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Late time dynamics of scalar perturbations outside black holes. II. Schwarzschild geometry

Leor Barack*
Department of Physics, Technion-Israel Institute of Technology, Haifa, 32000, Israel

~Received 25 August 1998; published 25 January 1999!

We apply a new analytic scheme, developed in a previous paper, in order to calculate the late time behavior
of scalar test fields evolving outside a Schwarzschild black hole. The pattern of the late time decay at future
null infinity is found to be the same as in the shell toy model studied in the previous paper. A simple late time
expansion of the scalar field is then used, relying on the results at null infinity, to construct a complete picture
of the late time wave behavior anywhere outside the black hole. This reproduces the well known power-law
tails at timelike infinity and along the event horizon. The main motivation for the introduction of the new
approach arises from its applicability to rotating black holes, as shall be discussed in a forthcoming paper.
@S0556-2821~99!00104-6#
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I. INTRODUCTION

It is well established that the gravitational field of a g
nerically forming black hole relaxes at late time to a ‘‘n
hair’’ stationary Kerr-Newman geometry. It was first demo
strated by Price @1#, regarding gravitational and
electromagnetic perturbations of the Schwarzschild bl
hole ~SBH! exterior, that the fields die off at late time wit
an inverse power-law tail. For a spherical-harmonic wa
mode of multipole numberl, it was shown that at2(2l 121p)

decay tail (t being the Schwarzschild time coordinate! will
be detected by a static observer outside the black hole,
p51 if an initially compact perturbation is considered orp
50 in case that a static field existed outside the central
ject before the onset of collapse.

These results were later confirmed using several diffe
techniques, both analytic and numerical@2–5#, and were
generalized to other spherically symmetric spacetim
@2,6,7#. The application of perturbative~linear! approaches is
encouraged by numerical analysis of the fully nonlinear
namics of the fields@7,8#, which indicates virtually the sam
late time pattern of decay, as for the minimally coupled~lin-
ear! fields.

Power-law decay tails are exhibited by fields at late tim
because in a curved spacetime waves do not propa
merely along light cones, even when the fields are mass
Rather, the waves spread inside the light cones due to s
tering off spacetime curvature. As suggested by previ
studies, the late time behavior of these waves is character
of merely the large distance structure of spacetime. This
plies that the phenomenon of late time tails may not nec
sarily be restricted to the exteriors of black holes. For
ample, late time tails are found to form during the pure
spherical collapse of a self-gravitating minimally coupl
scalar field, even when the collapse fails to create a bl
hole @8#. Conversely, no power-law tails are detected in
nonasymptotically flat geometries of Schwarzschild–de
ter and Reissner–Nordstro¨m–de Sitter black holes@9# ~in-
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stead, the field is found to die off exponentially at late tim
in these cases!.

All previously mentioned studies benefited from the si
plicity of spherical symmetry. Yet an astrophysically real
tic model should clearly employ a rotating central obje
Thus, apparently, the most tempting generalization of
analysis involves the inclusion of angular momentum in
background geometry. A first progress in this direction h
been achieved recently with the introduction of a full (
12 dimensions! numerical analysis of wave dynamics
Kerr spacetime by Krivanet al. @10,11#. So far, however, no
analytic scheme has been proposed for this study@12#.

In a previous paper~to be referred to as paper I! we in-
troduced an analytic technique for the study of the late ti
behavior of fields in asymptotically flat spacetimes. T
prime motivation for the introduction of the new scheme w
its applicability to rotating black holes. To examine the e
sential features of the proposed calculation scheme, we
plied it in paper I to study the simple toy model of a sca
field evolving outside a spherically symmetric thin shell
matter. In that case, the new technique, based on wha
called ‘‘the iterative expansion,’’ allowed a simple and rig-
orous derivation of the late time decay at null infinity. In th
present paper we apply a variant of the iterative schem
order to analyze the evolution of scalar waves on the ba
ground of thecomplete Schwarzschild geometry. Again, this
method will enable the analytic calculation of the late tim
behavior at null infinity. We shall then show how, relying o
the results at null infinity, it becomes rather simple to co
struct a complete picture of the late time decay anywh
outside the black hole, in particular along the event horiz

There are several reasons why we think it is worthwhile
first analyze the already well-studied case of a SBH, rat
than directly focus on the more interesting case of the K
black hole. First, this will enable us to test our schem
against the well-established results available in
Schwarzschild case. Second, many parts of the analys
the Schwarzschild case shall later be directly employed w
analyzing scalar waves in Kerr spacetime@13,14#. Finally,
the analysis in the Schwarzschild case will appear to be v
able in its own right, providing, in some respects, a mo
©1999 The American Physical Society17-1
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LEOR BARACK PHYSICAL REVIEW D 59 044017
complete picture of the late time wave behavior than alre
available.

In the shell model, spacetime is flat at small distan
~inside the shell!. For that reason, the complete internal g
ometry could be exactly accounted for by merely t
‘‘Minkowski-like’’ first component of the iterative expan
sion ~denoted in paper I byC0). ~We remind the reader tha
the termsCN>1 of the iterative expansion were describin
deviations from flat geometry, namely, curvature effects o
side the shell.! The complete Schwarzschild manifold, how
ever, does not share this convenient property, as in this
spacetime is highly curved at small distances. This will fo
us to choose for another ‘‘basis’’ potential for the iterati
scheme at smallr ~other than the purely centrifugal potenti
V0 chosen in the framework of the shell model!, and will
thus somewhat complicate the technical details of the an
sis. Nevertheless, the basic calculation scheme, as well a
results at null infinity, shall remain essentially the same a
the shell model.

This paper is arranged as follows. In Sec. II we give
mathematical formulation of the wave evolution problem
the Schwarzschild case as a characteristic two-dimensi
initial-value problem. In Sec. III we introduce the iterativ
scheme to be used to allow an analytic treatment of the m
ematical problem. We apply the iterative calculation sche
in Secs. IV–VII, obtaining an expression for the waveform
late time at null infinity. Then, in Sec. VIII, a simple tech
nique is applied to obtain the late time behavior of the sca
field at any constantr ~including along the event horizon!.
Section IX summarizes the results and discusses possibl
tensions of the analysis.

II. INITIAL-VALUE PROBLEM

We consider the evolution of initial data, representing
generic pulse of massless scalar radiation, on a fixed S
background. The scalar field is assumed to satisfy the~mini-
mally coupled! Klein-Gordon equation

F ;m
;m50, ~1!

whereF represents the scalar wave. The structure of spa
time affects the evolution of the scalar field through the
variant derivatives, denoted in Eq.~1! by semicolons.

Decomposing the field into spherical harmonics,

F~ t,r ,u,w!5(
l 50

`

(
m52 l

l

f l~ t,r !Ylm~u,w!, ~2!

we obtain an independent equation for each of the com
nentsf l(t,r ),

f 21~r !f ,tt
l 2 f ~r !f ,rr

l 2
2~r 2M !

r 2
f ,r

l 1
l ~ l 11!

r 2
f l50.

~3!
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Here t, r , u andw are the standard Schwarzschild coord
nates,M is the mass of the black hole,f (r )[(122M /r ),
and l is the multipole number of the mode under consid
ation.

A more convenient form for the wave equation may
obtained in terms of a new wave functionC l(t,r )
[rf l(t,r ). To that end we introduce the double-nu
~Eddington-Finkelstein! coordinates v[t1r * and u[t
2r * , where

r * 5r 12M lnS r 22M

2M D . ~4!

The ‘‘tortoise’’ coordinater * varies monotonically from
2` ~the event horizon! to 1` ~spacelike infinity!.

The wave equation now reads

C ,uv
l 1Vl~r !C l50, ~5!

in which

Vl~r !5
1

4S 12
2M

r D F l ~ l 11!

r 2
1

2M

r 3 G ~6!

is an effective potential, accounting for both centrifugal a
curvature effects. This effective potential is sketched in F
1 as a function ofr * for the sample valuesl 50,1,2.

Note the following features of the effective potenti
~valid for all values ofl ), which play an important rule in
our analysis.V(r ) is localized~in a sense apparent in Fig. 1!,
forming an effective potential barrier for the waves. At lar
distance,V(r ) is dominated by the centrifugal potential~re-
flecting asymptotic flatness!, with curvature-induced devia
tions which die off as;r 23. At small r * values,V(r ) dies
off exponentially inr * /M towards the event horizon, mak
ing the potential effectively zero inside the potential barri
Evidently, the late time behavior at null infinity is affecte
mostly by the shape of the potential at large distance. C

FIG. 1. Effective potential for scalar waves in Schwarzsch
spacetime. Withr * defined as in Eq.~4!, we haver * 50 corre-
sponding tor .2.56M .
7-2
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LATE TIME DYNAMICS OF SCALAR . . . . II. . . . PHYSICAL REVIEW D 59 044017
versely, the early evolution~e.g., the quasinormal ringing
stage!, is strongly related to the fine details of the potent
shape at smallr values.

