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Minimal length uncertainty principle and the trans-Planckian problem of black hole physics
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The minimal length uncertainty principle of Kemf, Mangano and Mann~KMM !, as derived from a mutilated
quantum commutator between coordinate and momentum, is applied to describe the modes and wave packets
of Hawking particles evaporated from a black hole. The trans-Planckian problem is successfully confronted in
that the Hawking particle no longer hugs the horizon at arbitrarily close distances. Rather the mode of
Schwarzschild frequencyv deviates from the conventional trajectory when the coordinater is given by
ur 22M u.bHv/2p in units of the nonlocal distance legislated into the uncertainty relation. Wave packets
straddle the horizon and spread out to fill the whole nonlocal region. The charge carried by the packet~in the
sense of the amount of ‘‘stuff’’ carried by the Klein-Gordon field! is not conserved in the non-local region and
rapidly decreases to zero as time decreases. Read in the forward temporal direction, the non-local region thus
is the seat of production of the Hawking particle and its partner. The KMM model was inspired by string
theory for which the mutilated commutator has been proposed to describe an effective theory of high momen-
tum scattering of zero mass modes. It is here interpreted in terms of dissipation which gives rise to the
Hawking particle into a reservoir of other modes~of as yet unknown origin!. On this basis it is conjectured that
the Bekenstein-Hawking entropy finds its origin in the fluctuations of fields extending over the nonlocal region.
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I. INTRODUCTION

More than two decades after its discovery, Hawking
theory of black hole evaporation@1# continues to be plague
by the ‘‘trans-Planckian’’ problem. Presumably, because
an insufficient treatment of the gravitational back reacti
the theory suffers from an overdose of localization. Outgo
photons hug the horizon@r 52M in Planckian units at a dis

tanceO(Me2aM2
) with a5O(1)#. This results in proper

energies near the horizonO(veaM2
) wherev is the observed

energy at asymptotic distances; typicallyv5O(M 21) and
M5O(1040) for a macroscopic black hole.

Considerable effort has gone into introducing the nec
sary ingredients of non-locality to cure this disease. Relev
to the present paper is the methodology@2# that has been
brought to bear to exploit Unruh’s model of the dumb ho
@3#. In particular, we shall use Eddington-Finkelstein~EF!
coordinates as introduced by Damour-Ruffini~DR! @4#. This
turns out to be an efficient tool. Though interesting in itse
in that the dumb hole analogy shows the robustness
Hawking’s radiation in resisting mutilation of the conve
tional theory, it is nevertheless inadequate. This is becaus
fluids, there is a cut-off in momentum as well as in ener
In adopting this to the black hole problem, as in Ref.@2#, one
cuts off the energy but not the momentum, elsewise
would lose the Hawking effect. There has, as yet, been
justification offered for this procedure.
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§Email address: spindel@sun1.umh.ac.be
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In this paper, using the DR technique, we introduce
alternative mechanism of non-locality which we believe h
some chance of being founded in the correct physics of
situation. This is the non-local commutator, the object
study of Kempf, Mangano and Mann~KMM ! @5#. Such
‘‘mutilated’’ commutators have been proposed in the cont
of string theory~see Refs.@5# and@6# for a bibliography!, but
they may arise in a more general context wherein the m
relevant to a particular problem~such as the evaporatin
photon! interacts with ‘‘reservoir’’ modes in general. In thi
paper we do not enter into this fundamental question as
from some~superficial! concluding remarks. Rather we tak
the pragmatic point of view: assume KMM and see if it cur
the transplanckian problem. And it does. Furthermore, in
doing the formalism suggests the origin of the Bekenste
Hawking black hole entropy@7#, as we shall point out at the
end of the development. The main physical picture t
emerges is that the reservoir, which is responsible for KM
non-locality, boils off a Hawking pair on either side of th
horizon, in a region whose extension is (bHv) units of the
nonlocal length scale. HerebH58pM is the inverse Hawk-
ing temperature.

II. KMM THEORY

We begin with a brief summary of KMM. The point o
departure is~for one degree of freedom!

