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Topological black holes in the dimensionally continued gravity
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We investigate topological black holes in a special class of Lovelock gravity. In odd dimensions, the action
is the Chern-Simons form for the anti—de Sitter group. In even dimensions, it is the Euler density constructed
with the Lorentz part of the anti—de Sitter curvature tensor. The Lovelock coefficients are reduced to two
independent parameters: the cosmological constant and gravitational constant. The event horizons of these
topological black holes may have constant positive, zero, or negative curvature. Their thermodynamics is
analyzed and electrically charged topological black holes are also considered. We emphasize the differences
due to the different curvatures of event horizof&0556-282(99)03702-9

PACS numbe(s): 04.20.Jb, 04.20.Gz, 97.60.Lf

I. INTRODUCTION holes in Einstein-Maxwell theory, which approach asymp-
totically anti—de Sitter spaces, the topological dilaton black
Over the past few years there has been a lot of interest iholes are asymptotically neither the anti—de Sitter spaces nor
black holes in anti—de Sitter spacetimes. This study is motide Sitter spaces or Minkowski spacetimes. But the negative
vated by the discovery of Bados-Teitelboim-ZanelliBTz)  effective cosmological constant plays a crucial role in the
black holes [1], which are exact solutions in three- €Xistence of these black hole solutions, as the negative cos-
dimensional Einstein gravity with a negative cosmologicalmological constant does in Einstein-Maxwell theory.
constant, and are locally equivalent to a three-dimensional In the present paper, we would like to investigate topo-
anti—de Sitter space. That is, the BTZ black holes can béogical black holes in higher dimensional spacetimes. In
constructed by identifying some discrete points along a boodtinstein-Maxwell theory, higher dimensional, spherically
Killing vector in the three-dimensional anti—de Sitter spaceSymmetric black holes have been studied by Myers and Perry
[2]. Using such kinds of identifications, so-called constan{23]. And their analogues in Brans-Dicke theory have been
curvature black holes can also be constructed in fourinvestigated recently if24]. Therefore, four-dimensional to-
dimensional[3] as well as higher dimensiong] anti—de pological black holes have their natural generalization in
Sitter spacetimes. The Euclidean manifold topologies ofigher dimensional Einstein-Maxwell theory with a negative
these black holes aRP~1x S, whereS! is the topology of ~ cosmological constant. For example, there are the static to-
the event horizons, in contrast with the usual topology ofPological black holes in four-dimensional spacetimes,
black holesR?x SP~2. Because of the unusual asymptotic

behavior of these constant curvature black holes, however, 87M  167°Q° r?|
identifying the globally conserved quantities seems difficult ds’=—| k- wy T + w22 2 dt
(for a quasilocal formulation s€&]). 2
On the other hand, except for the Kerr-Newmann-anti-de 87M  16m2Q% r2| "
Sitter black hole, whose event horizon has topol&jy in +| k— + Gt —2) dr2+r2ds2,
four-dimensional Einstein-Maxwell theory with a negative w2 I wyr |
cosmological constant, it has been found recently that there (1.

exist black hole solutions whose event horizons may have a

zero or negative constant curvature and their topologies af\ﬁ/heredzg is the line element of a two-dimensional hyper-
no longer the two-spherg?. Because of the different topo- surfaceS., with constant curvature?

logical structures of even horizons, the properties of these

black holes are quite different from those of black holes with dé?+sirfedg®  for k=1,

the usual spherical topology horizon. These black holes have 2 2 24,2 B

been studied extensively in many aspects such as exact so- dy5=4 d¢"+6%dé for k=0, 1.2
lutions [6—10], thermodynamics[11,17], pair production dé?+sintfedp? for k=-—1.

[13], gravitational collaps§l4,15, and otherg16-21].

So far, most of the works have been limited to EinsteinHereM andQ are the mass and charge of the black holes,
gravitational theory. Quite recently, Klemfi0] has found — 3l 2 is the negative cosmological constant, anglis the
topological black hole solutions in the Weyl conformal grav-area of the horizon hypersurfads,. In Eqg. (1.2), without
ity. In a previous paper, we have investigated topologicaloss of the generality, we have used coordinates in which the
black hole§22] in a class of dilaton gravity with a Liouville- constant curvature of the two-dimensional hypersurface of
type dilaton potential. Differing from the topological black the event horizon is 1, 0, and 1, respectively. Wherk

0556-2821/99/5@1)/04401313)/$15.00 59 044013-1 ©1999 The American Physical Society



RONG-GEN CAlI AND KWANG-SUP SOH PHYSICAL REVIEW [»9 044013

=1, solution (1.1) is just the Reissner-Nordstro-anti-de  general generalization to higher dimensions of Einstein grav-
Sitter black hole spacetime and the event horizon has topolty. The Lovelock action is a sum of the dimensionally con-
ogy S°. Whenk=0, if one identities the coordinatésand¢  tinued Euler characteristics of all dimensions below the
with certain periods, the resulting topology of event horizonspacetime dimension (=3) under consideration. It can be
is a torusT2. The event horizon is a hyperbolic surface aswritten as[26]

k=—1. Of interest is to note that the event horizon still

appears even if the mabsis negative in that case, and such n

kinds of negative mass black holes might be formed by regu- =KD ayl,, (2.1

lar gravitational collaps¢14]. In addition, because of the p=0 "P

different topological structures of event horizons, their ther-
modynamic behaviors are quite differditl,12. As a natu-

ral extension, we have topological black hole solutions in
higher dimensional Einstein-Maxwell theory with a negative
cosmological constamt=—(D—1)(D—2)/2%:

ere

| :j falmaDRalaZ/\' .. /A R&2p-182p/\ @82p+1/\ . . . /\ %D,

167M 1672Q? r2 (2.2
ds?=—| k— + +—|dt?
( (D_z)wD_zrD73 wZD—Z I,2(D73) |2
Here €2 is the local frame one-formRR?, is the curvature
167M two-form defined afk®,=dw?,+w?./Aw®,, andw?, is the
B (D—2)wp_, P23 spin connectiona;={0,1, ... D—1}. The coefficientsa,

are arbitrary constants with dimensidength]”(° 2P and

16m2Q2  r2\ ! , « has units of action.
t———o 32 dr2+r2d33_,, (1.3 The Lovelock actior(2.1) has an advantage which keeps

wp—of ! the field equations of motion for the metric of second order,
as the pure Einstein-Hilbert action. But it included/2]
arbitrary constantsy,, which makes it difficult to extract
physical information from the solutions of the equations of
motions. In[26] a proposal has been suggested to reduce

whered3 2 _,= y,,,dx™dx" is a (D —2)-dimensional hyper-
surfaceX_, with constant curvaturel{—2) (D — 3)k, and
wp_» IS its area. Without loss of generality, one may nor-

malize the constant curvature ko=1, 0, and—1, respec- .these arbitrary constants to two: a cosmological constant and

tlvely._Thesg black holes_ have S'm"af properties as those 9 gravitational constant. This proposal was made by embed-
four-dimensional spacetime. For a discussion of higher di-

. ; ding the Lorentz group S@(—1,1) into a larger group, the
T ot o e s ot consigefM=de Siter group ST 1) In s vy Lovelock
topologieal black holes in so-called dimencionally continuedeCY IS divided into two different branches according to the

poog ; | . . Y spacetime dimensions: odd dimensions and even dimensions.
gravity [26]. This theory will be reviewed briefly in the next L X
. ) . . The coefficientsy, are given by
section. The topological black hole solutions will be pre- P

sented and discussed in Sec. Ill. Section IV is devoted to the

case including the Maxwell field. We summarize our results 1 [n-1 b2
in Sec.V. In the Appendix we will discuss the thermodynam- D-2p| p | P for D=2n-1,
ics of the topological black holed.3) in Einstein-Maxwell ap= (2.3
theory. N _pia _
| p for D=2n,
p
II. DIMENSIONALLY CONTINUED GRAVITY
Dimensionally continued gravity is a special class ofwherel is a length.
Lovelock gravity[27], which may be regarded as the most In odd dimensions, the Lagrangidly,,—; is
n—-1
Lon-1=K D, ap€y, .. ,aDRalaZ/\. -+ /AR®p-1%2p/\g?20+1/\ . . . \ %D, (2.9
0
For later convenience, units are chosen so that
I
K for D=2n-1, (2.5

~ (D-2)!wp_»

where wp_, is the area of ald —2)-dimensional hypersurfacgy _, which will be defined later. In even dimensions, the
Lagrangianl,, is given by
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Lon=k(R312%2+|2e31/\e22)\. .. /\(R3-1%D+| ‘Zeanl/\eaD)ealaz, A (2.6)

D!
where we choose units so that
|2

K:2D(D—2)!wD,2 for D=2n. 2.7

In the case® =4 andD = 3, the two Lagrangians reduce to that of Einstein gravity with a negative cosmological constant. For
details of the construction of the two Lagrangians [<4.
Correspondingly, the equations of motion from E(&4) and(2.6) can be derived as

(Ru22+4]~221/\@®2)/\ . . . /\(R%2n-332n-24| ~2g2N=3/\ @21~ 2) €aay-- _32n71=O (2.8
in odd dimensions@=2n—-1) and
(Ru22+]~221/\e?2)/\. . . /\(R¥2n-332n-24 | _zezn_3/\e2”_2)/\e2”_1eala2_ ) ,a2n=0 (2.9

in even dimensions§=2n), from which it is easy to see zon may be sphere, torus, or other higher genus Riemann
that anti—de Sitter space is a special solution to these equaurfaces.
tions of motion.
In [26], the static, spherically symmetric black hole solu- A. Static solutions and general consideration
tions are obtained. The metric of the black hole solutions is of thermodynamics

In order to obtain simplified equations of motion, it turns
out that it is more convenient to work in the Hamiltonian
form [26]. The Hamiltonian formulation of the Lovelock ac-

ds?=—g?(r)dt?+g~?(r)dr?+r2dQ?,  (2.10

where tion (2.1) has been provided if80]. The Hamiltonian con-
straint is

,_[1=@MMY D (r? for D=2n,

= 21 =_ N
Il 1-M+ )YV (1/1)2 for D=2n-1, 217 H=—deth;;)

n—-1

: 2. : : D=20 iy is misiomisie, . Rizo-1i2
M is the mass of the hole, amt{)“ is the metric on the unit X 2 —pap5[j i p]Ri 12RIs4. . Rlze-2p,
(D —2)-sphere. Although this black hole soluti210 has p=0 2 Lo e s Zptzp
different quantum properties from the higher dimensional (3.1

Schwarzschild—anti-de Sitter black hole, its Euclidean topol-

ogy is still R?xS°~2, where S°~? is the topology of its whereR} are the spatial components of the Riemann tensor.

