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Amplification of cosmological inhomogeneities by the QCD transition
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The cosmological QCD transition affects primordial density perturbations. If the QCD transition is first
order, the sound speed vanishes during the transition and density perturbations fall freely. For scales below the
Hubble radius at the transition the primordial Harrison-Zel'dovich spectrum of density fluctuations develops
large peaks and dips. These peaks grow with wave number for both the hadron-photon-lepton fluid and for cold
dark matter. At the horizon scale the enhancement is small. This by itself does not lead to the formation of
black holes at the QCD transition. The peaks in the hadron-photon-lepton fluid are wiped out during neutrino
decoupling. For cold dark matter that is kinetically decoupled at the QCD trangitign axions or primordial
black holes these peaks lead to the formation of CDM clumps of masse$°My, <M gymp<10 Mg .
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PACS numbes): 98.80.Cq, 12.38.Mh, 95.35d

I. INTRODUCTION AND RESULTS For a first-order QCD transition hadronic bubbles nucle-
ate during a short period of supercooling. The crucial param-
eters for supercooling are the surface tensiand the latent
heatl. Data foro-and| are available only for quenched QCD
[3] and give a very small surface tension. This gives a very
short period of supercoolinghts~10 3%t,, and a typical

In the early universe a transition from a quark-gluon
plasma(QGP to a hadron ga$HG) took place at a certain
transition temperatureT,. At high temperatures the
asymptotic freedom of QCD predicts the existence of a de

confined phase, the quark-gliuon plasma. At low temperatgreg bble nucleation distanad,,.~1 cm~10"°R,, for homo-
quarks and gluons are confined in hadrons. The deconfme\ﬁjéneouS nucleatiof,7]. The hadronic bubbles grow very
phase at high temperatures was found by lattice QCD simUggt within 107%t,,, until the released latent heat has re-
lations [1]. The order of the QCD transition is still under heated the universe t®,. For the remaining 99% of the
debate, but recent lattice QCD results for three quark flavorgansition the HG and the QGP coexist at the pressure
with massive strange quarks indicate that the QCD transitiorﬂ)HG(T*) =poce{T,). During this time the hadronic bubbles

is first Order{Z]. The value of the latent heat is available Only grow SIOle and the released latent heat keeps the tempera_
for quenched lattice QCOgluons only, no quarks[3].  ture constant until the transition is completed. The energy
These data give a small latent heéat(I/T,) is about one- density decreases continuously fromae(T,) at the begin-
fifth of the difference in entropies between an ideal masslesging of the transition t@g(T,) When the transition is com-
quark-gluon plasma and hadron gas, respectively. Twopleted.

flavor calculations givel,~140 MeV [4]. Ongoing and fu- In the mid 1980s interest in the cosmological QCD tran-
ture heavy ion experiments at the world's largest colliderssjtion arose because it was realized that a strongly first-order
[Super Proton Synchrotro(6PS, BNL Relativistic Heavy  QCD phase transition with large surface tension could lead
lon Collider (RHIC), CERN Large Hadron CollidefLtHC)]  to observable signatures today. Witti8] pointed out that

are searching for the QGIB]. _ , the separation of phases during the coexistence of the had-
At the QCD transition the Hubble radil®&,~mg /T is  ronic and the quark phase could gather most baryons in
about 10 km. The mass inside a Hubble volume-&M, . (strange quark nuggets. However, the quark nuggets, while

The transition lasts about a tenth of a Hubble titpe, with  cooling, lose baryons, and evaporize, unless they contain
the latent heat from quenched lattice QCD. The Hubble timamuch more than 1§ baryons initially [9]. This number
at the QCD transition isy=Ry/c~10°s. This is ex- should be compared with the number of baryons inside a
tremely long in comparison with the relaxation time scale ofHubble volume at the QCD transition, which is®20Thus,
the strong interactions, which is about #3s. Thus, the the mean bubble nucleation distance should>b&0 2R
transition is very close to an equilibrium process. ~100 m, which is about a factor 4@oo big compared to the
nucleation distance suggested using recent lattice rd8llts
Applegate and Hogan found that a strongly first-order

*Email address: chschmid@itp.phys.ethz.ch QCD phase transition with a large surface tension could in-
"Email address: dschwarz@th.physik.uni-frankfurt.de duce inhomogeneous nucleosynthe$id|, assuming a
*Email address: widerin@itp.phys.ethz.ch nucleation distance which is ruled out by recent lattice re-
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sults[3]. The large isothermal baryon fluctuations, inducedand therefore get a larger amplification factor &u/p dur-
during the separation of phases, could lead to inhomogeng the transition.
neous initial conditions for nucleosynthesis. As a minimal Photons and relativistic leptons, i.e. the three neutrinos,
requirement for inhomogeneous nucleosynthesis the meast- and ™, also contribute to the energy density at the tem-
bubble nucleation distance should be larger than the protoperatures of interest. Weak and electro-magnetic interactions
diffusion length, which corresponds te 3 m [11] at the are fast enough to keep the photons and leptons in thermal
QCD transition. This is more than 1@mes larger than the equilibrium with the QGP-HG. Therefore the collective be-
nucleation distance based on lattice res[@ In addition, havior of all these coupled particles can be described by one
the observed cosmic abundances of light elements do ngerfect(i.e. dissipationlessfluid, which we shall denote as
allow inhomogeneous nucleosynthesis, except in a small rgadiation fluid(RAD).
gion in parameter space corresponding to an inhomogeneity As & second fluid we include cold dark mat&€DM)
scale of~40m[11]. which dominates the energy density of the universe today. At
In a recent Lettef12] and in the present work we look at the time of the QCD transitiop“>™(T,) ~10~#pA(T,);
matter averaged over scalksmuch larger than the bubble therefore the gravity generated by CDM can be neglected.
separation, e.g\ of order of the Hubble radiuB,,. There- We must distinguish two types of CDM with respect to the

