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(T")en Of the quantized conformal fields in the Unruh state in Schwarzschild spacetime
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The renormalized expectation value of the stress-energy tensor of the conformally invariant massless fields
in the Unruh state in Schwarzschild spacetime is constructed. It is achieved through solving the conservation
equation in the optical space with a polynomial ansatz, utilizing the regularity conditions and expected
asymptotic behavior of the stress-energy tensor in a physical metric, and performing a fit to the results of the
numerical calculations. It is shown that the adopted method, which is based on the conformal transformations
of the one-loop effective action, is complementary to that of Vid&0556-282(99)01102-9

PACS numbdrs): 04.62+v, 04.70.Dy

I. INTRODUCTION N

(Thren=TP(S) 2 apx", 1)
The expectation value of the stress-energy tensor of the n=4
conformally invariant massless fields in the Unruh state in
the Schwarzschild geometry is known to possess some geMherex=2M/r andT=7?T}/90[T,=1/(87M)]. The nu-
eral features presented for the first time in the celebrateferical factorp(s) depends on the spin of the field and is
Christensen and Fulling papgt]. The asymptotic behavior 9iven in Table I. Such a choice is in accord with the
of tangential and radial components(d@®),e, and the regu- asymptotic analyses of Christensen and Fulling. Further, in-

larity conditions on the future event horizon are quite restric-129rating the conservation equation in the conformal space

tive, and allow construction of a class of approximate ten-and making use of the regularity conditions in the physical

sors. Further, the numerical data, such as the exact value ope, a family of the stress tensors could be easily obtained.

0 ) aking N=7 as has been done in Ref&6,17 leaves two
the (T )ren 0N the future event horizon and the value of thegoe narameters which are to be determined from known

luminosity may be used in the final determination of theyaye of the tangential pressure on the event horizon and the
model. It is very fortunate that, thanks to the excellent nujyminosity. It should be noted that it is, in a sense, a minimal
merical analysis carried out in Refi2] and[3], we have  choice. On the other hand, in RdfL8] Visser chooses to
detailed information concerning the overall character of theyork in the physical space and uses a decomposition of the
exact(T#).n of the scalar field and consequently the validity stress tensor allowed by the covariant conservation equation.
of constructed approximations may by verified. Similar cal-The tangential component ¢f%) ., is also taken to be of
culations has been carried out in the case of the conformahe form (1) with N=6, this time however in Schwarzschild
vector field. spacetime. The resulting model has three free parameters
The attempts to construct analytical or semianalytical apwhich are determined by performing global unconstrained fit
proximations of (T*), in various “vacuum” states, see 1O the numerical data. The tensors obtained in both models
Refs.[4—19, are motivated, aside from self-evident curios- hgve a similar structure but differ in the numerical coeffi-
ity, by the fact that they may be used as a source term of the/ents. _
semiclassical Einstein field equatiof20—30 or give rise to I this note we shall show that, although differently mo-
the analyses of local and averaged energetic conditions arifyated, Visser's model may be obtained following the steps
quantum inequalitie$31—38. The stress energy tensor is ©f Refs.[16,17 with N=8. The simplesN=>5 models pro-
also useful in the thermodynamic calculations, see, for exposed by Va410] and by Barrioz and Vafl1] has no free

ample, Refs[20,25,27,29,39,40 It should be noted that the parameters, it should be noted, however, that the latter uses
o T different decomposition of the stress tensor in the conformal
back reaction calculations are limited to t{E%),., evalu-

. . space. In our constructions scalar, spinor, and vector fields
ated in the Hartle-Hawking state. P P

Recently such semianalytic approximations of the stress

'Itsnfsorllg 1the Uhanh state have fbien prelselljlﬁslﬁla._ In of helicity s. For s=1 the coefficient is nonzero as predicted by
€ $.[16,17), where properties of t € one-loop € ective ac- point separation ang-function renormalization. Dimensional regu-
tion under the conformal transformations have been used, thgi,ation givesc(1)=0.

starting point is the assumption that in the ultrastatic com-

TABLE I. The coefficientsa(s), b(s), c(s), andp(s) for fields

panion of the Schwarzschild metric the tangential componeng 0 1/2 1
of (T%)en has a polynomial form 5760m2a(s) 3 9 36
5760m2b(s) -1 —11/2 —62
5760m2c(s) 0 0 —60
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are treated simultaneously. Presented mettwith n=1)

may be also employed in similar calculations in Hartle-

Hawking state.

