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Late time dynamics of scalar perturbations outside black holes. Il. Schwarzschild geometry
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We apply a new analytic scheme, developed in a previous paper, in order to calculate the late time behavior
of scalar test fields evolving outside a Schwarzschild black hole. The pattern of the late time decay at future
null infinity is found to be the same as in the shell toy model studied in the previous paper. A simple late time
expansion of the scalar field is then used, relying on the results at null infinity, to construct a complete picture
of the late time wave behavior anywhere outside the black hole. This reproduces the well known power-law
tails at timelike infinity and along the event horizon. The main motivation for the introduction of the new
approach arises from its applicability to rotating black holes, as shall be discussed in a forthcoming paper.
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[. INTRODUCTION stead, the field is found to die off exponentially at late time
in these casgs
It is well established that the gravitational field of a ge-  All previously mentioned studies benefited from the sim-
nerically forming black hole relaxes at late time to a “no- plicity of spherical symmetry. Yet an astrophysically realis-
hair” stationary Kerr-Newman geometry. It was first demon-tic model should clearly employ a rotating central object.
strated by Price [1], regarding gravitational and Thus, apparently, the most tempting generalization of the
electromagnetic perturbations of the Schwarzschild blaclanalysis involves the inclusion of angular momentum in the
hole (SBH) exterior, that the fields die off at late time with background geometry. A first progress in this direction has
an inverse power-law tail. For a spherical-harmonic wavebeen achieved recently with the introduction of a full (1
mode of multipole numbel; it was shown that a~(?'*2*P)  +2 dimensions numerical analysis of wave dynamics in
decay tail { being the Schwarzschild time coordingteill Kerr spacetime by Krivaet al.[10,11]. So far, however, no
be detected by a static observer outside the black hole, witanalytic scheme has been proposed for this stLiB.
p=1 if an initially compact perturbation is considered pr In a previous papefto be referred to as paper we in-
=0 in case that a static field existed outside the central obtroduced an analytic technique for the study of the late time
ject before the onset of collapse. behavior of fields in asymptotically flat spacetimes. The
These results were later confirmed using several differerprime motivation for the introduction of the new scheme was
techniques, both analytic and numerid2-5], and were its applicability to rotating black holes. To examine the es-
generalized to other spherically symmetric spacetimesential features of the proposed calculation scheme, we ap-
[2,6,7). The application of perturbativdinear approaches is plied it in paper | to study the simple toy model of a scalar
encouraged by numerical analysis of the fully nonlinear dy-ield evolving outside a spherically symmetric thin shell of
namics of the field$7,8], which indicates virtually the same matter. In that case, the new technique, based on what we
late time pattern of decay, as for the minimally coup(ia- called “the iterative expansigh allowed a simple and rig-
ea fields. orous derivation of the late time decay at null infinity. In the
Power-law decay tails are exhibited by fields at late time present paper we apply a variant of the iterative scheme in
because in a curved spacetime waves do not propagatgder to analyze the evolution of scalar waves on the back-
merely along light cones, even when the fields are masslesground of thecomplete Schwarzschild geometAgain, this
Rather, the waves spread inside the light cones due to scatiethod will enable the analytic calculation of the late time
tering off spacetime curvature. As suggested by previousehavior at null infinity. We shall then show how, relying on
studies, the late time behavior of these waves is characteristibe results at null infinity, it becomes rather simple to con-
of merely the large distance structure of spacetime. This imstruct a complete picture of the late time decay anywhere
plies that the phenomenon of late time tails may not necessutside the black hole, in particular along the event horizon.
sarily be restricted to the exteriors of black holes. For ex- There are several reasons why we think it is worthwhile to
ample, late time tails are found to form during the purelyfirst analyze the already well-studied case of a SBH, rather
spherical collapse of a self-gravitating minimally coupledthan directly focus on the more interesting case of the Kerr
scalar field, even when the collapse fails to create a blacklack hole. First, this will enable us to test our scheme
hole [8]. Conversely, no power-law tails are detected in theagainst the well-established results available in the
nonasymptotically flat geometries of Schwarzschild—de SitSchwarzschild case. Second, many parts of the analysis in
ter and Reissner—Nordstme-de Sitter black hole§9] (in- the Schwarzschild case shall later be directly employed when
analyzing scalar waves in Kerr spacetifis,14]. Finally,
the analysis in the Schwarzschild case will appear to be valu-
*Email address: leor@techunix.technion.ac.il able in its own right, providing, in some respects, a more
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complete picture of the late time wave behavior than already ¢ o5[
available. (2M)V (r%)
In the shell model, spacetime is flat at small distances
(inside the shell For that reason, the complete internal ge- 0.2
ometry could be exactly accounted for by merely the
“Minkowski-like” first component of the iterative expan-
sion (denoted in paper | bW ). (We remind the reader that 9151
the termsW¥ -, of the iterative expansion were describing
deviations from flat geometry, namely, curvature effects out-
side the shel). The complete Schwarzschild manifold, how-
ever, does not share this convenient property, as in this case
spacetime is highly curved at small distances. This will force g sl
us to choose for another “basis” potential for the iterative
scheme at smatl (other than the purely centrifugal potential
V, chosen in the framework of the shell mogdehnd will 9 s o 5 - 15 20 25
thus somewhat complicate the technical details of the analy- r*/2M
sis. Nevertheless, the basic calculation scheme, as well as the ) _ ) _
results at null infinity, shall remain essentially the same as in FIG. 1. Effective potential for scalar waves in Schwarzschild
the shell model. spacetime. Withr, defined as in Eq(4), we haver, =0 corre-
This paper is arranged as follows. In Sec. Il we give aSPonding tor=2.56M.
mathematical formulation of the wave evolution problem in _ )
the Schwarzschild case as a characteristic two-dimension&l€€t: r, ¢ and¢ are the standard Schwarzschild coordi-
initial-value problem. In Sec. Ill we introduce the iterative Nat€S;M is the mass of the black holé(r)=(1-2M/r),
scheme to be used to allow an analytic treatment of the mattd! is the multipole number of the mode under consider-
ematical problem. We apply the iterative calculation schem&tion- _ _
in Secs. IV-VII, obtaining an expression for the waveform at A MOre convenient form for the wave eque_monl may be
late time at null infinity. Then, in Sec. VIII, a simple tech- obtallned in terms of a new wave functio® (tr)
nique is applied to obtain the late time behavior of the scalai=" ¢ (t.,7). To that end we introduce the double-null
field at any constant (including along the event horizan ~ (Eddington-Finkelstein coordinatesv=t+r, and u=t
Section IX summarizes the results and discusses possible ex-"« » Where
tensions of the analysis.

r—2m
) (4)

=r+
r,=r 2Mln( oM
II. INITIAL-VALUE PROBLEM

. . I . The “tortoise” coordinater, varies monotonically from
We consider the evolution of initial data, representing a_ (the event horizonto + o (spacelike infinity

generic pulse of massless scalar radiation, on a fixed SBH The wav ioNn Now
background. The scalar field is assumed to satisfy(ifiai- e wave equation now reads

mally coupled Klein-Gordon equation \P{UU_FVI(I,)\I,I:O, (5)
o:4=0, (1) in which
| 1 2M\ [ I(1+1) 2M
where® represents the scalar wave. The structure of space- Vi(r)= 2 1-— —+t— (6)
time affects the evolution of the scalar field through the co- r r r

variant derivatives, denoted in E(l) by semicolons. ) ] ) ) ]
Decomposing the field into spherical harmonics is an effective potential, accounting for both centrifugal and

curvature effects. This effective potential is sketched in Fig.
1 as a function of , for the sample values=0,1,2.
- | Note the following features of the effective potential
<D(t,r,6,qo)=|§0 mZZ_I (1) Yim(6,¢), (2 (valid for all values ofl), which play an important rule in
our analysisV(r) is localized(in a sense apparent in Fig), 1
forming an effective potential barrier for the waves. At large
we obtain an independent equation for each of the compadistanceV(r) is dominated by the centrifugal potentiaé-
nents¢'(t,r), flecting asymptotic flatnegswith curvature-induced devia-
tions which die off as~r 3. At smallr, values,V(r) dies
2(r—M) 1(1+1) off exponentially inr, /M towards the event horizon, mak-
f_l(r)¢|n—f(r)¢|rr— ¢|r+ &' =0. ing the potential effectively zero inside the potential barrier.
' ‘ 2 ‘ r2 Evidently, the late time behavior at null infinity is affected
3 mostly by the shape of the potential at large distance. Con-

