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Minimal length uncertainty principle and the trans-Planckian problem of black hole physics
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The minimal length uncertainty principle of Kemf, Mangano and M&KM ), as derived from a mutilated
guantum commutator between coordinate and momentum, is applied to describe the modes and wave packets
of Hawking particles evaporated from a black hole. The trans-Planckian problem is successfully confronted in
that the Hawking particle no longer hugs the horizon at arbitrarily close distances. Rather the mode of
Schwarzschild frequencw deviates from the conventional trajectory when the coordimate given by
[r—2M|= By /27 in units of the nonlocal distance legislated into the uncertainty relation. Wave packets
straddle the horizon and spread out to fill the whole nonlocal region. The charge carried by the(ipatieet
sense of the amount of “stuff” carried by the Klein-Gordon fieisl not conserved in the non-local region and
rapidly decreases to zero as time decreases. Read in the forward temporal direction, the non-local region thus
is the seat of production of the Hawking particle and its partner. The KMM model was inspired by string
theory for which the mutilated commutator has been proposed to describe an effective theory of high momen-
tum scattering of zero mass modes. It is here interpreted in terms of dissipation which gives rise to the
Hawking particle into a reservoir of other mode$ as yet unknown origin On this basis it is conjectured that
the Bekenstein-Hawking entropy finds its origin in the fluctuations of fields extending over the nonlocal region.
[S0556-282(99)05402-9

PACS numbes): 04.70.Dy

I. INTRODUCTION In this paper, using the DR technique, we introduce an

alternative mechanism of non-locality which we believe has

More than two decades after its discovery, Hawking’'ssome chance of being founded in the correct physics of the

theory of black hole evaporatidi] continues to be plagued situation. This is the non-local commutator, the object of
by the “trans-Planckian” problem. Presumably, because oftudy of Kempf, Mangano and MantKMM) [5]. Such

an insufficient treatment of the gravitational back reaction, Mutilated” commutators have been proposed in the context
the theory suffers from an overdose of localization. Outgoing?f string theory(see Refs[5] and[6] for a bibliography, but

photons hug the horizofr =2M in Planckian units at a dis- they may arise in a more general context wherein the _mode
relevant to a particular problertsuch as the evaporating

2 . . .

tance O(Me™ ™) with “:O(lz]' This results in proper photon interacts with “reservoir” modes in general. In this
energies near the horiz@|we*"") wherew is the observed paper we do not enter into this fundamental question aside
energy at asymptotic distances; typically=O(M ') and  from some(superficial concluding remarks. Rather we take
M =0(10%) for a macroscopic black hole. the pragmatic point of view: assume KMM and see if it cures

Considerable effort has gone into introducing the necesthe transplanckian problem. And it does. Furthermore, in so
sary ingredients of non-locality to cure this disease. Relevardoing the formalism suggests the origin of the Bekenstein-
to the present paper is the methodold@y that has been Hawking black hole entrop}7], as we shall point out at the
brought to bear to exploit Unruh’s model of the dumb holeend of the development. The main physical picture that
[3]. In particular, we shall use Eddington-Finkelst¢EF) emerges is that the reservoir, which is responsible for KMM
coordinates as introduced by Damour-RuffibR) [4]. This ~ non-locality, boils off a Hawking pair on either side of the
turns out to be an efficient tool. Though interesting in itself,horizon, in a region whose extension i8{w) units of the
in that the dumb hole analogy shows the robustness ofionlocal length scale. Herg,=8mM is the inverse Hawk-
Hawking’s radiation in resisting mutilation of the conven- ing temperature.
tional theory, it is nevertheless inadequate. This is because in
fluids, there is a cut-off in momentum as well as in energy. Il. KMM THEORY
In adopting this to the black hole problem, as in R&i, one . , )
cuts off the energy but not the momentum, elsewise one W€ begin with a brief summary of KMM. The point of
would lose the Hawking effect. There has, as yet, been ngeparture igfor one degree of freedom
justification offered for this procedure.
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of M. All we require is N/mﬁ,)»;ﬁl in order to have a inability to localize. Thus any problem governed by KMM
sufficiently large asymptotic region so that there exists a redynamics is possessed of &1y symmetry corresponding to
gion u~1<(r—2M)<2M; from now on all lengths are in these equivalent choices.
Planckian units. To familiarize the reader with the consequences of this
Equation(1) implies a modified uncertainty relation kind of effective quantum mechanics, consider the square
well problem

