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Late time dynamics of scalar perturbations outside black holes. I. A shell toy model
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We present a new analytic approach for the study of late time evolution of linear test-fields, propagating on
the exterior of black holes. This method provides a calculation scheme applicable to Kerr blackféioles
which case no analytic calculation of the late time tails has been presented. $o fais paper we develop the
new technique and apply it to the case of massless scalar waves evolving on the background geometry of a
static spherically symmetric thin shell with a Schwarzschild exterior. The late time behavior of the scalar field
at null infinity is calculated, and is explicitly related to the form(qtite arbitrary initial data. This reproduces
the well-known late time power-law decaying tails. In an accompanying paper we apply our approach to the
complete Schwarzschild black hole geometry, where we obtain the familiar inverse-power late time tails at null
infinity, as well as at time-like infinity and along the event horizon. A calculation of the late time power-law
tails in the Kerr geometry, based on the same approach, will be presented in a forthcoming paper.
[S0556-282(199)06002-9

PACS numbd(s): 04.70.Bw, 04.25.Nx

I. INTRODUCTION flat spherically symmetric spacetimes, represented by effec-
tive curvature potentials of the form (ff/r® (where B
The gravitational field outside black holes created during=0,1 anda>2 are parameteysThis class includes the SBH
a generic gravitational collapse relaxes to the stationarand Reissner-Nordstmo geometries. They found that, ge-
Kerr-Newman field. This result, referred to as thed-hair  nerically, the wave behavior at late time is not characterized
theoremi (see, for examplg,1]), implies that outgoing ra- by a strict power-law tail, but rather it has the form (ify
diation should carry away all the initial characteristics of the X (inverse-power ir). In that respect, the Schwarzschild and
collapsing object, except for its mass, charge, and angulgReissner-Nordstro geometries represent a special subgroup
momentum. These three quantities, characterizing the Kerisf spacetimes. For the monopole moment of the scalar radia-
Newman field, are conserved by conservation laws; anyion, it was shown by Gmezet al. [7] that the form of the
other quantity will vanish by the time the gravitation field tails (whether “logarithmic” or no} depends on whether or
settles down on its stationary state. not the Newman-Penrose constant for the field vanishes.
The underlying mechanism for this relaxation process was Recently[8], Brady et al. studied scalar waves dynamics
first demonstrated by Pri¢e] for the case of a nearly spheri- in the non-asymptotically flat exteriors of Schwarzschild—de
cal collapse. Price analyzed the dynamics of masslesSitter and Reissner—Nordsime-de Sitter black holes. Con-
integer-spin test fields, evolving on the background of atrary to the asymptotically flat geometries, no power-law
Schwarzschild black holéSBH), and showed that when tails were detected in these cases. Instead, the waves were
viewed from a fixed location outside the black hole, thefound to decay exponentially at late time.
waves die off at late time with an inverse power-law fail The aforementioned analysis by Chirgal. follows a
the Schwarzschild timg), whose power index depends only technical scheme, first introduced by Leal@; in which the
on the multipole numbekr of the mode under consideration. linear waves are first Fourier-decomposed, then evaluated in
Later [3], it was demonstrated by analytic and numericalthe complex frequency plan@ee alsg10]). In this tech-
methods that the nearly spherical collapse exhibits late timaique, the late-time tails are explained in terms of a branch
decay tails also at future null infinity and along the eventcut in the Green'’s function in the frequency domain. The fact
horizon. The formation of these tails was explained as due tthat the branch cut is due to the form of the potential at
back scattering of the outgoing radiation off spacetime curasymptotically large radiugsee [6] for detaily implies,
vature at very large distances. again, that the tails originate from scattering off the curva-
The existence of late time tails was demonstrated for linture potential at large distances. This observation, in turn,
ear perturbations of both SBF2,3] and Reissner-Nordstno  suggests that the development of tails is independent of the
[3] exteriors. Remarkably, numerical analysis of the fully existence of an event horizon. Thus the tail phenomenon
non-linear dynamics of fields yields the same decay rates atppears to be of a more universal nature: it may characterize
late time as for the minimally coupledinean fields[4,5].  the realistic stellar dynamics. This, indeed, was suggested by
This, of course, encourages the application of the perturbaGundlachet al. [3,4] and Chinget al. [6]. In [4], for ex-
tive approach, even though the problem in discussion is norample, the purely spherical collapse of a self-gravitating
linear in its nature. minimally coupled scalar field was studied. It was demon-
Ching et al. [6] explored a wide class of asymptotically strated numerically that in this case late time tails are formed
even when the collapse fails to create a black hole. We shall
further discuss this issue in the present paper.
*Email address: leor@techunix.technion.ac.il Historically, the study of wave dynamics outside black
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holes was motivated by the will to construct a detailed dedor of waves, evolving outside a rotating Kerr black hole,
scription of the relaxation process leading to the stationaryvould be qualitatively of the same nature as in the spheri-
“no hair” state. (For example, there was a need to verify cally symmetric spacetimes. This is because the Kerr geom-
that the event horizon is indeed stable under generic pertuptry asymptotically approaches that of a SBH at very large
bations) Many recent studies, however, are oriented by theadius, and presumably it is this far region of spacetime
prospects of directly observing gravitational radiation fromWhose structure determines the form of the late time radia-
astrophysical system@.g. with the LIGO observatory; see tion. _ . . .

[11)). Although the study of the late time behavior of fields Y€l in spite of the obvious interest, no analytic scheme
outside black holes has probably no immediate observation&}@S Peen proposed thus far to describe wave dynamics out-
implications (late time outflux from a realistic coalescing S'd€ rotating black holeg14]. The basic obstacle is, of
binary system, for example, would be orders of magnitude§°USe: the fact that the axially symmetric Kerr black hole

weaker than the short pulse of radiation expected during thBOSSESSes three non-trivial dimensions, instead of only two in
last few seconds of the mergeit still addresses several the spherical cases. This makes both analytic and numerical

important questions. For example, this study has crucial refnvestigations significantly more complicated. Recently,

evance to the exploration of the internal structure of blackNeré was an initial progress, with the introduction of a full
holes, as it provides the input for the internal wave evqutiork(2+1 dimensions numerical analysis by Krivaret al.
problem. Particularly, it has been argu®] that the form 15,146, though much effort is still required is this direction.
of the slowly decaying wave tail along the event horizon
affects the strength of the mass-inflation singularity at the
Cauchy horizon inside charged and rotating black holes.
The study of waves evolving in curved geometries is also We have developed an analytic calculation scheme en-
interesting on its own right from a theoretical point of view: abling one to analyze late time wave dynamics outside Kerr
such waves, massless just as well as massive, do not progalack holes. This analysis shall be presenteflifi (see also
gate along light cones solely; rather they also spread insidgl8]). The major goal of this paper, together with the accom-
them. Regardless of the presence or absence of an evegwanying papefto be referred to as paper)llis to demon-
horizon, it is this feature of the evolution which is respon- strate the applicability of our technique in a simpler model,
sible for the phenomenon of late time decay tails in curvechamely the evolution of scalar waves in the SBH exterior.
spacetimes. This will serve several purposes: First, we shall be able to
In virtue of previous studies, we now have the following test our scheme against the firm results already obtained for
schematic picture regarding the dynamics of waves outside this case by previous studies. Second, many parts of the for-
nearly spherical collapsing object: Consider a perturbation inmalism to be developed shall be later directly employed in
the form of a compact pulse of radiatiggravitational or the analysis in Kerr. Finally, our analysis in Schwarzschild
electromagnetic somewhere outside the collapsing object,spacetime proves to be valuable on its own right, providing,
emitted at some time during the collapse. This pulse mayn some respects, a more complete picture of the late-time
represent radiation emerging from the surface of a collapsingrave behavior than already available.
object, as well as any other form of perturbation on the back- Basically, our analysis is composed of two major steps. In
ground geometry. We shall refer to it as the “initial pulse.” the first and more crucial one, a characteristic initial value
A static observer outside the black hole will then indicateevolution problem for the scalar waves is treated analyti-
three successive stages of the wave evolution. First, the exacally, resulting in the construction of a late-time solution for
shape of the waves front depends on the detailed form of théhe waveat null infinity. This calculation involves the intro-
initial pulse. This stagélasting a period of time comparable duction of a special perturbative decomposition of the waves,
to the duration of the initial pulgds followed by a “quasi- followed by the application of the standatime domain
normal ringing” (QNR) relaxation stage, during which the Green’s function technique. In the second step we then use a
waves undergo exponentially decaying oscillations withsimple late time expansion of the wave near time-like infin-
(complex frequencies completely determined by the massty, in order to obtain the late time behavior of the wave at
and electric charge of the central objét8]. Finally, as the anyconstant radius, including along the event horizon. This
QNR dies off exponentially in time, it leaves behind an in- second step is made possible only after the wave form at
verse power-law decaying tail of radiation. During the lastnull-infinity is derived by the first step of the analysis.
two stages, the details of the initial pulse affect the shape of To introduce the analysis at null infinity.e. the first step
the waves only through a global amplitude factor; hence thenentioned abovein a clear and more instructive way, we
evolution during these stages is purely characteristic of thécorporate in this paper a simple toy-model, in which the
background geometry. scalar waves are taken to evolve in the gravitational field
Now, a realistic black hole formed by a generic gravita-induced by a spherically symmetric thin shell of matter. This
tional collapse is expected to spin, as do astrophysical starsonfiguration possesses the same spacetime structure at large
(On the contrary, models of black holes with electric chargedistancegoutside the shellas in a complete SBH manifold
and/or cosmological constant are mainly hypothetical. of the same mass, while its smallstructure is much sim-
Therefore it is natural to ask how the tail phenomenon ispler. That would reduce the amount of technical details to
affected by the presence of angular momentum in the baclkdeal with when developing our calculation scheme, and may
ground geometry. One may suspect that the late time behaalso enable one to push the analytic calculation to a further

A. New calculation approach
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extent, while leaving the essential features of the analysisates form an example of a “natural” set of coordinates
unaffected. Indeed, we later show in paper Il, considering théhrough the “surface layer't =R, as discussed by Israel in
complete SBH manifold, that the asymptotic late time behav{19]. The jump in the derivatives of the metric functions
ior calculated at null-infinity is unaffected by the structure of through the shell is then related to the surface energy tensor
spacetime at small radii; thus it is essentially the same in thef this layer) Note that outside the shell, the radial coordi-
complete SBH manifold as it is in the shell toy-model. nater, is the usual Schwarzschild’'s “tortoise” coordinate,
satisfyingdr, /dr=f"1(r).
B. Arrangement of this paper

In this paper we study the thin-shell toy model. To that B. Initial-value problem
end we introduce our calculation method, which we calie! We consider the evolution of initial data, representing a
iterative schemg and apply it to calculate the behavior of generic pulse of massless scalar radiation, on the fixed back-
the wave at null-infinity in this model. ground of the shell described above. The scalar field is as-
The paper is arranged as follows: In Sec. Il we formulatesumed to satisfy thgminimally coupled Klein—Gordon
the problem of wave evolution in the shell model as a charequatior
acteristic initial-value problem. The iterative scheme is pre-
sented in Sec. lll. It is applied in Secs. IV-VIII, revealing o:4=0, (5
the power-law pattern of the late time wave decay at null
infinity. The amplitude of the wave at late time is explicity where® represents the scalar wave. The structure of space-

calculated, expressed in terms of(guite arbitrary initial time affects the evolution of the scalar wave through the
data function. covariant derivatives, denoted in E&) by semicolons.