044017-2



LATE TIME DYNAMICS OF SCALAR ... . 1l.... PHYSICAL REVIEW D 59 044017

lll. ITERATIVE EXPANSION

To define the iterative expansion to be applied in the com-
plete SBH model, we first introduce a new parametgr
>0, its value chosen so tha(r,=rg) is of order=2M
[say,r(r,=rg)=3M]. We then define

0, r,.<rg
\Y/ =4 I(I+1 8
o=y 10D ®
ar
and
SV(r)=V—Vy, (9

in which V(r) is the Schwarzschild effective potential given
FIG. 2. The setup of initial data. Shown is the Penrose diagrar’rby Eq.(6). The potentiaV,(r, ) is so defined to account for
representing the external Schwarzschild geometry. The dark featurtﬁe fact that the actual effective potential is exponentially
(artificially shown as if extended to>0 value$ represents the small at smallr. values. With this definition. the function
amplitude of some compact support initial functibfu) on the ray Vo(r,) approxir%ates the form of the actual éffective poten-
v=0. The initial problem for the scalar field is well posed in region tiaol \;(r ) at both very large and very small values rqf
* .
S (the shadowed arga (The deviations, described @Y, become significant only at
) ) o intermediate distance; see Fig) 1.
versely, the early evolutiorte.g., the quasinormal ringing Following the same procedure as in studying the shell
stage, is strongly related to the fine details of the potential oqgel we define thiterative expansioiy decomposing the

shape at small values. . . scalar wave¥ into an infinite sum,
Since each of the spherical harmonics modes evolves

separately, we henceforth discuss the evolution of a single *

mode of arbitrary multipole numbér The superscript (de- V= ¥, (10

noting | dependendewill usually be suppressed for brevity. N=0
The initial data for the evolution problem shall be speci-

fied on two characteristi¢null) surfaces outside the event

horizon, as sketched in the Penrose diagram of Fig. 2. W

will first consider initial data in the form of some compact 0, N=0

outgoing pulse, specified on the ingoing null surface0,! \I,N,uv"_VO\PN:k C(V)W,_.. N>0, (11

in which the component¥d’ are defined in a recursive way
te)y the hierarchy of equations

W(u=uq)=0, supplemented by the initial data
@) W\(u=ug)=0 (YN=0), (129
Y(v=0)=TI"(u),
(=0)=T(u) I(u), N=0,
Py(v=0)= 0. N> 0. (12b

whereI'(u) is some function of a compact suppdfthe

pulse”) between retarded timas=Uo andu=u;. As dem-  Formal summation oveN recovers the “complete” initial-
onstrated in paper | for the shell model, the case of statigg),e problem for the scalar wavk.
initial field can be later inferred in a simple way from the |+ was indicated in paper | that in the analogous shell
result regarding a compact pulse. ~ model the iterative sum seems to converge rather efficiently
The evolution equatio5), supplemented by the initial 5t |ate time to the actual field at null infinity, provided that
conditions(7), establishes a well-posed characteristic initial-the initial pulse is specified at large distance. In that case, it
value problem for the scalar field anywhere in the don®in \ya5 suggested both numerically and analytically that the
outside the event horizasee Fig. 2 Since, manifestly, this “complete” wave is well approximated by merely the func-
problem poses no mathematical irregularities, the existencggp, V¥, . With this result in mind, we are going, in the fol-
and uniqugness of a solution are guaranteed by fundamenq%lwing, to derive exact analytic expressions fbg, and for
mathematical theorysee, for examplé]15]). the (time domain Green’s function in the complete SBH
model. We shall then use these results to calculate the late
time form of ¥, at null infinity in this model.
IAs long asu, remains a free parameter in the analysis, the spe- The above iterative expansion appears to be an effective
cific choicev=0 causes no loss of generality, since spacetime igcalculation scheme for all modésof the scalar radiation,
time-translation invariant. except for the monopole mode=0. This is unlike the
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, (21=n)! 14
"ni(l-n)!’ (14
and the parenthetical indices indicate the number of times the
functions are differentiated.

Causality implies that in region |, the solutio#iy (u)
cannot be sensitive to the form @f, atr, <r,. Thus it must
be identical to the solution derived in the shell model, with
the functiongg, (u) explicitly related to the initial-data func-
tion by

I+1
=gy [ 5] wmuy e
u = —_— —_— —
gOl (I_l)l U U,
FIG. 3. Calculation of¥, in the complete Schwarzschild geom- (15
etry. The solution in each of the regions labeled I, I, and Il is

discussed separately in the text. (see paper | for details

Now, with the initial condition ¥, (v=0)=02 Eq.
scheme used for the shell model in paper I, which held 39 implies_thgt‘lf{)” is a function ofv only. We can then
equally well for all modes with no exception. The reason US€ the continuity of¥’o,, atr, =r, to derive a closed dif-
for this difference between the two models in the monopold€rential equation for the functiog (u):

case will be discussed later. The calculation to follow shall

|

regard only the modes with>0. J  [gon (w)]™ B
— Al — =0. (16)
au | p=o (v—u)' " .

IV. DERIVATION OF W, * 0
We first obtain an explicit expression foF,, the first ~ This equation may be put into the form

element of the iterative expansion. Since the only disconti- i1

nuity in the potential functiorv, (atr, =rg) is bounded in I'n n_

magnitude, we learn by the wave equatidd) that ¥, and z‘o Bal ol 9o (W]™'=0, 17

its first order derivatives should be continuous anywhere. In
the sequel we explicitly use this fact in constructing an ex-in which the coefficientﬁ'n are given by
pression ford,.
We shall consider separately three distinct regions of the , 2"(21—n)!
domain$ as indicated in Fig. 3. Regions U§<u< —2r) "SR —nt D)l (18)
and Il (u>—2rq,r,>ry) cover the part ofS outside the
surfacer, =ro, while region Il (r, <ro) is the portion in-  Thus g, (u) is a solution of a constant-coefficient linear

side this surface. equation of ordef+ 1. It therefore admits the form

A solution to Eq.(11) for N=0 has the general form
I+1

' go..<u>=§l Ciexp( — kulrg), (19

gor'(u)
\I’O':ngo AL# (133

whereC; are constants, and tHer 1 complex numbers;

' (n) X .
o (u) are the roots of the algebraic equation
Vo=, Alnﬁ, (13b)
n=0 (v—u) I+1
> BL(—«x)"=0. (20)
Yo =F(u)+H(v), (130 =
in which the labels 1,II,Ill denote the region to which each The only properties of the numbeks important for our dis-
specific solution corresponds, and wherecussion are thati) these numbers are all distinor any

doi(U), don(u), F(u), andH(v) are (yet) arbitrary func- given value ofl) and that(ii)) we have Reg;)>0 for all
tions. In the above equations the coefficiehk,sare given by values ofl andi. Henceg, (and alsoV itself) falls off
exponentially at late retarded time

°The most general solution at>r, involves also an arbitrary
functionh(v). However, for our choice of initial setu@an outgoing 3Since we shall be interested mostly in the case where the initial
initial pulse, the solution¥, can be expressed in terms of a func- pulse is specified at large distance, we assume here that its support
tion g(u) solely. This issue is discussed in Appendix A of paper . is confined to the exterior of the spharg=ry.,
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The coefficientsC; are determined by imposing continu-
ity on ¥, at u=—2ry, namely, by requiring do;)"
=(go)) ) atu=—2ry, for all 0<j=<I. This leads to a set of
| +1 algebraic equations for the- 1 coefficientsC,, having
the form

I+1

2, M;iCi=rbgb lu--2r, (1)

for O<j=<lI, whereM;;=(— k;)lexp(2<). In a matrix form,
we have

deM=exd 2(k,+ - -+ K ;1) ]deK, (22
whereK is the Vandermonde matrix
1 1 1
TK1 TK2 T Ki+1
K= , (23
SRR IR

PHYSICAL REVIEW D 59 044017

FIG. 4. Domain of the functio® in Schwarzschild spacetime.
Dark colored areas indicate regions whdfg is not exponentially
small. Note thatV, “penetrates” the potential barrier only through
a narrow ingoing rayof typical width ~2r).

etrating null ray. Elsewheral, is found to be exponentially
small (in retarded timeu atr, >rg or in advanced time at
r.<ro). This result(valid for all I=1) is illustrated in Fig.

which is always nonsingular, provided only that the number<-

«; are all distinct(which is the case heyeTherefore the set
of equations(21) has a unique solution for the coefficients
Ci.

