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Tolman wormholes violate the strong energy condition
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For an arbitrary Tolman wormhole, unconstrained by symmetry, we shall define the bounce in terms of a
3-dimensional edgeless achronal spacelike hypersurface of minimal volume~zero trace for the extrinsic cur-
vature plus a ‘‘flare-out’’ condition!. This enables us to severely constrain the geometry of spacetime at and
near the bounce and to derive general theorems regarding violations of the energy conditions—theorems that
do not involve geodesic averaging but nevertheless apply to situations much more general than the highly
symmetric FRW-based subclass of Tolman wormholes.@For example, even under the mildest of hypotheses,
the strong energy condition~SEC! must be violated.# Alternatively, one can dispense with the minimal volume
condition and define a generic bounce entirely in terms of the motion of test particles~future-pointing timelike
geodesics!, by looking at the expansion of their timelike geodesic congruences. One re-confirms that the SEC
must be violated at or near the bounce. In contrast, it is easy to arrange forall the other standard energy
conditions to be satisfied.@S0556-2821~99!06802-2#

PACS number~s!: 04.20.Dw, 95.30.Sf, 98.80.Hw
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I. INTRODUCTION

A so-called Tolman wormhole is formed if a collapsin
universe somehow halts its contraction before encounteri
big crunch singularity and then re-expands. Thus Tolm
wormholes are prototypes for modeling the ‘‘oscillating un
verse’’ cosmologies that were in vogue in the 1930s@1,2#. In
many cases, the precise nature of the ‘‘bounce’’ that w
invoked to drive re-expansion was left unspecified~singular
cusp? angular momentum barrier? analytic extension thro
the singularity?!. In this article we shall explicitly assum
that the ‘‘bounce’’ occurs at a moment when the geometr
non-singular and shall seek to extract as much generic in
mation as possible about constraints that can then be pl
on the bounce.

Specifically, we shall assume that the universe reach
moment of minimum spatial volume, and call this minimum
volume edgeless achronal spacelike hypersurface
‘‘bounce.’’ The Tolman wormhole will then be taken to b
some suitable open region of spacetime surrounding
bounce. If we additionally assume rotational and trans
tional symmetry, then the case of the corresponding bou
ing Friedmann-Robertson-Walker~FRW! universe has al-
ready been considered in@3#. We shall use that Letter a
guidance, but in this article wish to avoid unnecessary sy
metry constraints, and so shall also seek guidance from
cent analyses of generic traversable wormholes@4–6# and
their throats@7–10#.

*Electronic address: hochberg@laeff.esa.es
†Electronic address: carmen@t6-serv.lanl.gov
‡Electronic address: visser@kiwi.wustl.edu
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Tolman wormholes@3# and traversable wormholes@4–6#
are rather different objects: the Tolman wormhole is intr
sically time dependent and involves a ‘‘bounce’’ for the e
tire universe; so the throat is a 3-dimensional spacelike
persurface~timelike normal!, whereas traversable wormhole
are local objects@4–6# whose throats are~211!-dimensional
timelike hypersurfaces~spacelike normals!. Nevertheless, we
shall see that many parts of the analysis can be natur
carried over from one case to the other.

The 1988 analysis of Morris and Thorne revitalized inte
est in traversablewormholes@4# when they were able to
show that traversable wormholes were compatible with
current understanding of general relativity and semiclass
quantum gravity—but that there was a definite price to
paid—one had to admit violations of the null energy con
tion ~NEC!. More precisely, what Morris and Thorne showe
was equivalent to the statement that for static spheric
symmetric traversable wormholes there must be an open
gion surrounding the throat over which the NEC is violat
@4–6#. For spherically symmetric homogeneous Tolm
wormholes~bouncing FRW universes! the analogous state
ment is that there is an open temporal region surrounding
bounce on which the strong energy condition~SEC! must be
violated @3#. ~Traversable wormholes are cosmologically i
teresting in their own right@11,12#, but we will not directly
address that topic in this paper.!

To set up the analysis for a generic Tolman wormhole,
first have to define exactly what we mean by a such
wormhole—we find that there is a nicegeometrical~not to-
pological! characterization of the existence of, and locati
of, the ‘‘bounce.’’ This characterization is developed
terms of a hypersurface of minimal area, subject to a ‘‘fla
out’’ condition that generalizes that of@3#. With this defini-
©1999 The American Physical Society11-1
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tion in place, we can develop a number of theorems ab
SEC violations at or near the bounce. While SEC violatio
at or near the bounce are unavoidable, it is relatively eas
satisfyall the other standard energy conditions.

