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Late time dynamics of scalar perturbations outside black holes. I. A shell toy model

Leor Barack*
Department of Physics, Technion-Israel Institute of Technology, Haifa, 32000, Israel

~Received 10 July 1998; published 25 January 1999!

We present a new analytic approach for the study of late time evolution of linear test-fields, propagating on
the exterior of black holes. This method provides a calculation scheme applicable to Kerr black holes~for
which case no analytic calculation of the late time tails has been presented so far!. In this paper we develop the
new technique and apply it to the case of massless scalar waves evolving on the background geometry of a
static spherically symmetric thin shell with a Schwarzschild exterior. The late time behavior of the scalar field
at null infinity is calculated, and is explicitly related to the form of~quite arbitrary! initial data. This reproduces
the well-known late time power-law decaying tails. In an accompanying paper we apply our approach to the
complete Schwarzschild black hole geometry, where we obtain the familiar inverse-power late time tails at null
infinity, as well as at time-like infinity and along the event horizon. A calculation of the late time power-law
tails in the Kerr geometry, based on the same approach, will be presented in a forthcoming paper.
@S0556-2821~99!06002-6#
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I. INTRODUCTION

The gravitational field outside black holes created dur
a generic gravitational collapse relaxes to the station
Kerr-Newman field. This result, referred to as the ‘‘no-hair
theorem’’ ~see, for example,@1#!, implies that outgoing ra-
diation should carry away all the initial characteristics of t
collapsing object, except for its mass, charge, and ang
momentum. These three quantities, characterizing the K
Newman field, are conserved by conservation laws;
other quantity will vanish by the time the gravitation fie
settles down on its stationary state.

The underlying mechanism for this relaxation process w
first demonstrated by Price@2# for the case of a nearly spher
cal collapse. Price analyzed the dynamics of mass
integer-spin test fields, evolving on the background o
Schwarzschild black hole~SBH!, and showed that when
viewed from a fixed location outside the black hole, t
waves die off at late time with an inverse power-law tail~in
the Schwarzschild timet), whose power index depends on
on the multipole numberl of the mode under consideration
Later @3#, it was demonstrated by analytic and numeric
methods that the nearly spherical collapse exhibits late t
decay tails also at future null infinity and along the eve
horizon. The formation of these tails was explained as du
back scattering of the outgoing radiation off spacetime c
vature at very large distances.

The existence of late time tails was demonstrated for
ear perturbations of both SBH@2,3# and Reissner-Nordstro¨m
@3# exteriors. Remarkably, numerical analysis of the fu
non-linear dynamics of fields yields the same decay rate
late time as for the minimally coupled~linear! fields @4,5#.
This, of course, encourages the application of the pertu
tive approach, even though the problem in discussion is n
linear in its nature.

Ching et al. @6# explored a wide class of asymptotical
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flat spherically symmetric spacetimes, represented by ef
tive curvature potentials of the form (lnr)b/ra ~where b
50,1 anda.2 are parameters!. This class includes the SBH
and Reissner-Nordstro¨m geometries. They found that, ge
nerically, the wave behavior at late time is not characteriz
by a strict power-law tail, but rather it has the form (lnt)b

3~inverse-power int). In that respect, the Schwarzschild an
Reissner-Nordstro¨m geometries represent a special subgro
of spacetimes. For the monopole moment of the scalar ra
tion, it was shown by Go´mezet al. @7# that the form of the
tails ~whether ‘‘logarithmic’’ or not! depends on whether o
not the Newman-Penrose constant for the field vanishes

Recently@8#, Brady et al. studied scalar waves dynamic
in the non-asymptotically flat exteriors of Schwarzschild–
Sitter and Reissner–Nordstro¨m–de Sitter black holes. Con
trary to the asymptotically flat geometries, no power-la
tails were detected in these cases. Instead, the waves
found to decay exponentially at late time.

The aforementioned analysis by Chinget al. follows a
technical scheme, first introduced by Leaver@9#, in which the
linear waves are first Fourier-decomposed, then evaluate
the complex frequency plane~see also@10#!. In this tech-
nique, the late-time tails are explained in terms of a bran
cut in the Green’s function in the frequency domain. The f
that the branch cut is due to the form of the potential
asymptotically large radius~see @6# for details! implies,
again, that the tails originate from scattering off the curv
ture potential at large distances. This observation, in tu
suggests that the development of tails is independent of
existence of an event horizon. Thus the tail phenome
appears to be of a more universal nature: it may characte
the realistic stellar dynamics. This, indeed, was suggeste
Gundlachet al. @3,4# and Chinget al. @6#. In @4#, for ex-
ample, the purely spherical collapse of a self-gravitat
minimally coupled scalar field was studied. It was demo
strated numerically that in this case late time tails are form
even when the collapse fails to create a black hole. We s
further discuss this issue in the present paper.

Historically, the study of wave dynamics outside bla
©1999 The American Physical Society16-1
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LEOR BARACK PHYSICAL REVIEW D 59 044016
holes was motivated by the will to construct a detailed
scription of the relaxation process leading to the station
‘‘no hair’’ state. ~For example, there was a need to ver
that the event horizon is indeed stable under generic pe
bations.! Many recent studies, however, are oriented by
prospects of directly observing gravitational radiation fro
astrophysical systems~e.g. with the LIGO observatory; se
@11#!. Although the study of the late time behavior of field
outside black holes has probably no immediate observati
implications ~late time outflux from a realistic coalescin
binary system, for example, would be orders of magnitu
weaker than the short pulse of radiation expected during
last few seconds of the merger!, it still addresses severa
important questions. For example, this study has crucial
evance to the exploration of the internal structure of bla
holes, as it provides the input for the internal wave evolut
problem. Particularly, it has been argued@12# that the form
of the slowly decaying wave tail along the event horiz
affects the strength of the mass-inflation singularity at
Cauchy horizon inside charged and rotating black holes.

The study of waves evolving in curved geometries is a
interesting on its own right from a theoretical point of view
such waves, massless just as well as massive, do not p
gate along light cones solely; rather they also spread in
them. Regardless of the presence or absence of an e
horizon, it is this feature of the evolution which is respo
sible for the phenomenon of late time decay tails in curv
spacetimes.

In virtue of previous studies, we now have the followin
schematic picture regarding the dynamics of waves outsi
nearly spherical collapsing object: Consider a perturbatio
the form of a compact pulse of radiation~gravitational or
electromagnetic!, somewhere outside the collapsing obje
emitted at some time during the collapse. This pulse m
represent radiation emerging from the surface of a collaps
object, as well as any other form of perturbation on the ba
ground geometry. We shall refer to it as the ‘‘initial pulse
A static observer outside the black hole will then indica
three successive stages of the wave evolution. First, the e
shape of the waves front depends on the detailed form of
initial pulse. This stage~lasting a period of time comparabl
to the duration of the initial pulse! is followed by a ‘‘quasi-
normal ringing’’ ~QNR! relaxation stage, during which th
waves undergo exponentially decaying oscillations w
~complex! frequencies completely determined by the ma
and electric charge of the central object@13#. Finally, as the
QNR dies off exponentially in time, it leaves behind an i
verse power-law decaying tail of radiation. During the la
two stages, the details of the initial pulse affect the shap
the waves only through a global amplitude factor; hence
evolution during these stages is purely characteristic of
background geometry.

Now, a realistic black hole formed by a generic gravi
tional collapse is expected to spin, as do astrophysical s
~On the contrary, models of black holes with electric cha
and/or cosmological constant are mainly hypothetic!
Therefore it is natural to ask how the tail phenomenon
affected by the presence of angular momentum in the ba
ground geometry. One may suspect that the late time be
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ior of waves, evolving outside a rotating Kerr black ho
would be qualitatively of the same nature as in the sph
cally symmetric spacetimes. This is because the Kerr ge
etry asymptotically approaches that of a SBH at very la
radius, and presumably it is this far region of spaceti
whose structure determines the form of the late time rad
tion.

Yet, in spite of the obvious interest, no analytic sche
has been proposed thus far to describe wave dynamics
side rotating black holes@14#. The basic obstacle is, o
course, the fact that the axially symmetric Kerr black ho
possesses three non-trivial dimensions, instead of only tw
the spherical cases. This makes both analytic and nume
investigations significantly more complicated. Recent
there was an initial progress, with the introduction of a f
(211 dimensions! numerical analysis by Krivanet al.
@15,16#, though much effort is still required is this direction

A. New calculation approach

We have developed an analytic calculation scheme
abling one to analyze late time wave dynamics outside K
black holes. This analysis shall be presented in@17# ~see also
@18#!. The major goal of this paper, together with the acco
panying paper~to be referred to as paper II!, is to demon-
strate the applicability of our technique in a simpler mod
namely the evolution of scalar waves in the SBH exteri
This will serve several purposes: First, we shall be able
test our scheme against the firm results already obtained
this case by previous studies. Second, many parts of the
malism to be developed shall be later directly employed
the analysis in Kerr. Finally, our analysis in Schwarzsch
spacetime proves to be valuable on its own right, providi
in some respects, a more complete picture of the late-t
wave behavior than already available.

Basically, our analysis is composed of two major steps
the first and more crucial one, a characteristic initial va
evolution problem for the scalar waves is treated anal
cally, resulting in the construction of a late-time solution f
the waveat null infinity. This calculation involves the intro
duction of a special perturbative decomposition of the wav
followed by the application of the standard~time domain!
Green’s function technique. In the second step we then u
simple late time expansion of the wave near time-like infi
ity, in order to obtain the late time behavior of the wave
any constant radius, including along the event horizon. T
second step is made possible only after the wave form
null-infinity is derived by the first step of the analysis.

To introduce the analysis at null infinity~i.e. the first step
mentioned above! in a clear and more instructive way, w
incorporate in this paper a simple toy-model, in which t
scalar waves are taken to evolve in the gravitational fi
induced by a spherically symmetric thin shell of matter. Th
configuration possesses the same spacetime structure at
distances~outside the shell! as in a complete SBH manifold
of the same mass, while its small-r structure is much sim-
pler. That would reduce the amount of technical details
deal with when developing our calculation scheme, and m
also enable one to push the analytic calculation to a furt
6-2
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LATE TIME DYNAMICS OF SCALAR . . . . I. . . . PHYSICAL REVIEW D59 044016
extent, while leaving the essential features of the anal
unaffected. Indeed, we later show in paper II, considering
complete SBH manifold, that the asymptotic late time beh
ior calculated at null-infinity is unaffected by the structure
spacetime at small radii; thus it is essentially the same in
complete SBH manifold as it is in the shell toy-model.

