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Topological black holes in the dimensionally continued gravity
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We investigate topological black holes in a special class of Lovelock gravity. In odd dimensions, the action
is the Chern-Simons form for the anti–de Sitter group. In even dimensions, it is the Euler density constructed
with the Lorentz part of the anti–de Sitter curvature tensor. The Lovelock coefficients are reduced to two
independent parameters: the cosmological constant and gravitational constant. The event horizons of these
topological black holes may have constant positive, zero, or negative curvature. Their thermodynamics is
analyzed and electrically charged topological black holes are also considered. We emphasize the differences
due to the different curvatures of event horizons.@S0556-2821~99!03702-9#

PACS number~s!: 04.20.Jb, 04.20.Gz, 97.60.Lf
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I. INTRODUCTION

Over the past few years there has been a lot of interes
black holes in anti–de Sitter spacetimes. This study is m
vated by the discovery of Ban˜ados-Teitelboim-Zanelli~BTZ!
black holes @1#, which are exact solutions in three
dimensional Einstein gravity with a negative cosmologi
constant, and are locally equivalent to a three-dimensio
anti–de Sitter space. That is, the BTZ black holes can
constructed by identifying some discrete points along a bo
Killing vector in the three-dimensional anti–de Sitter spa
@2#. Using such kinds of identifications, so-called const
curvature black holes can also be constructed in fo
dimensional@3# as well as higher dimensional@4# anti–de
Sitter spacetimes. The Euclidean manifold topologies
these black holes areRD213S1, whereS1 is the topology of
the event horizons, in contrast with the usual topology
black holesR23SD22. Because of the unusual asympto
behavior of these constant curvature black holes, howe
identifying the globally conserved quantities seems diffic
~for a quasilocal formulation see@5#!.

On the other hand, except for the Kerr-Newmann–anti
Sitter black hole, whose event horizon has topologyS2, in
four-dimensional Einstein-Maxwell theory with a negati
cosmological constant, it has been found recently that th
exist black hole solutions whose event horizons may hav
zero or negative constant curvature and their topologies
no longer the two-sphereS2. Because of the different topo
logical structures of even horizons, the properties of th
black holes are quite different from those of black holes w
the usual spherical topology horizon. These black holes h
been studied extensively in many aspects such as exac
lutions @6–10#, thermodynamics@11,12#, pair production
@13#, gravitational collapse@14,15#, and others@16–21#.

So far, most of the works have been limited to Einste
gravitational theory. Quite recently, Klemm@10# has found
topological black hole solutions in the Weyl conformal gra
ity. In a previous paper, we have investigated topologi
black holes@22# in a class of dilaton gravity with a Liouville-
type dilaton potential. Differing from the topological blac
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holes in Einstein-Maxwell theory, which approach asym
totically anti–de Sitter spaces, the topological dilaton bla
holes are asymptotically neither the anti–de Sitter spaces
de Sitter spaces or Minkowski spacetimes. But the nega
effective cosmological constant plays a crucial role in t
existence of these black hole solutions, as the negative
mological constant does in Einstein-Maxwell theory.

In the present paper, we would like to investigate top
logical black holes in higher dimensional spacetimes.
Einstein-Maxwell theory, higher dimensional, spherica
symmetric black holes have been studied by Myers and P
@23#. And their analogues in Brans-Dicke theory have be
investigated recently in@24#. Therefore, four-dimensional to
pological black holes have their natural generalization
higher dimensional Einstein-Maxwell theory with a negati
cosmological constant. For example, there are the static
pological black holes in four-dimensional spacetimes,

ds252S k2
8pM

v2 r
1

16p2Q2

v2
2 r 2

1
r 2

l 2 D dt2

1S k2
8pM

v2 r
1

16p2Q2

v2
2 r 2

1
r 2

l 2 D 21

dr21r 2dS2
2 ,

~1.1!

wheredS2
2 is the line element of a two-dimensional hype

surfaceS2 with constant curvature 2k;

dS2
25H du21sin2udf2 for k51,

du21u2df2 for k50,

du21sinh2udf2 for k521.

~1.2!

HereM andQ are the mass and charge of the black hole
23l 22 is the negative cosmological constant, andv2 is the
area of the horizon hypersurfaceS2 . In Eq. ~1.2!, without
loss of the generality, we have used coordinates in which
constant curvature of the two-dimensional hypersurface
the event horizon is 1, 0, and21, respectively. Whenk
©1999 The American Physical Society13-1
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51, solution ~1.1! is just the Reissner-Nordstro¨m–anti-de
Sitter black hole spacetime and the event horizon has to
ogy S2. Whenk50, if one identities the coordinatesu andf
with certain periods, the resulting topology of event horiz
is a torusT2. The event horizon is a hyperbolic surface
k521. Of interest is to note that the event horizon s
appears even if the massM is negative in that case, and suc
kinds of negative mass black holes might be formed by re
lar gravitational collapse@14#. In addition, because of th
different topological structures of event horizons, their th
modynamic behaviors are quite different@11,12#. As a natu-
ral extension, we have topological black hole solutions
higher dimensional Einstein-Maxwell theory with a negati
cosmological constantL52(D21)(D22)/2l 2:

ds252S k2
16pM

~D22!vD22r D23
1

16p2Q2

vD22
2 r 2~D23!

1
r 2

l 2 D dt2

1S k2
16pM

~D22!vD22 r D23

1
16p2Q2

vD22
2 r 2~D23!

1
r 2

l 2 D 21

dr21r 2dSD22
2 , ~1.3!

wheredSD22
2 5gmndxmdxn is a (D22)-dimensional hyper-

surfaceSD22 with constant curvature (D22)(D23)k, and
vD22 is its area. Without loss of generality, one may no
malize the constant curvature tok51, 0, and21, respec-
tively. These black holes have similar properties as thos
four-dimensional spacetime. For a discussion of higher
mensional topological uncharged black holes see@25#.

