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For an arbitrary Tolman wormhole, unconstrained by symmetry, we shall define the bounce in terms of a
3-dimensional edgeless achronal spacelike hypersurface of minimal véaeretrace for the extrinsic cur-
vature plus a “flare-out” condition This enables us to severely constrain the geometry of spacetime at and
near the bounce and to derive general theorems regarding violations of the energy conditions—theorems that
do not involve geodesic averaging but nevertheless apply to situations much more general than the highly
symmetric FRW-based subclass of Tolman wormhdlEsr example, even under the mildest of hypotheses,
the strong energy conditigf8ECQ must be violated.Alternatively, one can dispense with the minimal volume
condition and define a generic bounce entirely in terms of the motion of test pafidi@®-pointing timelike
geodesicg by looking at the expansion of their timelike geodesic congruences. One re-confirms that the SEC
must be violated at or near the bounce. In contrast, it is easy to arrangd! fitve other standard energy
conditions to be satisfiedS0556-282(199)06802-3

PACS numbes): 04.20.Dw, 95.30.Sf, 98.80.Hw

I. INTRODUCTION Tolman wormholeg3] and traversable wormhol¢d—6]
are rather different objects: the Tolman wormhole is intrin-
A so-called Tolman wormhole is formed if a collapsing sically time dependent and involves a “bounce” for the en-
universe somehow halts its contraction before encountering tire universe; so the throat is a 3-dimensional spacelike hy-
big crunch singularity and then re-expands. Thus Tolmarpersurfacdtimelike norma), whereas traversable wormholes
wormholes are prototypes for modeling the “oscillating uni- are local object§4—6] whose throats aré+ 1)-dimensional
verse” cosmologies that were in vogue in the 19BD£)]. In timelike hypersurfacetpacelike normajs Nevertheless, we
many cases, the precise nature of the “bounce” that washall see that many parts of the analysis can be naturally
invoked to drive re-expansion was left unspecifiesthgular  carried over from one case to the other.
cusp? angular momentum barrier? analytic extension through The 1988 analysis of Morris and Thorne revitalized inter-
the singularity®. In this article we shall explicitly assume est in traversablewormholes[4] when they were able to
that the “bounce” occurs at a moment when the geometry isshow that traversable wormholes were compatible with our
non-singular and shall seek to extract as much generic inforeurrent understanding of general relativity and semiclassical
mation as possible about constraints that can then be placegiantum gravity—but that there was a definite price to be
on the bounce. paid—one had to admit violations of the null energy condi-
Specifically, we shall assume that the universe reaches tion (NEC). More precisely, what Morris and Thorne showed
moment of minimum spatial volume, and call this minimum- was equivalent to the statement that for static spherically
volume edgeless achronal spacelike hypersurface theymmetric traversable wormholes there must be an open re-
“bounce.” The Tolman wormhole will then be taken to be gion surrounding the throat over which the NEC is violated
some suitable open region of spacetime surrounding thig4—6]. For spherically symmetric homogeneous Tolman
bounce. If we additionally assume rotational and translawormholes(bouncing FRW univers¢ghe analogous state-
tional symmetry, then the case of the corresponding bounanent is that there is an open temporal region surrounding the
ing Friedmann-Robertson-WalkéFRW) universe has al- bounce on which the strong energy conditi@EC must be
ready been considered [8]. We shall use that Letter as violated[3]. (Traversable wormholes are cosmologically in-
guidance, but in this article wish to avoid unnecessary symteresting in their own righf11,12, but we will not directly
metry constraints, and so shall also seek guidance from readdress that topic in this paper.
cent analyses of generic traversable wormhdkes6] and To set up the analysis for a generic Tolman wormhole, we
their throatg7-10]. first have to define exactly what we mean by a such a
wormhole—we find that there is a nigeometrical(not to-
pologica) characterization of the existence of, and location