B. Arrangement of this paper

In this paper we study the thin-shell toy model. To th
end we introduce our calculation method, which we call ‘‘the
iterative scheme,’’ and apply it to calculate the behavior o
the wave at null-infinity in this model.

The paper is arranged as follows: In Sec. II we formul
the problem of wave evolution in the shell model as a ch
acteristic initial-value problem. The iterative scheme is p
sented in Sec. III. It is applied in Secs. IV–VIII, revealin
the power-law pattern of the late time wave decay at n
infinity. The amplitude of the wave at late time is explicit
calculated, expressed in terms of a~quite arbitrary! initial
data function.

II. INITIAL-VALUE FORMULATION OF THE WAVE
EVOLUTION PROBLEM

A. Shell model

We consider a static spherically symmetric thin shell
matter, of a massM and some radiusR.2M . The parameter
R should be regarded as being of order;2M ~say, R
53M ). For this configuration, the exterior vacuum regi
r .R is a part of the Schwarzschild spacetime, described
the line element

ds252 f ~r !dt21 f 21~r !dr21r 2~du21sin2udw2!, ~1!

where t, r, u and w are the standard Schwarzschild coor
nates andf (r )[(122M /r ). The region inside the shell,r
,R, is flat:

ds252dT21dr21r 2~du21sin2udw2!. ~2!

Expressed in these coordinates, the geometry suffers a
continuity at r 5R. ~The metric functionsgrr and gtt jump
through this surface. Also the time coordinates do not ag
on both sides of the shell.!

To allow a continuous representation of spacetime ge
etry, we define the coordinates

r * 5H f ~R!21/2r , r ,R,

r 2R1R f~R!21/212M lnS r 22M

R22M D , r .R

~3!

and

t* 5H f ~R!21/2T, r ,R,

t, r .R.
~4!

In terms of the coordinatest* ,r * ,u andf the geometry is
described as a single continuous manifold.~These coordi-
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nates form an example of a ‘‘natural’’ set of coordinat
through the ‘‘surface layer’’r 5R, as discussed by Israel i
@19#. The jump in the derivatives of the metric function
through the shell is then related to the surface energy te
of this layer.! Note that outside the shell, the radial coord
nater * is the usual Schwarzschild’s ‘‘tortoise’’ coordinate
satisfyingdr* /dr5 f 21(r ).

B. Initial-value problem

We consider the evolution of initial data, representing
generic pulse of massless scalar radiation, on the fixed b
ground of the shell described above. The scalar field is
sumed to satisfy the~minimally coupled! Klein–Gordon
equation1

F ;m
;m50, ~5!

whereF represents the scalar wave. The structure of spa
time affects the evolution of the scalar wave through
covariant derivatives, denoted in Eq.~5! by semicolons.

Decomposing the field in spherical harmonics,

F~ t,r ,u,w!5(
l 50

`

(
m52 l

l

f l~ t,r !Ylm~u,w!, ~6!

and substituting in the wave equation~5!, we obtain an in-
dependent equation for each of the componentsf l(t,r ). ~We
use the superscriptl to denote the multipole number of th
mode under consideration.!

A convenient form for the wave equation may be obtain
in terms of a new wave functionC l(t,r )[rf l(t,r ). To that
end we introduce the double-null~Eddington-Finkelstein!
coordinatesv[t1r * and u[t2r * . The equation govern-
ing the evolution of thel-mode of the scalar wave then rea

C ,uv
l 1Vl~r !C l50, ~7!

in which the function

Vl~r ![5
1

4
l ~ l 11!r

*
22 , r ,R,

1

4S 12
2M

r D F l ~ l 11!

r 2
1

2M

r 3 G , r .R,

~8!

serves as an effective potential for the scalar field. The fo
of the potential function completely determines the effect
spacetime curvature on the wave evolution~terms propor-
tional to M ), as well as the centrifugal effect on the no
spherical (l .0) modes of the wave@terms proportional to
l ( l 11)#.

1We comment, however, that other wave equations are also
sible. For example, to assure conformal invariance, one sho
rather use the equationhF1

1
6 RF50, whereR is the Ricci scalar.

This equation reduces to Eq.~5! when considering waves in a
vacuum.
6-3
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LEOR BARACK PHYSICAL REVIEW D 59 044016
To set up the initial value problem for the scalar radiatio
one should supply initial data for each of its modes. Since
spherical symmetry each mode evolves separately, it wo
be sufficient to analyze the evolution of a singlel-mode of
the wave from given initial data. We shall specify these i
tial data on two characteristic~null! surfaces, as illustrated in
Fig. 1.2 Specifically, we shall consider initial data in the for
of some compact outgoing pulse, specified on the ingo
null surfacev50:3

H C l~u5u0!50,

C l~v50!5G l~u!,
~9!

whereG l(u) is some function of a compact support betwe
retarded timesu5u0 andu5u1 . ~For brevity we henceforth
usually suppress thel-dependence of the functions und
consideration.! We shall assume thatuu1u.2R, namely that
the support of the initial functionG(u) is completely outside
the shell.

The choice of compact~‘‘localized’’ ! initial data proves
to be convenient for the purpose of calculation. It also
comes useful when we later try to characterize the way
which the late time behavior of the wave depends on
location of the initial pulse. For that reason, it is instructi
to consider the caseuu0u@u12u0 , for which u0 becomes a
single parameter describing the location of the initial puls

To complete the specification of the initial value proble
a boundary condition should be set at the origin of coor
nates. From a physical point of view, a wave starting out

2For a characteristic initial value problem to be well posed
suffices to specify only the value of the field on the initial chara
teristic surfaces~and not its derivatives!.

3The choicev50 does not limit the generality of the initial setup
due to the time translation invariance of the background geome

FIG. 1. The setup of initial data. Shown is the conformal d
gram representing the spacetime geometry in the shell model.
spacetime region outside the shell (r .R) is a part of the Schwarzs
child manifold, while the interior of the shell (r ,R) is flat. u
5u0 andv50 are two initial characteristic~null! surfaces. An ini-
tially compact outgoing pulse is specified onv50.
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regular initial data and traveling outside the shell should
develop any singular behavior. Also, the field should rem
regular~in fact, continuous! at the shell itself, since the jump
in the potential function through this surface is finite in ma
nitude. Then, no singularity is expected to occur during
free evolution of the scalar field in the Minkowski interior o
the shell. Enforcing regularity onf then automatically im-
plies that the revised wave functionC5rf should vanish at
the origin r * 5r 50. To rule out unphysical divergent solu
tions, we hence impose the supplementary boundary co
tion

C~r * 50!50. ~10!

In Appendix A we show that the evolution equation~7!,
together with the initial conditions~9! and the boundary con
dition ~10!, establishes a well defined characteristic init
value problem for the scalar field, with a unique soluti
anywhere inside the light cone of the initial data.

III. THE ITERATIVE EXPANSION

Our goal is to calculate the late time behavior ofC at
null-infinity ~namely, forv→`,u@M ). In what follows we
introduce an analytic scheme to construct this solution. T
technique is based on theiterative expansion, to be defined
now.

First, define

V0~r ![
l ~ l 11!

4r
*
2

~11!

and

dV~r ![V~r !2V0~r !, ~12!

with the potentialV(r ) given by Eq.~8!.
Then, consider a decomposition of the wave function,

C5C01C11C21•••, ~13!

such that the componentsCN obey the recursion formula

CN,uv1V0CN5H 0, N50,

2~dV!CN21 , N.0,
~14!

and satisfy the initial conditions

CN~u5u0!50 ~;N>0!

CN~v50!5H G~u!, N50,

0, N.0,
~15!

and the boundary conditions

CN~r * 50!50 ~;N>0!. ~16!

Formally summing Eqs.~14!,~15!,~16! overN, we recover
Eqs.~7!,~9!,~10! for the complete waveC. This suggests tha
if the sum~13! converges, it should yield the correct functio
C.

t
-
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-
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LATE TIME DYNAMICS OF SCALAR . . . . I. . . . PHYSICAL REVIEW D59 044016
Equations~14!,~15!,~16! constitute an infinite hierarchy o
initial value problems for the functionsCN . Each of the
evolution equations consists of a simple homogeneous p
which is the free evolution equation in Minkowski’s spac
time. In addition, each of the functionsCN ~excludingC0)
has a source term proportional to the previous function in
series. Therefore, in principle, if the solution forC0 is found,
and the appropriate~time domain! Green’s function is con-
structed, then we should be able to solve for the functi
CN one by one, using the standard Green’s function meth

Analytic arguments, as well as numerical simulatio
~both to be presented later! strongly suggest that at null
infinity the series~13! doesconverge to the correct functio
C. Moreover, in the caseuu0u@M , which will concern us
here, we find~both numerically and analytically! that the
late-time behavior ofC at null-infinity is well approximated
by C1 ~the corrections coming fromN>2 are smaller by a
factor proportional toM /u0). Thus, in our scheme, unde
standing the behaviorC1 alone will suffice to determine the
essential features of the late-time dynamics at null-infinit

In the sequel we derive an exact analytic expression
C0 and for the Green’s function, and use these results
calculate the late time behavior ofC1 at null-infinity. We
then discuss the contributions coming from higher orders
the iterative expansion.

IV. DERIVATION OF C0

By definition,C0 admits the homogeneous wave equat

C0,uv1V0~r * !C050, ~17!

whereV0 is the purely centrifugal potential defined in E
~11!. This equation is supplemented by the initial conditio

C05H 0, u5u0 ,

G~u!, v50,
~18!

and by the boundary condition specified in Eq.~16!. ~Recall
that G is a function of compact support, representing t
initial pulse of scalar radiation.!

In fact, C0 is nothing but the solution of the analogou
wave evolution problem inMinkowski spacetime.4 To see
that, notice that inside the shell Eq.~17! is invariant under
the transformation from ther * ,t* coordinates to the usua
flat-space coordinatesr and t. Outside the shell, however
only the functional form of C0(u,v) is the same as in
Minkowski spacetime, while the dependence of the char
teristic coordinatesu,v on the flat space coordinatesr ,t dif-
fers.

In Appendix A we show that a solutionC0 to Eq. ~17!,
subject to both the initial conditions~18! and the boundary
condition atr 50, is unique. This solution reads

4In this respect, the iterative decomposition is actually ‘‘an exp
sion of Schwarzschild spacetime about Minkowski spacetime.’’
04401
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C0~u0<u<0!5 (
n50

l

An
l

g0
~n!~u!

~v2u! l 2n
~19a!

C0~u>0![0, ~19b!

in which the coefficientsAn
l are given by

An
l 5

~2l 2n!!

n! ~ l 2n!!
. ~20!