@ P̂,Q̂#52 i S 11
P̂2

m2D . ~1!

In what follows we adopt for momentum and coordinate t
nondimensional variablesp̂5 P̂/m; q̂5mQ̂. The scalem
could be Planckian or it could involve some fractional pow
©1999 The American Physical Society05-1



re

d
re
m

i
c

;
ck

ce
re
e

e

e
of
-
-

-

his
are

ater
e

.

ill
a

is
s,
ve

a
ect

tion

s

ed
o as

zon
tate

R. BROUT, CL. GABRIEL, M. LUBO, AND PH. SPINDEL PHYSICAL REVIEW D59 044005
of M . All we require is (M /mpl
2 )@m21 in order to have a

sufficiently large asymptotic region so that there exists a
gion m21!(r 22M )!2M ; from now on all lengths are in
Planckian units.

Equation~1! implies a modified uncertainty relation

DpDq>
1

2
@11^ p̂2&#5

1

2
@11~Dp!21^ p̂&2# ~2!

where Dp[^(D p̂)2&1/2,Dq[^(Dq̂)2&1/2. Thus Dq has a
minimal value (5unity) at ^ p̂&50 andDp51. We note in
passing the frame dependence. This has not been stu
either by KMM or by us. Perhaps its elucidation will requi
a careful study of the underlying fundamental mechanis
behind Eq.~1!. In keeping with this, our initial pragmatic
exploration, we adopt the most natural assumption. As
Ref. @2#, the frame is taken to be the rest frame of the bla
hole, expressed in ingoing EF coordinates~see Sec. III!. In-
deed these coordinates (v,r ) have a geometrical meaning
v5Cte being the equations of light rays falling into the bla
hole, andr being an affine parameter on them.

The main thrust of KMM is the search for a Hilbert spa
formalism which is physically sensible. Thus one requi
that all expectation values ofq̂ be real. The matter is subtl
in that there are no eigenstates ofq̂ compatible with Eq.~2!
whereas eigenstates ofp̂ do exist. So one works inp repre-
sentation and requires thatq̂ be a symmetric operator. Th
scalar product of two state vectors,u f & and ug&, is thus con-
veniently represented by

^ f ,g&5E
2`

`

f * ~p!g~p!
dp

11p2

5E
2p/2

p/2

f * ~ tanu!g~ tanu!du ~3!

with q̂ expressed inp-representation as

q̂5 i ~11p2!]p5 i ]u ,

u[arctanp, ~4!

since ^q̂ f ug&5^ f uq̂g& by integration by parts, provided th
domain ofq̂ is the set of functions that vanish at the limits
integration6p/2. There are important ‘‘self adjoint exten
sions’’ of q̂. Abbreviating f (tanu)5F(u), q̂ becomes an es
sentially self adjoint operator on the domain@8# wherein

F~p/2!5eiaF~2p/2!. ~5!

It then follows from Eqs.~4! and~5! that the position eigen
functions in momentum space areeiqau/Ap where qa are
lattice points

qa52k1a/p, k integer ~6!

and 0<a,2p. The choices ofa define physically indistin-
guishable bases of the Hilbert space~corresponding to the
04400
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inability to localize!. Thus any problem governed by KMM
dynamics is possessed of a U~1! symmetry corresponding to
these equivalent choices.

To familiarize the reader with the consequences of t
kind of effective quantum mechanics, consider the squ
well problem

p̂2C52mEC with C~0!5C~L !50. ~7!

One may then work inq-representation wherein

p̂5tan~2 i ]q! ~8!

acting on the subspace of functions of wave lengths gre
than 4~in conformity with the domain of convergence of th
power series of the tangent around zero@5#!. It follows that
C is an eigenfunction of]q

2 given byC sin(npq/L) of eigen-
value 2mE5tan2(np/L). The spectrum cuts off atn5@L/2#
~i.e., excluding wavelengths shorter than 4!. The bracket@x#
symbolizes the integer part ofx. Note that the problem is
rather ill defined in thatx5L is not a physically legitimate
concept in that some fuzziness is always required by Eqs~1!
and ~2!.