Apqu%[lJr(f)z)]:%[1+(Ap)2+(f))2] (2) p2W=2mEV¥ with W(0)=W(L)=0. @

One may then work img-representation wherein
where Ap={(Ap))Y2Aq=((A§)>)Y% Thus Aq has a
minimal value & unity) at{p)=0 andAp=1. We note in p=tan(—idg) (8)
passing the frame dependence. This has not been studied . i
either by KMM or by us. Perhaps its elucidation will require acting on the subspace of functions of wave lengths greater
a careful study of the underlying fundamental mechanisméhan 4(in conformity with the domain of convergence of the
behind Eq.(1). In keeping with this, our initial pragmatic POWer series of the tangéent_ around zg59. It follows that
exploration, we adopt the most natural assumption. As in? is an eigenfunction of;, given by C sin(nmg/L) of eigen-
Ref.[2], the frame is taken to be the rest frame of the blackvalue 2nE=tarf(nm/L). The spectrum cuts off at=[L/2]
hole, expressed in ingoing EF coordinatese Sec. I)l. In-  (i-e., excluding wavelengths shorter than #he brackefx]
deed these coordinates,f) have a geometrical meaning; Symbolizes the integer part of. Note that the problem is
v = Cte being the equations of light rays falling into the blackrather ill defined in thak=L is not a physically legitimate
hole, andr being an affine parameter on them. concept in that some fuzziness is always required by &gs.
The main thrust of KMM is the search for a Hilbert spaceand (2).
formalism which is physically sensible. Thus one requires It is to be expected that radical effects of the like will
that all expectation values @f be real. The matter is subtle €merge in the black hole problem once one tries to cram a
in that there are no eigenstateséptompatible with Eq(2) ~ mode too close to the origin. T_hls is our motivation. In this
Whereas eigenstates pfdo exist_ So one Works |p repre_ we r.ecommentﬂS'] fOf a Cal’efu| dlSCUSSIOf? Of phyS|Ca| States,
Sentation and requires thatbe a Symmetric operator. The maX|ma”y |Ocal|zed states and the Cr|t|Ca| r0|e Of wave
scalar product of two state vectot$) and|g), is thus con- length 4.
veniently represented by
I1l. APPLICATION TO THE BLACK HOLE PROBLEM
dp

<f,g>:£c f*(p)g(p)1+p2 For the model of black hole evaporation we take a

Schwarzchild black hole, work in EF coordinates and neglect
2 the centrifugal barrier that sends low frequeliey outgoing
:f f*(tan#)g(tans)de ©) s waves back into the singularifyw=<(84) ~*]. These out-

12 going s waves foro=(By) ! are modesy of the form
e '“’x,(r) where in the conventional theory one Has

— T

with § expressed ip-representation as
(1=2MIr)d,p=—20,, 9
g=i(1+p?d,=id,,
P (1= 2M/1)d, xu=2i Xy, (10)

g=arctanp, ) taken together with the Unruh-Jacobson boundary condition

. A A . . _ reexpressed by DR in the forp>0.! The interesting phys-
since(qf|g)=(f|qg) by integration by parts, provided the .o ancoded in Eq(10) is near the horizon where it reduces
domain ofq is the set of functions that vanish at the limits of ;,

integration* 7/2. There are important “self adjoint exten-
sions” of §. Abbreviatingf(tané)=F(6), § becomes an es- Xdyxa(X) =iXPxa(X)=4Miwxo(X)=iQxq(x), (11
sentially self adjoint operator on the dom&Bi wherein
where y,, is relabeled ag g and Q= Byw/(27) is the di-
F(m/2)=€e"“F(—n/2). (55 mensionless frequency. We have identifipdto —idy in
x-representatioiwhere x=r—2M). Thus in Eq.(11) the
It then follows from Eqgs(4) and(5) that the position eigen- units of length drops out of both sides. It will be reinstated
functions in momentum space ae¥«?/\/7 whereq, are  subsequently. In order to have a complete set of states, so as
lattice points

q,=2k+alm, k integer (6) IRecallp is the energy near the horizos, being light like. So
p>0 is the restriction to positive energy modes near the horizon
and 0= o<2r. The choices ofx define physically indistin- (r—2M<2M) and these are the modes that give rise to steady state
guishable bases of the Hilbert spa@orresponding to the radiation[2].