The functiong0(u) ~with its parenthetical superindices ind
cating the number of times this function is differentiated! is,
by Eq. ~18!, the solution to the inhomogeneous ordina
equation of orderl,

(
n50

l

An
l

g0
~n!~u!

~2u! l 2n
5G~u!, ~21!

subject to the initial conditionsg0
(n)(u0)50 for all 0<n< l

21. @Because of the compactness ofG(u), we then auto-
matically have alsog( l )(u0)50. ThusC0 vanishes along the
ray u5u0 , as necessary.#

The solution forg0 is given by

g0~u<0!5
1

~ l 21!! Eu0

u S u

u8
D l 11

~u2u8! l 21G~u8!du8

~22!

for l>1, and simplyg0(u)5G(u) for l 50.5 It is easy to
confirm this result by a direct substitution, noticing that
solution to the homogeneous equation corresponding to
~21! has the general form

g0~u1<u<0!5H 0, l 50,

(
k51

l

gku
l 1k, l .0,

~23!

wheregk are constant coefficients. Note that this is also
form of g0 at u1<u<0 @for which retarded times Eq.~21!
becomes homogeneous#, with the coefficientsgk being cer-
tain functionals of the initial data functionG, which can be
easily constructed by comparing Eqs.~22! and ~23!.

We find that during retarded timesu0<u<u1 , at which
the initial pulse is ‘‘turned on’’ on the initial ingoing nul
surface, the behavior ofC0(u) depends on the detaile
structure of the pulse. At later~yet negative! retarded times,
u1<u<0, the functiong0(u) takes the simple formul 11

3polynomial of orderl 21 in u. Equation~19a! then implies
that the waveC0 itself dies off~as;u, generically! towards
retarded timeu50. Exceptional is thel 50 mode of the
wave, which vanishes right after the initial pulse ‘‘cease
on the initial ray~that is, it vanishes identically atu>u1).

- 5In the scalar model, the monopole mode is radiative as any o
mode.
6-5
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LEOR BARACK PHYSICAL REVIEW D 59 044016
In the later zone of spacetime,u.0, the only solution for
C0 satisfying both6 C0(u50)50 andC0(r * 50)50 is the
trivial null solution ~19b! ~see Fig. 2!. The uniqueness of this
solution is guaranteed by virtue of the discussion in App
dix A.

We can now unify both equations~19! by defining

g0~u.0![0. ~24!

It is also convenient to defineg0(u,0)[0, which makes
g0(u) a function of compact support betweenu5u0 and u
50. Then, Eq.~19a! suffices to describe the waveC0 any-
where.

We conclude that for any mode of the scalar radiation,
evolution of C0 is ‘‘cut off’’ not later than at u50. This
somewhat surprising feature of the scattering off the pur
centrifugal potential originates, in the 111 representation
from a destructive interference between ingoing and out
ing wave fronts at the originr * 50 ~see Appendix A for
details!. This may be more easily understood in the cor
sponding 311 picture, where compactness of the initial pul
directly leads to compactness of the wave fronts. The co
pact~in terms of retarded time! region in whichC0 survives
is represented by the dark-colored area in the diagram of
2.

Finally, we emphasize one further feature ofC0 . By Eq.
~19a!, we have,at null-infinity,

6Here we assert that the waveC0 is continuous through the ra
u50. For, as can be easily verified, a discontinuity along this
must result in a violation of either the field equation or the bound
condition. The continuity of the wave is also reasonable from
physical point of view.

FIG. 2. The evolution ofC0 ~representing the scalar wave
Minkowski spacetime!. For a compact initial pulse ‘‘turned on’
during retarded timesu0,u,u1,0, the support ofC0(u) is con-
fined to u0,u,0 ~or u0,u,u1 for l 50). The region in which
C0 has a non-zero amplitude~for l>1) is represented by the shad
owed area in this conformal diagram.
04401
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C0
`~u!5g0

~ l !~u!, ~25!

in which C0
`(u) stands forC0(v→`). Now, the fact that

g0(u) is compact with respect to retarded time means t
any of its derivatives is compact as well. We thus find th
the l integrals (C0

`)(21), . . . ,(C0
`)(2 l ), carried out over all

values ofu at null infinity, all vanish:

~C0
`!~2n!5g0

~ l 2n!u2`
` 50 ~1<n< l !. ~26!

This feature shall appear to have an important impact on
form of the inverse power-law behavior of the scalar wave
late time.

Obviously, sinceC0 vanishes identically atu.0, it does
not contribute to the late time radiation. Rather, it serves a
source to higher terms in our iterative expansion, as we sh
below.

V. CONSTRUCTION OF THE GREEN’S FUNCTION

In order to calculate the next terms in the iterative exp
sion @that is to obtain solutions to the hierarchy of inhom
geneous equations~14! for N>1#, we shall use the standar
Green’s function approach. To that end, we first need to
tain the Green’s function corresponding to the opera
]v]u1V0

l . This is the purpose of this section.
The ~retarded! Green’s functionG(u,v;u8,v8) shall be

defined as a solution of the equation

G,uv1V0
l G5d~u2u8!d~v2v8!, ~27!

subject to the causality conditionG50 outside the future
light cone of the delta source point at (u8,v8). In the sequel
it will become evident that this condition, together with a
appropriate boundary condition, specify a unique solution
G.

To construct this solution we consider separately the t
distinct regions of spacetime indicated in Fig. 3, which a
defined with respect to a given source point~representing a
source 2-sphere in 311 dimensions! at a certain location
(u8,v8). These are~I! the region inside the future light con
of (u8,v8) not causally influenced by the origin~that is v

y
y
e

FIG. 3. The Green’s function for a given source 2-sphere
(u8,v8). G differs from zero only in region I~the shadowed area!.
It vanishes in region II.
6-6
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>v8,u8<u<v8) and ~II ! the region inside the future ligh
cone of (u8,v8) which is causally influenced by the origin
~that isu.v8).

First consider the Green’s function in region I. We impo
causality by writing

G5Ḡ u~u2u8! u~v2v8!, ~28!

whereḠ is a solution to the homogeneous equation~27! at
u.u8 and v.v8, and u is the standard step function. B
analogy to Eq.~19a! we then have the solution

Ḡ~u,v;u8,v8!5 (
n50

l

An
l

gG
~n!~u!

~v2u! l 2n
, ~29!

in which the coefficientsAn
l are those given by Eq.~20!, and

where the functiongG(u;u8,v8) is yet to be determined.@Al-
ternatively, we could have expressed this solution in term
a functionhG(2v) instead ofg(u). Of course, the unique
solution for G, to be derived below, would have been t
same.#

Inserting Eq.~28! into Eq.~27!, we find that we must have

Ḡ~u5u8!5Ḡ~v5v8!51. ~30!

With Eq. ~29!, the equalityḠ(v5v8)51 takes the form of
Eq. ~21!, in which we first make the replacementsg0
→gG ,u→(u2v8) andG(u)→1. Consequently, we find by
Eq. ~22! that ~in region I!

gG~u;u8,v8!5
1

~ l 21!! Eu8

u S u2v8

u92v8
D l 11

~u2u9! l 21du9.

~31!

To calculate the integral we make use of the formula

E ~x2x1!n1

~x2x2!n2
dx52(

j 50

n1 n1! ~n22 j 22!!

~n12 j !! ~n221!!

~x2x1!n12 j

~x2x2!n22 j 21
,

~32!

which is valid for any two natural numbersn1 andn2 satis-
fying n2>n112. ~We shall need this integral several mo
times in the sequel.! With some additional algebraic manipu
lations we can then finally obtain

gG~u;u8,v8!5
1

l ! F ~v82u!~u2u8!

~v82u8!
G l

. ~33!

It is easy to verify that with this result, we have alsoG(u
5u8)51, as necessary.

Next, consider region II, where each of the functionsCN
is subject to the boundary conditionCN(r * 50)50. We im-
pose this condition by requiring that the Green’s functi
connecting any source point to the origin should vanish:

G~r * 50;u8,v8!50. ~34!

Note that this boundary condition fails to be valid at t
single pointu5v5v8, where its value, dictated by the evo
04401
of
lution in region I, is found by Eqs.~29! and~31! to be unity.
Nevertheless, the boundary condition for the various fu
tions CN is still satisfied at all values ofu, as will become
clear later.

In Appendix A we show that, with the above bounda
condition imposed, the only solution to Eq.~27! in region II
is the null solution, namelyG(u.v8)[0. We conclude that
the Green’s function is given by

G~u,v;u8,v8!5 (
n50

l

An
l

gG
~n!~u;u8,v8!

~v2u! l 2n

3u~v2v8!u~u2u8!u~v82u!, ~35!

where the functiongG is the one specified in Eq.~33!.7

In Fig. 3 we have indicated the region of spacetime
which the Green’s functionG(u,v;,u8,v8) carries the influ-
ence of a given source point located at (u8,v8). In practice,
however, we shall be interested in calculating the functio
CN(u,v) ~for N>1) at a certain evaluation point (u,v).
This will involve integration over all point sources (u8,v8).
The region in which sources influence the behavior of
wave at a given evaluation point (u,v) is indicated in Fig. 4.

VI. CALCULATION OF C1 AT NULL INFINITY

We have seen that the first element of our iterative ser
namelyC0 , does not contribute to the overall late time r
diation. Rather, it serves as a source to higher terms in
series. The first contribution to the late time radiation com
from C1 . In what follows we shall give a detailed calcula
tion of C1 . Specifically, we will obtain an analytic expres
sion forC1 at null-infinity, evaluated to the leading order i
M /u. The result will be highly significant, since this term

7Note that the Green’s function suffers a discontinuity along
outgoing rayu5v8. This discontinuity, which is of order unity
originates at the delta source point (u8,v8) and travels along the
ingoing rayv5v8. When this discontinuity encounters the origin,
is reflected back alongu5v8. Some subtleties related to the appea
ance of this discontinuity are discussed in Appendix A.

FIG. 4. The Green’s function for a given evaluation point
(u,v). The waveCN at that point is influenced only byCN21

sources inside the shadowed area.
6-7



a
r,

he
tic

in
th

-
s

o
t
e
f

m

(

s
-

.
the

di-

ms
hat

m-

e

LEOR BARACK PHYSICAL REVIEW D 59 044016
will appear to be the dominant constituent of the over
wave C at null infinity. We shall discuss this issue late
when we analyze the higher (N>2) terms of the iterative
expansion.

For C1 we have, by definition,

C1,uv1V0C152~dV!C0 , ~36!

with the initial conditionsC1(u5u0)5C1(v50)50, and
the boundary conditionC1(r * 50)50. The functionsV0(r )
anddV(r ) were given in Eqs.~11! and ~12!, respectively.

The solution can be formally written as

C1~u,v !52E
u0

u

du8E
u

v
dv8 G~u,v;u8,v8!