Since each of the spherical harmonics modes evo
separately, we henceforth discuss the evolution of a sin
mode of arbitrary multipole numberl. The superscriptl ~de-
noting l dependence! will usually be suppressed for brevity

The initial data for the evolution problem shall be spe
fied on two characteristic~null! surfaces outside the even
horizon, as sketched in the Penrose diagram of Fig. 2.
will first consider initial data in the form of some compa
outgoing pulse, specified on the ingoing null surfacev50,1

C~u5u0!50,
~7!

C~v50!5G~u!,

where G(u) is some function of a compact support~‘‘the
pulse’’! between retarded timesu5u0 andu5u1 . As dem-
onstrated in paper I for the shell model, the case of st
initial field can be later inferred in a simple way from th
result regarding a compact pulse.

The evolution equation~5!, supplemented by the initia
conditions~7!, establishes a well-posed characteristic initi
value problem for the scalar field anywhere in the domaiS
outside the event horizon~see Fig. 2!. Since, manifestly, this
problem poses no mathematical irregularities, the existe
and uniqueness of a solution are guaranteed by fundam
mathematical theory~see, for example,@15#!.

1As long asu0 remains a free parameter in the analysis, the s
cific choicev50 causes no loss of generality, since spacetime
time-translation invariant.

FIG. 2. The setup of initial data. Shown is the Penrose diag
representing the external Schwarzschild geometry. The dark fea
~artificially shown as if extended tov.0 values! represents the
amplitude of some compact support initial functionG(u) on the ray
v50. The initial problem for the scalar field is well posed in regi
S ~the shadowed area!.
04401
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III. ITERATIVE EXPANSION

To define the iterative expansion to be applied in the co
plete SBH model, we first introduce a new parameterr 0
.0, its value chosen so thatr (r * 5r 0) is of order *2M
@say,r (r * 5r 0)53M ]. We then define

V0~r * ![H 0, r * ,r 0

l ~ l 11!

4r
*
2

, r * >r 0 ,
~8!

and

dV~r ![V2V0 , ~9!

in which V(r ) is the Schwarzschild effective potential give
by Eq.~6!. The potentialV0(r * ) is so defined to account fo
the fact that the actual effective potential is exponentia
small at smallr * values. With this definition, the function
V0(r * ) approximates the form of the actual effective pote
tial V(r * ) at both very large and very small values ofr * .
~The deviations, described bydV, become significant only a
intermediate distance; see Fig. 1.!

Following the same procedure as in studying the sh
model, we define theiterative expansionby decomposing the
scalar waveC into an infinite sum,

C5 (
N50

`

CN , ~10!

in which the componentsCN are defined in a recursive wa
by the hierarchy of equations

CN,uv1V0CN5H 0, N50

2~dV!CN21 , N.0 ,
~11!

supplemented by the initial data

CN~u5u0!50 ~;N>0!, ~12a!

CN~v50!5H G~u!, N50,

0, N.0.
~12b!

Formal summation overN recovers the ‘‘complete’’ initial-
value problem for the scalar waveC.

It was indicated in paper I that in the analogous sh
model the iterative sum seems to converge rather efficie
at late time to the actual field at null infinity, provided th
the initial pulse is specified at large distance. In that case
was suggested both numerically and analytically that
‘‘complete’’ wave is well approximated by merely the func
tion C1 . With this result in mind, we are going, in the fo
lowing, to derive exact analytic expressions forC0 and for
the ~time domain! Green’s function in the complete SBH
model. We shall then use these results to calculate the
time form of C1 at null infinity in this model.

The above iterative expansion appears to be an effec
calculation scheme for all modesl of the scalar radiation,
except for the monopole model 50. This is unlike the

-
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re
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LEOR BARACK PHYSICAL REVIEW D 59 044017
scheme used for the shell model in paper I, which h
equally well for all modesl with no exception. The reaso
for this difference between the two models in the monop
case will be discussed later. The calculation to follow sh
regard only the modes withl .0.

IV. DERIVATION OF C0

We first obtain an explicit expression forC0 , the first
element of the iterative expansion. Since the only disco
nuity in the potential functionV0 ~at r * 5r 0) is bounded in
magnitude, we learn by the wave equation~11! that C0 and
its first order derivatives should be continuous anywhere
the sequel we explicitly use this fact in constructing an
pression forC0 .

We shall consider separately three distinct regions of
domainS, as indicated in Fig. 3. Regions I (u0,u,22r 0)
and II (u.22r 0,r * .r 0) cover the part ofS outside the
surfacer * 5r 0 , while region III (r * ,r 0) is the portion in-
side this surface.

A solution to Eq.~11! for N50 has the general form2

C0I5 (
n50

l

An
l

g0I
~n!~u!

~v2u! l 2n
, ~13a!

C0II 5 (
n50

l

An
l

g0II
~n!~u!

~v2u! l 2n
, ~13b!

C0III 5F~u!1H~v !, ~13c!

in which the labels I,II,III denote the region to which ea
specific solution corresponds, and whe
g0I(u), g0II (u), F(u), and H(v) are ~yet! arbitrary func-
tions. In the above equations the coefficientsAn

l are given by

2The most general solution atr .r 0 involves also an arbitrary
functionh(v). However, for our choice of initial setup~an outgoing
initial pulse!, the solutionC0 can be expressed in terms of a fun
tion g(u) solely. This issue is discussed in Appendix A of pape

FIG. 3. Calculation ofC0 in the complete Schwarzschild geom
etry. The solution in each of the regions labeled I, II, and III
discussed separately in the text.
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l 5

~2l 2n!!

n! ~ l 2n!!
, ~14!

and the parenthetical indices indicate the number of times
functions are differentiated.

Causality implies that in region I, the solutionC0I(u)
cannot be sensitive to the form ofV0 at r * ,r 0 . Thus it must
be identical to the solution derived in the shell model, w
the functiong0I(u) explicitly related to the initial-data func
tion by

g0I~u!5
1

~ l 21!! Eu0

u S u

u8
D l 11

~u2u8! l 21G~u8!du8

~15!

~see paper I for details!.
Now, with the initial condition C0III (v50)50,3 Eq.

~13c! implies thatC0
III is a function ofv only. We can then

use the continuity ofC0,u at r * 5r 0 to derive a closed dif-
ferential equation for the functiong0II (u):

]

]u H (
n50

l

An
l @g0II ~u!#~n!

~v2u! l 2n J U
r
*

5r 0

50. ~16!

This equation may be put into the form

(
n50

l 11

Bn
l r 0

n@g0II ~u!#~n!50, ~17!

in which the coefficientsBn
l are given by

Bn
l 5

2n~2l 2n!!

n! ~ l 2n11!!
. ~18!

Thus g0II (u) is a solution of a constant-coefficient linea
equation of orderl 11. It therefore admits the form

g0II ~u!5(
i 51

l 11

Ciexp~2k iu/r 0!, ~19!

whereCi are constants, and thel 11 complex numbersk i
are the roots of the algebraic equation

(
n50

l 11

Bn
l ~2k!n50. ~20!

The only properties of the numbersk i important for our dis-
cussion are that~i! these numbers are all distinct~for any
given value ofl ) and that~ii ! we have Re(k i).0 for all
values of l and i. Henceg0 ~and alsoC0 itself! falls off
exponentially at late retarded timeu.

.

3Since we shall be interested mostly in the case where the in
pulse is specified at large distance, we assume here that its su
is confined to the exterior of the spherer * 5r 0 .,
7-4
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LATE TIME DYNAMICS OF SCALAR . . . . II. . . . PHYSICAL REVIEW D 59 044017
The coefficientsCi are determined by imposing continu
ity on C0 at u522r 0 , namely, by requiring (g0II )

( j )

5(g0I)
( j ) at u522r 0 , for all 0< j < l . This leads to a set o

l 11 algebraic equations for thel 11 coefficientsCi , having
the form

(
i 51

l 11

M ji Ci5r 0
j g0I

~ j !uu522r 0
~21!

for 0< j < l , whereM ji [(2k i)
jexp(2ki). In a matrix form,

we have

detM5exp@2~k11•••1k l 11!#detK, ~22!

whereK is the Vandermonde matrix

K5S 1 1 ••• 1

2k1 2k2 ••• 2k l 11

A A A

2k1
l 2k2

l
••• 2k l 11

l
D , ~23!

which is always nonsingular, provided only that the numb
k i are all distinct~which is the case here!. Therefore the se
of equations~21! has a unique solution for the coefficien
Ci .