I. CONFORMAL TRANSFORMATIONS
OF THE STRESS-ENERGY TENSOR

Transformational properties of the stress tensor of a con-
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CH'=g""(20k+3K*+ 6w, k%)
— 12k 0’ — 12k H " — 217, 9

The renormalized effective stress tensor has been defined by

<T;w>ren: 2(—9)” 1/2& (10

formally coupled massless field under the scaling transfor-

mationﬁwzefz‘”gw, are described by or may be obtained
from the formulas derived by Pagé], Brown and Ottewill
[5], Brown, Page, and Ottewill7], and Dowkef{41]. Under
the conformal transformation the one loop effective action o
the massless conformally invariant fields transforms accor

ing to the rule[5]
Wr[9,,]=Wrle ?“g,,]+aA w;g]+bB[w,g]
+cClw,qg], (2

where
A[w,g]=j d4x(—g)1’2((RiemZ—ZRicchr%Rz)w
+§[R+3(Dw—K)](Dw—K)], 3)
B[w,g]=f d*x(—g)Yq (Riem?—4Ric+R?) w
+4R,, 0w = 2Rk +2k*~4x0w], (4

Clo.gl= [ d*(~9)"[R+3(0R- 0 [(OR- ),
)

andk=w.,»'“. We have distinguished quantities evaluated
in the conformal space with a tilde. The spin-dependent co-

efficientsa, b, andc are given in Table I.

Functionally differentiating2) with respect to the metric

tensor and restricting to the Ricci-flat spaces one has

(T ren=exp( — 4w) T+ a(s)A*+b(s)B*+c(s)C*,
(6)

where

A% apvp 4 TV 2% Ja 2 2
A*"=8R W05~ 3K +29"7 200 %K.t K +§|:|K
_8K:(,uw;v_8w;,uw;vk, (7)
B#*=8R™ . , 5+ 8R™w. w5
_BwJMaw;a;V_BK?(Mw?V)

o ) 1
—8kw*w’+4g*” w;aﬁw’aﬁ-i-/(;aw'“-i- EKZ , (8)

and

We observe that since E@6) is a general formula its
meaning is clear: the better approximation of the stress ten-
sor in the conformal space is constructed the béfé} ., in

the physical is obtained. There is nothing less general in
dworking in the conformal space as long as the transformation

formulas are correct. Moreover, although we heavily used
scaling properties of the renormalized stress tensor the
adopted method is neither the Page nor Brown and Ottewill
approximation.

Taking the conformal factor in the forme=1/2 Ingyq,
one obtains foA” , B4, andC* the following formulas:

7]

 x%(128-240«+113¢%)

Al , (12)
' 128M4(1—x)2
. X8(32—96x+63x?)
Ar = 1 (12)
384M4(1—x)?
—x8(64—120¢+57x?)
o= (13
0 4 2
384M4(1-x)
. 3x%(48-96x+47x?)
Bi= (14)
128M4(1—x)?
. X5(16—48x+33?)
Bl = , (15
128M4(1—x)?
, —X8(32-72x+3%)
Bi= , (16)
128M4(1—x)?
3x8(32—64x+33x?)
Ci= (17)
256M4(1—x)?
_ _ 2,6
_ (8—9x)°x 19
r 4 27
256M4(1—x)
, X%(128-264x+135¢%)
6= (19

256M4(1—x)?

The geometrical terms, i.e., the sum of the last three terms in
the right hand side of Ed6) have, therefore, a simple form,
proportional to simple polynomials im multiplied by the
second power of Lj; .