044005-2



MINIMAL LENGTH UNCERTAINTY PRINCIPLE AND . ..

to fulfill the boundary condition of continuity as the outgoing

mode crosses the star’s surface to emerge into the exterior

Schwarzchild space, both signs®fmust occur in the linear
combination of these positive energp>*0) modes. One

calls these the “in” modes, the basis of second quantization
in the distant past. The “out” modes, those counted by the
distant Schwarzschild observer in the future have a fixed sign
of w, since there the space is flat. It is the mixture of positive
and negativew which characterizes positive energy modes(fz
ef.

near the horizon that encodes Hawking evaporation. See R

[2] for explanations.

We now propose to adopt KMM for this problem and use
Eq. (8). The ensuing equation is difficult, to say the least, so

we go over top-representation. In this we afeonsciously

cavalier in that boundary terms may get in the way. They do
and we shall have more to say on this problem in due course.

From Eq.(11), we then have

(14 p?)3p(PXa(P))=—1Q%a(p) (12
or
2,(tan 6)D o (0))= —i QD o (6) (13
where
D (0)=Xq(tan 9)).
The solution is
Do (0)=Ag[(sing) ' cotd]O(h) (14)

where we have applied the vacuum conditipi O, hence
6>0. Taking the Fourier transform gives

w2
XQ(X):AQL e'*®(6)do. (15

The constanf, will be fixed subsequently. We repeat tixat
and p are nondimensionalised by the unit (i.e. x=uX
where all dimensionful quantities are in Planckian units

)

The integral(15) is feasible and we record the answer in

terms of the beta-function and the hypergeomejfg :

Xw(x) — AinQerIZ

xlB(iQ/2+x/2,—iQ) 5

2ei77X/2e—7TQ/2
(1 Q+x+2)((Q+x)

X P4 (1Q2+x12,1+i1Q;i Q2

+x/2+2;—1)]. (16

(4)

But it is more informative to examine the properties of the

integral (15) directly. The salient features are

(1) The functionyq(x) defined by Eq(15) is not a solution
of Xpxq=Qxq [with p=tan(=igy)]. In performing the
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usual integration by parts one picks up a boundary con-
tribution at = 7/2 (i.e. p=<), so that &p— Q) xa(X)
=Aqe ™2, a term which oscillates on the scale of non-
locality. Recall here that is an affine parameter on the
outgoing geodesic near the horizon. Thus its average ef-
fect on this trajectory vanishes. We return to further dis-
cussion of this point after the other features are pre-
sented.

Asymptotically x=>Q) one hasy(x)—Agx'? as is
easily seen by carrying out steepest descents oril5y.

or using beta function properties. The width of the
saddle at9=Q/x is of orderO(Q/x?) assuring the va-
lidity of the estimate. This tallies with the direct analysis
of tan(—id) x=(Q/x)x obtained by expanding tan{s,)

in powers of d,. The constantA, is then chosen to
conform to the conventional norm of the Klein-Gordon
current(see Ref[2]). Following the argument of Jacob-
son[9], Hawking radiation then follows.

