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ŠTn
µ
‹ ren of the quantized conformal fields in the Unruh state in Schwarzschild spacetime

Jerzy Matyjasek*
Institute of Physics, Maria Curie Skłodowska University, pl. Marii Curie Skłodowskiej 1, 20-031 Lublin, Poland

~Received 14 August 1998; published 6 January 1999!

The renormalized expectation value of the stress-energy tensor of the conformally invariant massless fields
in the Unruh state in Schwarzschild spacetime is constructed. It is achieved through solving the conservation
equation in the optical space with a polynomial ansatz, utilizing the regularity conditions and expected
asymptotic behavior of the stress-energy tensor in a physical metric, and performing a fit to the results of the
numerical calculations. It is shown that the adopted method, which is based on the conformal transformations
of the one-loop effective action, is complementary to that of Visser.@S0556-2821~99!01102-9#

PACS number~s!: 04.621v, 04.70.Dy
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I. INTRODUCTION

The expectation value of the stress-energy tensor of
conformally invariant massless fields in the Unruh state
the Schwarzschild geometry is known to possess some
eral features presented for the first time in the celebra
Christensen and Fulling paper@1#. The asymptotic behavio
of tangential and radial components of^Tn

m& ren and the regu-
larity conditions on the future event horizon are quite rest
tive, and allow construction of a class of approximate te
sors. Further, the numerical data, such as the exact valu
the ^Tu

u& ren on the future event horizon and the value of t
luminosity may be used in the final determination of t
model. It is very fortunate that, thanks to the excellent n
merical analysis carried out in Refs.@2# and @3#, we have
detailed information concerning the overall character of
exact^Tn

m& ren of the scalar field and consequently the valid
of constructed approximations may by verified. Similar c
culations has been carried out in the case of the confor
vector field.

The attempts to construct analytical or semianalytical
proximations of ^Tn

m& ren in various ‘‘vacuum’’ states, see
Refs. @4–19#, are motivated, aside from self-evident curio
ity, by the fact that they may be used as a source term of
semiclassical Einstein field equations@20–30# or give rise to
the analyses of local and averaged energetic conditions
quantum inequalities@31–38#. The stress energy tensor
also useful in the thermodynamic calculations, see, for
ample, Refs.@20,25,27,29,39,40#. It should be noted that the
back reaction calculations are limited to the^Tn

m& ren evalu-
ated in the Hartle-Hawking state.

Recently such semianalytic approximations of the str
tensor in the Unruh state have been presented@16–18#. In
Refs.@16,17#, where properties of the one-loop effective a
tion under the conformal transformations have been used
starting point is the assumption that in the ultrastatic co
panion of the Schwarzschild metric the tangential compon
of ^T̃n

m& ren has a polynomial form
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^Tu
u& ren5Tp~s! (

n54

N

anxn, ~1!

wherex52M /r andT5p2TH
4 /90 @TH51/(8pM )#. The nu-

merical factorp(s) depends on the spin of the field and
given in Table I. Such a choice is in accord with th
asymptotic analyses of Christensen and Fulling. Further,
tegrating the conservation equation in the conformal sp
and making use of the regularity conditions in the physi
one, a family of the stress tensors could be easily obtain
Taking N57 as has been done in Refs.@16,17# leaves two
free parameters which are to be determined from kno
value of the tangential pressure on the event horizon and
luminosity. It should be noted that it is, in a sense, a minim
choice. On the other hand, in Ref.@18# Visser chooses to
work in the physical space and uses a decomposition of
stress tensor allowed by the covariant conservation equa
The tangential component of^Tn

m& ren is also taken to be of
the form~1! with N56, this time however in Schwarzschil
spacetime. The resulting model has three free parame
which are determined by performing global unconstrained
to the numerical data. The tensors obtained in both mod
have a similar structure but differ in the numerical coef
cients.

