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2D induced gravity from the canonically gauged WZNW system
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Starting from the Kac-Moody structure of the WZNW model for SIKRand using the general canonical
formalism, we formulate a gauge theory invariant under local Y2 SL(2R) and diffeomorphisms. This
theory represents a gauge extension of the WZNW system, defined by a difference of two simple WZNW
actions. By performing a partial gauge fixing and integrating out some dynamical variables, we prove that the
resulting effective theory coincides with the induced gravity in 2D. The geometric properties of the induced
gravity are obtained out of the gauge properties of the WZNW system with the help of the Dirac brackets
formalism.[S0556-282(199)06902-1

PACS numbgs): 04.60.Kz, 11.10.Ef, 11.10.Kk

I. INTRODUCTION defined by a difference of two simple WZNW actions for the
SL(2R) group; then, we shall show, by performing a suit-
The subject of two-dimension&2D) gravity has twofold able gauge fixing and integrating out some dynamical vari-
interest: first, it describes important dynamical aspects ofbles, that the resulting effective theory coincides with the
string theory as an effective theory induced by quantuminduced gravity in 2D:
string fluctuations, and second, it represents a useful theoret-
ical model for the realistic theory of gravity in four dimen- _ 24 [C
sions. Being closely related to the Weyl anomaly in stringlG(d)’g’”) j d*6V-g
theory[1], the induced gravity features a deep analogy with
the usual Wess-Zumino action in gauge theories, and repre- %
sents its gravitational analog(ig]. The effective action for
2D gravity was originally calculated in the conformal gauge, (1.2
where it has the form of Liouville theor1,3]. Analyzing
the dynamical structure of this theory in the light-coneWe are able to demonstrate this connection in a covariant
gauge, Polyakov found an unexpected connection wittway, fully respecting thaliffeomorphism invariancef the
SL(2,R) current algebrd2]. The importance of this result induced gravity, generalizing thereby the results of Polyakov
has been confirmed by the existence of a canonical formuleand otherg6—8].
tion of the theory in terms of gauge-independent variables, We are going to use the general canonical method of con-
the SL(2,R) currents[4,5]. structing gauge-invariant actiofi9]. It is based on the fact
Inspired by the above results, Polyakov studied the conthat the Lagrangian equations of motions are equivalent to
nection between the Wess-Zumino-Novikov-Witten the Hamiltonian equations derived from the action
(WZNW) model for SL(2R) and the induced gravity in the
light-cone gaugetrying to understand how the geometric _ g m
structure of spacetime can be obtained out of the chiral I(q,rr,u)—f dé(mid —Ho=u"Gm), (1.33
SL(2R) symmetry of the WZNW modd6] (see alsg7]). A _ i i )
similar approach based on tkenformal gaugeshowed that WhereGp, are primary constraints arid, is the canonical
the related form of 2D induced gravity, Liouville theory, Ham|lton|an. If G,, are first class constraints, satisfying the
may be obtained from the SL{) WZNW model by impos-  Poisson brackets algebra
ing certain conformally invariant constraints. A consistent -~ r o r
approach to this reduction procedure has been formulated {Gm . Gn}=UmnGr,  {Gm,Ho}=Vm'Gr, (130

using a gauge extension of the WZNW model based on Wene the canonical actioh(q,=,u) is invariant under the

gauge fieldg8]. _ following gauge transformations:
In the present paper we shall use the general canonical

1 v 1 2¢la
50479,$0,6+5 aR+M(24—1) |

formalism to construct a gauge theory invariant under local SF=e™F,G,}, F=F(q,7),
SL(2R) X SL(2R) transformations and diffeomorphisms,
which represents a gauge extension of the WZNW system, SUM=eM+uTeSU M eV, M. (1.4)

1(91,92)=1(91)—1(92), 01,9.€SL(2,R), (1.1)  This paper represents not only an extension of the results
obtained in a previous Lett¢L0], but also a significant sim-
plification of the basic dynamical structure; it also gives a