fore we deal with the bulk properties of the fluid in contrastissue.Of kinetic decoupling at the t.ime of the .QCD transition.
to previous investigations which dealt with physics at theThe I|ghtest su.per'symmetnc particle, Wh'c.h IS prot_)ably the
bubble separation scale. We found that the evolution of Cosr_leutralmo[ZO], Is tightly coupledl o the radiation fdear_ld
mological density perturbations is strongly affected by aIS treated as part of the RAD flui@t T—T, . The scattering
) . . rate of the neutralino is of the order of the weak interaction
first-order QCD transition for subhorizon scales=Ry.  sqattering rate; the neutralino decouples kinetically at a much
Preexisting cosmological perturbations with an approximatg, e temperature of a few MeV. Kinetic decoupling must
Harrison-Zel'dovich spectrurfiL3] are predicted by inflation |, distinguished from freeze-oGivhen the pair production
[14-17 and have been observed in the temperature fluctugsng annihilation rates fall below the Hubble patevhich
tions of the cosmic microwave background by the COBEpgappens way before the QCD transition. In contrast the sec-
satellite[18]. . ~ond type of CDM is kinetically decoupled at the QCD tran-
We showed in(12] that pressure gradients and the isen-sition, e.g. axions or preexisting primordial black holes. Note
tropic sound speetfor wavelengths. much larger than the  that in our figures and equations kinetically decoupled CDM
bubble separation c,=(p/dp)s>, must be zero during a ill be labeled by CDM for brevity.
first-order phase transition of a fluid with negligible chemical  Kinetically decoupled CDM falls into the potential wells
potential(i.e. no relevant conserved quantum numb&he  provided by the dominant radiation fluid. Thus, the CDM
sound speed must be zero, because for such a fluid the pregsectrum is amplified on subhorizon scales. The peaks in the
sure can only depend on the temperatp(d;), and because CDM spectrum go nonlinear shortly after equality. This
the transition temperatur, has a given value, it cannot leads to the formation of CDM clumps with mass
depend on any parameter; henu@ ,)=p, is a given con- <10 %M. Especially the clumping of axions has impor-
stant, andcs=0. This is in contrast e.g. to the water-vapor tant implications for the axion searches using the magnetic
system, where the number of molecules is conserved, wheffeld induced axion decaj21].
the pressure also depends on the particle density in a given The formation of primordial black hole@®BHS should
phasep(T,n), and where a two-phase system has an equibe particularly efficient during the QCD epoch due to a sub-
librium pressurethe vapor pressuyevhich depends on the stantial reduction of pressure forces during adiabatic collapse
temperaturep,(T), and henceg# 0. During the entire QCD  as pointed out by Jedamzj9]. The PBH mass function is
transition the sound speed stays zero and suddenly rises bagkpected to exhibit a pronounced peak on the QCD-horizon
to the radiation value =13 after the transition is com- mass scale-1M, . He proposes that these black holes could
pleted. Pressure varies continuously and goes below the ideatcount for massive compact halo objeACHOS) ob-
radiation fluid valuep=p/3, but stays positive. Jedamzik served by microlensinf2]. However, we found by our lin-
[19] independently pointed out that a significant decrease irar analysig12] that the amplification of fluctuations at the
the effective sound speer during the cosmological QCD QCD horizon crossing scale is only a factor 1.5. For standard
transition is expected. models of structure formation without tilt, the amplitudes are
Since the sound speed is zero during a first-order QCIhot big enough to produce a cosmologically relevant amount
transition, there are no pressure gradients and no restoringf black holeg23]. A tilted spectrum could be fine-tuned to
forces. Preexisting cosmological perturbations go into a freeproduce black holes at the QCD scale, but the spectrum
fall. The superhorizon modest the time of the transition  would need a break just below the QCD scale in order not to
N>Ry, remain unaffected. The spectrum of subhorizon peroverproduce smaller black holes. With the need of such a
turbations develops peaks dip/ p which grow with the wave doubly fine-tuned preexisting spectrum the main effect
number. The details of the enhancement depend on the QCould not be due to the QCD transition.
equation of state nedr, . The peaks grow at most linearly in The influence of the QCD transition on primordial gravi-
wave number. The subhorizon peaks arise because preexisitional waves has been investigated by one of the present
ing acoustic oscillations at shorter wavelengths have a highezuthors in Ref[24]. It was found that the dramatic drop in
velocity (for a givenédp/p) at the beginning of the transition relativistic degrees of freedom during the QCD transition
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(from 51.25 in the QGP to 17.25 in the Hi@duces a step 14 . . .
K Ny =2,T, =140 MeV  +—

by 30% in the primordial spectrum of gravitational waves. v
Today this step is located at10 8 Hz. Gravitational waves ~ '*[ .. o/ e Np=01 zgf:rﬁq;}e] e
with that frequency could be detected by pulsar timing; how- | Tl S ST 4
ever, for gravitational waves from inflation the amplitudes :
are far too small to show up in the pulsar timing residuals. 08

This paper is organized as follows: A discussion of hot
QCD, bubble nucleation, and the vanishing of the sound
speed for wavelengthls much larger than the bubble sepa- o/ pidea
ration can be found in Sec. Il. In this section we present a fit e
to recent lattice QCD results. We give the thermodynamical 0.2
curves forw=p/p and the sound speeni as a function of R
the scale factor at the QCD transition for three cases: the bag ° 1 15 9 25 3 35 4
model[25], which gives a simple parametrization, our fit to T/T.
lattice QCD and a smooth crossover.

In Sec. Il we derive the amplification of density pertur- FIG. 1. The energy density and the pressure of hot QCD relative
bations at the QCD transition both numerically and analyti-{0 the energy density of an ideal quark-gluon plasma are plotted as
cally. We present the evolution equations for cosmologicaf function of T/T, . The lattice QCD data foN;=0 [26] and N
perturbations in a first-order form in a uniform expansion—2 QCDP[4] are compared with the predictions of the bag model.
gauge, which gives the same simple structure for the general
relativistic dynamics as for the Jeans equations. The details: O(10™ 9. At the time of the QCD transition the chemical
of the amplification depend on the equation of state at th¢yotential for quarks and baryons, respectively, is negligible
phase transition. We present three cases: First, we use tlg far as the pressupeand energy density are concerned,
bag model[25], which allows a simple discussion of the p andp depend on the temperature only.
effects. In the bag model, the amplification of subhorizon The behavior ofp(T) andp(T) near the QCD transition
perturbations grows linearly in wave numberNext, we use  must be given by nonperturbative methods, lattice QCD. In
our fit to recent lattice QCD dafi26,27, which indicate a Fig. 1 we plot lattice QCD data fos(T) andp(T) divided
smaller latent hedft3]. The amplifications for the lattice fit by p of the corresponding ideal gas. We show the lattice
grow proportional tok¥% As a third example we study the results for two systems, quenched Q@ quarks [26] and
possibility of a smooth crossovg28]. In this case, the sound two-flavor QCD[27]. For quenched QCD the lattice con-
speed stays finite and subhorizon scales are not amplifiednuum limit is shown. For two flavor QCD the data with six
The spectrum for a crossover has peaks only around the hdime steps K;=6, a~0.2fm) and a quark masam,
rizon scale. We prove that the spectra of primordial pertur=0.0125 are shown. This corresponds to a physical mass
bations are not affected for scales greater than the Hubbig,~14 MeV, a bit heavier than the physical masses of the
horizonRy at the transition. up and down guarks. On the horizontal axis we pIBtT,).

In the last sectiortSec. IV) we discuss observable conse- We note that the critical temperature for quenched QCD is
quences of the large peaks and dips in the spectrum of demr, ~260 MeV [26], and for two-flavor QCDT, ~ 140 MeV
sity fluctuations. Collisional damping around the time of[4]. Unfortunatelyp(T) and p(T) for three quarksu,d,9
neutrino decoupling wipes out all subhorizon inhomogenewith physical masses are not available yet. F6F, =4 en-
ities in the radiation fluid before big bang nucleosynthesisergy density and pressure for quenched QCD are still 10%
(BBN), and homogeneous BBN cannot be affected. We disand 15%, respectively, below the ideal gas value. It is re-
cuss black hole formation during the QCD transition andmarkable thap/ pigea ANA P/ pigea VErsUsT/T, is quite simi-
conclude that it is highly unlikely unless the primordial spec-|ar for quenched QCD and two-flavor QCD. Moreover, the
trum is fine-tuned at the QCD scale. temperature dependence of the rescaled pressure for four-

The most interesting prediction is the clumping of thoseflavor QCD[29] is quite similar to quenched QCD.
types of CDM which are kinetically decoupled at the QCD At temperatures belowW, quarks and gluons are confined
transition and do not suffer from collisional damping by neu-to hadrons, mostly pions. At present the hot pion phase is not
trinos. E.g. axions, if they are the CDM, are not distributedseen in the two-flavor lattice QCD, since the pion comes out
smoothly within the halo of our galaxy, they come in oo heavy (0.3m,/m,<0.7 from[4], whereas the physical
clumps. ratio is 0.18.

Throughout the paper we assume that our universe is spa- The second law of thermodynamics connects pressure and
tially flat (2=1) and most of its matter is CDM today. energy density, and reads, for a fluid without a chemical

Whenever we give numbers we use a Hubble parameter ¢fotential(no relevant conserved quantum numbers
Ho=50kms *Mpc.