*Electronic address: hochberg@laeff.esa.es of, the “bounce.” This characterization is developed in
"Electronic address: carmen@t6-serv.lanl.gov terms of a hypersurface of minimal area, subject to a “flare-
*Electronic address: visser@kiwi.wustl.edu out” condition that generalizes that §8]. With this defini-
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tion in place, we can develop a number of theorems abouCompute the volume by taking
SEC violations at or near the bounce. While SEC violations
at or near the bounce are unavoidable, it is relatively easy to :j @)y 43
satisfyall the other standard energy conditions. V) \/_gd X @
We develop a general analysis of energy condition viola- . . : i .
tions in Tolmgn V\?ormholes(.Th%s analysis ?g based largely Now use Gaussm'n normal co'ordlnatiek,(r;x'), wherein
on[3,7-140. For an analysis using similar techniques appliedthe hypersurfac& is taken to lie at=0, so that
to static vacuum and electrovac black holes see lIsrael (@+1g  dxtdx’= —d72+ P dxidxi. )
[13,14). A related decomposition applied to the collapse
problem is addressed [15].) In view of the preceding dis- We do not demand that the manifold be globally of this
cussion we want to get away from the notion that topology isform, but will remain satisfied with the knowledge that such
the intrinsic defining feature of wormholes, either traversablea coordinate system exists and covers some open region sur-
or Tolman, and instead focus on the geometry of the wormrounding the bounce. The variation in volume, obtained by
hole throat and bounce. Our strategy is straightforward:  pushing the hypersurface surfage0 out to 7= 67(x), is
(1) Take any(3+1)-dimensional hypervolume, and look given by the standard computation
for a 3-dimensional edgeless achronal spacelike hypersurface -
of strictly minimal volume. Define such a surface, if it exists, g
to be thg bounce of a Tolman wormhole. This generalizes the oV(2)= J Er S7(x)d. )
Morris-Thorne flare-out condition for static traversable
wormholes to arbitrary Tolman wormholes. which implies
(2) Use the Gauss-Codazzi and Gauss-Weingarten equa-
tions to decompose th@+1)-dimensional spacetime curva- 5V(E)=f \/%E g/ 99ij S7(x)d3x. (4)
ture tensor in terms of the 3-dimensional curvature tensor of 2 T
the bounce and the extrinsic curvature of the bounce as an . . o _
embedded hypersurface in tt@+1)-dimensional geometry. Gaussian normal coordinates the extrinsic curvature is
(3) Reassemble the pieces: Write the spacetime curvaturlcslmply defined by
in terms of the 3-curvature of the bounce and the extrinsic 1 4g;
curvature of the bounce i(8+1) spacetime. Kij=— > (9—1
(4) Use the generalized flare-out condition to place con- T

straints on the stress-energy tensor at and near the throat. [See[16], p. 552. In this section we use Misner-Thorne-

A somewhat different but complementary strategy WhiChWheeIer(MTW) sign conventions. The convention [i6], p.
dispenses with the minimal volume condition (@) is then 155 is the opposite Thus

presented which makes use instead of local properties of

timelike geodesic congruences near the candidate bounce.

For this we replacél) by the following: SV(X)= _f V@gtr(K) 870 d. ®)
(') The bounce of a Tolman wormhole is a .

3-dimensional spacelike hypersurface on which the exparl\We use the notation () to denoteg" X;; .] Since this is to

sion of a hypersurface orthogonal timelike geodesic congruvanish for arbitraryd7(x), the condition that the area be

ence vanishes identically and for which the expansion ig€xtremalis simply tr(K)=0. To force the volume to beini-

strictly positive to the immediate future of the bounce andmal requires (at the very leagtthe additional constraint

strictly negative to the immediate past. 5%V(2)=0. (We shall also consider higher-order constraints
This latter characterization in terms of geodesic expansioRelow) But by explicit calculation

is useful for when the volume of the hypersurface is ill-

©)

defined .and is quivalent to the latter defin_iti_o_n when the 52V(2):_J J@g m_tr(K)Z)
volume integral existsThis version of the definition is also aT
capable of dealing with situations where only a part of the X 87(x) 87(x)d3x @)

universe is “bouncing” while the rest continues its collapse,

or is already in its expanding phas®ne can deduce imme- Extremality[tr(K)=0] reduces this minimality constraint to
diately the violation of the SEC in the neighborhood of the

bounce without having to follow steg2)—(4). However, the 2 _ o
analysis implied by these additional steps is crucial for as- FV(Z)= _J Py
sessing the status of the other energy conditi\isC, weak ) o ) o
energy conditiofWEC), dominant energy conditi(DEC)]  Since this is to hold for arbitrarg7(x), this implies that at

d tr(K)
or

) S57(x)87(x)d3x=0. (8)

at and near the bounce. the bounce we certainly require
d tr(K)
<0. €)
II. DEFINITION OF A GENERIC BOUNCE aT