*Email address: mb@phy.bg.ac.yu natural explanation of the gauge origin of the geometry of
"Email address: popovic@phy.bg.ac.yu spacetime. The Hamiltonian approach presented here is in
*Email address: sazdovic@phy.bg.ac.yu complete agreement with a recent Lagrangian anal\tdik
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We begin our exposition in Sec. Il by recalling some ba-Kac-Moody currentsFollowing the investigations of 2D in-
sic facts about the WZNW model for SLE@),. Then, we use duced gravity[13,5] and the WZNW mode[12], we shall
the Hamiltonian formalism to derive the related SIRRcur-  use the Hamiltonian approach based §n and é* as the
rents, by choosing=¢~ and r=¢" as the time variables. time variables, to derive a set of currents, satisfying an
These currents are used to define the energy-momentugy (2R) KM algebra.
componentd .. as the first class constraints corresponding to | et us first consider the choice=¢~, o=¢". The defi-
diffeomorphisms. In Sec. Il we study the problem of gaug-nition of momenta . 7,,my), conjugate to the Lagrang-
ing the internal SL(R) X SL(2R) symmetry of the WZNW  jan variableqy®= (x, ¢,y) in Eq. (2.2), leads to a set of pri-
theory by doubling the number of phase space variables. Afyary  constraints, which we denote  byJ_,
ter defining a new set of currenks ,, we apply the canoni-  _ (3 3 3 ) |tis convenient to transform these con-
cal gauge procedure to the set of first class constr&@ifs  giraints ir;ﬁco t)Fle tangent space basis by writidg,

=(T-,l-4), and obtain our basic model — canonically _g. ; \hereEe are the vielbein components on the
i - av—an a
gauged action of the WZNW systefd.1). In Sec. IV we S§L(2,R) manifold (Appendix A):

define a restriction of the theory based on a subset of fir

class constraint&,,, choose a set of gauge-fixing conditions

that do not affect the diffeomorphism invariance, formulate

the quantum action using the Becchi-Rouet-Stora-Tyutiny

(BRST) formalism, and finally integrate out some variables

to obtain an effective theory that coin_cides with the iﬂdUCGdJ_(_): _X27TX_2X(7T‘P— k') —Arx' + el 2.3

gravity (1.2). In Sec. V we use the Dirac brackets to show

how geometric properties of the induced gravity follow from where prime denotes the spaae) (derivative.

gauge properties of the WZNW system, and Sec. VI is de- Now, we consider the second choige=¢*, o=—¢

voted to concluding remarks. Some technical details are pregthe minus sign is adopted in order to preserve the orienta-

sented in the Appendixes. tion of the manifold. The primary constraints in the tangent
space basid, ,=E“,J, , have the form

—(+)T Tx»

=Xyt (T, k'),

Il. WZNW MODEL FOR SL (2,R) AND KAC-MOODY

CURRENTS I =Yrmy+2y(m+ ke') — 4y’ — me?,
Dynamical properties of the SL{R) WZNW model can Jioy=—ymy—(m,+ k'),
be naturally analyzed in the Hamiltonian formalism based on
=& or £ as the evolution parametef$2]. The related Ji(y=—my. (2.9

Kac-Moody (KM) structure of the model plays an essential ) ) ]
role in the canonical formalism for constructing gauge-1he Poisson brackets algebra of the primary constrdints
invariant theories. defines an SL(R) KM algebra with central charge;=
WZNW action The two-dimensional WZNW model is a + 2k:
field theory in which the basic fielgis a mapping fron®, to PR _ ,
G, X being a two-dimensional Riemannian spacetime @nd {Jza,J50h = fap J2c0F 26 yapd'. 2.9

being a semisimple Lie group. The model is defined by theyjtteomorphismsNow, we return to the usual formulation

action with 7=¢° and discuss how the KM structure of the
1 1 WZNW model can be used to build the covariant extension
I(g)=lg+nl'= EKI (*v,0)+ §Kf (v,0?), (with respect to diffeomorphismef the WZNW model2.2)
3 M [10] (see also Refl.14]).
v=g"ldg, 2.1) Using the above expressions for the KM currents, we can

construct the related SL(R) invariant expressions, the com-

where the first term is the action of the nonlineamodel, ~Ponents of the energy-momentum tensor:
while the second one is the topological Wess-Zumino term,

) ; . 1

deflnec_zl over a three-manifoll Wh.ose boundary is the Tf(q,ﬂT)=4—yabJ7anb

spacetimedM =3,. Here,x=nk, (nis an integer and, a K

normalization constaptv is the Lie algebra valued one- 1

form,*v is the dual ofv, and (X,Y)=3 Tr (XY). =4—[77X77ye¢+(77¢—K(,D/)Z]—X'WX,
K

Now, in the case€5=SL(2R) one can use the fact that
any elemeng of SL(2R) in a neighborhood of identity ad- 1
mits the Gauss decomposition, defined in Appendix A in T ( = aby g

i : +(0, ) Y Jiad+b
terms of the group coordinateg'=(Xx,¢,y), and derive the 4k
following form of the WZNW action:

1
=— E[Wxﬂyew-l-(wq,—l— K(p’)z]—y’ﬂ-y_
|=KJ d2£(9, @d_p+4d,xd_ye ®). (2.2
s (2.9
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These components satisfy two independent Virasoro alge[-|+a(gl),|+b(gz)}:fab6|1c(gz) S,
bras, - -

' T+ ,I + = - I + 5,,
(Te(0D) To(o)=~[Te(o) +To(opls, (27 1= lale} = lualo)
equivalent to the algebra afiffeomorphismssee, e.g., Ref. {T:(01),T(02)}=—[T.(01)+T.(02)]d", (3.9
(5. . L

Using the general canonical formalism, we can construcfNd represents two copies of the semi-direct product of the
acovariant theoryin whichH,=0, G,,=(T_,T,). Thisis SL(2R) and Virasoro algebras. The collectiof .(,!.,)

done by introducing the canonical Lagrangian can be taken as a set fifst class constraintén the general
canonical construction based on Eq6l.3). Together
£(q,m,h)= WQQa_ h"T_—h"T,. (2.9 with diffeomorphisms, we have here an additional

SL(2R) X SL(2R) structure.
To see the usual content of this Lagrangian, one can elimi- We display here the complete set of constraints, multipli-
nate the momentum variables with the help of the equationers and gauge parameters:
of motion. Then, after introducing new variablels*(h™)

—g"”, one obtains the covariant generalizations of the Gm=T-, Tl a,lia,
WZNW theory[10]. In the light-cone basi$Appendix B,
the covariant Lagrangian has the form u™=h",h",a% ,a?,

E(q,h)=K\/—@[:?+go:?_go+4:9+x:9_ye_“’]. (2.9 eM=e",e", 9%, 7% .
Note that the Lagrangia(®.9) is invariant under conformal Now, using Ho=0, G,=(T_,T,.,l_4,l4,), one can
rescalings of the metric. construct the canonical Lagrangian

. GAUGING SL (2R)x SL(2,R) AND THE WZNW L(qi, i ,h)=m1,qf+ m,05—h T_—h*T,—a%l_,
SYSTEM
—a?l,,, (3.6)

Now, we consider the possibility of gauging theernal
SL(2R) X SL(2R) symmetry. One should observe that therepresenting a gauge theory invariant under both local
currentsJ.. , are not of the first class, since the related KM S| (2R) X SL(2R) transformations and diffeomorphisms.
algebras have central charges= +2x. We wish to find a Using the general rulél.4), one finds that the gauge
set of generators satisfying two independent SRj2alge- transformations have the form
bras without central charges. To this end we double the num-
ber of dynamical variablesyj—(q;,0,),7— (7,75), and  sh*=(dy+h*d;)e*—e=d;h™,
introduce two sets of currents,

$=(dp+h7d1) 7S —fapcad nt—e7 ;a5 .
‘J(irlz)i:‘]ia(qlvwl)i ‘J(iZ;:‘Jia(qZJTZ”Kﬂ*Kv (31) 537 ((90 h (91) 7= fab a7 e 071a7

satisfying two SL(ZR) KM algebras with opposite central 8qy=—E%nl —E%n’ +(e7J{ —e " 3%)/2x, 3.7
chargescV=+2«, c?=52«. Then, we introduce new

currents while 6q, is obtained by changing to — «.

As before, we can eliminate the momentg, andm,,, in
l.a=JH+33, (3.2)  order to clarify the usual Lagrangian content of the theory.
- - The resulting Lagrangian describes the gauge extension of
which are easily seen to satisfy two independent JRY2, the WZNW system(1.1), in complete agreement with the
algebras withvanishing central chargesThe new currents results of Ref[11].
are of the first class, and can be used to gauge the internal

SL(2R) X SL(2R) symmetry. - . IV. GAUGE EXTENSION OF THE WZNW SYSTEM
In order to include the diffeomorphisms into this proce- AND INDUCED GRAVITY
dure, we introduce the energy-momentum components of
two sectors, defined in terms Ofl) andJ(z) as in Eq(26), In this section we shall show that 2D induced gravity can

be obtained from the canonical gauge extension of the
TO=T.(qy,m), TP=T.(q, 7|, ... (3.3 WZNW system, by(a performing a suitable gauge fixing
and(b) integrating out some dynamical variables in the func-