In this note we shall show that, although differently m
tivated, Visser’s model may be obtained following the ste
of Refs.@16,17# with N58. The simplestN55 models pro-
posed by Vaz@10# and by Barrioz and Vaz@11# has no free
parameters, it should be noted, however, that the latter u
different decomposition of the stress tensor in the conform
space. In our constructions scalar, spinor, and vector fie

TABLE I. The coefficientsa(s), b(s), c(s), andp(s) for fields
of helicity s. For s51 the coefficientc is nonzero as predicted b
point separation andz-function renormalization. Dimensional regu
larization givesc(1)50.

s 0 1/2 1
5760p2a(s) 3 9 36
5760p2b(s) 21 211/2 262
5760p2c(s) 0 0 260
p(s) 1 7/4 2
©1999 The American Physical Society02-1
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JERZY MATYJASEK PHYSICAL REVIEW D 59 044002
are treated simultaneously. Presented method~with n51)
may be also employed in similar calculations in Hart
Hawking state.

II. CONFORMAL TRANSFORMATIONS
OF THE STRESS-ENERGY TENSOR

Transformational properties of the stress tensor of a c
formally coupled massless field under the scaling trans
mation g̃mn5e22vgmn are described by or may be obtaine
from the formulas derived by Page@4#, Brown and Ottewill
@5#, Brown, Page, and Ottewill@7#, and Dowker@41#. Under
the conformal transformation the one loop effective action
the massless conformally invariant fields transforms acco
ing to the rule@5#

WR@gmn#5WR@e22vgmn#1aA@v;g#1bB@v,g#

1cC@v,g#, ~2!

where

A@v,g#5E d4x~2g!1/2H S Riem222Ricc21
1

3
R2Dv

1
2

3
@R13~hv2k!#~hv2k!J , ~3!

B@v,g#5E d4x~2g!1/2@~Riem224Ricc21R2!v

14Rmnv ;mv ;n22Rk12k224khv#, ~4!

C@v,g#5E d4x~2g!1/2$@R13~hR2k!#~hR2k!%,

~5!

andk5v ;av ;a. We have distinguished quantities evaluat
in the conformal space with a tilde. The spin-dependent
efficientsa, b, andc are given in Table I.

Functionally differentiating~2! with respect to the metric
tensor and restricting to the Ricci-flat spaces one has

^Tn
m& ren5exp~24v!T̃n

m1a~s!An
m1b~s!Bn

m1c~s!Cn
m ,

~6!

where

Amn58Ramnbv ;ab2
4

3
k ;mn12gmnS 2v ;ak ;a1k21

2

3
hk D

28k ;~mv ;n28v ;mv ;nk, ~7!

Bmn58Ramnbv ;ab18Ramnbv ;av ;b

28v ;mav ;a
;n28k ;~mv ;n)

28kv ;mv ;n14gmnS v ;abv ;ab1k ;av ;a1
1

2
k2D , ~8!

and
04400
-

n-
r-

f
d-

-

Cmn5gmn~2hk13k216v ;ak ;a!

212kv ;mv ;n212k ;~mv ;n22k :mn. ~9!

The renormalized effective stress tensor has been define

^Tmn& ren52~2g!21/2
dWR

dgmn
. ~10!

We observe that since Eq.~6! is a general formula its
meaning is clear: the better approximation of the stress
sor in the conformal space is constructed the better^Tn

m& ren in
the physical is obtained. There is nothing less genera
working in the conformal space as long as the transforma
formulas are correct. Moreover, although we heavily us
scaling properties of the renormalized stress tensor
adopted method is neither the Page nor Brown and Otte
approximation.

Taking the conformal factor in the formv51/2 lnug00u,
one obtains forAn

m , Bn
m , andCn

m the following formulas:

At
t5

x6~1282240x1113x2!

128M4~12x!2
, ~11!

Ar
r5

x6~32296x163x2!

384M4~12x!2
, ~12!

Au
u5

2x6~642120x157x2!

384M4~12x!2
, ~13!

Bt
t5

3x6~48296x147x2!

128M4~12x!2
, ~14!

Br
r5

x6~16248x133x2!

128M4~12x!2
, ~15!

Bu
u5

2x6~32272x139x2!

128M4~12x!2
, ~16!

Ct
t5

3x6~32264x133x2!

256M4~12x!2
, ~17!

Cr
r5

2~829x!2x6

256M4~12x!2
, ~18!

Cu
u5

x6~1282264x1135x2!

256M4~12x!2
. ~19!

The geometrical terms, i.e., the sum of the last three term
the right hand side of Eq.~6! have, therefore, a simple form
proportional to simple polynomials inx multiplied by the
second power of 1/gtt .