We define a bounce}, to be an edgeless achronal This is the simplest generalization of the “flare-out” condi-
3-dimensional spacelike hypersurface minimal volume. tion for FRW-based Tolman wormholes to arbitrary Tolman

044011-2



TOLMAN WORMHOLES VIOLATE THE STRONG ENERG . .. PHYSICAL REVIEW D 59 044011

wormholes[3]. This simple bounce condition can be re-

i - second time to derive the existence of a second opel$ set
phrased as follows: We have as an identity that

surrounding(but not necessarily includingthe bounce,

Jt(K) (oK ) such that
P =tr e +2tr(K?). (10 9 1r(K)
P <0 17)
So minimality implies
" T
tr(; +2t(K?)=<0. 1D that(FTzr) must iTnEitiaIi;*go negative. It i,s this final version of

the bounce condition that will lead to the most general and
We must now discuss some technical complications repowerful theorems.

lated to the fact that we eventually prefer to have a strong These constraints on the extrinsic curvature lead to con-
inequality (<) at or near the bounce, than to have a weakstraints on the spacetime geometry, and consequently con-
inequality (<) at the bounce itself. Similar technical compli- straints on the stress-energy tensor.
cations arise when considering the Morris-Thorne static
spherically symmetric wormhol¢4] and the FRW-based ). GEOMETRY AT AND NEAR A GENERIC BOUNCE
Tolman wormholes of3]. These technical issues are also the ) ] . ) ]
main stumbling block in setting up the analysis of generic USing Gaussian normal coordinates in the region sur-
traversable wormholes as carried out[if-10. Unfortu- rounding the bounce the Gauss-Codazzi and Gauss-
nately the details are a little different for Tolman wormholes, Weingarten equations give
and so we cannot simply copy the previous arguments.

B+R. —=OGR.. K=K K
To set the notation, let us consider some one-parameter Riji Rijit + (KiKj = KirK o)., (18)
set of deformations of the surfagespecified by
IR k== (Kijj— Kiwgp), (19
o1(X) = ef(x). (12
) ) . ) G+tUR. .= ﬁ_,_(KZ).. . (20)
This allows us to define a stratified collection of hypersur- 9T 4

faces,, by taking
See[16], p. 514, Eqs(21.75 and (21.76 and[16], p. 516,
EE={ef(x),xi}. (13 Eqg. (21.82. Here the index- refers to the temporal direction
normal to the three-dimensional bounce. As usual, the verti-
We now ask that, for alf(x), the volume of these sets of cal bar denotes a three-dimensional covariant derivative built
hypersurface¥[ 2 ] be a strict minimum at the bounce. This out of the three-dimensional spatial metric.
is equivalent to asserting that for every “directiorf{x) These results hold both on the throat and in the region
timelike deformations of the bounce lead to strict increasesurrounding the throat: as long as the Gaussian normal coor-
in spatial volume. Now demanding that there be an operlinate system does not break dogguch a breakdown being
interval for whichV[2 ]>V[2,] leads, by the fundamental driven by the fact that the normal geodesics typically inter-
theorem of calculus, to the existence of an open interval, sect after a certain distance
Taking suitable contractions, and being carefatto use
d?V[2 ] the extremality condition ti) =0, we find thatat and near