We finally obtain W, by substituting forgg,, in Eq.
(13b). This yields an expression of the form

_ (24
n=0i=1

Io1+1 [N

Yon=r;'> > a’ni(i) Ei(u),
in which «, are constant coefficientgbeing certain
[-dependent functionals of the initial-data functibifu)],
and where the functions

Ei(x)=exd — «;X/1q] (25

die off exponentially with respect to their argument for all
1<i<I+1% We still have to derive an expression fr, in
region lll, that is, atr, <ry. By the continuity of¥, atr,,
=ro we haveWy' (v)=W¥g (u=v—2rg). It follows that

I+1

Vo =ra'i§1 @iEi(v—2ry), (26)

where aiEELzoani, and where the functiong; are those
defined in Eq(25).

We conclude thatVy “penetrates” the potential barrier
only through a narrow null ray of typical widtk 2r, adja-
cent to the initial ingoing ray = 0. It has significant ampli-
tude only in a “main” regionug<u=<0 and along that pen-

V. CONSTRUCTION OF THE GREEN'S FUNCTION

In this section we derive an analytic expression for the
(retardedl Green’s function corresponding to the operator
dyd,+Vo(r,), with Vy(r) defined in Eq(8). The(retardedl
Green'’s functionG(u,v;u’,v") is defined by the equation

G,y T VoG=68(u—u")é(v—v'), (27
supplemented by the causality conditi@(v<<v')=G(u
<u’)=0, where (’,v") are the null coordinates of a scalar
“point” source [in the (1+1)-dimensional representatipn
and (u,v) is where we evaluate the field this source induces.
[It will become evident by construction that this condition
specifies a unique solution to E@7).] In view of the results
obtained for¥,, we shall have to consider both “external”
(ry>ro) and “internal” (r, <ry) sources. In what follows
we treat each of these two cases separately.

A. External sources

We first consider a “point” source located at null coor-
dinates (',v’) outside the surface, =rq (thus v’ —u’
>2rg). For this fixed source, we look for the Green’s func-
tion at any evaluation pointu,v). To that end we separate
the future light cone of the point source into three regions, as
indicated in Fig. 5. Regions | and Il correspond to evaluation
points outside the surface, =r,, while region Ill corre-
sponds to internal evaluation points.

We first observe that in region(that is, atu<v'—2r)
the Green’s function cannot depend on the form of the po-

“In Eq. (24), as well as in all other expressions for the various tential atr, <rg (as implied by causality and thus in this
functions¥ to appear in this paper, it is to be understood that onlyregion it must be the same as in the shell mddetside the

thereal (or, alternatively, themaginary) part is taken into account.
The indication “Re” shall be omitted for brevity.

shel). Therefore, by Eqgs(33) and (35) of paper | we find
that the Green'’s function in region | reads
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FIG. 5. Construction of the Green'’s function for a scalar source FIG. 6. Construction of the Green’s function for a scalar source
sphere at, >r,. The three regions I, I1,1Il, defined with respect to sphere at, <r,. The three regions 1V,V,VI are treated separately
that source, are treated separately in the text. in the text.

I | YA (1) |
S on=3 AT e E= exi(v’ ~ 2r0)ro] S, Ki g1y
n=0 (v—u) j=0

(33
in which the differentiation is with respect g Al are the
coefficients given in Eq(14), and with KJ-’il being the elements of the matrix reciprocal to the
Vandermonde matrix23). Inserting the explicit expression
| 1w —uwu-u)]' for gg and using Eq(309, we can finally obtain, for the
gg(u;u’,v')= m W (290  Green’s function in region I,
o . R G B (O
Now, in regions Il and Ill, Eq.(27) is homogeneous; G''= > > i * E/(u—v'+2rg),
hence the solutions for the Green’s function in these two nj=0i=1 (r;)'rL "
regions are of the form (34
[gg(u)]“‘) in which r, =(v'—u’)/2, and whereg,;; are certain con-
G'=> A———, (303  stant coefficients(depending onl only). (Recall that the

— _nl-n
=0 (v-u) functionsE; die off exponentially with respect to their argu-

" i ment for alli.)
G =G"(v), (30b) To obtain the Green’s function in region lll, we simply
_ notice thatG"' (v)=G" (u=v—2r,), implied by the conti-
where the functiong''(u) andG'"!(v) are yet to be deter- nyity of G atr, =ry. It follows that
mined.
By analogy with Eq(19) we then have i E I§ (r.—ro)(ry)!
I+1 j=0i= (r;)l

g'é(u>=__21E(u',wexm—xiu/ro), (31)

Ei(v—v'), (35

where ,BJI_En oBnji - [It is straightforward to verify that

I
with k; being the same numbers as in ELP), and where the with this result, we havés™ (v=v")=1 as necessary.

[ +1 coefficientsC;(u’,v") are to be determined such that
the Green’s function is continuous along the rayv’
—2rg. This requirement leads to a setlof 1 equations for To obtain the Green’s function for a source point located
the coefficientsC;(u’,v"), reading atr, <rg, we refer to Fig. 6, where again we indicate three
regions, defined with respect to a given sourcewdty’).
v Again we discuss the construction of the Green’s function in
2 M;iCi=rblge(W]P]u=yr 2, (320 each of these regions separately.
- In region IV we haveG'Y, = 8(v—v")8(u—u’) by defi-
nition, which (by causality leads to

B. Internal sources

(for 0=j=<l), whereMjiE(— ki)exd — k(' —2rg)/ro]. The
solution (which always existsis GV=60(v—v")6(u—u’), (36)
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with 6 denoting the usual step function.

In region V the Green’s function satisfies the homoge-
neous equatiorGX,vzo. With the continuity requirement

GY(v=u'+2ry)=1, this means thaG'=G"(v). Now,

GV'is given in terms of a functiogg'(u), in a way analo-
gous toG' in Eq. (303. By the continuity ofG , atr,

=ro we must haves ", (r, =r,) =0, which is a linear differ-
ential equation of ordef+1 for the functiong?'(u). The
solution is[in analogy to Eq(31)],

I+1
gg'(w=2, Ci(u' v )exd —wulrel, (37
with C; being certain coefficients.

To construct the coefficient§;, we match the function
GV!, as inferred by Eq(37), to its value on the ray=u’.

FIG. 7. Construction of the Green’s function for a given external
evaluation point at,v. Regions where the Green'’s functionnist

This value may be deduced independently by inserting th%xponentially small are indicated by dark color.

form G"(u,v)=G"(u,v)8(u—u’) (implied by causality
into Eq. (27), and observing that a solution must adiit,
=0 alongu=u’. This means thaG is constant along this
ray. By Eq.(36) (and requiring continuitywe then learn that
this constant is unity. Requirin@"'(u=u’)=1 for all v
then leads to

[9g1™(u")=0
[gg 1) =1.