0.6 -

dp
Il. COSMOLOGICAL QCD TRANSITION p=Tg7 P (2.2

A. Hot QCD

The baryon number density in the universe is extremelyThe Maxwell relation for the free energy gives the entropy
small compared to the entropy density, i.eg/s  density,
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T 1/4 H H
140 MeV s - range of bag constan®*“< (195,221) MeV. This range is

T
14 Ny =2,T, . . . . .
N 20T = 260 Mev — in agreement with fits to the light-hadron masses, which
L2 - /1o bag model - 1 yield BY4=145-245MeV (a compilation of various bag
cross over — model light-hadron fits can be found [B80]). We adopt the

valueT,=150 MeV.
Energy density and entropy density in the bag model fol-
low from Egs.(2.1)—(2.33,

ideal

PoGF= PocpT B (2.5a

SQGP: Sg(e;al:ly, (25b)

T/T,

FIG. 2. The entropy density of hot QCD relative to the entropyWith p'%®3=(72/30)g* T* and s%®?=(272/45)g*T® for
density of an ideal QGP is shown for the same lattice QCD resultsnassless particles. The bag results mpggil, p/p'gge}j',

as in Fig. 1. We also plot the entropy density for our fit to the Iattices/sggﬁj' are shown in Fig. 1 and Fig. 2. Note thetfr® is a

QCD data, for the bag model, and for a smooth crossover. simple step function in the bag model. The QCD transition is
first order in the bag model, and the latent heat per unit
dp volume,|=T,As, is
S= ﬁ (22)
2
From homogeneity the free energy densifyl)=—p(T), | = 2lAg*T“=4B (2.6)
45 * ' '

and f(T) contains the full thermodynamic information. The
lattice QCD results fos/sggp are shown in Fig. 2.

The bag model gives a simple parametrization gm) whereAg=gosr— -
and hence fop(T),s(T). The bag model ansatz represents  tpe order of the QCD phase transition affdr a first-
the short-distance dynamics by an ideal gas of quarks angrger transition the magnitude of the latent heat is still a

gluons and the long-distance confinement effects by a conspiect of debate. In quenched QCD the phase transition is of
stant negative contribution to the pressure, the bag constaffsi order [26]. The latent heat was determined to be

B, | ~1.4T%[3]. Itis useful to take the rati®, of the latent heat

_ideal1 to the valueT,As%@ whereAs'%@ is the difference in en-
Paer T)=Poer )~ B. (233 tropy between an ideal massless HG and an ideal massless

We include gluons and u,d quarks, which are effectiverQGPv

massless af~T,; hencepGSyT) = (74/90)g&cpT*, where

g* is the effective number of relativistic helicity stateg; | 1 bag model,

= B * = = =

= Ybosons 7/8fermions:  Jocr™ 37 The IOW. temperature R (T,As)®3@ 102 quenched lattice QCD.

phase is a hadron gas. We model it as an ideal gas of mass- 2.7)

less pions,
2 % -4 For two light quarks it is likely that the transition is a cross-
pHG:%gHGT ' (2.30 over [4,27]. This is in agreement with theoretical consider-
ations[31], which predict a second-order phase transition in
because the contribution of pions is small anyway,the massless quark limit. For three light flavors and for the
ahc/ g’éepz 3/37. physically relevant case of two light and one heavy flavor the
At the phase transitionT(=T,) the quark-gluon phase phase transition is likely to be of first ordg2]. This result
and the hadron phase have the same presput@,. The  was obtained using the Wilson quark action, whereas results
stable phase fof # T, is the one which gives the minimum with staggered quark82] indicate a crossover for the physi-
for the free energy densit§(T), hence a maximum for cal quark masses. For four quark flavors the transition is first
p(T). The condition for pressure equilibrium & gives the order[29]. Since the latent heat for lattice QCD is known for
relation betwee, andB; using Eqs(2.39 and(2.3bh we  quenched QCD only, we decided to use the latent heat ratio

obtain R, =0.2 from quenched QCD as an indication for the physi-
cal case.
m° N * \d We also need an analytic representation of the lattice
B= %(QQGF’_QHG)T*' 24 QCD data. We decided to fit the entropy dengfyg. 2) and

to derive the other thermodynamic quantities with E@sl)
We takeT, from lattice QCD calculations with two flavors, and(2.2). Below T, we consider again an ideal gas of the
which giveT, € (140,160) MeV[1,4]. This corresponds to a three pions. We fit the shape of the lattice QCD data by
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Sfit “dirt” the bubbles nucleate due to thermal fluctuatiof®-
(22245 T =0hctAg O(T-T,) mogeneous nucleatidnThe probability to nucleate a bubble

by a thermal fluctuation is proportional to eX§), where
R ASis the change in entropy by creating a bubble. The second
R,_+(1—R,_)(1— T) } (28 |aw relatesAS to the minimal work done in this process,
which is the change in the free energy because the volume
A good fit for our purpose is obtained fore (0.3,0.4). We  and temperature are fix¢86]. The change in free energy of

X

fix y=1/3. The fit is plotted in Fig. 2. the system by creating a spherical bubble with radRus
Finally, we do not neglect the possibility that the QCD 4
transition could be a smooth crossover. Such a crossover has _am 3 2
AF=— — R°+4m7oR*, 2.1
been modeled by a simple interpolation between the ideal 3 (Pace™Pre) i 219

values of the entropy density with a tanh. It was first given in ] ] ]
Ref.[28] and is used in relativistic hydrodynamical simula- Whereo is the surface tension. Bubbles can grow if they are

written as Smaller bubbles disappear again, because the free energy

gained from the bulk of the bubble is more than compensated

gerossover 1 Ag* T-T, by the surface energy in the bubble wddl,; is determined
S'Qa?;ap =1-3 Thor 1-tanh — - (29 from the maximum value oAF(R), Ryi(T)=20]pua(T)

—pQGF(T)]*l. At T, the critical bubble size diverges, and
We chooseAT/T,=0.1; see Fig. 2. This gives the shape of N0 bubble can be formed. Finally, the probability to form a
the initial rise of the lattice data, but it necessarily fails to hadronic bubble with critical radius per unit volume and unit
give the slow rise at higher temperatures frafsisd~0.6 to ~ time is given by

1. Comparing this model to the bag model and the lattice fit AF..

allows us tp_ldentlfy phe_nomena caused by the cosmological [(T)=I oeXF{ _ C”t>, (2.12
QCD transition that are independent of the order of the tran- T

sition. The effects for wavelengths close to the Hubble scale 3 )

will be shown to be approximately independent of the ordeWith AF¢ii=1670°/[3(pue—Pqep) “]. For small supercool-

of the transition. ing »=1-T/T,<1 we may evaluatepc— Pgoce (T) by
The early universe at around 150 MeV also contains USing the second law of thermodynamics, iR~ Poce
photons and relativistic leptonet, =, neutrinog with a  ~!#, and thus
pressure 167 o3
2 AFei~ 3~ 22 (213
D|y=%9|*yT4, (2.10

For dimensional reasons the prefactgr-T?. A more de-

whereg},=14.25. We use the subscript minus to denote thdailed calculation of, within the bag model has been pro-
value of some quantity at the beginning of the transition, i.evided in[37]. It was shown in Ref[7] that the temperature
when the universe has cooled Ty from above, and the dependence of the prefacthy can be neglected for the cal-
subscript plus to denote the value of the same quantity at thgulation of the supercooling temperatuFg; in the cosmo-

end of the transition, i.e. when the temperature starts to ddogical QCD transition. Furthermore a purely numerical pref-
crease again. actor toT# would be irrelevant for our purposes as explained

