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Behavior of quasilocal mass under conformal transformations
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We show that in a generic scalar-tensor theory of gravity, the ‘‘referenced’’ quasilocal mass of a spatially
bounded region in a classical solution is invariant under conformal transformations of the spacetime metric.
We first extend the Brown-York quasilocal formalism to such theories to obtain the ‘‘unreferenced’’ quasilocal
mass and prove it to be conformally invariant. However, this quantity is typically divergent. It is, therefore,
essential to subtract from it a properly defined reference term to obtain a finite and physically meaningful
quantity, namely, the referenced quasilocal mass. The appropriate reference term in this case is defined by
generalizing the Hawking-Horowitz prescription, which was originally proposed for general relativity. For
such a choice of reference term, the referenced quasilocal mass for a general spacetime solution is obtained.
This expression is shown to be a conformal invariant provided the conformal factor is a monotonic function of
the scalar field. We apply this expression to the case of static spherically symmetric solutions with arbitrary
asymptotics to obtain the referenced quasilocal mass of such solutions. Finally, we demonstrate the conformal
invariance of our quasilocal mass formula by applying it to specific cases of four-dimensional charged black
hole spacetimes, of both the asymptotically flat and non-flat kinds, in conformally related theories.
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I. INTRODUCTION

The lack of a generically meaningful notion of local e
ergy density in general relativity is well known@1–3#. Es-
sentially, this is due to the absence of an unambiguous
scription for decomposing the spacetime metric in
‘‘background’’ and ‘‘dynamical’’ components.1 If such a
prescription were available, then one could associate en
in general relativity with the dynamical component of t
metric. In the past there have been attempts to define qua
cal energy using pseudotensor methods@1,2,5#. However,
these approaches led to coordinate-dependent express
which lacked an unambiguous geometrical interpretati
Another way of defining quasilocal energy has been via
spinor constructions@6–9#. There are, however, several u
resolved questions regarding this approach, a key issue b
the lack of a rigorous proof of the Witten-Nester integ
being a boundary value of the gravitational Hamiltoni
@10#.2 Nevertheless, the total energy of an isolated sys
has been defined in terms of the behavior of the gravitatio
field at large distances from the system@11#. Moreover,
Brown and York~BY! have introduced in Ref.@3# a way to
define the quasilocal energy of a spatially bounded system
general relativity in terms of the total mean curvature of

*Electronic address: sbose@iucaa.ernet.in
†Electronic address: dlohiya@iucaa.ernet.in
1See, however, the field formulation of general relativity@4#.
2For a more complete list of references on quasilocal energy,

see the ones cited in Ref.@3#.
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boundary. Further, in spacetimes with a hypersurfa
forming timelike Killing vector on the boundary of the sys
tem, it can be shown that there exists a conserved cha
which can be defined to be the quasilocal mass associ
with the bounded region@12#.

The past few years have seen a revival of interest
scalar-tensor theories of gravity, primarily string-inspir
four-dimensional dilaton gravity, which has been shown
yield cosmological as well as charged black hole solutio
~see Refs.@13–16# for reviews.! In particular, the spacetime
structure ~i.e., geodesics and singularities! of these black
hole solutions and, also, those of the Brans-Dicke-Maxw
theory ~in higher dimensions! @17,18# are known to have
significant differences with respect to the Reissn
Nordström black holes. This prompts one to investigate t
form of the classical laws of black hole mechanics and
ensuing picture of black hole thermodynamics in these th
ries. But the study of the thermodynamical laws enta
knowledge of the energy and entropy associated with th
spacetimes. Moreover,equilibrium thermodynamics of a
black hole~specifically, in the case of an asymptotically fl
solution! requires that it be put in a finite-sized ‘‘box,’’ jus
as one does in general relativity. Thus such a study requ
knowledge of the quasilocal energy of these ‘‘finite-size
systems.

Recently the BY formalism has been extended to the c
of a generic scalar-tensor theory of gravity in spacetime
mensions greater than 2@19,20#. Since solutions of two con-
formally related scalar-tensor theories will themselves be
lated by a conformal transformation, it is interesting to ask
the quasilocal masses of these solutions are also relate
the past, it has been suggested that the quasilocal mass

so
©1999 The American Physical Society19-1
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SUKANTA BOSE AND DAKSH LOHIYA PHYSICAL REVIEW D 59 044019
conformal invariant. The reason that is usually provided
that a conformal transformation is simply a local field re
arametrization, which is supposed to leave physical qua
ties, such as the mass of a system, unchanged. In fact, in
@20#, Chan, Creighton, and Mann~CCM! argue that the
quasilocal mass is indeed invariant under a conformal tra
formation.

As in general relativity, the~unreferenced! mass of a
spacetime in a scalar-tensor theory of gravity is typica
divergent unless one subtracts a~divergent! contribution
from a suitable reference geometry to obtain a meanin
finite result@3#. Recently, Hawking and Horowitz~HH! gave
a prescription in general relativity for obtaining an approp
ate reference action based on the asymptotic behavior o
fields on a classical solution@21#. This reference action is
subtracted from the original action of the theory to defi
what is called the physical action. The surface term t
arises in the Hamiltonian associated with this action can
taken as the definition of ‘‘total mass.’’ This mass turns o
to be finite and is termed as the physical mass. When ev
ated on an asymptotically flat spacetime solution, the ph
cal mass of the full spacetime coincides with the correspo
ing Arnowitt-Deser-Misner~ADM ! expression.

Following HH, one could ask if a similar prescription ca
be formulated for scalar-tensor theories of gravity. If so
would be interesting to see whether the total mass aris
from such an action is conformally invariant. It has be
claimed by CCM that the generalization of the HH prescr
tion to scalar-tensor theories doesnot lead to a conformally
invariant physical mass. They propose their own refere
action for a general scalar-tensor theory of gravity and sh
that the associated physical mass of static, spherically s
metric ~SSS! solutions is conformally invariant. Howeve
unlike what happens in the HH prescription, the CCM ref
ence action is not motivated by any boundary conditions
the fields that define the spacetime solution of interest.

In this paper, we first show that the HH prescription c
be generalized to the case of scalar-tensor gravity. This
duces the arbitrariness in the choice of the reference ac
More importantly, we prove that under certain conditions
resulting reference action leads to a conformally invari
referenced quasilocal mass. In the following, we will direc
deal with only that conformal transformation that relates
scalar-tensor-gravity metric to that in the Einstein frame.
course, our results can be readily extended to study the
havior of physical quantities under a conformal transform
tion relating one scalar-tensor theory to another. In Sec. II
derive the expression for the~unreferenced! quasilocal mass
of a bounded region in (D11)-dimensional spacetime solu
tion of a scalar-tensor theory of gravity and prove it to
conformally invariant. In Sec. III we generalize the HH pr
scription to the case of scalar-tensor gravity. It is shown t
for such a choice of the reference action, the referen
quasilocal mass is a conformal invariant provided the c
formal factor is a monotonic function of the scalar fiel
Using this prescription, we give an expression for quasilo
mass of static spherically symmetric solutions~with arbitrary
asymptotics!. In Sec. IV, we demonstrate the conformal i
variance of this quasilocal mass formula by applying it
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specific cases of four-dimensional~4D! black hole space-
times, of both the asymptotically flat and non-flat kinds,
conformally related theories. We briefly summarize and d
cuss our results in Sec. V. In the Appendix, we show how
standard prescription for determining the stress-ene
pseudotensor in general relativity can be suitably adapte
find the quasilocal energy in scalar-tensor theories of grav
Finally, we demonstrate the consistency of the results of
pseudotensor method with the quasilocal formalism
Brown and York as applied to scalar-tensor theori
Throughout this paper, we use the conventions of Misn
Thorne, and Wheeler@1# and work in ‘‘geometrized units’’
c515G.

II. QUASILOCAL MASS
UNDER CONFORMAL TRANSFORMATION

Consider a spatially bounded region of
(D11)-dimensional spacetime that is a classical solution
a scalar-tensor theory of gravity, such as dilaton gravity
Brans-Dicke theory. In this section we extend the formali
of Brown and York @3# to derive an expression for th
quasilocal energy of gravitational and matter fields asso
ated with such regions. Subsequently, we will give an
pression for the quasilocal mass.