It is to be expected that radical effects of the like w
emerge in the black hole problem once one tries to cram
mode too close to the origin. This is our motivation. In th
we recommend@5# for a careful discussion of physical state
maximally localized states and the critical role of wa
length 4.

III. APPLICATION TO THE BLACK HOLE PROBLEM

For the model of black hole evaporation we take
Schwarzchild black hole, work in EF coordinates and negl
the centrifugal barrier that sends low frequency~v! outgoing
s waves back into the singularity@v<(bH)21#. These out-
going s waves for v>(bH)21 are modesc of the form
e2 ivvxv(r ) where in the conventional theory one has@2#

~122M /r !] rc522]vc, ~9!

~122M /r !] rxv52ivxv , ~10!

taken together with the Unruh-Jacobson boundary condi
reexpressed by DR in the formp.0.1 The interesting phys-
ics encoded in Eq.~10! is near the horizon where it reduce
to

x]xxV~x!5 ix p̂xV~x!54MivxV~x![ iVxV~x!, ~11!

wherexv is relabeled asxV and V5bHv/(2p) is the di-
mensionless frequency. We have identifiedp̂ to 2 i ]x in
x-representation~where x5r 22M ). Thus in Eq.~11! the
units of length drops out of both sides. It will be reinstat
subsequently. In order to have a complete set of states, s

1Recall p is the energy near the horizon,]x being light like. So
p.0 is the restriction to positive energy modes near the hori
(r 22M,2M ) and these are the modes that give rise to steady s
radiation@2#.
5-2
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to fulfill the boundary condition of continuity as the outgoin
mode crosses the star’s surface to emerge into the ext
Schwarzchild space, both signs ofv must occur in the linear
combination of these positive energy (p.0) modes. One
calls these the ‘‘in’’ modes, the basis of second quantizat
in the distant past. The ‘‘out’’ modes, those counted by
distant Schwarzschild observer in the future have a fixed s
of v, since there the space is flat. It is the mixture of posit
and negativev which characterizes positive energy mod
near the horizon that encodes Hawking evaporation. See
@2# for explanations.

We now propose to adopt KMM for this problem and u
Eq. ~8!. The ensuing equation is difficult, to say the least,
we go over top-representation. In this we are~consciously!
cavalier in that boundary terms may get in the way. They
and we shall have more to say on this problem in due cou
From Eq.~11!, we then have

~11p2!]p„px̃V~p!…52 iVx̃V~p! ~12!

or

]u„tan~u!FV~u!…52 iVFV~u! ~13!

where

FV~u!5x̃V„tan~u!….

The solution is

FV~u!5AV@~sinu!2 iV cotu#Q~u! ~14!

where we have applied the vacuum conditionp.0, hence
u.0. Taking the Fourier transform gives

xV~x!5AVE
0

p/2

eiuxFV~u!du. ~15!

The constantAV will be fixed subsequently. We repeat thatx
and p are nondimensionalised by the unitm ~i.e. x5mX
where all dimensionful quantities are in Planckian unit!.
The integral~15! is feasible and we record the answer
terms of the beta-function and the hypergeometric2F1 :

xv~x!5AV2iVepV/2

3H B~ iV/21x/2,2 iV!
x

x2 iV

2
2eipx/2e2pV/2

~ iV1x12!~ iV1x!

3 2F1~ iV/21x/2,11 iV; iV/2

1x/212;21!J . ~16!

But it is more informative to examine the properties of t
integral ~15! directly. The salient features are

~1! The functionxV(x) defined by Eq.~15! is not a solution
of xp̂xV5VxV @with p̂5tan(2i]x)]. In performing the
04400
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usual integration by parts one picks up a boundary c
tribution atu5p/2 ~i.e. p5`), so that (xp̂2V)xV(x)
5AVeipx/2, a term which oscillates on the scale of no
locality. Recall here thatx is an affine parameter on th
outgoing geodesic near the horizon. Thus its average
fect on this trajectory vanishes. We return to further d
cussion of this point after the other features are p
sented.