Decomposing the field in spherical harmonics,

II. INITIAL-VALUE FORMULATION OF THE WAVE

o |
EVOLUTION PROBLEM q)(t,r,glgo):lzo m=27| ¢'(t,r)Y|m( 0.0), (6)

A. Shell model

We consider a static spherically symmetric thin shell ofand substituting in the wave equati¢h), we obtain an in-
matter, of a masM and some radiuB>2M. The parameter dependent equation for each of the compone(s,r). (We
R should be regarded as being of orde2M (say, R use the superscriptto denote the multipole number of the
=3M). For this configuration, the exterior vacuum region mode under consideration.
r>R is a part of the Schwarzschild spacetime, described by A convenient form for the wave equation may be obtained
the line element in terms of a new wave functio®'(t,r)=r ¢'(t,r). To that
_ . end we introduce the double-nulEddington-Finkelstein
ds’=—f(ndt*+ {1 (r)dr*+r¥(de*+sirfode?), (1) coordinatew=t+r, andu=t—r, . The gquation govern-

wheret, r, 6 and ¢ are the standard Schwarzschild coordi- INd the evolution of thé-mode of the scalar wave then reads

nates and(r)=(1—2M/r). The region inside the shelt,

<R, is flat: \y[uﬁv'(r)\p':o, @)
d<?= —dT2+dr2+ r2(d02+sin20d<p2). (2) in which the function
Expressed in these coordinates, the geometry suffers a dis- EI(I +1)ro2 r<R
continuity atr=R. (The metric functiongy,, and g, jump 4 * ’
through this surface. Also the time coordinates do not agree Vi(r)= (8)
on both sides of the shell. 1( 1- 2_'\") I+ 2mMi
To allow a continuous representation of spacetime geom- 4 r r2 3]

etry, we define the coordinates
serves as an effective potential for the scalar field. The form

f(R) ™Y, r<R, of the potential function completely determines the effect of
r,= r—2M spacetime curvature on the wave evoluti@garms propor-
r—R+Rf(R)"Y?+2M In(R—ZM)’ r>R tional to M), as well as the centrifugal effect on the non-
spherical {>0) modes of the wavterms proportional to
()
I(1+1)].
and
—1/
t. = f(R) T, <R (4) We comment, however, that other wave equations are also pos-
* t, r>R. sible. For example, to assure conformal invariance, one should

rather use the equatidd® + %R(I>=O, whereR is the Ricci scalar.
In terms of the coordinates, ,r, ,0 and ¢ the geometry is  This equation reduces to E@5) when considering waves in a
described as a single continuous manifaf@ihese coordi- vacuum.
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i+ regular initial data and traveling outside the shell should not
\ develop any singular behavior. Also, the field should remain
regular(in fact, continuousat the shell itself, since the jump
in the potential function through this surface is finite in mag-
nitude. Then, no singularity is expected to occur during the
free evolution of the scalar field in the Minkowski interior of
the shell. Enforcing regularity og then automatically im-
plies that the revised wave functioh=r ¢ should vanish at
the originr, =r=0. To rule out unphysical divergent solu-
tions, we hence impose the supplementary boundary condi-
tion

r=0

V(r, =0)=0. (10)

In Appendix A we show that the evolution equati6r),
together with the initial condition&) and the boundary con-
FIG. 1. The setup of initial data. Shown is the conformal dia-dition (10), establishes a well defined characteristic initial
gram representing the spacetime geometry in the shell model. Théalue problem for the scalar field, with a unique solution
spacetime region outside the sheliXR) is a part of the Schwarzs- anywhere inside the light cone of the initial data.
child manifold, while the interior of the shellr &R) is flat. u
=up andv =0 are two initial characteristihull) surfaces. An ini- IIl. THE ITERATIVE EXPANSION
tially compact outgoing pulse is specified o 0.
Our goal is to calculate the late time behavior Bf at
To set up the initial value problem for the scalar radiation,null-infinity (namely, forv—c,u>M). In what follows we
one should supply initial data for each of its modes. Since ifntroduce an analytic scheme to construct this solution. This
spherical symmetry each mode evolves separately, it woullEchnique is based on thterative expansionto be defined
be sufficient to analyze the evolution of a singdmode of ~ NOW. _
the wave from given initial data. We shall specify these ini-  First, define
tial data on two characteristioull) surfaces, as illustrated in
Fig. 12 Specifically, we shall consider initial data in the form V() I(+1) (11)

of some compact outgoing pulse, specified on the ingoing 4“2c
null surfacev =0:3
and
W(u=u0)=0, 9 SV(1)=V(1) = V(1) (12
r)=V(r)—Vy(r),
Vl(v=0)=T"(u), © 0

with the potential(r) given by Eq.(8).
whereI'!(u) is some function of a compact support between Then, consider a decomposition of the wave function,
retarded timesi=uy andu=u,. (For brevity we henceforth
usually suppress thédependence of the functions under V=Vot+tW¥+Wot--, (13
consideration. We shall assume thaii;|>2R, namely that

the support of the initial functiol'(u) is completely outside such that the componeny obey the recursion formula

the shell. N=0
The choice of compadt‘localized”) initial data proves Wy uU+Vo‘I’N={ ' ’ (14)
to be convenient for the purpose of calculation. It also be- ’ —(6V)¥y-1, N>0,

comes useful when we later try to characterize the way in
which the late time behavior of the wave depends on thé
location of the initial pulse. For that reason, it is instructive i — -
to consider the casfelg|>u,— Uy, for which u, becomes a Pn(u=to)=0 (VN=0)
single parameter describing the location of the initial pulse. T'(u), N=0,

To complete the specification of the initial value problem, ¥ (v=0) =[ (15)
a boundary condition should be set at the origin of coordi- 0, N>0,
nates. From a physical point of view, a wave starting out ofa

nd satisfy the initial conditions

nd the boundary conditions

Ty(r,=0)=0 (VN=0). (16
2For a characteristic initial value problem to be well posed, it

suffices to specify only the value of the field on the initial charac-  Formally summing Eq€14),(15),(16) overN, we recover
teristic surfacegand not its derivatives Egs.(7),(9),(10) for the complete wav& . This suggests that

%The choicer =0 does not limit the generality of the initial setup, if the sum(13) converges, it should yield the correct function
due to the time translation invariance of the background geometry¥V'.
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Equationg14),(15),(16) constitute an infinite hierarchy of I g(n)(u)
initial value problems for the function¥,. Each of the Vo(Up<u<0)= >, A'no— (199
evolution equations consists of a simple homogeneous part, =0 (v—u)'"
which is the free evolution equation in Minkowski's space-
time. In addition, each of the functionky (excluding¥ ) Wo(u=0)=0, (190
has a source term proportional to the previous function in the
series. Therefore, in principle, if the solution #, is found,  in which the coefficients\;, are given by
and the appropriatéime domain Green’s function is con-
structed, then we should be able to solve for the functions I _ (2 —n)! (20)
W\ one by one, using the standard Green'’s function method. "onl(l=-n)!”

Analytic arguments, as well as numerical simulations
(both to be presented lajestrongly suggest that at null- The functiongg(u) (with its parenthetical superindices indi-
infinity the serieq13) doesconverge to the correct function cating the number of times this function is differentigtes)
¥. Moreover, in the casfg|>M, which will concern us by Eq. (18), the solution to the inhomogeneous ordinary
here, we find(both numerically and analyticaliythat the  equation of ordet,
late-time behavior of? at null-infinity is well approximated |
by ¥, (the corrections coming fromi=2 are smaller by a ()
factor proportional toM/up). Thus, in our scheme, under- n§=:0 An$:r(“)’ (22)
standing the behavioP ; alone will suffice to determine the
essential features of thg late-time dynamics_ at nuII—infjnity. subject to the initial conditiongg”)(uo)zo for all 0O=<n<|

In the sequel we derive an exact analytic expression for_
¥, and for the Green’s function, and use these results o
calculate the late time behavior &f ; at null-infinity. We
then discuss the contributions coming from higher orders o
the iterative expansion.

1. [Because of the compactness Idfu), we then auto-
atically have als@("(ug) =0. ThusW¥, vanishes along the
fay u=uo, as necessarly.