The BY derivation of the quasilocal energy, as applied
a (D11)-dimensional spacetime, can be summarized as
lows. The system we consider is aD-dimensional spatial
hypersurfaceS bounded by a (D21)-dimensional spatia
hypersurfaceB in a spacetime region that can be deco
posed as a product of aD-dimensional hypersurface and
real line interval representing time~see Fig. 1!. The time-
evolution of the boundaryB is the surfaceDB. One can then
obtain a surface stress-tensor onDB by taking the functional

FIG. 1. A bounded spacetime region with boundary consist
of initial and final spatial hypersurfacest5t1 and t5t2 and a
D-dimensional surfaceDB. Here, DB itself is the time-evolution of
the (D21)-dimensional surfaceB, which is the boundary of an
arbitrary spatial sliceS.
9-2
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BEHAVIOR OF QUASILOCAL MASS UNDER CONFORMAL . . . PHYSICAL REVIEW D 59 044019
derivative of the action with respect to theD-dimensional
metric onDB. The energy surface density is the projection
the surface stress-tensor normal to a family of spacelike
faces such asB that foliate DB. The integral of the energy
surface density over such a boundaryB is the quasilocal
energy associated with a spacelike hypersurfaceS whose
orthogonalintersection withDB is the boundaryB. Here we
assume that there are no inner boundaries, such that the
tial hypersurfacesS are complete. In the case where horizo
form, one simply evolves the spacetime inside as well
outside the horizon.

We follow the same notation as BY. The spacetime me
is gmn and nm is the outward pointing unit normal to th
surface DB. The metric and extrinsic curvature ofDB are
denoted bygmn and Qmn , respectively, and they obe
nmgmn50 andnmQmn50. Alternatively,gmn and Qmn can
be viewed as tensors onDB, denoted byg i j andQ i j , where
i , j refer to coordinates inDB. Similarly, the metric and ex-
trinsic curvature ofS are given by the spacetime tensorshmn

and Kmn , respectively. When viewed as tensors onS, they
will be denoted byhi j and Ki j . As in BY, here we will
assume that the hypersurface foliationS is ‘‘orthogonal’’ to
the surfaceDB in the sense that on the boundaryDB, the
future-pointing unit normalum to the hypersurfaceS and the
outward pointing spacelike unit normalnm to the surfaceDB
satisfy (u•n)uDB50. This implies that the shift vector,Vi ,
normal to the boundary vanishes, i.e.,Vini50.

A. Action

We study the following action for a scalar-tensor theo
of gravity in a (D11)-dimensional spacetime:

S@ ḡab ,f,F#5
1

2k E d~D11!xA2ḡU~f!

3@R̄2W~f!~¹̄f!22V~f!1X~f!L̄m#,

~2.1!

where ḡab is the ‘‘physical’’ metric, f is a scalar field,F
represents matter fields,k[8p, and U, V, W, and X are
functions of f. Also, L̄m is the matter Lagrangian that in
cludes a possible cosmological constant term. The ove
denotes the functional dependence of quantities on the ph
cal metric ḡab . Here we assume thatL̄m does not involve
any derivatives of the metric. The dynamics of the sca
field is governed by its kinetic term, the effective potent
term V(f) and the non-minimal coupling to the scalar cu
vature,R̄, described byU(f). The effective potential term
can be inclusive of an arbitrary additive constant which m
occur as a Lagrange multiplier, an integration constant
even a fall out of the renormalization procedure of the ot
matter fields described byL̄m. It is this constant that is re
sponsible for the ‘‘cosmological constant problem.’’ One c
consider the potential term as an effective term obtained
integrating over ‘‘heavy’’ degrees of freedom as long as o
does not go beyond the leading semiclassical approxima
for the scalar fieldf.
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The BY analysis is of course readily applicable in t
‘‘Einstein’’ frame, which is associated with the ‘‘auxiliary’’
metric

gab[U2/~D21!ḡab , ~2.2!

whereD.1. In terms of the auxiliary metric, one can alwa
cast action~2.1! as a sum of the Hilbert action, which i
independent of the scalar and matter fields, and a functio
Sf that depends on these fields:

S@gab#5
1

2k E d~D11!xA2gR1Sf , ~2.3!

where

Sf[
1

2k E d~D11!x

3A2gF D

D21
@¹ ln U~f!#22W~f!~¹f!2

2U2/~12D !@V~f!2X~f!Lm#G . ~2.4!

Above, Lm is a functional of the matter fields, their deriva
tives, the auxiliary metricgab , and the scalar fieldf. In Eq.
~2.3!, we have ignored the surface term contributions for
present. The subscriptf represents the scalar fieldf and the
matter fields. Note thatSf does not involve any derivative
of the metric. In the following, (ḡ, f̄ ) will denote a field
configuration that is a solution to Eq.~2.1!, whereas (g, f ) is
the conformally related solution in the theory~2.3!. Although
there is no bar overf, note thatf is implicitly included in
the configuration (ḡ, f̄ ).

B. Quasilocal energy and mass

We begin this section by briefly discussing the Hamilto
Jacobi analysis used by BY to evaluate the quasilocal ene
of a spatially bounded region in Einstein gravity. We w
later give the expression for the quasilocal energy in a
neric scalar-tensor theory of gravity.

In general relativity, to make the action functionally di
ferentiable under boundary conditions that fix the metric
the boundary, one appends appropriate surface terms to
Hilbert action. The resulting action inD11 dimensions is

S15
1

2k E d~D11!xA2gR1
1

k E
t8

t9
dDxAhK

2
1

k E
DB

dDxA2gQ1Sf , ~2.5!

where* t8
t9dDx represents the difference of the integral ove

spatial three-surfacet5t9 and that over a three-surfacet
5t8. Of course, the equations of motion obtained from t
variation of the above action are unaffected by the addit
9-3
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SUKANTA BOSE AND DAKSH LOHIYA PHYSICAL REVIEW D 59 044019
of an arbitrary functionS0 of fixed boundary data toS1.
Hence, the variation of such an action restricted to class
solutions gives

dScl5$terms involving variations in the matter fields%

1E
t8

t9
dDxPcl

i j dhi j 1E
DB

dDx~pcl
i j 2p0

i j !dg i j ,

~2.6!

wherePi j andp i j are, respectively, the momenta conjuga
to hi j andg i j , and

p0[
dS0

dg i j
. ~2.7!

Above, the subscript ‘‘cl’’ denotes the value of a quantity
a classical solution. As we discuss in detail later, differ
choices forS0 arise by imposing different physical require
ments on the quasilocal energy.

From Eqs.~2.6! and ~2.7! given above, we obtain the
following Hamilton-Jacobi equations:

Pcl
i j u t95

dScl

dhi j ~ t9!
, ~2.8!

~pcl
i j 2p0

i j !5
dScl

dg i j
. ~2.9!

The quantity that is of interest to us is the surface stre
tensor for spacetime and the fields, which is given by

t i j [
2

A2g

dScl

dg i j
. ~2.10!

Using Eq.~2.9!, we obtain

t i j 5
2

A2g
~pcl

i j 2p0
i j !. ~2.11!

If ui is the unit timelike normal toS on the boundaryB, then
the proper energy surface densitye is

e[uiujt
i j 52

1

As

dScl

dN
, ~2.12!

wheres i j is the metric on the boundaryB. Above, we made
use of the following identity:

]g i j

]N
52

2uiuj

N
. ~2.13!