Instead of pure Einstein gravity, in this paper, we consi
topological black holes in so-called dimensionally continu
gravity @26#. This theory will be reviewed briefly in the nex
section. The topological black hole solutions will be pr
sented and discussed in Sec. III. Section IV is devoted to
case including the Maxwell field. We summarize our resu
in Sec.V. In the Appendix we will discuss the thermodyna
ics of the topological black holes~1.3! in Einstein-Maxwell
theory.

II. DIMENSIONALLY CONTINUED GRAVITY

Dimensionally continued gravity is a special class
Lovelock gravity @27#, which may be regarded as the mo
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general generalization to higher dimensions of Einstein gr
ity. The Lovelock action is a sum of the dimensionally co
tinued Euler characteristics of all dimensions below t
spacetime dimensionD (>3) under consideration. It can b
written as@26#

I 5k (
p50

n

apI p , ~2.1!

where

I p5E ea1•••aD
Ra1a2`•••`Ra2p21a2p`ea2p11`•••`eaD.

~2.2!

Here ea is the local frame one-form,Ra
b is the curvature

two-form defined asRa
b5dwa

b1wa
c`wc

b , andwa
b is the

spin connection,ai5$0,1, . . . ,D21%. The coefficientsap

are arbitrary constants with dimensions@length]2(D22p) and
k has units of action.

The Lovelock action~2.1! has an advantage which keep
the field equations of motion for the metric of second ord
as the pure Einstein-Hilbert action. But it includes@D/2#
arbitrary constantsap , which makes it difficult to extract
physical information from the solutions of the equations
motions. In @26# a proposal has been suggested to red
these arbitrary constants to two: a cosmological constant
a gravitational constant. This proposal was made by emb
ding the Lorentz group SO(D21,1) into a larger group, the
anti–de Sitter group SO(D21,2). In this way Lovelock
theory is divided into two different branches according to t
spacetime dimensions: odd dimensions and even dimens
The coefficientsap are given by

ap55
1

D22pS n21

p D l 2D12p for D52n21,

S n

pD l 2D12p for D52n,

~2.3!

wherel is a length.
In odd dimensions, the LagrangianL2n21 is
e

L2n215k (
0

n21

apea1•••aD
Ra1a2`•••`Ra2p21a2p`ea2p11`•••`eaD. ~2.4!

For later convenience, units are chosen so that

k5
l

~D22!!vD22
for D52n21, ~2.5!

wherevD22 is the area of a (D22)-dimensional hypersurfaceSD22 which will be defined later. In even dimensions, th
LagrangianL2n is given by
3-2
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L2n5k~Ra1a21 l 22ea1`ea2!`•••`~RaD21aD1 l 22eaD21`eaD!ea1a2•••aD
, ~2.6!

where we choose units so that

k5
l 2

2D~D22!!vD22
for D52n. ~2.7!

In the casesD54 andD53, the two Lagrangians reduce to that of Einstein gravity with a negative cosmological constan
details of the construction of the two Lagrangians see@26#.

Correspondingly, the equations of motion from Eqs.~2.4! and ~2.6! can be derived as

~Ra1a21 l 22ea1`ea2!`•••`~Ra2n23a2n221 l 22e2n23`e2n22!ea1a2•••a2n21
50 ~2.8!

in odd dimensions (D52n21) and

~Ra1a21 l 22ea1`ea2!`•••`~Ra2n23a2n221 l 22e2n23`e2n22!`e2n21ea1a2•••a2n
50 ~2.9!
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in even dimensions (D52n), from which it is easy to see
that anti–de Sitter space is a special solution to these e
tions of motion.

In @26#, the static, spherically symmetric black hole so
tions are obtained. The metric of the black hole solutions

ds252g2~r !dt21g22~r !dr21r 2dV2, ~2.10!

where

g25H 12~2M /r !1/~n21!1~r / l !2 for D52n,

12~M11!1/~n21!1~r / l !2 for D52n21,
~2.11!

M is the mass of the hole, anddV2 is the metric on the unit
(D22)-sphere. Although this black hole solution~2.10! has
different quantum properties from the higher dimensio
Schwarzschild–anti-de Sitter black hole, its Euclidean top
ogy is still R23SD22, where SD22 is the topology of its
event horizon. That is, its event horizon is
(D22)-dimensional sphere. In this work, we pay attenti
to black holes whose event horizons are (D22)-dimensional
hypersurfaces with constant curvature which may be p
tive, zero, or negative, and hence the topology of event
rizon is no longer the (D22)-dimensional sphereSD22.
Here we should mention that, in this dimensionally cont
ued gravity considered above, Oppenheimer-Snyder gra
tional collapse in the case of even dimensions has been s
ied recently by Ilha and Lemos@28#; it has been found tha
even dimensional black holes~2.10! emerge as the final stat
of regular dust fluid. The wormhole solutions have be
found in @29#.

III. TOPOLOGICAL BLACK HOLES AND
THERMODYNAMICS

In this section we discuss topological black hole solutio
to the equations of motion~2.8! and~2.9!. The event horizon
of these topological black holes is a (D22)-dimensional
hypersurface with constant curvature. The topology of ho
04401
a-

s

l
l-

i-
o-

-
a-
d-

n

s

i-

zon may be sphere, torus, or other higher genus Riem
surfaces.

A. Static solutions and general consideration
of thermodynamics

In order to obtain simplified equations of motion, it turn
out that it is more convenient to work in the Hamiltonia
form @26#. The Hamiltonian formulation of the Lovelock ac
tion ~2.1! has been provided in@30#. The Hamiltonian con-
straint is

H52Adet~hi j !