It is a well known property of the massless and conf
mally coupled fields that although on the classical level
2-2
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trace of the stress energy tensor identically vanish, a
quantization it acquires nonzero value. Making use of
identity

d

dv
S@e22vgmn# uv50522gst

d

dgst
S@gmn#, ~20!

whereS is a functional, one concludes that the trace anom
is given by a general formula

^Tm
m& ren5a~s!SH1

2

3
hRD1b~s!G1c~s!hR, ~21!

where

H5Riem222Ricc21
1

3
R2 ~22!

and

G5Riem224Ricc21R2. ~23!

It is a very fortunate coincidence that for the scalar a
spinor field ^T̃m

m& ren in the optical metric is zero. Howeve
choosing for the vector field the coefficientc(1) as predicted
by z—function renormalizaton requires some care. Inde
in this case the trace of̂T̃n

m& ren does not vanish and, o
course, further calculations should reflect this fact.

The conservation equation for the line element of the c
formal space

¹̃m^T̃n
m& ren50 ~24!

reduces to

]

]x
^T̃t

r& ren2
2~122x!

x~12x!
^T̃t

r& ren50, ~25!

and

]

]x
^T̃r

r& ren2
223x

x~12x!
^T̃r

r& ren1
223x

x~12x!
^T̃u

u& ren50. ~26!

Therefore one concludes that the stress tensor in the
formal space naturally splits into two parts

^T̃n
m& ren5T n

m1
9c

8M4
x6~12x!2d0

mdn
0 , ~27!

whereT n
m is a conserved traceless tensor in the conform

space. Such a decomposition is allowed by the covar
conservation equation in the ultrastatic space and its e
form is constructed from Eq.~21! evaluated in the optica
space. Similar term has been introduced into the Page
proximation by Zannias@6#. It should be noted that in a cas
of the dimensional renormalization the second term in
right hand side of Eq.~27! is absent.
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III. THE MODEL

As has been said the idea of constructing^Tn
m& ren in

Schwarzschild spacetime is to accept Eq.~1! and solve the
conservation equation in the ultrastatic space. In orde
reduce the number of unknown parameters we transform
~1! to the physical space and make use of the regularity c
dition

lim
x→1

u^Tu
u& renu,`. ~28!

Inserting Eqs.~11!–~19! into Eq. ~6! with appropriate nu-
merical coefficients and making use of Eq.~28! yields

a75
a

48pt
2

b

32pt
1

c

32pt
24a423a522a6 ~29!

and

a852
7a

384pt
1

7b

128pt
1

7c

256t
2713a412a51a6 ,

~30!

wheret5M4T. After substitution of Eqs.~29! and~30! into
Eq. ~1! and performing integration of Eqs.~24! and ~25! in
the conformal space one has

^T̃t
r& ren52x2~12x!2

K

4M4
, ~31!

and the radial component of the stress tensor in the con
mal space

^T̃r
r& ren5pTF S a

384pt
2

b

128pt
1

c

256pt
2dD x2

2S a

384pt
2

b

128pt
1

c

256pt
2dD x32a4x4

1S 2

3
a42

2

3
a5D x51S 1

3
a41

5

12
a52

1

2
a6D x6

1S b

40pt
2

a

120pt
2

c

80pt
2

16

5
1

9

5
a4

1
29

20
a51

11

10
a6D x71S 7

640pt
2

21b

640pt
1

21c

1280pt

1
21

5
2

9

5
a42

6

5
a52

3

5
a6D x8G , ~32!

whereK is an integration constant connected to the lumin
ity and d is another integration constant. Note that the lea
ing behavior of Eq.~32! as x→0 is proportional tox2 as
expected.