Fe>0:Vee(-€0U(08), —5= >0 (149 the bounce,

. T . K
This then implies, via Eq(7), @+HUR, :(S)Rij_[_&;] +2(K2?);; —tr(K)Ki,}, (21
J€>0:Vee (—€0U(0€), .
CHIR =tr(K) ;i —K;; 1, (22)
= o2 a tr(K) 5| 43
f Vg 2(x) T—tr(K) d®x<0. (15) K
s
¢ <3+1>R”:tr(E +tr(K?)
Since this integral is negative for dl{x), there will be some
(3+1)-dimensional open s& surroundingbut not necessar- _atr(K) )
ily including) the bounceS such that =5, K, (23
((9 tr(K) ()2 | <0, 1 ° that the Ricci scalar is
o 9 tr(K)
B+)p_3)p_ _ 2 2y _ 2
But we also know that ti{)=0 at the bounce itself. This R R [2< ar (KD [+ (KD =tr(K) }
allows us to apply the fundamental theorem of calculus a (29
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To effect these contractions, we make use of the decompo- 3 k a2

sition of the spacetime metric in terms of the bounce P= 884G §z+a7- (32)

3-metric and the set of three vect@Stangent to the bounce

and the four-vecton” normal to the bounce: [With MTW conventions ®)R=6/a? for a three-spherg.
3+1) ’ (@] Since trK)=0 at the bounce, we see that, at the bounce

g*’=—n*n"+ e{‘ej g'. (25 itself,
(Note the minus sign in front of the#n” term) For the 1 @
spacetime Einstein tensfef. [16], p. 515, Eqs(21.77 and Poounces 75— LRI (32

(21.80 and[16], p. 552, Egs(21.162a—(21.162¢],

Thus anecessaryondition for the energy density to be posi-
B+hg. =BG, — K - J tr(K) tive at the bounce is that the bounce be a three-manifold of
ij i

- —tr(K)K;; o o
or i 57 MKOK;; everywhere positive Ricci scalar.
1 . .
+2(K2)ij + zg”.[*[r(}<2)+tr(|<)2] . (26) C. Third constraint: Average pressure
Define an average pressure by
(3+l)GTi:tr(K)li_K”“ @ ! ij (3+1) T 4l (3+1)
=_ gil = ij N
L p=39 M Ty=5 g1 VG. (33
(DG, =+ 5 ®R- S[tr(K?) —tr(K)?]. 28
o=t 5 RSN —0(K)?). 28
The calculations presented above are simply a matter of 1 1 @) 1 ) )
brute force index gymnastics—but we feel that there are P=T6-c| ~3 RT3lr(KY)-tr(K)7]
times when explicit expressions of this type are useful.
4 (9 tr(K) )
= —tr(K9) | |. (34
IV. CONSTRAINTS ON THE STRESS-ENERGY TENSOR 3 aT
A. First constraint: SEC violation The above is the generalization of the result that, for a FRW-

By using the Einstein equatiois,,=87GT,,,, the SEC based Tolman wormholg],
applied to the stress-energy tensor is equivalent to the Ricci

convergence conditiof6]: 1

=——-—= a 35

a

X +az+2
a’? a’

V timelike V¥: R, VAV">0. (29
Now at and near the bounce we can write the average pres-
But by the simple flare-out conditio®) and Eq.(23), we see  sure as
G*DR_ <0. This implies that the SEC is either violated or

on the verge of being violated at the throat. To really pin 1 1 [dtr(K) 5

down SEC violation we must invoke the stricter inequality P=—3 pt 127G | ar — (K9] (36)
(17) to see that the SEC is definitely violated in some open

region surrounding the bounce. The term in square brackets is negative definite by(E@);

Equivalently, the spacetime Ricci tens@r“)RM has at  so there is an open region surrounding the bounce for which
least one negative definite eigenval(erresponding to a
timelike eigenvectgreverywhere in some open region sur- 1
rounding the bounce. A similar result for Euclidean worm- pP<—3p (37)
holes is quoted if17] and the present analysis can of course
be carried over to Euclidean signature with appropriate defiThis is just the previously discussed SEC violation in another

nitional changes. disguise, though it has the advantage of emphasizing the fact
that positive densities near the bounce imply negative pres-
B. Second constraint: Density sures near the bounce.