We finally obtain C0II by substituting forg0II in Eq.
~13b!. This yields an expression of the form

C0II 5r
*
2 l (

n50

l

(
i 51

l 11

aniS r *
r 0

D n

Ei~u!, ~24!

in which ani are constant coefficients@being certain
l -dependent functionals of the initial-data functionG(u)],
and where the functions

Ei~x![exp@2k ix/r 0# ~25!

die off exponentially with respect to their argument for
1< i< l 11.4 We still have to derive an expression forC0 in
region III, that is, atr * ,r 0 . By the continuity ofC0 at r *
5r 0 we haveC0

III (v)5C0
II (u5v22r 0). It follows that

C0III 5r 0
2 l(

i 51

l 11

a iEi~v22r 0!, ~26!

wherea i[(n50
l ani , and where the functionsEi are those

defined in Eq.~25!.
We conclude thatC0 ‘‘penetrates’’ the potential barrie

only through a narrow null ray of typical width;2r 0 adja-
cent to the initial ingoing rayv50. It has significant ampli-
tude only in a ‘‘main’’ regionu0,u&0 and along that pen

4In Eq. ~24!, as well as in all other expressions for the vario
functionsC to appear in this paper, it is to be understood that o
the real ~or, alternatively, theimaginary! part is taken into account
The indication ‘‘Re’’ shall be omitted for brevity.
04401
s

etrating null ray. Elsewhere,C0 is found to be exponentially
small ~in retarded timeu at r * .r 0 or in advanced timev at
r * ,r 0). This result~valid for all l>1) is illustrated in Fig.
4.

V. CONSTRUCTION OF THE GREEN’S FUNCTION

In this section we derive an analytic expression for t
~retarded! Green’s function corresponding to the opera
]u]v1V0(r * ), with V0(r ) defined in Eq.~8!. The~retarded!
Green’s functionG(u,v;u8,v8) is defined by the equation

G,uv1V0G5d~u2u8!d~v2v8!, ~27!

supplemented by the causality conditionG(v,v8)5G(u
,u8)50, where (u8,v8) are the null coordinates of a scala
‘‘point’’ source @in the (111)-dimensional representation#,
and (u,v) is where we evaluate the field this source induc
@It will become evident by construction that this conditio
specifies a unique solution to Eq.~27!.# In view of the results
obtained forC0 , we shall have to consider both ‘‘external
(r

*
8 .r 0) and ‘‘internal’’ (r

*
8 ,r 0) sources. In what follows

we treat each of these two cases separately.

A. External sources

We first consider a ‘‘point’’ source located at null coo
dinates (u8,v8) outside the surfacer * 5r 0 ~thus v82u8
.2r 0). For this fixed source, we look for the Green’s fun
tion at any evaluation point (u,v). To that end we separat
the future light cone of the point source into three regions
indicated in Fig. 5. Regions I and II correspond to evaluat
points outside the surfacer * 5r 0 , while region III corre-
sponds to internal evaluation points.

We first observe that in region I~that is, atu,v822r 0)
the Green’s function cannot depend on the form of the
tential at r * ,r 0 ~as implied by causality!, and thus in this
region it must be the same as in the shell model~outside the
shell!. Therefore, by Eqs.~33! and ~35! of paper I we find
that the Green’s function in region I reads

y

FIG. 4. Domain of the functionC0 in Schwarzschild spacetime
Dark colored areas indicate regions whereC0 is not exponentially
small. Note thatC0 ‘‘penetrates’’ the potential barrier only throug
a narrow ingoing ray~of typical width ;2r 0).
7-5
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LEOR BARACK PHYSICAL REVIEW D 59 044017
GI~u,v;u8,v8!5 (
n50

l

An
l
@gG

I ~u;u8,v8!#~n!

~v2u! l 2n
, ~28!

in which the differentiation is with respect tou, An
l are the

coefficients given in Eq.~14!, and

gG
I ~u;u8,v8!5

1

l ! F ~v82u!~u2u8!

~v82u8!
G l

. ~29!

Now, in regions II and III, Eq.~27! is homogeneous
hence the solutions for the Green’s function in these t
regions are of the form

GII 5 (
n50

l

An
l
@gG

II ~u!#~n!

~v2u! l 2n
, ~30a!

GIII 5GIII ~v !, ~30b!

where the functionsgII (u) andGIII (v) are yet to be deter
mined.

By analogy with Eq.~19! we then have

gG
II ~u!5(

i 51

l 11

C̄i~u8,v8!exp~2k iu/r 0!, ~31!

with k i being the same numbers as in Eq.~19!, and where the
l 11 coefficientsC̄i(u8,v8) are to be determined such th
the Green’s function is continuous along the rayu5v8
22r 0 . This requirement leads to a set ofl 11 equations for
the coefficientsC̄i(u8,v8), reading

(
i 51

l 11

M̄ ji C̄i5r 0
j @gG

I ~u!#~ j !uu5v822r 0
~32!

~for 0< j < l ), whereM̄ ji [(2k i)
jexp@2ki(v822r0)/r0#. The

solution ~which always exists! is

FIG. 5. Construction of the Green’s function for a scalar sou
sphere atr

*
8 .r 0. The three regions I, II,III, defined with respect

that source, are treated separately in the text.
04401
o

C̄i5 exp@k i~v822r 0!/r 0#(
j 50

l

Ki j
21r 0

j @gG
I ~u!#~ j !uu5v822r 0

,

~33!

with K ji
21 being the elements of the matrix reciprocal to t

Vandermonde matrix~23!. Inserting the explicit expression
for gG

I and using Eq.~30a!, we can finally obtain, for the
Green’s function in region II,

GII 5 (
n, j 50

l

(
i 51

l 11

bn ji

~r
*
8 2r 0! l 2 j~r 0! l 1 j 2n

~r
*
8 ! l r

*
l 2n

Ei~u2v812r 0!,

~34!

in which r
*
8 [(v82u8)/2, and wherebn ji are certain con-

stant coefficients~depending onl only!. ~Recall that the
functionsEi die off exponentially with respect to their argu
ment for all i .)

To obtain the Green’s function in region III, we simpl
notice thatGIII (v)5GII (u5v22r 0), implied by the conti-
nuity of G at r * 5r 0 . It follows that

GIII 5(
j 50

l

(
i 51

l 11

b j i

~r
*
8 2r 0! l 2 j~r 0! j

~r
*
8 ! l

Ei~v2v8!, ~35!

where b j i [(n50
l bn ji . @It is straightforward to verify that

with this result, we haveGIII (v5v8)51 as necessary.#

B. Internal sources

To obtain the Green’s function for a source point locat
at r

*
8 ,r 0 , we refer to Fig. 6, where again we indicate thr

regions, defined with respect to a given source at (u8,v8).
Again we discuss the construction of the Green’s function
each of these regions separately.

In region IV we haveG,uv
IV 5d(v2v8)d(u2u8) by defi-

nition, which ~by causality! leads to

GIV5u~v2v8!u~u2u8!, ~36!

e FIG. 6. Construction of the Green’s function for a scalar sou
sphere atr

*
8 ,r 0 . The three regions IV,V,VI are treated separate

in the text.
7-6
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LATE TIME DYNAMICS OF SCALAR . . . . II. . . . PHYSICAL REVIEW D 59 044017
with u denoting the usual step function.
In region V the Green’s function satisfies the homog

neous equationG,uv
V 50. With the continuity requiremen

GV(v5u812r 0)51, this means thatGV5GV(v). Now,
GVI is given in terms of a functiongG

VI(u), in a way analo-
gous toGII in Eq. ~30a!. By the continuity ofG,u at r

*
8

5r 0 we must haveG,u
VI(r * 5r 0)50, which is a linear differ-

ential equation of orderl 11 for the functiongG
VI(u). The

solution is@in analogy to Eq.~31!#,

gG
VI~u!5(

i 51

l 11

C̃i~u8,v8!exp@2k iu/r 0#, ~37!

with C̃i being certain coefficients.
To construct the coefficientsC̃i , we match the function

GVI, as inferred by Eq.~37!, to its value on the rayu5u8.
This value may be deduced independently by inserting
form GIV(u,v)5ḠIV(u,v)u(u2u8) ~implied by causality!
into Eq. ~27!, and observing that a solution must admitḠ,v
50 alongu5u8. This means thatG is constant along this
ray. By Eq.~36! ~and requiring continuity! we then learn that
this constant is unity. RequiringGVI(u5u8)51 for all v
then leads to

@gG
IV#~n!~u8!50 ~0<n< l 21!, ~38!