3 (
p50

n21
D22p

2p
apd [ j 1••• j 2p]

[ i 1••• i 2p] R̃i 1i 2

j 1 j 2R̃i 3i 4

j 3 j 4
•••R̃i 2p21i 2p

j 2p21 j 2p,

~3.1!

whereR̃kl
i j are the spatial components of the Riemann tens

They depend on the velocities through the Gauss-Cod
equations

R̃i jkl 5Ri jkl 1KikK jl 2Kil K jk , ~3.2!

where Ri jkl are the components of the intrinsic curvatu
tensor of the spatial sections andKi j is the second fundamen
tal form defined asKi j 5(1/2N')(2ḣi j 1Ni ; j1Nj ; i), where
hi j , N', andNi are the reduced metric, lapse function, a
shift vectors in the standard Arnowitt-Deser-Misner~ADM !
decomposition of spacetime.

We are looking for static topological black hole solution
So the metric is assumed as

ds252N2~r !g2~r !dt21g22~r !dr21r 2dSD22
2 ,

~3.3!

where dSD22
2 5gmn(x)dxmdxn is the metric of the

(D22)-dimensional hypersurfaceSD22 with constant cur-
vature (D22)(D23)k and its area is denoted byvD22 ,
which is just the one in Eqs.~2.5! and ~2.7!. The functions
3-3
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N2(r ) andg2(r ) need to be determined. In the metric~3.3!
the nonvanishing spatial components of curvature tensors

Rn1n2

m1m25
f ~r !

r 2
d [n1n2]

[m1m2] ,

Rrn
rm5

f 8~r !

2r
dn

m , ~3.4!

where a prime denotes the derivative with respect tor and
f (r )5k2g2(r ). Substituting Eqs.~3.4! into the Hamiltonian
constraint~3.1! yields

H52~D22!!Agg21F r D21(
p50

n21

ap~D22p!S k2g2

r 2 D pG 8.
~3.5!

Using the coefficients~2.3! and units~2.5! and~2.7!, one has
the action

I 5~ t22t1!E dr NF8~r !1B, ~3.6!

whereB stands for a surface term and the functionF is given
by

F@r ,g~r !#5H 1

2
r @k1~r / l !22g2~r !#n21 for D52n,

@k1~r / l !22g2~r !#n21 for D52n21.
~3.7!

Varying the action~3.6! with respect toN andF, one has the
equations of motion
y-
-

04401
re
dF

dr
50,

dN

dr
50, ~3.8!

which have solutions

F@r ,g~r !#5C̃[const,

N~r !5N`[const. ~3.9!

Here the integration constantN` can be taken to be 1 by
rescaling the time coordinatet. And the constantC̃ is related
to, up to an additive constant, the massM of black holes:

C̃5M1C̃0 . ~3.10!

This additive constantC̃0 is achieved by choosing an appro
priate reference background. Thus we obtain the metric fu
tion g2(r ):

g2~r !55 k2S 2M12C̃0

r
D 1/~n21!

1S r

l D
2

for D52n,

k2~M1C̃0!1/~n21!1S r

l D
2

for D52n21.

~3.11!

The mass for the even dimensional solutions has the dim
sions of length, and is dimensionless for the odd dimensio
solutions. This is because we have chosen the different u
~2.5! and ~2.7!. To analyze the singularities of the solution
~3.11!, let us write down some curvature invariants
R55 2
D~D21!

l 2
1F 2D

~D22!2
1D225D12G 1

r 2S 2M12C̃0

r
D 1/~n21!

for D52n,

2
D~D21!

l 2
1

~D22!~D23!

l 2
~M1C̃0!1/~n21! for D52n21,

~3.12!

RabRab5
1

2
@~g2!9#21

~D22!

r
~g2!9~g2!81

D~D22!

2r 2
@~g2!8#22

2~D22!~D23!

r 3
~k2g2!~g2!8

1
~D22!~D23!

r 4
~k2g2!2, ~3.13!

RabgdRabgd5@~g2!9#21
2~D22!

r 2
@~g2!8#21

2~D22!~D23!

r 4
~k2g2!2. ~3.14!
a

gy
ure
Before proceeding to discuss the solution~3.11! for dif-
ferent curvaturek, let us consider generally the thermod
namics of black hole solutions~3.3!. Assuming that the met
ric ~3.3! describes a black hole with the event horizon atr 1 ,
one has a black hole with event horizon being
(D22)-dimensional hypersurfaceSD22 whose curvature
may be positive, zero, or negative. Apart from the topolo
structure of horizons, to determine the Hawking temperat
3-4



he
n

hi

m

re
rte
ay
fo
m

on
he
c
e
i

la

o
s

e
o
si

ass

in

ual

ng
as

ties
f

,
ed

dy

n

r-

TOPOLOGICAL BLACK HOLES IN THE . . . PHYSICAL REVIEW D59 044013
of the hole, it turns out that it is convenient to continue t
metric ~3.3! to its Euclidean manifold with the Euclidea
time t5 i t :

ds25N2~r !g2~r !dt21g22~r !dr21r 2dSD22
2 .

~3.15!

For an arbitrary period of the Euclidean timet, there is a
conical singularity at the black hole horizon. To remove t
singularity in the Euclidean manifold~3.15!, one has to take
a special period whose inverse just gives the Hawking te
perature of black holes:

T5
~N2g2!8

4pN U
r 5r 1

. ~3.16!

For the solutions~3.11!, using Eq.~3.16! yields the Hawking
temperature of the holes:

T55
k1~2n21!~r 1 / l !2

4p~n21!r 1

for D52n,

r 1

2p l 2
for D52n21.

~3.17!