3dV~u8,v8!C0~u8,v8! ~37!

@with C0(v8,0)[0 understood#, whereG is the Green’s
function in Minkowski spacetime, given in Eq.~35!. This
form manifestly admits the above initial conditions. Also, t
boundary condition is clearly satisfied, as necessary. No
that although Eq.~34! fails to hold atu5v5v8, still the
waveC1 vanishes at that point@because thev8 integration in
Eq. ~37! has no support in this occasion#.

The region of integration in Eq.~37!, for a given evalua-
tion point (u,v), is represented by the rectangle shown
Fig. 4. Sources outside this rectangle do not influence
behavior ofC1 at (u,v). In addition, we have found previ
ously that the support ofC0 is confined to retarded time
u0,u,0. Hence, effective sources toC1 are located only at
the region indicated in Fig. 5 by the intersection of the tw
shadowed areas. We thus observe that when evaluated a
retarded timeu, C1 is influenced only by sources at larg
radii. As u→`, it is only the asymptotically far region o
spacetime that affects the behavior ofC1 .

We shall now evaluate Eq.~37!, in order to yield an ana-
lytic expression forC1 at null infinity, that is in the limitv
→`. In this limit, the Green’s function reduces to the for

FIG. 5. Region whereC0 sources affectC1 at null infinity
~indicated by the intersection of the two dark colored areas!. If C1

is evaluated at late retarded time (u@M ), then effective sources ar
confined to large distances (r 8@M ).
04401
ll

e

e

late

G~u,v→`;u8,v8!5
] l

]ul
@gG~u;u8,v8!#, ~38!

with only then5 l term surviving in Eq.~35!, and wheregG
is given by Eq.~33!.

We then notice that thel-derivative ofgG with respect to
u can be taken out of the double integral in Eq.~37!. The
resulting surface terms all vanish, due to the factorsu
2u8) l and (v82u) l appearing in the numerator ofgG @see
Eq. ~33!#. Therefore, in analogy to Eq.~25!, we can now
have

C1
`~u!5

] l

]ul
@g1

`~u!#, ~39!

where we define

g1~u,v !

52E
u0

u

du8E
u

v
dv8 gG~u;u8,v8!dV~u8,v8!C0~u8,v8!,

~40!

and whereC1
` andg1

` stand for the value of these function
at null infinity (v→`). It would hence be sufficient to cal
culateg1

` in order to immediately obtainC1
` .

To allow explicit integration in Eq.~40!, we must first
express the functiondV(r ) in terms of the null coordinates
This cannot be done explicitly outside the shell, since
function r (r * ) is implicit at r .R. However, in terms of the
M /r * expansion we can write~recalling that the parameterR
is of orderM )

dV~r * .r R!5
a1b ln 2r̃ *

8r
*
3

1OS M2~ ln r̃ * !2

r
*
4 D , ~41!

where r̃ * [r * /(R22M ),a is some constant~depending on
R andM ), and

b58Ml ~ l 11!. ~42!

Throughout the rest of this paper, a tilde shall always in
cate the ratio of that quantity toR22M .

Note that inside the shell we havedV[0 by definition,
and so the regionr

*
8 ,r * (R)5R f(R)21/2 is automatically

excluded from the domain of integration in Eq.~40!.
The various terms in theM /r * expansion ofdV contrib-

ute toC1 in an additive way@via Eq. ~40!#. These contribu-
tions may be, in principle, calculated for each of the ter
separately. However, the calculation to follow suggests t
to the leading order inM /u, it is only the leading order of
dV in M /r * which contributes toC1 at null infinity at late
time . We shall therefore focus now on the contribution co
ing from this leading order.

With the explicit form ofgG and C0 , and takingdV to
the leading order inM /r * , Eq. ~40! reads, at null infinity,
6-8
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g1
`~u!52

1

l ! (n50

l

An
l E

u0

u

du8g0
~n!~u8!

3E
u

`

dv8
~v82u! l~u2u8! l

~v82u8!2l 2n13

3@a1b ln~ ṽ82ũ8!#u@r
*
8 2r * ~R!#, ~43!

where the fact thatdV50 inside the shell accounts for th
step function appearing in the integrand.

To proceed, we discuss separately the casesl 50 and l
>1. First, considerthe case l>1. For these modes w
show that the ‘‘r

*
23 potential’’ source~i.e. the one propor-

tional to a) contributes nothing tog1
` at u>0. An analytic

expression for the contribution coming from the ‘‘logarit
mic potential’’ source~the one proportional tob) shall then
be derived.

To show that the contribution from scattering off ther
*
23

potential vanishes~in the casel>1), consider the term in
Eq. ~43! proportional toa. Integrating overv8, with the help
of Eq. ~32!, this term yields

a(
n50

l

Bn
l E

u0

u

du8~u2u8!n22g0
~n!~u8!, ~44!

with a vanishing contribution from the upper boundary of t
v8-integration, and where only thej 5 l term has survived in
Eq. ~32!. The coefficientsBn

l are given by

Bn
l 5

l 2n11

n! ~2l 2n11!~2l 2n12!
. ~45!

We now observe that in Eq.~44! all terms corresponding
to 2<n< l vanish independently foru>0, sinceg0(u) is
compact. This can be verified by integrating each of
terms in the sum by partsn22 successive times with respe
to u8, and then using Eq.~26! to find that all resulting sur-
face terms vanish. Moreover, one also finds that the
remaining terms of Eq.~44!, corresponding ton50 andn
51, add to zero. This is easily shown by noticing thatB0

l

5B1
l for any l>1.

We conclude that all terms proportional toa in Eq. ~43!
vanish~for u>0), and thus that scattering off ther

*
23 poten-

tial does not affect the late time behavior of thel>1 modes
at null-infinity. This seemingly odd feature becomes clear
the following simple argument. Consider the solutionC0

e to
the wave equation~17!, in which we take the potential to b
V0

e5 l ( l 11)/4(r * 1e)2. In addition, we takeC0
e to satisfy

the same initial conditions asC0 , and the boundary condi
tion C0

e(r * 5e)50. Clearly, we haveC0
e(e→0)5C0 . Dif-

ferentiating the wave equation forC0
e with respect toe and

taking the limite→0, we obtain

C0,uv8 1V0C085
l ~ l 11!

2r
*
3

C0 , ~46!
04401
e

o

y

where C08[ lime→0 ]C0
e /]e. Comparison of Eq.~46! with

the wave equation~36! for C1 shows thatC08 should be
proportional toC1 calculated withdV;r

*
23 . ~Both func-

tions C1 and C08 are subject to the same initial condition
on the initial surfaces we have, by definition,C150 and also
C0850, since the initial conditions chosen forC0

e are
e-independent.! Now, it is not difficult to verify thatC08
vanishes identically atu>0 ~as doesC0).8 Therefore the
contribution toC1 due to scattering off ther

*
23 potential

must vanish identically atu>0, as demonstrated above fo
C1

` by explicit calculation.
Next, we have to consider contributions toC1

` coming
from scattering off the ‘‘logarithmic’’ potential@i.e. contri-
butions to the integral in Eq.~43! due to terms proportiona
to b#. The details of this calculation are left to Appendix B
where we obtain the simple result

g1
`~u!522ME

u0

0 g0~u8!

~u2u8!2
du8. ~47!

The case l50: The monopole case is especially simple
handle, as in this case no logarithmic terms are involved
the calculation@the coefficientb in Eq. ~41! vanishes#, and
the Green’s function is simply unity. Forl 50 we have no
summation overn in Eq. ~43!, and havea54M . This equa-
tion then reads

g1
`~u!524ME

u0

0

du8E
u

`

dv8
g0~u8!

~v82u8!3
~for l 50!,

~48!

which directly leads to Eq.~47!. Therefore Eq.~47! is correct
for any of the modes.~Note the interesting result thatg1

`

depends onl only through the explicit form ofg0 .)
Thus far we were approximating the potentialdV by its

large r * form, indicated in Eq.~41!. In principle, to obtain
the correct expression forg1

` , the complete potentialdV
should be considered. Each of the terms in theM /r * expan-
sion of the potentialdV contributes additively as a source
g1(u). These terms are all proportional tor

*
2k2(ln r̃* )k1,

wherek1 and k2 are natural numbers, satisfyingk2>3 and
0<k1<k222. Above we have given a complete analys
concerning the leading contribution, namely the one cor
sponding tok253. We can show, following a completel
analogous analytic treatment, that the contribution from
above general term of thedV expansion~with k2.3) is
dominated at late retarded time by

g1
`~u;k1 ,k2!}Mk222E

u0

0

g0~u8!
lnk1~ ũ2ũ8!

~u2u8!k221
du8. ~49!

8A straightforward calculation shows thatC0
e dies off atu.2e as

;exp@2u/(2e)#. This implies the vanishing of]C0
e /]e at u>0 in

the limit e→0.
6-9
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~Note that thek253 case is special, in that in this case the
is no logarithmic dependence involved in the resulting fo
of g1

` .) We thus conclude that omitting the contributio
from terms other than the leading term indV has no effect on
g1

`(u) to the leading order inM /u and inu0 /u.
Hence, by virtue of Eq.~47! we obtain, to the leading

order inM /u and inu0 /u,

g1
`~u@u0!522MI 0 u22, ~50!

in which we have defined

E
u0

0

g0~u8!du85E
2`

1`

g0~u8!du8[I 0 . ~51!

@The first equality is valid in view of the compactness
g0(u).#

By Eq. ~39! we can now finally obtain~to the leading
order inM /u and inu0 /u)

C1
`~u@u0!52~21! l 11~ l 11!! MI 0 u2 l 22. ~52!

Note that initial data information is manifested at null infi
ity at late time only through the single integralI 0 . Also, note
that in our approximation there is no reference whatsoeve
the form ofC1 to the radiusR of the shell.

Both the power index of the radiation tail and the amp
tude coefficient deduced above are the same as those
tained by Gundlach, Price and Pullin~GPP! @Eqs. ~11! and
~18! in @3## for the late time behavior of the ‘‘complete’
scalar wave at null-infinity,C`, using a different approach
Yet, our result regards only one element of the ‘comple
wave, namelyC1

` . To reveal the overall behavior of th
wave we must analyze each of the terms in the itera
scheme, then sum up their contributions. Thus, in order
our result to coincide with that of GPP,C2

` and the higher
terms in our expansion ‘‘must’’ be negligible at null-infinity
In the following section we argue that this, however,
not the case in general. We will show that when cons
ering generic initial date, one finds additional non-neg
gible contributions toC` at late time. These contribu
tions, coming from C2 ,C3 , . . . , shall have the form
M2u0

21u2 l 22,M3u0
22u2 l 22, etc. In this respect, the result o

GPP is not strictly correct: the amplitude calculated in@3#
should fail to represent the amplitude ofC` for a generic
initial pulse. However, as we indicate later, the result
GPP, as well as the form ofC1

` calculated above, approxi
mates the ‘‘real’’ behavior of the scalar wave in the ca
where the initial compact pulse is confined to large ra
away from the highly curved region of spacetime. Ma
ematically speaking, it will be argued that the equalityC1
5C holds at null-infinity to only the leading order inM /u0 .

