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Behavior of quasilocal mass under conformal transformations
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We show that in a generic scalar-tensor theory of gravity, the “referenced” quasilocal mass of a spatially
bounded region in a classical solution is invariant under conformal transformations of the spacetime metric.
We first extend the Brown-York quasilocal formalism to such theories to obtain the “unreferenced” quasilocal
mass and prove it to be conformally invariant. However, this quantity is typically divergent. It is, therefore,
essential to subtract from it a properly defined reference term to obtain a finite and physically meaningful
quantity, namely, the referenced quasilocal mass. The appropriate reference term in this case is defined by
generalizing the Hawking-Horowitz prescription, which was originally proposed for general relativity. For
such a choice of reference term, the referenced quasilocal mass for a general spacetime solution is obtained.
This expression is shown to be a conformal invariant provided the conformal factor is a monotonic function of
the scalar field. We apply this expression to the case of static spherically symmetric solutions with arbitrary
asymptotics to obtain the referenced quasilocal mass of such solutions. Finally, we demonstrate the conformal
invariance of our quasilocal mass formula by applying it to specific cases of four-dimensional charged black
hole spacetimes, of both the asymptotically flat and non-flat kinds, in conformally related theories.
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[. INTRODUCTION boundary. Further, in spacetimes with a hypersurface-
forming timelike Killing vector on the boundary of the sys-
The lack of a generically meaningful notion of local en- tem, it can be shown that there exists a conserved charge,
ergy density in general relativity is well knowi—3]. Es-  which can be defined to be the quasilocal mass associated
sentially, this is due to the absence of an unambiguous prawvith the bounded regiofl2].
scription for decomposing the spacetime metric into The past few years have seen a revival of interest in
“background” and “dynamical” components.If such a  scalar-tensor theories of gravity, primarily string-inspired
prescription were available, then one could associate enerdpur-dimensional dilaton gravity, which has been shown to
in general relativity with the dynamical component of theyield cosmological as well as charged black hole solutions
metric. In the past there have been attempts to define quasilésee Refs[13-1§ for reviews) In particular, the spacetime
cal energy using pseudotensor methdd2,5. However, structure(i.e., geodesics and singularitjesf these black
these approaches led to coordinate-dependent expressioh§/e solutions and, also, those of the Brans-Dicke-Maxwell
which lacked an unambiguous geometrical interpretationtheory (in higher dimensions[17,18 are known to have
Another way of defining quasilocal energy has been via théignificant differences with respect to the Reissner-
spinor construction§6—9]. There are, however, several un- Nordstran black holes. This prompts one to mve;ngate the
resolved questions regarding this approach, a key issue beirﬁ m _Of thg classical laws of black hole mgchgmcs and the
the lack of a rigorous proof of the Witten-Nester integrale. suing picture of black hole thermodynamics in these theo-

being a boundary value of the gravitational Hamiltonian! > But the study of the thermodynamlca_\l Iaws_entalls
[10].2 Nevertheless, the total energy of an isolated syste knowledge of the energy and entropy associated with these

) . . S pacetimes. Moreoverequilibrium thermodynamics of a
has been defined in terms of the behavior of the gravitation e - ;
. . lack hole(specifically, in the case of an asymptotically flat
field at large distances from the systdrhl]. Moreover, (specifically, | ympoucaly

X i solution requires that it be put in a finite-sized “box,” just
Brown and York(BY) have introduced in Ref3] away to 55 gne does in general relativity. Thus such a study requires

define the quasilocal energy of a spatially bounded system iphowledge of the quasilocal energy of these “finite-sized”
general relativity in terms of the total mean curvature of thesystems.

Recently the BY formalism has been extended to the case
of a generic scalar-tensor theory of gravity in spacetime di-
mensions greater than[29,20. Since solutions of two con-
formally related scalar-tensor theories will themselves be re-
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See, however, the field formulation of general relatiyiy. lated by a conformal transformation, it is interesting to ask if
2For a more complete list of references on quasilocal energy, alsthe quasilocal masses of these solutions are also related. In
see the ones cited in RdB]. the past, it has been suggested that the quasilocal mass is a
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conformal invariant. The reason that is usually provided is
that a conformal transformation is simply a local field rep-
arametrization, which is supposed to leave physical quanti-

ties, such as the mass of a system, unchanged. In fact, in Ref.

[20], Chan, Creighton, and Man(CCM) argue that the

guasilocal mass is indeed invariant under a conformal trans-

formation. .
As in general relativity, the(unreferenced mass of a

spacetime in a scalar-tensor theory of gravity is typically ,

divergent unless one subtracts (divergeni contribution <

from a suitable reference geometry to obtain a meaningful

finite result[3]. Recently, Hawking and HorowitHH) gave

a prescription in general relativity for obtaining an appropri-

ate reference action based on the asymptotic behavior of the

fields on a classical solutiof21]. This reference action is

subtracted from the original action of the theory to define
what is called the physical action. The surface term that
arises in the Hamiltonian associated with this action can be

taken as the definition of “total mass.” This mass turns out . ) . o
to be finite and is termed as the physical mass. When evalu- FIG- 1. A bounded spacetime region with boundary consisting
ated on an asymptotically flat spacetime solution, the physi®f initial and final spatial hypersurfaces=t, and t=t, and a

. . Do . . .
cal mass of the full spacetime coincides with the CorrespondD'd'menS'onal surfac@B. Here, PB itself is the time-evolution of

ing Arnowitt-Deser-MisnefADM) expression. ;hri)'t(rzr_ %S)':ti.r;e;.sigal surfac®, which is the boundary of an
Following HH, one could ask if a similar prescription can itrary spatial Slice..

be formulated for scalar-tensor theories of gravity. If so, it . ) )
would be interesting to see whether the total mass arisingPecific cases of four-dimension@D) black hole space-