@gG
IV#~ l !~u8!51.

With Eq. ~37! , this constructs a set ofl 11 linear algebraic
equations for the coefficientsC̃i . The solution reads

C̃i5r 0
l Ki ,l 11

21 exp@k iu8/r 0#, ~39!

where the numbersk i are the same as for the external sour
~Recall that the matrixK is always nonsingular; hence th
solution exists and is unique.!

Using the results~37! and ~39! we can finally obtain

GVI5 (
n50

l

(
i 51

l 11

gniS r 0

r *
D l 2n

Ei~u2u8!, ~40!

with the functionsEi defined in Eq.~25!, and wheregni are
certain constant coefficients~depending only onl ).

To obtainGV, we simply notice thatGV(v)5GVI(u5v
22r 0) ~inferred by the continuity of the Green’s function!;
hence

GV5(
i 51

l 11

g iEi~v2u822r 0!, ~41!

whereg i[(n50
l gni .

C. Fixed external evaluation point

Thus far we considered the Green’s function for giv
sources at (u8,v8) as a function of the evaluation coordinat
(u,v). In practice, we shall be interested in calculating t
function C1 at a given location~specifically, at null infinity,
04401
-

e

.

for u@M ), which will involve integration over all possible
sources. This requires knowledge of the form of the Gree
function at the evaluation location, as a function of t
sources locations. To that end we only need to reinterpret
previous results: The expressions we have derived for
Green’s function shall be regarded as functions of the sou
coordinates (u8,v8), with fixed evaluation coordinate
(u,v). This reversed presentation of the results is illustra
in Fig. 7. Indicated in this figure are the regions of spaceti
in which scalar sources influence the behavior of the sc
field at a fixed evaluation point~with null coordinatesu,v)
outside the surfacer * 5r 0 . Dark-colored areas in this figur
indicate source regions where the Green’s function isnot
exponentially small, as inferred by Eqs.~28!, ~34!, and~40!.

In region A (u8<u, u12r 0<v8<v)G is given by Eqs.
~28! and~29!, and is the same as in the shell model. In reg
B (v8<u12r 0, r

*
8 >r 0)G is given by Eq.~34!. It vanishes

here exponentially towards early advanced timev8, and it
possesses significant amplitude only within a narrow ingo
null ‘‘band’’ ~of typical width 2r 0), adjacent to region A.
Then, in region C (u8<u, r

*
8 <r 0) the Green’s function

@given by Eq.~40!# vanishes exponentially towards early r
tarded timeu8, and is of significant amplitude only within a
narrow outgoing null ‘‘band’’~of typical width 2r 0) adjacent
to the rayu85u.

Like in the shell model, we find that the main region
effective sources covers only the rangeu<v8<v of ad-
vanced times. In the shell model, however, the Green’s fu
tion vanishes identically outside this range~due to the diver-
gent potential at the center of symmetry!, whereas in the
complete SBH model it dies off exponentially~and also
‘‘penetrates’’ through the finite potential barrier atu85u).

VI. CALCULATION OF C1 AT NULL INFINITY

We have shown that in the complete SBH model,C0
gives only an exponentially decaying contribution to the la
time radiation. In this section we calculate the contributi
of C1 to this radiation at null infinity, and show that it i
characterized by the same power-law tail of decay that w

FIG. 7. Construction of the Green’s function for a given extern
evaluation point atu,v. Regions where the Green’s function isnot
exponentially small are indicated by dark color.
7-7
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LEOR BARACK PHYSICAL REVIEW D 59 044017
indicated in the shell model. Moreover, we show that ev
the amplitudes of the waves are the same in both mod
provided that we chooseuu0u@2M.r 0 ~the difference is of
order r 0 /u0).

Before we present the detailed calculation ofC1 , we first
give some heuristic arguments concerning the expected
sults. Figure 8 shows the region of spacetime in which sc
sources affect the behavior of the wave at null infinity, a
given retarded timeu@M . Also shown, superposed, is th
region where sources due toC0 exist. Outside the overlap
ping of these two areas, the Green’s function, orC0 , or
both, are exponentially small. We expect~and later show
analytically! that sources outside the overlapping area s
give only an exponentially decaying contribution toC1 at
null infinity as u→`. We may thus focus only on the tw
overlapping regions shown in the figure. One of these
gions lies inside the surfacer * 5r 0 ~see the figure!. It is of
‘‘dimensions’’ r 03r 0 , and is located nearr * 5(2u/2)
!M . In this location the potential functionV(r * ) is expo-
nentially small~see Fig. 1!, and thus the contribution from
this area should be exponentially small as well. We are
with the contribution of sources at the ‘‘main’’ regio
~namelyu0<u8<0,u<v8<v), in which both the Green’s
function andC0 have the same form as in the shell mod
except for in a narrow band~of width ;2r 0) at the edge of
this region. This suggests that forr 0 small enough, the cal
culation of C1 should yield a result very close to that o
tained in the shell model.

To confirm the above heuristic indications, we shall no
calculateC1 at null infinity. In terms of the Green’s function
derived above, we formally have

C1
`~u!52E

u0

u

du8E
0

v
dv8 G`~u;u8,v8!

3dV~u8,v8!C0~u8,v8!, ~42!

FIG. 8. Calculation ofC1 in the complete Schwarzschild mode
The region filled with horizontal lines is where the amplitude ofC0

is significant, while the region marked with vertical lines is whe
the Green’s function is significant, in accordance with the disc
sion given in the text. Potentially, a significant contribution toC1 is
expected to arise only from areas where the two indicated reg
overlap.
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whereC1
` andG` stand for the value ofC1 andG at null

infinity ~that is, forv→`). For the purpose of calculation
we separate the domain of integration into three regions

E
u0

u

du8E
0

v
dv8

5E
u12r 0

`

dv8E
u0

u

du81E
0

u12r 0
dv8E

u0

v822r 0
du8

1E
0

u12r 0
dv8E

v822r 0

u

du8 ~43!

to be labeled A, B, and C, respectively, as indicated in Fig
In what follows we consider separately the contribution fro
each of these three regions toC1

` . We show that the contri-
bution of region A is the dominant one, and that this con
bution is identical~in its pattern of late time decay and als
to a certain order of accuracy, in its amplitude! to that ob-
tained in the shell model.

A. Contribution from region C

In terms of the new integration variablesr
*
8 [(v8

2u8)/2 and t8[(v81u8)/2, and using Eqs.~26! and ~40!
~with r *→`), the contribution toC1

` from sources in region
C takes the form

C1C
` 522r 0

2 l (
i , j 51

l 11

a jg l i E
2u/2

r 0
dr

*
8 E

2r
*
8

u1r
*
8
dt8Ei~u2t81r

*
8 !

3V~r
*
8 !Ej~ t81r

*
8 22r 0!. ~44!

~Recall that in regionC, wherer
*
8 ,r 0 , we havedV5V by

definition.!
SinceV(r

*
8 )}exp@(r

*
8 /2M )# for r

*
8→2`, one finds that

the integrand in the last expression dies off exponentially
retarded timeu anywhere inside the domain of integration.
is easy to verify that the integral itself would be expone
tially small for largeu/M . For example, for any fixed re
tarded time u@M there exist positive constant
c1 , c2 , c3 , c4, and k, such that the following uppe
bound is applicable to the above integral~in absolute value!:

uC1C
` u< (

i , j 51

l 11

ua jg l i u H c1E
2u/2

2u/4

dr
*
8 E

2r
*
8

u1r
*
8
dt8V~r

*
8 !

1c2E
2u/4

r 0
dr

*
8 E

2r
*
8

u1r
*
8 /2

dt8 uEi~u2t81r
*
8 !u

1c3E
2u/4

r 0
dr

*
8 E

u1r
*
8 /2

u1r
*
8

dt8 uEj~ t81r
*
8 22r 0!uJ

<c4exp@2k~u/r 0!#. ~45!

We conclude that internal sources ofC0 ~namely, sources
at r * ,r 0) give at most an exponentially decaying contrib
tion to the late time radiation at null infinity.

-

ns
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B. Contribution from region B

By Eqs. ~13b! and ~34! ~with r *→`), the contribution
from region B toC1 at null infinity reads

C1B
` 5(

i 51

l 11

(
n, j 50

l

b̄n jiE
0

u12r 0
dv8Ei~u2v812r 0!