We develop a general analysis of energy condition vio
tions in Tolman wormholes.~This analysis is based largel
on @3,7–10#. For an analysis using similar techniques appl
to static vacuum and electrovac black holes see Is
@13,14#. A related decomposition applied to the collap
problem is addressed in@15#.! In view of the preceding dis-
cussion we want to get away from the notion that topology
the intrinsic defining feature of wormholes, either traversa
or Tolman, and instead focus on the geometry of the wo
hole throat and bounce. Our strategy is straightforward:

~1! Take any~311!-dimensional hypervolume, and loo
for a 3-dimensional edgeless achronal spacelike hypersur
of strictly minimal volume. Define such a surface, if it exis
to be the bounce of a Tolman wormhole. This generalizes
Morris-Thorne flare-out condition for static traversab
wormholes to arbitrary Tolman wormholes.

~2! Use the Gauss-Codazzi and Gauss-Weingarten e
tions to decompose the~311!-dimensional spacetime curva
ture tensor in terms of the 3-dimensional curvature tenso
the bounce and the extrinsic curvature of the bounce a
embedded hypersurface in the~311!-dimensional geometry

~3! Reassemble the pieces: Write the spacetime curva
in terms of the 3-curvature of the bounce and the extrin
curvature of the bounce in~311! spacetime.

~4! Use the generalized flare-out condition to place c
straints on the stress-energy tensor at and near the thro

A somewhat different but complementary strategy wh
dispenses with the minimal volume condition in~1! is then
presented which makes use instead of local propertie
timelike geodesic congruences near the candidate bou
For this we replace~1! by the following:

~18! The bounce of a Tolman wormhole is
3-dimensional spacelike hypersurface on which the exp
sion of a hypersurface orthogonal timelike geodesic cong
ence vanishes identically and for which the expansion
strictly positive to the immediate future of the bounce a
strictly negative to the immediate past.

This latter characterization in terms of geodesic expans
is useful for when the volume of the hypersurface is
defined and is equivalent to the latter definition when
volume integral exists.This version of the definition is als
capable of dealing with situations where only a part of t
universe is ‘‘bouncing’’ while the rest continues its collaps
or is already in its expanding phase.One can deduce imme
diately the violation of the SEC in the neighborhood of t
bounce without having to follow steps~2!–~4!. However, the
analysis implied by these additional steps is crucial for
sessing the status of the other energy conditions@NEC, weak
energy condition~WEC!, dominant energy condition~DEC!#
at and near the bounce.

II. DEFINITION OF A GENERIC BOUNCE

We define a bounce,S, to be an edgeless achron
3-dimensional spacelike hypersurface ofminimal volume.
04401
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Compute the volume by taking

V~S!5E A ~3!g d3x. ~1!

Now use Gaussian normal coordinates,xi5(t;xW i), wherein
the hypersurfaceS is taken to lie att50, so that

~311!gmn dxmdxn52dt21 ~3!gi j dxidxj . ~2!

We do not demand that the manifold be globally of th
form, but will remain satisfied with the knowledge that su
a coordinate system exists and covers some open region
rounding the bounce. The variation in volume, obtained
pushing the hypersurface surfacet50 out to t5dt(x), is
given by the standard computation

dV~S!5E ]A ~3!g

]t
dt~x!d3x. ~3!

which implies

dV~S!5E A ~3!g
1

2
gi j

]gi j

]t
dt~x!d3x. ~4!

In Gaussian normal coordinates the extrinsic curvature
simply defined by

Ki j 52
1

2

]gi j

]t
. ~5!

@See @16#, p. 552. In this section we use Misner-Thorn
Wheeler~MTW! sign conventions. The convention in@6#, p.
156, is the opposite.# Thus

dV~S!52E A ~3!g tr~K !dt~x!d3x. ~6!

@We use the notation tr~X! to denotegi j Xi j .# Since this is to
vanish for arbitrarydt~x!, the condition that the area b
extremalis simply tr(K)50. To force the volume to bemini-
mal requires ~at the very least! the additional constrain
d2V(S)>0. ~We shall also consider higher-order constrain
below.! But by explicit calculation

d2V~S!52E A ~3!gS ] tr~K !

]t
2tr~K !2D

3dt~x!dt~x!d3x. ~7!