The energy density in the vicinity of the bounce is ) .
D. Fourth constraint: Energy conditions

—T - _ Bp_ 24 2 Using the average pressure defined above, it is easy to
p=Tor 87TGG” 167G [FR=(KS +1r(K)7]. prove that, even in the absence of any symmetries,
(30)
NEC=(p+p=0), (39
The above is the generalization of the result that for a FRW-
based Tolman wormholgs] WEC=(p=0) and (p+p=0), (39
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= = 3
SEG=(p+3p=0) and (p+p=0), (40 R OR = 2R,
DEC=(p=0) and (p=p=0). (41) ¢
Basic definitions of the energy conditions are givefarig|. Wh':f on ‘QE Otger h??d “@239? trK?) are mdereno_Irehnt of
It is important to note that in the case of a FRW universe;. [Kij—€K;; butg—e""g %, so tr(K)—~1r(K).] Thus

for e sufficiently small the intrinsic curvature terms will al-

these implicationg=) are strengthened to equivalences) ; o
) - ways dominate over the extrinsic curvature terms and we can
as discussed inl9-21.
. )guarantee that the densitiq. (30)] and Eqgs.(46), (47) are
To see how these relations are proved, focus as an e i itive. Thus there is a | | fb :
ample on the NEC, which states that for all null vectors: positive. Thus there Is a large class of bounce geometries
T VAV'=0. Note t,hat(u to arbitrary normalizationall that are compatible with the NEC, WEC, and DEC. However
nGIVI vecto/rs.can be writtl?an/"—(l' ig’ with a8 =1 bounce geometries must always violate SEC. This general-
Therefore. for all3 we have =(1:B 9B B =1 izes the result for FRW-based Tolman wormholes presented
' B w v in [3]. Somewhat stronger statements can be made by look-
p+2 fiBi_’_TijﬁiBj;O, (42) ing_at the explicit formulas for the components of the Ein-
stein tensor:
where the momentum flux is defined by=T ;. By averag- B
ing over the two null vectors (B') and (1;-4') this im- GG (e)=¥Gjje 2+ 0(€?), (48)
plies that, for allg',

o VG (e)=0(1), (49
1
Finally average over three mutually perpendicular unit vec- GG, (e)=+ > ®Re 2+ 0(1). (50)
tors B':
1 B By choosinge small enough we can guarantee that NEC,
p+5Ti;g"=0. (44  WEC, and DEC are satisfied, though SEC must always be
3 :
violated.
Equivalently,
V. GENERIC BOUNCES DEFINED USING TIMELIKE
p+p=0. (49) GEODESICS
The same logic can now be followed for the other pointwise The definition of a generic bounce starting from the vol-
energy conditions. ume integral in Eq(1) is similar in spirit to and motivated by
It therefore becomes interesting to use the Einstein equdhe definition of a generic wormhole throat developed in
tions to calculatep=p. We find [7,8], but there are important differences we would like to

underscore. First, of course, is the fact that a bounce is by

definition an intrinsically time-dependent phenomenon,

whereas wormholes may be either static or time-dependent.

Second, whereas wormhole throats in spacetime are defined

N 4_1 (a tr(K) 4 (KZ)” (46) via two-dimensional spacelike hypersurfaces, the bounce is a
3

2 2
- | Z0p__ 2y _ 2
PHP=15 6{3 R—3[tr(K) —tr(K)7]

ar three-dimensional spacelike hypersurface. The third, and per-
haps the most important, difference stems from the fact that
and whereas wormhole throats are always clog&ead thus have
finite area spatial hypersurfaces satisfying certain extremal-
1 4 4 . LI . -
PP=T5-G {5 BGR-— §[tr(K2) —tr(K)?] ity and minimality properties, bounces may be spatially open

(e.g., as in a FRW cosmology with flat or hyperbolic spatial

sectiong or closed(e.g., as in a FRW cosmology with closed
(47) spatial sections depending on the type of cosmology being

considered. In the latter case, the spatial volume integral is of

We shall now show that there is an enormous class of Spacipurse finite and well defined, but in the former case, it is not

time geometries for which these two quantities are positive a hite, and a definition of a generic bounce is called for which

and near the bounce. To see this, consider the following scal® not bound up with potentially infinite integrals, but which

ing argument: suppose we have some spacetime geomeﬂﬁlnevertheless fully equivalent to the definition given earlier

which has a bounce and for which the bounce is a manifold thi; Paper. T.hat suc;h tpcal pointwise definition of a
of positive Ricci scalar. Now consider the class of geom_genenc bounce IS possible is strongly suggfested by the work
in [9] and[10], which treated general dynamic wormholes on