It is interesting to mention that other previous attempts
calculate the late-time behavior of scalar waves in Schwa
child spacetime@2,6,9,10#, all yielded an expression propo
tional to the massM, omitting possible contributions from
higher powers ofM. To the best of our knowledge, no an
lytic method has been proposed to enable calculation of
late time radiation resulting from initial date located at sm
04401
in

ob-

’

e
r

-
-

f

e
i,
-

o
s-

e
l

radii, where the curvature is large. In this respect, our ite
tive scheme is no exception. However, our methoddoespro-
vide a formal means to quantitatively explore this aspect
the analysis, which was somewhat overlooked in several
vious works. We shall further refer to this issue later in th
paper.

The expression we obtained above forC1
` @Eq. ~52!# cor-

responds to the case of an initial pulse which is compact w
respect to retarded timeu. This pulse represents a wide fam
ily of physically reasonable initial data. Yet another realis
initial setup involves the presence of a static field outs
some radius~say, the surface of a spherically collapsing o
ject! up to some moment of time~say, the onset of collapse!.
The corresponding late time behavior ofC1 at null infinity
can be easily inferred from our previous results, as follow

The static flat-spacetime solution to the Klein-Gord
equation~17!, regular at infinity, readsC0

stat5mr 2 l , wherem
is a constant representing the strength of the initial st
field. The correspondingg0 function, namely the solution to
Eq. ~21! with G(u)5C0

stat(v50), isg0
stat52l@ l !/(2 l )! #m. In

order to calculateC1 in this case, we need only to substitu
for g0 in Eq. ~47!, while changing the range of integration t
*

2`
u1 du8,u1 being some retarded time after the initial pul

ceases on the initial ingoing ray. Doing so, we find, to t
leading order inM /u and inu1 /u,

g1
`~u!@stat#522l 11M @ l !/ ~2l !! #m u21 ~53!

which leads to

C1
`~u!@stat#5~22! l 11

~ l ! !2

~2l !!
Mm u2 l 21. ~54!

This result is again identical with the one derived by G
@Eqs.~12! and ~18! in @3## for static initial data.

VII. HIGHER TERMS OF THE EXPANSION

We now turn to evaluate the higher terms (N>2) of the
iterative expansion, each defined by Eqs.~14!–~16!. These
terms may be formally constructed in an inductive way
means of the ‘‘flat space’’ Green’s function derived in Se
V:

CN~u,v !52E
u0

u

du8E
u

v
dv8G~u,v;u8,v8!

3dV~u8,v8!CN21~u8,v8!. ~55!

Manifestly, this solution satisfies the initial and bounda
conditions specified in Eqs.~15! and ~16!, respectively.

In analogy to the treatment ofC1 @Eqs.~39!,~40!#, we can
write

CN~u,v !5
] l

]ul
@gN~u,v !#, ~56!

in which
6-10
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gN~u,v !52E
u0

u

du8E
u

v
dv8gG~u;u8,v8!

3dV~u8,v8!CN21~u8,v8! ~57!

@with CN21(v8,0)[0 for anyN>1#.
With the explicit form ofgG and dV, and following the

same integration-by-parts procedure as in deriving Eq.~47!,
the last equation can be put into the form

gN~u,v !5 (
k50

l E
u0

u

du8E
u

v
dv8

~v82u! l~u2u8! l 2k

~v82u8!2l 2k13

3@ak
l 1bk

l ln~ ṽ82ũ8!#gN21~u8,v8!

3u@r
*
8 2r * ~R!#, ~58!

in which ak
l andbk

l are constant coefficients.
We observe that the analysis ofCN for N>2 involves

two additional technical difficulties, which were not prese
in the calculation ofC1 . First, the source wave is no longe
compact with respect to retarded time, but rather it exte
infinitely to the future. This means thatCN

` will be influ-
enced by sources located at any value ofr, not only at null
infinity. ~However, as we discuss later, the small-r sources
seem not to affect the asymptotic late time behavior at n
infinity.! The second technical difficulty is the fact that f
N>2, the source functions gN21(u8,v8) are also
v8-dependent. Thus, in order to calculateCN

` for N>2, one
must first be provided with the form ofgN21 at anyvalue of
v, not merely at null infinity.

To proceed, we shall first refer specifically to the caseN
52, in order to demonstrate thatthe dominant contribution
to CN

` at late time comes fromCN21 sources at null infinity.
Sources at smallr-values do not affect the behavior of th
wave at null infinity to the leading order inM /u. Under this
assumption, we shall then calculate this dominant contri
tion, to obtain the late time decay pattern of each of
functions CN at null infinity. Numerical support shall be
presented.

A. Calculation of C2

To analyze Eq.~58! for N52, we separate the domain o
integration into four regions, labeled I–IV, as indicated
Fig. 6. In what follows we show that the dominant contrib
tion to C2

`(u@M ) comes only from sources in region
which is a distant~large r value! region of spacetime. We
shall thus call this zone the ‘‘main’’ region of integration. A
upper bound will be set on the contribution from each of
other regions, II–IV, to verify their relative negligibility.

First, consider region II, which is covered byu<v8
<2u and u/2<u8<u, with the spherer 8,R excluded. In
this region of integration, the following upper bound is a
plicable to the source functiong1(u8,v8):

ug1~u8,v8!u,CM
~v82u8! l 11

~u8! l 13
ln~ ṽ82ũ0!, ~59!
04401
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whereC is a positive constant. To prove this, setN51 in Eq.
~58!, with the replacements (u,v)→(u8,v8) and (u8,v8)
→(u9,v9), and with theu9 integration cut off atu950
@sinceg0(u9.0)50#. Then use the fact that, for any 0<k
< l ,

~v92u8! l~u82u9! l 2k

~v92u9!2l 2k13
<

~v92u8! l

~u82u9! l 13
<

~v92u8! l

~u8! l 13
,

~60!

where the first inequality arises sincev9>u8, and the second
is due to the fact thatu9<0. The inequality~59! then follows
from (ṽ92ũ9)<( ṽ82ũ0) and after integrating overv9.

Now, to set an upper bound to the contribution from r
gion II to C2

` , consider Eq.~58! for N52, with the double
integral replaced by*u/2

u du8*u
2udv8 ~see Fig. 6!. Using the

inequality ~59!, together with (u2u8)<(v82u8) and (v8
2u)<(v82u8), one finds that

ug2II
` ~u!u<C1M2 ln2ũE

u/2

u

du8E
max$u,u812R%

2u

dv8
~v82u8! l 22

~u8! l 13

<C2M2u23 ln2ũ, ~61!

in which g2II
` (u) stands for the contribution from region II t

g2
` , and whereC1 andC2 are positive constants.

Next, consider region III. The contributiong2III
` (u) arises

from the integration*u/2
u du8*2u

` dv8. The upper bound we
have set above ong1(u8,v8), Eq. ~59!, is no longer efficient
at larger values. Here, we use a second upper bound, wh
may be is easily derived from Eq.~58!:

ug1~u8,v8!u<C3M ~u8!22ln ṽ8, ~62!

whereC3 is yet another positive constant. Provided with th
upper bound, we observe that

FIG. 6. Range of integration forC2
`(u). The contribution from

each of the regions I–IV, indicated in this sketch, is evaluated in
text.
6-11
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ug2III
` ~u!u<C4M2E

u/2

u

du8E
2u

`

dv8
ln2ṽ8

~u8!2~v82u8!3

<C5M2u23ln2ũ, ~63!

with C4 andC5 being positive constants.
We proceed by evaluating the contributiong2IV

` (u) from
region IV. Using again the inequality~62!, we find that

ug2IV
` ~u!u<C6M2E

AuM

u/2

du8E
u

`

dv8
ln2ṽ8

~u8!2~v82u8!3

<C7M2u25/2ln2ũ, ~64!

whereC6 andC7 are still other positive constants.
Finally, we turn to calculate the contribution toC2

`(u)
due to sources in region I, that is atu0<u8<AMu. To that
end we write the source functiong1 in the form

g1~u8,v8!5g1
`~u8!1D1~u8,v8!, ~65!

in which D1(u8,v8) vanishes at null-infinity. In Appendix C
we show that the contribution tog2

` due to thisv8-dependent
part of g1 is bounded from above at large retarded time b

ug2D
` ~u!u<C8M2u23ln2ũ ~66!

whereC8 is a positive constant.
It remains to calculate the contribution tog2I

` due to
g1

`(u). With the source wave being a function of retard
time only, the analysis is then exactly the same as the ab
analysis forC1

` . In analogy to Eq.~50!, we thus immedi-
ately obtain, to the leading order inM /u and inu0 /u,

g2I
` 522MI 1 u22, ~67!

in which we have defined

E
u0

AMu
g1

`~u8!du8.E
2`

`

g1
`~u8!du8[I 1 . ~68!

The first equality, accurate to the leading order inM /u,
stems from the fact that the integrand is convergent au
→` ~sinceg1;u22 at largeu).

Collecting the above results@Eqs. ~61!, ~63!, ~64!, ~66!
and ~67!# we conclude the following:~i! The dominant con-
tribution to g2

`(u@M ) @hence also toC2
`(u@M )# is only

due to sources located in the ‘‘main’’ region, namely atr
@M ; sources at smallr values have a negligible effect ong2

`

at late time.~ii ! To calculate the dominant contribution t
g2

`(u@M ), one is allowed to replaceg1(u8,v8) in Eq. ~58!
by g1

`(u). This does not affectg2
` to the leading order in

M /u.
Therefore, Eq.~67! approximates the ‘‘overall’’ late time

behavior ofg2 at null infinity. For the scalar wave itself w
shall thus have, by Eq.~56!,

C2
`~u@m!52~21! l 11~ l 11!! MI 1 u2 l 22, ~69!
04401
ve

which is analogous to Eq.~52!.
To summarize, we have found thatC2

` poses the same
late time behavior asC1

` , namely au2 l 22 inverse power-
law decay~for the compact initial data setup!. To find out the
relative amplitudes of these two terms at late time, one m
calculate the ratio of their coefficients,I 1 /I 0 . This will be
done in Sec. VIII, after we first analyze the behavior of t
general termCN of the iterative expansion.