Extremality@ tr(K)50# reduces this minimality constraint t

d2V~S!52E A ~3!gS ] tr~K !

]t D dt~x!dt~x!d3x>0. ~8!

Since this is to hold for arbitrarydt(x), this implies that at
the bounce we certainly require

] tr~K !

]t
<0. ~9!

This is the simplest generalization of the ‘‘flare-out’’ cond
tion for FRW-based Tolman wormholes to arbitrary Tolm
1-2
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TOLMAN WORMHOLES VIOLATE THE STRONG ENERGY . . . PHYSICAL REVIEW D 59 044011
wormholes @3#. This simple bounce condition can be r
phrased as follows: We have as an identity that

] tr~K !

]t
5trS ]K

]t D12tr~K2!. ~10!

So minimality implies

trS ]K

]t D12tr~K2!<0. ~11!

We must now discuss some technical complications
lated to the fact that we eventually prefer to have a stro
inequality ~,! at or near the bounce, than to have a we
inequality~<! at the bounce itself. Similar technical comp
cations arise when considering the Morris-Thorne sta
spherically symmetric wormhole@4# and the FRW-based
Tolman wormholes of@3#. These technical issues are also t
main stumbling block in setting up the analysis of gene
traversable wormholes as carried out in@7–10#. Unfortu-
nately the details are a little different for Tolman wormhole
and so we cannot simply copy the previous arguments.

To set the notation, let us consider some one-param
set of deformations of the surfaceS specified by

dt~x!5e f ~x!. ~12!

This allows us to define a stratified collection of hypers
facesSe by taking

Se5$e f ~x!,xi%. ~13!

We now ask that, for allf (x), the volume of these sets o
hypersurfacesV@Se# be a strict minimum at the bounce. Th
is equivalent to asserting that for every ‘‘direction’’f (x)
timelike deformations of the bounce lead to strict increa
in spatial volume. Now demanding that there be an op
interval for whichV@Se#.V@S0# leads, by the fundamenta
theorem of calculus, to the existence of an open interval

' ẽ.0:;eP~2 ẽ,0!ø~0,ẽ !,
d2V@Se#

de2 .0. ~14!

This then implies, via Eq.~7!,

' ẽ.0:;eP~2 ẽ,0!ø~0,ẽ !,

E
Se

A ~3!g f2~x!S ] tr~K !

]t
2tr~K !2Dd3x,0. ~15!

Since this integral is negative for allf (x), there will be some
~311!-dimensional open setS surrounding~but not necessar
ily including! the bounceS such that

S ] tr~K !

]t
2tr~K !2D,0. ~16!

But we also know that tr(K)50 at the bounce itself. This
allows us to apply the fundamental theorem of calculu
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second time to derive the existence of a second open sS̃
surrounding~but not necessarily including! the bounceS
such that

] tr~K !

]t
,0. ~17!

To see this note that Eq.~16! can be written asdF(t)/dt
2F(t)2,0 ontP(0,t* ) with F(0)50, from which we see
thatF(t) must initially go negative. It is this final version o
the bounce condition that will lead to the most general a
powerful theorems.

These constraints on the extrinsic curvature lead to c
straints on the spacetime geometry, and consequently
straints on the stress-energy tensor.

III. GEOMETRY AT AND NEAR A GENERIC BOUNCE

Using Gaussian normal coordinates in the region s
rounding the bounce the Gauss-Codazzi and Ga
Weingarten equations give

~311!Ri jkl 5
~3!Ri jkl 1~KikK jl 2Kil K jk!, ~18!

~311!Rt i jk52~Ki j uk2Kiku j !, ~19!

~311!Rt i t j5
]Ki j

]t
1~K2! i j . ~20!

See@16#, p. 514, Eqs.~21.75! and ~21.76! and @16#, p. 516,
Eq. ~21.82!. Here the indext refers to the temporal direction
normal to the three-dimensional bounce. As usual, the ve
cal bar denotes a three-dimensional covariant derivative b
out of the three-dimensional spatial metric.

These results hold both on the throat and in the reg
surrounding the throat: as long as the Gaussian normal c
dinate system does not break down~such a breakdown being
driven by the fact that the normal geodesics typically int
sect after a certain distance!.

Taking suitable contractions, and being carefulnot to use
the extremality condition tr(K)50, we find that,at and near
the bounce,

~311!Ri j 5
~3!Ri j 2F]Ki j

]t
12~K2! i j 2tr~K !Ki j G , ~21!