The solution forg, is given by

1+1
1 ulu
IV. DERIVATION OF W, 90(U<0)=(|_—1)J (J) (u—u")'"" I (u")du’

Uo
By definition, ¥ admits the homogeneous wave equation (22

for I=1, and simplygo(u)=T"(u) for =023 It is easy to
confirm this result by a direct substitution, noticing that a
solution to the homogeneous equation corresponding to Eq.
whereV, is the purely centrifugal potential defined in Eg. (21) has the general form

(11). This equation is supplemented by the initial conditions

Wou+Vo(ry)¥o=0, (17)

0, =0,

0, u=up, 19 go(U;<u<0)= (23

|
Vo= I+k
0 F(U), U=0, kgl '}/ku+ y I>O|

and by the boundary condition specified in Et6). (Recall wherey, are constant coefficients. Note that this is also the
that ' is a function of compact support, representing theform of gy at u;=<u=<0 [for which retarded times Eq21)
initial pulse of scalar radiatiop. becomes homogenedusvith the coefficientsy, being cer-

In fact, ¥ is nothing but the solution of the analogous tain functionals of the initial data functiohi, which can be
wave evolution problem irMinkowski spacetimé. To see  easily constructed by comparing E¢22) and (23).
that, notice that inside the shell E(L7) is invariant under We find that during retarded timeg<u<u,, at which
the transformation from the, ,t, coordinates to the usual the initial pulse is “turned on” on the initial ingoing null
flat-space coordinates and t. Outside the shell, however, surface, the behavior ofo(u) depends on the detailed
only the functional form of ¥,(u,v) is the same as in structure of the pulse. At latéyet negative retarded times,
Minkowski spacetime, while the dependence of the charact;<u<0, the functiongy(u) takes the simple formu'**
teristic coordinatesl,v on the flat space coordinateg dif- X polynomial of ordei — 1 in u. Equation(19g then implies
fers. that the wavel , itself dies off(as~u, generically towards

In Appendix A we show that a solutioW, to Eq.(17), retarded timeu=0. Exceptional is thd =0 mode of the
subject to both the initial conditiond8) and the boundary wave, which vanishes right after the initial pulse “ceases”
condition atr =0, is unique This solution reads on the initial ray(that is, it vanishes identically at=u,).

“In this respect, the iterative decomposition is actually “an expan- °In the scalar model, the monopole mode is radiative as any other
sion of Schwarzschild spacetime about Minkowski spacetime.” mode.
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r=0[ A

u

N

FIG. 3. The Green’s function for a given source 2-sphere at
(u’,v"). G differs from zero only in region {the shadowed arg¢a
It vanishes in region II.

FIG. 2. The evolution of, (representing the scalar wave in We(u)=gy(u), (25
Minkowski spacetimp For a compact initial pulse “turned on”
during retarded times,<u<u;<0, the support of'4(u) is con-  in which ¥ (u) stands for¥,(v—=). Now, the fact that
fined touy<u<0 (or ug<u<u, for I=0). The region in which g,(u) is compact with respect to retarded time means that
W, has a non-zero amplitudéor 1=1) is represented by the shad- any of its derivatives is compact as well. We thus find that
owed area in this conformal diagram. thel integrals @)1, ..., (¥5)("), carried out over all
values ofu at null infinity, all vanish
In the later zone of spacetime>0, the only solution for
¥, satisfying botA ¥o(u=0)=0 and¥,(r, =0)=0 is the (P)"M=g{M|*_ =0 (1=ns<l). (26)
trivial null solution(19b) (see Fig. 2 The uniqueness of this
solution is guaranteed by virtue of the discussion in AppenThis feature shall appear to have an important impact on the
dix A. form of the inverse power-law behavior of the scalar wave at
We can now unify both equatior{¢9) by defining late time.
Obviously, since¥ vanishes identically ai>0, it does
go(u>0)=0. (24) ot contribqte to the Iatg time_radigtion. Rathgr, it serves as a
source to higher terms in our iterative expansion, as we show

. . . , below.
It is also convenient to defingo(u<0)=0, which makes

go(u) a function of compact support betwearuy, andu

=0. Then, Eq.199 suffices to describe the wawk, any-

where. In order to calculate the next terms in the iterative expan-
We conclude that for any mode of the scalar radiation, theijon [that is to obtain solutions to the hierarchy of inhomo-

evolution of ¥y is “cut off” not later than atu=0. This  geneous equationd4) for N=1], we shall use the standard

somewhat surprising feature of the scattering off the purel\Green’s function approach. To that end, we first need to ob-

centrifugal potential originates, in the+ll representation, tain the Green’s function corresponding to the operator

from a destructive interference between ingoing and outgoy g, + V. This is the purpose of this section.

ing wave fronts at the origim, =0 (see Appendix A for The (retarded Green’s functionG(u,v;u’,v") shall be

detail9. This may be more easily understood in the corre-gefined as a solution of the equation

sponding 31 picture, where compactness of the initial pulse

directly leads to compactness of the wave fronts. The com- G+ VuG=68(u—u')s(v—v"), (27)

pact(in terms of retarded timeaegion in which\W survives ’

is represented by the dark-colored area in the diagram of Figubject to the causality conditioB=0 outside the future

V. CONSTRUCTION OF THE GREEN'S FUNCTION

2. _ . light cone of the delta source point at’(v’). In the sequel
Finally, we emphasize one further feature¥§. By Eq. it will become evident that this condition, together with an
(199, we haveat null-infinity, appropriate boundary condition, specify a unique solution for

To construct this solution we consider separately the two
SHere we assert that the waw, is continuous through the ray distinct regions of spacetime indicated in Fig. 3, which are
u=0. For, as can be easily verified, a discontinuity along this raydefined with respect to a given source pdirgpresenting a
must result in a violation of either the field equation or the boundarysource 2-sphere in-81 dimension} at a certain location
condition. The continuity of the wave is also reasonable from the(u’,v"). These arél) the region inside the future light cone
physical point of view. of (u’,v’) not causally influenced by the origithat isv
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=p’,u’'<u<v’) and (ll) the region inside the future light
cone of @’',v’) which is causally influenced by the origin
(thatisu>v').

First consider the Green'’s function in region |. We impose
causality by writing

G=Go(u—u’) 8(v—v"), (28)

whereG is a solution to the homogeneous equati@m) at
u>u’ andv>v’', and 6 is the standard step function. By
analogy to Eq(19a we then have the solution

(n)
g (U)
G—I—n’ (29 FIG. 4. The Green’s function for a given evaluation point at
(v—u) (u,v). The waveW at that point is influenced only by \_;
sources inside the shadowed area.

|
G(u,w;u’,v')=2>, Al
n=0

in which the coefﬁcienta?;\'n are those given by Eq20), and

where the functiogg(u;u’,v’) is yet to be determinedAl- | ion in region I, is found by Eqg29) and(31) to be unity.

ternatively, we could have expressed this solution in terms Ofeyertheless, the boundary condition for the various func-

a functionhg(—v) instead ofg(u). Of course, the unique onsy s still satisfied at all values di, as will become

solution for G, to be derived below, would have been the ;jaar |ater.

same] _ _ In Appendix A we show that, with the above boundary
Inserting Eq(28) into Eq.(27), we find that we must have  congition imposed, the only solution to EQ7) in region I

is the null solution, namelB(u>v')=0. We conclude that

G(u=u")=G(v=0v")=1. 30 the Green’s function is given by
With Eq. (29), the equalityg(v=v’)=1 takes the form of | M)y
Eqg. (21), in which we first make the replacementg G(u,v:u’ U')IE Al w
—gg,Uu—(u—v’) andI'(u)—1. Consequently, we find by Y Ai=o " (p—u)!n

Eq. (22) that (in region ) X B(0—0") BU—u") B0’ — 1), (35

1 ol u—yp’ I1+1
ge(u;u’,v’)= =11 f ( - ,) (u—u"'~tdu’. where the functioryg is the one specified in E433).”
wuTo In Fig. 3 we have indicated the region of spacetime to
(3D which the Green’s functio®(u,v;,u’,v") carries the influ-
To calculate the integral we make use of the formula ~ €nce of a given source point located at ¢'). In practice,
however, we shall be interested in calculating the functions
(X—Xq)" N1 nl(n,—j—2)1  (x—xp)"~! WPy(u,v) (for N=1) at a certain evaluation point(v).
This will involve integration over all point sourcesi(v').
The region in which sources influence the behavior of the
wave at a given evaluation pointi{u) is indicated in Fig. 4.

m X_—J—=o(n1—j)!(n2—1)! (X—Xz)n27j71,
(32

which is valid for any two natural numbersg andn, satis-

fying n,=n;+2. (We shall need this integral several more VI. CALCULATION OF W, AT NULL INFINITY
times in the sequelWith some additional algebraic manipu- ] ) ] ]
lations we can then finally obtain We have seen that the first element of our iterative series,

namely¥,, does not contribute to the overall late time ra-
' diation. Rather, it serves as a source to higher terms in the
(33)  series. The first contribution to the late time radiation comes
from ¥,. In what follows we shall give a detailed calcula-
tion of ¥, . Specifically, we will obtain an analytic expres-
sion for¥; at null-infinity, evaluated to the leading order in
M/u. The result will be highly significant, since this term

1

ge(Uu" 0" )=y v _ww-y)

(v'—u')

It is easy to verify that with this result, we have al&qu
=u’')=1, as necessary.
Next, consider region Il, where each of the functiohg
is subject to the boundary conditichy(r, =0)=0. We im-
pose this condition by requiring that the Green’s function
connecting any source point to the origin should vanish: "Note that the Green'’s function suffers a discontinuity along the
outgoing rayu=v'. This discontinuity, which is of order unity,
G(r,=0;u’,v")=0. (39 originates at the delta source point’(v’) and travels along the
ingoing rayv =v'. When this discontinuity encounters the origin, it
Note that this boundary condition fails to be valid at theis reflected back along=v'. Some subtleties related to the appear-
single pointu=v=v’', where its value, dictated by the evo- ance of this discontinuity are discussed in Appendix A.

044016-7



LEOR BARACK PHYSICAL REVIEW D 59 044016

(9'
G(u,v—»;u',v’")=—[gs(u;u’,v")], (38)
Jau

with only then=1I term surviving in Eq(35), and whergyg
is given by Eq.(33).