B. Nth term of the iterative expansion

We would now like to understand the late time behav
of each of the higher order terms (N>3) of the iterative
expansion. In principle, this may be done in an induct
way, using Eq.~58!. We shall proceed byassumingthat, as
was demonstrated above forC1 andC2 , the dominant con-
tribution to CN

` at late time~for any N>1) is only due to
sources at null-infinity. Phrased differently, we adopt the
sumption thatlate time radiation at null-infinity originates
predominantly from scattering off spacetime curvature
null-infinity. It means, in particular, that it is only the asym
totically far region of spacetime whose structure affects
asymptotic late-time radiation at null infinity.

Accordingly, in order to obtain the late time form ofCN
at null-infinity, we will use Eq.~58! with the source function
gN21(u8,v8) replaced bygN21

` (u8), and with the upper
limit of the u8-integration set tou85AuM. This will pre-
sumably provide the correct form ofCN

`(u@M ) to leading
order in M /u, as was explicitly indicated in the caseN52.
The treatment of theN>3 cases is then fully analogous t
that of C2 , and the generalization of Eq.~67! is straightfor-
ward:

gN
`~u@M !522MI N21 u22, ~70!

in which we define

I N21[E
2`

`

gN21
` ~u8!du8, ~71!

and which is accurate to leading order inM /u and inu0 /u.
By Eq. ~56! this finally leads to

CN
`~u@m!52~21! l 11~ l 11!! MI N21 u2 l 22, ~72!

which generalizes Eqs.~52! and ~69!.
We conclude that each of the termsCN>1 in the iterative

series has a similar late time behavior at null infinity, that
a u2 l 22 inverse-power law decay. Numerical experimen
firmly support this observation, as demonstrated in Fig.
Consequently, one finds that, in general, to obtain the cor
overall amplitude of the scalar wave at null infinity~even
merely to the leading order inM /u), one must sum all con-
tributions from the various termsCN>1 . If this sum turns
out to converge, then the overall power-law should
u2 l 22.

A considerable simplification is achieved when the ca
uu0u@M is considered. This corresponds to an initial setup
6-12
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LATE TIME DYNAMICS OF SCALAR . . . . I. . . . PHYSICAL REVIEW D59 044016
which the pulse is specified where spacetime is appr
mately flat ~far outside the highly curved region!. In this
case, analytic arguments as well as numerical experime
both to be presented below, suggest that~i! the iterative se-
ries converges at null infinity at late time and that~ii ! the
dominating term of the expansion there isC1 , which well
approximates the ‘‘complete’’ waveC. ~The contribution
from the rest of the terms is smaller by orderM /u0 .)

FIG. 7. Late time tails of the iterative expansion terms. P
sented on a log-log scale are numerical results obtained forC1 ,C2

and C3 at v580000M ~approximating null infinity!, for the l
50,1,2 modes. Compact initial data for the propagation have b
specified betweenu525M andu5210M , and the radius of the
shell has been set toR53M . The results demonstrate theu2 l 22

late time decay rate predicted by the analytic calculation.
04401
i-
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VIII. CONVERGENCE OF THE ITERATIVE EXPANSION

To discuss the convergence properties of the iterative
pansion, we shall concentrate on the caseuu0u@M . In what
follows we argue that the ratio of any two successive ter
of the iterative expansion, when evaluated at null infinity
u@M , is given to the leading order inM /u0 by

CN11
`

CN
`

}M uu0u21lnuũ0u ~73!

~for N>1) with a proportion factor depending onN. Below
we present numerical results in firm support of this relatio
But first, we show that the validity of the ratio~73! is also
suggested using analytic considerations.

Throughout the following discussion we shall refer to t
limit R/u0→0 for simplicity. To that end we need to assum
that the limit CN

`(R/u0→0) exists, and that the function
CN

` are each independent ofR to leading order inM /u and in
M /u0 ~this is supported by numerical examination!.

To evaluate the ratioCN11
` /CN

` we shall have to figure
out how the various functionsCN scale with respect to the
parameteruu0u. To that end we first show that each of th
functionsgN(u,v) can be written in the form

gN~u,v !5u0
l 212N~ lnuũ0u!Nf N~ ū,v̄ !, ~74!

where f N are certain functions of only the dimensionle
variablesū[u/u0 and v̄[v/u0 . This form, which is valid
globally ~for any values ofu and v) to leading order in
M /u0 , may be verified using mathematical induction: By E
~22! we learn that Eq.~74! holds for g0 .9 Following the
inductive procedure, we now assume that Eq.~74! is valid
for a certain value ofN. We then obtain, forgN11 @using Eq.
~58! with x[u8/u0 andy[v8/u0#,

gN11~u,v !5u0
l 222N~ lnuũ0u!N

3 (
k50

l E
1

ū
dxE

max~0,ū!

v̄
dy

~y2ū! l~ ū2x! l 2k

~y2x!2l 2k13

3$ak1bkln@ ũ0~y2x!#% f N~x,y!. ~75!

For uu0u@M this may be written~neglecting terms which are
smaller by; lnuũ0u) as

gN11~u,v !5u0
l 222N~ lnuũ0u!N11f N11~ ū,v̄ !, ~76!

where we have defined

9To explore the scaling ofg0 with respect tou0 , it is convenient
to eliminate any scale parameters which may be characteristic o
initial data function G(u) by referring specifically to the cas
G(u)5d(u2u0). Provided that any possible scale characteristic
the initial date is much smaller thanuu0u, this cannot limit the
generality of our discussion.

-

n
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f N11~ ū,v̄ ![(
k50

l

bkE
1

ū
dxE

max~0,ū!

v̄
dy

~ ū2y! l~ ū2x! l 2k

~y2x!2l 2k13
.

~77!

Thus, by induction, Eq.~74! holds.
By virtue of Eqs.~74! and ~70! we then find that~for N

>1)

I N21}u0
l 112N~ lnuu0̃u!N, ~78!

which by Eq. ~72! describes the scaling of the function
CN

`(u@M ) with respect tou0 . The ratio~73! then follows
immediately.@We comment that for thel 50 mode, no loga-
rithmic factor is expected to occur either in Eq.~73! or in Eq.
~78!.#

Equation~73! suggests that thelate time behavior of the
scalar wave at null infinity is dominated byC1

`, provided
that uu0u@M . More accurately, it indicates that to the lea
ing order inM /u, in u0 /u and inM /u0 we have

C`5C1
` . ~79!

The significance of this result stems from the fact that
have a simple analytic expression forC1

` at late time.
Numerical investigation, regarding the behavior of t

functions CN
` as related to the value ofu0 , provides firm

~though qualitative! support to both equations~73! and~79!.
Examples of these numerical results are presented in Fig
9, and 10.

Note that Eq.~73! by itself does not tell us whether th
sum of the iterative expansion is convergent, as we do
know the form of the (N-dependent! proportion factor ap-
pearing in this expression. However, numerical experime
strongly suggest that the expansiondoes indeed converge
provided thatuu0u/M is large enough. Also, the rate of con
vergence seems to increase as we takeuu0u/M to be larger.
These features are also apparent in Figs. 8–10.

The amplitude of the various functionsCN may change
its sign during the early stage of evolution~as apparent in
Figs. 7 and 9!. Our numerical experiments suggest that t
kind of sign-changing occurs at larger and larger values ou
as N and u0 increase, ‘‘delaying’’ the formation of powe
law tails to later and later times. We could not rule out t
~somewhat bothering! possibility that for any value ofu and
u0 , there will exist someN0 such that for anyN>N0 sign-
changing would occur at a retarded time greater thanu. In
that case, our analytic considerations@especially the ones
leading to Eq.~73!# will not apply for all N. Nevertheless,
numerical examination shows that the convergence itse
not disturbed by such sign-changing.

Finally, a word of caution is in place: In our analyt
calculations we were taking into account only the contrib
tions to the functionsCN due to scattering off the
‘‘ r

*
23ln r* ’’ potential, which is the asymptotic form ofdV at

large distance. We have argued previously that contributi
due to the other terms in theM /r * expansion ofdV do not
04401
e
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FIG. 8. Relative amplitudes of the functionsCN at null infinity,
for various values of the parameteru0 . Shown are numerical result
describing thel 50 mode ofC1 ,C2 andC3 at v5105M ~approxi-
mating null infinity!, for the casesu05220M ,250M ,2200M .
Also shown for reference~as the dashed line! is the ‘‘complete’’
waveC, obtained by a direct numerical solution of the wave equ
tion ~7!. The results support the observation that the ra
uCN /CN11u decreases asuu0u/M is chosen larger, and that fo
uu0u/M large enough,C1

` becomes the dominant component of t
‘‘complete’’ scalar waveC, as suggested by analytic conside
ations. Note the independence of the amplitude ofC1 in the value
of u0 at late time, which agrees with the scaling rule~78! for the
monopole mode~where no logarithmic factor is involved!.
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LATE TIME DYNAMICS OF SCALAR . . . . I. . . . PHYSICAL REVIEW D59 044016
affect the behavior at null infinity at largeu. This, indeed, is
supported numerically, as demonstrated in Fig. 11. Howe
such terms~each giving an additive contribution to each
the functionsCN) do affect the exact amplitude of th
leading-order tail: For example, these terms give an ad
tional contribution to the amplitude ofC2

` , which ~in terms
of theM /u0 expansion! is of the same order as the amplitud
of C3

` . Therefore, to examine whether the sum of the ite
tive series converges to the actual ‘‘complete’’ waveC` ~at
u@M ), one must take into account the ‘‘complete’’ potent
dV. ~This, indeed, was done in obtaining the results p
sented in Figs. 8–10.!

FIG. 9. The same as in Fig. 8, this time for thel 51 mode of the
scalar field. The steep decreases in the amplitude ofC3 occur
where this function changes its sign~see the comment in the text!.
In the caseu052200M , a ‘‘remnant’’ of such a sign-changing a
u.1000M ‘‘postpones’’ the development of the power-law tail
later times.
04401
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IX. SUMMARY AND DISCUSSION

The problem of scalar wave evolution in a curved sphe
cally symmetric spacetime can be formalized mathematic
as a two-dimensional initial-value problem, with a no
trivial effective potential. In this paper we incorporated t
simple shell model in order to demonstrate the applicabil
and explore the features, of a new calculation scheme
handle this problem. This new scheme is based on a spe
perturbative decomposition of the wave~‘‘ the iterative ex-
pansion’’ ! which, if fact, converts the original homogeneo
non-trivial initial-value problem into an infinite hierarchy o
inhomogeneous initial-value problems, each having a sim
Minkowski-like effective potential. The resulting initial
value problems can then be treated analytically in an ind
tive manner, using the Green’s function in Minkowski spac
time.