~2! Asymptotically (x@V) one hasxV(x)→AVxiV as is
easily seen by carrying out steepest descents on Eq.~15!
or using beta function properties. The width of th
saddle atu5V/x is of orderO(V/x2) assuring the va-
lidity of the estimate. This tallies with the direct analys
of tan(2i]x)x5(V/x)x obtained by expanding tan(2i]x)
in powers of ]x . The constantAV is then chosen to
conform to the conventional norm of the Klein-Gordo
current~see Ref.@2#!. Following the argument of Jacob
son @9#, Hawking radiation then follows.

~3! The behavior ofxV(x) for 2V,x,V confronts the
trans-Planckian problem neatly. Atx5V the solution
changes in character from the would be rapidly oscill
ing solution (xiV) to a slowly varying function. Indeed
one calculates directlyxV(0)5( i /V)AV , and for ex-
ample xV(1)2xV(21)52„2/(V1 i )…AV ; typically,
V5O(1). This changeover of behavior is to be e
pected, since along the characteristic defined by the
outgoing geodesic the pointx5V is where p51 and
this is where the important manifestation of nonlocal
sets in, according to Eqs.~1! and~11!. Any tight packet
must then spread over a distance at least comparab
the unit of nonlocality. Hence all sense of hugging t
horizon is lost. Indeed, in a sense we are really tr
scending the rules in this small region, in that Eqs.~1!
and ~2! are taken to define an effective theory whic
allows one to extrapolate down to the scale of nonloc
ity, but not beyond.@In this we are deliberately ambigu
ous because we are not sure whether the relevant sca
x.1 or p.1 or something else. Practically speakin
sinceV5O(1), thequestion is not of much importance
but conceptually it should be cleared up.#

~4! In the conventional theory Klein-Gordon current cons
vation is easily confirmed and is encoded inp represen-
tation through the integral

~2p!21E
0

`

~dp/p!p2i~V2V8!5d~V2V8!.

This integral now becomes@see Eq.~22! below#

~2p!21E
0

p/2

du cos~u!„sin~u!…2 i ~V2V8!21

which is not ad function. This nonorthogonality has pro
found repercussions on conservation theorems enco
tered in the evolution of wave packets. We report on t
below.

Let us now return to what appears to be somewhat o
snag in these results, point@1# above. As mentioned the dif
ficulty comes from the upper limit in Eq.~15!, p5` and this
5-3
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is really pushing the mechanism of non-locality well beyo
what ought to be the range of its validity. Some regulato
therefore to be called upon. We mention two possibiliti
each of which is not unattractive, but there are surely mo
One can expect these will be revealed upon investigatio
the fundamental theory.

The first of these is related to the ambiguity of a choice
origin, the equivalent representations labeled bya @see Eqs.
~5! and ~6!#. We have couched our~cavalier! treatment in
terms of the continuumx @which would appear legitimate
sincexV(p)→0 asp→`# but we have run into trouble be
cause the operatorx̂p̂ transformsxV(p) into a function that
does not vanish at the limits. Therefore it would seem m
datory to averagex̂p̂xV(p) overa. Now notice that in point
@1#, the termAVei (p/2)x acts as a source term for the opera
x̂p̂2V. The average of this source over 4 units of nonloc
ity is zero. As we mentioned previously, states of wavelen
4 and smaller are to be excluded from physical states. T
the oscillationsei (p/2)x of ( x̂p̂2V)xV are ‘‘unphysical.’’
Only the average over at least 4 length units is meanin
and the average over 4 does vanish. Alternatively, one m
project (x̂p̂2V)xV on the physical statesuj& of KMM @5#.
Since these packets have components of wavelength.4, this
projection will vanish. In this sense the averaging proces
mandatory, and indeed one must anticipate that some a
aging of the modesxV(x) is necessary to give the theor
sense. Once more, at the present stage, it is difficult to g
an exact recipe for averaging. Along theses lines, an alte
tive procedure is also possible, regularizing so as to excl
the componentp5` from (x̂p̂2V)x. One may imagine
that this will occur from an effective action which issu
from the same fundamental theory from which the te
p2/m2 arises in the effective commutator and which is
manifestation of the same nonlocality. A very simple rec
is to add to the equation of motion an infinitesimal ter
i ep2, to give

~ x̂p̂1 i e p̂2!xV5VxV . ~17!