It is a well known property of the massless and confor-
mally coupled fields that although on the classical level the
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trace of the stress energy tensor identically vanish, after Ill. THE MODEL
uantization it acquires nonzero value. Making use of the . . . .
i?jentity q g As has been said the idea of constructifif,) e, in

Schwarzschild spacetime is to accept Eb. and solve the
conservation equation in the ultrastatic space. In order to

é o
5—S[e‘ 2“’gM,,]|a,:0= - Zgg,é—S[gW], (200  reduce the number of unknown parameters we transform Eq.
@ Yor (1) to the physical space and make use of the regularity con-
whereSis a functional, one concludes that the trace anomal)(/jltlon
is given by a general formula lim |<T§>reri<°°- (28)
x—1

<T,/i> ren=a(s)

2
H+§DR)+b(S)g+C(S)DR' @) |nserting Eqs.(11)—(19) into Eq. (6) with appropriate nu-

merical coefficients and making use of Eg8) yields

where
2 b b~ Aa,-3ag-2 (29)
ar= - —4ay—oag—zag
1 48pt 32pt  32pt
H=Rien?— 2Ric+ §R2 (22 P P P
and
" ‘a + b + e 7+3a,+2as+
ag=— - a az+ag,
G= Rien?— 4Ric@+ R, (23) ° 384t 128t 258 4TS

(30

It !S a yery jirtungte comc@ence th_at.for the scalar andwheret:M“T. After substitution of Eqs(29) and(30) into
spinor fleld(T#>ren in the optical metric is zero. However, Eq. (1) and performing integration of Eq&24) and (25) in
choosing for the vector field the coefficier(tl) as predicted tne conformal space one has

by {—function renormalizaton requires some care. Indeed,

in this case the trace ofT*),, does not vanish and, of - 5 5
course, further calculations should reflect this fact. (Tt)ren= —X(1—x) e (3D
The conservation equation for the line element of the con-

formal space and the radial component of the stress tensor in the confor-

-~ mal space
V,u<T/1f>ren: 0 (24)
= a b c 5
reduces to (Toren=PT 384pt_1283t+256pt_d X
d Fr 2(1-2x) o ) a b N c dlyd 4
&< t>ren_ m( t>ren_ ) (29 384pt 128t 256pt X" agX
2 2 1 5 1
and P 5,2 g = 6
+ 3a4 3a.5 X7+ 3a4+ 12a5 2a6 X
J -~ 2-3x . 2-3x .
_<T£>ren_—_<T;>ren+—_<Tz>ren:O- (26) b _ a _ c _1_6 2
X X(1—x) X(1—x) + 20pt 1200t 80pt 5 +5a4
Therefore one concludgs t_hat the stress tensor in the con- 29 1 , 7 21b 21¢c
formal space naturally splits into two parts + Z)a5+Ea6 X'+ 640pt_ 640pt + 12800t
= N 9% . 2 21 9 6 3 8
(Then=T + 8|VI4X (1-x) 5058, (27 +€—§a4—§a5—§a6 X°|, (32

ayvhereK is an integration constant connected to the luminos-

space. Such a decomposition is allowed by the covariarﬂy andd is_ another integration co_nstant. the that t?e lead-
conservation equation in the ultrastatic space and its exadtd Pehavior of Eq.(32) asx—0 is proportional tox” as
form is constructed from Eq21) evaluated in the optical €XPected.

space. Similar term has been introduced into the Page ap- NOW. on general gtrounds one expects that at largee
proximation by Zanniag6]. It should be noted that in a case Ieatldlng terms of—(T;)ren and (Tr)ren ShoUld be equal to
of the dimensional renormalization the second term in théTr,J)ren.Wherer, is the Regge-Wheeler coordinate. More-
right hand side of Eq(27) is absent. over, the Christensen-Fulling regularity conditions in the

where 7% is a conserved traceless tensor in the conform
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Schwarzschild space, i.e., conditions for the regularity of thallow us to reduce the number of unknown parameters to

stress-energy tensor on the future event horizon,

three. These conditions together with E28) ensure that the
stress-energy tensor measured in the local frames on the fu-