from such an action is conformally invariant. It has beentimes, of both the asymptotically flat and non-flat kinds, in
claimed by CCM that the generalization of the HH prescrip_conformally rela'ged theories. We briefly summarize and dis-
tion to scalar-tensor theories doest lead to a conformally ~CUSS our results in Sec. V. In the Appendix, we show how the
invariant physical mass. They propose their own referenc&t@ndard prescription for determining the stress-energy
action for a general scalar-tensor theory of gravity and shovpSeudotensor in general relativity can be suitably adapted to
that the associated physical mass of static, spherically synf'—f‘d the quasilocal energy in scala_r—tensor theories of gravity.
metric (SS9 solutions is conformally invariant. However, Finally, we demonstrate the consistency of the results of the
unlike what happens in the HH prescription, the CCM refer-Pseudotensor method W|th_ the quasilocal formahsm_ of
ence action is not motivated by any boundary conditions ofg"own and York as applied to scalar-tensor theories.
the fields that define the spacetime solution of interest. ' hroughout this paper, we use the conventions of Misner,
In this paper, we first show that the HH prescription canThorne, and Wheelerl] and work in “geometrized units”
be generalized to the case of scalar-tensor gravity. This r&&=1=G.
duces the arbitrariness in the choice of the reference action.
More _importantly, we prove that under certain condiFions _the Il. QUASILOCAL MASS
resulting reference action leads to a conformally invariant UNDER CONFORMAL TRANSEORMATION
referenced quasilocal mass. In the following, we will directly
deal with only that conformal transformation that relates the Consider a spatially bounded region of a
scalar-tensor-gravity metric to that in the Einstein frame. Of(D + 1)-dimensional spacetime that is a classical solution of
course, our results can be readily extended to study the bé scalar-tensor theory of gravity, such as dilaton gravity or
havior of physical quantities under a conformal transforma-Brans-Dicke theory. In this section we extend the formalism
tion relating one scalar-tensor theory to another. In Sec. |l w@f Brown and York[3] to derive an expression for the
derive the expression for th@nreferencedquasilocal mass quasilocal energy of gravitational and matter fields associ-
of a bounded region in¥+ 1)-dimensional spacetime solu- ated with such regions. Subsequently, we will give an ex-
tion of a scalar-tensor theory of gravity and prove it to bepression for the quasilocal mass.
conformally invariant. In Sec. Ill we generalize the HH pre-  The BY derivation of the quasilocal energy, as applied to
scription to the case of scalar-tensor gravity. It is shown tha@ (D + 1)-dimensional spacetime, can be summarized as fol-
for such a choice of the reference action, the referencetbws. The system we consider is-dimensional spatial
quasilocal mass is a conformal invariant provided the conhypersurfaceX bounded by a [ —1)-dimensional spatial
formal factor is a monotonic function of the scalar field. hypersurfaceB in a spacetime region that can be decom-
Using this prescription, we give an expression for quasilocaposed as a product of B-dimensional hypersurface and a
mass of static spherically symmetric solutigmsth arbitrary  real line interval representing timgee Fig. 1 The time-
asymptotics In Sec. IV, we demonstrate the conformal in- evolution of the boundarf is the surface’B. One can then
variance of this quasilocal mass formula by applying it toobtain a surface stress-tensor BB by taking the functional
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derivative of the action with respect to ttiz-dimensional The BY analysis is of course readily applicable in the
metric on®B. The energy surface density is the projection of “Einstein” frame, which is associated with the “auxiliary”
the surface stress-tensor normal to a family of spacelike sumetric
faces such a8 that foliate °B. The integral of the energy
surface density over such a boundayis the quasilocal Qap=U?P~Yg.,, (2.2
energy associated with a spacelike hypersurfaceshose
orthogonalintersection withPB is the boundanB. Here we  whereD>1. In terms of the auxiliary metric, one can always
assume that there are no inner boundaries, such that the spast action(2.1) as a sum of the Hilbert action, which is
tial hypersurface& are complete. In the case where horizonsindependent of the scalar and matter fields, and a functional
form, one simply evolves the spacetime inside as well as; that depends on these fields:
outside the horizon.

We follow the same notation as BY. The spacetime metric 1 (D+1)
is g,, andn* is the outward pointing unit normal to the S[Ganl =5~ f dP*Ux-gR+S;, 2.3
surface °B. The metric and extrinsic curvature &B are
denoted byy,, and ©,,, respectively, and they obey \here
n*y,,=0 andn#® ,,=0. Alternatively,y,, and® ,, can
be viewed as tensors dtB, denoted byy;; and®;; , where 1
i,j refer to coordinates i?B. Similarly, the metric and ex- Si= o f d®+bx
trinsic curvature o are given by the spacetime tensbrsg, K
andK,,, respectively. When viewed as tensors Dnthey D
will be denoted byh;; and K;;. As in BY, here we will X\/—_g[m[v In U(¢)1>—W(g)(V¢)?
assume that the hypersurface foliatibris “orthogonal” to
the surfacePB in the sense that on the boundar, the
future-pointing unit normali* to the hypersurfacg and the —UZAPIV(h) = X(¢)Lm] |- 2.4
outward pointing spacelike unit normiat to the surfaceDB
satisfy (U-n)|og=0. This implies that the shift vectoN',

" ol Above, L, is a functional of the matter fields, their deriva-
normal to the boundary vanishes, i.€!n;=0.

tives, the auxiliary metrig,,, and the scalar fielg. In Eq.

(2.3), we have ignored the surface term contributions for the
A. Action present. The subscriftrepresents the scalar fiefland the

We study the following action for a scalar-tensor theoryMater f|eld§. Note tha; dogs not|_nvol've any derlvguves
of gravity in a (D + 1)-dimensional spacetime: of the metric. In the following, §,f) will denote a field
configuration that is a solution to E(R.1), whereas ¢,f ) is
_ 1 — the conformally related solution in the thed®:3). Although
SGan. ¢ F1= 5 - f d®*Pxy—gqU(¢) there is no bar oves, note thatg is implicitly included in
_ E— _ the configuration@,f ).
X[R=W($)(V)*=V(¢)+X()Lnl,

(2.1 B. Quasilocal energy and mass

. i i ) ) We begin this section by briefly discussing the Hamilton-
whereg,, is the “physical” metric, ¢ is a scalar field,F  jacobj analysis used by BY to evaluate the quasilocal energy
represents matter fieldg=8, andU, V, W, andX are  of 5 spatially bounded region in Einstein gravity. We will
functions of ¢. Also, L, is the matter Lagrangian that in- later give the expression for the quasilocal energy in a ge-
cludes a possible cosmological constant term. The overbateric scalar-tensor theory of gravity.
denotes the functional dependence of quantities on the physi- In general relativity, to make the action functionally dif-
cal metricg,,. Here we assume thzh_lm does not involve ferentiable under boundary conditions that fix the metric on
any derivatives of the metric. The dynamics of the scalathe boundary, one appends appropriate surface terms to the
field is governed by its kinetic term, the effective potential Hilbert action. The resulting action iD + 1 dimensions is
term V(¢) and the non-minimal coupling to the scalar cur-

vature,R, described byJ(¢). The effective potential term slzi f d(D+1>x\/—_gR+ E Jt dPx\hK

can be inclusive of an arbitrary additive constant which may 2K Kk Jv

occur as a Lagrange multiplier, an integration constant, or 1

even a fall out of the renormalization procedure of the other e fDBde —y0+S;, (2.5

matter fields described bly,,. It is this constant that is re-

sponsible for the “cosmological constant problem.” One can o

consider the potential term as an effective term obtained byheref,d°x represents the difference of the integral over a
integrating over “heavy” degrees of freedom as long as onespatial three-surfacé=t" and that over a three-surfate
does not go beyond the leading semiclassical approximatiort’. Of course, the equations of motion obtained from the
for the scalar fieldp. variation of the above action are unaffected by the addition
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of an arbitrary functionS® of fixed boundary data t&!.
Hence, the variation of such an action restricted to classical €= ;(km—ko), (2.149
solutions gives

dSy={terms involving variations in the matter fiejds  wherek, is the trace of the extrinsic curvature of a surface
that isisometricto B, but is embedded in a reference space.
N t”dD pish + [ dPx(all— i s Following BY, the extrinsic curvature d as embedded

o dXPadhij+ [ dox(mg—m0) 9%, in S is defined by

(2.6

whereP'l and 7'l are, respectively, the momenta conjugate Kup=—0,Dan,, (219

to h;; and y;;, and
where D, is the covariant derivative ofx. Therefore,k

2.7 =o""k,,. The quasilocal energy associated with all the
fields on the spacelike hypersurfaBewith boundaryB in
this “auxiliary” spacetime is

Above, the subscript “cl” denotes the value of a quantity on

a classical solution. As we discuss in detail later, different

choices fors® arise by imposing different physical require- E:f d®= Uy Joe

ments on the quasilocal energy. B

From Egs.(2.6) and (2.7) given above, we obtain the

5S°

mTo= 5—%]

following Hamilton-Jacobi equations: - _j d(DA)&

B SN
Pole= BB (2.8 1
clit 5hij(t”), . :; f d(Dil)X\/;(kd_ko). (21@
B
N PO
(mg—mg)= CI. (2.9 . .
0Yij In other wordsE represents the proper quasilocal energy in