event horizon. That is, its event horizon is aThey depend on the velocities through the Gauss-Codazzi
(D —2)-dimensional sphere. In this work, we pay attentionequations

to black holes whose event horizons albe<2)-dimensional

h_ypersurfaces W|th_ constant curvature which may be posi- Rijki = Rijii + KikKj — KiK., (3.2
tive, zero, or negative, and hence the topology of event ho-

rizon is no longer the @ —2)-dimensional spher&®~2.  where Rij« are the components of the intrinsic curvature
Here we should mention that, in this dimensionally contin-tensor of the spatial sections akg is the second fundamen-

qed gravity considered above, Oppt_anheimer-Snyder gravitds| form defined ax; :(1/2NJ.)(_hij +N;;+N;.), where
tional collapse in the case of even dimensions has been stug- Nt andN' are the reduced metric Iépse function. and

ied recently by lha and Lemdg28]; it has been found that gpitt vectors in the standard Arnowitt-Deser-Mis&DM)
even dimensional black hol¢2.10 emerge as the final state jgcomposition of spacetime.
of regular dust fluid. The wormhole solutions have been \ye are looking for static topological black hole solutions.
found in[29]. So the metric is assumed as
Iil. TOPOLOGICAL BLACK HOLES AND ds’=—N*(r)g?(r)dt*+g~2(r)dr’+r?dsg _,,
THERMODYNAMICS (3'3)

In this section we discuss topological black hole solutionsvhere dE%_2= Yo X)dX™MdX" is the metric of the
to the equations of motio(2.8) and(2.9). The event horizon (D —2)-dimensional hypersurfacEp_, with constant cur-
of these topological black holes is ® ¢ 2)-dimensional vature ©—2)(D—3)k and its area is denoted hyp_»,
hypersurface with constant curvature. The topology of horiwhich is just the one in Eqg2.5) and (2.7). The functions
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N?(r) andg?(r) need to be determined. In the met(&3) dE dN
the nonvanishing spatial components of curvature tensors are a0 7o (3.8
f(r) . .
mimy_ 2 7 slmimy] which have solutions
nny 2 Clngng]
F =~ =
v [r,g(r)]=C=const,
Rin= 5 On s (3.9
r N(r)=N..=const. (3.9

where a prime denotes the derivative with respecat tmd ) )
f(r)=k—g?(r). Substituting Eqs(3.4) into the Hamiltonian Here the integration constai,, can be taken to be 1 by

constraint(3.1) yields rescaling the time coordinateAnd the constan€ is related
to, up to an additive constant, the madsof black holes:

!

H=—(D-2)!\yg !

n—1 k_ 2\ P
D ap(D—Zp)( > )
p=0 r

C=M+C,. (3.10
(39 This additi tart, is achieved by choosi
. - . is additive constant, is achieved by choosing an appro-
Using the coefficient€2.3) and units(2.9) and(2.7), one has priate reference background. Thus we obtain the metric func-
the action ; 2(ry-
tion g<(r):
I=(t2—t1)f dr NF'(r)+B, (3.6 oM 428\ M= 2
_ 0 +(I_> for D=2n,
r
whereB stands for a surface term and the functfors given  g2(r)= )
~ r
by k—(M+Cq)¥n-D 4 T for D=2n-1.
1
Er[kJr(r/I)Z—gz(r)]"*1 for D=2n, (3.11

Flr,o(r)]=
[k+(r/1)2—g?(r)]" 1 for D=2n-1. The mass for the even dimensional solutions has the dimen-

(3.7) sions of length, and is dimensionless for the odd dimensional
solutions. This is because we have chosen the different units
Varying the action(3.6) with respect td\ andF, one has the (2.5 and(2.7). To analyze the singularities of the solutions

equations of motion (3.11), let us write down some curvature invariants
~ \ 1[n—1)
D(D—-1 2D 1/2M+2C
_ D )+ +D2-5D+2| o ———2 for D=2n,
12 (D—2)2 r r
R D(D-1) (D-2)(D-3) (312
_ v + P (M+Cg)¥n—b for D=2n-1,
1 (D—-2) D(D-2) 2(D—2)(D—3)
RugR¥=51(9)"1+ ——(¢)"(¢")' + ——5—[(@") P~ —————(k=g")(g")’
2r r
D-2)(D-3
+ %(k—g%z, (313
r
2(D-2) 2(D—2)(D-3)
RagysRP7°=[(g?)"1?+ r—z[(gz)’]z+ r—4(k—92)2- (3.19

Before proceeding to discuss the soluti@ll) for dif- one has a black hole with event horizon being a
ferent curvature, let us consider generally the thermody- (D —2)-dimensional hypersurfac&,_, whose curvature
namics of black hole solution8.3). Assuming that the met- may be positive, zero, or negative. Apart from the topology
ric (3.3) describes a black hole with the event horizom at structure of horizons, to determine the Hawking temperature
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of the hole, it turns out that it is convenient to continue the e, IM

metric (3.3 to its Euclidean manifold with the Euclidean S=j T 5 dr. (3.20

. K 0 ry

time r=it: Qi
ds®=N?(r)g?(r)dr?+g~2(r)dr?+r2d33_,. Thus, once given the Hawking temperature and the mass