after Eq.(2.15. Therefore the probability to form a critical

B. Bubble nucleation bubble per unit volume and unit time can be written as

The expansion of the Universe is very slow compared to |%Tfexq—A/ 7%), (2.19
the strong, electro-magnetic, and weak interactions around
T.. To be more explicit, the rate of the weak interactions iswith A=16m0>/(31°T,).
I',~G2T3~10 **GeV, the rate of the electro-magnetic in-  The surface tensiom is a crucial parameter fof. and
teractions isT"g~ a?T,~10 °GeV, and the rate of the Rg;. The absence of surface excitations in hadronic spectra
strong interactions isI'¢~a?(T,)T,~10 1 GeV. These suggests that-*<BY* [30]. In lattice QCD rather small
rates have to be compared to the Hubble tdte T2/mp,  Values are found. The authors of RéB] find that o
~10 ?'GeV. Thus, leptons, photons, and the QGP-HG are~ 0.015r2 for quenched lattice QCD. There are no values for
in thermal and chemical equilibrium at cosmological time unquenched QCD available yet. However, an upper bound
scales. All components have the same temperature locallyyas obtained for the case of four-flavor lattice QCD in Ref.
i.e. smeared over scalas~10 'Ry. At scales\ >10 'Ry [38], i.e., 0<0.1T3. Using the results from quenched lattice
strongly, weakly, and electro-magnetically interacting mattetQCD we findA=2.9x 10 °.
makes up a single perfe@te. dissipationlegsradiation fluid. After the first bubbles have been nucleated, they grow
In a first-order phase transition the QGP supercools untimost probably by weak deflagrati¢84,39,40,6. The defla-
hadronic bubbles are formed @t .<T, [8,34,39. Without  gration front (the bubble wa)l moves with the velocity
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v 4e<1W3 [41]. The energy that is released from the bubbles °* ' ' ' T
is distributed into the surrounding QGP by a supersonic [ e
shock wave and by neutrino radiation. This reheats the QGP 04 - crossover — |
to T, and prohibits further bubble formation. The shock front - .
propagates with a speed slightly above the sound speed. The, 5
amplitude of the shock is very sm4B9]. Neutrinos have a
mean free path of 0T, at T, . If they do most of the heat
transport, it goes withy ,.,= O(c). A detailed calculation of
the supercooling temperature in the cosmological QCD tran-
sition was given in Refd.35,6]. These calculations assume %! [
small supercooling. The suppression of bubble nucleation | .
due to already existing bubbles is neglected. 0 ! ! ! ! !
The supercooling temperature fractieg, turns out to be 04 GO gy b1z a4 sis s
about the same for the schematic case of one single bubble
nucleated per Hubble volume per Hubble time, FIG. 3. The behavior ofv=p/p during the QCD transition as a
function of the scale factoa. Although the pressure is reduced, it
stays positive throughout the transition.

A
41In(T,/H,)

Ns™~

1/2
} ~4X10°4, (2.15

order phase transition, 1% of the QGP must be converted to
or the realistic case obtained below of one bubble nucleateHG in the process of sudden reheating Ttp; hence the
per cnt per 10 of a Hubble time, which needs a super- bubble radius at quenching must reach 0.2 of the bubble
cooling 20% larger. This small increase of 20%jg makes  separation,Ry ppie=0.2d,y0. With Rpupbie= U defd thue @nd
the bubble nucleation rate larger by a factof*0 using the above relatiod .~ v neal thuc, WE requireu g
The time needed for the supercooling is given by=0.2v., for consistency. Ifvyeq is smaller than this, the
Atg/ty= s/ (3c2)=0(107%). The critical size of the limiting factor for quenching is the rate of release of latent

bubbles created at the supercooling temperature is heat by bubble growth, and the bubble separation is
20 Vderl 7o
Rcrit( 77$C) ~ [ ﬂsc% 30 fm. (21@ dnuclwvdeﬂAtnuclw 3_(% f:RH ; (21&

Bubbles present at a given time have been nucleated typjs ' the bubble separation will be smaller than the estimate,
cally during the preceding time intervalt, =I1/(dl/dt) Eq. (2.17.
=0(10°°). Using the relation between time and supercool- 1 symmarize, the scales on which non-equilibrium phe-
ing 7, dp/dt=3c/tyy, we findAtyq/ty=7"/(BACS). DU~ nomena occur are given by the mean bubble separation,
ing this time interval each bubble has distributed releasegynich is about 10°R,,. The entropy production is tiny, i.e.
latent heat over a distaneeAtn_udvheat. This distance has a Ag/s~1076, since the supercooling is smaH1073. After
weak dependence on the precise valugQf but the bubble  gypercooling, which lasts 16t,,, the universe reheats in
nucleation rate increases exceedlng)gl_y strongly wjtlintil At,,~10"%t,. After reheating the thermodynamic vari-
one bubble per volume-(Atncpnea” iS NUcleated. There- gples follow their equilibrium values and bubbles grow due

fore the mean bubble separation is to the expansion of the Universe only. This is in striking
3 contrast to bubble nucleation at the grand unified theory
v 77 -y . . . .
heat SCRH= O(10 %Ry =O(1 cm), (GUT) transition, where the particle interaction rate is of the

nucf™ Uheaf 3¢z A order of the Hubble rate and the bubble nucleation rate per

(2.1 unit volume is very much smaller tha®.

where we used .= O(c), cs= O(c), which gives a typical
value for the nucleation distance. [] the mean bubble
nucleation distance due to thermal fluctuatiofm®moge- We now discuss the evolution of the temperature and
neous nucleatioris calculated to be less than 2 cm, whereasother thermodynamic variables as a function of the scale fac-
for inhomogeneous nucleatidthe first bubbles form at im- tor a. The evolution ofw=p/p for the bag model, our lattice
purities like topological defects or primordial black holégs  QCD fit, and for the smooth crossov&.9) is shown in Fig.
might be a few m. 3.

The above estimate of bubble separation applies if the Entropy is conserved, apart from the very short stage of
limiting factor for quenching is the distribution of released reheating (10 °t,;) after the first bubbles have been nucle-
latent heat by means of sound waves and by neutrino freated. This allows us to calculafe=T(a) from d s(T)a®]
streaming. On the other hand the limiting factor could be=0, i.e.
given by the rate of release of latent heat, i.e. by the bubble
wall velocity vgeq. Since the period of supercooling lasts dr 3s

= (2.19

about 1% of the time needed for completing the entire first- dina  ds/dT’

C. Adiabatic phase conversion
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except forT=T, in the case of a first-order phase transition. 05 . . . . e L
In the bag modes~ T2 and thereforél«1/a for T#T,. In - bag model - |

. . . lattice fit —
the case of the lattice fit and the crossover the entropy is o4 | e s

given by Eq.(2.8) and Eq.(2.9), respectively, plus the con- " i
tribution of photons and leptons. Pressure as a function of the :
scale factor is obtained frorm=dp/dT, using Eq.(2.19.
The energy density, henae, follows from Eq.(2.1).

While the QGP and HG coexist in a first-order QCD tran-
sition the expansion factor is determined by entropy conser-
vation, 0.1

S_ ) 3 0 1 1 L 1 1 1 1

0.3

0.2 -

a,

a_

S (2.20 04 0.6 0.8 1 12 14 1618 2
+

ajay

where the index- (+) denotes the value of a quantity at the ~ FIG. 4. The behavior of the sound speeid- (p/dp)s during
beginning(end of the coexistence epoch. In the bag modelthe QCD transition as a function @f. For a first-order transition
the Universe expands by a facr /a_~1.4 until all QGP (lattice fit and bag modglthe sound speed vanishes.
has been converted into the HG, whereas for our lattice QCD
fit (2.8) the Universe expands by a factar /a_=~1.1. The
growth of the scale factor is related to a lapse in cosmic time
by dIna=Hdt. In terms of Hubble time the transition lasts
0.3t for the bag model and A for our lattice QCD fit. For an analytic discussion of the behavior of acoustic modes
During a first-order QCD transition, i.d&.=T,, the pres- during the phase transition it is important to kn(mZy as a
surep(T,)=p, is constant. For any first-order QCD phase function of conformal timen=fa~(t)dt. In the radiation
transitionp(a) is obtained from the first law of thermody- dominated regimec . Up to small corrections, this holds
namicsdp=—3(p+p,)da/a. The result fora_<a<a, is  true during the transition. Let us denote the value of confor-
mal time at which the sound speed vanisheszhy. From