Now, on general grounds one expects that at larger the
leading terms of2^Tt

t& ren and ^Tr
r& ren should be equal to

^Tr
*

t & ren,wherer * is the Regge-Wheeler coordinate. Mor

over, the Christensen-Fulling regularity conditions in t
2-3
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Schwarzschild space, i.e., conditions for the regularity of
stress-energy tensor on the future event horizon,

u^Tvv& renu,`, ~33!

u^Tt
t& ren1^Tr

r& renu,`, ~34!

and

~12x!22u^Tuu& renu,` ~35!

asx→1, where

^Tuu& ren5
1

4F ~12x!~^Tr
r& ren2^Tt

t& ren!1
2K

Mr 2G , ~36!

and

^Tvv& ren5^Tuu& ren2
K

M2r 2
~37!
s
ul

04400
eallow us to reduce the number of unknown parameters
three. These conditions together with Eq.~28! ensure that the
stress-energy tensor measured in the local frames on th
ture event horizon will be finite.

The conditions~28! and ~34! are already satisfied while
the remaining ones after simple calculations give

K5ptS 2
14

15
a42

17

30
a52

1

6
a6D1

11a

60
1

b

5
2

c

10
~38!

and

d5
7

30
a41

17

120
a51

1

20
a62

83a

1920pt
2

37b

640pt
1

37c

1280pt
.

~39!

Returning to the physical space, after some algebra, one
tains the mean value of the energy momentum tensor of
quantized, massless, conformally invariant field in the Un
state
^Tt
t& ren5

pT

12xH S c

40pt
2

11a

240pt
2

b

20pt
1

7

30
a41

17

120
a51

a6

20D x22a4x42S 5

3
a41

4

3
a5D x5

1S a

pt
1

9b

8pt
2

3c

4pt
22a42

7

4
a52

3

2
a6D x61S 7c

10pt
2

109a

120pt
2

41b

40pt
1

21

5
a41

14

5
a51

7

5
a6D x7J , ~40!

^Tr
r& ren5

pT

12xH S 11a

240pt
1

b

20pt
2

c

40pt
2

7

30
a42

17

120
a52

a6

20D x22a4x42S 1

3
a41

2

3
a5D x5

1S a

12pt
1

b

8pt
2

c

4p
2

1

4
a52

1

2
a6D x61S 3c

10pt
2

9a

40pt
2

9b

40pt
1

9

5
a41

6

5
a51

3

5
a6D x7J , ~41!

^Tu
u& ren5pTH a4x41~2a41a5!x51S c

4pt
2

a

6pt
2

b

4pt
13a412a51a6D x6J , ~42!
f

and

^Tt
r& ren52x2

K

4M4
, ~43!

whereK is given by

K5
1

60
~11a112b26c!2

pT

30
~28a4117a526a6!.

~44!

Generalizations to greaterN are obvious, however, it seem
that the more complicated formulas are of little use. It sho
stressed that, by construction, obtained tensors satisfy
regularity and consistency requirements.
d
all

IV. DISCUSSION

In order to compare just obtained^Tn
m& ren with those con-

structed by Visser in Ref.@18# first we introduce a new set o
unknown parameterski defined as

a45k4 , ~45!

a5522k41k5 , ~46!

and

a65k422k51k61
1

ptS a

6
1

b

4
2

c

2D . ~47!

In terms ofki the stress tensor becomes
2-4
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^Tt
t& ren5

pTx2

12x H k5

24
1

k6

20
2

3

80pt
~a1b!2k4x21S k42

4

3
k5D x31F 3

4pt
~a1b!1

5

4
k52

3

2
k6Gx41F7

5
k62

27

40pt
~a1b!Gx5J ,

~48!

^Tr
r& ren5

pTx2

12x H 3

80pt
~a1b!2

k5

24
2

k6

20
2k4x21S k42

2

3
k5D x31S 3

4
k52

k6

2 D x41F3

5
k62

3

40pt
~a1b!Gx5J , ~49!
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^Tu
u& ren5pTx4~k41k5x1k6x2!. ~50!

The net flux is described by Eq.~43!, where the integration
constantK is expressed in terms ofki as

K5
1

60
@9a19b22~5k516k6!pt#. ~51!

Eqs.~48!–~51! are equivalents of thêTn
m& ren constructed re-

cently by Visser@18#.
The parametersa4 ,a5 ,a6 or equivalentlyk4 ,k5 ,k6 are to

be determined from the available numerical data. Such a
cedure has proven to be very useful in constructing hig
accurate analytical approximations to the exact stress ten
In it simplest form one needs the horizon value of, s
^Tu

u& ren the luminosity and one additional piece of inform
tion. When the results of detailed numerical calculations
th
tin
ala
e
e

04400
o-
ly
or.
,

e

known one may perform unconstrained fit to the totality
the available data. In this approach known value of the
minosity is used by Eq.~51! as a consistency check rath
than an input. This procedure has been adopted recentl
Visser in the case of the scalar field.