. _ _ _ the Einstein frame. The above expression is interpreted as
The quantity that is of interest to us is the surface stressenergy because it is minus the change in the classical action

tensor for spacetime and the fields, which is given by due to a uniform, unit increase in the proper time alGi)
Also, for a unit lapse and zero shift, it is equal to the Hamil-
i 2 65 tonian corresponding to the acti@@.5), as evaluated on a
= N (2.10 classical solution. It is satisfying to note that this is a geo-
v 2%ij ; o )
metric expression independent of the coordinates on the
Using Eq.(2.9), we obtain quasilocal surface. However, it does depend on the choice of

the quasilocal surface and also on the foliation of the space-
2 time by spacelike hypersurfaces.
Tijz—(’iTicj|_7Ti0j). (2.11 When there is a timelike Killing vector field* on the
NTY boundary®B, such that it is also hypersurface forming, one

, can define an associated conserved quasilocal mass for the
If u' is the unit timelike normal t& on the boundarB, then  bounded systerfil2,3]:
the proper energy surface densitys

_ . 1 6Sy M=J d®~Dx./oNe, (2.1

=y fl=— — 2

e=Uu;T \/(_T N’ (2.12 B

whereg; is the metric on the boundaBy. Above, we made whereN is the lapse function related %" by &“=Nu*.

use of the following identity: Further, if £&-.u=—1, then N=1 and consequently the

quasilocal mass is the same as the quasilocal enerdy.

m_ _ % (2.13 Unlike the quasilocal energ§2.16), the quasilocal mass is
N N ' independent of any foliation of the bounded system.

We now ask, what is the analogous expression for the
Equation(2.12 together with Eq(2.9) can be used to show quasilocal energy or mass for a bounded spatial region of a
that that the energy surface density is related to the trace afpacetime solution of the scalar-tensor the@yl)? Note
the extrinsic curvaturek,,, of the boundarnB embedded ina that under boundary conditions that fix the metric on the
spatial hypersurfac® (which in turn is embedded in a clas- boundary, the appropriate surface action to be added to the
sical solution: action(2.1) is
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. 1 (v — _ where() is generally a function of the spacetime coordinates.
Sog[Gab, $]= ft d®xy—hU(¢)K Comparing with Eq(2.2), we find that
Q=y ¥b-D, (2.22

—lf d°x\/—9U(¢)0, (2.18
Kk JPg Note that on-shellU(¢) will be determined through the

_ equations of motion pertaining to the acti¢h).
whereK is the trace of the extrinsic curvature of a spatial et us embed thel§ — 1)-dimensional spatial boundaBy
hypersurface an® that of the boundary’B when embed- in each of the two conformally related spacetimes, assuming
ded in a spacetime solution of actiGn 1). It can be verified that such embeddings are feasible and unique. Then the unit
that under a conformal transformati¢é® 2), the actionS' in timelike normalu’ in the physical spacetime is related to that
Eq. (2.5 transforms exactly t&gap, ¢, F]+ Sog[Gan,#],  in the auxiliary spacetimay', as follows:
which is defined by Eq92.1) and(2.18). As in the case of — 1
Einstein gravity discussed above, one can use the BY ap- u=0Q""u', (223
proach to derive the expression for quasilocal energy fro
the above surface action in a non-minimally coupled theor
Such a calculation was done by Creighton and Mdr#j for
four-dimensional pure dilaton-gravity. A straightforward n=0"1n'. (2.24
generalization of their derivation to the case of a
(D+1)-dimensional scalar-tensor theorf2.1) including One can further show that the extrinsic and the total mean
matter fields gives the quasilocal energy in such theories tourvature of the boundar3, as embedded in these space-
be times, are related as follows:

n%imilarly, the outward pointing unit normals to the surface
YDB in the two spacetimes are related as

EZJ 40Dy o kij=0[kij—oy;n'V(In )], (2.29
B —

k=0 k—(D-1)n'V,(In Q)],

1 - — 2.2
—+ | s AT U)o, (228

K /B wheren' is the spacelike unit normal to the surfaB (em-
(2.19 bedded in the auxiliary spacetimd-ormally, we associate

) ) ) ) the covariant derivative¥, and V, with metrics g,, and

In the next section we will consider appropriate reference@ib, respectively. In spacetime regions whefeis non-
actions S° and their respective contribution&,, to the  singular, one can invert the above relation to obtain
above expression. In the Appendix we give an alternative o
derivation of the above energy expression using the pseudo- k:Q?+(D—1)Qﬁ*V|(In Q), (2.27
tensor method.

Analogous to Eq(2.17 one can also define the quasilocal wherek is the total mean curvature of the bound&yas
mass in the scalar-tensor theory to be embedded in the auxiliary spacetime.

Equation(2.27) shows that under a conformal transforma-
tion the quasilocal mass defined in EQ.17), modulo the

N — D=1y [AN= ..
M= de xVoNe reference term arising frork,, transforms as follows:

1 _ _ o 1 )
= Ld(Dﬂ)x\/Eﬁ[U(gb)k—ﬁraiU(¢)]—MO, - de(D Dy N\ok

(2.20 :%jd(D—1>Xﬁ\/§[U(¢)?—ﬁ‘r7iU(¢)],
B

wherel\Wo is an appropriate reference term.

(2.28

C. Conformal transformation where we have used E(R.22. Applying the above identity

to the mass expression2.17) and (2.20 proves that the
quasilocal masses of conformally related spacetimes are the
same, provided the reference telfty is conformally invari-

ant.

We now study how the quasilocal ma$s, modulo the

reference ternM,, behaves under a conformal transforma-
tion. Equation(2.17) shows that this requires knowledge of

how the total mean curvatute of the boundaryB behaves . . L )
under a conformal transformation. Let the physical metric Consider the behavior of the timelike vectgff defined

gap Of the scalar-tensor theory be related to the auxiliary]‘:’lbove Eq.(zt.hml'z'lt ;s_a?sumedlttp ble Killing f|n a Ig!ven .
metricg,, by the conformal transformation rame, say, the Einstein frame. It is also a conformal invari-

ant, i.e.,&=Nu*=Nu“= &, However, it will not remain
Tab=%0.p, (2.21 Killing in a general conformal transformation. Thus, al-
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though the(unreferenced quasilocal mass is a conformal the energy surface density, whereas varying the shift in the
invariant, its property of being a conserved charge in a giversecond term gives the momentum surface density in the ref-
frame is not. However, i£* obeysé“V ,¢=0, then it con-  erence spacetimd]. Since we mainly discuss the applica-
tinues to remain Killing in the conformally related frame. In tion of Eqg. (3.1) to evaluate theproper quasilocal mass or
such an event, the associated quasilocal mass remains a camergy, which is obtained by the variation of the total action
served charge in that frame too. Furthermore, the unreferton classical solutionswith respect td\, we will henceforth
enced quasilocal energy is not invariant under a conformalirop the last term in Eq3.1) from our consideration.
transformation. Whefi is independent of the coordinates on ~ To calculate the quasilocal energy associated with regions

the quasilocal surface, it transforms as of spacetime solutions of)+ 1)-dimensional Einstein grav-
_ ity, the appropriate generalization of the BY reference action
E—Ey=0Q YE-Ey) (2.29  is again given by Eq(3.1), except that the integration is now
_ o over the boundary’B. The boundaryPB itself is the time-
and, hence, is not a conformal invariant. evolution of the D—1)-dimensional spatial boundar.