The complete energy-momentum is defined by tional integral.
— T T2
To=To+ T2 34 A. Canonical H . X H _ gauge theory
The Poisson brackets algebra betwéen and T.. has the Let us consider a restriction of the canonical the(@),
form defined by the following subset of first class constraints:
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Gn=(T_ T, .10, 1=[l_5).l—0) )+ +o] (e”,e*,c"), antighostsc”, and new multipliersb”. While
4.1 ghost fields correspond to gauge parameters, antighosts and
) . o multipliers are associated with the gauge conditions. Since
representing a subalgebra of E_q3.5). This restriction can  the diffeomorphisms are not gauge fixed, the related antig-
be obtained from the full canonical theaf§.6) by imposing  hosts and multipliers are not present in the formalism. The
the following gauge conditions: BRST transformationsX of a dynamical variableX, X
=(q;,0,,h™), is obtained from the gauge transformation

(=)= (+) =
a, =0, a’=0. (4.2 6X by replacing gauge parameters with ghosts; for the new
The restricted algebra describes diffeomorphisms combinetields we havesc"=b", sb'=0, while sc" is not needed
with the internal symmetry here &c” follows from the nilpotency COI’]ditiOLSZXZO).
Then, we introduce the gauge fermicgh=c"Q,, and
H=H,XxH_, (4.3 define the quantum action as
whereH , andH _ are subgroups of SI._(R) defined by the Lo=L(;, i ,h)+sW=L(q;,m,h)+ Lop+ Lep.
generatorst(, ,tp) and {y,t_), respectively. (4.6)
The canonical action of the restricted theory takes the
form The gauge-fixing and the Faddeev-Popov parts are given by
L(d; i ,h)= 71,05+ 72,05 —h T_—h*T,—a",, Lcr=b"Q,, Lep=-c"[sQ,],
(4.9
where a"=[a{"”,a?,a") ,a®]. Here, the energy- where
momentum components are given by Eg.4), in conjunc- sQ- .. =—TevJD 1 xc7030)
tion with Egs.(3.3) and(2.6), while the currents, are of the 2= TleT ) I ()
form

SQz 0= —[€73%))]' =c™=IZ) . F2x[cTO].
I—(+):7TX1+7TX2¥ Eff . . . .

ective theoryHaving derived the quantum action, we are
now going to show that it can be effectively reduced to the
induced gravity, by integrating out all the variables except
¢©1,¢2, and the related momenta. To simplify the exposition

0= [X17TX1+ (77'@1— Kkey)]+ [X27TX2+(7T¢2+ Kke5)],

le)=— Ty, ™ Ty, technically, we shall divide it into several smaller steps.
, (a) The integration oveb™, a, anda_ transformsLq
Loy =[—Y1my, = (7, + k@1)] into the effective Lagrangian

+l _yzwyz_(ﬂ-‘l’z_ K@3)]. Le( @i ,7T<pi’h) :[Wlaqiy—i_ WZaqg_ h™T_

It is clear that the canonical actiof4.4) represents a T+ Lep]
i + FPlI=0=0-
gauge extension of the WZNW syste(.1). Indeed, by

choosing the gauge fixing”=0, and eliminating the mo- ¢ js now convenient to rewrite the relatioms=0 andQ,,
mentam,, andm,,, the action(4.4) reduces to the form —0 in the form

£(01,92,h)=£L(q1,h)— L(qz,h),

Tx, =~ M—= 7 Ty,

where£(q,h) is given by Eq.(2.9), representing the covari-
ant extension of Eq(l1.2). Ty T M= Ty,

B. Effective theory in the canonical form Xy 7y, + 2Ki_=A_=— (X27TX2+ 2K,y ),

Quantum actionIn order to demonstrate that the action

(4.4) can be effectively reduced to the induced gravity?), - (y17TV1+ 2K11) =N =yomy + 2K,_,
we begin by choosing the gauge conditions corresponding to
the first class constraints,: whereK. =(7,* ko')/2.