At small p ~largex in wave packets! the correction is negli-
gible and at largep ~smallx) it takes care of the problem o
the upper limit, so as to rid one of theei (p/2)x oscillating
source. One easily checks thatxV now becomes
AV@(sinu)iV/tanu#(cosu)ie. The term (cosu)ie is sufficient to
eliminate the spurious source term~in the sense of distribu
tion theory!. Clearly the two methods are carrying simil
messages; an average over a few units of nonlocality is
essary.

We now turn to our analysis of the evolution of wav
packets. As a preliminary we first consider conservation
current and charge. This is carried out, following Noether
conventional fashion in momentum representation. Us
Eq. ~13! one constructs the current (j v, j u) where

j v5
1

2
@C* ~u!„tanuJ~u!…1„tanuC~u!…* J~u!# ~18!

j u5„tanuC~u!…* „tanuJ~u!… ~19!
04400
s
,

e.
of

f

-

r
l-
h
us

ul
y

is
er-

e
a-
e

e
,

c-

f
n
g

whereC andJ are solutions, whence]v j v1]u j u50.
This conserved current, nevertheless, does not lead

conserved charge owing to boundary terms inu. The ‘‘would
be’’ conserved charge is the diagonal element of the gen
form ^C,J& where

^C,J&5E
0

p/2

C* ~u!~ tanu!J~u!du. ~20!

From Eq.~13! one then has

d

dv
^C,J&5C* ~u!J~u!tan2 uu0

p/2 . ~21!

As an example previously cited, the modes are not ortho
nal

^fV ,fV8&5AV8
* AVFpd~V2V8!2 iP

ei ~V82V!

V82V
G ~22!

where we have writtenfV5e2 iVVFV(u) ~andV[v/4M ).
The principal value term in Eq.~22! comes from the up-

per limit of the u integral in Eq.~20!, i.e. it is a high mo-
mentum effect. Unlike point~1! above, there is no argumen
on hand to eliminate this effect since there is no spatial
eraging procedure available. In fact, any cut-off of the wa
length will yield such effects.

In x-representation the corresponding charge is

^C,J&5
1

2 E2`

`

@c* ~x!tan~2 i ]x!j~x!

2j~x!tan~2 i ]x!c* ~x!#dx ~23!

where c(x)5*0
p/2eiuxC(u)du and similarly for j(x) and

J~u!. The limits onx are chosen to be6` since we are
interested in wave packets of finite extent. Such packets
centered asymptotically onu5v24M lnuxu5const i.e. in the
region where the dominant components ofp arep,1 ~thus
u!p/2). In this region, tan@(1/i ) ]x# acts like@(1/i ) ]x# and
conventional charge conservation obtains. Whenv is suffi-
ciently early the center of the packet enters into the region
non-locality (uxu,V or p.1) and the above effects o
charge nonconservation set in.

We have performed numerical computations on a pac
of the form

F~V,u!5E e2~V2VH!2/s2 A~VH!

A~V!
fV~V,u!dV

5A~VH!e2 iVH~V1 ln sin u!cotue2 ~s2/2! ~V1 ln sin u!2

~24!

centered on frequencyvH(5VH/4M ). In configuration
space it is asymptotically centered on the trajectoryu
5const ~the value of the latter is irrelevant! where u5v
24M lnuxu. We present in Fig. 1 the evolution of th
5-4
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MINIMAL LENGTH UNCERTAINTY PRINCIPLE AND . . . PHYSICAL REVIEW D 59 044005
packet in configuration space, given byf (V,x)
5*0

p/2eiuxF(V,u)du. We now discuss its qualitative fea
tures.