Equation~2.12! together with Eq.~2.9! can be used to show
that that the energy surface density is related to the trac
the extrinsic curvature,kcl , of the boundaryB embedded in a
spatial hypersurfaceS ~which in turn is embedded in a clas
sical solution!:
04401
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k
~kcl2k0!, ~2.14!

wherek0 is the trace of the extrinsic curvature of a surfa
that is isometricto B, but is embedded in a reference spa

Following BY, the extrinsic curvature ofB as embedded
in S is defined by

kmn52sm
aDann , ~2.15!

where Da is the covariant derivative onS. Therefore,k
5smnkmn . The quasilocal energy associated with all t
fields on the spacelike hypersurfaceS with boundaryB in
this ‘‘auxiliary’’ spacetime is

E5E
B
d~D21!xAse

52E
B
d~D21!

dScl

dN

5
1

k E
B
d~D21!xAs~kcl2k0!. ~2.16!

In other words,E represents the proper quasilocal energy
the Einstein frame. The above expression is interpreted
energy because it is minus the change in the classical ac
due to a uniform, unit increase in the proper time alongDB.
Also, for a unit lapse and zero shift, it is equal to the Ham
tonian corresponding to the action~2.5!, as evaluated on a
classical solution. It is satisfying to note that this is a ge
metric expression independent of the coordinates on
quasilocal surface. However, it does depend on the choic
the quasilocal surface and also on the foliation of the spa
time by spacelike hypersurfaces.

When there is a timelike Killing vector fieldjm on the
boundaryDB, such that it is also hypersurface forming, o
can define an associated conserved quasilocal mass fo
bounded system@12,3#:

M5E
B
d~D21!xAsNe, ~2.17!

where N is the lapse function related tojm by jm5Num.
Further, if j•u521, then N51 and consequently the
quasilocal mass is the same as the quasilocal energy~2.16!.
Unlike the quasilocal energy~2.16!, the quasilocal mass is
independent of any foliation of the bounded system.

We now ask, what is the analogous expression for
quasilocal energy or mass for a bounded spatial region
spacetime solution of the scalar-tensor theory~2.1!? Note
that under boundary conditions that fix the metric on t
boundary, the appropriate surface action to be added to
action ~2.1! is
9-4
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SDB@ ḡab ,f#5
1

k E
t8

t9
dDxA2h̄U~f!K̄

2
1

k E
DB

dDxA2ḡU~f!Q̄, ~2.18!

where K̄ is the trace of the extrinsic curvature of a spat

hypersurface andQ̄ that of the boundaryDB when embed-
ded in a spacetime solution of action~2.1!. It can be verified
that under a conformal transformation~2.2!, the actionS1 in
Eq. ~2.5! transforms exactly toS@ ḡab ,f,F#1SDB@ ḡab ,f#,
which is defined by Eqs.~2.1! and ~2.18!. As in the case of
Einstein gravity discussed above, one can use the BY
proach to derive the expression for quasilocal energy fr
the above surface action in a non-minimally coupled theo
Such a calculation was done by Creighton and Mann@19# for
four-dimensional pure dilaton-gravity. A straightforwa
generalization of their derivation to the case of
(D11)-dimensional scalar-tensor theory~2.1! including
matter fields gives the quasilocal energy in such theorie
be

Ē5E
B
d~D21!xAs̄ ē

5
1

k E
B
d~D21!xAs̄@U~f!k̄2n̄i] iU~f!#2Ē0 .

~2.19!

In the next section we will consider appropriate referen
actions S0 and their respective contributions,Ē0 , to the
above expression. In the Appendix we give an alterna
derivation of the above energy expression using the pse
tensor method.

Analogous to Eq.~2.17! one can also define the quasiloc
mass in the scalar-tensor theory to be

M̄5E
B
d~D21!xAs̄N̄ē

5
1

k E
B
d~D21!xAs̄N̄@U~f!k̄2n̄i] iU~f!#2M̄0 ,

~2.20!

whereM̄0 is an appropriate reference term.

C. Conformal transformation

We now study how the quasilocal mass,M̄ , modulo the
reference termM̄0 , behaves under a conformal transform
tion. Equation~2.17! shows that this requires knowledge
how the total mean curvaturek of the boundaryB behaves
under a conformal transformation. Let the physical me
ḡab of the scalar-tensor theory be related to the auxili
metric gab by the conformal transformation

ḡab[V2gab , ~2.21!
04401
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whereV is generally a function of the spacetime coordinat
Comparing with Eq.~2.2!, we find that

V5U21/~D21!. ~2.22!

Note that on-shellU(f) will be determined through the
equations of motion pertaining to the action~2.1!.

Let us embed the (D21)-dimensional spatial boundaryB
in each of the two conformally related spacetimes, assum
that such embeddings are feasible and unique. Then the
timelike normalūi in the physical spacetime is related to th
in the auxiliary spacetime,ui , as follows:

ūi5V21ui . ~2.23!

Similarly, the outward pointing unit normals to the surfa
DB in the two spacetimes are related as

n̄i5V21ni . ~2.24!

One can further show that the extrinsic and the total m
curvature of the boundaryB, as embedded in these spac
times, are related as follows:

k̄i j 5V@ki j 2s i j n
l¹ l~ ln V!#, ~2.25!

k̄5V21@k2~D21!nl¹ l~ ln V!#,
~2.26!

wherenl is the spacelike unit normal to the surfaceDB ~em-
bedded in the auxiliary spacetime!. Formally, we associate

the covariant derivatives¹ l and ¹̄ l with metrics gab and
ḡab , respectively. In spacetime regions whereV is non-
singular, one can invert the above relation to obtain

k5V k̄1~D21!Vn̄l¹̄ l~ ln V!, ~2.27!

wherek is the total mean curvature of the boundaryB, as
embedded in the auxiliary spacetime.

Equation~2.27! shows that under a conformal transform
tion the quasilocal mass defined in Eq.~2.17!, modulo the
reference term arising fromk0 , transforms as follows:

1

k E
B
d~D21!xNAsk

5
1

k E
B
d~D21!xN̄As̄@U~f!k̄2n̄i] iU~f!#,

~2.28!

where we have used Eq.~2.22!. Applying the above identity
to the mass expressions~2.17! and ~2.20! proves that the
quasilocal masses of conformally related spacetimes are
same, provided the reference termM̄0 is conformally invari-
ant.

Consider the behavior of the timelike vectorjm defined
above Eq.~2.17!. It is assumed to be Killing in a given
frame, say, the Einstein frame. It is also a conformal inva
ant, i.e.,j̄m5N̄ūm5Num5jm. However, it will not remain
Killing in a general conformal transformation. Thus, a
9-5
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SUKANTA BOSE AND DAKSH LOHIYA PHYSICAL REVIEW D 59 044019
though the~unreferenced! quasilocal mass is a conforma
invariant, its property of being a conserved charge in a gi
frame is not. However, ifjm obeysjm¹mf50, then it con-
tinues to remain Killing in the conformally related frame.
such an event, the associated quasilocal mass remains a
served charge in that frame too. Furthermore, the unre
enced quasilocal energy is not invariant under a confor
transformation. WhenV is independent of the coordinates o
the quasilocal surface, it transforms as

Ē2Ē05V21~E2E0! ~2.29!

and, hence, is not a conformal invariant.
Finally, note that when we compare the quasilocal mas

of conformally related spacetimes above, we assume tha
boundaryDB, which is taken to be embedded in a particu
spacetime, is also embeddable in the conformally rela
spacetime. However, the embeddability of a hypersurface
quires that the intrinsic and extrinsic geometry of the bou
ary obey the Gauss-Codazzi, Codazzi-Mainardi, and R
integrability conditions in both spacetimes separately.
general, not all of these integrability conditions are conf
mal invariants. Therefore, embeddability of a hypersurface
a spacetime does not guarantee its embeddability in a
formally related spacetime. Nevertheless, it can be sho
that one can always embed a (D21)-dimensional spacelike
spherical boundary in (D11)-dimensional SSS spacetim
solutions, which are Ricci flat, and in spacetimes rela
through conformal transformations that preserve these sp
time properties@23,24#.