Q=10 Q0 Q) s 0], (b) The momentum varlaple&xl,q-ry1 and Ty, Ty, are

constant, so that the relatetly terms in the action can be

Q:@):J(:l()ﬂ—,u::Oy QI(O):J(IZ()O)_)\I:O_ ignored as total time derivatives. _

- (4.5 (c) Also, the contribution of the Faddeev-Popov term is
decoupled since the curreni§?) and J® are constant, so

To impose these conditions on the functional integral, we us¢hat the integration over ghosts and antighosts can be ab-

the BRST formalism and introduce a set of ghost fieldssorbed into the normalization of the functional integral.
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(d) Finally, the expression fof ;- , reduced to the surface V. GEOMETRIC PROPERTIES FROM GAUGE
I=Q=0, reads TRANSFORMATIONS

~ ) , B ) , In the process of constructing the induced gravity action
kT2 =[E (K1) +2x(Kyz) " JH[F(K22)+ 2k(Kox) '] from the gauged WZNW system, one expects the original
1 gaugetransformations of dynamical variables to go over into
T u(ef1—ef2), geometridransformations of the final, gravitational theory. It
4 is straightforward to show that gauge transformations of ca-
nonical multipliersh™ produce correct geometric transfor-
mations of the metric density“*= \/—_QQMV [10]. Complete
interpretation of the induced gravity demands clarification of
the nature of two additional field§—g and ¢, given by

whereu=u_ ., , SO that the effective theory in the canoni-
cal form is given by

Le(@i,my,0)= W¢l¢1+ W¢2§o2—h_rr_—h+'~l'+ .
@7 L
V=g=5(h =h"e?,  d=\k(g1=¢z). (51

C. Transition to the induced gravity

In order to find out the usual dynamical content of thewe begin by noting that the transformation ruf&7) de-
previous result, we shall eliminate the remaining momentunscribes the SL(B) gauge transformations, defined by pa-
variables from Eq(4.7) by using their equations of motion, rametersz. [11], and thee™ transformations, which we

expect to be related to diffeomorphisms. In particular,ehe

T T k@1=\2K(Izp1t @ — @), (48 transformation ofp, has the form
while T, is obtained by the replacement;— ¢,, «—
~ ~ —_ + A — _ !
—k (J+ andw. are defined in Appendix B The effective Oepr=~ 5 e (mp T re)—e (Mg, — ko],
theory is described by the Lagrangian (5.2
Le(e1,92,h)=A(¢1,h)=A(@z,h), while 8, ¢, is obtained by replacing— — «.
Now, let us go to the gauge-fixed, effective theory, ex-
Ale,h)=V—0[ ki, 0d_¢ pressed by Eq4.7). While the gauge transformations in the

WZNW theory are defined using the Poisson brackets in Egs.
+2k(w_d,0—w.d_¢)+Me?], (4.9 (1.4, the related transformation rules in the gauge fixed
theory (induced gravity should be calculated with the help

whereM = u/2x. If we now change the variables according Of the Dirac brackets determined by I(,,{2).

to In order to check whethef(+/—g) has the correct geo-
metric form (B3), we replace the above transformation law
b= \/;((Pl_ ©,), 2F=0,, for ¢ (i.e., ¢; or ¢,) with the Dirac brackets expression
the effective Lagrangian takes the final form Sk p=0,0—0d1(e +e™), (5.3
Le(b,FN)=\—0{d,dd_¢ where, after eliminatingr,, with the help of Eq.(4.8), ,¢

“ . R R . . takes the form
+2k[(@_+3_F)d,p— (@0, — 3, F)d_g]

2F  adbl i _ " - . -
+Me"(e 1)} —(etdpo—e d_p)+ (e —eN)(w_—w,)].

1
5£(P: E[

Comparing the expressidb.3) with Eq. (B4), one concludes
that 6% ¢ yields the correct transformation law fq—g.

It is now easy to see that the variabde behaves as a
scalar field,

The geometric meaning of this Lagrangian becomes more
transparent if we use conformally rescaled metgg,
—e?Fg,, (Appendix B, whereupon the effective Lagrangian
is easily seen to coincide with the induced gravity action
(1.2:

‘CE(¢’g}LV): \/—_g[(9+ ¢(?7¢+2\/;(0),(7+ (z)_er(?, (i))

+M(e?*—1)]
N A in agreement with its geometric role.
oLd. -+ ‘/;¢R+ M(e DI The following relations characterize the geometric struc-
(4.10 ture of the effective theory:

St p=—e- 0, (5.4)
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(TO(o), TD(o)1* = [TV (o) + TV (o) 16—V 5" Any elementg of SL(2R) in a neighborhood of identity
can be parametrized by using the Gauss decomposition:
(i=1,2), (5.5 o
g= e 1etoe =g 2 o X).
{To(01),Te(02)}* =—[T(01) + T(02)]0. y 1

In the gauge-fixed theory, the energy-momentum compoWwhere q“=(X,¢,y) are group coordinates. Now, the Lie-
nents of the WZNW sectors 1 and 2 are not first class conalgebra-valued one-fornv =g~ 'dg=t,E*=t,E?,dq* de-
straints, as opposed to the complete energy-momentum tefines the quantitye®, , the vielbein on the group manifold.
sor. Similarly, the calculation ofv=gdg '=t,E®=t,E3,dq®
leads toE?,, .
VI. CONCLUDING REMARKS

In the present paper we used the canonical approach to APPENDIX B: RIEMANNIAN STRUCTURE ON %

elucidate how the induced gravity action, together with its  Here, we present some basic geometric features of two-
geometric properties, can be obtained from the dynamicalimensional spacetin.
structure of the SL(R) WZNW system. Light-cone basis Starting from the interval or},ds?