Finally, note that when we compare the quasilocal masseg,, asymptotically flat spacetimes an appropriate reference
of conformally related spacetimes above, we assume that t%ckground might be vacuum flat spacetime.
boundary®B, which is taken to be embedded in a particular However, for an arbitrary spacetime soluti@ng., space-

spacetime, is also embeddable in the conformally relatedyes that are neither spatially closed nor asymptotically
spacetime. However, the embeddability of a hypersurface '87at), a more well defined prescription for the choiceSSfis

quires that the intrinsic and extrinsic geometry of the bo”nd‘required. Recently, one such prescription was given by

ary obey the Gauss-Codazzi, Codazzi-Mainardi, and Riccyayking and Horowitz in their quest to obtain the total mass

integrability conditions in both spacetimes separately. Inyt gpacetimes with arbitrary asymptotic behavior in general
general, not all of these integrability conditions are confor-yg|ativity [21]. Their starting point is the “physical” action
mal invariants. Therefore, embeddability of a hypersurface inyefined as

a spacetime does not guarantee its embeddability in a con-

formally related spacetime. Neverth_eless,_lt can be ;hown Se(g,f )=S(g,f )—S(go,fo), (3.2
that one can always embed B { 1)-dimensional spacelike
spherical boundary in[¥+ 1)-dimensional SSS spacetime
solutions, which are Ricci flat, and in spacetimes relate
through conformal transformations that preserve these spac
time propertie§23,24].

round, which is aolutionto the field equations. Therefore,
ie physical action of the reference background is zero.
Given a solution ¢,f), in order to determine a reference
background, §,,f,), HH fix a three-boundary®g) near in-
IIl. REFERENCE ACTION AND QUASILOCAL MASS finity and require thatd,f) induce the same fields on this

The Brown-York definition of the quasilocal energy boundary asdo,fo). The energy of a solution can be ob-
(2.16) associated with a spatially bounded region of a giverfained from the physical Hamiltonian associated v@h(for
spacetime solution is not unique. This is because an arbitra§etails, see Refi21]) and is similar to the BY quasilocal
functionalS® of the boundary data can be added to the actiorfXPression. For asymptotically flat spacetime solutions, the
without affecting the equations of motion. On the other hand€ference background is chosen to be flat space and the re-
to get a well-definedfinite) expression for the quasilocal sulting energy expression agrees with the one obtained in the
energy of spatially non-compact geometries, one is usualf}PM formalism. o
required to subtract th@ivergenj contribution of some ref- ~  Itis important to note that the HH prescription allows one
erence background. At the level of the action such a “reguf© compute the total energy associated with a general time
larization” is tantamount to the addition of a reference actiontranslationt*=Nu”+V*. In a generic case, the resulting
S°, which is a functional of appropriate background fields&nergy will have a shift-dependent contribution, such as the

(9do.fo), to the original actiorSt. For 4D Einstein gravity, second term in .Eq(3..1). However, such a term vanishes
BY prescribe the following reference action: when the spacetime is taken to approach a static background

solution and the resulting expressigmth N= 1) is the same
- as the BY energy2.16. Even if the spacetime is asymptoti-
=- LBng[N\/;(k/KHoJF 2\aV3(aainiPI1\) o], cally non-static, this term will vanish whevi®o,,=0. This
(3.1 happens, e.g., for cosmological solutions with the Robertson-
Walker metric.
which is a linear functional of the lapsd and shift V2. Building on the work of Brown and York, Chan, Creigh-
Above, 3B is the time-evolution of a two-boundaB/thatis  ton, and Manr{20,22 chose a particular reference action to
embedded in a fixed three-dimensional spacelike Slia#  compute the quasilocal masses of solutions in scalar-tensor
some fixed reference spacetime. Alsok|, and theories. In the special case of SSS spacetimes, it has been
(aaian'J/\/ﬁ)|o are arbitrary functions of the two-metric shown by CCM that their choice leads to a conformally in-
0ap ON the boundaryB, n' is the unit normal to the 2- variant referenced quasilocal mass. A second possibility of
boundaryB, and{h;; ,P"} are the canonical 3-metric and the obtaining a reference action is to generalize the HH prescrip-
conjugate momentum on the three-dimensional spacelikdon to scalar-tensor theories. Such an attempt was also made
slice 2. Varying the lapse in the first term in E.1) gives by CCM[20]. However, they conclude that the mass formula

Cg-/‘here 0o.fg) are fields specifying a reference static back-
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obtained using their generalization of the HH prescription iswhich is assumed to arise as a solution to another scalar-
not conformally invariant. For details on this issue, we refertensor theory that is related to actiéh 1) by the conformal
the reader to Re{20]. . . transformation(3.5). Above, N=0N andx ="\, where
eferenced quasiooal mass assosiated with bounded regiogs S & fincion off only .

For the special case of the spacetime soluti®dd), and

.Of spacetime solut|on§vv|th arbitrary asympt_otlc _behavu)r with the choice of reference acti@8.3), CCM argue that the
in scalar-tensor gravity. A relevant question in such an

analysis is whether the reference action can be specified in%uasilocal mass associated with the region inside a sphere of
aly T . € Sp Curvature radiug, which is embedded in spacetin(g.4),
unigue way. Finding an answer to this would in itself be an

) , : . S . can be expressed as
interesting pursuit and involves addressing issues of positiv-

ity of the mass or energy of such solutions as well as the _ ﬁ(r) (D—l)KD_l(r)U(gi:)

stability of the corresponding reference solution. Here, we do M(r)

not attempt to find if the reference action or solution can be K r

uniquely specified at all. Below, after discussing the CCM d

analysis briefly, we present our alternative generalization of _)\(r)E[AD—l(r)U(d))] _ (3.9

the HH prescription to scalar-tensor gravity. Although this
does not select a unique reference action, nevertheless, in- _
voking this prescription reduces the number of allowed ref-Above, Ap _, is the area of the boundaryp(- 1)-sphere of
erence actions. We prove that under certain conditions suchradiusr given by
prescription does lead to a conformally invariant referenced

4m)"T(nf2)

guasilocal mass. N :J' n —:(
A, Bd x\/; () r’,

A. CCM prescription

(3.9

. ] o;jj being the metric oB. Note that the first term in E¢3.8)
For a non-minimally coupled action of the ty2.1), the s just the reference term

reference action suggested by CCM29)]

— = W:—f d° IXNVOU (o) (Knat/ k), (3.1
S [, NGV @ Kl 33 o XN i), (210
B
. whereas the second term arises from the quasilocal mass
wherekg,; is the trace of the extrinsic curvature of the (  definition (2.20 on using the identity
—1)-boundaryB embedded in @&-dimensional flat spatial

slice. Consider the special case of an asymptotically flat SSS 1 (D-1)0 e N(HA(r) d —
spacetime metric, as a solution in this theory: P de XyoNk=— < dr Ap-1(1),
(3.1
_ dr?
ds?=—N*(r)dt*+ — +ride?, (3.4  which holds for the SSS metri®.4). We will call Eq. (3.8)
AS(r) the CCM mass expression. Similarly, CCM find that for the

. . metric (3.7), the quasilocal mass is
whereN and\ are functions of only, anddw? is the line

element on a unitl®—1)-sphere. Let us now make the fol- _ N(r) (D—l)KD,l(r)U ~ d _ B
lowing conformal transformation: M(r)= - —Nr)—[Ap-1(NU] |,
K Qr dr
Gap=07%0,, U=01"P, (3.5 (3.12