III. REFERENCE ACTION AND QUASILOCAL MASS

The Brown-York definition of the quasilocal energ
~2.16! associated with a spatially bounded region of a giv
spacetime solution is not unique. This is because an arbit
functionalS0 of the boundary data can be added to the act
without affecting the equations of motion. On the other ha
to get a well-defined~finite! expression for the quasiloca
energy of spatially non-compact geometries, one is usu
required to subtract the~divergent! contribution of some ref-
erence background. At the level of the action such a ‘‘re
larization’’ is tantamount to the addition of a reference act
S0, which is a functional of appropriate background fiel
(g0 , f 0), to the original actionS1. For 4D Einstein gravity,
BY prescribe the following reference action:

S052E
3B

d3x@NAs~k/k!u012AsVa~sainj P
i j /Ah!u0#,

~3.1!

which is a linear functional of the lapseN and shift Va.
Above, 3B is the time-evolution of a two-boundaryB that is
embedded in a fixed three-dimensional spacelike sliceS of
some fixed reference spacetime. Also,ku0 and
(sainj P

i j /Ah)u0 are arbitrary functions of the two-metri
sab on the boundaryB, nj is the unit normal to the 2-
boundaryB, and$hi j ,Pi j % are the canonical 3-metric and th
conjugate momentum on the three-dimensional space
slice S. Varying the lapse in the first term in Eq.~3.1! gives
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the energy surface density, whereas varying the shift in
second term gives the momentum surface density in the
erence spacetime@3#. Since we mainly discuss the applica
tion of Eq. ~3.1! to evaluate theproper quasilocal mass or
energy, which is obtained by the variation of the total acti
~on classical solutions! with respect toN, we will henceforth
drop the last term in Eq.~3.1! from our consideration.

To calculate the quasilocal energy associated with regi
of spacetime solutions of (D11)-dimensional Einstein grav
ity, the appropriate generalization of the BY reference act
is again given by Eq.~3.1!, except that the integration is now
over the boundaryDB. The boundaryDB itself is the time-
evolution of the (D21)-dimensional spatial boundaryB.
For asymptotically flat spacetimes an appropriate refere
background might be vacuum flat spacetime.

However, for an arbitrary spacetime solution~e.g., space-
times that are neither spatially closed nor asymptotica
flat!, a more well defined prescription for the choice ofS0 is
required. Recently, one such prescription was given
Hawking and Horowitz in their quest to obtain the total ma
of spacetimes with arbitrary asymptotic behavior in gene
relativity @21#. Their starting point is the ‘‘physical’’ action
defined as

SP~g, f ![S~g, f !2S~g0 , f 0!, ~3.2!

where (g0 , f 0) are fields specifying a reference static bac
ground, which is asolutionto the field equations. Therefore
the physical action of the reference background is ze
Given a solution (g, f ), in order to determine a referenc
background, (g0 , f 0), HH fix a three-boundary (3B) near in-
finity and require that (g, f ) induce the same fields on thi
boundary as (g0 , f 0). The energy of a solution can be ob
tained from the physical Hamiltonian associated withSP ~for
details, see Ref.@21#! and is similar to the BY quasiloca
expression. For asymptotically flat spacetime solutions,
reference background is chosen to be flat space and th
sulting energy expression agrees with the one obtained in
ADM formalism.

It is important to note that the HH prescription allows o
to compute the total energy associated with a general t
translation tm5Num1Vm. In a generic case, the resultin
energy will have a shift-dependent contribution, such as
second term in Eq.~3.1!. However, such a term vanishe
when the spacetime is taken to approach a static backgro
solution and the resulting expression~with N51! is the same
as the BY energy~2.16!. Even if the spacetime is asymptot
cally non-static, this term will vanish whenVasab50. This
happens, e.g., for cosmological solutions with the Roberts
Walker metric.

Building on the work of Brown and York, Chan, Creigh
ton, and Mann@20,22# chose a particular reference action
compute the quasilocal masses of solutions in scalar-te
theories. In the special case of SSS spacetimes, it has
shown by CCM that their choice leads to a conformally
variant referenced quasilocal mass. A second possibility
obtaining a reference action is to generalize the HH presc
tion to scalar-tensor theories. Such an attempt was also m
by CCM @20#. However, they conclude that the mass formu
9-6
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obtained using their generalization of the HH prescription
not conformally invariant. For details on this issue, we re
the reader to Ref.@20#.

In this section, we extend the BY formalism to obtain t
referenced quasilocal mass associated with bounded reg
of spacetime solutions~with arbitrary asymptotic behavior!
in scalar-tensor gravity. A relevant question in such
analysis is whether the reference action can be specified
unique way. Finding an answer to this would in itself be
interesting pursuit and involves addressing issues of pos
ity of the mass or energy of such solutions as well as
stability of the corresponding reference solution. Here, we
not attempt to find if the reference action or solution can
uniquely specified at all. Below, after discussing the CC
analysis briefly, we present our alternative generalization
the HH prescription to scalar-tensor gravity. Although th
does not select a unique reference action, nevertheless
voking this prescription reduces the number of allowed r
erence actions. We prove that under certain conditions su
prescription does lead to a conformally invariant referen
quasilocal mass.

A. CCM prescription

For a non-minimally coupled action of the type~2.1!, the
reference action suggested by CCM is@20#

S052E
DB

dDxN̄As̄U~f!~ k̄flat /k!, ~3.3!

where k̄flat is the trace of the extrinsic curvature of the (D
21)-boundaryB embedded in aD-dimensional flat spatia
slice. Consider the special case of an asymptotically flat S
spacetime metric, as a solution in this theory:

ds̄252N̄2~r !dt21
dr2

l̄2~r !
1r 2dv2, ~3.4!

whereN̄ and l̄ are functions ofr only, anddv2 is the line
element on a unit (D21)-sphere. Let us now make the fo
lowing conformal transformation:

g̃ab5Ṽ2ḡab , Ũ5Ṽ~12D !U, ~3.5!

whereU(f) is the scalar-field dependent coupling appear
in Eq. ~3.3!. Note that under this conformal transformatio
the functional form ofS0,

S052E
DB

dDxÑAs̃Ũ~f!~ k̃flat /k!, ~3.6!

remains unchanged provided we assumeÑ5ṼN̄.
Let the metric ~3.4! be related through this conforma

transformation to the following SSS metric:

ds̃252Ñ2~r !dt21
dr2

l̃2~r !
1Ṽ2r 2dv2, ~3.7!
04401
s
r

ns

n
a

v-
e
o
e

f

in-
-
a

d

S

g

which is assumed to arise as a solution to another sca
tensor theory that is related to action~2.1! by the conformal

transformation~3.5!. Above, Ñ5ṼN̄ and l̃5Ṽ21l̄, where

Ṽ is a function ofr only.
For the special case of the spacetime solution~3.4!, and

with the choice of reference action~3.3!, CCM argue that the
quasilocal mass associated with the region inside a sphe
curvature radiusr , which is embedded in spacetime~3.4!,
can be expressed as

M̄ ~r !5
N̄~r !

k
S ~D21!ĀD21~r !U~f!

r

2l̄~r !
d

dr
@ĀD21~r !U~f!# D . ~3.8!

Above, ĀD21 is the area of the boundary (D21)-sphere of
radiusr given by

Ān5E
B
dnxAs̄5

~4p!n/2G~n/2!

