,h6), is obtained from the gauge transformatio
dX by replacing gauge parameters with ghosts; for the n
fields we havesc̄n5bn, sbn50, while scn is not needed
here (scn follows from the nilpotency condition:s2X50).

Then, we introduce the gauge fermionC5 c̄ nVn , and
define the quantum action as

LQ5L~qi ,p i ,h!1sC5L~qi ,p i ,h!1LGF1LFP .
~4.6!

The gauge-fixing and the Faddeev-Popov parts are given

LGF5bnVn , LFP52 c̄ n@sVn#,

where

sV7~6 !52@e7J7~6 !
~1! #87c7~0!J7~6 !

~1! ,

sV7~0!52@e7J7~0!
~2! #86c7~6 !J7~6 !

~2! 72k@c7~0!#8.

Effective theory. Having derived the quantum action, we a
now going to show that it can be effectively reduced to t
induced gravity, by integrating out all the variables exce
w1 ,w2 , and the related momenta. To simplify the expositi
technically, we shall divide it into several smaller steps.

~a! The integration overb6, a1 and a2 transformsLQ

into the effective Lagrangian

LE~w i ,pw i
,h!5@p1aq̇1

a1p2aq̇2
a2h2T2

2h1T11LFP# I 5V50 .

It is now convenient to rewrite the relationsI n50 andVn
50 in the form

px1
5m252px2

,

2py1
5m15py2

,

x1px1
12K125l252~x2px2

12K21!,

2~y1py1
12K11!5l15y2py2

12K22 ,

whereK65(pw6kw8)/2.
~b! The momentum variablespx1

,py1
and px2

,py2
are

constant, so that the relatedpq̇ terms in the action can be
ignored as total time derivatives.

~c! Also, the contribution of the Faddeev-Popov term
decoupled since the currentsJ(1) and J(2) are constant, so
that the integration over ghosts and antighosts can be
sorbed into the normalization of the functional integral.
1-4
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~d! Finally, the expression forT7 , reduced to the surfac
I 5V50, reads

kT̃75@6~K17!212k~K17!8#1@7~K26!212k~K26!8#

7
1

4
m~ew12ew2!,

wherem5m2m1 , so that the effective theory in the canon
cal form is given by

LE~w i ,pw i
,h!5pw1

ẇ11pw2
ẇ22h2T̃22h1T̃1 .

~4.7!

C. Transition to the induced gravity

In order to find out the usual dynamical content of t
previous result, we shall eliminate the remaining moment
variables from Eq.~4.7! by using their equations of motion

pw1
6kw15A2k~]̂6w11v̂22v̂1!, ~4.8!

while pw2
is obtained by the replacementw1→w2 , k→

2k ( ]̂6 andv̂6 are defined in Appendix B!. The effective
theory is described by the Lagrangian

LE~w1 ,w2 ,h!5L~w1 ,h!2L~w2 ,h!,

L~w,h!5A2ĝ@k]̂1w]̂2w

12k~v̂2]̂1w2v̂1]̂2w!1Mew#, ~4.9!

whereM5m/2k. If we now change the variables accordin
to

f5Ak~w12w2!, 2F5w2 ,

the effective Lagrangian takes the final form

LE~f,F,h!5A2ĝ$]̂1f]̂2f

12Ak@~v̂21 ]̂2F !]̂1f2~v̂12 ]̂1F !]̂2f#

1Me2F~ef/Ak21!%.

The geometric meaning of this Lagrangian becomes m
transparent if we use conformally rescaled metricgmn

5e2Fĝmn ~Appendix B!, whereupon the effective Lagrangia
is easily seen to coincide with the induced gravity act
~1.2!:

LE~f,gmn!5A2g@]1f]2f12Ak~v2]1f2v1]2f!

1M ~ef/Ak21!#

5A2g@]1f]2f1AkfR1M ~ef/Ak21!#.