2
Cgx

T\
1—?> : (2.24

a_\® Eg. (2.19 we find (y_— n)/n_x(1-T,/T)?, which im-

p@=(p(a)+p.)| | ~p., e2n kit (= mln-=( )
_Hp(a) a\® ]t c2=Cq(n_— )y, (2.25
w(@)= Tl Y 222 it C2={3"g* +Ag*R J/[Ag* (1—-R)}*"/y. For

v=1/3 the sound speed goes to zero linearly in conformal
wherew=p/p. After the end of the phase transition we havetime.
made the approximation of noninteracting and massless We now discuss why the isentropic condition applies dur-
pions, leptons and photongy=p/3, and thereforep, ing the part of the phase transition after the initial supercool-
=p(ay)l3. ing, bubble nucleation, and sudden reheatind to During
the second part of the transition, which takes about 99% of
D. Sound speed the transition time, the fluid is extremely close to thermal

i i , i i equilibrium, because the time to reach equilibrium is very
As explained in the Introduction, the isentropic sound, ch shorter than a Hubble time: i.e.. the fluid makes a

speed(for wavelengths\ much larger than the bubble sepa- \oyersible transformation. This can be seen as follows.

ration), given by Across the bubble walls local pressure equilibrium is estab-
lished immediately,pocp=pPHg locally. Local temperature
, (2.23 equilibrium Togp=Tyg is established by neutrinos, which
s have a mean free path of 1Ry, enormously larger than
the bubble wall thickness, and a collision time much shorter
must be zero during a first-order phase transition for a fluidhan the Hubble time. This local pressure and temperature
with negligible chemical potentidl.e. no relevant conserved equilibrium can only be satisfied f=p, andT=T, at the
quantum number This behavior is shown in Fig. 4 for the bubble walls. Over distance scales of the order of the bubble
lattice QCD fit and the bag model. In the bag modél  separation 1 cm) pressurgand therefore also tempera-
=1/3 before and after the transition. For a crossover theure) is equalized with the velocity of sound, and thereby the

2_(ap _(dp/da
= 9p) ~\dpida

sound speed does not drop to zero. released latent heat is distributed. This pressure equalization
A strong decrease in the sound speed is observed in lattide very fast compared to the Hubble expansion velogity
QCD for N;=0 [26] and for N;=2 [4]. From our lattice ~10 °c at the 1 cm scale. When analyzing cosmological

QCD fit we can calculate the sound speedTorT,. From  perturbations we shall consider wavelengths 10 “Ry,,
Eg. (2.1 and Eq. (2.2 the sound speed is given by for which neutrinos are tightly coupled;,/k>1; see Sec.
c2=(dIng/dInT)~%. Inserting Eq.(2.8), we obtain IV. For these wavelengths the radiation fluid behaves as a
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perfect(i.e. dissipationlesdluid, entropy in a comoving vol-  The extrinsic curvaturKij of  has 3 terms, the unperturbed
ume is conserved, and one has a reversible process. On ttem, the perturbation of the isotropic pad]trK';(X)]
other hand, below the neutrino diffusion scale, =k, and the anisotropic part(shear of normals oit),
<10 “Ry, acoustic oscillations are damped away before thavhich is generated by(x,t),

QCD transition.

We have been criticized 2] for the use of the isentro-
pic condition. In[42] it was claimed that the isentropic con-
dition leads to an infinite sound speed in the bag model. This
claim was wrong, because it was based on non-relativistigghere 9'=a~25"3,. These geometric properties &f are
hydrodynamical equations which neglect the pressure contrgomputed from the metric perturbations as follows;
bution to the momentum density and neglect that sound=a2y, x=-3(¢—Ha)—Ay. Vanishing shear on(3)
waves in a radiation fluid move with relativistic speed. In ameansy=0 and vice versa, but note that(respectively,y)
revised version of their work43] they correct these mis- contributes both to the anisotropic part and to the isotropic
takes. However, they still maintain that the isentropic condipart ofKij .

tion does not hold, but that instead the volume fraction of the We choose a slicing of space-time with unperturbed mean
two phases is frozen. They do not give any argument whixtrinsic curvature [trK';(2)]=«=0. This implies that
such a freezing should occur, and their freezing assumptiogur fundamental observers, which are defined to be at rest on
contradicts the rapid equilibration of pressure and temperahe slices, u(obs)=n(3), have relative velocities, which in
ture between the two phases explained in the previous parghe mean over all directions follow an unperturbed Hubble
graph. Their freezing assumption would also entail superflow. If the coordinate choicégauge choickis such that the

cooling from the Hubble expansion in the presence of a finitgime coordinatet is constant on the sliceX, the gauge is
volume fraction of bubbles. This is in dramatic conflict with fixed to be the uniform expansion gau¢eEG)=uniform
the extremely rapid reheating @, (within 10" %,) once  Hubble gaugeUHG) [16].

. 1 _ 1
KIJ[E]:_H5;+§K5;_<O7I(9]_§A5IJ)X, (34)

enough bubbles{1% of volume have been formed as dis-  |n the literature the most common gauges are the synchro-
cussed in Sec. Il B. nous gauge, where the fundamental observers are moving
inertially (i.e. «=0), the longitudinal gauge=fzero shear
[Il. PEAKS AND DIPS IN THE DENSITY SPECTRUM gauge,x=0), where the fundamental observers expand iso-

tropically, and the comoving gauge, where the fundamental
observers sit in the fluid rest frame(obs)=u(matter). The
uniform expansion gaugéJEG) is free of spurious gauge

The evolution of cosmological perturbations at the QCDmodes(in contrast to the synchronous gaigi is nonsin-
transition is analyzed for perfect fluids. We linearize the Ein-gu|ar in the superhorizon limit and therefore easy to handle
stein equations, e.@(x,t) =:po(t)+ dp(x,t). Itis an excel- in numerical calculation§n contrast to zero-shear variables,
lent approximation at early times to take the Friedmannas pointed out by Bardedri6]), and it has the two basic
Robertson-Walker metric flatds’=—dt®+a(t)?dx-dx.  fluid variablesdp and v pecyia (in contrast to the comoving
The evolution of the background quantities is given by thegauge.

A. Evolution equations for cosmological perturbations
in uniform expansion gauge

Friedmann equations As fundamental evolution equations in UEG for perfect
fluids we take the energy-momentum conservafiojiT*,
H2= 87G 06 =0, i.e., the continuity equation arfoh the longitudinal sec-
3 tor) the 3-divergence of the Euler equation of general rela-

) tivity. Each fluid separately must satisfy
H=—47G(po+Po), 3.0
oie=—3H(e+m)—Ay—3H(po+po) (3.5
where the subscript 0 denotes background quantities.
The perturbed metric is decomposed in in a scalar, a vec- dp=—3Hy— 7~ (po+ Py, (3.6)
tor, and a tensor part. We are only interested in density per-
turbations, which means the scaltongitudina) sector. For  where e=dp=6T%, m=38p=1/35[tr T';], V,y=45T"; for
a time-orthogonal foliation of space-time the perturbed meteach fluid separately. Note th&t=S,=momentum den-
ric can be written as sity (Poynting vector. The system of dynamical equations is

. - y 0 _ .
A= — (1+2a)dt2+ a()2[ 6;(1+2¢) + 20,0, yldxidni,  Cosed BY Einstein®o-equation
3.2

with d;=d/ox'. We follow Bardeer(1989 [16] and focus on o _ _
the geometric properties of the constanbypersurfaces where.t.he sum over all fluids is taken gn t.he right-hand side.
(slices =. The perturbation of the lapse function between theln addition we needt/p) and (w/ €)s=c; (Figs. 3 and #for
3’s is given bya(x,t). The intrinsic curvature of is gen- ~ adiabatic perturbations. Equatior8.5—(3.7) define our
erated byp(x,t), general relativistic Cauchy problertiinear perturbations,
longitudinal sector, perfect fluiglsThe initial data(e,)) can
GR[S]=-4A¢. (3.3 be chosen freely ol g.