~311!Rt i5tr~K ! u i2Ki j
u j , ~22!

~311!Rtt5trS ]K

]t D1tr~K2!

5
]tr~K !

]t
2tr~K2!, ~23!

so that the Ricci scalar is

~311!R5 ~3!R2F2S ] tr~K !

]t
2tr~K2! D1tr~K2!2tr~K !2G .

~24!
1-3
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HOCHBERG, MOLINA-PARÍS, AND VISSER PHYSICAL REVIEW D59 044011
To effect these contractions, we make use of the decom
sition of the spacetime metric in terms of the boun
3-metric and the set of three vectorsei

m tangent to the bounce
and the four-vectornn normal to the bounce:

~311!gmn52nmnn1ei
mej

n ~3!gi j . ~25!

~Note the minus sign in front of thenmnn term.! For the
spacetime Einstein tensor@cf. @16#, p. 515, Eqs.~21.77! and
~21.80! and @16#, p. 552, Eqs.~21.162a!–~21.162c!#,

~311!Gi j 5
~3!Gi j 2F]Ki j

]t
2gi j

] tr~K !

]t
2tr~K !Ki j

12~K2! i j 1
1

2
gi j @ tr~K2!1tr~K !2#G , ~26!

~311!Gt i5tr~K ! u i2Ki j
u j ~27!

~311!Gtt51
1

2
~3!R2

1

2
@ tr~K2!2tr~K !2#. ~28!

The calculations presented above are simply a matte
brute force index gymnastics—but we feel that there
times when explicit expressions of this type are useful.

IV. CONSTRAINTS ON THE STRESS-ENERGY TENSOR

A. First constraint: SEC violation

By using the Einstein equationsGmn58pGTmn , the SEC
applied to the stress-energy tensor is equivalent to the R
convergence condition@6#:

; timelike Vm: RmnVmVn.0. ~29!

But by the simple flare-out condition~9! and Eq.~23!, we see
(311)Rtt<0. This implies that the SEC is either violated
on the verge of being violated at the throat. To really p
down SEC violation we must invoke the stricter inequal
~17! to see that the SEC is definitely violated in some op
region surrounding the bounce.

Equivalently, the spacetime Ricci tensor(311)Rmn has at
least one negative definite eigenvalue~corresponding to a
timelike eigenvector! everywhere in some open region su
rounding the bounce. A similar result for Euclidean worm
holes is quoted in@17# and the present analysis can of cour
be carried over to Euclidean signature with appropriate d
nitional changes.

B. Second constraint: Density

The energy density in the vicinity of the bounce is

r[Ttt5
1

8pG
Gtt5

1

16pG
@ ~3!R2tr~K2!1tr~K !2#.

~30!

The above is the generalization of the result that for a FR
based Tolman wormhole@3#
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r5
3

8pG F k

a2 1
ȧ2

a2G . ~31!

@With MTW conventions (3)R56/a2 for a three-sphere.#
Since tr(K)50 at the bounce, we see that, at the boun
itself,

rbounce<
1

16pG
@ ~3!R#. ~32!

Thus anecessarycondition for the energy density to be pos
tive at the bounce is that the bounce be a three-manifold
everywhere positive Ricci scalar.

C. Third constraint: Average pressure

Define an average pressure by

p[
1

3
gi j ~311!Ti j 5

1

24pG
gi j ~311!Gi j . ~33!

Then

p5
1

16pG F2
1

3
~3!R1

1

3
@ tr~K2!2tr~K !2#

1
4

3 S ] tr~K !

]t
2tr~K2! D G . ~34!

The above is the generalization of the result that, for a FR
based Tolman wormhole@3#,

p52
1

8pG F k

a2 1
ȧ2

a2 12
ä

aG . ~35!

Now at and near the bounce we can write the average p
sure as

p52
1

3
r1

1

12pG F] tr~K !

]t
2tr~K2!G . ~36!

The term in square brackets is negative definite by Eq.~17!;
so there is an open region surrounding the bounce for wh

p,2
1

3
r. ~37!

This is just the previously discussed SEC violation in anot
disguise, though it has the advantage of emphasizing the
that positive densities near the bounce imply negative p
sures near the bounce.

D. Fourth constraint: Energy conditions

Using the average pressure defined above, it is eas
prove that, even in the absence of any symmetries,

NEC⇒~r1p>0!, ~38!