With Eq. (37) , this constructs a set doft-1 linear algebraic
equations for the coefficiens;. The solution reads

(0=sn<l-1), (38)

Ci=roK; % exd k' /1], (39

for u>M), which will involve integration over all possible
sources. This requires knowledge of the form of the Green’s
function at the evaluation location, as a function of the
sources locations. To that end we only need to reinterpret our
previous results: The expressions we have derived for the
Green'’s function shall be regarded as functions of the source
coordinates (',v"), with fixed evaluation coordinates
(u,v). This reversed presentation of the results is illustrated
in Fig. 7. Indicated in this figure are the regions of spacetime
in which scalar sources influence the behavior of the scalar
field at a fixed evaluation poirivith null coordinatesu,v)
outside the surface, =r,. Dark-colored areas in this figure
indicate source regions where the Green’s functiomas
exponentially small, as inferred by Eq28), (34), and(40).

In region A (U'<u, u+2ry<v’<v)G is given by Egs.

where the numbers; are the same as for the external source(28) and(29), and is the same as in the shell model. In region
(Recall that the matriX is always nonsingular; hence this B (v'<u+2r, r;, =r,)G is given by Eq.(34). It vanishes

solution exists and is unique.
Using the result$37) and(39) we can finally obtain

GV|:EI

n=0i=1

: (40)

I+1 r l—n
0 /
2, yni(—) Ei(u-u’),
*
with the functionsE; defined in Eq(25), and wherey,,; are
certain constant coefficientdepending only o).
To obtainGY, we simply notice thaG"(v)=GV!(u=v
—2ry) (inferred by the continuity of the Green'’s functipn
hence

1+1

GV=2, yE(v—u'—2ry), (41)
=1

where ;=% _o¥p;-

C. Fixed external evaluation point

here exponentially towards early advanced tioie and it
possesses significant amplitude only within a narrow ingoing
null “band” (of typical width 2r), adjacent to region A.
Then, in region C {'<u, r,<rgy) the Green's function
[given by Eq.(40)] vanishes exponentially towards early re-
tarded timeu’, and is of significant amplitude only within a
narrow outgoing null “band”(of typical width 2 ;) adjacent

to the rayu’ =u.

Like in the shell model, we find that the main region of
effective sources covers only the rangesv’<v of ad-
vanced times. In the shell model, however, the Green'’s func-
tion vanishes identically outside this ranghie to the diver-
gent potential at the center of symmefryhereas in the
complete SBH model it dies off exponentialand also
“penetrates” through the finite potential barrier @t=u).

VI. CALCULATION OF W, AT NULL INFINITY

We have shown that in the complete SBH modé&l,

Thus far we considered the Green’s function for givengives only an exponentially decaying contribution to the late
sources aty’,v") as a function of the evaluation coordinates time radiation. In this section we calculate the contribution
(u,v). In practice, we shall be interested in calculating theof ¥, to this radiation at null infinity, and show that it is

function ¥, at a given locatiorispecifically, at null infinity,

characterized by the same power-law tail of decay that was
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. ‘¥ evaluation point whereW7 andG” stand for the value o, and G at null
o infinity (that is, forv—o). For the purpose of calculation,
V,o we separate the domain of integration into three regions;
(///.
Q% {Q fud /fvd !
S N u v
@40 ?\/,\;// UO 0
L O
gl N\ % u u+2rg v —2r
B="0 =f dv’f du’+f dv’f du’
u+2rg Ug 0 Ug
= Li\
4><e ut2rg fu ,
A + dv ) du (43
0 v’ —2rg
“3
N . . . . .
4 to be labeled A, B, and C, respectively, as indicated in Fig. 8.

In what follows we consider separately the contribution from
each of these three regions¥o;. We show that the contri-

bution of region A is the dominant one, and that this contri-
bution is identicakin its pattern of late time decay and also,

FIG. 8. Calculation of¥ ; in the complete Schwarzschild model.
The region filled with horizontal lines is where the amplitudelof

is significant, while the region marked with vertical lines is where . d f . litude th b
the Green’s function is significant, in accordance with the discus!0 @ certain order of accuracy, In its amp ityde that ob-

sion given in the text. Potentially, a significant contributionitgis  tained in the shell model.
expected to arise only from areas where the two indicated regions
overlap. A. Contribution from region C

indicated in the shell model. Moreover, we show that even In terms of the new integration variables, = (v’
the amplitudes of the waves are the same in both models;u’)/2 andt’=(v'+u’)/2, and using Eqs(26) and (40)
provided that we choosfelg|>2M=r, (the difference is of (with r, —c), the contribution to¥'] from sources in region
orderrgy/ug). C takes the form

Before we present the detailed calculatiorilof, we first
give some heuristic arguments concerning the expected re-_ _ o , futrl o, L
sults. Figure 8 shows the region of spacetime in which scalart 1¢= ~ 270 lijZfl @;Yii ffu/zdr* ﬁr, dUEi(u—t'+ry)
sources affect the behavior of the wave at null infinity, at a ' *
given retarded timai>M. Also shown, superposed, is the XV(r )Ej(t" +r, —2r). (44)
region where sources due W, exist. Outside the overlap-
ping of these two areas, the Green’s function,¥§, or  (Recall that in regiorC, wherer, <r,, we havesV=V by
both, are exponentially small. We expef@nd later show  definition)
analytically that sources outside the overlapping area shall SinceV(r.)=exfd(r./2M)] for r. — —, one finds that
give only an exponentially decaying contribution 40, at  the integrand in the last expression dies off exponentially in
null infinity as u—o. We may thus focus only on the two retarded timas anywhere inside the domain of integration. It
overlapping regions shown in the figure. One of these reis easy to verify that the integral itself would be exponen-
gions lies inside the surfaag, =r, (see the figure It is of  tially small for largeu/M. For example, for any fixed re-
“dimensions™ roXro, and is located near,=(—U/2) tarded time us>M there exist positive constants
<M. In this location the pOtential fUnCtiOV(r*) is expo- C1, Cy, C3, Cg, and K, such that the fo“owing upper

nentially small(see Fig. 1, and thus the contribution from Kound is applicable to the above integgial absolute value
this area should be exponentially small as well. We are left

I+1

with the contribution of sources at the “main” region I+1 _ua ,
(namelyuy<u’<0,us<v’<v), in which both the Green’s i< > |“j7’li|{01f dr. J‘utr*dt,V(r;)
function and¥, have the same form as in the shell model, hi=1 -2 -
except for in a narrow bangf width ~2r,) at the edge of fo ' 12
this region. This suggests that fog small enough, the cal- +c2f dr, flm* dt' |Ej(u—t'+r})]
culation of ¥, should yield a result very close to that ob- —ur4 T
tained in the shell model. o ,
To confirm the above heuristic indications, we shall now +C3f dr., f““* dt’ |Ej(t’+f; —2r0)|)
calculate¥ ; at null infinity. In terms of the Green’s function —ul4 utr/2
derived above, we formally have <caexf — k(ulrg)]. (45)
u v
Vi(u)=— fu du’ fo dv’ G*(u;u’,v’) We conclude that internal sourcesbf, (namely, sources
0 atr, <rg) give at most an exponentially decaying contribu-
XoV(u',v")Wo(u',v'), (42  tion to the late time radiation at null infinity.
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B. Contribution from region B Io1=j

o ’ ’ (u—u’)"i—mr%
By Egs. (13b) and (34) (with r, —), the contribution ‘P13=Mroj20 m§=:O . du’go(u )(u—u’+2r 2 mis
from region B to¥; at null infinity reads 0 0

I+1 1

- — u+2rg X
Vig= ,2:0 :aniJ’O dv'Ej(u—v'+2rg)

u—u’'+2rg
2M

A

ajm+ melrI(

to leading order inM/u andr,/u, wherea;,, andb;, are
certain constant coefficients. We observe that, soie’)
~exp(=u'lry) at largeu’, the upper part of the integration
overu’ (say, between’ =\uM andu’=u) gives a contri-
(46) bution which dies off exponentially at large In our ap-
. o . o proximation we can thus concentrate on the contribution
in which By;; are certain constant coefficients, and the func-coming from early retarded timesay, up<u’<\uM). At
tion go(u’) stands for the expressions derived in the previ-zny |arge enough retarded timethere exist positive con-
ous section folgp(u’) andgg(u’) [Egs.(15) and(19), re-  stantsc, andc such that this early contributiofin absolute
spectively. If we now integrate this expression by parts with yalue is bounded from above by
respect ta’, we find thatto the leading order in Mu and
inrgylu,