Usually the black hole entropy satisfies the so-called a
formula. That is, the black hole entropy equals one-qua
the event horizon area. But this formula does not alw
hold. It has been proved that this formula holds only
Einstein gravity and, in fact, black hole entropy comes fro
a surface term of gravitational action at the horiz
@24,31,32#. That is, the black hole entropy is related to t
gravitational theory under consideration. To get the bla
hole entropy, there are several methods available now. H
we adopt a simpler method for this goal. This method
based on the fact that, as thermodynamic systems, b
holes must obey the first law of thermodynamics:

dM5TdS1(
i 51

m idQi , ~3.18!

where M is the mass of black holes, andT and S are the
Hawking temperature and Hawking-Bekenstein entropy
the black holes, respectively.m i are the chemical potential
corresponding to the conserved chargesQi . Using Eq.~3.18!
one has

S5E T21dM1S0

5E T21S ]M

]r 1
D

Qi

dr11S0 . ~3.19!

Here it should be remembered that, in the integration~3.19!,
the chargesQi should be taken as constants.S0 is an inte-
gration constant, which can be fixed by using the argum
that the black hole entropy should vanish as the event h
zon of black holes disappears. Therefore, the expres
~3.19! can be rewritten as
04401
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S5E
0

r 1

T21S ]M

]r 1
D

Qi

dr1 . ~3.20!

Thus, once given the Hawking temperature and the m
expressed by the horizon radiusr 1 and chargesQi , one can
obtain the entropy of the black hole and need not know
which gravitational theory the black hole solutions are.

For the solutions~3.11!, the chargesQi are absent. Using
the Hawking temperature~3.17!, we obtain the black hole
entropy of solutions~3.11! :

S52p~n21!E
0

r 1

r 1Fk1S r 1

l D 2Gn22

dr1

5p l 2H Fk1S r 1

l D 2Gn21

2kJ ~3.21!

in even dimensions and

S54p~n21!E
0

r 1Fk1S r 1

l D 2Gn22

dr1

54p~n21!E
0

r 1

(
m50

n22 S n22

m D S r 1

l D 2m

kn222mdr1

54p~n21!l (
m50

n22 S n22

m D 1

2m11S r 1

l D 2m11

kn222m

~3.22!

in odd dimensions. Obviously, they do not obey the us
area formula.

To see the stability of black holes against the Hawki
radiation, it is useful to compute the heat capacity defined
CQi

[(]M /]T)Qi
. For the solutions~3.11!, we obtain

C55
2p~n21!r 1

2 @k1~r 1 / l !2#n22@~2n21!~r 1 / l !21k#

~2n21!~r 1 / l !22k

for D52n,

4p~n21!r 1@k1~r 1 / l !2#n22

for D52n21.
~3.23!

Here we would like to stress that these physical quanti
~3.17!, ~3.21!, ~3.22!, and~3.23! are all expressed in terms o
the horizon radiusr 1 and curvaturek; the addition, the con-
stantC̃0 does not explicitly enter into these quantities.

We now turn to discussing the solutions~3.11! for differ-
ent horizon curvaturek. As mentioned in the Introduction
without loss of generality, the curvature can be normaliz
ask51, 0, and21, respectively. In the casek51 and the
horizon is a spherical topology, this solution has alrea
been analyzed in some detail in@26#. Just as pointed out by
Birmingham @25#, however, it should be noticed that i
higher dimensions, even in the casek51, there still exist the
possibilities of nonspherical topology for the horizon hype
3-5
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surface. In addition, to compare with the other two cases,
also summarize and comment on thek51 black hole solu-
tions below.

B. k51 solutions

To analyze the solutions~3.11!, one has to first fix the
additive constantC̃0 . In @26#, Bañados, Teitelboim, and
Zanelli used a criterion to fix the constantC̃0 in Eq. ~3.10!,
that for zero energy the horizon should disappear. They fi
the constantC̃0 as

C̃05H 0 for D52n,

1 for D52n21.
~3.24!

If we use this choice, we have the solutions

ds252@12~2M /r !1/~n21!1~r / l !2#dt2

1@12~2M /r !1/~n21!1~r / l !2#21dr21r 2dSD22
2

~3.25!

in even dimensionsD52n and

ds252@12~M11!1/~n21!1~r / l !2#dt2

1@12~M11!1/~n21!1~r / l !2#21dr21r 2dSD22
2

~3.26!

in odd dimensionsD52n21. WhenD54 and D53, the
solutions ~3.25! and ~3.26! reduce, respectively, to th
Schwarzschild–anti-de Sitter solution and BTZ black h
solution@1#. For the solution~3.25!, the zero mass referenc
background isD52n dimensional anti–de Sitter space. F
the solution~3.26!, the zero mass reference background
scribes in fact a zero mass black hole, and anti–de S
space is recovered asM521, just as happens in BTZ blac
holes@1#. Here it is worth noting that, in superstring theor
zero mass BTZ black holes andM521 anti–de Sitter space
are both ground states, but in different sectors. The anti
Sitter space is the ground state in the NS-NS sector, w
the zero mass BTZ black hole is in the R-R sector@33,34#.

Both of the solutions~3.25! and ~3.26! approach anti–de
Sitter space, and a scalar singularity exists atr 50 ~this sin-
gularity does not exit in dimensionD53 for arbitrary mass!.
This singularity may be covered by an event horizon, wh
is determined by the equationg2(r )50, that is,

12~2M /r 1!1/~n21!1~r 1 / l !250 for D52n,

12~M11!1/~n21!1~r 1 / l !250 for D52n21.

~3.27!

In even dimensions, one cannot get generally an explicit
pression of the horizon in terms of the mass of the ho
However, in odd dimensions, one has

r 15 lA~M11!1/~n21!21. ~3.28!
04401
e

d

-
er

e
le

h

x-
.

In spite of the dimension, both solutions~3.25! and ~3.26!
have only one horizon. In even dimensions, the causal st
ture is similar to that of the Schwarzschild–anti-de Sit
black hole, while it is similar to that of the BTZ black hole i
odd dimensions. For both cases, the Penrose diagrams
exhibited in@26#.