~4.10!
04402
re

V. GEOMETRIC PROPERTIES FROM GAUGE
TRANSFORMATIONS

In the process of constructing the induced gravity act
from the gauged WZNW system, one expects the origi
gaugetransformations of dynamical variables to go over in
geometrictransformations of the final, gravitational theory.
is straightforward to show that gauge transformations of
nonical multipliersh6 produce correct geometric transfo

mations of the metric densityg̃mn5A2ĝĝmn @10#. Complete
interpretation of the induced gravity demands clarification
the nature of two additional fieldsA2g andf, given by

A2g5
1

2
~h22h1!ew2, f5Ak~w12w2!. ~5.1!

We begin by noting that the transformation rule~3.7! de-
scribes the SL(2,R) gauge transformations, defined by p
rametersh6 @11#, and the«6 transformations, which we
expect to be related to diffeomorphisms. In particular, the«6

transformation ofw1 has the form

d«w152
1

2k
@«1~pw1

1kw18!2«2~pw1
2kw18!#,

~5.2!

while d«w2 is obtained by replacingk→2k.
Now, let us go to the gauge-fixed, effective theory, e

pressed by Eq.~4.7!. While the gauge transformations in th
WZNW theory are defined using the Poisson brackets in E
~1.4!, the related transformation rules in the gauge fix
theory ~induced gravity! should be calculated with the hel
of the Dirac brackets, determined by (I n ,Vn).

In order to check whetherd(A2g) has the correct geo
metric form ~B3!, we replace the above transformation la
for w ~i.e., w1 or w2) with the Dirac brackets expression

d«* w5d«w2]1~«21«1!, ~5.3!

where, after eliminatingpw with the help of Eq.~4.8!, d«w
takes the form

d«w5
1

A2
@2~«1]̂1w2«2]̂2w!1~«22«1!~v̂22v̂1!#.

Comparing the expression~5.3! with Eq. ~B4!, one concludes
that d«* w yields the correct transformation law forA2g.

It is now easy to see that the variablef behaves as a
scalar field,

d«* f52«•]f, ~5.4!

in agreement with its geometric role.
The following relations characterize the geometric stru

ture of the effective theory:
1-5
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$T6
~ i !~s1!,T6

~ i !~s2!%* 52@T6
~ i !~s1!1T6

~ i !~s2!#d2c6
~ i !d-

~ i 51,2!, ~5.5!

$T6~s1!,T6~s2!%* 52@T6~s1!1T6~s2!#d.

In the gauge-fixed theory, the energy-momentum com
nents of the WZNW sectors 1 and 2 are not first class c
straints, as opposed to the complete energy-momentum
sor.

VI. CONCLUDING REMARKS

In the present paper we used the canonical approac
elucidate how the induced gravity action, together with
geometric properties, can be obtained from the dynam
structure of the SL(2,R) WZNW system.

We first analyzed primary constraints of the SL(2,R)
WZNW model~2.2!, using the Hamiltonian formalism base
on the choice of timet5j6, which led us naturally to the
SL(2,R) KM currentsJ6a . These currents are basic objec
in our canonical approach. They are used to construct
energy-momentum components that represent first class
straints corresponding to diffeomorphisms. Then, we defi
the gauge extension of the WZNW system by introduc
two sets of KM currents,J6a

(1) and J6a
(2) , which are used to

define the new first class constraintsI 6a5J6a
(1)1J6a

(2) , satis-
fying an SL(2,R)3SL(2,R) algebra without central charg
and the energy-momentum componentsT6 corresponding to
the whole WZNW system. The resulting theory is clea
gauge equivalent to the WZNW system~1.1!, being its ca-
nonical gauge extension. As the main result of our analy
we showed~a! by choosing a suitable gauge fixing and~b!
integrating out some dynamical variables that this ga
theory reduces effectively to the induced gravity~1.2!. Geo-
metric properties of the gravitational theory are derived fr
gauge properties of the gauge-extended WZNW system,
the help of the Dirac brackets.