We then notice that thederivative ofgg with respect to
u can be taken out of the double integral in E§7). The
resulting surface terms all vanish, due to the factaus (
—u’) and @' —u)' appearing in the numerator of; [see
Eq. (39)]. Therefore, in analogy to Eq25), we can now
have

FIG. 5. Region wherel, sources affectV; at null infinity gl
(indicated by the intersection of the two dark colored areids¥; Vi(u)=—[gr(w], (39
is evaluated at late retarded timest M), then effective sources are au

confined to large distances’&M). )
where we define

will appear to be the dominant constituent of the overall
wave ¥ at null infinity. We shall discuss this issue later, g1(u,v)
when we analyze the higheNE&2) terms of the iterative u v
expansion_ :_f dU,f dov’ gG(U;U,,U,)ﬁv(U,,U,)\Po(ul,l),),
For ¥, we have, by definition, Ho !
(40)

Wi+ VoW1 =—(8V)¥o, B and where¥ 7 andg; stand for the value of these functions
at null infinity (v—). It would hence be sufficient to cal-
with the initial conditions¥,(u=ug)=¥,(v=0)=0, and culateg; in order to immediately obtai¥; .

the boundary conditiod 1(r, =0)=0. The functionsV/y(r) To allow explicit integration in Eq(40), we must first
and 8V(r) were given in Eqs(11) and(12), respectively. express the functiodV(r) in terms of the null coordinates.
The solution can be formally written as This cannot be done explicitly outside the shell, since the

functionr (r,) is implicit atr >R. However, in terms of the
M/r, expansion we can writ@ecalling that the paramet&

u v .
\Ifl(u,v)=—f du’f dv’ G(u,v;u’,v") is of orderM)
Ug u
M2(InT,)?
(%) ) b

*

X(SV(U’,U’)\PO(UV,UI) (37) 5V(r*>rR):a+b|n2r*+
3
r

*

[with Wo(v'<0)=0 understool] whereG is the Green’s _

function in Minkowski spacetime, given in E¢35). This  wherer, =r, /(R—2M),a is some constanidepending on
form manifestly admits the above initial conditions. Also, the R andM), and

boundary condition is clearly satisfied, as necessary. Notice

that although Eq(34) fails to hold atu=v=v’, still the b=8MI(l1+1). (42)
waveV ,; vanishes at that poifibecause the’ integration in
Eq. (37) has no support in this occasipn Throughout the rest of this paper, a tilde shall always indi-

The region of integration in Eq37), for a given evalua- cate the ratio of that quantity te—2M.
tion point (u,v), is represented by the rectangle shown in Note that inside the shell we haw/=0 by definition,
Fig. 4. Sources outside this rectangle do not influence thand so the region <r, (R)=Rf(R) %2 is automatically
behavior of¥, at (u,v). In addition, we have found previ- excluded from the domain of integration in E40).
ously that the support ¥ is confined to retarded times The various terms in th#/r, expansion of6V contrib-
ug<u<0. Hence, effective sources W, are located only at ute toV, in an additive wayvia Eq. (40)]. These contribu-
the region indicated in Fig. 5 by the intersection of the twotions may be, in principle, calculated for each of the terms
shadowed areas. We thus observe that when evaluated at l&eparately. However, the calculation to follow suggests that
retarded timeu, ¥, is influenced only by sources at large to the leading order iM/u, it is only the leading order of
radii. As u—oo, it is only the asymptotically far region of &V in M/r, which contributes tol; at null infinity at late

spacetime that affects the behaviordi . time . We shall therefore focus now on the contribution com-
We shall now evaluate Eq37), in order to yield an ana- ing from this leading order.
lytic expression for¥; at null infinity, that is in the limitv With the explicit form ofgg and ¥, and takingsV to

—o0, In this limit, the Green'’s function reduces to the form the leading order iM/r, , Eq. (40) reads, at null infinity,
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1. u where ¥ (=lim._,, d¥/de. Comparison of Eq(46) with
QT(U)Z—FZ ALI du’gg”(u’) the wave equatior{36) for ¥'; shows that¥| should be
o o proportional toW¥, calculated With5V~r;3. (Both func-

= (' =w(u-u") tions ', and¥| are subject to the same initial conditions:
x L dv W on the initial surfaces we have, by definitioli; =0 and also

(=0, since the initial conditions chosen fobg are
X[a+bIn(v'—u")]6[r. —r (R)], (43 e-independent. Now, it is not difficult to verify thatW¥
vanishes identically ati=0 (as does¥,).® Therefore the
where the fact thaV=0 inside the shell accounts for the contribution to; due to scattering off the, * potential
step function appearing in the integrand_ must vanish identically an=0, as demonstrated above for

To proceed, we discuss separately the case8 andl W7 by explicit calculation.
=1. First, considethe case ¥1. For these modes we Next, we have to consider contributions ¥; coming
show that the ‘r;3 potential” source(i.e. the one propor- from scattering off the “logarithmic” potentiafi.e. contri-
tional to a) contributes nothing t@; at u=0. An analytic  butions to the integral in Eq43) due to terms proportional
expression for the contribution coming from the “logarith- to b]. The details of this calculation are left to Appendix B,
mic potential” source(the one proportional tb) shall then ~Where we obtain the simple result
be derived.

To show that the contribution from scattering off ﬂfga?’ . 0 gg(u’)
potential vanishegin the caseé=1), consider the term in g;(u)=-2M '
Eq. (43) proportional toa. Integrating ovew ', with the help
of Eq. (32), this term yields

(47)

Uo(U_U,)2

The case+0: The monopole case is especially simple to
| . handle, as in this case no logarithmic terms are involved in
[ e\ A= 2 () the calculationthe coefficientb in Eqg. (41) vanishe$ and
ango anuodu (U= U™ "go (U, “49 the Green’s function is simply unity. Fér=0 we have no
summation oven in Eqg. (43), and havea=4M. This equa-
with a vanishing contribution from the upper boundary of thetion then reads
v'-integration, and where only thie=1 term has survived in

Eq. (32). The coefficientd! are given by 0 o u’
" g‘f(u)=—4Mf du’f dv'L)s (for 1 =0),
Uop u (v'—u")

(45) (48)

| I-n+1
B”_n!(ZI—n+1)(2I—n+2)'
which directly leads to Eq47). Therefore Eq(47) is correct

We now observe that in E¢44) all terms corresponding for any of the modes(Note the interesting result thaf;
to 2<n=lI vanish independently fou=0, sincegy(u) is  depends on only through the explicit form ofj,.)
compact. This can be verified by integrating each of the Thus far we were approximating the potentil by its
terms in the sum by parts— 2 successive times with respect larger, form, indicated in Eq(41). In principle, to obtain
tou’, and then using Eq(26) to find that all resulting sur- the correct expression fog;, the complete potentiabV
face terms vanish. Moreover, one also finds that the tw&hould be considered. Each of the terms in Mhe , expan-
remaining terms of Eq(44), corresponding tm=0 andn  sjon of the potentiabV contributes additively as a source to
=1,I add to zero. This is easily shown by noticing tI%t g,(u). These terms are all proportional to;kz(m’l?*)kl,
=B, foranyl=1. _ _ wherek; andk, are natural numbers, satisfyiig=3 and

We conclude that all terms proportional &in Eq. (43 O<k,<k,—2. Above we have given a complete analysis
vanish(for u=0), and thus that scattering off thg” poten-  ¢oncerning the leading contribution, namely the one corre-
tial does not affect the late time behavior of el modes  sponding tok,=3. We can show, following a completely
at null-infinity. This seemingly odd feature becomes clear byanajogous analytic treatment, that the contribution from the

the fOllOWing Simple argument. Consider the SOIUtm@ to above genera' term of théV expansion(with k2>3) is
the wave equatioil7), in which we take the potential to be dominated at late retarded time by

VE=I1(1+1)/4(r, +€)2. In addition, we take¥§ to satisfy

the same initial conditions a&,, and the boundary condi- o Ik (G—0")

tion ¥4(r, =e€)=0. Clearly, we havel;(e—0)="V,. Dif- g‘f(u;kl,kz)ochfzj go(u') ————du’". (49
ferentiating the wave equation far§ with respect toe and to (u—u"*

taking the limite—0, we obtain

I(1+1) 8A straightforward calculation shows thdt§ dies off atu>2e as
VoutVolo=—"—7 Yo, (46)  ~ex{—u/(2e)]. This implies the vanishing oW §/de at u=0 in
' 21y the limit e—0.
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(Note that thek,=3 case is special, in that in this case thereradii, where the curvature is large. In this respect, our itera-
is no logarithmic dependence involved in the resulting formtive scheme is no exception. However, our metdodspro-

of g7.) We thus conclude that omitting the contributions
from terms other than the leading termdW has no effect on
g7 (u) to the leading order itM/u and inug/u.

Hence, by virtue of Eq(47) we obtain, to the leading
order inM/u and inug/u,

g5 (u>ug)=—2Mlg u? (50)
in which we have defined
O + oo
J go(U’)dU’=J go(u’)du'=l,. (51
Uo —®

[The first equality is valid in view of the compactness of
do(u).]

By Eq. (39) we can now finally obtainto the leading
order inM/u and inug/u)

PI(u>ug)=2(—1)""11+1)IMly, u™'"2 (52

Note that initial data information is manifested at null infin-
ity at late time only through the single integigl. Also, note
that in our approximation there is no reference whatsoever i
the form of ¥, to the radiusR of the shell.

Both the power index of the radiation tail and the ampli-

tude coefficient deduced above are the same as those ob-

tained by Gundlach, Price and PulliGPP [Egs.(11) and
(18) in [3]] for the late time behavior of the “complete”
scalar wave at null-infinity’*, using a different approach.
Yet, our result regards only one element of the ‘complete
wave, namely¥?. To reveal the overall behavior of the

vide a formal means to quantitatively explore this aspect of
the analysis, which was somewhat overlooked in several pre-
vious works. We shall further refer to this issue later in this
paper.