The behavior ofyq(x) for —Q<x<Q confronts the
trans-Planckian problem neatly. At=() the solution
changes in character from the would be rapidly oscillat-
ing solution ') to a slowly varying function. Indeed
one calculates directlyq(0)=(i/Q)Aq, and for ex-
ample xqo(1)=xa(—1)=—(2/(Q+i))Aq; typically,

0 =0(1). This changeover of behavior is to be ex-
pected, since along the characteristic defined by the null
outgoing geodesic the point=() is wherep=1 and
this is where the important manifestation of nonlocality
sets in, according to Eq¢l) and(11). Any tight packet
must then spread over a distance at least comparable to
the unit of nonlocality. Hence all sense of hugging the
horizon is lost. Indeed, in a sense we are really tran-
scending the rules in this small region, in that E@9.
and (2) are taken to define an effective theory which
allows one to extrapolate down to the scale of nonlocal-
ity, but not beyond[In this we are deliberately ambigu-
ous because we are not sure whether the relevant scale is
x=1 or p=1 or something else. Practically speaking,
sinceQ)=0(1), thequestion is not of much importance,
but conceptually it should be cleared lip.

In the conventional theory Klein-Gordon current conser-
vation is easily confirmed and is encodedpimepresen-
tation through the integral

@m [ (@ppp @ = a0-0)
0
This integral now becomdsee Eq.(22) below]
2 . ,
(2w)*1f d 6 cogf)(sin(g)) (@~ 2)-1
0

which is not aé function. This nonorthogonality has pro-
found repercussions on conservation theorems encoun-
tered in the evolution of wave packets. We report on this
below.

Let us now return to what appears to be somewhat of a

snag in these results, poift] above. As mentioned the dif-
ficulty comes from the upper limit in Eq15), p=c and this
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is really pushing the mechanism of non-locality well beyondwhere¥ and = are solutions, whence,j’+ d,j ’=0.
what ought to be the range of its validity. Some regulator is This conserved current, nevertheless, does not lead to a
therefore to be called upon. We mention two possibilities,conserved charge owing to boundary termég.ithe “would
each of which is not unattractive, but there are surely morebe” conserved charge is the diagonal element of the general
One can expect these will be revealed upon investigation diorm (¥,=) where
the fundamental theory.

The first of these is related to the ambiguity of a choice of - /2 _
origin, the equivalent representations labeledabjsee Egs. (W.E)= 0 W*(0)(tand) = (0)do. (20)
(5) and (6)]. We have couched ouicavalie) treatment in
terms of the continuunx [which would appear legitimate
since yq(p)—0 asp—cc] but we have run into trouble be-
cause the operatap transformsyq(p) into a function that d
does not vanish at the limits. Therefore it would seem man- —(W,E)="*(0)E(0)tar? 6|72 (21)
datory to averag&pyq(p) over a. Now notice that in point dv
[1], the termAe'(™?* acts as a source term for the operator _ ,
%p— Q. The average of this source over 4 units of nonlocal/AS an example previously cited, the modes are not orthogo-
ity is zero. As we mentioned previously, states of WavelengtH1a
4 and smaller are to be excluded from physical states. Thus
the oscillationse'(™?* of (Xxp—Q)x are “unphysical.”
Only the average over at least 4 length units is meaningful
and the average over 4 does vanish. Alternatively, one may
project Xp— Q) x on the physical statelg) of KMM [5].  where we have writtempg=e '?Vd,(6) (andV=v/4M).
Since these packets have components of wavelendttthis The principal value term in Eq22) comes from the up-
projection will vanish. In this sense the averaging process iper limit of the 6 integral in Eq.(20), i.e. it is a high mo-
mandatory, and indeed one must anticipate that some avementum effect. Unlike pointl) above, there is no argument
aging of the modego(x) is necessary to give the theory on hand to eliminate this effect since there is no spatial av-
sense. Once more, at the present stage, it is difficult to giveraging procedure available. In fact, any cut-off of the wave-
an exact recipe for averaging. Along theses lines, an alternaength will yield such effects.
tive procedure is also possible, regularizing so as to exclude In x-representation the corresponding charge is
the componenp=co« from (Xp—Q)x. One may imagine

From Eq.(13) one then has

i(Q'-Q)