Unfortunately, we could not give a full analytic treatme
concerning the convergence properties of our scheme. H
ever, some analytic considerations, firmly supported by
merical analysis, indicated that the role of the ‘‘small para

FIG. 10. Indications for convergence of the iterative schem
Presented~on a linear scale! are the ratios~a! C1 /C, ~b! (C1

1C2)/C, and~c! (C11C21C3)/C for l 50 and forl 51. Other
parameters areR55M ,u052200M andv5105M ~approximating
null infinity!. The results demonstrate the convergence of the ite
tive expansion for largeuu0u/M values at large retarded timeu.
6-15
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LEOR BARACK PHYSICAL REVIEW D 59 044016
eter’’ of the iterative expansion is played byM /u0 ~although
this parameter is not self-manifested in the wave equatio!.
It was strongly suggested that the iterative expansiondoes
converge at null infinity, provided that the support of t
initial data for the wave evolution is confined to large d
tances~small M /uu0u). Moreover, our analysis indicated th
under the above condition, the late time behavior of
‘‘complete’’ wave is well approximated at null infinity by
C1 , namely the first element of the expansion manifeste
late time. The last result is of special significance, since
late time form ofC1 at null infinity can be derived easily, a
shown in Sec. VI. Hence, foruu0u@m our iterative expansion
proves to be a simple effective tool for analyzing the la
time behavior of the scalar field at null infinity.

Here, it is important to distinguish between the issue
efficiencyof the scheme to that of itsusefulness. The iterative
scheme can still prove useful even whenM /uu0u is too large
for the expansion to converge efficiently~that is, forC` to
be well approximated by merelyC1): In all cases when the
scheme converges, it always predicts@by Eq. ~72!# that the
overall late time tail ofC` has the formu2 l 22 ~for the
compact initial setup!. The convergence may be ‘‘efficient’
~when uu0u/M is large enough!, allowing one to obtain a
simple analytic approximation forC` by calculatingC1 , or
else it may be ‘‘inefficient,’’ in which case our scheme st
provides a simple formal way to calculateC`, by successive
applications of the formula~55! ~e.g. using numerical meth
ods!.

We think the following is a reasonable physical explan
tion to the formal relation discovered between the smalln
of the parameterM /uu0u ~describing the distance at which th
initial perturbation originates! and the effectiveness of th
iterative expansion. As already argued by Price@2#, space-
time curvature at small distances acts as an~almost! impen-
etrable potential barrier for the long waves of the scalar fie
These long waves are the ones dominating the late time
havior of the field~the effective frequency goes to zero at

FIG. 11. Contribution from higher order terms indV to CN
` is

negligible atu@M . This is demonstrated here for thel 51 mode in
the caseR53M and u052200M . Plotted are the ratios~a!
C1 /C1* , ~b! C2 /C2* , and ~c! C3 /C3* , where the functionsCN

are those defined with the ‘‘complete’’ potentialdV, and the func-
tions CN* are defined withdV taken to leading order inM /r * .
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goes to infinity!. Since long waves coming from large dis
tance cannot reach the highly curved region~these waves are
effectively scattered off the potential tail at large distance!,
their evolution takes place in the large-r region of spacetime.
Thus, for a perturbation originating at large distan
(uu0u@M ), the late time behavior of the field should depe
mainly on the structure of spacetime at a large distance;
tails of the spacetime curvature at the highly curved~smallr )
region should be less relevant for this behavior. This may
longer be true if the initial perturbation is specified at sm
r, and thus allowed to evolve through the highly curved
gion. Now, the iterative scheme has the mathematical st
ture of a perturbative expansion, with convergence proper
that depend on how much candV be considered a ‘‘small’’
amount. This function gets arbitrarily small asr gets arbi-
trarily large, but at small distances it is finite, and not sma
However, the above reasoning implies that the form ofdV at
small distance seems to be irrelevant to the wave behavio
late time, provided that the initial perturbation originates
large distance (uu0u@M ). The above argument supplies
physical explanation of our formal result that the effectiv
ness of the iterative scheme increases asuu0u/M is taken
larger.

In this paper we have focused on analyzing the wave
null infinity. The results we obtained have a clear physi
significance with respect to a distant static observer: Alo
world-lines of constantr we haveDu5Dt, whereDu and
Dt are, respectively, the retarded time and the~flat-space!
static observer’s time elapsed since the ‘‘main pulse’’ of
diation had reached the observer. Now, forr very large,
‘‘null-infinity’’ is in fact the region Dt!r .10 Thus, in accor-
dance with our results at null infinity, at timesM!Dt!r
such an observer observes aC}(Dt)2 l 22 tail @or a C
}(Dt)2 l 22 tail in the case of a static initial setup#.

There is yet another important outcome from the analy
at null infinity: In the accompanying paper we apply a simp
method to determine the late time behavior of the sca
wave outside the Schwarzschild black hole atany constant
radius, down to the event horizon. This is made possib
only if one is provided with the form of the wave at nu
infinity, which shall be calculated in Schwarzschild spac
time using the same iterative scheme developed in
present paper. Thus, even though the iterative scheme se
in general, not effective at small distances, it still constitut
in our approach, a crucial step in establishing a comp
description of the wave behavior at late time.

Generally speaking, we may point out the following a
vantages of the new technique:

~i! Most important, the new scheme is the first one
rectly extensible to realistic rotating black holes, as shall
described in@17#.

~ii ! The iterative scheme provides a convenient form
framework for studying the effect of the non-trivia
curvature-induced part~‘‘ dV’’ ! of the effective potential on

10The spacetime regionDt!r , for r very large, may be properly
named~after Leaver@9#! ‘‘the astrophysical zone’’ of the waves.
6-16
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the evolution of the fields. This effect is isolated in our a
proach by explicitly splitting the wave into its ‘‘trivial’’~flat
space! part C0 and a curvature-induced partC2C0 , in
which each termCN arises fromN scattering events off the
curvature potentialdV.

~iii ! We already discussed the fact that the iterative se
can be formally viewed as an expansion of the scalar fiel
the parameterM /u0 . This feature provides a convenient fo
mal way to explore and quantify the dependence of the w
behavior on the initial distance of the~compact! perturbation
~an issue somewhat overlooked in previous works!.

Apparently, the iterative scheme developed in this pa
can be directly applied to any asymptotically flat spherica
symmetric spacetime~possessing an effective potential ba
rier for the waves!. That would basically require only th
modification of the curvature potentialdV to that character-
izing the new spacetime under consideration. The result
our analysis were consistent with the general assumption
the small distance details of spacetime structure do not a
the behavior of the wave at asymptotically late time.~This
was demonstrated forC1 andC2 by an explicit calculation.!
Thus it seems reasonable to assume that the characterist
this behavior would be completely determined by merely
large-r asymptotic form ofdV.

In the accompanying paper we use the iterative schem
analyze the behavior of scalar waves at null infinity in t
‘‘complete’’ Schwarzschild manifold. In this case the deta
of the analysis become somewhat complicated by the p
ence of the highly curved region near the horizon. Yet,
shall find that at late time the wave behaves essentially
same as in the shell model, consistent with the above ind
tions.
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APPENDIX A: UNIQUENESS OF THE BOUNDARY
CONDITION PROBLEM

The purpose of this appendix is to show that the init
value problem for the scalar wave, with a boundary con
tion, as defined in Eqs.~7!, ~9! and ~10!, has a unique solu
tion. ~The formal issue of uniqueness is not trivial because
the divergence of the potential function at the center of sy
metry in the 111 representation.! It will also be verified that
each of the componentsCN of our iterative expansion is
uniquely defined.

1. Uniqueness ofC0

First, it will be shown that the solution forC0 ~the
‘‘Minkowski-like’’ first component of the iterative expan
sion!, stated in Eq.~19!, is unique. To that end we examin
the most general solution to the wave equation~17!, given by

C05 (
n50

l

An
l

g0
~n!~u!1~21!nh0

~n!~v !

~v2u! l 2n
, ~A1!
04401
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e
e
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in which the coefficientsAn
l are those given in Eq.~20!, and

whereg(u) and h(v) are ~yet! arbitrary functions.~In flat
spacetime, these two functions describe the outgoing and
going components of the wave, respectively.! It will now be
shown that although the functionsg(u) and h(v) are not
uniquely determined by the initial and boundary condition
the waveC0 is unique.

Consider first the evolution of the wave between retard
timesu5u0 andu50 ~see Fig. 2 for reference!. In this re-
gion the wave equation possesses no irregular points,
thus the existence and uniqueness of the solutionC0 are
guaranteed relying on standard theorems~see, for example,
@20#!. Therefore, the solution stated in Eq.~19a! is unique at
u<0.

We thus focus on the regionu>0, where we have to show
that with the conditionsC0(u50)50 and C0(r 50) im-
posed on the general solution~A1!, the trivial solution
C0(u>0)[0 is unique.@Because of the linearity of the
wave equation, to verify uniqueness it is enough to consi
the case in which the wave vanishes on the initial rayu
50.11 Thus the use of the conditionC0(u50)50 in this
context is regardless of the fact that the waveC0 actually
vanishes along the outgoing rayu50.#

Imposing the conditionC0(u50)50 on the general so
lution ~A1! leads to a linear inhomogeneous ordinary eq
tion for the functionh(v), analogous to Eq.~21!. By analogy
to Eq. ~22!, the general solution to this equation reads

h~v !5
1

~ l 21!! (n50

l

An
l g0

~n!~0! v l 11E
v

`~v2v8! l 21

~v8!2l 2n11
dv8

1 (
n5 l 11

2l
1

n!
cnvn, ~A2!

where cn are l arbitrary parameters. Upon calculating th
integral, we find thath(v) is just a polynomial of order 2l ,

h~v !5 (
n50

2l
1

n!
cnvn, ~A3!

with its first l 11 coefficients given by

cn52g0
~n!~0! for 0<n< l . ~A4!

Next, we require thatC0 should vanish atr * 50 ~that is
for u5v). By Eq. ~A1! this requirement makes the func
tional equalityg(u)52h(u) compulsory. Note that this re
sult accommodates Eqs.~A3!,~A4!, allowing both conditions
C0(u50)50 and C0(r * 50)50 to be satisfied simulta
neously without forcing the functionsg(u) andh(v) to van-
ish identically.

11For if there exist two solutions atu>0, both subject to the sam
initial and boundary conditions, then their difference admits
same wave equation, with zero initial and boundary conditio
Then, showing that the difference is identically zero implies that
two original solutions must coincide.
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We conclude thatC0 has the form

C05 (
n50

l

An
l
P l

~n!~u!2~21!nP l
~n!~v !