(3.19 expressed by the horizon radius and charge®);, one can
obtain the entropy of the black hole and need not know in
For an arbitrary period of the Euclidean time there is a  which gravitational theory the black hole solutions are.
conical singularity at the black hole horizon. To remove this  For the solutiong3.11), the charge®; are absent. Using
singularity in the Euclidean manifol(8.15, one has to take the Hawking temperaturé3.17), we obtain the black hole
a special period whose inverse just gives the Hawking tementropy of solutiong3.11) :
perature of black holes:

ry r. 21n—-2
B (N2g?)’ (3.16 S:27-r(n—1)J0 ro| k+ I—) dr,
~ 4aN | '
r=rs r, 21n—1
2 =t _
For the solutiong3.11), using Eq.(3.16 yields the Hawking ™ok I k} (323
temperature of the holes:
) in even dimensions and
k+(2n—=21)(r . /I
o - + _ _ _+
hi for D=2n-1. 5
2’77'2 r+n n_2 r+ 2m
=47T(n—1)f 2 |l KR
Usually the black hole entropy satisfies the so-called area 0 m=0
formula. That is, the black hole entropy equals one-quarter N2 in—2\ 1 [r,\2m+1
the event horizon area. But this formula does not always — =4m(n—1) > ( |—+) Kn—2-m
hold. It has been proved that this formula holds only for m=0 | m j2m+1
Einstein gravity and, in fact, black hole entropy comes from (3.22

a surface term of gravitational action at the horizon

[24,31,32. That is, the black hole entropy is related to thein odd dimensions. Obviously, they do not obey the usual
gravitational theory under consideration. To get the blackarea formula.

hole entropy, there are several methods available now. Here To see the stability of black holes against the Hawking
we adopt a simpler method for this goal. This method isradiation, it is useful to compute the heat capacity defined as

based on the fact that, as thermodynamic systems, bIaaj;QE(gM/(yT)Q., For the solutiong3.11), we obtain
holes must obey the first law of thermodynamics: ' '

( ) 1y [k+(ro /D" 2[(2n—=21)(r . /1)?+K]
dM=TdS+Z,l widQ;, (3.18 m(n—1)ry (2n—1)(r. 17—k
_ C=A for D=2n,
where M is the mass of black holes, addand S are the o2
Hawking temperature and Hawking-Bekenstein entropy of 4m(n=1)r [k+(r /1)7]
the black holes, respectively,; are the chemical potentials L for D=2n-1.
corresponding to the conserved char@gs Using Eq.(3.18 (3.23
one has
Here we would like to stress that these physical quantities
S:f T-ldM+S, (3.17), (3.2, (3.22, and(3.23 are all expressed in terms of
the horizon radius , and curvaturek; the addition, the con-
IM stantC, does not explicitly enter into these quantities.
:f Tl(_) dr.+S,. (3.19 We now turn to discussing the solutio(&11) for differ-
ar Q ent horizon curvaturd&. As mentioned in the Introduction,

without loss of generality, the curvature can be normalized
Here it should be remembered that, in the integrata9), ask=1, 0, and—1, respectively. In the cade=1 and the
the charge®Q; should be taken as constan&, is an inte- horizon is a spherical topology, this solution has already
gration constant, which can be fixed by using the argumenbeen analyzed in some detail [[26]. Just as pointed out by
that the black hole entropy should vanish as the event horiBirmingham [25], however, it should be noticed that in
zon of black holes disappears. Therefore, the expressiohigher dimensions, even in the cdse 1, there still exist the
(3.19 can be rewritten as possibilities of nonspherical topology for the horizon hyper-
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surface. In addition, to compare with the other two cases, wén spite of the dimension, both solutiori3.25 and (3.26
also summarize and comment on tke 1 black hole solu- have only one horizon. In even dimensions, the causal struc-
tions below. ture is similar to that of the Schwarzschild—anti-de Sitter
black hole, while it is similar to that of the BTZ black hole in
B. k=1 solutions odd dimensions. For both cases, the Penrose diagrams are
) ) ] exhibited in[26)].
To analyze the~ solutiong3.11), one has to first fix the As k=1, the Hawking temperatur@.17 reduces to
additive constantC,. In [26], Barados, Teitelboim, and

Zanelli used a criterion to fix the consta@ in Eq. (3.10, 1+(2n—1)(r  /1)? ftor  D=2n
that for zero energy the horizon should disappear. They fixed A7(n—1)r, ’
the constant, as ™=\ (3.29
ki for D=2n-1.
- 0 for D=2n, 2712
€11 for D=2n-1. (3.29 _ _ _ o
Obviously, the behavior of the Hawking radiation is quite
If we use this choice. we have the solutions different because of the dimension. In odd dimensions,
' —0 asr,—0, while T— in even dimensions. To see
ds?=—[1—(2M/r)*n=D4 (r/1)2]d 2 clearly this behavior and the stability of black holes against
the Hawking radiation, let us write down the heat capacity.
+[1—(2M/n)M =Dy (r/1)2] " dr2+r2ds3 From Eq.(3.23, we have
(329 ( L (e 2R @n—1)(r, )2+1]
) i i 2a(n—L)r¢| 1+ | —
in even dimension® =2n and I L] [(2n—1)(r, /1)2—1]
for D=2n,
ds?=—[1—(M+ 1) D - (r/1)?]dt? C= 2
ry
H[1=(M+D)Y= D4 (r/1)2] dr?+r2d33 _, Am(n—1)ro |1+ I_)
(3.26 for D=2n-1.

3.3
in odd dimension® =2n—-1. WhenD=4 andD=3, the (330
solutions (3.25 and (3.26 reduce, respectively, to the From the heat capacity, we see that it is always positive in
Schwarzschild—anti-de Sitter solution and BTZ black holeodd dimensions. Therefore, odd dimensional black holes can
solution[1]. For the solutior(3.25, the zero mass reference be in thermal equilibrium with the Hawking radiation with
background iD =2n dimensional anti—de Sitter space. For arbitrary volume, as the BTZ black hole. For even dimen-
the solution(3.26), the zero mass reference background desional black holes, however, the heat capacity is negative as
scribes in fact a zero mass black hole, and anti—de Sitter, <|/\2n—1, positive ag,>1/y/2n—1. That is, there is
space is recovered &= —1, just as happens in BTZ black a transition point for even dimensional black holesr at
holes[1]. Here it is worth noting that, in superstring theory, =|/,2n—1, and thereby the heat capacity suffers from an
zero mass BTZ black holes aMi= —1 anti—de Sitter space infinite jump.
are both ground states, but in different sectors. The anti-de The entropies of the two kinds of black holes, from Eqgs.
Sitter space is the ground state in the NS-NS sector, whilg3 21) and(3.22, are
the zero mass BTZ black hole is in the R-R se¢8&8,34.