, , , - whereAp_1,=0C VA L_4.
whereU(¢) is the scalar-field dependent coupling appearing (D-1) (D-1)- _ o .
in Eq. (3.3). Note that under this conformal transformation ~ Thus, the CCM masM(r) defined in Eq(3.8) is invari-
the functional form ofs°, ant under the conformal transformatiof8.5, namely,
M(r)=M(r). To be precise, each term in E®.8) is sepa-
o Do~ ~ rately conformally invariant. Finally, let us emphasize that
S'=- fDBd XNVGU () (Kyae/ &), (3.8 unlike in the HH prescription, in the CCM prescription one
does not require the “background” fields appearing in the
reference actior3.3) to constitute a solution of that action.
Also, the choice of the CCM reference action is independent
of the asymptotic behavior of the fields of the solutipFhis
is the reason why the referenced quasilocal masth N

remains unchanged provided we assuieQN.
Let the metric(3.4) be related through this conformal
transformation to the following SSS metric:

dr =1) in this prescription differs from the Abbott-Deser defi-
d&=—N2(r)dt?+ = - 02r2dw?, (3.7y  nition of the total energy25] when applied to asymptotically
N2(r) anti—de Sitter SSS spacetimes. One can, however, recover
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this energy expression by generalizing the CCM referencgarm, M,,, is obtained from the HH prescribed reference ac-
action to the case of such spacetintée details, see Ref. tjon (3.13 by a BY-type analysias described in Sec. 1I)B

[12]).] ie.,
B. Alternative prescription for reference action _ 1 .
and quasilocal mass Mo=— f d P~ Vx\aoNo[U(g)ko—NhdU (o)1,
B
First, we extend the applicability of the HH prescription (3.16

to scalar-tensor gravity in order to obtain an appropriate ref-

erence action. Given a solutiong,f), one chooses a refer- which is just the first term on the right-hand side of Eq.
ence backgroundolution (gq,fp), by using the HH pre- (2.20 as evaluated on the reference solution.
scription as enunciated above in this section. Then the We now show that the referenced quasilocal mass so ob-

appropriate reference action is simply tained is conformally invariant. In the previous section, we
o _ proved that the unreferenced quasilocal mass is a conformal
[S[9ab: ¢, F]+ Soe[Jap, Plrer (313 jnvariant. What remains to be verified is that the reference

whereS and Sog are given by Eqs(2.1) and(2.18), respec- term I\WO is also' invarialjt under the tra.nsformati@;a,D
tively, and[term],.; denotes the value of the term as evalu- — {(#0)9oapn- This is easily done by applying the curvature-

ated on the reference solution. In general, the reference aff@nsformation identity(2.28 to the above expression for

tion can depend on the initial and final metrigg(t’) and Mo. This shows thaMo=M,, which proves the conformal

— . . invariance of the reference term. Hence the referenced
hi;(t") through spatial boundary terms, namely, the first termI varl

. . : ilocal m [ nformally invariaf@his, of r
on the right-hand side of E42.18. However, in the present quasilocal mass is conformally invarianThis, of course,

. . ) presumes a monotonia.)
calculation such contrllputmns can be dropped since they d We now illustrate this invariance explicitly for the case of
not affect the BY quasilocal mass.

Second, we address the following question: If the HHSSS spacetimes. By applying the mass expressi2izg)

A : o and(3.16) to the SSS metri¢3.4), we obtain
prescription is obeyed by a pair of solutiong,{) and

(9o.fp), for the boundanB in a given frame, then will it - NI —  d — 0

also be obeyed by conformally related fields in a conformally M(r)=|—=\(r) —=[Ap_1(NU(e)]| . (3.19

related frame? We answer this as follows. Note that the ref- K dr ol

erence solutiondy, ) is conformally related to that in Ein-

stein gravity, @o,fo), by Eq.(2.21), whereU is now a func-  whereA is given in Eq.(3.9) and[term]?, is defined as the

tion of ¢o. Here, botlJ(¢) and the conformal factd? are  difference in the values of the term evaluated on the refer-

positive-definite q_uantities. ThUi for a solution in SCEi'ar-ence Spacetime and on the Spacetime solution whose mass

tensor gravity, @,f), if the lapseN and the fields ¢4y, ¢) we aim to compute. Note that in keeping with the HH pre-

induced on the bounda® match with the laps&l, and the ~ Scription, we require that at the boundarysrg, the SSS

fields (ogap, do) atB in the reference spacetime, then for the solution satisfyN(rg) =No(rg), dan(rs)=can(re)lo, and

conformally related configurationg(f) in the Einstein U(¢(rg))=U(¢o(rg)). To obtain the total mass of an as-

frame, the lapseN and the fieldo,, at B will necessarily  ymptotically flat spacetime, one first evaluad$r) for gen-

match with their reference spacetime counterp&igsand eralr and then imposes the limit—o. In this limit, Eq.

00ap iNduced on the corresponding boundary. This holdg3.17) yields the ADM mass when the reference solution is

provided() is a monotonic function o). To repeat, let chosen to be flat. The referenced quasilocal mass defined in
— o o Eq. (3.17) is manifestly invariant under the conformal trans-
Nlg=Nole, 0apls=00abls: Ple=¢ols- (3.14  formation(3.5) and, therefore, is the same as the expression

obtained upon removing the overbars in that equation.

9 Alternatively, consider applying the mass expressions

(2.20 and(3.16 to an SSS metric of the forti8.7), namely,

Then, using the above conditions, we can infer the followin
requirements on the Einstein frame fields:

N|a=[NQ"(¢)]a=[NoQ (o) le=Nole, ,

— dr
oab|B=[Eabn—2(¢>]3=[aabsl*(%)]szcma?lgaia ds=—N*(dt*+ ——+0%%de®.  (3.19

N4(r)

This proves that, for such a conformal factor, if the HH pre-y; is easy to verify that the resulting quasilocal mass expres-
scription is obeyed in a given frame, say, the scalar-tensagjgn is identical to Eq(3.17). However, the area oB [as

frame, it will automatically be satisfied in the Einstein frame. s mpedded in metrics of the ty[$8.18] is now given as
It is easy to extend this proof to the case of any two confor-

mally related frames. /2
A meaningful referenced quasilocal mass can now be de- A :f d"x\o= wrngn_ (3.19
fined. It is simply given by Eq(2.20, where the reference " Js r'(n)
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Here too the referenced quasilocal m&3<7 remains in- 1 _ _ _
variant under conformal transformations of the met8d.8), S=5. J d*x\—ge 2[R+4(V ¢)2—2A —F2],
provided the HH prescription is followed in determining the 4.1
reference solution.