WEC⇒~r>0! and ~r1p>0!, ~39!
1-4
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TOLMAN WORMHOLES VIOLATE THE STRONG ENERGY . . . PHYSICAL REVIEW D 59 044011
SEC⇒~r13p>0! and ~r1p>0!, ~40!

DEC⇒~r>0! and ~r6p>0!. ~41!

Basic definitions of the energy conditions are given in@6,18#.
It is important to note that in the case of a FRW unive
these implications~⇒! are strengthened to equivalences~⇔!
as discussed in@19–21#.

To see how these relations are proved, focus as an
ample on the NEC, which states that for all null vecto
TmnVmVn>0. Note that~up to arbitrary normalization! all
null vectors can be writtenVm5(1;b i) with gi j b

ib j51.
Therefore, for allb i we have

r12 f ib
i1Ti j b

ib j>0, ~42!

where the momentum flux is defined byf i5Tt i . By averag-
ing over the two null vectors (1;b i) and (1;2b i) this im-
plies that, for allb i ,

r1Ti j b
ib j>0. ~43!

Finally average over three mutually perpendicular unit v
tors b i :

r1
1

3
Ti j g

i j >0. ~44!

Equivalently,

r1p>0. ~45!

The same logic can now be followed for the other pointw
energy conditions.

It therefore becomes interesting to use the Einstein eq
tions to calculater6p. We find

r1p5
1

16pG F2

3
~3!R2

2

3
@ tr~K2!2tr~K !2#

1
4

3 S ] tr~K !

]t
2tr~K2! D G ~46!

and

r2p5
1

16pG F4

3
~3!R2

4

3
@ tr~K2!2tr~K !2#

2
4

3 S ] tr~K !

]t
2tr~K2! D G . ~47!

We shall now show that there is an enormous class of sp
time geometries for which these two quantities are positiv
and near the bounce. To see this, consider the following s
ing argument: suppose we have some spacetime geom
which has a bounce and for which the bounce is a mani
of positive Ricci scalar. Now consider the class of geo
etries

g→ge :ds252dt21e2gi j dxidxj .

For this class of geometries,
04401
e

x-

-

e

a-

e-
at
al-
try
ld
-

~3!R→ ~3!Re5
~3!R

e2 ,

while on the other hand tr(K) and tr(K2) are independent o
e. @Ki j→e2Ki j but g21→e22g21, so tr(K)→tr(K).# Thus
for e sufficiently small the intrinsic curvature terms will a
ways dominate over the extrinsic curvature terms and we
guarantee that the density@Eq. ~30!# and Eqs.~46!, ~47! are
all positive. Thus there is a large class of bounce geomet
that are compatible with the NEC, WEC, and DEC. Howev
bounce geometries must always violate SEC. This gene
izes the result for FRW-based Tolman wormholes presen
in @3#. Somewhat stronger statements can be made by lo
ing at the explicit formulas for the components of the E
stein tensor:

~311!Gi j ~e!5 ~3!Gi j e
221O~e2!, ~48!

~311!Gt i~e!5O~1!, ~49!

~311!Gtt~e!51
1

2
~3!Re221O~1!. ~50!

By choosinge small enough we can guarantee that NE
WEC, and DEC are satisfied, though SEC must always
violated.