(Tyo)red <22, (33 ture event horizon will be finite.
. ; The conditions(28) and (34) are already satisfied while
KT rent (Tored <=, (349 the remaining ones after simple calculations give
and o w7 1| 1a .
(1=X) "2 Tuured < (35) P~ 7534~ 302 g% | " gg t5 10 (9
asx—1, where and
1 oK gola o1 8% 3 3T
(Tuwren=72] (1=X)(Tren= (e + 17-2|»  (36) ~ 307" 127" 207 19200t 640t | 1280t
(39
and Returning to the physical space, after some algebra, one ob-
K tains the mean value of the energy momentum tensor of the
(T ren={(Turen— —— (37)  quantized, massless, conformally invariant field in the Unruh
o M?2r?2 state
|
Tt pT c 1lla b 7 + . +4
(=173 | 200t ~ 2400t~ 20pt " 307 120% 20 TAX T 3T 385X
N a N 9b 3c 5 7 3 6y 7c 10%a 41b +21 +14 +7 . 40
pt "Bpt dpt 227 2% 2% 1ot Togpt dopt T 5 M7 5T 5%)x . (40
T pT [( 1lla b c 7 17 as N 5
(Tren=1= x|\ 2400t " 20pt ~ 20pt 307 120%° 20 x*—anx'~|zas+ 35|
N a +b c 1 1 6y 3c 9a 9b+9 +6 +3 o 41
12pt  8pt 4p 495 22X T|10pt 40pt 40pt 5 53T 536 |X [ (42)
4 4 5 a b 6
(To)ren=PT agx*+(2a,4+as)x°+ —6—m—4—m+3a4+2a5+a6 X%t (42
|
and IV. DISCUSSION

<T{>ren: —x? ) (43
4
whereK is given by

1 pT
K= 6—0(11a+ 12b—-6¢)— %(28a4+ 17a5;—6ag).

(44)

Generalizations to great®t are obvious, however, it seems

In order to compare just obtainéd@’ )., with those con-
structed by Visser in Ref18] first we introduce a new set of
unknown parameters; defined as

as=kg, (45
as=— 2K, +Ks, (46)
and
l/fa b c
ag=k,— 2k5+k6+IO 5 Z_E) 47

that the more complicated formulas are of little use. It should
stressed that, by construction, obtained tensors satisfy all

regularity and consistency requirements.

In terms ofk; the stress tensor becomes
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T _pT¥[ks ke b)— kot | K 4k .. | 3 5 5k 3k . 7k 27 o) 1
< t>ren—m ﬂ+%_rm(a+ )— 4X+ 4—§ 5| X"+ 4—pt(a+ )+Z 5—5 6|X"+ g 6—r.pt(a+ ) X7,
(48)
pTx?( 3 ks Kg 2 3 Ke 3 3
r . | (arth)- 2 _2_ 2 ] 3 L. _°ly4 I 5
(THren 1—x[80pt(a+b) 54~ 20 kax“+| ky 3k5 xX°+ 4k5 5> | + 5k6 40pt(a+b) X1, (49
|
and known one may perform unconstrained fit to the totality of
, ) the available data. In this approach known value of the lu-
(Toren=PTX(Ky+Kex+KeX?). (500 minosity is used by Eq(51) as a consistency check rather

. ) . , than an input. This procedure has been adopted recently by
The net flux is described by E¢43), where the integration \sisser in the case of the scalar field.

constani is expressed in terms ¢f as Unfortunately, detailed calculations, even if executed, are
1 rarely published, rather, the overall character of the stress
K= @[9‘” 9b— 2(5ks+ 6kg) pt]. (51 tensor is presented graphically. However, in the static and

spherically-symmetric geometries it is relatively easy to con-
struct the asymptotic characteristics ¢T%),,. Conse-
quently, with(T%(1)).e, and the luminosity treated as input
one may construct reasonable approximation. Indeed, taking
d'rjto account a more restrictive hypothedis=7, one con-
)}:Iudes that the additional constraint

Egs.(48)—(51) are equivalents of th€T%) ., constructed re-
cently by Visser[18].