N I |
v’ =2rg (r,—ro) rg
du'——————

Uo (r;)Zl—n

X
—_—

SV(r})g"(u),

L r(uM)Y2—ug](u—ug) i my
» 0 0 0
|\I’15|$05Mr02 > s 2—mi3
j=om=0  [u—(uM)““+2ro]< M

L i
. ~ u (u—u")"Ir}
‘I'lB:nZO ]ZO IanrOJ du’

u u—u’'+2r 2l—n U_U0+2r0
o 2 x |ajm|+|bjm|ln(T
X 8V(u—u'+2rg) gi(u’), 47)
<cgroMu~*29In(u/M). (51)

with an being some other coefficients. Now, integrate in o ] o
parts each of the termsuccessive times W|th respectub_ In What fO”OWS It will become apparent that th|S Contr|but|0n
The resulting surface terms would all be negligible at largelo the late time radiation at null infinity dies off more rapidly
u/ry, sincegq(u’) dies off exponentially at large retarded than the radiation due to scattering in the “main” region of
time u [see Eq.(19)]. In addition, these surface terms are sourcegregion A), which will be shown to be characterized
Stricﬂy Compact from below. We are left with by a U_l_z decay tail. Therefore, the contribution from re-
gion B is negligible au>M.
) o _ "
V= nZO ]ZO (_1)n3njr0J’uOdU'go(U’) C. Contribution from region A (the “main” region )

The remaining contribution to calculate is that coming

d" [ (u—u")'"Ir} from region A, reading

du’”{(u—u’+2r0)2'*n

X SV(u—u'+2r,)

u o0
e = — 4 Y )
(48) 1A(U) fuodu Jwrodv G*(u;u’,v")

to leading order ifM/u andrg/u. XSV(u',v")Wo(u',v'). (52
To continue, we shall have to writéV in terms of the

null coordinates. This cannot be done explicitly, since theTo evaluate this expression we first writBy(u’,v’) in

function r(r,) is implicit. Rather, we shall use the large terms of a functiongy(u’) [as in Egs.(133,(13b)], then

expansion integrate by parts each of the resulting terms on the right-
hand side(RHS) n successive times with respectu6. Ne-
5V(r*>ro)=Mr;3[a+ bin(r,/2M)] glecting surface terms, which are all exponentially small at

late time sincegy~exd —u/ry] at largeu, we obtain
+OM2rIn(r, 2M)]2), (49 o~ exfl—ulfo] atlarg

|
wherea andb are constant coefficients, depending onlylon PiA(u)=— 2 (— 1)nAnJUdU'J’ dv’ go(u’)
Ug u+2rg

and M. In paper | we argued thdin the framework of the n=0

shell model it is merely the asymptotic form of the back- I .,

ground potential which affectd at u>M. This has been x J [G (uiu’,v’)oV(u' ') _ (53)

also tested numericallysee Fig. 11 in paper).| We now au’“[ (v'—u"H)2-n

proceed by assuming that the same is true in the complete

SBH model as well. With the explicit form of the Green’s functidrEgs.(28) and
With 8§V taken to leading order iM/r, , Eq. (48) takes (29)], and with §V taken to the leading order iNl/r, , the

the form last equation takes the form
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I 1=k u »
T (W=M>, > f du’f dv’
k=0 j=0 Jug

u+2rg

X(u_u/)l—k—j(v/_u)k
(U/_ur)2|7j+3
X

A+ bygIn go(u’) (59

v’ —u’
2M
wheregkj andEk,- are certain constant coefficients that de-

pend onl and M, but not on ry. Integrating overn'’, the
RHS of the last equation becomes

k u — ) k=] k—m
MKE E du’ (U u ) (rO)

-k
=0 j=0 m=0 Ju, (U_U,+2r0)2|7j7m+2

u—u’'+2rg

go(u’) (55) FIG. 9. Late time tails ofl"; at null infinity. Presented on a
2M

log-log scale are numerical results obtained¥oy in the complete
- ~ SBH model atv=10°M (approximating null infinity, for the |
with a;m, andby;y, being yet other constant coefficients, in- =0,1,2,3 modes(For |=0 we used the definition o¥; given at
dependent of ;. the end of Sec. V].Compact initial data for the numerical propa-
Now, sincegy(u’) falls off exponentially at largei’, we  gation have been specified betwaea —40M andu=—50M, and
may cut off the integration at, say, =(M u)1/2 without af- the parameter, has been set toN. Also shown, for reference, are
fecting the integral to the leading order M/u. Doing so, dotted lines proportional ta~'"2. The results demonstrate the
we observe that the leading order contribution to this integrat '~ late time decay rate predicted by the analytic calculation.
comes only from terms corresponding to=k. (Note the )
way the dependence in the parametgcancels in the lead- With Eq. (52) of paper I, we learn thak,=0, and that, to
ing order) leading order inM/u, ug/u, and inry/u we have

Defining

X

akjm+ bkjmln(

Pi(us>M)=2(-1)'"Y(1+1)IMIg u'"2 (58

fNUMgm(U)dU’:f gol(u)du’'=l, (56)  (for the compact initial data setup
to o We conclude that the wav#? has the same late time
behavior in the complete SBH model as it has in the shell
model; namely, it dies off ag~'~2 provided that the initial
pulse is compact. Numerical calculation ¥f; in the com-
plete SBH model agrees with this result, as demonstrated in
Fig. 9.
V2= MIou™" "2k, +Kolnu/M 1. (57) We may similarly obtain the:™'~* decay characterizing
the static initial setup, by comparing EG7) with Eqg. (54)
k; andk, are constant coefficients that dot depend orr,. of paper . If a static scalar field is present outside the central
The only remaining reference to the valuergflies within ~ object up to some moment before the event horizon forms
the integrall . (no static solution exist which is well behaved both at the
Since the values of the coefficierksandk, are indepen- _event horizon and at infini}ywe shall have, to leading order
dent ofr,, then in order to obtain these values one may usé? M/u, Up/u, andro/u,
Eq. (52) with whatever value of this parametérequiring (112
only thatry<<u). Now, if we takery=0, then_Eq.(5_2) be- ‘PT(U>M)=(—2)'+1'—MM u'-t (59)
comes completely analogous to the expressionif$rin the (21!
shell model Eg. (37) in paper |. Comparing these two ex- ) o o
pressions, we find that the Green’s functi@rand the poten- whergM reprgsents t.he amplitude of the |n|t|allstat|c field.
tial 5V appearing in both integrands are exactly the same. It IS also instructive to compare the amplitudes of the
The two expressions differ only in the form of the function Wave ¥ at some fixedu>M value in both modelsthe
W, which in both cases is expressed in a similar ieyin ~ Shell and the complete SBHgiven the same initial data. As
Eq. (13a] in terms of two different functiongo(u). How- |r_an|ed by_ the above dlscuss!on, the relatlv_e amplitude is
ever, the explicit form of the functiogy(u) (as related to the SIMPly given by the ratio of the integralslo
initial data has no effect whatsoever on the value of the=J Jo(u")du’ associated with both models. Relying on the
coefficientsk, andk, and so these coefficients must be theexplicit expressions derived for the functioggin this paper
same as in the shell model. Therefore, comparing (Bd.  and in paper I, it can be easily shown that the two integrals