We first analyzed primary constraints of the SIRP, =g,,dé*d¢", we can solve the equatiods?=0 for h
WZNW model(2.2), using the Hamiltonian formalism based =delde, h*=(—go,* \/—_9)/911 and obtain

on the choice of timer=¢=, which led us naturally to the

SL(2R) KM currentsJ..,. These currents are basic objects ds?=2d¢rdé,

in our canonical approach. They are used to construct the

energy-momentum components that represent first class con- dé*=\-01/2(¥h*d&=déh)=e" dém.

straints corresponding to diffeomorphisms. Then, we defined

the gauge extension of the WZNW system by introducinglf we introduce —g;;=€?", three independent components

two sets of KM currents)) and J$}, which are used to Of the metricg,,, can be expressed in terms of the new,

define the new first class constraints,= 30 +J@ | satis- light-cone variablesi{(",h™,F). In particular,

fying an SL(2R) X SL(2R) algebra without central charge 1

and the energy-momentum componeﬁ§correspond|ng to \/__g: g2F \/__g \/__gE E(h- —h™).

the whole WZNW system. The resulting theory is clearly

gauge equivalent to the WZNW systerh.1), being its ca- _ .

nonical gauge extension. As the main result of our analysig €ach point of% the quantities

we showed(a) by choosing a suitable gauge fixing afig

integrating out some dynamical variables that this gauge o —gFai o i

theory reduces effectively to the induced gravity2). Geo- » me N

metric properties of the gravitational theory are derived from

gauge properties of the gauge-extended WZNW system, witli = +,—) define an orthonormal, light-cone basis of one-

the help of the Dirac brackets. forms, §'=d¢ =¢€' ,dé“. We also introduce the related basis
The results obtained here supplement those of the recegf tangent vectorse;=d;=el'd,

Lagrangian analysigl1], and improve our understanding of

geometric properties of 2D spacetime in terms of the related R ~ \/E 1

gauge structure. They can be used to better understand sin- ef'=e ek, e{‘zm( 1 nt

gular solutions of the induced gravity in terms of globally

regular solutions of the WZNW system, and clarify the na-

ture of black hole$8,15].

~h 1)
h™ -1 (B1)

). (B2)

The metricy; in the tangent space has the light-cone form
n_,=7n,_=1, while éMV and its inverse are defined in the
usual way.g,, =€ ,&,7;, g’=ef'e!y".
DiffeomorphismsThe standard transformation rule of the
This work was supported in part by the Serbian Sciencevielbein €', under the diffeomorphismsé”— &+ g#(¢),
Foundation, Yugoslavia. implies
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APPENDIX A: GEOMETRIC PROPERTIES OF SL(2R) oh==doe™+h=d16™ —e79;n",

In this appendix we outline some geometric properties ofvhere e “=g*~z°h*. The usual transformation law for

SL(2R) [11]. NE)
Choosing the generators of SLEJ, as t(i)=%(01
+i0y),t)=303, Whereay are the Pauli matrices, one can oV—9g=—0d,(e"V—0), (B3)

find the form of the related Lie algebf#, ,t,]=f ., t., and
C

evaluate the Cartan metrig,,= (t,,tp) =3 fac fpoS- in conjunction withy/—g=e?"\—g, is equivalent to
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- — \/E Fy\r
+F), w¢=+m(h )'. (B5)

d1(h™+h) ]
8(2F)=—dy(e" +e ) (e o) w.=e (o

I+
+1
>

1 .. B
E(g d+—&"9-)2F. (B4) The curvature is defined by the second structural equation:
do'j=3R'y *\¢', where we usedo',/\w*;=0. Since
Connection and curvaturé’he Riemannian connection is do=(V_w,~V,.w_)0" /6", one finds
defined by the first structural equatiod?'+ o';/\¢'=0,

wherew';=¢';w. For the connection one-form= w;¢' we

find R=2R, _=2(V_w,—V,w_). (B6)
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