3E
u0

v822r 0
du8

~r
*
8 2r 0! l 2 j r 0

j

~r
*
8 !2l 2n

dV~r
*
8 !g0

~n!~u8!,

~46!

in which b̄n ji are certain constant coefficients, and the fun
tion g0(u8) stands for the expressions derived in the pre
ous section forg0

I (u8) and g0
II (u8) @Eqs. ~15! and ~19!, re-

spectively#. If we now integrate this expression by parts wi
respect tov8, we find that,to the leading order in M/u and
in r 0 /u,

C1B
` 5 (

n50

l

(
j 50

l

b̃n jr 0E
u0

u

du8
~u2u8! l 2 j r 0

j

~u2u812r 0!2l 2n

3dV~u2u812r 0! g0
~n!~u8!, ~47!

with b̃n j being some other coefficients. Now, integrate
parts each of the termsn successive times with respect tou8.
The resulting surface terms would all be negligible at la
u/r 0 , sinceg0(u8) dies off exponentially at large retarde
time u @see Eq.~19!#. In addition, these surface terms a
strictly compact from below. We are left with

C1B
` 5 (

n50

l

(
j 50

l

~21!nb̃n jr 0E
u0

u

du8g0~u8!

3
dn

du8nF ~u2u8! l 2 j r 0
j

~u2u812r 0!2l 2n
dV~u2u812r * !G ,

~48!

to leading order inM /u and r 0 /u.
To continue, we shall have to writedV in terms of the

null coordinates. This cannot be done explicitly, since
function r (r * ) is implicit. Rather, we shall use the larger
expansion

dV~r * >r 0!5Mr
*
23@a1bln~r * /2M !#

1O„M2r
*
24@ ln~r * /2M !#2

…, ~49!

wherea andb are constant coefficients, depending only ol
and M. In paper I we argued that~in the framework of the
shell model! it is merely the asymptotic form of the back
ground potential which affectsC1

` at u@M . This has been
also tested numerically~see Fig. 11 in paper I!. We now
proceed by assuming that the same is true in the comp
SBH model as well.

With dV taken to leading order inM /r * , Eq. ~48! takes
the form
04401
-
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C1B
` 5Mr 0(

j 50

l

(
m50

l 2 j E
u0

u

du8g0~u8!
~u2u8! l 2 j 2mr 0

j

~u2u812r 0!2l 2m13

3Fajm1bjmlnS u2u812r 0

2M D G , ~50!

to leading order inM /u and r 0 /u, whereajm and bjm are
certain constant coefficients. We observe that, sinceg0(u8)
;exp(2u8/r0) at largeu8, the upper part of the integratio
over u8 ~say, betweenu85AuM andu85u) gives a contri-
bution which dies off exponentially at largeu. In our ap-
proximation we can thus concentrate on the contribut
coming from early retarded times~say,u0<u8<AuM). At
any large enough retarded timeu there exist positive con-
stantsc5 andc6 such that this early contribution~in absolute
value! is bounded from above by

uC1B
` u<c5Mr 0(

j 50

l

(
m50

l 2 j
@~uM!1/22u0#~u2u0! l 2 j 2mr 0

j

@u2~uM!1/212r 0#2l 2m13

3F uajmu1ubjmu lnS u2u012r 0

2M D G
<c6r 0Mu2~ l 12.5!ln~u/M !. ~51!

In what follows it will become apparent that this contributio
to the late time radiation at null infinity dies off more rapid
than the radiation due to scattering in the ‘‘main’’ region
sources~region A!, which will be shown to be characterize
by a u2 l 22 decay tail. Therefore, the contribution from re
gion B is negligible atu@M .

C. Contribution from region A „the ‘‘main’’ region …

The remaining contribution to calculate is that comi
from region A, reading

C1A
` ~u!52E

u0

u

du8E
u12r 0

`

dv8 G`~u;u8,v8!

3dV~u8,v8!C0~u8,v8!. ~52!

To evaluate this expression we first writeC0(u8,v8) in
terms of a functiong0(u8) @as in Eqs.~13a!,~13b!#, then
integrate by parts each of the resulting terms on the rig
hand side~RHS! n successive times with respect tou8. Ne-
glecting surface terms, which are all exponentially small
late time sinceg0;exp@2u/r0# at largeu, we obtain

C1A
` ~u!52 (

n50

l

~21!nAnE
u0

u

du8E
u12r 0

`

dv8 g0~u8!

3
]n

]u8nFG`~u;u8,v8!dV~u8,v8!

~v82u8!2l 2n G . ~53!

With the explicit form of the Green’s function@Eqs.~28! and
~29!#, and withdV taken to the leading order inM /r * , the
last equation takes the form
7-9
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C1A
` ~u!5M (

k50

l

(
j 50

l 2k E
u0

u

du8 E
u12r 0

`

dv8

3
~u2u8! l 2k2 j~v82u!k

~v82u8!2l 2 j 13

3F āk j1b̄k jlnS v82u8

2M D Gg0~u8! ~54!

where āk j and b̄k j are certain constant coefficients that d
pend onl and M , but not on r 0 . Integrating overv8, the
RHS of the last equation becomes

M (
k50

l

(
j 50

l 2k

(
m50

k E
u0

u

du8
~u2u8! l 2k2 j~r 0!k2m

~u2u812r 0!2l 2 j 2m12

3F ãk jm1b̃k jmlnS u2u812r 0

2M D Gg0~u8! ~55!

with ãk jm and b̃k jm being yet other constant coefficients, i
dependent ofr 0 .

Now, sinceg0(u8) falls off exponentially at largeu8, we
may cut off the integration at, say,u85(Mu)1/2 without af-
fecting the integral to the leading order inM /u. Doing so,
we observe that the leading order contribution to this integ
comes only from terms corresponding tom5k. ~Note the
way the dependence in the parameterr 0 cancels in the lead
ing order.!

Defining

E
u0

AuM
g0I~u!du8.E

2`

`

g0I~u!du8[I 0 ~56!

~where the first equality holds to the leading order inM /u, as
g0 is compact from below and dies off exponentially at lar
u) we find that, to the leading order inM /u, r 0 /u, and
u0 /u,

C1
`5MI 0u2 l 22@k11k2lnu/M #. ~57!

kl andk2 are constant coefficients that donot depend onr 0 .
The only remaining reference to the value ofr 0 lies within
the integralI 0 .

Since the values of the coefficientskl andk2 are indepen-
dent ofr 0 , then in order to obtain these values one may
Eq. ~52! with whatever value of this parameter~requiring
only that r 0!u). Now, if we taker 050, then Eq.~52! be-
comes completely analogous to the expression forC1

` in the
shell model@Eq. ~37! in paper I#. Comparing these two ex
pressions, we find that the Green’s functionG and the poten-
tial dV appearing in both integrands are exactly the sa
The two expressions differ only in the form of the functio
C0 , which in both cases is expressed in a similar way@as in
Eq. ~13a!# in terms of two different functionsg0(u). How-
ever, the explicit form of the functiong0(u) ~as related to the
initial data! has no effect whatsoever on the value of t
coefficientskl and k2 and so these coefficients must be t
same as in the shell model. Therefore, comparing Eq.~57!
04401
-

l

e

e.

with Eq. ~52! of paper I, we learn thatk250, and that, to
leading order inM /u, u0 /u, and inr 0 /u we have

C1
`~u@M !52~21! l 11~ l 11!! MI 0 u2 l 22 ~58!

~for the compact initial data setup!.
We conclude that the waveC1

` has the same late tim
behavior in the complete SBH model as it has in the sh
model; namely, it dies off asu2 l 22 provided that the initial
pulse is compact. Numerical calculation ofC1 in the com-
plete SBH model agrees with this result, as demonstrate
Fig. 9.