As k51, the Hawking temperature~3.17! reduces to

T55
11~2n21!~r 1 / l !2

4p~n21!r 1

for D52n,

r 1

2p l 2
for D52n21.

~3.29!

Obviously, the behavior of the Hawking radiation is qui
different because of the dimension. In odd dimensionsT
→0 as r 1→0, while T→` in even dimensions. To se
clearly this behavior and the stability of black holes agai
the Hawking radiation, let us write down the heat capac
From Eq.~3.23!, we have

C55
2p~n21!r 1

2 F11S r 1

l D 2Gn22 @~2n21!~r 1 / l !211#

@~2n21!~r 1 / l !221#

for D52n,

4p~n21!r 1F11S r 1

l D 2Gn22

for D52n21.
~3.30!

From the heat capacity, we see that it is always positive
odd dimensions. Therefore, odd dimensional black holes
be in thermal equilibrium with the Hawking radiation wit
arbitrary volume, as the BTZ black hole. For even dime
sional black holes, however, the heat capacity is negativ
r 1, l /A2n21, positive asr 1. l /A2n21. That is, there is
a transition point for even dimensional black holes atr 1

5 l /A2n21, and thereby the heat capacity suffers from
infinite jump.

The entropies of the two kinds of black holes, from Eq
~3.21! and ~3.22!, are

S55
p l 2H F11S r 1

l D 2Gn21

21J
for D52n,

4p~n21!l (
m50

n22 S n22

m D 1

2m11S r 1

l D 2m11

for D52n21.
~3.31!

As a discussion on the choice of the additive constantC̃0
in Eq. ~3.24!, we note that the solution~3.26! reduces to the
BTZ black hole asD53 and C̃051. However, for three-
dimensional black holes, the horizon is a circle and its c
vaturek must vanish, i.e.,k50, which belongs to the class o
solutions discussed in the next subsection. As a result,
3-6
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have another choice ofC̃0 for (D.3) odd dimensional black
holes withk51. That is, one may chooseC̃050 as in even
dimensions, and the metric then becomes

ds252@12M1/~n21!1~r / l !2#dt2

1@12M1/~n21!1~r / l !2#21dr21r 2dSD22
2 ,

~3.32!

whereD.3. In that case, the vacuum background, as in e
dimensions, is still anti–de Sitter space. Note that this cho
also satisfies the criterion that the horizon disappear for z
mass solutions.

C. k50 solutions

In the case ofk50, we fix the constantC̃0 as

C̃050, for arbitary dimensions. ~3.33!

Then we have the solutions

ds252@2~2M /r !1/~n21!1~r / l !2#dt2

1@2~2M /r !1/~n21!1~r / l !2#21dr21r 2dSD22
2

~3.34!

in even dimensions and

ds252@2M1/~n21!1~r / l !2#dt2

1@2M1/~n21!1~r / l !2#21dr21r 2dSD22
2

~3.35!

in odd dimensions. WhenD53, the solution~3.35! is the
BTZ black hole solution. We refer to the ground states
these two kinds of black hole solutions as zero mass b
holes, because the zero mass solutions in Eqs.~3.34! and
~3.35! describe a spacetime whose singularity coincides w
the event horizon atr 50, as the zero mass BTZ solutio
@33#. For the solutions~3.34! and ~3.35!, they are both as-
ymptotically locally equivalent to anti–de Sitter space. T
event horizons are

r 15H l ~2M / l !1/~2n21! for D52n,

lM 1/~2n22! for D52n21.
~3.36!

Note from Eq.~3.12! that the curvaturek does not affect the
singularity of the solution. Therefore their causal structu
are similar to those of solutions fork51. According to Eq.
~3.17!, the Hawking temperatures are
04401
n
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f
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T55
~2n21!r 1

4p~n21!l 2
5

2n21

4p~n21!l
~2M / l !1/~2n21!

for D52n,

r 1

2p l 2
5

1

2p l
M1/~2n22!

for D52n21.
~3.37!

Both of the Hawking temperatures approach zero as the m
goes to zero. Therefore the heat capacity should be posi
Indeed, from Eq.~3.23!, one has

C5H 2p~n21!r 1
2 ~r 1 / l !2n24 for D52n,

4p~n21!r 1~r 1 / l !2n24 for D52n21,

~3.38!

which are always positive. For even dimensional black ho
from Eq. ~3.21!, the entropy is

S5p l 2~r 1 / l !2n22. ~3.39!

When k50, only then does the termm5n22 have a con-
tribution to the entropy in Eq.~3.22!. The entropy of the odd
dimensional black hole therefore is

S5
4p~n21!l

2n23 S r 1

l D 2n23

. ~3.40!

D. k521 solutions

In the case ofk521, we also fix the constantC̃050 for
both solutions. The black hole solutions then are

ds252@212~2M /r !1/~n21!1~r / l !2#dt2

1@212~2M /r !1/~n21!1~r / l !2#21dr21r 2dSD22
2

~3.41!

in even dimensions and

ds252@212M1/~n21!1~r / l !2#dt2

1@212M1/~n21!1~r / l !2#21dr21r 2dSD22
2

~3.42!

in odd dimensions (D.3). Both of the two solutions asymp
totically approach anti–de Sitter space. For both cases,
zero mass solution is

ds252@211~r / l !2#dt21@211~r / l !2#21dr21r 2dSD22
2 ,

~3.43!

from which one can see clearly that the zero mass solutio
a black hole solution with horizon atr 15 l . Using Eq.
~3.16!, the Hawking temperature of the solution is found
be
3-7
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T5
1

2p l
. ~3.44!

With the help of Eqs.~3.21! and ~3.22!, the entropy of the
zero mass black holes is

S55
p l 2

for D52n,

4p~n21!l (
m50

n22 S n22

m D ~21!n222m

2m11

for D52n21.

~3.45!