G~n!
r n, ~3.9!

s̄ i j being the metric onB. Note that the first term in Eq.~3.8!
is just the reference term

M̄052E
DB

dD21xN̄As̄U~f!~ k̄flat /k!, ~3.10!

whereas the second term arises from the quasilocal m
definition ~2.20! on using the identity

1

k E
B
d~D21!xAs̄N̄k̄52

N̄~r !l̄~r !

k

d

dr
Ā~D21!~r !,

~3.11!

which holds for the SSS metric~3.4!. We will call Eq. ~3.8!
the CCM mass expression. Similarly, CCM find that for t
metric ~3.7!, the quasilocal mass is

M̃ ~r !5
Ñ~r !

k S ~D21!ÃD21~r !Ũ

Ṽr
2l̃~r !

d

dr
@ÃD21~r !Ũ#D ,

~3.12!

whereÃ(D21)5Ṽ (D21)Ā(D21) .
Thus, the CCM massM̄ (r ) defined in Eq.~3.8! is invari-

ant under the conformal transformation~3.5!, namely,
M̄ (r )5M̃ (r ). To be precise, each term in Eq.~3.8! is sepa-
rately conformally invariant. Finally, let us emphasize th
unlike in the HH prescription, in the CCM prescription on
does not require the ‘‘background’’ fields appearing in t
reference action~3.3! to constitute a solution of that action
Also, the choice of the CCM reference action is independ
of the asymptotic behavior of the fields of the solution.@This
is the reason why the referenced quasilocal mass~with N
51! in this prescription differs from the Abbott-Deser de
nition of the total energy@25# when applied to asymptotically
anti–de Sitter SSS spacetimes. One can, however, rec
9-7



nc
.

n
re
-

th

lu
a

rm
t

d

H

ll
re
-

ar

he

ld

in

re
s
e
o

d

c-

q.

ob-
e

rmal
ce

e-
r
l
ced

of

fer-
ass

e-

-

is
d in
s-
ion

ns

es-
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this energy expression by generalizing the CCM refere
action to the case of such spacetimes~for details, see Ref
@12#!.#

B. Alternative prescription for reference action
and quasilocal mass

First, we extend the applicability of the HH prescriptio
to scalar-tensor gravity in order to obtain an appropriate
erence action. Given a solution, (ḡ, f̄ ), one chooses a refer
ence backgroundsolution, (ḡ0 , f̄ 0), by using the HH pre-
scription as enunciated above in this section. Then
appropriate reference action is simply

@S@ ḡab ,f,F#1SDB@ ḡab ,f## ref , ~3.13!

whereS andSDB are given by Eqs.~2.1! and~2.18!, respec-
tively, and @term#ref denotes the value of the term as eva
ated on the reference solution. In general, the reference
tion can depend on the initial and final metricsh̄i j (t8) and
h̄i j (t9) through spatial boundary terms, namely, the first te
on the right-hand side of Eq.~2.18!. However, in the presen
calculation such contributions can be dropped since they
not affect the BY quasilocal mass.

Second, we address the following question: If the H
prescription is obeyed by a pair of solutions, (ḡ, f̄ ) and
(ḡ0 , f̄ 0), for the boundaryB in a given frame, then will it
also be obeyed by conformally related fields in a conforma
related frame? We answer this as follows. Note that the
erence solution (ḡ0 , f̄ 0) is conformally related to that in Ein
stein gravity, (g0 , f 0), by Eq.~2.21!, whereU is now a func-
tion of f0 . Here, bothU(f0) and the conformal factorV are
positive-definite quantities. Thus, for a solution in scal
tensor gravity, (ḡ, f̄ ), if the lapseN̄ and the fields (s̄ab ,f)
induced on the boundaryB match with the lapseN̄0 and the
fields (s̄0ab ,f0) at B in the reference spacetime, then for t
conformally related configuration (g, f ) in the Einstein
frame, the lapseN and the fieldsab at B will necessarily
match with their reference spacetime counterpartsN0 and
s0ab induced on the corresponding boundary. This ho
providedV is a monotonic function off. To repeat, let

N̄uB5N̄0uB , s̄abuB5s̄0abuB , fuB5f0uB . ~3.14!

Then, using the above conditions, we can infer the follow
requirements on the Einstein frame fields:

NuB5@N̄V21~f!#B5@N̄0V21~f0!#B5N0uB ,

sabuB5@s̄abV
22~f!#B5@s̄0abV

22~f0!#B5s0abuB .
~3.15!

This proves that, for such a conformal factor, if the HH p
scription is obeyed in a given frame, say, the scalar-ten
frame, it will automatically be satisfied in the Einstein fram
It is easy to extend this proof to the case of any two conf
mally related frames.

A meaningful referenced quasilocal mass can now be
fined. It is simply given by Eq.~2.20!, where the reference
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term, M̄0 , is obtained from the HH prescribed reference a
tion ~3.13! by a BY-type analysis~as described in Sec. II B!,
i.e.,

M̄05
1

k E
B
d~D21!xAs̄0N̄0@U~f0!k̄02n̄0

i ] iU~f0!#,

~3.16!

which is just the first term on the right-hand side of E
~2.20! as evaluated on the reference solution.

We now show that the referenced quasilocal mass so
tained is conformally invariant. In the previous section, w
proved that the unreferenced quasilocal mass is a confo
invariant. What remains to be verified is that the referen
term M̄0 is also invariant under the transformationḡ0ab
5V(f0)g0ab . This is easily done by applying the curvatur
transformation identity~2.28! to the above expression fo
M̄0 . This shows thatM̄05M0 , which proves the conforma
invariance of the reference term. Hence the referen
quasilocal mass is conformally invariant.~This, of course,
presumes a monotonicV.!

We now illustrate this invariance explicitly for the case
SSS spacetimes. By applying the mass expressions~2.20!
and ~3.16! to the SSS metric~3.4!, we obtain

M̄ ~r !5F N̄~r !

k
l̄~r !

d

dr
@ĀD21~r !U~f!#G

cl

0

, ~3.17!

whereĀ is given in Eq.~3.9! and @term#cl
0 is defined as the

difference in the values of the term evaluated on the re
ence spacetime and on the spacetime solution whose m
we aim to compute. Note that in keeping with the HH pr
scription, we require that at the boundary,r 5r B , the SSS
solution satisfyN̄(r B)5N̄0(r B), s̄ab(r B)5s̄ab(r B)u0 , and
U„f(r B)…5U„f0(r B)…. To obtain the total mass of an as
ymptotically flat spacetime, one first evaluatesM̄ (r ) for gen-
eral r and then imposes the limitr→`. In this limit, Eq.
~3.17! yields the ADM mass when the reference solution
chosen to be flat. The referenced quasilocal mass define
Eq. ~3.17! is manifestly invariant under the conformal tran
formation~3.5! and, therefore, is the same as the express
obtained upon removing the overbars in that equation.

Alternatively, consider applying the mass expressio
~2.20! and~3.16! to an SSS metric of the form~3.7!, namely,

ds̄252N̄2~r !dt21
dr2

l̄2~r !
1V2r 2dv2. ~3.18!

It is easy to verify that the resulting quasilocal mass expr
sion is identical to Eq.~3.17!. However, the area ofB @as
embedded in metrics of the type~3.18!# is now given as

Ān5E
B
dnxAs̄5

~4p!n/2G~n/2!

G~n!
r nVn. ~3.19!
9-8
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Here too the referenced quasilocal mass~3.17! remains in-
variant under conformal transformations of the metric~3.18!,
provided the HH prescription is followed in determining th
reference solution.

To summarize, we define the referenced quasilocal m
of a solution associated with a boundaryB as the difference
of its unreferenced quasilocal mass from that of a refere
field configuration, which is also a solution of the theory a
obeys the HH prescription. Under a conformal transform
tion, this pair of solutions has its ‘‘image’’ pair, which i
comprised of two solutions in the conformally related fram
in that frame, the referenced quasilocal mass is again
difference of the unreferenced quasilocal masses of these
image solutions. To investigate the behavior of the ref
enced quasilocal mass under a conformal transformation,
must therefore study how the unreferenced quasilocal ma
of these two solutions transform under the conformal m
ḡab5V(f)gab and ḡ0ab5V(f0)g0ab , respectively. Such a
study reveals the conformal invariance of our referen
quasilocal mass~3.17!.

We end this section by noting that, when applied to
case of asymptotically flat SSS spacetimes, there is a su
but significant difference between the quasilocal mass d
nition ~3.17!, which we propose above, and the mass defi
tion that CCM obtain by their generalization of the HH pr
scription @20#, namely,

M̄ ~r !5F N̄~r !

k
@12l̄~r !#

d

dr
@ĀD21~r !U~f!#G

cl

.

~3.20!

Specifically, consider the case of SSS metrics of the fo
~3.4!. Then, the above formula can be obtained from E
~3.17! in two steps. First, one setsl̄(r )u051 in Eq. ~3.17!.
This can always be done, for the reference spacetime s
tion in such a case is flat. Second, and more importantly,
assumesthat

dU~fcl!

dr
5

dU~f0!

dr
, ~3.21!

at the boundaryB. This, however, is an additional require
ment over and above those included in the HH prescript
Consequently, Eq.~3.20! is different from Eq.~3.17!, where
condition~3.21! is not assumed. This is also the reason w
Eq. ~3.20!, as opposed to Eq.~3.17!, fails to be conformally
invariant.