Both of the solutiong3.25 and(3.26) approach anti—de ( ro\2|nt
Sitter space, and a scalar singularity exists=a0 (this sin- w3 1+ I_) - 1]
gularity does not exit in dimensidb =3 for arbitrary mass
This singularity may be covered by an event horizon, which for D=2n,
is determined by the equatia@f(r)=0, that is, S= N2 in—2\ 1 [r,\2m+1
4m(n—1)1 >, ( —*)
1—-(2M/r YYDy (r /1)2=0 for D=2n, w0\ m J2m+1\ |
| for D=2n-1.
1-(M+1)Y" Yy (r, /1)2=0 for D=2n-1. (3.3D

(327 As a discussion on the choice of the additive cons@nt
In even dimensions, one cannot get generally an explicit exin Eq. (3.24), we note that the solutio(8.26) reduces to the
pression of the horizon in terms of the mass of the holeBTZ black hole asD=3 and C,=1. However, for three-

However, in odd dimensions, one has dimensional black holes, the horizon is a circle and its cur-
vaturek must vanish, i.e k=0, which belongs to the class of
re=lyiM+1)¥n-Y—1, (3.28  solutions discussed in the next subsection. As a result, we
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have another choice EIO for (D>3) odd dimensional black

holes withk=1. That is, one may choogg,=0 as in even
dimensions, and the metric then becomes

ds®=—[1-MY""D (r/1)?]dt?
+[1=MM D (/2] M2+ r2dS ],
(3.32

whereD > 3. In that case, the vacuum background, as in eve
dimensions, is still anti—de Sitter space. Note that this choic
also satisfies the criterion that the horizon disappear for zer
mass solutions.

C. k=0 solutions

In the case ok=0, we fix the constan€, as

C,=0, for arbitary dimensions. (3.33

Then we have the solutions

ds?=—[—(2M/r)Y" =Dt (r/1)2]dt?
+[—(2M/D)MO =D (r/1)2] 7 Ydr2+r2d3 3,
(3.39

in even dimensions and

ds’= —[—-MY"" D4 (r/1)2]dt?
H[ MY (/1)) 2+ r2ds
(3.35

in odd dimensions. Wheb =3, the solution(3.39 is the

PHYSICAL REVIEW D59 044013

[((2n-1yr,  2n-1
4m(n—1)12 4m(n—1)
for D=2n,

r, 1
277'|sz
D=2n-1.

1/(2n—1)
I(2M/I)

1/(2n—2)

for

(3.39

Both of the Hawking temperatures approach zero as the mass
oes to zero. Therefore the heat capacity should be positive.

%ndeed, from Eq(3.23, one has

(0]
2a(n—1D)ré(r /H2* for
4a(n—1)r,(r, /1)>"% for

D=2n,
C:{ D=2n-1,
(3.38
which are always positive. For even dimensional black holes,
from Eq. (3.2, the entropy is

S=7l?(r, /1)?"2,

(3.39

When k=0, only then does the terrm=n—2 have a con-
tribution to the entropy in E(3.22. The entropy of the odd
dimensional black hole therefore is

[

D. k=—1 solutions

_4m(n-1)l

2n—3 (340

In the case ok=—1, we also fix the constar@,=0 for
both solutions. The black hole solutions then are

ds’=—[—1-(2M/r)Y"" Y+ (r/1)?]dt?
+[—1—(2M/N)M Y4 (r/1)2] Hdr2+r2d33
(3.41)

BTZ black hole solution. We refer to the ground states ofi" €ven dimensions and

these two kinds of black hole solutions as zero mass blac
holes, because the zero mass solutions in E884 and

(3.35 describe a spacetime whose singularity coincides with

the event horizon at=0, as the zero mass BTZ solution
[33]. For the solutiong3.34 and (3.35), they are both as-
ymptotically locally equivalent to anti—de Sitter space. The
event horizons are

[(2M/1)Y2n=D) for
M= M Ven-2)

D=2n,

D=2n-1. (3.39

for

Note from Eq.(3.12 that the curvaturé& does not affect the

k
ds?

—[=1-MY"=Dy (r/1)?]dt?
+[—1-MY D (/)2 W2+ r2d3E ,

(3.42
in odd dimensions)>3). Both of the two solutions asymp-

totically approach anti—de Sitter space. For both cases, the
zero mass solution is

A= —[— 1+ (r/)2|d2+[ — 1+ (r/1)?] " *dr2+r2d3s3 ,,

(3.43

from which one can see clearly that the zero mass solution is

singularity of the solution. Therefore their causal structuresa black hole solution with horizon at, =I. Using Eq.

are similar to those of solutions fée= 1. According to Eq.
(3.17), the Hawking temperatures are

(3.16), the Hawking temperature of the solution is found to
be
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1 ( r, 2 n—-1
T=5—. (3.49 3| =] -1 + 7712
27l |
With the help of Eqs(3.21) and (3.22, the entropy of the o for D=2n,
zero mass black holes is n~2 /n_92 (—1)n-2-m(p |2m+1
4m(n—-1)1 A
a2 m=0\ M 2m+1 |
= for D=2n-1.
for I?_ZZn, L 349
= -2 (_1)n—2—m (3.45)
47T(n_1)|m2=0 m 2m+1 For thek=—1 solutions, there also exist the so-called

negative mass black holes wher=2k+2 (ke Z). But
there is a critical value, beyond which the singularityr at

From the above, one can find that, for the same class o“r_r0 will be naked. The critical mass is
solutions(3.43, when embedded in different gravities, the

for D=2n—-1.