We may similarly obtain theu2 l 21 decay characterizing
the static initial setup, by comparing Eq.~57! with Eq. ~54!
of paper I. If a static scalar field is present outside the cen
object up to some moment before the event horizon for
~no static solution exist which is well behaved both at t
event horizon and at infinity!, we shall have, to leading orde
in M /u, u0 /u, andr 0 /u,

C1
`~u@M !5~22! l 11

~ l ! !2

~2l !!
Mm u2 l 21, ~59!

wherem represents the amplitude of the initial static field
It is also instructive to compare the amplitudes of t

wave C1
` at some fixedu@M value in both models~the

shell and the complete SBH!, given the same initial data. A
implied by the above discussion, the relative amplitude
simply given by the ratio of the integralsI 0

[*u0

` g0(u8)du8 associated with both models. Relying on th

explicit expressions derived for the functionsg0 in this paper
and in paper I, it can be easily shown that the two integr

FIG. 9. Late time tails ofC1 at null infinity. Presented on a
log-log scale are numerical results obtained forC1 in the complete
SBH model atv5105M ~approximating null infinity!, for the l
50,1,2,3 modes.~For l 50 we used the definition ofC1 given at
the end of Sec. VI.! Compact initial data for the numerical propa
gation have been specified betweenu5240M andu5250M , and
the parameterr 0 has been set to 3M . Also shown, for reference, are
dotted lines proportional tou2 l 22. The results demonstrate th
u2 l 22 late time decay rate predicted by the analytic calculation
7-10
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LATE TIME DYNAMICS OF SCALAR . . . . II. . . . PHYSICAL REVIEW D 59 044017
I 0 , associated with the two models, differ merely by
amount of order;r 0 /u0 . Thus, concentrating on the cas
uu0u@2M;r 0 ~in the context of which our analysis prove
effective—see the discussion in the following section!, one
observes no difference between the late time behavior of
waveC1 at null infinity on both models. This result is accu
rate to leading order inM /u, u0 /u, andr 0 /u0 . In particu-
lar, we may conclude that at late time the waveC1

` has no
reference~in our approximation! to the value of either the
radius of the shell,R ~in the shell model!, or the parameterr 0
~used in the complete SBH model!. This result is consisten
with the assumption that details of spacetime structure
small r values are not manifested in the form of the late tim
radiation.

D. The monopole case„ l 50…

It was pointed out while introducing the iterative expa
sion that a scheme based on that expansion fails to ha
correctly the casel 50. In the monopole case it is straigh
forward to find that a Green’s function defined as in Sec. V
constant~a unity! throughout the whole range of evolution.
then follows that the waveC1 is constant at late time, resul
ing in the divergence of higher terms of the expans
(C2 ,C3 , . . . ). Looking for the cause of this failure, w
notice that in the casesl .0 it is the centrifugal potentia
barrier that ‘‘cuts off’’ the Green’s function and confines
~for late retarded time evaluation points,u@M ) mainly to
late retarded times (u,u8,v). In the shell model~see paper
I! it was the presence of the center of symmetry which
fectively acted as a potential barrier for the Green’s funct
even in the monopole case, where no centrifugal poten
exists. This is why the iterative expansion applied in t
framework of the shell model proved to be equally effect
for all modes of the radiation.

To analyze the casel 50 in the complete SBH model, on
is thus led to try a different iterative expansion, defined su
that the Green’s function is subject to an appropriate po
tial barrier, as for the modes withl .0. One technically
simple possibility is to take

V0
l 50[M 21d~r * !. ~60!

We then define the iterative expansion as in Eqs.~10!, ~11!,
~12!, with the ‘‘new’’ potential V0

l 50 . With this definition,
we find thatC0

l 505G(u), and that the Green’s function@at
an evaluation pointu,v with (v2u)/25r * .0] is given by

G~u8<u,u<v8<v !51,

G~u8<v8<u!5exp@~v82u!/M #,

G~v8<u8<u!5exp@~u82u!/M #. ~61!

~The three regions indicated in this equation are those
beled A, B, and C, respectively, in Fig. 7, when settingr 0
50.) A simple calculation@based on Eq.~42!# then shows
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that at null infinityC1
l 50 is given by Eqs.~58! and~59! ~with

l 50). These equations are therefore valid for all modesl.

VII. HIGHER TERMS OF THE ITERATIVE EXPANSION

The Green’s function technique applied thus far provid
a formal way to calculate each of the termsCN one at a time,
in an inductive manner. We shall not, however, calcul
further terms of the expansion, but rather we will refer to t
results of the analysis in paper I. Regarding the shell mo
strong indications were given that~i! the dominant contribu-
tion to CN

`(u@M ), for all N>1, is only due to sources o
CN21 at large distances;~ii ! all terms CN of the iterative
expansion~excludingC0) seem to share the same late tim
pattern of decay at null infinity, namely, au2 l 22 inverse
power-law tail~for compact initial pulse! or au2 l 21 tail ~for
static initial field!; ~iii ! if the initial pulse is confined to large
distance,uu0u@M , then the iterative sum converges at nu
infinity rather efficiently to the ‘‘complete’’ scalar waveC at
late retarded timeu; and ~iv! moreover, in this case (uu0

u@M ), the scalar waveC is well approximated by merely
C1 ~with corrections smaller by orderM /u0).

Now, it is reasonable to assume that all four of the abo
results are also valid in the complete SBH model. For,
both models~the SBH and the shell models!, spacetime
structure at large distance is the same, and, as argue
paper I, it is the large distance region whose structure
relevant in determining the late time form of the waves
null infinity. ~This conclusion has been demonstrated in
framework of the shell model by explicit analytic calculatio
of C1 and C2 at null infinity. A physical explanation was
given in the concluding section of paper I. For the compl
SBH model, a demonstration is provided by the explicit an
lytic calculation ofC1

` in the preceding section.! Actually,
we need only to assume that the first of the four resu
indicated above holds in the complete SBH model. Then,
same reasoning used in Sec. VII of paper I in deriving E
~72! leads us immediately to realize thatCN;u2 l 22 in the
SBH model as well. Also, a completely analogous analysis
that applied in Sec. VIII of paper I shows that the third a
fourth of the above results hold in the complete SBH mo
as well.

Numerical analysis of the complete SBH model firm
supports the above arguments, showing that all four res
are indeed valid in the complete SBH model. In what follow
we present some examples of these numerical experime

Figure 10 presents the ratioC1
`/C`, calculated numeri-

cally for the monopole and the dipole modes, for vario
values of the parameteru0 . @The ‘‘complete’’ waveC has
been obtained by a direct numerical solution of Eq.~5!.# The
results demonstrate that~like in the shell model!, as uu0u/M
is set larger,C1 becomes a better approximation to th
‘‘complete’’ wave C at null infinity at late time.

In Fig. 11 it is demonstrated numerically~for l 50,1,2)
that the iterative series applied in this paper seems to c
verge rather efficiently for a largeuu0u/M value.
7-11
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VIII. TAILS AT CONSTANT RADIUS:
THE LATE TIME EXPANSION

So far we were discussing an analytic technique enab
the calculation of the late time behavior of the scalar field
null infinity. In this section we apply a different, local, anal
sis to study the late time behavior of the wave along anr
5const world line outside the black hole and along the ev
horizon. Using this method we will be able to derive
simple analytic expression for the field, consistent with
inverse power-law decay, and accurate to leading orde
M /t ~or in M /v along the horizon!. However, this expression
will involve two undetermined parameters~one for the
power-law index and the other for the amplitude!. We shall
deduce these parameters by matching our late time solu
at null infinity to the form derived in the previous sectio
using the iterative scheme. In that respect, the itera
scheme shall prove to be an essential key for the construc
of a complete late time description of the wave behav

FIG. 10. C1 approximates the ‘‘complete’’ waveC at null in-
finity at late time, provided that the parameteruu0u/M is chosen
large. This is demonstrated numerically for the monopole (l 50)
and the dipole (l 51) radiation by comparing the ratiosC1 /C at
null infinity ~approximated byv5105M ) for the various values~a!
u05240M , ~b! u052200M , ~c! u0521000M , and ~d! u05
25000M . The parameterr 0 is set to 3M .
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FIG. 11. Numerical indications for convergence of the iterat
scheme at null infinity. Presented~on a linear scale! are the ratios
~a! C1 /C, ~b! (C11C2)/C, and ~c! (C11C21C3)/C for the
sample valuesl 50,1,2. The other parameters are set tor 053, u0

52200M , andv5105M ~approximating null infinity!. The results
suggest a rather efficient convergence of the iterative expansio
large uu0u/M values at large retarded timeu.
7-12
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anywhere outside the black hole. The purpose of this sec
is to introduce and apply the local method.

We make the assumption that at late time, the Kle
Gordon scalar wave@priorly separated in terms of the sphe
cal harmonics as in Eq.~2!# admits the expansion

f l~r ,v !5 (
k50

`

Fk
l ~r !v2k02k, ~62!

in which the numberk0 and the set of functionsFk(r ) are yet
to be determined. Substituting this expression in the Kle
Gordon equation~3! and collecting terms of commonv
power, the partial equation is thereby converted to an infin
set ofordinary coupled equations for the unknown functio
Fk(r ),

r 2S 12
2M

r DFk912~r 2M !Fk82 l ~ l 11!Fk

52~k01k21!~r 2Fk218 1rF k21! ~63!