~v2u! l 2n
, ~A5!

wherePl are polynomials of orderl @the (l 11)th through
(2l )th powers of the polynomials vanish independently
the summation, in view of Eq.~23!#. Notice that formally,
C0 vanishes along the rayu50 for any polynomialPl what-
soever, as the polynomial coefficientscn are arbitrary in our
construction.

The last remark is important, since it directly implies th
C0 vanishesanywhereat u>0. For given a specific value o
retarded timeū.0, we may transform to the new coordinat
x[u2ū andy[v2ū, in terms of which we have

C05 (
n50

l

An
l
P l

~n!~x1ū!2~21!nP l
~n!~y1ū!

~y2x! l 2n

5 (
n50

l

An
l
P̄l

~n!~x!2~21!nP̄l
~n!~y!

~y2x! l 2n
, ~A6!

whereP̄l is still another polynomial of orderl. The last ex-
pression vanishes atx50 ~for any v) regardless of the form
of the polynomial, and thus we find thatC0 vanishes also
along the rayu5ū. Since the value ofū is arbitrary, we are
led to the conclusion thatC0 must vanish identically atu
>0. Therefore, the solution~19! for C0 is unique.

2. Uniqueness of the functionsCN

To show that the functionsCN , for N>1, are unique, it is
enough to verify that the Green’s functionG is unique. Then,
all function CN are unique by construction.

To discuss the uniqueness of the Green’s function,
refer to a source point at (u8,v8), as sketched in Fig. 3. In
region I ~see the figure! existence and uniqueness are gu
anteed by standard theorems@20#. In region II the Green’s
function admits the general form~A1!, as doC0 ~both func-
tions obey the same homogeneous field equation in this
gion!. In the expression corresponding to the Green’s fu
tion we shall denote the two functions ofu andv by gG(u)
andhG(v) respectively.

The value of the Green’s function along the outgoing r
u5v8, dictated by the evolution in region I, is unity. Henc
if the boundary conditionG(r * 50)50 is to be satisfied,
then there has to be a discontinuity in the Green’s functio
retarded timeu5v5v8 ~the left vertex of the dark-colored
rectangle in Fig. 3!.

It can be shown that no solution exists for the Gree
function, which is continuous alongu5v8 ~with the single
point u5v5v8 excluded! and, at the same time, satisfies t
boundary condition. For if we assume thatG(u→(v8)1)
51, then we shall have the functionhG admitting the form

hG~v !5 (
n50

2l
1

n!
cn~v2v8!n ~A7!
04401
t

e

-

e-
-

y

at

s

@analogous to Eq.~A3!#, where this time the coefficientscn
shall read

cn5H 2gG
~n!~v8!, 0<n< l 21,

2gG
~n!~v8!11, n5 l .

~A8!

This cannot be accommodated by the requirement
hG(u)52gG(u), necessary for the boundary condition
hold. Thus the Green’s function cannot be continuous alo
u5v8.

Now, the Green’s function can still obey the field equ
tion at u5v8, provided that the discontinuity along this ra
is constant in magnitude for allv.v8. This can be verified
by writing G5G3u(u2v8)1G3u(v82u), and substitut-
ing into the equation for the Green’s function. One there
finds that for this equation to be satisfied atu5v8, we must
haveG,v„u→(v8)1

…50, and thusG„u→(v8)1
…5k, where

k is constant. By analogy to Eq.~A8! we find that in this case
hG

( l )(v8)52gG
( l )(v8)1k, which implies that the boundary

condition is violated, unlessk50. Hence, the Green’s func
tion must ‘‘jump’’ to zero right after retarded timeu5v8.

Then, by the discussion regardingC0 , we conclude that
the only solution to the Green’s function in region II, subje
to the boundary condition at the origin and continuous
erywhere except on the rayu5v8, is the trivial solution
G(u.v8)[0.

3. Uniqueness ofC

Now, consider the initial value~and boundary condition!
problem for the ‘‘complete’’ scalar waveC in the shell
model. To verify that a solution is unique, again we analy
the situation of zero initial data~on u5u0 andv50), show-
ing that in this case the null solution (C[0) is unique.

At u<0, the existence and uniqueness ofC are assured,
relying on standard theorems. Thus the trivial solutionC(u
<0)[0 is unique. Particularly, we find thatC vanishes
along the rayu50.

Now, consider the regionu>0,v<2R, represented in the
diagram of Fig. 12 by the triangleABC. In this portion of

FIG. 12. Uniqueness of the solution forC ~see explanation in
the text!.
6-18
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spacetime~confined to the flat interior of the shell! C obeys
the same equation asC0 , and is subject to the boundar
condition atr * 50 and to the zero initial condition along th
null segmentAB ~see the figure!. By the above discussion
~regardingC0) we deduce thatC must vanish in the portion
ABC. In particular, we find thatC is zero along the null
segmentBC. This, in turn, together with the fact that th
wave vanishes along the rayBD ~see figure!, implies ~again
by standard theorems! that C vanishes anywhere inside th
region represented in Fig. 12 by the rectangleBDFC.
Thereby we have shown that the wave vanishes anyw
between retarded timesu50 andu52R.

We can now proceed, referring next to the triangleCEG
~see figure!, to show thatC vanishes also between retard
times u52R and u54R. The same procedure may be a
plied an arbitrary number of times, showing that the waveC
must vanish anywhere. Since the wave equation is linear
have thereby shown that the solution forC ~with arbitrary
initial data and zero boundary condition at the center of sy
metry! is unique.

APPENDIX B: DERIVATION OF g1
` FOR l>1

In this appendix we give a detailed derivation ofg1
`(u)

@Eq. ~47!# for the casel>1. The starting point to our calcu
lation is Eq.~43!. It has been shown that ther

*
23 potential

@namely the term proportional toa in Eq. ~41!# gives no
contribution tog1

` . We therefore seta50, then integrate Eq
~43! by parts once with respect tov8. Using Eq.~32!, this
yields

g1
`~u!52

b

l ! (n50

l

Bn
l E

u0

u

du8g0
~n!~u8!~u2u8!n22

3F ln~ ṽ82ũ8!1 (
m50

l
l !

2l 2n2m12G , ~B1!

with the coefficientsBn
l given in Eq.~45!.

To proceed, consider first the logarithmic part of Eq.~B1!.
We integrate by parts each of the terms in this partn succes-
sive times with respect tou8. As explained previously, com
pactness ofg0(u) assures that the resulting surface ter
would all vanish. One is thus left with

2
b

l ! (n50

l

Bn
l ~21!nE

u0

0

du8g0~u8!
]n

]u8nF ln~ ṽ82ũ8!

~u2u8!22nG .

~B2!

Summing first then50 andn51 terms yields

2
b

2~2l 11!
E

u0

0 g0~u8!

~u2u8!2
du8, ~B3!

in which the vanishing of the logarithmic dependence ari
from the equality ofB0

l andB1
l , which was also responsibl

for the vanishing of the contribution from scattering off th
‘‘ r

*
23’’ potential.
The remaining terms in the sum in Eq.~B2! take the form
04401
re

e

-

s

s

b(
n52

l

(
j 50

n22

Bn
l n! ~n22!! ~21!n1 j

j ! ~n2 j 22!! ~n2 j !Eu0

0 g0~u8!

~u2u8!2
du8

5b
l 21

4l ~ l 11!
E

u0

0 g0~u8!

~u2u8!2
du8 ~B4!

~where the expression given for the sums overj andn is not
too difficult to verify, using simple combinatorial manipula
tions!.

The sum of two expressions given in Eqs.~B3! and ~B4!
corresponds to the logarithmic part of Eq.~B1!. We still have
to consider the contribution of the non-logarithmic term
Integrating these terms by partsn times with respect tou8
~with the resulting surface terms again vanishing!, we find
that only then50 andn51 terms survive, with their sum
given by

2
b

2~2l 11! (m50

l F 1

2l 2m13
2

1

2l 2m12G
3E

u0

0 g0~u8!

~u2u8!2
du8, ~B5!

which is

b

4~ l 11!~2l 11!
E

u0

0 g0~u8!

~u2u8!2
du8. ~B6!

We finally obtain g1
`(u) by collecting the expression

~B3!, ~B4! and ~B6!, and settingb58Ml ( l 11) @by Eq.
~42!#. This produces Eq.~47!

APPENDIX C: CONTRIBUTION TO g2
` DUE TO D1„u8,v8…

The purpose of this appendix is to prove Eq.~66!. This
equation sets an upper bound on the contribution tog2

` due
to the v-dependent part ofg1 , namelyD1(u,v) @defined in
Eq. ~65!#.

We first show that the following upper bound is app
cable toD1(u,v) at larger:

uD1~u,v !u<CMr
*
22ln r̃ * , ~C1!

in which C is a positive constant. To verify the validity o
this inequality, examine the explicit form ofD1 , derived
directly from Eq.~58!,

D1~u,v !5 (
k50

l E
u0

0

du8E
v

`

dv8
~v82u! l~u2u8! l 2k

~v82u8!2l 2k13

3@ak
l 1bk

l ln~ ṽ82ũ8!#g0~u8!. ~C2!

Now, since (v82u)<(v82u8) and (u2u8)<(v82u8),
we find that there exist positive numbersC8,C9,C- andC,
such that
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uD1~u,v !u<C8ME
u0

0

du8E
v

`

dv8
ln~ ṽ82ũ8!

~v82u8!3
ug0

`~u8!u

<C9ME
u0

0

du8
ln~ ṽ2ũ8!

~v2u8!2
ug0

`~u8!u

<C-M
ln~ ṽ2ũ!

~v2u!2 Eu0

0

du8ug0
`~u8!u

<CMr
*
22ln r̃ * , ~C3!

which confirms Eq.~C1!.
We are now in position to evaluate the contribution ofD1

to g2
`(u@M ). By Eqs. ~58! and ~C1! we deduce that this

contribution~in absolute value! is bounded from above by
ys

a

-

s

04401
M2(
k50

l

CE
u0

0

du8E
u

`

dv8
~v82u! l~u2u8! l 2k

~v82u8!2l 2k15
ln2~ ṽ82ũ8!.

~C4!

Since (v82u)<(v82u8) and (u2u8)<(v82u8), we find,
in turn, that the last expression is bounded from above b

C8M2E
u0

0

du8E
u

`

dv8
ln2~ ṽ82ũ8!

~v82u8!5

<C9E
u0

0

du8
ln2~u2u8!

~u2u8!4
<CM2u23ln2ũ, ~C5!

for u@M . @Here,C8,C9 andC are some positive numbers
other than in Eq.~C3!.#

The inequality~66! is thereby proved.
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