Mo 2k+1
same black hole solution has the same Hawking temperature, | 2k+1]%"
but different entropy formula. But this is not surprising. This M= — \/? - (3.50
is because black hole entropies are related to the gravita- 2V 2k+2l 2k+2

tional theories under consideration and come from a surface
term of gravitational action. So they are different for differ- for the solution(3.41) and
ent gravitational theories. An explicit example is that the
entropy of the BTZ black hole is proportional to the length of Mc=-1 (3.59
the outer horizom , in Einstein theory, but to the length of _ ) o
the inner horizon in topological gravityd5]. Note that the ~for the solution(3.42. Inspecting Eq(3.48), it is easy to see
Zero mass So'utiom3_43 is also a Special solution in the that the heat CapaCIty is still pOSItlve for these nega“ve mass
Einstein-Maxwell theory(1.3). We will show in the Appen- black holes.
dix that the entropy of black holg4.3) obeys the area for-
mula. That is, the entropy of the zero mass black hole in Eq. IV. CHARGED TOPOLOGICAL BLACK HOLES
(1.3) is also different from the one in E¢3.45). o ] ) )
In the general case, i.eM #0, we cannot get an explicit Similar to static, spherically symmetric black hole6],

expression of the horizon in terms of the mass for even dith€ electric charge can also be incorporated to the topological
mensional black holes. but black holes discussed in the previous section. The Hamil-

tonian action of the Maxwell field in a curved spacetime is
ry=lyi1+m¥n-b (3.46

_ D-1
for odd dimensional black holes. According to E8.17), the Iem_f dtf d= %
Hawking temperatures are

1/2
pIA_ENL<ﬂhll2plp+_FljF
i 9 l 2[3 1]

+¢p' |+ Bems 4.2
2n—1)(r, /1)2-1 AT em
( )y )2 for D=2n,
T= Am(n— whereN* is the lapse function antl is the determinant of
(g 1 =D the induced metric of the ADM decomposition of spacetime.
P S VitM for D=2n-1. p' is the momentum conjugate to the spatial components of

(3.47) the gauge field\; ,¢=A,, andByg,is a surface term depend-
' ing on the boundary condition. The constghtrelated to

From Eq.(3.23, one has the heat capacity chosen units may be taken conveniently to be the area of the
hypersurfaces,,_,. For static, electrically charged black
( L[(ri\? "2 en—-1)(r 1)2-1 holes in the metri¢3.3), the action(4.1) can be reduced to
2a(n—L)ri||+—] —1 [26]
l (2n—1)(r, /1)%+1

C={ for D=2n,

1
dm(n=1)r.[(r, 1)2=1]""2 'em:“z_tl)fdr[‘ENfD‘ZpZW(rD-Zp)’ + Bom,
v — + n —

4.2
L for D=2n-1.
(348  where
Note from Eq.(3.41) thatr . =I; the heat capacity3.48 is '
therefore always positive. The entropies of the black holes __pr (4.3

are P= Jyro-2’
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Combining Egs(4.2) and(3.6), one has the reduced action

of the system

+so(rD‘2p)’}+E,
(4.4)

1
I=(t2—t1)f dr[N( F— ErD‘sz

whereF is still given by Eq.(3.7) and B denotes another
surface term. Varying the actio.4) with respect toN,

g, p, ande, respectively, one has the equations of motion

F'==rP"2p? (4.5
N’=0, (4.6)
@'=—Np, (4.7)
(r°?p)’=o0. (4.9

The solutions of the above equations are easily found:

N=N.., (4.9
p= rDQ—Z’ (4.10
@zm_’\l;%Jr%, (4.1
F=—2(D_Q—32)rD3+E. (4.12

HereC=M +EZO, ¢, IS the value ofp at infinity, which is
conjugate to the electric chard@ of the solution, and the
integration constarmil,, is the value ofN at infinity which is
conjugate to the madd. Therefore one can take,.=1 by

adjusting the time coordinate. In that case, we have the so-

lutions

ds’=—g?(r)dt?*+g 2(r)dr?+r2ds3_,, (4.13

where

r 2In-1
ol

n—-1

+—
(D-3)rY?

+—
2(D-3)r23

PHYSICAL REVIEW D59 044013

r2 [2m+28, Q2 MY
o[22
r (D—3)rP=2
5 for D=2n,
92(r)=1 P Q? Un-1)
AP
| 2(D-3)rb-3
for D=2n-1.

(4.19

Once again, the additive constadg determines the ground
states of the solutions and can be fixed as in the previous
section. WhenD=3, ¢ and F in Egs. (4.11) and (4.12
should be replaced by

¢=—N,QInr+ ¢, (4.19

1 ~
F=§Q2Inr+C, (4.16
where ¢q is an integration constant which is related to the
choice of zero electric potential. The metric functigh be-
comes

1
gz(r):—M+(r/I)2—§Q2Inr, (4.1
which is just the charged BTZ black hole solutifil.