The expression we obtained above W [Eq. (52)] cor-
responds to the case of an initial pulse which is compact with
respect to retarded time This pulse represents a wide fam-
ily of physically reasonable initial data. Yet another realistic
initial setup involves the presence of a static field outside
some radiugsay, the surface of a spherically collapsing ob-
ject) up to some moment of timgsay, the onset of collapse
The corresponding late time behavior Bf; at null infinity
can be easily inferred from our previous results, as follows.

The static flat-spacetime solution to the Klein-Gordon
equation(17), regular at infinity, read¥ 3= ur ~', whereu
is a constant representing the strength of the initial static
field. The correspondingg function, namely the solution to
Eq. (22) with T'(u)=¥%(v =0), isgg®=2'T11/(21)! . In
order to calculatél; in this case, we need only to substitute
for go in Eq. (47), while changing the range of integration to
S du’,u; being some retarded time after the initial pulse
geases on the initial ingoing ray. Doing so, we find, to the
leading order inM/u and inu; /u,

gr(u)[staf=—2""M[11/(2)! Juu? (53)
which leads to
P taf = —2'+1EM -1=1 (54

wave we must analyze each of the terms in the iterative ) o _ ) _
scheme, then sum up their contributions. Thus, in order fop his result is again identical with the one derived by GPP

our result to coincide with that of GP™; and the higher
terms in our expansion “must” be negligible at null-infinity.
In the following section we argue that this, however, is

[Egs.(12) and(18) in [3]] for static initial data.

VII. HIGHER TERMS OF THE EXPANSION

not the case in general. We will show that when consid-

ering generic initial date, one finds additional non-negli-
gible contributions tow* at late time. These contribu-
tions, coming fromV¥,,¥,, ..., shall have the form
M2ugtu™'"2,M3u,%u™"' 72, etc. In this respect, the result of
GPP is not strictly correct: the amplitude calculated 3
should fail to represent the amplitude #f* for a generic

We now turn to evaluate the higher term$=2) of the
iterative expansion, each defined by E¢s4)—(16). These
terms may be formally constructed in an inductive way by
means of the “flat space” Green’s function derived in Sec.
V:

initial pulse. However, as we indicate later, the result of
GPP, as well as the form oF; calculated above, approxi-

mates the ‘“real” behavior of the scalar wave in the case
where the initial compact pulse is confined to large radii,

away from the highly curved region of spacetime. Math'Manifestly, this solution satisfies the initial and boundary

u v
\PN(u,v)=—J’ du’f dv'G(u,v;u’,v’")
Up u

X V(U v )Wy y(U'0"). (55)

ematically speaking, it will be argued that the equality
=T holds at null-infinity to only the leading order M/ug.
It is interesting to mention that other previous attempts t

conditions specified in Eq$15) and (16), respectively.
In analogy to the treatment &f ; [Eqgs.(39),(40)], we can
rite

calculate the late-time behavior of scalar waves in Schwarzs-

child spacetim¢2,6,9,1Q, all yielded an expression propor-
tional to the masdM, omitting possible contributions from

J
(56)

Pvy(u,v)=— u,v)],
higher powers oM. To the best of our knowledge, no ana- nt au!' Lan ]

Iytic method has been proposed to enable calculation of the
late time radiation resulting from initial date located at smallin which

044016-10



LATE TIME DYNAMICS OF SCALAR ... . . ... PHYSICAL REVIEW D59 044016

! ! v ! ! ! u,=u
gN(u,v)=—J du f dv'gg(usu’,v’) 7
Ug u ‘ 8
X V(U0 )W y_qy(U' ") (57) - II C,T* 111 J
[with ¥y_, (v’ <0)=0 for anyN=1]. . B
With the explicit form ofgg and 6V, and following the w=u/2
same integration-by-parts procedure as in deriving (B, |AY4
the last equation can be put into the form u . "
‘ 1w=(Mu)
I ' | -k
u v (v '=u)(u—u") v
uv)= du’J dv’
gN( U) I(ZO fuo u v (vr_u/)2|7k+3 I
X[+ biIn(v’ =1")Jgn-1(u’,v") W=,
x0r.—r, (R, (58) FIG. 6. Range of integration foF5(u). The contribution from
each of the regions I1-1V, indicated in this sketch, is evaluated in the

. . . XL
in which a} andb}, are constant coefficients. text

We observe that the analysis #fy for N=2 involves _ . . .
two additional technical difficulties, which were not presentWhereC is a positive constant. To prove th,'s’ bet 1 in Eq.
in the calculation of¥’, . First, the source wave is no longer (°8): with the replacementsu(v)—(u’,v’) and U',0’)
compact with respect to retarded time, but rather it extends” (U"+v ),”and with theu” integration cut off atu”=0
infinitely to the future. This means that? will be influ-  [SiNc€Jo(u”>0)=0]. Then use the fact that, for any<(k
enced by sources located at any value,afiot only at null =
infinity. (However, as we discuss later, the smallources
seem not to affect the asymptotic late time behavior at null " =u)'(u' -u)'"*  @-u)  (-u")
infinity.) The second technical difficulty is the fact that for (v"—u")2—Kk+3 = (ur_un)l+3g (uH'+3 "’
N=2, the source functionsgy_q(u’,v’) are also (60)
v'-dependent. Thus, in order to calculalg for N=2, one
must first be provided with the form a@fy_; atanyvalue of
v, hot merely at null infinity.

To proceed, we shall first refer specifically to the chke
=2, in order to demonstrate th#te dominant contribution g DV
to Wy, at late time comes fron¥_; sources at null infinity Now, to set an upper bound to the contribution from re-
Sources at smali-values do not affect the behavior of the 910N Il to W5, consider Eq(‘Z’S) for N=2, with the double
wave at null infinity to the leading order i /u. Under this  integral replaced by ,du’["dv" (see Fig. 6 Using the
assumption, we shall then calculate this dominant contribuinequality (59), together with ¢—u’)<(v’'—u’) and @’
tion, to obtain the late time decay pattern of each of the—U)<(v'—u’), one finds that
functions ¥ at null infinity. Numerical support shall be
presented.

where the first inequality arises sineé=u’, and the second
is due to the fact that”<0. The inequality59) then follows

from (v”—U")<(v’ —U,) and after integrating ovar”.

u 2u (v/_ur)|72
|g°2°,|(u)|$ClM2InZaf du’ dv’—I
u/2 maxu,u’ +2R} (U’) +3
A. Calculation of ¥,

23112,
To analyze Eq(58) for N=2, we separate the domain of <CM7u"In"u, (61)

integration into four regions, labeled I-1V, as indicated in

Fig. 6. In what follows we show that the dominant contribu- in which g3, (u) stands for the contribution from region Il to
tion to W;(u>M) comes only from sources in region |, g3, and whereC, andC, are positive constants.

which is a distantlarger valug region of spacetime. We Next, consider region Ill. The contributiayy,, (u) arises
shall thus call this zone the “main” region of integration. An fom the integrationf!,du’ [5,dv’. The upper bound we
upper bound will be set on the contribution from each of thep5ye set above og,(u’,v'), Eq.(59), is no longer efficient
other regions, II-1V, to verify their relative negligibility. at larger values. Here, we use a second upper bound, which

First, consider region Il, which is covered hy<v' may be is easily derived from E¢9):
<2u and u/2<u’=<u, with the sphere’<R excluded. In

this region of integration, the following upper bound is ap-

plicable to the source functiogy(u’,v’): lg1(u’,v")[<C3M(u")"nv’, (62
1y I+1
lga(u’,v’)|<CM ( u| )3 In('—ly), (59  WhereCsis yetanother positive constant. Provided with this
(unH)' upper bound, we observe that
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In%

<C:M2u~3%In%u (63

with C, andCs being positive constants.
We proceed by evaluating the contributigh,, (u) from
region IV. Using again the inequalit}62), we find that

In%y
(u/)Z(U/_ur)S
(64)

u/2 o
|9§|V(U)|$C6M2J_dulf do’

JuM u
<C,M%u~¥4n?u

whereCg and C; are still other positive constants.

Finally, we turn to calculate the contribution 35 (u)
due to sources in region I, that is a§<u’<+Mu. To that
end we write the source functiayy in the form

gu(u’,v")=g7(u)+A(u'v"), (65)

in which A;(u’,v") vanishes at null-infinity. In Appendix C

we show that the contribution @, due to thisv'-dependent

part of g, is bounded from above at large retarded time by o I -infinity

|g5a(u)|<CgM?u~3In?u (66)

whereCg is a positive constant.
It remains to calculate the contribution @5, due to

g7 (u). With the source wave being a function of retarded
time only, the analysis is then exactly the same as the above

analysis for¥7. In analogy to Eq(50), we thus immedi-
ately obtain, to the leading order M/u and inug/u,

gz =—2MI; u7? (67)

in which we have defined

f VMu
Ug

The first equality, accurate to the leading orderNhu,

QT(U')dU'Zf_ gr(u")du’=l;. (68)

stems from the fact that the integrand is convergent at

—o (sinceg;~u~?2 at largeu).

Collecting the above resulf€Egs. (61), (63), (64), (66)
and(67)] we conclude the following(i) The dominant con-
tribution to g5 (u>M) [hence also to¥5(u>M)] is only
due to sources located in the “main” region, namelyrat
>M; sources at smallvalues have a negligible effect g

at late time.(ii) To calculate the dominant contribution to

g5(u>M), one is allowed to replacg,(u’,v’) in Eq. (58
by g7 (u). This does not affecg; to the leading order in
M/u.

Therefore, Eq(67) approximates the “overall” late time

behavior ofg, at null infinity. For the scalar wave itself we

shall thus have, by Eq56),

Prusm=2(-1)'"" 1+D)!MI; u'"2, (89

PHYSICAL REVIEW D 59 044016

which is analogous to Ed52).

To summarize, we have found th#t; poses the same
late time behavior a®¥7, namely au™'~2 inverse power-
law decay(for the compact initial data setupro find out the
relative amplitudes of these two terms at late time, one must
calculate the ratio of their coefficientk, /1. This will be
done in Sec. VI, after we first analyze the behavior of the
general term¥ of the iterative expansion.