The parametera,,as,aq or equivalentlyk, ks kg are to
be determined from the available numerical data. Such a pr
cedure has proven to be very useful in constructing highl
accurate analytical approximations to the exact stress tensor.

In it simplest form one needs the horizon value of, say, 3a,+2ag+ag—
<T§>ren the luminosity and one additional piece of informa-
tion. When the results of detailed numerical calculations areesults, after some rearrangement, in the stress tensor

L (7asom+Ze)—0 (52
384pt| 2 2¢/=0 (52

T § il ans oo 29, 128 27 | 5 (4 e 303, 339, 234 | ,
(Tdren= AMA(1—x) 3227 32 " 6" 3227 32 64 °)%
s 297 37405, (113 141 189 | . s
328 320 Ea Xt 328 3a P Ea C ) ®3
THren= : K[ an+ 206 a2 1 20 c s [ an a0k - e oo+ 20 |y
(Toren™ aM%1—%) 3237 327" 6a°)* 322 327 6 ¢)%
jgc U3, 141 1891, (21 33 81| o
3227 32062 X T 322 30 5a ) 49
and
o 4 e Mo 123 27 (69 8L 81 19 39 135, e
(Todren=\ 13 N+ 6K = 1558~ 1550~ 5560 | OK~ 528~ 520+ 128 /¥ | 1282+ 128~ 286° /| ©9

whereh=M*T(2M)). It is interesting to note that both renormalization. Therefore, one can draw a conclusion that
N=8 andN=7 hypotheses yield the same structure of theffom the point of view of the applied method the only dif-
renormalized stress tensor in the Unruh state. Substitutinfgrence between the results of Reff86,17 and[18] is the

the spin-dependent coefficients taken from Table | for scalaghoice ofN in Eq. (1). On the other hand, Barrioz and Vaz
and vector fields one easily obtains results presented in Refl1] take N=5 (i.e., there are no free parameters )lefhd

[16] and[17]. In a case of the conformal vector field the use more complicated decomposition(®t) e, in the optical
coefficientc(1) has been taken as predicted fyunction  space
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<-|-M> :TM+(a5ﬂ50+lB5M)<-ro> (56) only one which would give analytical formulas able to re-
viren Sy 0%y voNelren construct the exadfT*),,to a high accuracy. Moreover, the
wherea andp are coefficients subjected to the obvious con-price one should pay for such quality of the approximation is

dition a+4B8=1. rather smalll: just two or three pieces of numeric data. As far
as we know there are neither numerical calculations nor
V. CONCLUDING REMARKS asymptotic analyses concerning the vacuum polarization ef-

fect of the conformally coupled massless spinor field in the
In this work our goal was to constru¢T#) ., in the Un-  Schwarzschild spacetime and consequently the stress-energy

ruh state and to investigate how the choiceNoin Eq. (1)  tensor cannot be determined completely. We expect how-
affects the resulting stress-energy tensor. Although ouever, that the general formulas supplemented by additional
analyses have been limited t¢<8 it seems that a three pieces of numerical data would give a good approximation of
parameter family of the stress tensor is of sufficient generalthe exact stress tensor in this case also.
ity. Since apparently the ambitious plan to construct the ap- Finally, we remark that a similar method, with different
proximate stress tensor in the Unruh state using the polynasymptotics may be used in construction(dt,) ., in the
mial ansatz and appropriate regularity conditions as the onlfHartle-Hawking state, specifically, the results of Refis4]
availablea priori information has failed it seems that the may be rederive42]. We intend to return to this group of
presented methodor the methods closely relatedre the problems in a separate publication.
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