(o, ba) =A% Aq W5(Q—Q')—ipm (22

that this will occur from an effective action which issues 1 (=

from the same fundamental theory from which the term <‘I’,E>=§f [¢* (x)tan(—idy) §(x)

p?/u? arises in the effective commutator and which is a o

manifestation of the same nonlocality. A very simple recipe —E(x)tan —idy) * (x)]dx (23

is to add to the equation of motion an infinitesimal term,

iep?, to give where y(x)=[T'% W (6)d# and similarly for £(x) and
oo oo Z(6). The limits onx are chosen to be-= since we are
(Xp+iep)xa=Qxaq- (17 interested in wave packets of finite extent. Such packets are

centered asymptotically am=v —4M In|x|=const i.e. in the
At small p (largex in wave packetsthe correction is negli- region where the dominant componentspofire p<1 (thus
gible and at largep (smallx) it takes care of the problem of #</2). In this region, taf(1/i) d,] acts like[ (1/i) d] and
the upper limit, so as to rid one of the(™2X oscillating  conventional charge conservation obtains. Wheis suffi-
source. One easily checks thay, now becomes ciently early the center of the packet enters into the region of
Aq[(sin)'Utand](cosh)'. The term (co®)' is sufficient to  non-locality (x|<Q or p>1) and the above effects of
eliminate the spurious source teilin the sense of distribu- charge nonconservation set in.
tion theory. Clearly the two methods are carrying similar ~ We have performed numerical computations on a packet
messages; an average over a few units of nonlocality is neof the form
essary.

We now turn to our analysis of the evolution of wave o o A(Qy)

packets. As a preliminary we first consider conservation of F(V,0)= | e” (@747 m(ﬁg(Vﬂ)dQ
current and charge. This is carried out, following Noether, in
conventional fashion in momentum representation. Using =A(Qy)e IV Einsind)cot ge (0212) (V+In'sin 6)?
Eq. (13) one constructs the curreni’(j %) where (24

1 ' .
j'==[P*(6)(tand=(6))+ (tan6¥(6))*=E(6)] (18  centered on frequencyoy(=Qu/4M). In configuration
2 space it is asymptotically centered on the trajectory
=const (the value of the latter is irrelevantvhere u=v
jo=(tanoW¥ (9))* (tanbZ( 6)) (19 —4MInlx. We present in Fig. 1 the evolution of the
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—Vy)>1 andx=Q/p? for V—V,=0. We again emphasize

\ 15 yeufia M) that this classical movement in the regioh< Q is without
N quantitative significance since the widthxrin this region is
\\ o(Qy).
s N 1ol Most interesting is the evolution of the nonconserved
\\ charge. One can calculate explicitly from E@3) with ¥
o NN and = given byf(V,x) [the Fourier transform of Eq24)]
\\ 5
w2 .
> \ Q(V)=27|A(Qy)|? fo e o(VHinsin0Zcotadg (25

:27T|A(QH)|2g[l+ Erf(aV)] (26)

where Erf is the error function and we have chosgn=0.
Thus, for largeV, Q(V) is [consHO(e*"sz)] whereas for

V<0, Q tends to zero likee" "V, The behavior changes
around V=0 corresponding to a saddle in E{5 (at
Insing*=-V) with 6* near to w/2 i.e. p=1. Thus the
charge diminishes rapidly within the nonlocal region. Read
forward in time, this means that the “stuff” in the packet is
u=Cte produced in this region.

-10

-15 X=1t (r - 2 M)

FIG. 1. The evolution of the wave packet of Eg4) is depicted.
The parameters a@,,=1, o=1, andVy=0. The coordinates are
advanced Eddington-Finkelstefiv and x whereV=uv/4M andx From these various considerations one obtains an interest-
=(r—2M)/u]. Ingoing null geodesics are straight lines plotted onjng interpretation wherein the region where nonlocality plays
a 45-degree slant. The center of the packet is indicated by thgn active role: € Qy<x<Qy) is the zone of interaction of
dashed line. It is classical trajectory fip{>1 (i.e. u=const; such the Hawking photon mode with reservoir modes. Going for-
an outgoing null geodesic is plotted on the bottom of the figure \\ 3¢ in time, this region which straddles the horizon over a
The shaded region indicates the spread. For eattle spread iV go010.()in units of nonlocal length boils off a pair which
s constant £4) and this gives the large spread i at v f >y looks like that of the conventional theory. It is
=Vy(=0), the time about which the packet enters into the region“Or |X| o : . Y
of nonlocality. solicited” by th_e_ collapse, this I_at_ter being encoded in the

boundary conditions characterizing the Unruh vacuum.