B. Nth term of the iterative expansion

We would now like to understand the late time behavior
of each of the higher order term&N£&3) of the iterative
expansion. In principle, this may be done in an inductive
way, using Eq{(58). We shall proceed bgssuminghat, as
was demonstrated above fér; and¥,, the dominant con-
tribution to Wy at late time(for any N=1) is only due to
sources at null-infinity. Phrased differently, we adopt the as-
sumption thatlate time radiation at null-infinity originates
predominantly from scattering off spacetime curvature at
null-infinity. It means, in particular, that it is only the asymp-
totically far region of spacetime whose structure affects the
asymptotic late-time radiation at null infinity.

Accordingly, in order to obtain the late time form dfy
we will use Eq(58) with the source function
gn-1(u’,v") replaced bygy_,(u’), and with the upper
limit of the u’-integration set tau’ =uM. This will pre-
sumably provide the correct form af ((u>M) to leading
order inM/u, as was explicitly indicated in the cabde=2.
The treatment of th&=3 cases is then fully analogous to
that of ¥,, and the generalization of E¢7) is straightfor-

vard:

gn(U>M)=—2MIy_; u~?, (70
in which we define
|N—1Ef_ gn-1(u")du’, (71)

and which is accurate to leading orderNt/u and inug/u.
By Eq. (56) this finally leads to

Viusm)=2(-1)"*1+1)MIy_; u'"2, (72
which generalizes Eq$52) and (69).

We conclude that each of the ternkg~; in the iterative
series has a similar late time behavior at null infinity, that is
a u~'"? inverse-power law decay. Numerical experiments
firmly support this observation, as demonstrated in Fig. 7.
Consequently, one finds that, in general, to obtain the correct
overall amplitude of the scalar wave at null infinigven
merely to the leading order iNl/u), one must sum all con-
tributions from the various term% -,. If this sum turns
ou'f t20 converge, then the overall power-law should be
u .

A considerable simplification is achieved when the case
|ug/>M is considered. This corresponds to an initial setup in
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10° : : — — , VIIl. CONVERGENCE OF THE ITERATIVE EXPANSION

To discuss the convergence properties of the iterative ex-
pansion, we shall concentrate on the cagg>M. In what
follows we argue that the ratio of any two successive terms
of the iterative expansion, when evaluated at null infinity at
u>M, is given to the leading order iM/u, by

©

N+1

oo

N

M |ug| ~In[uy| (73

(for N=1) with a proportion factor depending dt Below
we present numerical results in firm support of this relation.
But first, we show that the validity of the rati@3) is also
suggested using analytic considerations.

Throughout the following discussion we shall refer to the
limit R/ug— 0 for simplicity. To that end we need to assume
that the limit (R/u,—0) exists, and that the functions
W are each independent Bfto leading order itM/u and in
M/uq (this is supported by numerical examination

To evaluate the ratioV /¥y we shall have to figure
out how the various function? scale with respect to the
parameterfug|. To that end we first show that each of the
functionsgy(u,v) can be written in the form

gn(u,0)=ug 1 N(In[ug))Nf(u,v), (74)

where fy are certain functions of only the dimensionless

variablesu=u/uy, andv=wv/uy. This form, which is valid
globally (for any values ofu and v) to leading order in
M/uq, may be verified using mathematical induction: By Eq.
(22) we learn that Eq(74) holds for g,.° Following the
inductive procedure, we now assume that Eff) is valid
for a certain value oN. We then obtain, fogy, ; [using Eqg.
(58) with x=u'/uy andy=v'/ug],

O+ 1(U,v)=ug > N(In[ug)™
I : o | ro— STk
i N % u, v (y—u)(u=x)
W0 W Xk§=:0 fl dxfmax(o,)dy (y—x)2 k+3
u/M
X{ag+ bIn[ug(y =Xx) THn(X,Y). (79

FIG. 7. Late time tails of the iterative expansion terms. Pre-
sented on a log-log scale are numerical results obtained foi, For |ug|>M this may be writterineglecting terms which are
and W5 at v=8000M (approximating null infinity, for the | smaller by~|n|l~.| ) as
=0,1,2 modes. Compact initial data for the propagation have been 0
specified between=—5M andu=—10M, and the radius of the |2 N o= \N4+1 _
shell has been set tB=3M. The results demonstrate the' 2 On+ (U o) =ug = (InfugDN My a(u),  (76)
late time decay rate predicted by the analytic calculation.

where we have defined

which the pulse is specified where spacetime is approxi-
mately flat (far outside the highly curved regipnin this
case, analytic arguments as well as numerical experimentssrq eypiore the scaling afi, with respect tauy, it is convenient
both to be presented below, suggest tfiathe iterative se- (5 gliminate any scale parameters which may be characteristic of the
ries converges at null infinity at late time and tHa) the  jnitial data functionT'(u) by referring specifically to the case
dominating term of the expansion thereWs, which well  1(u)=5(u—u,). Provided that any possible scale characteristic of
approximates the “complete” wav&. (The contribution  the initial date is much smaller thami|, this cannot limit the
from the rest of the terms is smaller by orddvu,.) generality of our discussion.
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I — — . Iy I—k
_ u. (o (u=y)(u=x)
fN+1(UaU)Ek§=:O kaI dXJma)(o,u)dy (y—x)2-k+3
(77)

Up= -20M

Thus, by induction, Eq(74) holds.
By virtue of Egs.(74) and (70) we then find thatfor N
=1)

In—2Ug™ ™ N(InfughN, (78)

which by Egq. (72) describes the scaling of the functions
T (u>M) with respect taug. The ratio(73) then follows
immediately[We comment that for the=0 mode, no loga-
rithmic factor is expected to occur either in E@3) or in Eq.
(78).]

Equation(73) suggests that thiate time behavior of the
scalar wave at null infinity is dominated b¥7, provided
that |ug|>M. More accurately, it indicates that to the lead-
ing order inM/u, in ug/u and inM/ugy we have

PP = (79

The significance of this result stems from the fact that we

have a simple analytic expression & at late time.
Numerical investigation, regarding the behavior of the

functions W as related to the value afy, provides firm

(though qualitativi support to both equatior@3) and(79). 10 10 10 M 10 10

Examples of these numerical results are presented in Figs. 8, Y

9, and 10. ; ;
Note that Eq.(73) by itself does not tell us whether the 107} U= —200M

sum of the iterative expansion is convergent, as we do not
know the form of the N-dependentproportion factor ap-
pearing in this expression. However, numerical experiments
strongly suggest that the expansidoesindeed converge,
provided thafug|/M is large enough. Also, the rate of con-
vergence seems to increase as we falg'M to be larger.
These features are also apparent in Figs. 8—10.

The amplitude of the various functionky may change
its sign during the early stage of evolutidgas apparent in
Figs. 7 and @ Our numerical experiments suggest that this
kind of sign-changing occurs at larger and larger values of . . . .
as N and ug increase, “delaying” the formation of power 10° 10" 102 10° 10°
law tails to later and later times. We could not rule out the u/M
(somewhat botheringpossibility that for any value ofi and
Ug, there will exist soméNg such that for anjN=N, sign-
changing would occur at a retarded time greater tham
ngélirﬁgsted é’;r(?%?]am;fn‘;ct’”:F')‘:)?;aftc')?ﬁpﬁcﬁgzetri‘ﬁe%gis mating null infinity), for the casesi,=—20M,—50M,—200M.

- NG ' ->> .Also shown for referencg¢as the dashed linds the “complete”
nume_rlcal examination _shows thaft the convergence itself I§\/ave\lf, obtained by a direct numerical solution of the wave equa-
not ghsturbed by such S|gn_-cha.ng_|ng. . tion (7). The results support the observation that the ratio

Finally, a word of caution is in place: In our analytic |y, .| decreases ali|/M is chosen larger, and that for
calculations we were taking into account only the contribu-y /M large enoughi'? becomes the dominant component of the
tions to the functionsWy due to scattering off the “complete” scalar waveW, as suggested by analytic consider-
“r, %Inr,” potential, which is the asymptotic form afV at  ations. Note the independence of the amplitudaiigfin the value
large distance. We have argued previously that contributionsf u, at late time, which agrees with the scaling r(8) for the
due to the other terms in thd/r, expansion ofsV do not  monopole modéwhere no logarithmic factor is involved

FIG. 8. Relative amplitudes of the functiods, at null infinity,
for various values of the parametgy. Shown are numerical results
describing thd =0 mode of¥;, ¥, and ¥, atv=10°M (approxi-
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0.98 0.5 1

1.5
u/M %10

FIG. 10. Indications for convergence of the iterative scheme.
Presentedon a linear scaleare the ratios(a ¥,/¥, (b) (¥,
+W¥,) /¥, and(c) (V,+W,+W¥3)/¥ for |=0 and forl =1. Other
parameters arB=5M,u,=—200M andv =10°M (approximating
null infinity). The results demonstrate the convergence of the itera-
tive expansion for largéu,|/M values at large retarded time

u/M IX. SUMMARY AND DISCUSSION

FIG. 9. The same as in Fig. 8, this time for the1l mode of the The problem of scalar wave evolution in a curved spheri-
scalar field. The steep decreases in the amplitudegfoccur  cally symmetric spacetime can be formalized mathematically
where this function changes its sigsee the comment in the t¢xt as a two-dimensional initial-value problem, with a non-
In the caseup,=—200M, a “remnant” of such a sign-changing at trivial effective potential. In this paper we incorporated the
u=1000v “postpones” the development of the power-law tail to sjimple shell model in order to demonstrate the applicability,
later times. and explore the features, of a new calculation scheme to