In the asymptotic region, the conventional nonspread
packet, centered onu5const, obtains. ForV,VH([eVH)
~i.e. for values ofV which are earlier than that which corre
sponds tox5VH along the asymptotic trajectory!, the center
of the trajectory deviates fromu5const and bends in to
wards the horizon (x50). It crosses the horizon and in th
region x,2VH becomes the classical trajectory of th
Hawking ‘‘partner’’ which falls into the singularity. In the
nonlocal regionuxu,VH , the classical trajectory is not o
quantitative significance since the packet spreads inx over
the region of nonlocality.

These features are qualitatively analyzed as in Ref.@2# by
a saddle point calculation off (V,x) or alternatively by the
method of characteristics for the trajectory of the center
the packet. One finds forp(V) the equation p2

5e22(V2VH)/(12e22(V2VH)). Thus the conventional behav
ior obtains for V.VH whilst for V,VH , p behaves like
6@V2VH#1/2. It is to be noted that there is no extrapolatio
to the past forV,VH ~i.e., the notion of a usual causall
behaved trajectory stops!. Correspondinglyx.V/p for (V

FIG. 1. The evolution of the wave packet of Eq.~24! is depicted.
The parameters areVH51, s51, andVH50. The coordinates are
advanced Eddington-Finkelstein@V and x whereV5v/4M and x
5(r 22M )/m#. Ingoing null geodesics are straight lines plotted
a 45-degree slant. The center of the packet is indicated by
dashed line. It is classical trajectory foruxu.1 ~i.e. u5const; such
an outgoing null geodesic is plotted on the bottom of the figu!.
The shaded region indicates the spread. For eachx the spread inV
is constant (.4) and this gives the large spread inx at V
5VH(50), the time about which the packet enters into the reg
of nonlocality.
04400
g

f

2VH)@1 andx.V/p3 for V2VH.0. We again emphasize
that this classical movement in the regionuxu,VH is without
quantitative significance since the width inx in this region is
O(VH).

Most interesting is the evolution of the nonconserv
charge. One can calculate explicitly from Eq.~23! with c̃

andJ̃ given by f̃ (V,x) @the Fourier transform of Eq.~24!#

Q~V!52puA~VH!u2E
0

p/2

e2s2~V1 ln sin u!2
cotudu ~25!

52puA~VH!u2
Ap

2s
@11Erf~sV!# ~26!

where Erf is the error function and we have chosenVH50.
Thus, for largeV, Q(V) is @const1O(e2s2V2

)# whereas for
V,0, Q tends to zero likee2s2V2

. The behavior change
around V50 corresponding to a saddle in Eq.~25! ~at
ln sinu*52V) with u* near to p/2 i.e. p>1. Thus the
charge diminishes rapidly within the nonlocal region. Re
forward in time, this means that the ‘‘stuff’’ in the packet
produced in this region.

IV. CONCLUDING REMARKS

From these various considerations one obtains an inte
ing interpretation wherein the region where nonlocality pla
an active role: (2VH,x,VH) is the zone of interaction o
the Hawking photon mode with reservoir modes. Going f
ward in time, this region which straddles the horizon ove
scaleVH in units of nonlocal length boils off a pair which
for uxu.VH looks like that of the conventional theory. It i
‘‘solicited’’ by the collapse, this latter being encoded in th
boundary conditions characterizing the Unruh vacuu
Clearly, much more work is required in order to see just h
this encoding is dynamically realized~perhaps combining
Unruh’s analysis of the collapsing shell with the present c
siderations or perhaps calling upon ’t Hooft’s scatteri
mechanism between incoming and outgoing degrees of f
dom @11#!.

It is highly significant that the theory based on the effe
tive commutator~1! is nonunitary as well as noncausal in th
usual sense of the words. Whereas the latter was to be
ticipated at the outset, the former has arisen as a co
quence. In the approach of this paper, curing the tra
Planckian problem is inevitably associated with nonunitar
in that the sector of Hilbert space describing the states of
light modes giving rise to Hawking radiation is not comple
This should come as no surprise in string theory since t
the scattering matrix defined by the zero-mass sector is
unitary either. One will produce quanta of massy modes o
energies and momenta are high enough. Apparently this
fect is encoded in Eq.~1!.