Unfortunately, detailed calculations, even if executed,
rarely published, rather, the overall character of the str
tensor is presented graphically. However, in the static
spherically-symmetric geometries it is relatively easy to co
struct the asymptotic characteristics of^Tn

m& ren. Conse-
quently, with^Tu

u(1)& ren and the luminosity treated as inpu
one may construct reasonable approximation. Indeed, ta
into account a more restrictive hypothesisN57, one con-
cludes that the additional constraint

3a412a51a62
1

384ptS 7a121b1
21

2
cD50 ~52!

results, after some rearrangement, in the stress tensor
^Tt
t& ren52

x2

4M4~12x!
FK1S 4h124K2

119

32
a2

123

32
1

27

64
cD x22S 4h156K2

303

32
a2

339

32
b1

234

64
cD x3

1S 30K2
297

32
a2

357

32
b1

405

64
cD x41S 113

32
a1

141

32
b2

189

64
cD x5G , ~53!

^Tr
r& ren5

x2

4M4~12x!FK2S 4h124K2
119

32
a2

123

32
b1

27

64
cD x21S 4h140K2

211

32
a2

321

32
b1

135

64
cD x3

2S 18K2
113

32
a2

141

32
b1

189

64
cD x42S 21

32
a1

33

32
b2

81

64
cD x5G , ~54!

and

^Tu
u& ren5

x4

M4Fh16K2
119

128
a2

123

128
b2

27

256
c2S 6K2

69

64
a2

81

64
b1

81

128
cD x2S 19

128
a1

39

128
b2

135

256
cD x2G , ~55!
that
f-

z

where h5M4^Tu
u(2M )&. It is interesting to note that both

N58 andN57 hypotheses yield the same structure of
renormalized stress tensor in the Unruh state. Substitu
the spin-dependent coefficients taken from Table I for sc
and vector fields one easily obtains results presented in R
@16# and @17#. In a case of the conformal vector field th
coefficientc(1) has been taken as predicted byz-function
e
g
r

fs.

renormalization. Therefore, one can draw a conclusion
from the point of view of the applied method the only di
ference between the results of Refs.@16,17# and @18# is the
choice ofN in Eq. ~1!. On the other hand, Barrioz and Va
@11# take N55 ~i.e., there are no free parameters left! and
use more complicated decomposition of^T̃n

m& ren in the optical
space
2-5
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^T̃n
m& ren5T n

m1~ad0
mdn

01bdn
m!^T̃s

s& ren, ~56!

wherea andb are coefficients subjected to the obvious co
dition a14b51.

V. CONCLUDING REMARKS

In this work our goal was to construct^Tn
m& ren in the Un-

ruh state and to investigate how the choice ofN in Eq. ~1!
affects the resulting stress-energy tensor. Although
analyses have been limited toN<8 it seems that a thre
parameter family of the stress tensor is of sufficient gene
ity. Since apparently the ambitious plan to construct the
proximate stress tensor in the Unruh state using the poly
mial ansatz and appropriate regularity conditions as the o
availablea priori information has failed it seems that th
presented method~or the methods closely related! are the
s

ev

ev

04400
-

r
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only one which would give analytical formulas able to r
construct the exact̂Tn

m& ren to a high accuracy. Moreover, th
price one should pay for such quality of the approximation
rather small: just two or three pieces of numeric data. As
as we know there are neither numerical calculations
asymptotic analyses concerning the vacuum polarization
fect of the conformally coupled massless spinor field in
Schwarzschild spacetime and consequently the stress-en
tensor cannot be determined completely. We expect h
ever, that the general formulas supplemented by additio
pieces of numerical data would give a good approximation
the exact stress tensor in this case also.

Finally, we remark that a similar method, with differe
asymptotics may be used in construction of^Tn

m& ren in the
Hartle-Hawking state, specifically, the results of Refs.@14#
may be rederived@42#. We intend to return to this group o
problems in a separate publication.
k,

ev.
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