~for k>0), where a prime denotes differentiation with r
spect tor, and where we have setF21[0. This set of equa-
tions exhibits only a ‘‘weak’’ coupling, in the sense that ea
of the functionsFk depends only on its preceding functio
Fk21 , with F0 obeying a closed homogeneous equati
This hierarchy allows one to treat each of these equat
one by one, in an iterative way. In this procedure, each of
functionsFk ~with k>1) satisfies a closed second-order
homogeneous equation.

We proceed as follows: First, we show that there exis
solutionf l of the form~62!, which is regular anywhere out
side the black hole, in particular at the event horizon and
null infinity. Then, with the aid of our previous results at nu
infinity, we deduce the late time behavior of the scalar wa
as detected by a static observer at any constant radiu
particular, we obtain the late time form of the waves alo
the event horizon.

We define a new dimensionless radial coordinate

r[
r 2M

M
, ~64!

which varies monotonically from the event horizon (r51)
up to spacelike infinity (r5`). In terms of the new variable
Eq. ~63! takes the form

~r221!Fk912rFk82 l ~ l 11!Fk5Dk~r!@Fk21#, ~65!

in which a prime now denotes differentiation with respect
r, and whereD(r) is the differential operator:

Dk~r!52M ~k01k21!~r11!@~r11!]r11#. ~66!

@Note thatDk(r) depends onk0 , but is independent ofl .]
For k50, the RHS of Eqs.~65! vanishes.

We would like to construct solutionsFk to Eq. ~65! such
that f would be regular both at the event horizon and
infinity. To allow f to be regular at the horizon~where thev
coordinate takes finite values!, we require all functions
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Fk(r) to be regular atr51.5 We will now show that such
regular solutionsFk(r) do exist.6

We shall construct the functionsFk in an iterative way,
starting withF0 . Fork50, Eq.~65! is homogeneous, and it
general solution is given byF0

l 5a0Pl(r)1b0Ql(r), where
a0 and b0 are arbitrary parameters,Pl(r) is the Legendre
polynomial of orderl, andQl(r) is the Legendre function o
the second kind, of orderl. The polynomialsPl(r) are, of
course, finite at the event horizon (r51) and divergent~as
r l) at r→`. Conversely, the functionsQl(r) diverge at the
event horizon and vanish~asr2 l 21) at r→`. Regularity of
F0 at the event horizon therefore requires thatb50; hence
we obtain

F0
l ~r!5a0Pl~r!. ~67!

Now consider Eq.~65! for a general functionFk ~with k
>1). The general solutions to the inhomogeneous equat
read

Fk
l ~r!5akPl~r!1bkQl~r!

1Pl~r!E
1

rQl~r8!Dk~r8!@Fk21~r8!#

~r8221!W~r8!
dr8

2Ql~r!E
1

rPl~r8!Dk~r8!@Fk21~r8!#

~r8221!W~r8!
dr8,

~68!

whereak andbk are arbitrary parameters, and

W[Pl8Ql2PlQl85~r221!21 ~69!

is the Wronskian. Using the relation

Ql~r!5Pl~r!E
r

` W~r8!

Pl
2~r8!

dr8 ~70!

and integrating Eq.~68! by parts, we can then obtain

5Had we applied a 1/t expansion off instead of the 1/v expansion
~62!, all functions Fk would have had to diverge at the horizo
~wheret5`) to assure regularity of the scalar wave there. For t
reason, the 1/v expansion seems more plausible from the techn
point of view.

6In mathematical terminology, Eq.~65! possesses a ‘‘regular sin
gular point’’ at r51 ~the event horizon!—see, for example,@16#.
For this case, standard mathematical theory tells us that serie
lutions for F0 and for F1 can always be constructed nearr51.
However, fork>2 the source term in Eq.~65! appears to involve
logarithmic functions, for which case standard theory gives no c
rules.
7-13
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Fk
l ~r!5akPl~r!1bkQl~r!

1Pl~r!E
1

r

dr8
W~r8!

Pl
2~r8!

E
1

r8
dr9Pl~r9!Dk~r9!

3@Fk21~r9!#. ~71!

We now show by mathematical induction that wi
bk50 ~for all k), the functionsFk(r) are all analytic at
the event horizon. The first functionF0 is analytic atr51
by Eq. ~67!. Now, following the inductive procedure
assume thatFk21 is analytic atr51 for somek>1. Then,
Dk(r9)@Fk21(r9)# is analytic atr951; hence the integrand
of ther9 integration in Eq.~71! is analytic at that point. We
thus find that the integral overr9 can be written in the form
(r821) f̄ (r8), where f̄ (r) is some function which is ana
lytic at the horizon~this can be shown by expanding th
integrand in a Taylor series nearr951, where it is analytic!.
Since the polynomialsPl have no real zeros in the ranger
>1 @17#, and W diverges as (r821)21 at the horizon, we
conclude that the whole integrand of ther8 integration is
analytic atr851, and therefore that the integral overr8 must
be analytic as well. Hence the solutionsFk , defined in an
inductive way by Eq.~71!, with bk50 for all k>1, are all
analytic at the horizon.

By this we have shown that the wave equation adm
solutionsf of the form~62!, which are analytic at the even
horizon. The most general of these solutions contains an
finite number of free parameters, one for each power of 1v.

We do not know yet the value of the power indexk0 ,
appearing in the expansion~62!. To obtain this value we
shall now evaluatef at null infinity. By this mean we will be
able to~i! show that the form off at null infinity, is consis-
tent with the results of our iterative analysis~in particular,
that f is regular there! and ~ii ! deduce the value ofk0 by
comparing the results arising from the two independ
schemes.

We start by showing, using mathematical induction, t
the functionsFk all have the asymptotic form

Fk~r→`!;a0ckr
l 1k, ~72!

in which ck are certain constant coefficients, other then z
and yet to be determined. Here and henceforth, the f
f (x);cxn ~where c is some constant! means that
limx→`@ f (x)/xn#5c. It appears most convenient to prov
Eq. ~72! by first showing that7

dFk

dr
~r→`!;a0~ l 1k!ckr

l 1k21. ~73!

Then, Eq.~72! is implied.

7This is not valid whenl 50 andk50, for which casedFk /dr
50. However, the rest of the analysis does not change.
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The form ~73! obviously applies forF0 @given in Eq.
~67!#, with

c05
~2l 11!!!

l ! ~2l 11!
, ~74!

which is just the coefficient ofr l in the polynomialPl(r).
Following the inductive procedure, we now assume t

Eq. ~73! applies for somek>0, and show that this leads t
dFk11 /dr;( l 1k11)a0ck11r l 1k. Our assumption neces
sarily implies thatFk;a0ckr

l 1k. Hence, by Eq.~66! we
have

Dk11Fk;2Ma0ck~k01k!~ l 1k11!r l 1k11. ~75!

Consequently, for the integration overr9 in Eq. ~71! we
obtain the asymptotic form

;2Ma0ckc0

~k01k!~ l 1k11!

~2l 1k12!
~r8!2l 1k12. ~76!

It then follows from Eq.~71! that

Fk11;a0ck11r l 1k11, ~77!

with

ck1152Mck

~k01k!~ l 1k11!

~2l 1k12!~k11!
. ~78!

Finally, differentiating Eq.~77!, we getdFk11 /dr;( l 1k
11)a0ck11r l 1k, which establishes the inductive proof o
Eq. ~73!.

We have thereby shown that the functionsFk all admit the
asymptotic form~72!, with the coefficientsck given by the
recursive formula~78!, supplemented by Eq.~74!. We ob-
tain, in conclusion,

Fk;a0a l~2!kCkM
2 l r

*
l 1k ~79!

for r *→`, where we have explicitly used the fact thatr
;r /M;r * /M , and where

Ck5
~k01k21!! ~ l 1k!!

~2l 1k11!! ~k!!
~80!

and

a l5
~2l !! ~2l 11!!!

~ l ! !2~k021!!
. ~81!

~The coefficientsCk anda l are not to be confused with th
coefficients appearing in Sec. IV.!

Equation~79! describes the form of the functionsFk to
the leading order inr /M , which is sufficient for our purpose
matchingf at null infinity. We comment, however, that
full series expression for the functionsFk at larger can be
obtained as well. It has the form
7-14
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Fk~r !5r k(
j 50

k

~r /M ! l 2 jHk j~M /r !@ ln~r /M !# j , ~82!

whereHk j(M /r ) are Taylor series. This form can be verifie
by substituting it into Eq.~63!, then constructing explicit
recursive formulas for the coefficients of each of the vario
seriesHk j . Note that to leading order inr /M no logarithmic
terms are involved, and the form~79! is recovered.