(A+3H)a=47G(e+3m), (3.7
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Einstein’s R%-equation in linear perturbation theory in . R k k
the UEG is an elliptic equation. Its Green function is a ¢’+(1—3w)¢=—c§ﬁ5—(1+w)ﬁa
Yukawa potential with exponential cutoff at the Hubble ra- (3.11
dius, a~r L exp(= ur), whereu?=—3H, instead of New-

ton’s 1t -potential in the Jeans equatiof®, gives the rela- k\?2 9

tive gravitational acceleratiofgeodesic deviation averaged [(—) +5 (14w

Il -

3 2
7 a=—§(1+305)5,
over all directions, of two test particles, which are moving (3.12
nonrelativistically in the coordinate system at hand. In the
UEG 5R8 is determined by, the perturbation of the lapse. with H=(da/d#n)/a andw=p/p. The Friedmann equation
In Newtonian physics the relative acceleration averaged oveand the continuity equation for the background were used.
directions is given bYA® yewton: 1-€., R% andA®emonan-  The continuity and Euler equations refer to each fluid sepa-
swer the same physics question. In the UE@lays the role rately. In the R%-equation w=(Z:p'")/(Z¢p")), &
of the gravitational potential. =(Z¢eM)(2pM) andci= (=7 )/(Z1el)).

Our basic equations have exactly the same structure as the In our numerical analysis we have used the exact generall
Jeans equations: two first-order time-evolution equations forelativistic equationg3.10—(3.12), but it is instructive to
each fluid, Eqs(3.5) and(3.6), supplemented by one elliptic look at the superhorizonP"V>H ! and at the subhorizon
equation, Eq.(3.7). The UEG is the only gauge with this \P"Ws<H~1 |imit of Egs. (3.10—(3.12 for general pressure
structure and with Einstein’s equation appearing only in theand sound speed.
elliptic equation. In the subhorizon limfdrop the last term For superhorizon perturbations with arbitrary equation of
in (3.5 and theH-term in (3.7)] and withp<p these equa- state(e.g. QCD transitio)) we only have to keep the lowest
tions automatically reduce to the Jeans equations. The UEGrder ink/H in the evolution equations. Equatiof3.10—
is singled out for two reasons: First, the relative velocity of(3.12) for a one fluid model simplify to
the fundamental observers in the mean over all directions is . .
an unperturbed Hubble flow both in the UEG of general o _ K-
relativity and in the Jeans analysis. Second, only the mean H5 (1+3w)o= H v (313
over all directions appears in the continuity equation, in the
3-divergence of the Euler equation, and in ®R-equation. 1., ~ 1k

Out of the geometric quantitig, ,¢,e) only the lapsex HY +A=3w)h=324, (3.14
appears in the equations needed to solve the dynamics in
UEG. The spatial curvaturgp) and the shear of the funda- where the superhorizon limit of the Poisson equation (1
mental observer§y) are automatically absent from the above 4 \y) o= —1( 1+3c?) 5 was inserted. Note that the sound
equations for perfect fluids, since these geometrical propeispeed drops out in the superhorizon equations. For the grow-
ties of X are irrelevant for the dynamical question at hand.jng mode the terms on the left hand side of the Euler equa-

(@x) a[e not geedted attgll tof solvteh the dynamic;.ﬂ?ne C@on add anq ¥l 5lgrow>KIH. Therefore, the right hand side
computee andy at any ime from the energy and the mo- ¢ 4, continuity equation is negligible and the solution for

o 0 )
gt?;:jt#]r; i%rr‘]frtlrgl;?sn 't's' t:{ggi tgﬁu‘;ﬁgﬁ’at'on and the lon the growing mode of the density contrast is
2 __ 2
Nom—anGe a9 8% (KIH)2= (Kopys/H) (3.15
for superhorizon perturbations in the uniform expansion
Ax=—127Gy. (3.9  gauge. This result is independent of the thermodynamic be-
) _ _ ) havior. It says that the evolution of the growing superhorizon
This sequence, solving the dynamics before usingGRe  mode, if expressed in terms &f (as opposed to expressing it
and G constraint equations, is different from the usual SO-in terms oft or a), is unaffected by a phase transition. There-
lution strategies in linear perturbation theory. fore the QCD-transition cannot affect superhorizon scales,
Since the evolution equations are linear, and the backyng the spectrum of density perturbations stays flat for
ground is spatially homogeneous, each spatial Fourier modgrhyss. —1 Thijs result can also be formulated differently:
with comoving wavelength:=k""<a evolves independently. ysing the energy-constrairi8.8) we find ¢=const for the
Itis convenient to rewrite Eq$3.5—(3.7) in the dimension-  gominant mode on superhorizon scales in the UEG. This is
less variabless=e€/p (density contragt ¢y=Kynf/p. The  the “conservation law”[15] for the quantity{=¢+[1/3(1
variable ¢ is related to the fluid velocitypeculiar velocity ~ +w)]6 for w# —1, sincel~ ¢ in the superhorizon limit.

vpec=[p/(p+ il lAﬂ| and has the same order of magnitude as For subhorizon anaIyS|_$s,phyS<H L with arbitrary equa-

5 on subhorizon scales,P""s<R,=H"!. In the UEG the tion of state, we can dropl in the general relativistic Pois-
system of evolution equations, written in terms of conformalson equation(3.7) since|H|= O(H2)<k§hys. In the continu-
time ()'=4d,=ad;, now reads ity equation (3.5 the time dilation term(last term can be
omitted since it follows from the Poisson equation that
a=0(H%k2,,J 5<4. In the subhorizon limit Eqs(3.10—

1
U 2_ =
6'+3(cs—w)é (3.12 simplify to

7 U—3(1+wa  (3.10

k
H
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1 k =mn°PMec IV omoving @Nd prap® (1N comoving >, the adia-
, 2 _ ~ comoving RAD comovin '
ﬁa +3(cs—w)o= a4 (3.16  patic initial conditions fors®™ can be written
3
1. “ k k DM_ > SRAD
U H(A-3w)i=— 2 - (Lew) e (317 M= 0. (323
k\?2 3 The initial fluid velocities are equal. Since we are in the
(ﬂ) a=— §(1+3c§)5. (3.18 linear regime, each spatial Fourier mode evolves indepen-

dently.

In the case of the QCD transition, the transition time is short For @ first-order phase transition it is convenient to use the
compared to the Hubble time (—t_)<t,=H ' and there- vo!ume of' a comoving boxa® mstgad of time as the evo-
fore self-gravity of the dominant radiation fluid can be ne-lution variable. Thus, the 91er|vat|ves in Eq8.10 and
glected in the Euler equatiof8.17) for this component. On  (3:11) have to be replacedy (d/d727).=a(d/da). In Secs.
the other hand, CDM moves in the external gravitationalll C and IID we have giverw andcg in terms of the scale
potential provided by the radiation fluid, and is coupled tofactor. In the case of a crossover we use the temperatase
the radiation fluid via the gravity term in the Euler equation.the independent evolution variable, since temperature is de-
Therefore we have to keep the gravity term in the CDMcreasing strictly monotonically in time. The derivatives in
Euler equation_ Egs. (3.10 and (311) are replaced byHil(d/dﬂ):

For a purely radiation dominated univense=c2=1%, the ~ —3c3T(d/dT). We obtainp(T) by integrating the entropy

solution for the density contrastand the peculiar velocitys densitys(T), Eq.(2.2).

can be written in terms of spherical Bessel and Neumann 11€ transfer functions are evaluated by evolving each
functions[44] mode from the initial temperaturg,= 100 GeV to the final

temperaturel;=T,/10=15MeV, i.e. until the peculiar ve-
3 locity of CDM has redshifted away. AT; the universe is
S=XT(X)+ g X g f(X) (3.19  exactly radiation dominated. The amplitude of the acoustic

oscillations is ARAP= (82,5 + 3¢2ap) Y2 The final ampli-

A 1 ,d tude of CDM isASPM=|5°PM| " The transfer functions for
U= 26X gx (320 the radiation and the CDM fluid are defined by
_ B . . . ARAD(k)|T
wherex=K,,s/H=k/H. For a radiation dominated universe TRAD(K in—f)= f (3.24

x=kn, f(X)=[Aj(x/v3)+Bn(x/v3)]/¥v3. The normal- A

ization is chosen in such a way that the subhorizon modes,
APYs<H =1 of §andv34 are acoustic oscillations with con- o APk,
stant amplitude/AZ+ B? ill fi initi iti TOMK,in—f)= ——F——,
plitude/A“+B<. We will fix our initial conditions A
to be the growing mode in the radiation dominated superho-
rizon regime, whereA;,= AR
For the bag model the transfer functions are shown in Fig.