To summarize, we define the referenced quasilocal mass —. . . o :
of a solution associated with a bounddyas the difference WhgreR Is the fourﬁlm_ensuonal Ricci spalaf&, IS a_ cosmq-
of its unreferenced quasilocal mass from that of a referenclogical constant an& ,, is the Maxwell field associated with
field configuration, which is also a solution of the theory and@ U(1) subgroup of BxEg. In this subsection we will con-
obeys the HH prescription. Under a conformal transformasider the case wher& =0. The magnetically charged black
tion, this pair of solutions has its “image” pair, which is hole solution to the above action|i26,27]
comprised of two solutions in the conformally related frame;
in that frame, the referenced quasilocal mass is again the o e’?(1-2me’/r)
difference of the unreferenced quasilocal masses of these two © 1-Q% %=/(mr)
image solutions. To investigate the behavior of the refer-

. . 2
enced quasilocal mass under a conformal transformation, one + dr 4 r2dw?
must therefore study how the unreferenced quasilocal masses (1—2me?=/r)[1— Q% %=/(mr)] '
of these two solutions transform under the conformal map 42

9ab=Q(9)Yab aNdgoan=2(b0)Yoan, respectively Such a

study reveals the conformal invariance of our referenced 2~

quasilocal mas$3.17). ez‘f’:ez‘f’w( 1— Q% ) =U(o) 4.3
We end this section by noting that, when applied to the mr ’

case of asymptotically flat SSS spacetimes, there is a subtle

but significant difference between the quasilocal mass defi- F=0 sin 6d 90d &, (4.4)

nition (3.17), which we propose above, and the mass defini-

tion that CCM obtain by their generalization of the HH pre-

scription[20], namely,

N(r)

K

wherem and Q are classical hairs of the stringy black hole
and ¢, is the asymptotic constant value of the dilaton.
d Above, m is also called the Schwarzschild mass of the space-
[1-N(r)] ==[Ap_1(NU()]]| . time andQ is the magnetic charge of the black hole. The
dr cl strings couple to the above metrig,,, as opposed to the
(3.20 one related through the conformal transformatigp,

Specifically, consider the case of SSS metrics of the for orem 9y, Which casts the above action in the Hilbert

(3.4). Then, the above formula can be obtained from Eqg. We will now demonstrate that the quasilocal mass of a

(3.17) in two steps. First, one sei(r)[o=1 in Eq.(3.17.  gpatial region enclosed inside the two-sphere of curvature
This can always be done, for the reference spacetime solyadiusry is conformally invariant. We first calculate the

tion in such a case is flat. Second, and more importantly, ongass in the string frame. Since the spacetith@) is asymp-

I\W(r)=

assumeshat totically flat, we choose the reference metric to be flat:
du du
éf’c') = (j:%)’ (3.21) dsz=—N2dt?+dr?+r2dw?, (4.5

at the boundanB. This, however, is an additional require- whereNj is a constant. Note that the above metric is a so-
ment over and above those included in the HH prescriptionysion of the action(4.1) with éo=const and=,=0. A two-
Consequently, E¢(3.20 is different from Eq.(3.17), where  gphere houndary of curvature radius rg can be isometri-
condition(3.21) is not assumed. This is also the reason whycajly embedded in both the above spacetir@® and(4.5).

Eq. (3.20, as opposed to Eq3.17), fails to be conformally  For the lapse at the boundary to match in these spacetimes,

In the next section we apply our mass definiti@l7?) to

find the referenced quasilocal masses of charged black holes o
in 4D dilaton gravity and their conformally related cousins in No= e¢x( 1-—
4D Einstein gravity.

2m eq&w -1/2

1/2 2.~ b,
(1— Qe (4.6)

mrg

s

For the remaining HH requirement to be satisfied, the value
of ¢ induced at the boundary in these spacetimes should
match. This implies that on the reference spaceti{thé),

A. Asymptotically flat SSS spacetimes one must have

IV. QUASILOCAL MASS IN SCALAR-TENSOR
THEORIES OF GRAVITY: EXAMPLES

Let us consider the charged black hole solutions of the
four-dimensional dilaton gravity actioisee Refs[13,14] for
reviews 3See the discussion in Sec. V.

044019-9



SUKANTA BOSE AND DAKSH LOHIYA PHYSICAL REVIEW D 59 044019

Qze_ [0
mrg

(4.19

2me?=\ 112
e—2¢oze—2¢x(1_ )

s

)=U<¢o> (.7 No=(1—

everywhere. Using these expressions in B417), we find  everywhere. Note that the flat metfi¢.13 is indeed confor-

that the quasilocal mass is mally related to the reference solutidd.5 in the string
frame. By the application of E¢3.17), we find that the
_ Q% ¢= 2meb= quasilocal mass turns out to be that given in Eg8). This
M(rg)=e"%rg —(1— )(1— ) shows that the quasilocal mass at anis a conformal in-
Mmrg e .
variant.
e =Q? 2me?= We now consider electrically charged black hole solutions
T omr B of the action(4.1). The associated metric, dilaton, and the
B B non-vanishing Maxwell field tensor components are
2 7(?590 P
e 2mée
+ \/( 1- Q )(1— ) . (49 e [1+(Q2—2m2e??=)/(me?=r)]
mrg rs ds?=— Iy R—;
[1+Q/(me”r)]
In the limit rg—o, M(rg)—m. dr2 Y
We next study the Einstein-frame solution that is confor- + 75278, g Trede’,
mally related to Eq(4.2) through the conformal transforma- 1+(Qe—2me™)/(me™r)
tion (2.2), where (4.15
Q2e7¢w Qee7¢x
= 72¢oc — — _2‘/7:
U=e (1 mr ) (4.9 U(e)=e I+ —— | (4.16
Thus, the Einstein metric is — Qe*
Fi= —z (4.1
2me?- 2me?=\ 1
ds?=—|1- dt?+e 2% 1— r? , , o ,
r Since this spacetime is asymptotically flat, we choose the
) reference solution to be flat with the met(i#.5), where the
+e2¢mr2< 1— Qe M)dwz (4.10 lapse is justy—gy in Eq. (4.15 evaluated at=rg.
mr ' ' By applying our prescription for finding the quasilocal

o o _ mass(as we did in the case of the magnetically charged
Once again, since the above spacetime is asymptotically flalack hole$ to this case, we find that, in the string frame,
we choose the reference metric to be flat:
QZ -1
+— ,
meP=rg

: . . 4.1
wherep is the radial coordinate andy= const. In the above (4.18
coordinates, a two-sphefwith t and p constant embedded where 2=, (rg) in Eq. (4.15. Thus, the total mass of
in this reference spacetime is not isometric with a two-spherg,o spacetime is once again

(with t andr constant embedded in spacetinié.10. How- On the other hand, in the Einstein frame the metric is
ever, they can be made isometric by definjgn terms of

Q2N
2me?-rg

ds3=—NZdt?+dp?+ p2dw?, (4.11) I\W(rB)=e<”er[f—f2+

the curvature coordinate as 2m2e2%=
d32=—e_¢°° 1_? dt2
Q2 #»| 112 me®=r + Qg
— — _¢m —
p r( 1 — ) e 7, (4.12 om2e2b. | 1 ,
+|11- e 2 2 dr
. . . o me®r+ Qg
One can implement this coordinate transformation in either )
Eq. (4.10 or (4.11). Both choices yield the same mass ex- ) Qe )
pressions. We choose to apply it in E¢4.11). In these co- +ro| 1+ me?P-r do®, (4.19

ordinates, the flat metric gets recast to
which is related to the string metri¢.15 via the conformal

N2 220 Q% %\ transformation(2.2), whereU is given by Eq.(4.16). Since
dsé— —N%dt*+e 1- mrg dr the above solution is asymptotically flat, the reference metric
_ is chosen to be flat once again:
e_ o
+r?1— . )ez‘%dwz. (4.13 2 Q2
B = N2di2+| 1+ 242014 2
dsi=—NZdt>+| 1 . dri+r3| 1 —— dw?,
For matching the lapse on the boundary atrg, we require (4.20
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where, as in Eq(4.13, we use coordinates such that the As rg—o, M(rg)—M.