(where the first equality holds to the leading ordeMiu, as

0o is compact from below and dies off exponentially at large
u) we find that, to the leading order iM/u, ry/u, and
Up/u,
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lo, associated with the two models, differ merely by anthat at null infinity\lf'l=0 is given by Eqs(58) and(59) (with
amount of order~ry/u,. Thus, concentrating on the case | =0). These equations are therefore valid for all modes
|ug|>2M~r (in the context of which our analysis proves
effective—see the discussion in the following sectjamne
observes no difference between the late time behavior of they;; 1 GHER TERMS OF THE ITERATIVE EXPANSION
waveWV; at null infinity on both models. This result is accu-
rate to leading order itM/u, ug/u, andrg/ug. In particu- The Green'’s function technique applied thus far provides
lar, we may conclude that at late time the wal§ has no  aformal way to calculate each of the tertig one at a time,
reference(in our approximatioh to the value of either the in an inductive manner. We shall not, however, calculate
radius of the shellR (in the shell mode| or the parametar,  further terms of the expansion, but rather we will refer to the
(used in the complete SBH modleThis result is consistent results of the analysis in paper I. Regarding the shell model,
with the assumption that details of spacetime structure agtrong indications were given thé the dominant contribu-
smgllr values are not manifested in the form of the late timetion to P (u>M), for all N=1, is only due to sources of
radiation. W\ - at large distances(ji) all terms ¥ of the iterative
expansion(excludingW¥,) seem to share the same late time
D. The monopole cas&|=0) pattern of decay at null infinity, namely, @ ' 2 inverse

It was pointed out while introducing the iterative expan- Power-law tail(for compact initial pulsgor au_l__l tail (for
sion that a scheme based on that expansion fails to handfatic initial field; (iii ) if the initial pulse is confined to large
correctly the casé=0. In the monopole case it is straight- distance,[uo|>M, then the iterative sum converges at null
forward to find that a Green’s function defined as in Sec. V ighfinity rather efficiently to the “complete” scalar wavé at
constant(a unity) throughout the whole range of evolution. It late retarded timeay; and (iv) moreover, in this case||,
then follows that the wav#’; is constant at late time, result- |>M), the scalar wavel is well approximated by merely
ing in the divergence of higher terms of the expansion¥; (with corrections smaller by ordévl/ug).

(¥,,¥3,...). Looking for the cause of this failure, we Now, it is reasonable to assume that all four of the above
notice that in the casels>0 it is the centrifugal potential results are also valid in the complete SBH model. For, in
barrier that “cuts off” the Green’s function and confines it both models(the SBH and the shell modg)sspacetime

(for late retarded time evaluation points®>M) mainly to  structure at large distance is the same, and, as argued in
late retarded timesu<u’<w). In the shell mode(see paper paper |, it is the large distance region whose structure is
) it was the presence of the center of symmetry which efrelevant in determining the late time form of the waves at
fectively acted as a potential barrier for the Green’s functiony| infinity. (This conclusion has been demonstrated in the

even in the monopole case, where no centrifugal potentigfamework of the shell model by explicit analytic calculation
exists. This is why the iterative expansion applied in Fheof ¥, and ¥, at null infinity. A physical explanation was
framework of the shell model proved to be equally effectlvegiven in the concluding section of paper I. For the complete

for all modes of the radiation. SBH model, a demonstration is provided by the explicit ana-

To analyze the cade=0 in the complete SBH model, one tic calculation of ¥7 in the preceding sectionActuall
is thus led to try a different iterative expansion, defined sucﬂy 1 P 9 Y,
we need only to assume that the first of the four results

that the Green’s function is subject to an appropriate poten-
tial barrier. as for the modes ]With> 0. Onpep terc):hnicarl)ly indicated above holds in the complete SBH model. Then, the

simple possibility is to take same reasonipg useq in Sec. VII_ of paper | iﬁnide_riving Eq.
(72) leads us immediately to realize thdty~u~'"? in the
SBH model as well. Also, a completely analogous analysis to
that applied in Sec. VIl of paper | shows that the third and
fourth of the above results hold in the complete SBH model
We then define the iterative expansion as in E@§), (11), as well.
(12), with the “new” potential Vi, -°. With this definition, Numerical analysis of the complete SBH model firmly
we find that\[r'ozozr(u), and that the Green's functiqat ~ supports the above arguments, showing that all four results
an evaluation pointi,v with (v—u)/2=r, >0] is given by  are indeed valid in the complete SBH model. In what follows
we present some examples of these numerical experiments.
Figure 10 presents the rati7/¥~, calculated numeri-
cally for the monopole and the dipole modes, for various
values of the parameter,. [The “complete” waveWV has

VE0=M18(r,). (60)

G(u'su,usv’'sv)=1,

G(u'sv'=su)=exd(v'—u)/M], been obtained by a direct numerical solution of BJ.] The
results demonstrate théike in the shell mode| as|ug|/M
G(v'su'su)=exg (u’' —u)/M]. (61) s set larger,’; becomes a better approximation to the

“complete” wave ¥ at null infinity at late time.
(The three regions indicated in this equation are those la- In Fig. 11 it is demonstrated numerical(for 1=0,1,2)
beled A, B, and C, respectively, in Fig. 7, when settipg that the iterative series applied in this paper seems to con-
=0.) A simple calculatiorfbased on Eq(42)] then shows verge rather efficiently for a largeio|/M value.
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FIG. 10. ¥, approximates the “complete” wav# at null in-
finity at late time, provided that the parametep|/M is chosen
large. This is demonstrated numerically for the monopadte Q)
and the dipole I(=1) radiation by comparing the ratiok, /¥ at
null infinity (approximated by =10°M) for the various value$a)
Ug=—40M, (b) ug=-200M, (c) ug=—1000M, and (d) uy=
—5000M. The parametery is set to V.

VIIl. TAILS AT CONSTANT RADIUS:
THE LATE TIME EXPANSION

So far we were discussing an analytic technique enabling
the calculation of the late time behavior of the scalar field at
null infinity. In this section we apply a different, local, analy-
sis to study the late time behavior of the wave along any
= const world line outside the black hole and along the event
horizon. Using this method we will be able to derive a
simple analytic expression for the field, consistent with an
inverse power-law decay, and accurate to leading order in
M/t (or in M/v along the horizon However, this expression
will involve two undetermined parameter®@ne for the
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FIG. 11. Numerical indications for convergence of the iterative

P

HYSICAL REVIEW D 59 044017

2
u/M

u/M

4 5

3
u/M x10*

power-law index and the other for the amplitud#/e shall  scheme at null infinity. Presentédn a linear scaleare the ratios
deduce these parameters by matching our late time solutio@) ¥, /¥, (b) (¥,+¥,)/¥, and(c) (¥,+¥,+ W)/ for the
at null infinity to the form derived in the previous sections sample value$=0,1,2. The other parameters are set &3, U,
using the iterative scheme. In that respect, the iterative= —200M, andv=10°M (approximating null infinity. The results

scheme shall prove to be an essential key for the constructiosuggest a rather efficient convergence of the iterative expansion for

of a complete late time description of the wave behaviorarge|ug|/M values at large retarded time
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anywhere outside the black hole. The purpose of this sectioR,(p) to be regular ap=1.> We will now show that such
is to introduce and apply the local method. regular solutiong(p) do exist®

We make the assumption that at late time, the Klein- We shall construct the functiorfs, in an iterative way,
Gordon scalar wavgpriorly separated in terms of the spheri- starting withF,. Fork=0, Eq.(65) is homogeneous, and its
cal harmonics as in Eq2)] admits the expansion general solution is given bfh=a,P,(p) +boQ,(p), Where
aop and by are arbitrary parameter®,(p) is the Legendre
polynomial of orded, andQ,(p) is the Legendre function of
the second kind, of orddr The polynomialsP,(p) are, of
course, finite at the event horizop£1) and divergentas
in which the numbek, and the set of function§,(r) are yet  p') at p—o. Conversely, the function®,(p) diverge at the
to be determined. Substituting this expression in the Kleinevent horizon and vanistasp ' 1) at p— . Regularity of
Gordon equation(3) and collecting terms of common Fo, at the event horizon therefore requires that0; hence
power, the partial equation is thereby converted to an infiniteve obtain
set ofordinary coupled equations for the unknown functions

Fi(r),

¢'<r,v>=k20 Fi(r)o o7k, (62)

Fo(p)=aoP(p). (67)