In the next section we apply our mass definition~3.17! to
find the referenced quasilocal masses of charged black h
in 4D dilaton gravity and their conformally related cousins
4D Einstein gravity.

IV. QUASILOCAL MASS IN SCALAR-TENSOR
THEORIES OF GRAVITY: EXAMPLES

A. Asymptotically flat SSS spacetimes

Let us consider the charged black hole solutions of
four-dimensional dilaton gravity action~see Refs.@13,14# for
reviews!
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S5
1

2k E d4xA2ḡe22f@R̄14~¹̄f!222L2F̄2#,

~4.1!

whereR̄ is the four-dimensional Ricci scalar,L is a cosmo-
logical constant andF̄mn is the Maxwell field associated with
a U~1! subgroup of E83E8. In this subsection we will con-
sider the case whereL50. The magnetically charged blac
hole solution to the above action is@26,27#

ds̄252
e2f`~122mef`/r !

12Q2e2f`/~mr!
dt2

1
dr2

~122mef`/r !@12Q2e2f`/~mr!#
1r 2dv2,

~4.2!

e22f5e22f`S 12
Q2e2f`

mr D5U~f!, ~4.3!

F̄5Q sin udu∧df, ~4.4!

wherem andQ are classical hairs of the stringy black ho
and f` is the asymptotic constant value of the dilato
Above,m is also called the Schwarzschild mass of the spa
time andQ is the magnetic charge of the black hole. T
strings couple to the above metric,ḡmn , as opposed to the
one related through the conformal transformationgmn

[e22fḡmn , which casts the above action in the Hilbe
form.

We will now demonstrate that the quasilocal mass o
spatial region enclosed inside the two-sphere of curva
radius r B is conformally invariant. We first calculate th
mass in the string frame. Since the spacetime~4.2! is asymp-
totically flat, we choose the reference metric to be flat:3

ds̄0
252N̄0

2dt21dr21r 2dv2, ~4.5!

whereN̄0 is a constant. Note that the above metric is a
lution of the action~4.1! with f05const andF̄050. A two-
sphere boundary of curvature radiusr 5r B can be isometri-
cally embedded in both the above spacetimes~4.2! and~4.5!.
For the lapse at the boundary to match in these spacetim
we choose

N̄05ef`S 12
2mef`

r B
D 1/2S 12

Q2e2f`

mrB
D 21/2

. ~4.6!

For the remaining HH requirement to be satisfied, the va
of f induced at the boundary in these spacetimes sho
match. This implies that on the reference spacetime~4.5!,
one must have

3See the discussion in Sec. V.
9-9
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e22f05e22f`S 12
Q2e2f`

mrB
D5U~f0! ~4.7!

everywhere. Using these expressions in Eq.~3.17!, we find
that the quasilocal mass is

M̄ ~r B!5e2f`r BF2S 12
Q2e2f`

mrB
D S 12

2mef`

r B
D

2
e2f`Q2

2mrB
S 12

2mef`

r B
D

1AS 12
Q2e2f`

mrB
D S 12

2mef`

r B
D G . ~4.8!

In the limit r B→`, M̄ (r B)→m.
We next study the Einstein-frame solution that is conf

mally related to Eq.~4.2! through the conformal transforma
tion ~2.2!, where

U5e22f`S 12
Q2e2f`

mr D . ~4.9!

Thus, the Einstein metric is

ds252S 12
2mef`

r Ddt21e22f`S 12
2mef`

r D 21

dr2

1e22f`r 2S 12
Q2e2f`

mr Ddv2. ~4.10!

Once again, since the above spacetime is asymptotically
we choose the reference metric to be flat:

ds0
252N0

2dt21dr21r2dv2, ~4.11!

wherer is the radial coordinate andN05const. In the above
coordinates, a two-sphere~with t andr constant! embedded
in this reference spacetime is not isometric with a two-sph
~with t andr constant! embedded in spacetime~4.10!. How-
ever, they can be made isometric by definingr in terms of
the curvature coordinater as

r5r S 12
Q2e2f`

mrB
D 1/2

e2f`. ~4.12!

One can implement this coordinate transformation in eit
Eq. ~4.10! or ~4.11!. Both choices yield the same mass e
pressions. We choose to apply it in Eq.~4.11!. In these co-
ordinates, the flat metric gets recast to

ds0
252N2

0dt21e22f`S 12
Q2e2f`

mrB
Ddr2

1r 2S 12
Q2e2f`

mrB
De22f`dv2. ~4.13!

For matching the lapse on the boundary atr 5r B , we require
04401
-

at,

re

r
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N05S 12
2mef`

r B
D 1/2

~4.14!

everywhere. Note that the flat metric~4.13! is indeed confor-
mally related to the reference solution~4.5! in the string
frame. By the application of Eq.~3.17!, we find that the
quasilocal mass turns out to be that given in Eq.~4.8!. This
shows that the quasilocal mass at anyr is a conformal in-
variant.

We now consider electrically charged black hole solutio
of the action~4.1!. The associated metric, dilaton, and th
non-vanishing Maxwell field tensor components are

ds̄252
e2f`@11~Qe

222m2e2f`!/~mef`r !#

@11Q2/~mef`r !#2 dt2

1
dr2

11~Qe
222m2e2f`!/~mef`r !

1r 2dv2,

~4.15!

U~f!5e22f5S 11
Qe

2e2f`

mr D , ~4.16!

F̄ tr5
Qee

4f

r 2 . ~4.17!

Since this spacetime is asymptotically flat, we choose
reference solution to be flat with the metric~4.5!, where the
lapse is justA2ḡtt in Eq. ~4.15! evaluated atr 5r B .

By applying our prescription for finding the quasiloc
mass~as we did in the case of the magnetically charg
black holes! to this case, we find that, in the string frame,

M̄ ~r B!5e2f`r BH l̄2l̄21
Qe

2l̄2

2mef`r B
S 11

Qe
2

mef`r B
D 21J ,

~4.18!

where l̄22[ḡrr (r B) in Eq. ~4.15!. Thus, the total mass o
the spacetime is once againm.

On the other hand, in the Einstein frame the metric is

ds252e2f`S 12
2m2e2f`

mef`r 1Qe
2Ddt2

1S 12
2m2e2f`

mef`r 1Qe
2D 21

dr2

1r 2S 11
Qe

2

mef`r Ddv2, ~4.19!

which is related to the string metric~4.15! via the conformal
transformation~2.2!, whereU is given by Eq.~4.16!. Since
the above solution is asymptotically flat, the reference me
is chosen to be flat once again:

ds0
252N0

2dt21S 11
Qe

2

mef`r B
Ddr21r B

2 S 11
Qe

2

mef`r B
Ddv2,

~4.20!
9-10
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where, as in Eq.~4.13!, we use coordinates such that th
2-sphere boundary atr 5r B is manifestly isometric with tha
in the spacetime~4.19!. Also, f0 is defined so as to matc
with the solution~4.16! at the boundary 2-sphere atr 5r B :

e22f05U~f0!ur 5r B
511Qe

2/~mef`r B!. ~4.21!

This is then the value off0 everywhere in the referenc
spacetime. Similarly the reference lapseN0 is chosen to be
A2gtt in Eq. ~4.19! evaluated atr 5r B . Our prescription for
evaluating the quasilocal mass then yields the same exp
sion as found in Eq.~4.18! for the string frame, thus demon
strating its conformal invariance.

B. Asymptotically non-flat black holes

To demonstrate that our prescription yields a conforma
invariant definition of quasilocal mass even for asympto
cally non-flat solutions we consider a particular black h
solution of Chan, Horne, and Mann that arises from the
lowing action@28#:

S5
1

2k E d4xA2g@R22~¹f!22e22fF2#. ~4.22!