We are not going to separately analyze here the solutions
(4.14) for different curvaturek. Instead we will give a unified
description. Just as the case of charged, spherically symmet-
ric solutions[26], our solutiong4.14) may have two, one, or
no horizons depending on the relative value of the mass and
charge. Therefore the causal structure is similar to that of the
Reissner-Nordstr—anti-de Sitter black hole. But we should
notice that except for the singularity a0, the solutions
(4.14 have another singularity at=r.>0 [26] hidden by
the black hole horizons_ andr ., 0<r.<r_<r,, which
can be seen from the following curvature scalar of the solu-
tions:

2(D-2
( - ) (k—g?).
4.18

In general, it is difficult to get an explicit expression of
the horizon of the black hole solutiof$.14) in terms of the
mass and charge. However, we can obtain an expression of
mass in terms of the horizan. and charge. From E@4.14),

we have

(99" +

D-2)(D-3
- ©-210-

2
Q ] for D=2n,
o? (4.19

for D=2n—-1.

According to the formulg3.16), the Hawking temperatures are
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n—-2

[kt (e 2P0 £k+(f_+)2 ¥
2o(n—=L)r,. |2

2
ry B
I k+(2n—1)<—I ) _ZrE_Z] for D=2n,

"7tk 2o 2(n-1 2 2
[k+(r, /D?12"[ 2(n )WH(“) for D=2n-1.

4n(n-1) | 12|

Using Eq.(4.19, one has

1 r 21n—-2 r 2 2

k| — k+(2n—1)| — ¥ g D=2n,
oM 2 | | D2

b
(W ) B 2(n—1)r ro\2|"? Q2 “-2
B _
Q i —— k+ * - for D=2n—1.
12 | 2rD2

Substituting Eqs(4.21) and(4.20 into Eqg.(3.20, we find the entropy

r r 21n—2 r 21n—-1
+ + +
s=2w(n—1)f ro|k+ T dr+=71-|2[ k+ I—) —k] (4.22
0
for even dimensional black holes and
s_4 L fu ) r, 2 n72d . . |r§2 n-2 1 r 2m+1kn727m »
B P A i P A R P | 423

for odd dimensional black holes. Whénr-1, the entropie$4.22 and(4.23 are totally the same as those derived through the
Hamiltonian analysi§26]. The method used here seems to be simpler. Furthermore, it is found that the entropy fodr2@las
and(4.23 are also exactly same as E¢3.21) and(3.22, which are derived as the charges are absent. It verifies in some sense
that the black hole entropy comes from a surface term of gravitational action at the H@&#8h,32. That is, the black hole
entropy is not explicitly related to the Lagrangian of matters.

Finally, we give the heat capacity of charged black holes:

2
2m(n—1)r2| A"2 (2n—1)<r|—+ +k|— 5
rs
Co= ro\2 Q2Al-" ro\2 (4.24
(2n—1)<|—+> —|<}+T (2n—1)k+(4n—5)(|—*)
r

+

&

in even dimensions, and
4 Q?
4da(n—=1)r, | —=A"2—— =
c | )+L2 (”_1”34 (4.25
Q_4 QzAl—n r, 2 :
(2n—3)k+(4n—7) T

12 (n—1)rP?

in odd dimensions, wherA=k+(r, /1)?. The behavior of possibilities: the heat capacity has two, one and no infinite
heat capacity is quite interesting. Inspecting E425, for  discontinuities. Whek=0 andk= —1, we find that the heat
odd dimensional black holes, one can see @gtis always  capacity (4.24 is always positive and finite. Whe
positive and finite. AndCo=0 when A" 2%/12=Q%(n =0, Co=0. This is the case of extremal black holes.
—1)r2~*, which corresponds to extremal black holes, and
thereby the Hawking temperatufé.20 vanishes. For even
dimensional black holes, wher=1, the heat capacity has
been analyzed if36]. The heat capacity may be positive and  In this work we have investigated topological black holes
negative, between them the heat capacity has an infinite di$a dimensionally continued gravity which is a special class of
continuity. In the physical parameter regime, there are threkovelock gravity. This is achieved by embedding the Lor-

V. CONCLUSIONS
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entz group SOD —1,1) into the anti—de Sitter group SD(  temperature, entropy, and heat capacity have been calculated
—1,2). In this way Lovelock gravity is divided into two and analyzed. It has been found that for0 andk=—1
branches depending on the spacetime dimension: even al#fick hole solutionsincluding those solutiong1.3) in

odd dimensional cases. The action is, in odd dimensions, theinstein-Maxwell theory; see the Appendlithe heat capac-
Chern-Simons form for the anti—de Sitter group and, in everdly is always positive, which means that these black holes are

dimensions, the Euler density constructed with the LorentfN0re stable thaik=1 black holes. This work has extended
part of the anti—de Sitter curvature tensor. In the cd3es f[he !nvestl_gatlon on SFat'c’ spher_lcally symmetric black holes
=3 andD =4, the two actions reduce to the Einstein-Hilbert in dimensionally continued gravi26].

action with a negative cosmological constant in general rela-

tivity. The Lovelock coefficients are reduced to two param- ACKNOWLEDGMENTS

eters: to the gosmologlcal constant.and gravitational con- This work was supported by the Center for Theoretical
stant. The hprlzons of these topolpglcal black hol_e_s &e ( Physics of Seoul National University.