. o o . handle this problem. This new scheme is based on a special
affect the behavpr at null infinity at Iarge' Th|'s, indeed, is perturbative decomposition of the wayéthe iterative ex-
supported numerically, as demonstrated in Fig. 11. Howevehansior ) which, if fact, converts the original homogeneous
such termg(each giving an additive contribution to each of yon_trivial initial-value problem into an infinite hierarchy of
the functionsWy) do affect the exact amplitude of the hnhomogeneous initial-value problems, each having a simple
leading-order tail: For example, these terms give an addiyjinkowski-like effective potential. The resulting  initial-
tional contribution to the amplitude oF;, which (in terms  yajye problems can then be treated analytically in an induc-
of the M/u, expansionis of the same order as the amplitude tive manner, using the Green’s function in Minkowski space-
of ¥3. Therefore, to examine whether the sum of the iteratime.
tive series converges to the actual “complete” walé& (at Unfortunately, we could not give a full analytic treatment
us>M), one must take into account the “complete” potential concerning the convergence properties of our scheme. How-
éV. (This, indeed, was done in obtaining the results pre-ever, some analytic considerations, firmly supported by nu-
sented in Figs. 8—1p. merical analysis, indicated that the role of the “small param-
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1.1 ; ; ; , ; ; goes to infinity. Since long waves coming from large dis-
' ' ' ' ' tance cannot reach the highly curved regithrese waves are
effectively scattered off the potential tail at large distafpces
¢y their evolution takes place in the largeegion of spacetime.
Thus, for a perturbation originating at large distance
(Jug|>M), the late time behavior of the field should depend

b 3 mainly on the structure of spacetime at a large distance; de-
_ | tails of the spacetime curvature at the highly cur(sdallr)
(@) region should be less relevant for this behavior. This may no

longer be true if the initial perturbation is specified at small
r, and thus allowed to evolve through the highly curved re-
gion. Now, the iterative scheme has the mathematical struc-
3 7 s 6 ture of a perturbative expansion, with convergence properties
u/M <10° that depend on how much caly be considered a “small”
o _ L amount. This function gets arbitrarily small agyets arbi-
FIG. 11. Contribution from higher order terms &/ to Wy iS  trarily large, but at small distances it is finite, and not small.
negligible atu>M. This is demonstrated here for the 1 que in However, the above reasoning implies that the fornd\gfat
$e /E,isef;):iM /q?f d :g;(g)zga\;l\i,*Pl?:ﬁ:rea{se ter iczit:}o;,@ small distance seems to be irrelevant to the wave behavior at
1 19 2 , 3 y N . . L. . ..
are those defined with the “complete” potentidy/, and the func- :gtreetlrgii };r:gglﬂje?;ﬁ; thfh:;nIgﬁlo\r,):rgjrrbﬁzgtoggm?:; Zt
tions ¥} are defined withSV taken to leading order iM/r, . g . 0 : g Pp -
physical explanation of our formal result that the effective-

eter” of the iterative expansion is played My/ug, (although ~ Ness of the iterative scheme increases|a$/M is taken
this parameter is not self-manifested in the wave equations!arger. _
It was strongly suggested that the iterative expansioas In this paper we have focused on analyzing the wave at
converge at null infinity, provided that the support of the NUll infinity. The results we obtained have a clear physical
initial data for the wave evolution is confined to large dis- S|gn|f|c_ance with respect to a distant static observer: Along
tances(small M/|u,|). Moreover, our analysis indicated that World-lines of constant we haveAu=At, whereAu and
under the above condition, the late time behavior of theAt are, respectively, the retarded time and tHat-space
“complete” wave is well approximated at null infinity by Static observer's time elapsed since the “main pulse” of ra-
¥,, namely the first element of the expansion manifested afiation had reached the observer. Now, fowery large,
late time. The last result is of special significance, since thenull-infinity” is in fact the region At<r.”Thus, in accor-
late time form of¥; at null infinity can be derived easily, as dance with our results at null '”f'”'tyilfitz timed <At<r
shown in Sec. VI. Hence, fdue|>m our iterative expansion Such an observer observesiax(At) ~ “ tail [or a W
proves to be a simple effective tool for analyzing the late* (At) ™~ “ tail in the case of a static initial setlip _
time behavior of the scalar field at null infinity. There is yet another important outcome from the analysis
Here, it is important to distinguish between the issue ofat null infinity: In the accompanying paper we apply a simple
efficiencyof the scheme to that of itssefulnessThe iterative ~Meéthod to determine the late time behavior of the scalar
scheme can still prove useful even whdr|ug| is too large ~ Wave outside the Schwarzschild black holeaay constant
for the expansion to converge efficientiihat is, for¥* to radlu_s, dowr_1 to thg—) event horizon. This is made possible
be well approximated by mereN/,): In all cases when the only if one is provided with the form of the wave at null

scheme converges, it always predifity Eq. (72)] that the infinity, which shall be calculated in Schwarzschild space-
overall late time tail of%* has the formu~'~2 (for the time using the same iterative scheme developed in the

compact initial setup The convergence may be “efficient” Présent paper. Thus, even though the iterative scheme seems,
(when |uo|/M is large enough allowing one to obtain a N general, not effective at small d_|stances,_ it _st|II constitutes,
simple analytic approximation foF* by calculating¥,, or N our a_pproach, a crucial step in estab_llshmg a complete
else it may be “inefficient,” in which case our scheme still description of the wave behavior at late time. _

provides a simple formal way to calculaf&”, by successive Generally speaking, we may point out the following ad-

applications of the formulé55) (e.g. using numerical meth- vantages Of' the new technique: ' ' _
ods. (i) Most important, the new scheme is the first one di-

rectly extensible to realistic rotating black holes, as shall be
described in17].

(i) The iterative scheme provides a convenient formal
framework for studying the effect of the non-trivial
curvature-induced paft' §V") of the effective potential on

We think the following is a reasonable physical explana-
tion to the formal relation discovered between the smallnes
of the paramete /|uy| (describing the distance at which the
initial perturbation originatgsand the effectiveness of the
iterative expansion. As already argued by Pfigg¢ space-
time curvature at small distances acts agamos}) impen-
etrable potential barrier for the long waves of the scalar field.

These long waves are the ones dominating the late time be-The spacetime regioat<r, for r very large, may be properly
havior of the field(the effective frequency goes to zerotas named(after Leave9]) “the astrophysical zorieof the waves.
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the evolution of the fields. This effect is isolated in our ap-in which the coefficients\}, are those given in E¢20), and
proach by explicitly splitting the wave into its “trivial'(flat ~ whereg(u) and h(v) are (yet) arbitrary functions(In flat
space part Wy and a curvature-induced padt —W¥,, in  spacetime, these two functions describe the outgoing and in-
which each term¥' arises fromN scattering events off the going components of the wave, respectivelywill now be
curvature potentiabV. shown that although the functiom{u) and h(v) are not
(iii ) We already discussed the fact that the iterative serieaniquely determined by the initial and boundary conditions,
can be formally viewed as an expansion of the scalar field inhe wave¥ is unique.
the parameteM/u,y. This feature provides a convenient for-  Consider first the evolution of the wave between retarded
mal way to explore and quantify the dependence of the wavémesu=u, andu=0 (see Fig. 2 for referengeln this re-
behavior on the initial distance of tifeompact perturbation  gion the wave equation possesses no irregular points, and
(an issue somewhat overlooked in previous warks thus the existence and uniqueness of the solutignare
Apparently, the iterative scheme developed in this papeguaranteed relying on standard theorefsee, for example,
can be directly applied to any asymptotically flat spherically[20]). Therefore, the solution stated in E493 is unique at
symmetric spacetimgpossessing an effective potential bar- y<o.
rier for the waves That would basically require only the We thus focus on the regiar=0, where we have to show
modification of the curvature potentiaV to that character- that with the conditions¥,(u=0)=0 and ¥y(r=0) im-
izing the new spacetime under consideration. The results gfosed on the general solutioff1), the trivial solution
our analysis were consistent with the general assumption that ,(u=0)=0 is unique.[Because of the linearity of the
the small distance details of spacetime structure do not affegiave equation, to verify uniqueness it is enough to consider
the behavior of the wave at asymptotically late tiniehis  the case in which the wave vanishes on the initial tay
was demonstrated fob; andW¥, by an explicit calculation. =021 Thus the use of the conditioW ,(u=0)=0 in this
Thus it seems reasonable to assume that the characteristics@fntext is regardless of the fact that the wabg actually
this behavior would be completely determined by merely thg,anishes along the outgoing ray=0.]
larget asymptotic form ofsV. Imposing the condition?,(u=0)=0 on the general so-
In the accompanying paper we use the iterative scheme t@tion (A1) leads to a linear inhomogeneous ordinary equa-

analyze the behavior of scalar waves at null infinity in thetjon for the functiorh(v), analogous to Eq21). By analogy
“Complete Schwarzschild manifold. In this case the detallSto Eq (22) the genera| solution to this equa’uon reads

of the analysis become somewhat complicated by the pres-

ence of the highly curved region near the horizon. Yet, we =(p—p') "1
shall find that at late time the wave behaves essentially the h(v)= 1). 2 Angy"(0) v'*? — v’
same as in the shell model, consistent with the above indica- v (v”)
tions. 2
+ 2 e (A2)
ACKNOWLEDGMENTS n=T+1 N!
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research and for countless helpful discussions. N
1
APPENDIX A: UNIQUENESS OF THE BOUNDARY h(v)=2> mcnv”, (A3)

=0
CONDITION PROBLEM "

The purpose of this appendix is to show that the initialWith its first+1 coefficients given by
value problem for the scalar wave, with a boundary condi- o
tion, as defined in Eq<7), (9) and (10), has a unique solu- (0) for O=n<I. (A4)
tion. (The formal issue of uniqueness is not trivial because of
the divergence of the potential function at the center of sym-
metry in the X1 representationlt will also be verified that
each of the component¥ of our iterative expansion is
uniquely defined.