4 (atr(K)_tr(Kz)) |

_§ aT

etries the basis ofnull) geodesic congruences. The idea is simply
g—g,.:ds’= _dt2+629” dxidxi. to define what we mean by a bounce in terms of the local

properties of timelike geodesic congruences in the neighbor-

For this class of geometries, hood of the putative bounce. This is motivated by the very
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physical question which asks, how is the motion of test par- The rates of change of the expansion and shear with re-
ticles in the vicinity of a bounce affected by that bounce?spect to proper timér of the test particlescan be calculated,
The alternative definition is as follows: a bounce is aand in the case of the expansion, one obtains a simplified
3-dimensional spatial hypersurface such that the timelikeversion of the celebrated Raychaudhuri equafi2®]
geodesic congruence orthogonal to it vanishes on the hyper-
surface, is strictly expanding to the immediate future of the de 1 , ab asbh
hypersurface, and is strictly contracting to the immediate dr- 30 o T RapEE (56)
past. This definition is capable of dealing with situations
where onlypart of the universe is “bouncing,” while the whereR,, is the Ricci tensor of the full spacetime. This is
rest either continues its collapse or is already in an expandndependent of coordinate system. This is a simplified ver-
ing phase. The vanishing condition is equivalent to the minision because the additional contribution from the twist or
mality condition obtained in Sec. Il and the contraction-anti-symmetric part oK 5, is absent here, since we are deal-
expansion condition is none other than the Morris-Thorndang with a hypersurface orthogonal congruence. Note that
“flare-out” condition generalized to bounces. Indeed, theEq. (23) is actually this special-case Raychaudhuri equation
mutual spreading out of a “swarm” of future-directed test (56) in disguisg once we express E¢6) in terms of Gauss-
particles in the immediate future of the bounce is what weian coordinates and take into account the relative sign in the
mean by “flare-out.” As we will see, all these notions are definitions for the extrinsic curvature used in this section, Eq.
pointwise. Our next task is to make them precise. In thig53), and in Sec. Il, Eq(5)].
section, we follow the same sign conventions and notation as With these simple preliminaries out of the way, we can
used in[9,10] which are taken from Wal{22]. now give the(local) definition of what it means to be a
So consider a timelike geodesic congruence orthogonal tgeneric bounce. A bounce is any three-dimensional spatial
the spatial hypersurfacg, to be conveniently located with- hypersurface on which the expansion of a hypersurface or-
out loss of generality at=0, and leté? denote a tangent thogonal timelike geodesic congruence vanishes identically,
vector to a geodesic in this congruence; we can always ar-
range for all these tangents, parametrized by proper firte (i) 6(0)=0, (57)

have identical normalization: . o . . .
and for which the expansion is positive to the immediate

L =0pE0 0= —1, (51 future and negative to the immediate past:
where the spatial and spacetime metrics are related by (i) 37,>0:Vre(0;7,), 6(7)>0, (58
Bgap="Yg,,+ £2£°. (52 (i) I7_>0:Vre(—7_,0, 6(7)<O0. (59
Now define the tensor field These three properties of the timelike geodesics capture the
minimality and flare-out conditions of a bounce directly
Kab=Vbéa; (53)  without needing to refer to the volume of the bounce. Indeed,

) o N a bunch of test particles traversing the bounce will initially
by using the normalization condition and the fact that tangenhaye a cross section that first decreases in time, reaching a
vectors are parallel trar_lsporteaavafb_: 0), one can easily minimum at the throat, followed by a subsequent increase. A
show that this tensor is purely spatial, i.€3K.p=£"Kap  similar characterization was successfully employed recently
=0, and moreover is symmetri&,,=Kp,, because the iy defining the general time-dependent wormhole throat
congruence is hypersurface orthogonal. This tensor is in fagg 1, by means of null geodesics. By the fundamental theo-

the extrinsic curvature of the hypersurfakeand measures yem of calculus, condition§), (ii), and(iii) can be combined
the “degree of bending” with respect to the embeddingtg imply

spacetime, as is well known. But it also contains useful in-
formation regarding the expansighand the traceless shear