2M
r2l1— —|F+2(r—M)F.—1(1+1)F
( r ) K+ P I )P Now consider Eq(65) for a general functior, (with k

=1). The general solutions to the inhomogeneous equations

=2(ko+k—1)(r?F_;+rF,_1) 63  ead

(for k=0), where a prime denotes differentiation with re-
spect tor, and where we have sét_;=0. This set of equa- Fi(p)=acP(p)+bQi(p)
tions exhibits only a “weak” coupling, in the sense that each
of the functionsF, depends only on its preceding function PQ(p" )Di(p ) Fr_1(p")] ,
Fr_1, with Fy obeying a closed homogeneous equation. +Pilp L (p'2—1)W(p") d
This hierarchy allows one to treat each of these equations P P
one by one, in an iterative way. In this procedure, each of the oP,(p" )Di(p [ Fr_1(p")]
functionsF (with k=1) satisfies a closed second-order in- —Qi(p) > - "
homogeneous equation. L (P “=1)W(p’)

We proceed as follows: First, we show that there exists a (68)

solution¢' of the form(62), which is regular anywhere out-

side the black hole, in particular at the event horizon and at i

null infinity. Then, with the aid of our previous results at null Wherea, andb, are arbitrary parameters, and

infinity, we deduce the late time behavior of the scalar waves

as detected by a static observer at any constant radius. In W=P/Q—-PQ/=(p*~1)~* (69)
particular, we obtain the late time form of the waves along

the event horizon.

We define a new dimensionless radial coordinate is the Wronskian. Using the relation
M (64 Wip')
p=—7 =W
M Qi(p)=Pi(p) f ——dp (70)
» Pi(p")

which varies monotonically from the event horizop=1)
up to spacelike infinity g= ). In terms of the new variable,

Eq. (63) takes the form and integrating Eq(68) by parts, we can then obtain
(p?=1)Fg+2pF—1(1+ 1)F=Dy(p)[Fr-1], (69

. . . . L . ®Had we applied a t/lexpansion ofp instead of the 1/ expansion
in which a prime now denotes differentiation with respect to(62), all functionsF, would have had to diverge at the horizon

p, and whereD(p) is the differential operator: (wheret=) to assure regularity of the scalar wave there. For that
reason, the 1/ expansion seems more plausible from the technical

L 8In mathematical terminology, E65) possesses a “regular sin-
[Note thatD(p) depends ork,, but is independent df.]  4jar point” atp=1 (the event horizon—see, for example[16].
For k=0, the RHS of Egs(65) vanishes. For this case, standard mathematical theory tells us that series so-
We would like to construct solutions, to Eq. (65 such utions for F, and for F, can always be constructed neas 1.
that ¢ would be regular both at the event horizon and atHowever, fork=2 the source term in Eq65) appears to involve
infinity. To allow ¢ to be regular at the horizafwhere they logarithmic functions, for which case standard theory gives no clear
coordinate takes finite valugswe require all functions rules.
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Fi(p)=aP(p)+bQi(p)

p /W(p’) ' n n "
+P|<p>fl dp WLP dp"Py(p")Dk(p")

X[Fi-1(p")]. (71)
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The form (73) obviously applies forF, [given in Eg.
(67)], with

21+ 1)1

TN+ (74)

Co

which is just the coefficient o' in the polynomialP,(p).

Following the inductive procedure, we now assume that

We now show by mathematical induction that with g4 (73) applies for somé&=0, and show that this leads to

b,=0 (for all k), the functionsF(p) are all analytic at
the event horizon. The first functidfR, is analytic atp=1
by Eq. (67). Now, following the inductive procedure,
assume thaF,_, is analytic atp=1 for somek=1. Then,
Du(p")[Fr_1(p")] is analytic atp”=1; hence the integrand
of the p” integration in Eq(71) is analytic at that point. We

dFy.q/dp~(l+k+1)agc,.1p' K. Our assumption neces-
sarily implies thatF,~agyc.p'*. Hence, by Eq.(66) we
have

Dy 1F~2Magci(ko+ k) (1+k+1)p' Tkt (75

thus f|ngthat the inte_gral OV@]” can be written in the form Consequenﬂy, for the integration Ovpf’ in Eq (71) we
(p'—1)f(p'"), wheref(p) is some function which is ana- obtain the asymptotic form
lytic at the horizon(this can be shown by expanding the

integrand in a Taylor series neglf=1, where it is analytic

Since the polynomial®, have no real zeros in the range
=1 [17], andW diverges as 4’ —1)"! at the horizon, we
conclude that the whole integrand of té integration is
analytic atp’ =1, and therefore that the integral oy€rmust
be analytic as well. Hence the solutioRg, defined in an
inductive way by Eq(71), with b,=0 for all k=1, are all
analytic at the horizon.

(ko+K)(1+k+1)

By this we have shown that the wave equation admits

solutions¢ of the form(62), which are analytic at the event

horizon. The most general of these solutions contains an in-

finite number of free parameters, one for each power of 1/
We do not know yet the value of the power indky,
appearing in the expansio{®2). To obtain this value we
shall now evaluate at null infinity. By this mean we will be
able to(i) show that the form ofp at null infinity, is consis-

~2MagC,Co 2I1kT2) p)2tkt2 (76
It then follows from Eq.(71) that
Fre1~aoCyr1p Y, (77
with
kot+k)(I+k+1
(ko+K)( ) 79

Cer1=2M e G 2k 1)

Finally, differentiating Eq.(77), we getdF,,,/dp~(l+k
+1)agCks1p' 7%, which establishes the inductive proof of
Eq. (73).

We have thereby shown that the functidfsall admit the

tent with the results of our iterative analygis particular, asymptotic form(72), with the coefficientsc, given by the
that ¢ is regular thergand (ii) deduce the value df, by  recursive formula78), supplemented by Eq74). We ob-
comparing the results arising from the two independentain, in conclusion,
schemes.

We start by showing, using mathematical induction, that
the functionsF all have the asymptotic form

F~aga(2)*C,M 'Lk (79
for r,—, where we have explicitly used the fact that

~r/M~r, /M, and where

Fi(p—o)~agcep' 7, (72

(kotk—=1)!(1+K)!

in which ¢, are certain constant coefficients, other then zero K™ (21+k+ 1)1 (k)! (80)
and yet to be determined. Here and henceforth, the form
f(x)~cx" (where ¢ is some constant means that and
lim,_.[f(x)/x"]=c. It appears most convenient to prove
Eq. (72) by first showing thdt 20121+ 1)1
D2k 1)t ey

dF,

Gk l+k—1
dp '

(p—%)~ag(l +k)ckp (73
(The coefficientC, and ¢, are not to be confused with the
coefficients appearing in Sec. V.

Equation(79) describes the form of the functiots, to
the leading order im/M, which is sufficient for our purpose:
matching ¢ at null infinity. We comment, however, that a
full series expression for the functiomis, at larger can be

obtained as well. It has the form

Then, Eq.(72) is implied.