) ] ] ) Clearly, much more work is required in order to see just how
packgt_ in configuration  space, given Dby (V.X)  this encoding is dynamically realizegberhaps combining
=[5 €' ™F(V,0)dg. We now discuss its qualitative fea- ynruh's analysis of the collapsing shell with the present con-
tures. siderations or perhaps calling upon 't Hooft's scattering

In the asymptotic region, the conventional nonspreadingmechanism between incoming and outgoing degrees of free-
packet, centered am=const, obtains. Fov<Vy(=e"H) dom[11]).

(i.e. for values ofV which are earlier than that which corre- |t s highly significant that the theory based on the effec-
sponds tox= () along the asymptotic trajectorythe center  tive commutator1) is nonunitary as well as noncausal in the
of the trajectory deviates from=const and bends in to- ysual sense of the words. Whereas the latter was to be an-
wards the horizonX=0). It crosses the horizon and in the ticipated at the outset, the former has arisen as a conse-
region x<—{ becomes the classical trajectory of the quence. In the approach of this paper, curing the trans-
Hawking “partner” which falls into the singularity. In the Planckian problem is inevitably associated with nonunitarity
nonlocal region|x|<Qy, the classical trajectory is not of in that the sector of Hilbert space describing the states of the
quantitative significance since the packet spreads aver  light modes giving rise to Hawking radiation is not complete.
the region of nonlocality. This should come as no surprise in string theory since then

These features are qualitatively analyzed as in Rdfoy  the scattering matrix defined by the zero-mass sector is not
a saddle point calculation df(V,x) or alternatively by the unitary either. One will produce quanta of massy modes once
method of characteristics for the trajectory of the center oknergies and momenta are high enough. Apparently this ef-
the packet. One finds forp(V) the equation p? fect is encoded in Eq1).
=e 2(V"VW/(1—e~2(V~VW)), Thus the conventional behav-  One may conjecture that the loss of Bekenstein-Hawking
ior obtains forV>Vy whilst for V<Vy, p behaves like radiation entropy is due to this boiling off from the reservoir.
+[V—V4]*2 ltis to be noted that there is no extrapolation It occurs in a “zone of ignorance” composed 6f units of
to the past forv<Vy (i.e., the notion of a usual causally length whereQ)= B, w/(27). Could it be that each unit cor-
behaved trajectory stopsCorrespondinglyx=Q/p for (V  responds to a volumer20f “ignorance” due to the inability

IV. CONCLUDING REMARKS
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to localize in that region? The volumerds of course the ity such as string or M theory. Or is the reservoir specific to
group volume of theU(1) of Kempf[10]. Much work is  the black hole(or horizons in generg® Serge Massar has
required to substantiate this conjecture, but it is remarkableaised the possibility that the reservoir modes are vibrations
that the length scale over which a given Hawking modeof the membrane of the so-called membrane paradigm.

“gets lost” due to its interaction with the reservoir § and It is far from clear that one can develop a satisfactory
not 1. And of course this is what incites one to make thephenomenology without a complete understanding of the res-
conjecture. ervoir. If it is possible, the theory would occupy some

Our approach then invites a series of problems and stilmiddle ground between dynamics and thermodynamics prior
further conjectures. First of all what is the physical interpre-to a full understanding which we all believe will require the
tation of Egs.(1) and(2). The problem comes in two parts, correct theory of quantum gravity.
general and particular to the situation at hand.