Next, we require that; should vanish at, =0 (that is
for u=v). By Eq. (Al) this requirement makes the func-
tional equalityg(u)= —h(u) compulsory. Note that this re-
sult accommodates Eq#3),(A4), allowing both conditions
Po(u=0)=0 and ¥y(r, =0)=0 to be satisfied simulta-
neously without forcing the functiorgu) andh(v) to van-

1. Uniqueness ofo ish identically

First, it will be shown that the solution foW (the
“Minkowski-like” first component of the iterative expan-
sion), stated in Eq(19), is unique. To that end we examine

s ; : ;
the most general solution to the wave equatibh, given by For if there exist two solutions at=0, both subject to the same

initial and boundary conditions, then their difference admits the

| g(n)(u)+(_1)nh(n)(v) same wave equation, with zero initial and boundary conditions.
E ' 0 , (A1) Then, showing that the difference is identically zero implies that the
n=0 (v— u)'_” two original solutions must coincide.
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We conclude thatv'y has the form

PM(u)—(—1)"P{"(v)

(v—u)'~"

[
Vo= A, . (AY)
n=0

where P, are polynomials of ordel [the (+1)th through
(21)th powers of the polynomials vanish independently in
the summation, in view of Eq.23)]. Notice that formally,
¥, vanishes along the ray=0 for any polynomialP, what-
soever, as the polynomial coefficiertts are arbitrary in our
construction.

The last remark is important, since it directly implies that
V¥, vanishesaanywhereat u=0. For given a specific value of

retarded timeu>0, we may transform to the new coordinates

x=u—u andy=v —u, in terms of which we have

\PO:E A

P+~ (D)"Y (y+ )

n

n=0 (y=x)'""

| n) _/__a\np(n)
5 a7 (_ 1l>ﬁ. v 6)
n=0 (y=x)

whereP, is still another polynomial of order The last ex-
pression vanishes at=0 (for anyv) regardless of the form
of the polynomial, and thus we find thdt, vanishes also
along the rayju=u. Since the value ofi is arbitrary, we are
led to the conclusion tha¥’, must vanish identically ati
=0. Therefore, the solutiofl9) for ¥ is unique.

2. Unigueness of the functions¥

To show that the function¥, for N=1, are unique, it is
enough to verify that the Green'’s functi@is unique. Then,
all function W are unique by construction.

To discuss the uniqueness of the Green’s function, wi
refer to a source point au(,v'), as sketched in Fig. 3. In

region | (see the figureexistence and uniqueness are guar-

anteed by standard theoreff20]. In region Il the Green'’s
function admits the general for@1), as doW, (both func-

tions obey the same homogeneous field equation in this re

gion). In the expression corresponding to the Green'’s func
tion we shall denote the two functions ofandv by gg(u)
andhg(v) respectively.

The value of the Green'’s function along the outgoing ray

u=v’', dictated by the evolution in region I, is unity. Hence,
if the boundary conditiorG(r, =0)=0 is to be satisfied,

PHYSICAL REVIEW D 59 044016

FIG. 12. Uniqueness of the solution fdf (see explanation in
the tex}.

[analogous to EqA3)], where this time the coefficients,
shall read

-9, Osn=I-1,

—gPw")+1, n=l.

Ch=

(A8)

This cannot be accommodated by the requirement that
hg(u)=—gg(u), necessary for the boundary condition to
hold. Thus the Green’s function cannot be continuous along
u=v'.

Now, the Green’s function can still obey the field equa-
tion atu=v’', provided that the discontinuity along this ray
is constant in magnitude for all>v’. This can be verified
by writing G=GX 8(u—v')+GX #(v' —u), and substitut-
ing into the equation for the Green’s function. One thereby
finds that for this equation to be satisfieduatv’, we must
haveG,,(u—(v’)*)=0, and thusG(u—(v') *)=k, where

%is constant. By analogy to EGA8) we find that in this case

hg)(v’)=—gg)(v’)+k, which implies that the boundary
condition is violated, unlesk=0. Hence, the Green’s func-
tion must “jump” to zero right after retarded time=uv".

_ Then, by the discussion regardifigy,, we conclude that
he only solution to the Green'’s function in region Il, subject
to the boundary condition at the origin and continuous ev-
erywhere except on the ray=v’', is the trivial solution
G(u>v')=0.

i

3. Uniqueness of¥r

then there has to be a discontinuity in the Green'’s function at Now, consider the initial valuéand boundary condition

retarded timeu=v=v"' (the left vertex of the dark-colored
rectangle in Fig. B

problem for the “complete” scalar wave in the shell
model. To verify that a solution is unique, again we analyze

It can be shown that no solution exists for the Green'sihe situation of zero initial datéon u=u, andv =0), show-

function, which is continuous along=v’ (with the single
pointu=v=v"' excluded and, at the same time, satisfies the
boundary condition. For if we assume th@(u—(v’')")
=1, then we shall have the functidry admitting the form

21

1
ho(v)= >, mcn(v—v’)“

n=0

(A7)

ing that in this case the null solution(=0) is unique.

At u<0, the existence and uniquenessiofare assured,
relying on standard theorems. Thus the trivial solutib(u
<0)=0 is unique. Particularly, we find tha¥ vanishes
along the rayju=0.

Now, consider the region=0p <2R, represented in the
diagram of Fig. 12 by the trianglABC. In this portion of
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spacetimgconfined to the flat interior of the sheW obeys
the same equation a¥,, and is subject to the boundary
condition atr, =0 and to the zero initial condition along the
null segmentAB (see the figure By the above discussion
(regarding¥ ) we deduce tha’ must vanish in the portion
ABC. In particular, we find thatV is zero along the null
segmentBC. This, in turn, together with the fact that the
wave vanishes along the r&8D (see figurg implies (again
by standard theoremshat ¥ vanishes anywhere inside the
region represented in Fig. 12 by the rectan@®FC.

PHYSICAL REVIEW D59 044016

n—-2

2, B

 nE(N=2)1(=1)"*T ro go(u’) )
"Hn=j=2)!(n=]) Jug(u—u’)?

b2,

-1 [0 go(u')
4|(| +1) UO(U—U’)z

(B4)

(where the expression given for the sums gvendn is not
too difficult to verify, using simple combinatorial manipula-
tions).

Thereby we have shown that the wave vanishes anywhere The sum of two expressions given in E4B3) and (B4)

between retarded timas=0 andu=2R.
We can now proceed, referring next to the trianGle G

corresponds to the logarithmic part of EB1). We still have
to consider the contribution of the non-logarithmic terms.

(see figurg to show that¥ vanishes also between retarded Integrating these terms by pamstimes with respect ta’

timesu=2R andu=4R. The same procedure may be ap-

plied an arbitrary number of times, showing that the wdve

(with the resulting surface terms again vanishjnge find
that only then=0 andn=1 terms survive, with their sum

must vanish anywhere. Since the wave equation is linear, wgiven by

have thereby shown that the solution f&r (with arbitrary

initial data and zero boundary condition at the center of sym- b

metry) is unique.

APPENDIX B: DERIVATION OF g7 FOR I=1

In this appendix we give a detailed derivation @f(u)
[Eq. (47)] for the casd =1. The starting point to our calcu-
lation is Eq.(43). It has been shown that th(gj3 potential
[namely the term proportional ta in Eq. (41)] gives no
contribution tog; . We therefore sea=0, then integrate Eq.
(43) by parts once with respect t'. Using Eq.(32), this
yields

|
b u
giw=-72 'nfuolu'gém(u')(u—u')“*2
- 0
|

X[In(v'=u")+ >
m=0 2l

= -—n—m+2|’ (B1)

with the coefficientsB!, given in Eq.(45).

To proceed, consider first the logarithmic part of Egfl).
We integrate by parts each of the terms in this pasticces-
sive times with respect to’. As explained previously, com-

pactness ofgg(u) assures that the resulting surface terms

would all vanish. One is thus left with

b 0 o [m(E'—D')]
- — 1) du’ ! .
I 2 n( fo u go(U )aurn\-(u_ur)an
(B2)

Summing first then=0 andn=1 terms yields

B b 0 go(u') y
2(21+1) Jug(u—u")2

(B3)

in which the vanishing of the logarithmic dependence arises

from the equality o}, andB};, which was also responsible

for the vanishing of the contribution from scattering off the

r.>" potential.

The remaining terms in the sum in E@®2) take the form

é 1 1
221+ 1)/ = [2I—m+3 2I-m+2

0 u’
go(u’) o, B5)
up(u—u’)?
which is
b 0 u’
oY), (B6)

4(' +1)(2| +1) Uo(U_U,)Z

We finally obtaing7(u) by collecting the expressions
(B3), (B4) and (B6), and settingb=8MI(I+1) [by Eg.
(42)]. This produces Eq47)

APPENDIX C: CONTRIBUTION TO g3 DUE TO A,(u’,v")

The purpose of this appendix is to prove E§6). This
equation sets an upper bound on the contributiogstalue
to thev-dependent part ofj;, namelyA;(u,v) [defined in
Eq. (65)].

We first show that the following upper bound is appli-
cable toA,(u,v) at larger:

|Ay(u,v)|<CMr4nT,, (C1)

in which C is a positive constant. To verify the validity of

this inequality, examine the explicit form af,, derived
directly from Eq.(58),

,(v —u)!(u—u")'k
UU)_E f duf dv v/ — )2 Kk+3

X[aL+bLIn<E'—D'>]go<u'>.

(C2

Now, since ¢'—u)<(v'—u’') and u—u’')<(v'—u’),
we find that there exist positive numbes,C”,C"” andC,
such that
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0 © In(v'—u’")
|A1(u,v)|$C’Mf du’f dv'————[go(u")]|
up v (U,_U,)

" 0 /ln(;_al) T
<C Mf du’'———|gg(u")|
Ug (v—u')

In(
SC,HM

_u)
(U”_ 7] avigs)

<CMr, 2T, , (C3

which confirms Eq(C1).

We are now in position to evaluate the contributiomqf
to g5(u>M). By Egs.(58) and (Cl) we deduce that this
contribution(in absolute valugis bounded from above by
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(v'—uw'(u—u")'*

In%(v’' —u’).
"—u )2|—k+5

(C4

|
M2 cf dufd'
k=0

Since ¢’ —u)<(v’'—u’) and u—u')<(v’'—u’), we find,
in turn, that the last expression is bounded from above by

0 0
e j "
Ug u

<C”f du /! )<CM2u*3InZD
ug (u u’

In?(v’—u’")

(v/_ul)S
(CH

for u>M. [Here,C’,C” and C are some positive numbers,
other than in Eq(C3).]
The inequality(66) is thereby proved.
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