V. GENERIC BOUNCES DEFINED USING TIMELIKE
GEODESICS

The definition of a generic bounce starting from the v
ume integral in Eq.~1! is similar in spirit to and motivated by
the definition of a generic wormhole throat developed
@7,8#, but there are important differences we would like
underscore. First, of course, is the fact that a bounce is
definition an intrinsically time-dependent phenomeno
whereas wormholes may be either static or time-depend
Second, whereas wormhole throats in spacetime are defi
via two-dimensional spacelike hypersurfaces, the bounce
three-dimensional spacelike hypersurface. The third, and
haps the most important, difference stems from the fact
whereas wormhole throats are always closed~and thus have
finite area! spatial hypersurfaces satisfying certain extrem
ity and minimality properties, bounces may be spatially op
~e.g., as in a FRW cosmology with flat or hyperbolic spat
sections! or closed~e.g., as in a FRW cosmology with close
spatial sections!, depending on the type of cosmology bein
considered. In the latter case, the spatial volume integral i
course finite and well defined, but in the former case, it is
finite, and a definition of a generic bounce is called for whi
is not bound up with potentially infinite integrals, but whic
is nevertheless fully equivalent to the definition given earl
in this paper. That such alocal pointwise definition of a
generic bounce is possible is strongly suggested by the w
in @9# and@10#, which treated general dynamic wormholes
the basis of~null! geodesic congruences. The idea is simp
to define what we mean by a bounce in terms of the lo
properties of timelike geodesic congruences in the neighb
hood of the putative bounce. This is motivated by the ve
1-5
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HOCHBERG, MOLINA-PARÍS, AND VISSER PHYSICAL REVIEW D59 044011
physical question which asks, how is the motion of test p
ticles in the vicinity of a bounce affected by that bounc
The alternative definition is as follows: a bounce is
3-dimensional spatial hypersurface such that the time
geodesic congruence orthogonal to it vanishes on the hy
surface, is strictly expanding to the immediate future of
hypersurface, and is strictly contracting to the immedi
past. This definition is capable of dealing with situatio
where onlypart of the universe is ‘‘bouncing,’’ while the
rest either continues its collapse or is already in an expa
ing phase. The vanishing condition is equivalent to the m
mality condition obtained in Sec. II and the contractio
expansion condition is none other than the Morris-Tho
‘‘flare-out’’ condition generalized to bounces. Indeed, t
mutual spreading out of a ‘‘swarm’’ of future-directed te
particles in the immediate future of the bounce is what
mean by ‘‘flare-out.’’ As we will see, all these notions a
pointwise. Our next task is to make them precise. In t
section, we follow the same sign conventions and notatio
used in@9,10# which are taken from Wald@22#.

So consider a timelike geodesic congruence orthogona
the spatial hypersurfaceS, to be conveniently located with
out loss of generality att50, and letja denote a tangen
vector to a geodesic in this congruence; we can always
range for all these tangents, parametrized by proper timet, to
have identical normalization:

jaja5gabj
ajb521, ~51!

where the spatial and spacetime metrics are related by

~3!gab5 ~311!gab1jajb. ~52!

Now define the tensor field

Kab[¹bja ; ~53!

by using the normalization condition and the fact that tang
vectors are parallel transported (ja¹ajb50), one can easily
show that this tensor is purely spatial, i.e.,jaKab5jbKab
50, and moreover is symmetric,Kab5Kba , because the
congruence is hypersurface orthogonal. This tensor is in
the extrinsic curvature of the hypersurfaceS and measures
the ‘‘degree of bending’’ with respect to the embeddi
spacetime, as is well known. But it also contains useful
formation regarding the expansionu and the traceless shea
sab ,

u5 ~3!gab Kab5tr~K !, ~54!

sab5K ~ab!2
1

3
~3!gabu, ~55!

of the timelike geodesic congruence normal to the hyper
face. The expansionu measures the instantaneous ‘‘sprea
ing’’ or divergence of nearby timelike geodesics while t
symmetric shear tensor measures the ‘‘slippage’’ of nea
geodesics. The shear is a purely spatial tensor, which im
diately implies thatsabsab>0 is always a positive semi
definite quantity.
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The rates of change of the expansion and shear with
spect to proper time~t of the test particles! can be calculated
and in the case of the expansion, one obtains a simpli
version of the celebrated Raychaudhuri equation@22#

du

dt
52

1

3
u22sabs

ab2Rabj
ajb, ~56!

whereRab is the Ricci tensor of the full spacetime. This
independent of coordinate system. This is a simplified v
sion because the additional contribution from the twist
anti-symmetric part ofKab is absent here, since we are dea
ing with a hypersurface orthogonal congruence. Note t
Eq. ~23! is actually this special-case Raychaudhuri equat
~56! in disguise@once we express Eq.~56! in terms of Gauss-
ian coordinates and take into account the relative sign in
definitions for the extrinsic curvature used in this section, E
~53!, and in Sec. II, Eq.~5!#.

With these simple preliminaries out of the way, we c
now give the ~local! definition of what it means to be a
generic bounce. A bounce is any three-dimensional spa
hypersurface on which the expansion of a hypersurface
thogonal timelike geodesic congruence vanishes identica

~ i! u~0!50, ~57!

and for which the expansion is positive to the immedia
future and negative to the immediate past:

~ ii ! ' t̃1.0:;tP~0,t̃1!, u~t!.0, ~58!

~ iii ! ' t̃2.0:;tP~2 t̃2,0!, u~t!,0. ~59!