From the above, one can find that, for the same class
solutions~3.43!, when embedded in different gravities, th
same black hole solution has the same Hawking tempera
but different entropy formula. But this is not surprising. Th
is because black hole entropies are related to the gra
tional theories under consideration and come from a sur
term of gravitational action. So they are different for diffe
ent gravitational theories. An explicit example is that t
entropy of the BTZ black hole is proportional to the length
the outer horizonr 1 in Einstein theory, but to the length o
the inner horizon in topological gravity@35#. Note that the
zero mass solution~3.43! is also a special solution in th
Einstein-Maxwell theory~1.3!. We will show in the Appen-
dix that the entropy of black holes~1.3! obeys the area for
mula. That is, the entropy of the zero mass black hole in
~1.3! is also different from the one in Eq.~3.45!.

In the general case, i.e.,MÞ0, we cannot get an explici
expression of the horizon in terms of the mass for even
mensional black holes, but

r 15 lA11M1/~n21! ~3.46!

for odd dimensional black holes. According to Eq.~3.17!, the
Hawking temperatures are

T55
~2n21!~r 1 / l !221

4p~n21!l 2
for D52n,

r 1

2p l 2
5

1

2p l
A11M1/~n21! for D52n21.

~3.47!

From Eq.~3.23!, one has the heat capacity

C55
2p~n21!r 1

2 F S r 1

l D 2

21Gn22 ~2n21!~r 1 / l !221

~2n21!~r 1 / l !211

for D52n,

4p~n21!r 1@~r 1 / l !221#n22

for D52n21.
~3.48!

Note from Eq.~3.41! that r 1> l ; the heat capacity~3.48! is
therefore always positive. The entropies of the black ho
are
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S55
p l 2F S r 1

l D 2

21Gn21

1p l 2

for D52n,

4p~n21!l (
m50

n22 S n22

m D ~21!n222m

2m11 S r 1

l D 2m11

for D52n21.
~3.49!

For the k521 solutions, there also exist the so-calle
negative mass black holes whenn52k̃12 (k̃PZ). But
there is a critical value, beyond which the singularity atr
50 will be naked. The critical mass is

M c52
l

2A2k̃12
F2k̃11

2k̃12
G 2k̃11

~3.50!

for the solution~3.41! and

M c521 ~3.51!

for the solution~3.42!. Inspecting Eq.~3.48!, it is easy to see
that the heat capacity is still positive for these negative m
black holes.

IV. CHARGED TOPOLOGICAL BLACK HOLES

Similar to static, spherically symmetric black holes@26#,
the electric charge can also be incorporated to the topolog
black holes discussed in the previous section. The Ham
tonian action of the Maxwell field in a curved spacetime

I em5E dtE dD21xFpiȦi2
1

2
N'S bh21/2pipi1

h1/2

2b
Fi j Fi j D

1wp,i
i G1Bem, ~4.1!

whereN' is the lapse function andh is the determinant of
the induced metric of the ADM decomposition of spacetim
pi is the momentum conjugate to the spatial components
the gauge fieldAi ,w5A0 , andBem is a surface term depend
ing on the boundary condition. The constantb related to
chosen units may be taken conveniently to be the area o
hypersurfaceSD22 . For static, electrically charged blac
holes in the metric~3.3!, the action~4.1! can be reduced to
@26#

I em5~ t22t1!E drF2
1

2
NrD22p21w~r D22p!8G1Bem,

~4.2!

where

p5
bpr

Agr D22
. ~4.3!
3-8
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Combining Eqs.~4.2! and ~3.6!, one has the reduced actio
of the system

I 5~ t22t1!E drFNS F82
1

2
r D22p2D1w~r D22p!8G1B̃,

~4.4!

where F is still given by Eq.~3.7! and B̃ denotes anothe
surface term. Varying the action~4.4! with respect toN,
g, p, andw, respectively, one has the equations of moti

F85
1

2
r D22p2, ~4.5!

N850, ~4.6!

w852Np, ~4.7!

~r D22p!850. ~4.8!

The solutions of the above equations are easily found:

N5N` , ~4.9!

p5
Q

r D22
, ~4.10!

w5
N`Q

~D23!r D23
1w` , ~4.11!

F52
Q2

2~D23!r D23
1C̃. ~4.12!

HereC̃5M1C̃0 , w` is the value ofw at infinity, which is
conjugate to the electric chargeQ of the solution, and the
integration constantN` is the value ofN at infinity which is
conjugate to the massM. Therefore one can takeN`51 by
adjusting the time coordinate. In that case, we have the
lutions

ds252g2~r !dt21g22~r !dr21r 2dSD22
2 , ~4.13!

where
04401
o-

g2~r !55
k1S r

l D
2

2F2M12C̃0

r
2

Q2

~D23!r D22G 1/~n21!

for D52n,

k1S r

l D
2

2FM1C̃02
Q2

2~D23!r D23G 1/~n21!

for D52n21.
~4.14!

Once again, the additive constantC̃0 determines the ground
states of the solutions and can be fixed as in the prev
section. WhenD53, w and F in Eqs. ~4.11! and ~4.12!
should be replaced by

w52N`Qln r 1w0 , ~4.15!

F5
1

2
Q2ln r 1C̃, ~4.16!

wherew0 is an integration constant which is related to t
choice of zero electric potential. The metric functiong2 be-
comes

g2~r !52M1~r / l !22
1

2
Q2ln r , ~4.17!

which is just the charged BTZ black hole solution@1#.
We are not going to separately analyze here the solut

~4.14! for different curvaturek. Instead we will give a unified
description. Just as the case of charged, spherically sym
ric solutions@26#, our solutions~4.14! may have two, one, or
no horizons depending on the relative value of the mass
charge. Therefore the causal structure is similar to that of
Reissner-Nordstro¨m–anti-de Sitter black hole. But we shou
notice that except for the singularity atr 50, the solutions
~4.14! have another singularity atr 5r c.0 @26# hidden by
the black hole horizonsr 2 andr 1 , 0,r c,r 2,r 1 , which
can be seen from the following curvature scalar of the so
tions:

R52~g2!92
2~D22!

r
~g2!81

~D22!~D23!

r 2
~k2g2!.