Oabs

de
I75>0:Vre (- 70,0U(0%), 5>0.  (60)

=30, K*P=1r(K), (54) It will be noted that the Raychaudhuri equatiéB6) is
independent of the underlying dynamics of the geometry: it
is a statement only abo(imelike) geodesicstest particles

in a particular geometry. If waowimpose Einstein’'s equa-
tion (the geometrodynamitgs

of the timelike geodesic congruence normal to the hypersur-
face. The expansiof measures the instantaneous “spread-
ing” or divergence of nearby timelike geodesics while the
symmetric shear tensor measures the “slippage” of nearby
geodesics. The shear is a purely spatial tensor, which immexnd make use of the three conditigis (i), and(iii) [in the
diately implies thato®”o,,=0 is always a positive semi- form of Eq. (60)], then by the Raychaudhuri equation we
definite quantity. must conclude that

1 (3)
Tab=Kan)~ 3 " Jan?, (55

1
RabZBWG(Tab_ EgabT), (61)
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37,>0:V re (—79,00U(07), asymptotic regions; nor do we need to assume that the mani-
fold is topologically non-trivial. It is important to realize that
asb 1 the essence of the definitions lies in the local geometrical
§°67 Tap= 59anT | <0. (62 structure of the bounce.
In the broader scheme of things, this article should be
That is, the SEC is strictly violated in an open region sur-viewed as a contribution to the continuing debate as to

rounding the bounce. whether the universe emerged from a mathematical singular-
ity in the big bang or if something more subtle is going on.
VI. DISCUSSION While there can be little doubt that the universe emerged

from a hot dense fireball colloquially called the big bang, it

One of the key results of traversable wormhole physicsjs a big step from a hot dense fireball to a mathematical
perhapsthe key result, is the unavoidable violations of the singularity. For many years it was believed that the Penrose
null energy condition at or near the thr¢at-10]. In the case  [18] and GerocH22] cosmological singularity theorems de-
of a Tolman wormhole it is instead the strong energy condifinitively proved the existence of a mathematical singularity,
tion that is violated at or near the bouni&. We have de- puyt these theorems are based on assuming the SEC. This
veloped a number of general theorems that characterize thgticle demonstrates that these theoreasnotbe improved
extent and generality of these SEC violations. An importanin the sense that we have exhibited a large class of Tolman
point is that it is relatively easy to obtain SEC violations; wormholes that satisfy all energy conditiomeceptthe SEC.
they can be found already at the classical level and do natyrthermore, there is now a large body of evidence pointing
even require the standard appeal to quantum effects that {g§ the fact that the SEC may not be the fundamental physical
common in seeking to justify NEC violatior&9]. restriction it was once thought to be: there are many quite

There are a number of powerful constraints that can bgeasonable physical systems, even classical systems, that vio-
placed on the stress-energy tensor at and near the bounce|gfe the SE(3,23—2§. Likewise, gravitational vacuum po-
a Tolman wormhole simply by invoking the minimality |arization, although it is a small quantum effect, often vio-
properties of the bounce. Depending on the precise form ogtes the SEGand other energy conditions29—33.
the assumed flare-out Condition, these constraints give the As discussed ”ﬁg] there are a number of Singu|arity theo-
various energy condition violation theorems we are seekingrems provable within the “eternal inflation” paradigf84—
Even under the weakest assumptions they constrain thgg] but these theorems obtain their results at the cost of
stress-energy tensor to at best be on the verge of violating th@aking rather specific additional hypotheses and they are not
SEC. in conflict with the results of the present paper.

In this article we have sought to give an overview of the  Finally we should mention that a particularly large class
energy condition violations that occur in generic Tolmanof quite reasonably behaved Tolman wormholes is provided

wormholes. We point out that these violations of the energyy the analytic continuation of Euclidean wormholes back to
conditions follow unavoidably from the definition of a Tol- the Lorentzian signatur89].

man wormholgbounce and the definition of the total stress-

energy tensor via the Einstein equations. To show the gener-

ality of theT energy condition V|oIat|o_ns, we have developed ACKNOWLEDGMENTS
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