One may conjecture that the loss of Bekenstein-Hawk
radiation entropy is due to this boiling off from the reservo
It occurs in a ‘‘zone of ignorance’’ composed ofV units of
length whereV5bHv/(2p). Could it be that each unit cor
responds to a volume 2p of ‘‘ignorance’’ due to the inability
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to localize in that region? The volume 2p is of course the
group volume of theU(1) of Kempf @10#. Much work is
required to substantiate this conjecture, but it is remarka
that the length scale over which a given Hawking mo
‘‘gets lost’’ due to its interaction with the reservoir isV and
not 1. And of course this is what incites one to make
conjecture.

Our approach then invites a series of problems and
further conjectures. First of all what is the physical interp
tation of Eqs.~1! and ~2!. The problem comes in two parts
general and particular to the situation at hand.

As to the former, it it clear from the string theoretic mod
that the modification that sets in for the quantum descript
of the zero mass states of momentump.m ~where m
.Atension) is related to the fact that such modes can d
pate into the reservoir of the higher mass modes of the str
The density of states of these latter is sufficient to create
dissipation. As Renaud Parentani has suggested to us
situation is reminiscent of the Hagedorn temperature whe
energy that is poured into the zero mass modes gets re
tributed into the higher mass modes. Thus increasing
energy of the former does not result in an increase of th
temperature~their mean energy! once the energy become
comparable withm. Similarly were one to measureQ with
zero mass modes with increasing precision one would
frustrated since increasing the energy of these modes w
be of no avail. Hence a minimum of precision is reach
which in fact is of the order of the inverse Hagedorn te
perature.

Another interesting point in this same vein is the conje
ture that there is a sort of quantum Nyquist theorem; see
example@12#. Dissipation of a given set of modes into
reservoir implies that such modes ‘‘jiggle’’ due to their r
coil induced by the dissipating interactions. Then the therm
noise ~the jiggle! is due to the vacuum fluctuations of th
reservoir and the drag term will be the rate of dissipati
Equation~1! would then be viewed as a time dependent co
mutator averaged over the dissipation time and the reser
states.

Accepting the reservoir interpretation, which seems ine
table, what then is the nature of the reservoir in our bla
hole problem? Does it concern vacuum fluctuations in g
eral~usually swept under the rug due to the renormalizabi
of field theory relevant to particle physics, but highly re
evant in production from horizons!? If so, then the problem
would be related to current efforts to confront quantum gr
Re
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ity such as string or M theory. Or is the reservoir specific
the black hole~or horizons in general!? Serge Massar ha
raised the possibility that the reservoir modes are vibrati
of the membrane of the so-called membrane paradigm.

It is far from clear that one can develop a satisfacto
phenomenology without a complete understanding of the
ervoir. If it is possible, the theory would occupy som
middle ground between dynamics and thermodynamics p
to a full understanding which we all believe will require th
correct theory of quantum gravity.

Note added.

After this paper was submitted two points came up wh
we now address.

~1! Our ~self!criticism on the use of a momentum cut-o
refers to Ref.@2#. It has been pointed to us that a recent wo
of Corley and Jacobson@13# avoids this difficulty by formu-
lating the problem directly on a lattice free falling frame.

~2! The important question has been asked: what is
status of time reversal symmetry in our formulation? T
growing of the modes to the future is not really a breakdo
of this symmetry, but the reflection of a post selection
suming the existence of a Hawking photon in the far futu
However the choice of the EF coordinate system to imp
ment the modified commutation relation on the spacelike
ordinate constitute a real breakdown of time reversal sy
metry that needs enlightening. A satisfactory answer
only be given when we arrive at a fundamental understa
ing of Eq.~1!. But if our conjectural statements given in Se
IV are borne out, then the effective theory based on Eq.~1!
would have an intrinsic violation of time reversal invarianc
the origin of which would be in time averaging and avera
over states of the reservoir modes. We are presently eng
in the study of this point.
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