~4.18!

In general, it is difficult to get an explicit expression o
the horizon of the black hole solutions~4.14! in terms of the
mass and charge. However, we can obtain an expressio
mass in terms of the horizonr 1 and charge. From Eq.~4.14!,
we have
M1C̃055
r 1

2 H Fk1S r 1

l D 2Gn21

1
Q2

~D23!r 1
D22J for D52n,

Fk1S r 1

l D 2Gn21

1
Q2

2~D23!r 1
D23

for D52n21.

~4.19!

According to the formula~3.16!, the Hawking temperatures are
3-9
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T55
@k1~r 1 / l !2#22n

2p~n21!r 1
H 1

2Fk1S r 1

l D 2Gn22Fk1~2n21!S r 1

l D 2G2
Q2

2r 1
D22J for D52n,

@k1~r 1 / l !2#22n

4p~n21! H 2~n21!r 1

l 2 Fk1S r 1

l D 2Gn22

2
Q2

2r 1
D22J for D52n21.

~4.20!

Using Eq.~4.19!, one has

S ]M

]r 1
D

Q

55
1

2Fk1S r 1

l D 2Gn22Fk1~2n21!S r 1

l D 2G2
Q2

2r 1
D22

for D52n,

2~n21!r 1

l 2 Fk1S r 1

l D 2Gn22

2
Q2

2r 1
D22

for D52n21.

~4.21!

Substituting Eqs.~4.21! and ~4.20! into Eq. ~3.20!, we find the entropy

S52p~n21!E
0

r 1

r 1Fk1S r 1

l D 2Gn22

dr15p l 2H Fk1S r 1

l D 2Gn21

2kJ ~4.22!

for even dimensional black holes and

S54p~n21!E
0

r 1Fk1S r 1

l D 2Gn22

dr154p~n21!l (
m50

n22 S n22

m D 1

2m11S r 1

l D 2m11

kn222m ~4.23!

for odd dimensional black holes. Whenk51, the entropies~4.22! and~4.23! are totally the same as those derived through
Hamiltonian analysis@26#. The method used here seems to be simpler. Furthermore, it is found that the entropy formulas~4.22!
and~4.23! are also exactly same as Eqs.~3.21! and~3.22!, which are derived as the charges are absent. It verifies in some
that the black hole entropy comes from a surface term of gravitational action at the horizon@24,31,32#. That is, the black hole
entropy is not explicitly related to the Lagrangian of matters.

Finally, we give the heat capacity of charged black holes:

CQ5

2p~n21!r 1
2 FDn22F ~2n21!S r 1

l D 2

1kG2
Q2

r 1
D22G

F ~2n21!S r 1

l D 2

2kG1
Q2D12n

r 1
D22 F ~2n21!k1~4n25!S r 1

l D 2G ~4.24!

in even dimensions, and

CQ5

4p~n21!r 1F 4

l 2
Dn222

Q2

~n21!r 1
D21G

4

l 2
1

Q2D12n

~n21!r 1
D21F ~2n23!k1~4n27!S r 1

l D 2G ~4.25!
n

s
d
d
re
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es
of
r-
in odd dimensions, whereD5k1(r 1 / l )2. The behavior of
heat capacity is quite interesting. Inspecting Eq.~4.25!, for
odd dimensional black holes, one can see thatCQ is always
positive and finite. AndCQ50 when 4Dn22/ l 25Q2/(n
21)r 1

D21 , which corresponds to extremal black holes, a
thereby the Hawking temperature~4.20! vanishes. For even
dimensional black holes, whenk51, the heat capacity ha
been analyzed in@36#. The heat capacity may be positive an
negative, between them the heat capacity has an infinite
continuity. In the physical parameter regime, there are th
04401
d

is-
e

possibilities: the heat capacity has two, one and no infin
discontinuities. Whenk50 andk521, we find that the hea
capacity ~4.24! is always positive and finite. WhenT
50, CQ50. This is the case of extremal black holes.

V. CONCLUSIONS

In this work we have investigated topological black hol
in dimensionally continued gravity which is a special class
Lovelock gravity. This is achieved by embedding the Lo
3-10
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entz group SO(D21,1) into the anti–de Sitter group SO(D
21,2). In this way Lovelock gravity is divided into two
branches depending on the spacetime dimension: even
odd dimensional cases. The action is, in odd dimensions
Chern-Simons form for the anti–de Sitter group and, in ev
dimensions, the Euler density constructed with the Lore
part of the anti–de Sitter curvature tensor. In the caseD
53 andD54, the two actions reduce to the Einstein-Hilbe
action with a negative cosmological constant in general r
tivity. The Lovelock coefficients are reduced to two para
eters: to the cosmological constant and gravitational c
stant. The horizons of these topological black holes areD
22)-dimensional hypersurfaces with constant positive, ze
or negative curvaturek. Therefore, the even horizon of blac
holes is no longer the (D22)-dimensional sphereSD22. The
horizons may also be toroidal or higher genus Riemann
faces.