2-sphere boundary at=rg is manifestly isometric with that We next consider the string action conformally related to
in the spacetimé4.19. Also, ¢, is defined so as to match Eg. (4.22:

with the solution(4.16 at the boundary 2-sphere latrg:

e 200=U(o)l,-r = 1+Q¥(mePry).  (4.20 x| @V TEe MR 4T @29

This is then the value ofs, everywhere in the reference Where the conformal factor is given by
spacetime. Similarly the reference lapdg is chosen to be

V=0 in EQ. (4.19 evaluated at =rg. Our prescription for Q—e¢’——(— u-12), (4.30

evaluating the quasilocal mass then yields the same expres- V2Q

sion as found in Eq(4.18 for the string frame, thus demon-

strating its conformal invariance. Therefore, the string metric conformally related to E§23
is

B. Asymptotically non-flat black holes 2 2102

r
To demonstrate that our prescription yields a conformally ~ d5°=— W(r2_472M)dt2+ Wdr
invariant definition of quasilocal mass even for asymptoti-
cally non-flat solutions we consider a particular black hole r )
solution of Chan, Horne, and Mann that arises from the fol- + Z_dew : (4.31)
lowing action[28]:

2
4

The space part of the reference string metric is chosen by
+ J d4x\/_[R 2(V)2—e 29F2]. (4.22 settingM =0 above, which gives the reference metric as

2r? r4
___2 2 2
The fields of the electrically charged black hole solution in d%— Ngdt“+ Q2 dre+ 2Q2 (4.32
this theory are
where the reference lapse is obtained by matching with that
1 4r? in Eq. (4.3 at the boundary =rg:
—_ _— (r2_ 2 24 2 2 2
ds? 74(I’ 4y M)dte+ Y dre+rede”,
(4.23 No=——2— (12— 472M)*2 (4.33
2Q2 ‘FQ
e %= I (4.249  With these prescribed choices for the reference fields, we

find that the quasilocal mass is

F —zr (4.25 — r [1-4¥°M
= , . B
tr 2Qy M(rB):_nyz [1_ _rzB }(r23_472|\/|)1/2,

where y is a constant with dimensions qfr and Q is the (4.39

electric charge. which is the same as that evaluated in the Einstein frame,
In this case, there is no unique way to choose the refermamely, Eq.(4.28.

ence geometry. Here, we choose to compare the quasilocal

mass of the above solution with respect to a geometry whose V. DISCUSSION

(non-fla) space part of the metric is determined by setting

M=0 in Eq.(4.23. Thus, our reference geometry is Naive expectations from classical field theory would sug-
2 est that physical quantities should remain invariant under a
ds’o= —Nodt2+4dr2+r2dw2. (4.26 gonformalptr)z/insfor?nation. However, when it comes to the
behavior of the quasilocal mass under such a transformation,
one must be cautious. This is becaaseriori it cannot be
ruled out that in some frames the scalar fieidwhich de-
1 fines the conformal factor, itself contributes to the energy-
No=—(r’g—4y*M)*? (4.277  momentum of the spacetime. In this paper we showed that,
Y the preceding caveat notwithstanding, the unreferenced BY
uasilocal mass is indeed conformally invariant.
However, to obtain the physical mass of a spacetime one
is often required to subtract a reference term. At the level of
2 2 2 the action, this is achieved by subtracting a reference action.
T 4y°M 4y“M Diff . . ; .
M(rg)= = 1- ———1+—5—|. (4.28 ifferent choices of reference action will lead to different
2 s ] physical masses for the same classical solution. Moreover,

For the 2-sphere boundary atrg, the HH prescription
dictates that

be obeyed everywhere. Our prescription for the quasiloca?
mass then yields
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the reference terrﬁo arising from such actions and, conse- in that coordinate frame, and the other term is then inter-
quently, the referenced quasilocal mass may not be confoRreted as the stress-energy contribution of the geonttstay
mally invariant. is, of the gravitational as well as the Brans-Dicke type scalar

In this paper, we attempted to reduce the arbitrariness ifi€ld). Naturally, any statement made about the stress-energy
the choice of a reference action. We were motivated in thigontent of the geometry using this approach will be frame-
choice by a basic principle, in the form of the Hawking- dependent. However, for spherically symmetric cases, a
Horowitz prescription, which requires the reference geomMmeaningful proper energy contained in the sph@?e with
etry to obey certain conditions. We proved that this prescripits origin at the center of spherical symmetry, can be defined
tion automatically gives rise to a conformally invariant using this method1]. It is in this context that we present this
referenced quasilocal mass if the conformal factor is monoalternative derivation of the quasilocal energy expression,
tonic in the scalar field. Eq. (2.19.

We note, however, that the HH prescription does not at- We begin by finding the equations of motion for the
tempt to specify a unique reference geometry, owing tdheory described by Eq2.1) for the special case where
which the referenced quasilocal mass is non-unique, albeM/(¢)=X(¢) andU($)W(¢)=1. (Our results can be gen-
conformally invariant. It is only in some special cases thateralized in a straightforward manner to other cases not con-
one can obtain a unique physical mass. Asymptotically flatrained by these conditiondkequiring the action to be sta-
spacetime solutions of general relativity belong to this cattionary under variations of the metric tensor and the figld
egory. There the positive energy theorem and the stabilit@ives the equations of motion
criterion for Minkowski spacetime ensure that under certain
positivity conditions on the energy-momentum tensor, the U(o)
total energy of such spacetimes is positive; it is zero only for
the Minkowski spacetime. This selects the flat spacetime as a 1
very spem_al refergnce geometry for. calculating the total en- =— S [T+ Th"+ 2U(¢)?“?V—2§“VU(¢)]§§],
ergy and, in certain cases, the quasilocal mass and energy of 2
regions in such spacetimes. The conformal invariance of the (A1)
guasilocal mass implies that in conformally related space-
times, which are asymptotically flat, the flat spacetime con- S(UV) —8U
tinues to be a special reference geometry. 9" b 25—¢ -R b

In this vein, one may argue that if the positive energy

theorem could be sh_ovyn to hold for asymptotically non-f_lat\,\,here we have used the notatign,=dA/ax* and A,
cases, at least of a limited type such as the SSS spacetlmeEs€ A. Here T*" is the energy-morﬁentum tensor of rr’1atter
then a corresponding special reference geometry may moE _

emerge, which could be used under the HH prescription t&@btained by varyind.,, with respect tag,,,,, and

compute the referenced quasilocal mass in such spacetimes

v _ vy V[ _ o\ —
in some unique way. This and other related issues are cur- Ty'=-20"¢pd"¢p—g"' [~ " pdrd—U()V(e)].

— 1 =
R’u—ig'U“R

0, (A2)

rently under study29]. (A3)
We have considered, for the presentgandependent .
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APPENDIX: THE STRESS-ENERGY PSEUDOTENSOR with

In this section we present an alternative derivation of the tHr=TH"+ 2U(¢)?”?V—29”VU(¢)§§. (A5)
guasilocal energy expressi@@.19 using the pseudotensor
method[5,2,1]. The outline of our approach, as applied to From the equation of motiofAl) and the Bianchi identity it
the scalar-tensor type theories, Ef.1), is as follows. As is  follows that
the case for the Brans-Dicke theory, even in our generalized
non-minimally coupled theory, we make use of the Bianchi
identity and the equations of motion to show that the cova-
riant divergence of the matter stress-tensor vanishes. In a
particular coordinate system, this is then shown to imply thaffhe definition of the Riemann tensor yields the identity
the ordinary divergence of the sum of two quantities van- _ o o
ishes. One of the terms in this sum is the matter stress-tensor R,eU (@) P=U():x;n = U(P)ia:n - (A7)