—2)-dimensional hypersurfaces with constant positive, zero,
or negative curvaturk. Therefore, the even horizon of black

holes is no longer thel — 2)-dimensional spherg” 2. The APPENDIX: THERMODYNAMICS OF HIGHER
horizons may also be toroidal or higher genus Riemann sur- ~ DIMENSIONAL TOPOLOGICAL BLACK HOLES
faces. IN EINSTEIN-MAXWELL THEORY

We have studied the three kinds of black holes and dis-
cussed their thermodynamic properties. From the first law of_"g
the thermodynamics of black holes, we have calculated the
topological black hole entropies. It turns out that the entrop
does not obey the usual area formula. Wkenl, it reduces
to that derived through a Hamiltonian analysis for spheri-
cally symmetric black hole§26]. Because of the different S D1m14e2 t 22
topological structures, these black holes manifest different ds?=—[k+(r/)?]dt?+[k+(r/1)?] " *dr?+r2d2g 5,
thermodynamic behaviors. In the cdse 1, the vacuum state (A1)
is anti—de Sitter space in even dimensions and, in odd di-
mensions, is the zero mass black hole solution, as happens¥hich is a D-dimensional anti—de Sitter space with B (
the BTZ solution[1,33], for which the horizon and singular- —2)-dimensional hypersurfac®,_, whose curvature is a
ity coincide with each other at=0. The heat capacity is constant D—2)(D —3)k. Therefore, asymptotically, the so-
alway positive for odd dimensional black holes, but for evenlution (1.3) is also locally isometric to the anti—de Sitter
dimensional black holes, positive as, >I/\2n—1 and space. For the vacuum solutiohl), as discussed in the text,
negative ag , <I/\2n—1. That is, it has a transition point the horizon is absent ds=1, atr, =0, coinciding with the
atr,=I/\2n—1; thereby the heat capacity suffers from anSingularity atr=0 whenk=0, and isr. =| whenk=—1.
infinite discontinuity. In the cask=0, the vacuum state for Differing from the zero mass black ho(8.43) in dimension-
both solutions is the zero mass black hole as the zero maddly continued gravity, the zero mass black hodd) in Ein-

BTZ solution. In this case, the heat capacity is always posiStéin gravity obeys the area formula of entropy, which we
tive for both solutions. In the cage= — 1, the vacuum state Will prove. _
describes a black hole with horizen =1 for both solutions. The solutions(1.3) may have two, one, and no horizons.
This vacuum solution has some peculiar properties. For difvhen the solutions describe black holes with a nondegener-
ferent dimensions, the Hawking temperature is samd as at€ horizon, using E¢3.16), we get the Hawking tempera-
=1/2nl, but the entropy has different behaviors in even di-{Ure in terms of the charge and horizon radiys

mensions and odd dimensio3.45. This is because, em-
bedded in the different gravity, the same black hole solution
may have different entrogynote that the vacuum solution in
Eq (1.3, whenk=—1 andM =Q=0, has a entropy propor-
tional to its ared In this case, the heat capacity is also al- (A2)
ways positive for arbitrary dimensional black holes. In addi- o )

tion, the negative mass spectrum is allowed in the black hol&"om the definition of horizowg,(r ,) =0, we have

solutions whem=2k+ 1, wherek e Z. But there exists a

In this appendix, we briefly discuss thermodynamics of
her dimensional topological black hol€s3) in Einstein-
Maxwell theory with a negative cosmological constant. For a
Mdiscussion in four dimensions sg¢é@1]. For the solution
(1.3, the vacuum state is

r.\? 16m%(D—3)Q?
(D—3)k+(D—1)(|—> T e
D-2" +

4,

critical negative mass, beyond which the singularityrat M _(D—Z)wofzfa_ﬂ re)?
=0 will be naked. The critical mass has been found. Re- |gr,| — 167 {(D—S)k+(D—1) T
cently, higher dimensional Chern-Simons supergarvity has

been investigatefB37,38. It would be interesting to study the 1672(D —3)Q?

supersymmetry of these topological black hole solutions T 0.3 (A3)
found in this paper and the constant curvature black Hdles wp-ofs

The charged topological black holes in this dimensionally
continued gravity have been also considered. The Hawkin@ubstituting Eqs(A2) and (A3) into Eq. (3.20, one has
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r oM (D—2)wp_» (r- os =—1 zero mass black hol€8.43 and(Al) obeys the en-
S=f T H—] dr,= ff r; °dry tropy formula derived from Eq(3.20, because the formula
0 o+ Q 0 (3.20 seems nonapplicable to these zero mass black holes.
1 Recall that the black hole entropy in fact comes from a sur-
= —wn_ o 272 (A4) face term of the gravitational action under consideration,
D-2 '+ ’ . . .
4 which is computed at the black hole horizon [24,31,33.

Therefore, the black hole entropy is not related to whether

which is just one-quarter of _the horizpn area. It also verifigsthe mass of black holes is zero or not. And hence the result
that the black hole entropy in Einstein gravity always satis-, )

fies th | f A i fth | ?om Eq.(3.20 is a_pplicable to the zero mass black holes.
ies the usual area formula, independent of the topology o The heat capacity of the black holés3) is

event horizon. One may wonder whether the entropk of

(D—3)k+(D—1)(—
e

r+)2 16772(D—3)Q2]

(D=2)wp_or? 2
C =
Q 4

(A5)

—(D—3)k+3(D—1)(— —
i of A1

r+)2 167r2(D—3)(2D—5)Q2]'
+

Inspecting the heat capacity, obviously, wHen0 andk=—1, one may find that it is always positive and finite. WHen
=1, it may be positive and negative; between them an infinite discontinuity occurs, which happens as the denominator of Eq.
(A5) vanishes. When the two horizons of black holes coincide with each other, weTkafg =0, which corresponds to the
extremal black holes.

Whenk= —1, there is also the negative mass black holes. The critical mass, beyond which the singutaié \aill be
naked, is

(D-2)wporg [ D—2(rc|?
M=~ 8 {1_D—3\|— ’ (A6)
wherer . satisfies
D—3[ 1672Q2 |*?
re=I s (AT)
D_ll wD—Zrc
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