(3.29

5=AEX2 (3.21) 5. Both transfer functions show huge peaks on small scales.

6 ' The different scalek=27/\ are represented by the invari-
ant CDM mass contained in a sphere with radiy3,

N 1

p=A;x (3.22 47 APIYS| 3
54 CDM/y physy— _ * CDM| =

MEPMOPY9 = —=p ( 25), (3.26
B. Numerical results assuming thaf)cpy~1 today. The largest scales in Fig. 5

The transfer functions for the radiation fluid and the coldcorrespond to the horizon &%=T,/10. The CDM curve
dark matter are calculated by integrating the exact generallso shows the logarithmic growth of subhorizon scales of
relativistic set of equationg3.10—(3.12 throughout the CDM in a radiation dominated universe. The CDM peaks lie
QCD transition. The initial conditions are fixed ak on top of this logarithmic curve.
=100 GeV, where all scales under considerations were far The peak structure starts at a scald0 M, in CDM
above the horizon. We fix the initial amplitude of the radia- mass. This scale corresponds to the horizon scale at the QCD
tion fluid, A;,, by the growing mode of an exactly radiation transition, M= (4/3)p“"M(R,y/2)3. The radiation energy
dominated solution, Eq$3.21) and (3.22. The normaliza- inside the horizon af, is ~1Mg, but it is redshifted as
tion constant is given by the COBE normalizdd5]  MR*P(a)~ (aequair,/a)M“PM. Scales which are above the
Harrison-Zel'dovich spectrunil3], but it drops out in the horizon at the QCD transition are not affected in accordance
transfer functions. The initial conditions for CDM are ob- with the general proof in the previous section, E315. For
tained assuming adiabatic perturbations; i.e., the entropy percales belowm fDngx 10 °M, the radiation peaks grow
cold particle is unperturbed(sfA/n“®M)=0. Sincep®™ linearly in wave number. This linear growth comes from the
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crossover

b del
10 ag mode

RAD
M
| | i | | | | | | | llj\/l1 | | |
-11 -10 -9 -8 -7 -6 -5 -11 -10 -9 -8 -7 -6 -5
log[Mcom(52)*/Mo) log[Mcpm (%2)?/Mo)]
FIG. 5. The modifications of the density contrast for kinetically FIG. 7. The same as Fig. 5, but for a QCD crossover.

decoupled CDM(like axions or primordial black holgs ACPM

=|6°™Y|(T./10), and of the radiation fluid amplitudd™®  show an amplification of a factor 400 and correspond to
=(SkapT 3#&ap) " due to the QCD transition in the bag model. wave numbersk/k,~3x10%. The smaller amplification
Both quantities are normalized to the pure Harrison-Zel'dovich ra-compared to the bag model is due to the decrease of the
diation amplitude. On the horizontal axis the wave numbk&és  radiation fluid velocity before the transition. This happens
represented by the CDM mass contained in a sphere of radkis  pecause the sound speed drops belo@ already before the
transition. The values favl, and the exponent of asymptotic
fact that the vanishing sound speed during the QCD transigrowth depend on our specific choice of the latent h&at (
tion implies a vanishing restoring force in the acoustic oscil-=.2) and the thermodynamic behavior Bt T,, param-
lations on subhorizon scales. Therefore, the radiation fluigtrized byy (y=1/3). In the next section we will show that
falls freely during the transition, with a constant velocity {he exponent of the asymptotic envelope foz (0,1) varies
given at the beginning of the transition. The density contrashetween 1/2 and 1.
5"~ grows linearly in time with a slopk. CDM is moving The processed spectrum for a crossover, Fig. 7, shows a
in an external potential provided by the dominant radiationsimilar behavior as for the bag model and the lattice fit on
fluid, and is pushed by the strong increase in the gravitationayperhorizon and horizon scales. The peak structure starts at
force during the transition. The highest peaks h&k, M, but on subhorizon scales there are no peaks. The level
~10', because on smaller scales the acoustic oscillations ag the subhorizon transfer function for the radiation fluid is
damped away by neutrino diffusion already before the QCQieduced to 0.83. This comes from the damping of the acous-

transition(see Sec. IY. _tic oscillations during the time witls?+ 1/3.
For our fit to lattice QCD the transfer functions

TRAD TC€PM are shown in Fig. 6. The peak structure starts at
the horizon scaléM,, but the asymptotic growth on small
scales is different. It grows k% starting at a scalk, which
corresponds to an invariant CDM mass d#l,=2 The time evolution for subhorizon modeaP"Vs<Ry,
x10"1% . The asymptotic envelope for small scales is=H !, at the transition can be solved analytically. For the
indicated by the straight line in Fig. 6. The highest peaksdynamics of the radiation flui@QCD, photons, leptonsne
can neglect cold dark matter, sing&®/pRAP=a/a,qqiy
' ' ' ' ~10"8. The transition time is short compared to the Hubble
lattice fit time at the transition,t(, —t_)<t,=H 1. For subhorizon
3 modes we can neglect gravity during the whole transition as
we will show below. The damping terms in the continuity
equation(3.16 and Euler equatiot3.17) are absent in the
purely radiation dominated regime. During the transition the
damping terms can be neglected in view of the huge ampli-
fication for a first-order phase transition. Equatidi3s16)
and(3.17 now read

C. Analytic solution for the radiation fluid

5 —kgp=0

' +c2ké=0. (3.27

log[Mopm(%2)?/ Mo

FIG. 6. The same as Fig. 5, but for our lattice QCD fit. The Written as a second order differential equation &this is
straight line denotes the asymptotic envelope for small scaté4. just an oscillator equation
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10 | . . | | Since we have no jumps in pressyrg, the density con-
OrAD — trast 8 and the fluid velocityys stay continuous throughout
V3Urap the whole transition, in particular at the matching points of
the different regimes. Gravity remains negligible during the
entire transition since the growth @f due to gravity at the
end of the transition can be estimated hy, —_
={9(Atkphysa+)=O[HAt(H/kphys)5+]=0[(HAt)2¢-]
<y_, in the limit under consideration. At the end of the
transition this solution has to be joined to the pure radiation
dominated regime folf<T,. Since the amplitude of the
density contrast grows linearly during the transition, the final
amplitudeA,,~=A . is enhanced linearly ik, modulated by
the incoming phase

ot
L L L

III'.-.I..\,J——»"T"'I’_III\I\III

2 =1/3 2=0| =1/3

10 1 ] 1 I
0.2 0.4 0.6 0.8 1 1.2 14

n/7+

<
—
[}

FIG. 8. The time evolution of the density contrastP, and the
peculiar velocity, JRA°, of the radiation fluid for the modk/k;
=7 in the uniform expansion gauge. During the QCD transition in
the bag model—marked by the 2 vertical lines—the velocity stays
approximately constant and the density contrast grows linearly. Thwvith ky=v3/A#n, Anp=n5,—n_. The envelope of the lin-

Ao)? [ K\Z
A—") =(k—l) sirf(e_), (3.31)

amplitude is normalized to 1 long before the transition. early growing peak structure for subhorizon scales starts at
the scalek; which corresponds to a CDM mass bf;=9
8"+ w?6=0, (3.28 X10 M.
with the time-dependent frequene 7)=kcy( 7). 2. Lattice QCD