1 1
U($),| R~ 59" R|==3[Thi, +t&].  (A)
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Taking the covariant derivative of E4A3) and using the V=[UU—\—gg” T2, U+ /—gg"”l“fipU,a].
equation of motior{A2) for the scalar fieldp, we obtain (A15)
T4,=U($)*R. (A8) Comparing the variations o and H with respect to the

metric, we get
Taking the covariant derivative of EGA5) and using Egs. 1
(A7) and (A8) then gives the desirable vanishing covariant — — _ o S
divergence of the matter stress energy tensor. \/_gUG“V+ \/_g[u?‘” GunUial + 2 \/_gT""”

Our task now is to find the expression for a conserved

stress-energy pseudotensor for the geometry. To achieve this _ d(V+ \/__9L¢>) _
we proceed by expressing the vanishing of the covariant di- agr”
vergence of the matter stress-energy tensor as

d(V+V—gly)
agh”

} , (A16)
WA

where we made use of Eq#10) and(A5). Next, we define

1
[V=0Th.] = 5958,V —9T7 =0. (A9) D=+ V=gL,. (A17)

To cast the left-hand side of the above equation into a totalhe expression for the ordinary derivativeofnd the field

ordinary divergence one has to seek a representation of tfegjuation (A2) for ¢ enable us to express,s [t™

second quantity in terms of a total ordinary divergence. Thist 2U(¢)G™] as a total divergence. Using E¢A10), we

can be done as follows. First, we make use of the equation afxpress Eq(A9) as a vanishing total derivative

motion (A6) to express the matter stress-energy tensor in R R

terms of purely geometrical quantities, namely, the scalar N A% B 2%
J=gTy, V8- N

field and metric-dependent quantities agrfg,u EY V¢,u =0.

Th=—1t"P—2U($)G", (A10) (A18)

For v=0, the expression within the brackets integrated over
where G is the Einstein tensor(For simplicity, we have 5 spacelike hypersurface is thus invariant under time transla-
above dropped a possible contribution from a divergencelesgons for a distribution of matter with a compact support over
term) Second, note that the right-hand side of this expresthe surface. This is the expression for the stress-energy

sion is merely the functional derivative of pseudotensor that we seek. The quantity
JEZJ d®*x—g[U(¢d)R+L ] (A11) p sifdz (e Y v grﬁ_i(ﬁ
K2k s mu ® (99,Toﬁ M ’9‘1’,0 AN

under variations of the metric tensor, with boundary condi- (A19)

tions that require the vanishing of the metric and its firstaygjuated on a constant-time spacelike hypersurfacés
derivatives on the boundary of ®¢+ 1)-dimensional mani-  thys conserved. This may be viewed as the generalization of
fold over which this integral has been taken. For more genthe energy-momentum four-vector for a Brans-Dicke theory.
eral variations, one would get contributions from the surfaceas in general relativityP, is not a generally covariant four-
integrals as well. Here, the variationlof, with respect to the  yector sincel/ and V are not scalar densities. The intrinsic
metric tensor is taken to yiel'dg”. We consider the standard non-covariance of the energy-momentum density of the
decomposition ofy/—gR into a pure divergence term and a gravitational field has its origin in the intimate connection
simple expression involving only the metric and its first de-between geometry and the gravitational field. Had the ex-
rivatives: pression been covariant, one could always have gone into a
preferred (freely falling) frame to ensure vanishing of an
V=gR=U+[-09T 2,1 ,~[V-09T 2,1, arbitrary localized gravitational field.
(A12) The above form for the energy-momentum pseudotensor
. for the generalized Brans-Dicke theory can also be obtained
with by considering a variation of the coordinate system instead
of the metric field. The analysis enables us to express the
U=\—gg"’[T3,I£,~T§T%,1. (A13)  gravitational stress-energy pseudotensor in a very compact
form, which is identical to the expression derived in the
It follows that the functional derivative of with respect to  quasilocal formalism. To demonstrate this, we consider
the metric tensor is the same as that of

Hzf Vd(P+ Dy, (A20)
HEJ dPHUx[V+\—gLgl, (A14)
whereV is a function of the metric, the scalar fiets| and
where their first derivatives. Its variation is
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which, using the above identities, reduces to

V= 7V SgM7+ 4 S f}5 L s
_&g,u,v g &gfv g)\ ¢ ¢ d) (rb)\
A21 SH=2 f # qd@+x=0. A
(A21) €)s a7 k97 dP x=0 (A33)
Consider an infinitesimal change of coordinates of the
form This expression may be integrated by parts twice. Sifide
vanishes for arbitrarg”, we obtain the following divergence
KE=x"+e&”. (A22) law:
Retaining terms up to the first order éwe get the follow- oy
ing variations: ( - gw) =0. (A34)
agh” .
X aEe , A
W=5A—Ea—x)\+0(6 ), (A23) Thus
SgHt=€(&" g*r+ & gM), A24 Y
g E( ’ag gyag ) ( ) \/__gFTE<agMVgTV) (A35)
14 14 TV T, ’>\
894 = e(g €4+ ghPE,— gl EG+ T ER \ +a™HE ), >
efines a conserved quantity. Using the iden an
(A25)  gefi d ity. Using the ident&g0) and
" the field equatiorfAl) gives
N—g=—eV—9&,, (A26)
1. av
6¢=0, (A27) \/—ngz—\/—gTLm)T—EVg;—k— @gl”)
T "
(P \)=—€d &5 (A28) -
1 9V
A restriction to linear transformations enables one to get an 29¢ Tm (A36)

elegant form forsV. The Christoffel symbols transform as S _ _

tensors under such transformations and hel¢eansforms ~ Which is just the expression that we had obtained for the

as a scalar density. Thus stress energy pseudotensor by the variation of the metric ten-
sor earlier. The expressioff\34) for a vanishing ordinary

R v ) divergence implies that
OV=—=056V—g=—€& V. (A29)
V=49 1 av
_— - : . Pu=-— f ——9”| dv (A37)
Substituting the variationA24)—(A28) for an arbitrary lin- ag\ A
ear coordinate transformation into E&21), and comparing
the expression with EqA29), we obtain the identity is a conserved quantity ¥ is the entire space at a given
R R time. In the special case of a time independent metric,
2% vy v 1 9V v v 1. Gauss’s theorem iD dimensions gives the energy momen-
g9 aguvg n 2 &gi,”g'“ By S =75 Vgu tum as surface integral over ® ¢ 1)-dimensional surface:
(A30)
1 w
Although the above identity was derived for variations under P,=—— f é,g,u,vg dz;. (A38)

linear coordinate transformations, one can verify that it holds

quite generally2]. The use of this identity yields a simple s gives the interesting result that in the generalized Brans-
expreSSIon for the variation df under the general transfor- Dicke theory, the generahzed energy-momentum in a
mation (A22): D-dimensional volume can be determined by the metric-
tensor and its derivatives on th® (- 1)-dimensional sur-
face, the details of the field inside the volume being irrel-
evant.

We conclude this appendix by noting that in the curvature

Under conditions wheré and its derivatives are taken to coordinates, the above expressigh38) evaluated for the
vanish on the boundary, the variation of the metric tensoiSSS metric(3.4), tallies with the quasilocal energy expres-

and its derivatives also vanish there. Under such boundaryjon (2.19 (with E, set equal to zedo This can be seen from
conditions,H has a vanishing variation, i.e., the definition of)’ given by Eqs(A17) and(A15): The term
D Uk in Eq. (2.19 yields the first term in the definitioA15)
SH= f 5( _> [—gd®P*+Dx=0, (A32)  of V, whereas the term'd;U in Eq. (2.19 yields the second
s -g and third terms ofV.

av
V= —EV§ +2e—0

9" e (A31)
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