To obtainf at null infinity, we insert Eq.~79! into the
expansion~62!. We get~to the leading order inr /M ),

f5a0a l~2M !2 lv l 2k0(
k50

`

CkS 12
u

v D l 1k

. ~83!

To evaluate the power series, we write it in terms o
generating function,

(
k50

`

Ckq
k5q22l 21

dk022l 22

dqk022l 22Fqk021
dl

dql S ql

12qD G ,

~84!

which is valid for uqu,1. In this expression the derivative
might be of negative orders, in which case integrations
e

s
ly

.
t-
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implied. If we now make the substitutionq5(12u/v),
keeping just the leading order inu/v, we find that

(
k50

`

CkS 12
u

v D k

5
dk02 l 22

dqk02 l 22S 1

12qD
5~k02 l 22!! S v

uD k02 l 21

. ~85!

SinceC[rf5vf to leading order inu/v, we finally obtain

C`~u!5a0a l~k02 l 22!! ~2M !2 lu2~k02 l 21!, ~86!

whereC`(u) stands for the waveC evaluated at null infin-
ity.

The value of both the power indexk0 and the yet-free
parametera0 can now be specified by comparing the la
result to the results arising from our iterative scheme,
~58! and ~59!. This comparison yields~assuming thatuu0u
@M )

k05H 2l 13 no initial static field,

2l 12 initial static field,
~87!

and
a05H ~ l ! !2~2l 12!!

~2l !! ~2l 11!!!
~22M ! l 11I 0 no initial static field,

~ l ! !3~2l 11!

2~2l !! ~2l 11!!!
~24M ! l 11m initial static field,

~88!
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where the integralI 0 @defined in Eq.~56!# is directly related
to the initial data via Eq.~15!, andm is the amplitude of the
initial static field ~when present!.

Provided with an exact expression forF0(r ) and with the
value ofk0 , we are now in a position to write the form of th
scalar field at any finite value ofr, at very late time. By Eq.
~62! we have,to leading order in M/t and in M/u0,

C5
a0

t2l 12,3
r Pl S r 2M

M D ~ t@ur * u! ~89!

and,to leading order in M/v and in M/u0,

C5
2Ma0

v2l 12,3
, at the event horizon, ~90!

where the two values of powers correspond to the ca
where an initial static field is or is not present, respective

We should emphasize here that the above results@Eqs.
~89! and~90!# apply towards timelike infinity atanyvalue of
r, establishing@together with the results at null infinity, Eqs
~58!, ~59!# a completepicture of the late time behavior ou
es
.

side the black hole. To the best of our knowledge, suc
result has never been obtained previously.~For example, in
@1#, @2#, and @4#, analytic expressions were derived only f
the asymptotic domainsr * @M and r * !M .)

IX. CONCLUDING REMARKS

In this paper, and in the previous paper, we have tes
the applicability of a new analytic scheme for the calculati
of the late time behavior of fields outside black holes. It w
demonstrated, considering the simple model of scalar wa
outside a SBH, that a simple expansion of the field n
timelike infinity can be used in order to construct a late tim
solution consistent with a power-law decay anywhere outs
the black hole. However, the actual index of the power la
as well as the amplitude coefficient of the wave~as related to
the initial data!, could not be determined merely by this loc
analysis. This information could be obtained only by a f
integration of the two-dimensional initial-value problem f
the wave evolution, technically enabled by the introducti
and application of the iterative procedure.

Thus, by applying both the iterative scheme and the l
time expansion, we were able to obtain an analytic expr
sion for the scalar field in Schwarzschild spacetime, accu
7-15
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LEOR BARACK PHYSICAL REVIEW D 59 044017
to leading order inM /t ~or in M /u at null infinity, or in M /v
at the event horizon! and holding anywhere outside the bla
hole. The expression calculated is explicitly related@via Eqs.
~15!, ~56!, and ~88!# to the form of arbitrary initial data
specified at large distance~our approximate solution has co
rections of orderM /u0).

Of course, the main justification for the introduction
the new approach should rely on its applicability to mo
realistic models of wave evolution, for which no other an
lytic approaches have been proposed. In what follows
mention some possible applications of our calculat
scheme, which include the analysis of scalar fields outs
Kerr black holes, the analysis of gravitational perturbatio
in Kerr, and the extension of our analysis to the interior
black holes.

The most interesting application of the new scheme c
cerns rotating black holes. As already mentioned in the
troduction, this generalization is the prime motivation beh
the presentation of our approach, since realistic stellar
jects ~and black holes! generically possess angular mome
tum. The generalization of our analysis to the case of sc
waves propagating in the exterior of a Kerr black hole sh
be presented in a forthcoming paper. In brief, the basic i
behind this generalization is to express the lack of spher
symmetry in Kerr spacetime in terms ofinteractionsbetween
the various modes of spherical harmonics. The resulting
teraction terms coupling the field equations for the vario
modes~these terms are expected to be small, in a sens
late time! are then to be treated using our iterative techniq
Applying an iterative decomposition basically similar to th
used in the spherically symmetric models, those interac
terms become source terms in the resulting hierarchy
wave equations. The mathematical treatment of these e
tions is then similar, in principle, to that applied in th
spherically symmetric cases. This provides the late time fo
of each of the modes at null infinity. Then, a generalizat
of the late time expansion method~based on the sam
interaction-between-modes approach! provides the late time
behavior of the field anywhere outside the Kerr black hole
particular along its event horizon. The details of both parts
the analysis in Kerr shall be given in@13# ~see also@14#!.

Obviously, the scalar model discussed so far is just a s
plified analogue to the physical problem concerning the
namics of gravitational perturbations. The plausibility of t
scalar model stems from the remarkable resemblance o
underlying mathematical formulation between this mo
and realistic models of gravitational waves~as was already
realized in@1#, for example, for the SBH case!. Equations
governing metric perturbations of the SBH were derived
Regge and Wheeler@18# ~for axial perturbations! and by Zer-
illi @19# ~for polar perturbations!. Both equations can be pu
in the same form as the scalar field equation~5!, where this
time the wave function represents certain linear combi
tions of entities characterizing the metric perturbation.
both the Regge-Wheeler and Zerilli equations one also fi
that the effective potential is similar in shape to that of t
scalar model@Eq. ~6! and Fig. 1#. This suggests that th
problem of gravitational wave propagation in the SBH g
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ometry may be treated using the same iterative scheme
plied for the scalar model.

We do not have similar separable equations for me
perturbations of Kerr black holes. Rather, a second appro
based on the Newman-Penrose tetrad formalism, was u
by Teukolsky@20# to derive separable wave equations go
erning perturbations of the Weyl scalars.@An exhaustive dis-
cussion of field equations for gravitational perturbations
given in@21#, pp. 174–182~for Schwarzschild! and pp. 430–
443 ~for Kerr!#. Separation of Teukolsky’s equation is on
possible in the frequency domain~namely, by first separating
the wave into its Fourier modes!. To apply our iterative ap-
proach, however, the time dependence should rather be
in the master Teukolsky equation. Instead, the master pe
bation equation is to be treated in the way outlined abo
namely, by considering interactions between the vario
modes of spherical harmonics. By now we have first indi
tions that this approach is indeed applicable to gravitatio
perturbations~in the tetrad formalism!. We intend to study
this subject more deeply in the near future.

Finally, we mention the possibility of extending ou
analysis to internal perturbations of black holes. Recen
Ori used the technique oflate time expansion~basically simi-
lar to the method presented in Sec. VIII of the present pap!,
to explore the late time behavior of scalar fieldsinside
charged@22# and rotating@23# black holes. In this analysis
boundary conditions for the wave evolution were assum
on the event horizon~in the form of an inverse power law in
v), and the asymptotic late time (t@M ) behavior of the
wave was deduced inside the black hole, up to the in
horizon. This provided a tool for exploring the nature of t
inner horizon singularity. With the results of the extern
analysis~generalized to charged and rotating black holes!, a
connection may be established between the form of the w
at the inner horizon to its form at null infinity, which, in turn
using the iterative scheme, can be derived as explicitly
lated to the form of arbitrary initial data outside the bla
hole. That would allow one, given initial data outside t
black hole~at large distance!, to deduce the late time form o
the wave at the inner horizon~including its accurate ampli-
tude coefficient! without any assertion about the bounda
conditions.

One may also think of a more rigorous and coher
scheme, which includes the simultaneous analysis of b
internal and external perturbations, in the framework o
generalized late time expansion. This generalization beco
natural when applying an expansion of the form~62!, as the
coordinatesv and r are both regular through the event ho
zon. Then a full treatment of both internal and external e
lution is possible by following basically the same steps
described in Sec. VIII, this time allowing ther coordinate to
take its full range of values.
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