As to the former, it it clear from the string theoretic model Note added.
that the modification that sets in for the quantum description  After this paper was submitted two points came up which
of the zero mass states of momenty>u (Where v \we now address.
= ytension) is related to the fact that such modes can dissi- (1) Our (selficriticism on the use of a momentum cut-off
pate into the reservoir of the higher mass modes of the stringefers to Ref[2]. It has been pointed to us that a recent work
The density of states of these latter is sufficient to create thigf Corley and Jacobsdr.3] avoids this difficulty by formu-
dissipation. As Renaud Parentani has suggested to us, thging the problem directly on a lattice free falling frame.
situation is reminiscent of the Hagedorn temperature wherein (2) The important question has been asked: what is the
energy that is poured into the zero mass modes gets redigtatus of time reversal symmetry in our formulation? The
tributed into the higher mass modes. Thus increasing thgrowing of the modes to the future is not really a breakdown
energy of the former does not result in an increase of theipf this symmetry, but the reflection of a post selection as-
temperature(their mean energyonce the energy becomes syming the existence of a Hawking photon in the far future.
comparable withu. Similarly were one to measu® with  However the choice of the EF coordinate system to imple-
zero mass modes with increasing precision one would benent the modified commutation relation on the spacelike co-
frustrated since increasing the energy of these modes woulgkdinate constitute a real breakdown of time reversal sym-
be of no avail. Hence a minimum of precision is reachedmetry that needs enlightening. A satisfactory answer can
which in fact is of the order of the inverse Hagedorn tem-on|y be given when we arrive at a fundamental understand-
perature. ing of Eq.(1). But if our conjectural statements given in Sec.

Another interesting point in this same vein is the conjec-|v are borne out, then the effective theory based on (.
ture that there is a sort of quantum Nyquist theorem; see fofould have an intrinsic violation of time reversal invariance,
example[12]. Dissipation of a given set of modes into a the origin of which would be in time averaging and average

reservoir implies that such modes “jiggle” due to their re- gyer states of the reservoir modes. We are presently engaged
coil induced by the dissipating interactions. Then the thermajn the study of this point.

noise (the jiggle is due to the vacuum fluctuations of the
reservoir and the drag term will be the rate of dissipation.
Equation(1) would then be viewed as a time dependent com-
mutator averaged over the dissipation time and the reservoir R.B. wishes to express his gratitude to Gianpiero Man-
states. gano for introducing him to the KMM theory. In addition,

Accepting the reservoir interpretation, which seems inevivery special thanks are due to Achim Kempf who read the
table, what then is the nature of the reservoir in our blacknitial manuscript with great care and then suggested several
hole problem? Does it concern vacuum fluctuations in genimprovements which have made our presentation much
eral (usually swept under the rug due to the renormalizabilityclearer. Discussions with Serge Massar and Renaud Paren-
of field theory relevant to particle physics, but highly rel- tani have been of invaluable help in the elaboration of physi-
evant in production from horizop If so, then the problem cal interpretation and in our understanding of the motion of
would be related to current efforts to confront quantum gravpackets. We thank them warmly.

ACKNOWLEDGMENTS

[1] S. W. Hawking, NaturgLondon 248 30 (1974; Commun. [7] J. Bekenstein, Phys. Rev. ) 2333(1973.

Math. Phys43, 199 (1975. [8] F. Riez and B. Sz.-Nagylewns d’Analyse Fonctionnelle
[2] R. Brout, S. Massar, R. Parentani, and Ph. Spindel, Phys. Rev.  (Gauthier-Villars, Paris, 1975Chap. VIII, p. 119.

D 52, 4559(1995. [9] A. Kempf, Europhys. Lett40, 257 (1997).
[3] W. Unruh, Phys. Rev. Letd6, 1351(1981); Phys. Rev. b1,

[10] T. Jacobson, Phys. Rev. 48, 728(1993.

[4] T. Damour and R. Ruffini, Phys. Rev. D4, 332(1976. [14] G. t.HOOﬁ’ Int. J. Mod. Phys_. ALL, 46.23(1.996'

[5] A. Kempf, G. Mangano, and R. B. Mann, Phys. Rev5Q) [12] C. Kittel, Elementary Statistical Physid&Viley, New York,
1108 (1995, 1958, Sec. 29.

[6] A. Kempf and G. Mangano, Phys. Rev.35, 7909(1997. [13] S. Corley and T. Jacobson, Phys. RevsD 6269(1998.

2827(1995.

044005-6