We have studied the three kinds of black holes and
cussed their thermodynamic properties. From the first law
the thermodynamics of black holes, we have calculated th
topological black hole entropies. It turns out that the entro
does not obey the usual area formula. Whenk51, it reduces
to that derived through a Hamiltonian analysis for sphe
cally symmetric black holes@26#. Because of the differen
topological structures, these black holes manifest differ
thermodynamic behaviors. In the casek51, the vacuum state
is anti–de Sitter space in even dimensions and, in odd
mensions, is the zero mass black hole solution, as happe
the BTZ solution@1,33#, for which the horizon and singular
ity coincide with each other atr 50. The heat capacity is
alway positive for odd dimensional black holes, but for ev
dimensional black holes, positive asr 1. l /A2n21 and
negative asr 1, l /A2n21. That is, it has a transition poin
at r 15 l /A2n21; thereby the heat capacity suffers from
infinite discontinuity. In the casek50, the vacuum state fo
both solutions is the zero mass black hole as the zero m
BTZ solution. In this case, the heat capacity is always po
tive for both solutions. In the casek521, the vacuum state
describes a black hole with horizonr 15 l for both solutions.
This vacuum solution has some peculiar properties. For
ferent dimensions, the Hawking temperature is same aT
51/2p l , but the entropy has different behaviors in even
mensions and odd dimensions~3.45!. This is because, em
bedded in the different gravity, the same black hole solut
may have different entropy@note that the vacuum solution i
Eq ~1.3!, whenk521 andM5Q50, has a entropy propor
tional to its area#. In this case, the heat capacity is also
ways positive for arbitrary dimensional black holes. In ad
tion, the negative mass spectrum is allowed in the black h
solutions whenn52k̃11, wherek̃PZ. But there exists a
critical negative mass, beyond which the singularity ar
50 will be naked. The critical mass has been found. R
cently, higher dimensional Chern-Simons supergarvity
been investigated@37,38#. It would be interesting to study th
supersymmetry of these topological black hole solutio
found in this paper and the constant curvature black holes@4#

The charged topological black holes in this dimensiona
continued gravity have been also considered. The Hawk
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temperature, entropy, and heat capacity have been calcu
and analyzed. It has been found that fork50 andk521
black hole solutions@including those solutions~1.3! in
Einstein-Maxwell theory; see the Appendix#, the heat capac-
ity is always positive, which means that these black holes
more stable thank51 black holes. This work has extende
the investigation on static, spherically symmetric black ho
in dimensionally continued gravity@26#.
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APPENDIX: THERMODYNAMICS OF HIGHER
DIMENSIONAL TOPOLOGICAL BLACK HOLES

IN EINSTEIN-MAXWELL THEORY

In this appendix, we briefly discuss thermodynamics
higher dimensional topological black holes~1.3! in Einstein-
Maxwell theory with a negative cosmological constant. Fo
discussion in four dimensions see@11#. For the solution
~1.3!, the vacuum state is

ds252@k1~r / l !2#dt21@k1~r / l !2#21dr21r 2dSD22
2 ,

~A1!

which is a D-dimensional anti–de Sitter space with a (D
22)-dimensional hypersurfaceSD22 whose curvature is a
constant (D22)(D23)k. Therefore, asymptotically, the so
lution ~1.3! is also locally isometric to the anti–de Sitte
space. For the vacuum solution~A1!, as discussed in the tex
the horizon is absent ask51, at r 150, coinciding with the
singularity atr 50 whenk50, and isr 15 l when k521.
Differing from the zero mass black hole~3.43! in dimension-
ally continued gravity, the zero mass black hole~A1! in Ein-
stein gravity obeys the area formula of entropy, which
will prove.

The solutions~1.3! may have two, one, and no horizon
When the solutions describe black holes with a nondege
ate horizon, using Eq.~3.16!, we get the Hawking tempera
ture in terms of the charge and horizon radiusr 1 :

T5
1

4pr 1
F ~D23!k1~D21!S r 1

l D 2

2
16p2~D23!Q2

vD22
2 r 1

2~D23! G .

~A2!

From the definition of horizongtt(r 1)50, we have

S ]M

]r 1
D

Q

5
~D22!vD22r 1

D24

16p F ~D23!k1~D21!S r 1

l D 2

2
16p2~D23!Q2

vD22
2 r 1

2~D23! G . ~A3!

Substituting Eqs.~A2! and ~A3! into Eq. ~3.20!, one has
3-11
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S5E
0

r 1

T21S ]M

]r 1
D

Q

dr15
~D22!vD22

4
E

0

r 1

r 1
D23dr1

5
1

4
vD22 r 1

D22 , ~A4!

which is just one-quarter of the horizon area. It also verifi
that the black hole entropy in Einstein gravity always sa
fies the usual area formula, independent of the topology
event horizon. One may wonder whether the entropy ok
lli,

as

,

04401
s
-
of

521 zero mass black holes~3.43! and ~A1! obeys the en-
tropy formula derived from Eq.~3.20!, because the formula
~3.20! seems nonapplicable to these zero mass black ho
Recall that the black hole entropy in fact comes from a s
face term of the gravitational action under considerati
which is computed at the black hole horizonr 1 @24,31,32#.
Therefore, the black hole entropy is not related to whet
the mass of black holes is zero or not. And hence the re
from Eq. ~3.20! is applicable to the zero mass black holes

The heat capacity of the black holes~1.3! is
or of Eq.
CQ5
~D22!vD22r 1

D22

4

F ~D23!k1~D21!S r 1

l
D 2

2
16p2~D23!Q2

vD22
2 r 1

2~D23! G
F2~D23!k13~D21!S r 1

l
D 2

1
16p2~D23!~2D25!Q2

vD22
2 r 1

2~D23! G . ~A5!

Inspecting the heat capacity, obviously, whenk50 andk521, one may find that it is always positive and finite. Whenk
51, it may be positive and negative; between them an infinite discontinuity occurs, which happens as the denominat
~A5! vanishes. When the two horizons of black holes coincide with each other, we haveT5CQ50, which corresponds to the
extremal black holes.

Whenk521, there is also the negative mass black holes. The critical mass, beyond which the singularity atr 50 will be
naked, is

M c52
~D22!vD22r c

D23

8p F12
D22

D23S r c

l D 2G , ~A6!

wherer c satisfies

r c5 lAD23

D21F11
16p2Q2

vD22
2 r c

2~D23!G 1/2

. ~A7!
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