The fields of the electrically charged black hole solution
this theory are

ds252
1

g4 ~r 224g2M !dt21
4r 2

r 224g2M
dr21r 2dv2,

~4.23!

e22f5
2Q2

r 2 , ~4.24!

Ftr5
r

2Qg2 , ~4.25!

whereg is a constant with dimensions ofAr and Q is the
electric charge.

In this case, there is no unique way to choose the re
ence geometry. Here, we choose to compare the quasi
mass of the above solution with respect to a geometry wh
~non-flat! space part of the metric is determined by sett
M50 in Eq. ~4.23!. Thus, our reference geometry is

ds2
052N0

2dt214dr21r 2dv2. ~4.26!

For the 2-sphere boundary atr 5r B , the HH prescription
dictates that

N05
1

g2 ~r 2
B24g2M !1/2 ~4.27!

be obeyed everywhere. Our prescription for the quasilo
mass then yields

M ~r B!5
r B

2

2g2 FA12
4g2M

r 2
B

211
4g2M

r 2
B

G . ~4.28!
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We next consider the string action conformally related

Eq. ~4.22!:

S5
1

2k E d4xA2ḡe22f@R̄14~¹̄f!22F̄2# ~4.29!

where the conformal factor is given by

V5ef5
r

&Q
~5U21/2!. ~4.30!

Therefore, the string metric conformally related to Eq.~4.23!
is

ds̄252
r 2

2Q2g4 ~r 224g2M !dt21
2r 2/Q2

124g2M /r 2 dr2

1
r 4

2Q2 dv2. ~4.31!

The space part of the reference string metric is chosen
settingM50 above, which gives the reference metric as

ds0
252N̄0

2dt21
2r 2

Q2 dr21
r 4

2Q2 dv2, ~4.32!

where the reference lapse is obtained by matching with
in Eq. ~4.31! at the boundaryr 5r B :

N̄05
r B

&Qg2
~r 2

B24g2M !1/2. ~4.33!

With these prescribed choices for the reference fields,
find that the quasilocal mass is

M̄ ~r B!5
r B

2g2 F12A124g2M

r 2
B

G~r 2
B24g2M !1/2,

~4.34!

which is the same as that evaluated in the Einstein fra
namely, Eq.~4.28!.

V. DISCUSSION

Naive expectations from classical field theory would su
gest that physical quantities should remain invariant unde
conformal transformation. However, when it comes to t
behavior of the quasilocal mass under such a transforma
one must be cautious. This is becausea priori it cannot be
ruled out that in some frames the scalar fieldf, which de-
fines the conformal factor, itself contributes to the energ
momentum of the spacetime. In this paper we showed t
the preceding caveat notwithstanding, the unreferenced
quasilocal mass is indeed conformally invariant.

However, to obtain the physical mass of a spacetime
is often required to subtract a reference term. At the leve
the action, this is achieved by subtracting a reference act
Different choices of reference action will lead to differe
physical masses for the same classical solution. Moreo
9-11
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the reference termM̄0 arising from such actions and, cons
quently, the referenced quasilocal mass may not be con
mally invariant.

In this paper, we attempted to reduce the arbitrarines
the choice of a reference action. We were motivated in
choice by a basic principle, in the form of the Hawkin
Horowitz prescription, which requires the reference geo
etry to obey certain conditions. We proved that this presc
tion automatically gives rise to a conformally invaria
referenced quasilocal mass if the conformal factor is mo
tonic in the scalar field.

We note, however, that the HH prescription does not
tempt to specify a unique reference geometry, owing
which the referenced quasilocal mass is non-unique, al
conformally invariant. It is only in some special cases th
one can obtain a unique physical mass. Asymptotically
spacetime solutions of general relativity belong to this c
egory. There the positive energy theorem and the stab
criterion for Minkowski spacetime ensure that under cert
positivity conditions on the energy-momentum tensor,
total energy of such spacetimes is positive; it is zero only
the Minkowski spacetime. This selects the flat spacetime
very special reference geometry for calculating the total
ergy and, in certain cases, the quasilocal mass and ener
regions in such spacetimes. The conformal invariance of
quasilocal mass implies that in conformally related spa
times, which are asymptotically flat, the flat spacetime c
tinues to be a special reference geometry.

In this vein, one may argue that if the positive ener
theorem could be shown to hold for asymptotically non-fl
cases, at least of a limited type such as the SSS spacet
then a corresponding special reference geometry m
emerge, which could be used under the HH prescription
compute the referenced quasilocal mass in such spacet
in some unique way. This and other related issues are
rently under study@29#.
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APPENDIX: THE STRESS-ENERGY PSEUDOTENSOR

In this section we present an alternative derivation of
quasilocal energy expression~2.19! using the pseudotenso
method@5,2,1#. The outline of our approach, as applied
the scalar-tensor type theories, Eq.~2.1!, is as follows. As is
the case for the Brans-Dicke theory, even in our generali
non-minimally coupled theory, we make use of the Bian
identity and the equations of motion to show that the co
riant divergence of the matter stress-tensor vanishes.
particular coordinate system, this is then shown to imply t
the ordinary divergence of the sum of two quantities va
ishes. One of the terms in this sum is the matter stress-te
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in that coordinate frame, and the other term is then int
preted as the stress-energy contribution of the geometry~that
is, of the gravitational as well as the Brans-Dicke type sca
field!. Naturally, any statement made about the stress-en
content of the geometry using this approach will be fram
dependent. However, for spherically symmetric cases
meaningful proper energy contained in the sphereSD, with
its origin at the center of spherical symmetry, can be defin
using this method@1#. It is in this context that we present thi
alternative derivation of the quasilocal energy expressi
Eq. ~2.19!.

We begin by finding the equations of motion for th
theory described by Eq.~2.1! for the special case wher
W(f)5X(f) andU(f)W(f)51. ~Our results can be gen
eralized in a straightforward manner to other cases not c
strained by these conditions.! Requiring the action to be sta
tionary under variations of the metric tensor and the fieldf
gives the equations of motion

U~f!F R̄mn2
1

2
gmnR̄G

52
1

2
@ T̄m

mn1Tf
mn12U~f! ;m;n22ḡmnU~f!# ;l

;l],

~A1!

ḡmnf ;m;n22
d~UV!

df
2R̄

dU

df
50, ~A2!

where we have used the notationA,m[]A/]xm and A;m

[¹̄mA. Here,T̄m
mn is the energy-momentum tensor of matt

obtained by varyingL̄m with respect toḡmn , and

Tf
mn[22]mf]nf2ḡmn@2]lf]lf2U~f!V~f!#.

~A3!

We have considered, for the present, af-independentL̄m.
Since our discussion here is limited to the ‘‘Brans-Dicke
frame only, we shall henceforth drop the overbar.

It would be reasonable to demand that this theory c
form to the equivalence principle. To demonstrate that t
indeed holds i.e.Tm;n

mn 50, we first note that the contracte
Bianchi identity satisfied by the Einstein tensor gives

@U~f!21~Tm
mn1tmn!# ;n50 ~A4!

with

tmn[Tf
mn12U~f! ;m;n22gmnU~f! ;l

;l . ~A5!

From the equation of motion~A1! and the Bianchi identity it
follows that

U~f! ,nFRmn2
1

2
gmnRG52

1

2
@Tm;n

mn 1t ;n
mn#. ~A6!

The definition of the Riemann tensor yields the identity

RraU~f! ;r5U~f! ;l;a
;l 2U~f! ;a;l

;l . ~A7!
9-12
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Taking the covariant derivative of Eq.~A3! and using the
equation of motion~A2! for the scalar fieldf, we obtain

Tf;n
mn 5U~f! ;mR. ~A8!

Taking the covariant derivative of Eq.~A5! and using Eqs.
~A7! and ~A8! then gives the desirable vanishing covaria
divergence of the matter stress energy tensor.

Our task now is to find the expression for a conserv
stress-energy pseudotensor for the geometry. To achieve
we proceed by expressing the vanishing of the covariant
vergence of the matter stress-energy tensor as

@A2gTmm
n # ,n2

1

2
gtb,mA2gTm

tb50. ~A9!