The results obtained here supplement those of the re
Lagrangian analysis@11#, and improve our understanding o
geometric properties of 2D spacetime in terms of the rela
gauge structure. They can be used to better understand
gular solutions of the induced gravity in terms of globa
regular solutions of the WZNW system, and clarify the n
ture of black holes@8,15#.
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APPENDIX A: GEOMETRIC PROPERTIES OF SL„2,R…

In this appendix we outline some geometric properties
SL(2,R) @11#.

Choosing the generators of SL(2,R) as t (6)5
1
2 (s1

6 is2),t (0)5
1
2 s3 , wheresk are the Pauli matrices, one ca

find the form of the related Lie algebra@ ta ,tb#5 f ab
ctc , and

evaluate the Cartan metricgab5(ta ,tb)5 1
2 f ac

df bd
c .
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Any elementg of SL(2,R) in a neighborhood of identity
can be parametrized by using the Gauss decomposition:

g5ext~1 !ewt~0!eyt~2 !5e2w/2S ew1xy x

y 1D ,

where qa5(x,w,y) are group coordinates. Now, the Lie
algebra-valued one-formv5g21dg5taEa5taEa

adqa de-
fines the quantityEa

a , the vielbein on the group manifold
Similarly, the calculation ofv̄5gdg215taĒa5taĒa

adqa

leads toĒa
a .

APPENDIX B: RIEMANNIAN STRUCTURE ON S

Here, we present some basic geometric features of t
dimensional spacetimeS.

Light-cone basis. Starting from the interval onS,ds2

5gmndjmdjn, we can solve the equationds250 for h
[dj1/dj0, h65(2g016A2g)/g11, and obtain

ds252dj1dj2,

dj6[A2g11/2 ~7h6dj06dj1!5e6
mdjm.

If we introduce2g115e2F, three independent componen
of the metric gmn can be expressed in terms of the ne
light-cone variables (h2,h1,F). In particular,

A2g5e2FA2ĝ, A2ĝ[
1

2
~h22h1!.

At each point ofS the quantities

ei
m5eF êi

m , êi
m[

1

A2
S 2h1 1

h2 21D ~B1!

( i 51,2) define an orthonormal, light-cone basis of on
forms,u i5dj i5ei

mdjm. We also introduce the related bas
of tangent vectors,ei[] i5ei

m]m ,

ei
m5e2F êi

m , êi
m[

A2

h22h1S 1 h2

1 h1D . ~B2!

The metrich i j in the tangent space has the light-cone fo
h215h1251, while ĝmn and its inverse are defined in th
usual way:ĝmn5êi

mêj
nh i j , ĝmn5êi

mêj
nh i j .

Diffeomorphisms. The standard transformation rule of th
vielbein ei

m under the diffeomorphisms,jm→jm1«m(j),
implies

dh65]0«61h6]1«62«6]1h6,

where «65«12«0h6. The usual transformation law fo
A2g,

dA2g52]r~«rA2g!, ~B3!

in conjunction withA2g5e2FA2ĝ, is equivalent to
1-6
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d~2F !52]1~«11«2!1~«22«1!
]1~h21h1!

h22h1

2
1

A2
~«1]̂12«2]̂2!2F. ~B4!

Connection and curvature. The Riemannian connection i
defined by the first structural equation:du i1v i

j`u j50,
wherev i

j5« i
jv. For the connection one-formv5v iu

i we
find
ic

ys

04402
v65e2F~v̂67 ]̂6F !, v̂657
A2

h22h1~h7!8. ~B5!

The curvature is defined by the second structural equat
dv i

j5
1
2 Ri

jkl uk`u l , where we usedv i
k`vk

j50. Since
dv5(¹2v12¹1v2)u2`u1, one finds

R52R1252~¹2v12¹1v2!. ~B6!
-
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