"This is not valid wher =0 andk=0, for which casedF,/dp
=0. However, the rest of the analysis does not change.
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k _ _ implied. If we now make the substitutiogq=(1-—u/v),
Fir(r)=r > (r/M)' TH (M/D)[In(r/M) ], (82)  keeping just the leading order inv, we find that

1=0 > ulk  gko—1-2/ 1
whereH,;(M/r) are Taylor series. This form can be verified kzo Cyl 1 ;) =W( m)

by substituting it into Eq.(63), then constructing explicit
recursive formulas for the coefficients of each of the various ko—1-1
seriesHy; . Note that to leading order iM no logarithmic =(ko—1-2)! (a) : (89
terms are involved, and the for(i@9) is recovered. ) ) . ] .
To obtain ¢ at null infinity, we insert Eq(79) into the  Since¥=r¢$=v ¢ to leading order inu/v, we finally obtain
expansion62). We get(to the leading order im/M), ‘If“(u)zaoa,(ko—l—2)!(2M)"u‘(k0"‘1>, (86)

* I+k whereW*(u) stands for the wav&’ evaluated at null infin-
d=apa;(2M) " 'v' ko> Ck(l——) . (83 ity.
k=0 v The value of both the power inddk, and the yet-free
To evaluate the power series, we write it in terms of aparametera, can now be specified by comparing the last
generating function, result to the results arising from our iterative scheme, Eq.
¢/ q (58 and (59). This comparison yield¢assuming thatug|
- gl

dko—2|—2 >M)
dq'l1-q

k—_~—21—-1
go Ca"=q dgo 22 q

21 +3 noinitial static field,

(69 0| 21+2 initial static field (@)
which is valid for|g|<1. In this expression the derivatives '
might be of negative orders, in which case integrations arand
2
%( —2M)'"11,  noinitial static field,
7Y e+ SO (#9
220 2IF DI —4M)'*t1y  initial static field,

where the integral, [defined in Eq.(56)] is directly related side the black hole. To the best of our knowledge, such a

to the initial data via Eq(15), andu is the amplitude of the result has never been obtained previoughor example, in

initial static field (when present [1], [2], and[4], analytic expressions were derived only for
Provided with an exact expression #84(r) and with the  the asymptotic domains, >M andr, <M.)

value ofky, we are now in a position to write the form of the

scalar field at any finite value of at very late time. By Eq.

(62) we haveto leading order in Mt and in M/up, IX. CONCLUDING REMARKS

In this paper, and in the previous paper, we have tested

V- 3o [ p (f -M ) (t>]r.]) 89) the applicability of a new analytic scheme for the calculation

t21+23 ™ * of the late time behavior of fields outside black holes. It was
demonstrated, considering the simple model of scalar waves

outside a SBH, that a simple expansion of the field near

and,to leading order in Mv and in M/uj, timelike infinity can be used in order to construct a late time
solution consistent with a power-law decay anywhere outside

Mag , the black hole. However, the actual index of the power law,

EPEEEEL at the event horizon, (90 as well as the amplitude coefficient of the waws related to

the initial data, could not be determined merely by this local
analysis. This information could be obtained only by a full
where the two values of powers correspond to the casestegration of the two-dimensional initial-value problem for
where an initial static field is or is not present, respectivelythe wave evolution, technically enabled by the introduction
We should emphasize here that the above red@ts.  and application of the iterative procedure.
(89 and(90)] apply towards timelike infinity aanyvalue of Thus, by applying both the iterative scheme and the late
r, establishindtogether with the results at null infinity, Eqs. time expansion, we were able to obtain an analytic expres-
(58), (59)] a completepicture of the late time behavior out- sion for the scalar field in Schwarzschild spacetime, accurate
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to leading order iM/t (or in M/u at null infinity, or inM/v ometry may be treated using the same iterative scheme ap-
at the event horizgrand holding anywhere outside the black plied for the scalar model.
hole. The expression calculated is explicitly relafeid Egs. We do not have similar separable equations for metric
(15), (56), and (88)] to the form of arbitrary initial data perturbations of Kerr black holes. Rather, a second approach,
specified at large distan¢eur approximate solution has cor- based on the Newman-Penrose tetrad formalism, was used
rections of ordeM/uy). by Teukolsky[20] to derive separable wave equations gov-
Of course, the main justification for the introduction of erning perturbations of the Weyl scalardn exhaustive dis-
the new approach should rely on its applicability to morecussion of field equations for gravitational perturbations is
realistic models of wave evolution, for which no other ana-given in[21], pp. 174—18Zfor Schwarzschilgland pp. 430—
lytic approaches have been proposed. In what follows wel43 (for Kerr)]. Separation of Teukolsky's equation is only
mention some possible applications of our calculationpossible in the frequency domainamely, by first separating
scheme, which include the analysis of scalar fields outsidéhe wave into its Fourier modgsTo apply our iterative ap-
Kerr black holes, the analysis of gravitational perturbationgproach, however, the time dependence should rather be kept
in Kerr, and the extension of our analysis to the interior ofin the master Teukolsky equation. Instead, the master pertur-
black holes. bation equation is to be treated in the way outlined above,
The most interesting application of the new scheme connamely, by considering interactions between the various
cerns rotating black holes. As already mentioned in the Inmodes of spherical harmonics. By now we have first indica-
troduction, this generalization is the prime motivation behindtions that this approach is indeed applicable to gravitational
the presentation of our approach, since realistic stellar opRerturbations(in the tetrad formalism We intend to study
jects (and black holesgenerically possess angular momen-this subject more deeply in the near future. _
tum. The generalization of our analysis to the case of scalar Fma_llly, we mention the p035|b|I|ty of extending our
waves propagating in the exterior of a Kerr black hole shallan.aIySIS to internal perturbations of black holes. Recently,

. . - .. ri used the technique ddte time expansiotbasically simi-
be presented in a forthcoming paper. In brief, the basic |de%1[2‘r to the method presented in Sec. VIl of the present paper

behind this generalization is to express the lack of sphericar ; . O
symmetry in Kerr spacetime in termsioteractionsbetween 0 explore the late t'|me behavior of scalar fieldwide

Y iy P . . ~ . charged22] and rotating[23] black holes. In this analysis,
the various modes of spherical harmonics. The resulting 'nboundaw conditions for the wave evolution were assumed
teraction terms coupling the field equations for the varioug), he event horizofin the form of an inverse power law in
modes(these terms are expected to be small, in a sense, 95, and the asymptotic late timet¢M) behavior of the
late time are then to be treated using our iterative techniqueyaye was deduced inside the black hole, up to the inner
Applying an iterative decomposition basically similar to that horizon. This provided a tool for exploring the nature of the
used in the spherically symmetric models, those interactiofhner horizon singularity. With the results of the external
terms become source terms in the resulting hierarchy o&nalysis(generalized to charged and rotating black hplas
wave equations. The mathematical treatment of these equ@onnection may be established between the form of the wave
tions is then similar, in principle, to that applied in the at the inner horizon to its form at null infinity, which, in turn,
spherically symmetric cases. This provides the late time formysing the iterative scheme, can be derived as explicitly re-
of each of the modes at null infinity. Then, a generalizationated to the form of arbitrary initial data outside the black
of the late time expansion methodbased on the same hole. That would allow one, given initial data outside the
interaction-between-modes appropginovides the late time  pjack hole(at large distandeto deduce the late time form of
behavior of the field anyWhere outside the Kerr black hOIe, |rthe wave at the inner horizdri’nduding its accurate amp”-
particular along its event horizon. The details of both parts Otude Coefﬁcien)t without any assertion about the boundary
the analysis in Kerr shall be given [A3] (see alsd14]). conditions.

ObViOUSly, the scalar model discussed so far is jUSt a sim- One may also think of a more rigorous and coherent
plified analogue to the physical problem concerning the dyscheme, which includes the simultaneous analysis of both
namics of gravitational perturbations. The plausibility of thejnternal and external perturbations, in the framework of a
scalar model stems from the remarkable resemblance of thgeneralized late time expansion. This generalization becomes
underlying mathematical formulation between this modelnatural when applying an expansion of the fo®g), as the
and realistic models of gravitational wavéss was already coordinatey andr are both regular through the event hori-
realized in[1], for example, for the SBH caseEquations  zon, Then a full treatment of both internal and external evo-
governing metric perturbations of the SBH were derived bylytion is possible by following basically the same steps as
Regge and Wheel¢fL8] (for axial perturbationsand by Zer-  described in Sec. VIII, this time allowing tivecoordinate to
illi [19] (for polar perturbations Both equations can be put take its full range of values.
in the same form as the scalar field equatib)) where this
time the wave function represents certain linear combina-
tions of entities characterizing the metric perturbation. In
both the Regge-Wheeler and Zerilli equations one also finds ACKNOWLEDGMENT
that the effective potential is similar in shape to that of the The author wishes to express his indebtedness to Profes-
scalar modelEq. (6) and Fig. 1. This suggests that the sor A. Ori for his guidance throughout the execution of this
problem of gravitational wave propagation in the SBH ge-research and for countless helpful discussions.
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