These three properties of the timelike geodesics capture
minimality and flare-out conditions of a bounce direct
without needing to refer to the volume of the bounce. Inde
a bunch of test particles traversing the bounce will initia
have a cross section that first decreases in time, reachi
minimum at the throat, followed by a subsequent increase
similar characterization was successfully employed rece
in defining the general time-dependent wormhole thr
@9,10#, by means of null geodesics. By the fundamental th
rem of calculus, conditions~i!, ~ii !, and~iii ! can be combined
to imply

' t̃0.0:;tP~2 t̃0,0!ø~0,t̃0!,
du

dt
.0. ~60!

It will be noted that the Raychaudhuri equation~56! is
independent of the underlying dynamics of the geometry
is a statement only about~timelike! geodesics~test particles!
in a particular geometry. If wenow impose Einstein’s equa
tion ~the geometrodynamics!

Rab58pGS Tab2
1

2
gabTD , ~61!

and make use of the three conditions~i!, ~ii !, and~iii ! @in the
form of Eq. ~60!#, then by the Raychaudhuri equation w
must conclude that
1-6
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' t̃0.0:;tP~2 t̃0,0!ø~0,t̃0!,

jajbS Tab2
1

2
gabTD,0. ~62!

That is, the SEC is strictly violated in an open region s
rounding the bounce.

VI. DISCUSSION

One of the key results of traversable wormhole phys
perhapsthe key result, is the unavoidable violations of th
null energy condition at or near the throat@4–10#. In the case
of a Tolman wormhole it is instead the strong energy con
tion that is violated at or near the bounce@3#. We have de-
veloped a number of general theorems that characterize
extent and generality of these SEC violations. An import
point is that it is relatively easy to obtain SEC violation
they can be found already at the classical level and do
even require the standard appeal to quantum effects th
common in seeking to justify NEC violations@29#.

There are a number of powerful constraints that can
placed on the stress-energy tensor at and near the boun
a Tolman wormhole simply by invoking the minimalit
properties of the bounce. Depending on the precise form
the assumed flare-out condition, these constraints give
various energy condition violation theorems we are seek
Even under the weakest assumptions they constrain
stress-energy tensor to at best be on the verge of violating
SEC.

In this article we have sought to give an overview of t
energy condition violations that occur in generic Tolm
wormholes. We point out that these violations of the ene
conditions follow unavoidably from the definition of a To
man wormhole~bounce! and the definition of the total stress
energy tensor via the Einstein equations. To show the ge
ality of the energy condition violations, we have develop
an analysis that is capable of dealing with Tolman wor
holes of arbitrary symmetry. We have presented two com
mentary definitions of a bounce that agree where they o
lap but are much more general than the FRW-based bou
considered in@3#. The present definitions work well in an
spacetime and nicely capture the essence of the idea of
we would want to call a Tolman wormhole. We do not ne
to make any assumptions about the existence of
K

tt
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asymptotic regions; nor do we need to assume that the m
fold is topologically non-trivial. It is important to realize tha
the essence of the definitions lies in the local geometr
structure of the bounce.

In the broader scheme of things, this article should
viewed as a contribution to the continuing debate as
whether the universe emerged from a mathematical singu
ity in the big bang or if something more subtle is going o
While there can be little doubt that the universe emerg
from a hot dense fireball colloquially called the big bang,
is a big step from a hot dense fireball to a mathemat
singularity. For many years it was believed that the Penr
@18# and Geroch@22# cosmological singularity theorems de
finitively proved the existence of a mathematical singulari
but these theorems are based on assuming the SEC.
article demonstrates that these theoremscannotbe improved
in the sense that we have exhibited a large class of Tolm
wormholes that satisfy all energy conditionsexceptthe SEC.
Furthermore, there is now a large body of evidence point
to the fact that the SEC may not be the fundamental phys
restriction it was once thought to be: there are many qu
reasonable physical systems, even classical systems, tha
late the SEC@3,23–28#. Likewise, gravitational vacuum po
larization, although it is a small quantum effect, often vi
lates the SEC~and other energy conditions! @29–33#.

As discussed in@3# there are a number of singularity theo
rems provable within the ‘‘eternal inflation’’ paradigm@34–
38#, but these theorems obtain their results at the cos
making rather specific additional hypotheses and they are
in conflict with the results of the present paper.

Finally we should mention that a particularly large cla
of quite reasonably behaved Tolman wormholes is provid
by the analytic continuation of Euclidean wormholes back
the Lorentzian signature@39#.
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