To cast the left-hand side of the above equation into a t
ordinary divergence one has to seek a representation o
second quantity in terms of a total ordinary divergence. T
can be done as follows. First, we make use of the equatio
motion ~A6! to express the matter stress-energy tenso
terms of purely geometrical quantities, namely, the sca
field and metric-dependent quantities

Tm
tb52ttb22U~f!Gtb, ~A10!

whereGtb is the Einstein tensor.~For simplicity, we have
above dropped a possible contribution from a divergence
term.! Second, note that the right-hand side of this expr
sion is merely the functional derivative of

J[2E d~D11!xA2g@U~f!R1Lf# ~A11!

under variations of the metric tensor, with boundary con
tions that require the vanishing of the metric and its fi
derivatives on the boundary of a (D11)-dimensional mani-
fold over which this integral has been taken. For more g
eral variations, one would get contributions from the surfa
integrals as well. Here, the variation ofLf with respect to the
metric tensor is taken to yieldTf

mn . We consider the standar
decomposition ofA2gR into a pure divergence term and
simple expression involving only the metric and its first d
rivatives:

A2gR5U1@A2ggsrGsa
a # ,r2@A2ggsrGsr

a # ,a
~A12!

with

U[A2ggsr@Gsr
a Gab

b 2Gbr
a Gas

b #. ~A13!

It follows that the functional derivative ofJ with respect to
the metric tensor is the same as that of

H[E d~D11!x@V1A2gLf#, ~A14!

where
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V[@UU2A2ggsrGsa
a U ,r1A2ggsrGsr

a U ,a#.
~A15!

Comparing the variations ofJ and H with respect to the
metric, we get

A2gUGmn1A2g@U ;m;n2gmnU ;a
;a#1

1

2
A2gTfmn

5
]~V1A2gLf!

]gmn 2F ]~V1A2gLf!

]g,l
mn G

,l

, ~A16!

where we made use of Eqs.~A10! and~A5!. Next, we define

V̂[V1A2gLf . ~A17!

The expression for the ordinary derivative ofV̂ and the field
equation ~A2! for f enable us to expressgtb,m@ ttb

12U(f)Gtb# as a total divergence. Using Eq.~A10!, we
express Eq.~A9! as a vanishing total derivative

FA2gTmm
n 2V̂dm

n 2
]V̂

]g,n
tb g,m

tb2
]V̂

]f ,n
f ,mG

,n

50.

~A18!

For n50, the expression within the brackets integrated o
a spacelike hypersurface is thus invariant under time tran
tions for a distribution of matter with a compact support ov
the surface. This is the expression for the stress-ene
pseudotensor that we seek. The quantity

Pm[
1

2k E
S
dSFA2gTmm

0 2V̂dm
0 2

]V̂
]g,0

tb g,m
tb2

]V̂
]f ,0

f ,mG ,

~A19!

evaluated on a constant-time spacelike hypersurfaceS, is
thus conserved. This may be viewed as the generalizatio
the energy-momentum four-vector for a Brans-Dicke theo
As in general relativity,Pm is not a generally covariant four
vector sinceU andV are not scalar densities. The intrins
non-covariance of the energy-momentum density of
gravitational field has its origin in the intimate connectio
between geometry and the gravitational field. Had the
pression been covariant, one could always have gone in
preferred~freely falling! frame to ensure vanishing of a
arbitrary localized gravitational field.

The above form for the energy-momentum pseudoten
for the generalized Brans-Dicke theory can also be obtai
by considering a variation of the coordinate system inst
of the metric field. The analysis enables us to express
gravitational stress-energy pseudotensor in a very com
form, which is identical to the expression derived in t
quasilocal formalism. To demonstrate this, we consider

H5E V̂d~D11!x, ~A20!

where V̂ is a function of the metric, the scalar fieldf, and
their first derivatives. Its variation is
9-13
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dV̂5
]V̂

]gmn dgmn1
]V̂

]gl
mn dgl

mn1
]V̂
]f

df1
]V̂

]f ,l
df ,l .

~A21!

Consider an infinitesimal change of coordinates of
form

x̂a5xa1eja. ~A22!

Retaining terms up to the first order ine, we get the follow-
ing variations:

]xa

] x̂l 5dl
a2e

]ja

]xl 1O~e2!, ~A23!

dgmn5e~j ,a
m gan1j ,a

n gam!, ~A24!

dg,l
mn5e~g,l

tnj ,t
m 1g,l

mbj ,b
n 2g,a

mnj ,l
a 1gtnj ,t,l

m 1gtmj ,t,l
n !,
~A25!

dA2g52eA2gja
a , ~A26!

df50, ~A27!

d~f ,l!52ef ,aj ,l
a . ~A28!

A restriction to linear transformations enables one to get
elegant form fordV̂. The Christoffel symbols transform a
tensors under such transformations and henceV̂ transforms
as a scalar density. Thus

dV̂5
V̂

A2g
dA2g52ej ,a

a V̂. ~A29!

Substituting the variations~A24!–~A28! for an arbitrary lin-
ear coordinate transformation into Eq.~A21!, and comparing
the expression with Eq.~A29!, we obtain the identity

]V̂
]gmn gan1

]V̂
]g,l

mn g,l
an2

1

2

]V̂
]g,a

bn g,m
bn2

]V̂
]f ,a

f ,m52
1

2
V̂gm

a .

~A30!

Although the above identity was derived for variations und
linear coordinate transformations, one can verify that it ho
quite generally@2#. The use of this identity yields a simpl
expression for the variation ofV̂ under the general transfor
mation ~A22!:

dV̂52eV̂j ,a
a 12e

]V̂
]g,l

mn j ,t,l
m gtn. ~A31!

Under conditions wherej and its derivatives are taken t
vanish on the boundary, the variation of the metric ten
and its derivatives also vanish there. Under such bound
conditions,H has a vanishing variation, i.e.,

dH5E
S
dS V̂

A2g
DA2gd~D11!x50, ~A32!
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which, using the above identities, reduces to

dH52eE
S

]V̂
]g,l

mn j ,t,l
m gtnd~D11!x50. ~A33!

This expression may be integrated by parts twice. SincedH
vanishes for arbitraryjm, we obtain the following divergence
law:

S ]V̂
]g,l

mn gtnD
,t,l

50. ~A34!

Thus

A2gFm
t [S ]V̂

]g,l
mn gtnD

,l

~A35!

defines a conserved quantity. Using the identity~A30! and
the field equation~A1! gives

A2gFm
t 52A2gTm

~m!t2
1

2
V̂gm

t 1
1

2 S ]V̂
]g,t

bn gbnD
,m

2
1

2

]V̂
]f ,t

f ,m , ~A36!

which is just the expression that we had obtained for
stress energy pseudotensor by the variation of the metric
sor earlier. The expression~A34! for a vanishing ordinary
divergence implies that

Pm[2
1

k E
V
S ]V̂

]g,l
mn g0nD

,l

dV ~A37!

is a conserved quantity ifV is the entire space at a give
time. In the special case of a time independent met
Gauss’s theorem inD dimensions gives the energy mome
tum as surface integral over a (D21)-dimensional surface:

Pm52
1

k E
S
S ]V̂

]g, j
mn g0nD dS j . ~A38!

This gives the interesting result that in the generalized Bra
Dicke theory, the generalized energy-momentum in
D-dimensional volume can be determined by the met
tensor and its derivatives on the (D21)-dimensional sur-
face, the details of the field inside the volume being irr
evant.

We conclude this appendix by noting that in the curvatu
coordinates, the above expression~A38! evaluated for the
SSS metric~3.4!, tallies with the quasilocal energy expre
sion~2.19! ~with Ē0 set equal to zero!. This can be seen from
the definition ofV given by Eqs.~A17! and~A15!: The term
Uk̄ in Eq. ~2.19! yields the first term in the definition~A15!
of V, whereas the termn̄i] iU in Eq. ~2.19! yields the second
and third terms ofV.
9-14
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