For our fit to lattice QCD, Eq(2.8), the time evolution
. . - o separates into four regimes. First we have a WKB regime,
We first discuss the origin of large amplifications for where the sound speed is slowly changing compared to the

small scales in the bag model. Before and after the QCQrequency of the oscillation; i.e., the WKB condition
transition the radiation fluid makes standing acoustic oscillaidc,/d |/c,<w=kc, is satisfied. The WKB solution is

tions in each modé with sound speed?=1/3 and with

amplitudeA;, and A, for the incoming and outgoing solu- A n ) ,

tion respectively; see Fig. 8. The incoming solution for the 6=— Wcosfo w(n')dy
S

density contras® and the peculiar velocity3 reads

1. Bag model

0=—Ancogo(n=n-)t¢-] V3=An(3c2)¥sin f w(n")dy', (3.32

n
0
V3y=Apsino(n—n-)+e-]. (3.29 _ _ _
whereA,,, as before, denotes the incoming subhorizon am-

This solution is valid until the beginning of the transition at plitude in a radiation dominated universe. The decreasing
n=7_, ande_ denotes the phase of the oscillationsat.  sound speed in the WKB regime leads to an increase in the
During the transition the sound speed is zero. There are ndensity contrast and a decrease in peculiar velocity compared
restoring forces from pressure gradients and the radiatioto the purely radiation dominated case. Closesto the
fluid falls freely. Since the duration of the transition is short WKB condition can no longer be satisfied: Sincg de-
compared to the Hubble tim&t=(t, —t_)<H™?!, gravity creases by some power im(— ), Eq.(2.25, the left hand
is negligible during this free fall. If we estimate the contri- side of the WKB condition diverges like Lj( — %),
bution of the gravity term in the Euler equati17) during  whereas the right hand side for any fixdgoes to zero.
the transition, we get tQ—t—)ﬁtl?f—IO(AtkphyQa— Therefore, the WKB solution for a given mode is valid up to

= OL(HAL)(H/Ky,9 15 =(’)[(HAt)(H/kphys)]fp,< b ex- a certain timezn(k) < #_ . 7(k) approaches;_ for increas-
cept for an initial phase_=0 mod 7 (which leads to a dip Ing kl h . . lapoi ith
in the spectrum Thus, the fluid is moving inertially in the Close t°’7? there is a second regimeverlapping wit
sense of Newton, the velocity stays constant, and the densi%’e WKB regime for large enough) kwherecs can be ap-
roximated by the power law of E§2.25),

contrast grows linearly in time,

S=38_+k(n—n_)¥_, Cs:C<77_7]

128 -1
- )

V3y=V3y_, (3.30
wherev3y_=A;,sin(e_) is the peculiar velocity ap_ . p= (3.33
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where B is defined for convenience below. Inserting this of the first-order phase transition, E§.33. Replacingg by
power law into the oscillator equatiai3.28 gives a Bessel vy (=the exponent in the QCD fit to the entropy denkitye
differential equation. The new variabkeis the argument of amplification factor is

the cosine in the WKB expansion,
Aout

_ .\ 1U2B) n
K ! ’ - n A
ZEkJ' cs(n')dn =ZCB(|<7]—)(7]—) : "
n

k \ G+ D2(y+1)]

peaks
(3.34 for largek. Since G<y<1, the exponent of the power law
varies between 1/2 and 1. The normalization of the peak
The indexg of the Bessel functions is obvious from the ratio @MPplification for largek is encoded irk, .. In our fit to lattice
. r D takey=1 h =1/4
of the two fundamental solutiond(2)/Ng(z)ez?Px(n_ QCD we takey=1/3, and hencg=1/4,

— 7)P'B. Since the two fundamental solutions foy—0 are Aou| (5) 34 (3.40
5—const andd«(n_— 75), it follows that 3= B. The pref- Ain peaks_ ky |
actor must bez? to make the second fundamental solution
constant, For R =0.2, k, corresponds to a CDM mass &fl,=2
X 10 1% . The spectrum for this case together with the
5=7°— B1J4(2) +B,oNg(2) ]. (3.39 asymptotic envelope is plotted in Fig. 6.
The peculiar velocity follows viay=8'/k; see Eq.(3.27). 3. Crossover

Matching the WKB solution with the Bessel solution in the In the case of a crossover, the amp"ﬁca’[ion is Occurring
overlap regionz>1, whereJs(z), Ng(z)—V2/(mz) co§z  for scales around the Hubble radius at the transition only.
—(w2)(B+1/2,3/2)], gives the normalizationB?>=B2  Subhorizon scales always stay in the WKB-regime and
+B2, therefore the spectrum is flat for these scales. However, the
amplitude for subhorizon scales is damped during the phase
JmB B Yo transition. The same damping occurs in the case of a first-
B=Ain 3 (2CB) Plkn_)Y2=P. (3.360  order phase transition. It has been neglected in the analytic
discussion, since it is a small correction. The time evolution
At the beginning of the first-order transition=7_ , the of the density contrast of subhorizon scales, including damp-

Bessel solutior(second regimeis matched to the third re- NG terms, reads

gime, i.e. the free fall regime witlt?=0. As in the bag a’

model, peaks in the transfer function for laigare obtained 8"+ (1+3c2—6w) — &' +wi(7)6=0.  (3.4)
for the mixing angles¢ in the Bessel solution K; a

=B cose, B,=B sing) which give the maximal| at the  The friction term in this equation can be eliminated if we
matching point. Withl4(2) —(2/2)F/T'(B+1) forz<1 and  \yrite the density contrast a&=:[(y1+w)/a’Ju(7). Insert-
N(2) =[Jp(2)cosm)—JI_4(2))/sin(Bm) we find ing this ansatz into Eq3.41), using the Friedmann equation
P and w’=3aH(1+w)(w—c§), we obtain an undamped os-
Jmax_ A \/77_'3 (CB) (kp_)B~12 (337 cillator equation with frequency( ) = kc( ) for the quan-
n 34 T(B+1)sinBw - o tity u(#). For a crossover the sound velocity never vanishes,
and subhorizon modes always satisfy the WKB-condition.
The evolution in the third regimeZ=0, is as before. The Therefore, we obtain, for the density contrast and the pecu-
restoring force in the oscillator equatig®.28 vanishes, the liar velocity,

fluid moves with constant peculiar veloci =y _, and ,
the density contrast growsplinearly in timtg.( =y 5= — Ain &in V3(1+w) cosf w(7)d
After the transition ¢> 7., fourth regime the universe (3cH)¥* a’ 2 En
is radiation dominatedof=1/3) and the solutions are oscil-
lations with amplituded,,= A, . The amplification of peaks " 2 a8 V3(1+w)
in the outgoing amplitudeAy, is given by Ay peaks ¥=Ain(3C5) "7 ————sin | (n)dy.
=" Ap, (3.42
Agut B \/W_ﬂ (CpB)* i 'tl)'ce reduction of the amplitude of subhorizon scales is given
An | e 3 T(BT Dsingr <7 7
(3.39 Ao (Ha%)iy _(g_+)1’6 (3.43
Ain (Haz)out g- . '

The dependence on the latent heat is encoded in the duration
Az of the transitionC and B are determined by the normal- Therefore the subhorizon amplitudes are reduced to 83% of
ization and the power law farg(#) shortly before the onset their initial value. This damping is a general feature appear-
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FIG. 9. The time evolution of the peculiar velocity®®, of the FIG. 10. The time evolution of the CDM density contrast®™

kinetically decoupled cold dark matter fluidxions or primordial corresponding to the CDM velocity of Fig. 9. The major amplifica-

black holes and the external gravitational potential gradient ;jon of S°M is due to the higher peculiar velocity at the end of the

(Kphys/H) e for the modek/k; = 37 in the uniform expansion gauge. ;ansition.
« is provided by the radiation fluid. During the QCD transition in

the bag model—marked by the 2 vertical lines—the cold dark mat- CDM _
ter fluid is accelerated by the gravitational force. 6-""=ClInx+D. (3.49

. . . CDM . .
ing whenever the number of degrees of freedom is reduce .h|s Iogagthmlc %rowth O.f.a ﬁan r?e nglpn'vlm F'g'l 10
Also in the case of a first-order transition, this damping fac-P€fore and after the transition. The shap can aiso

tor should be taken into account. However, it changes th?e seen in the transfer functions, Figs. 5, 6, 7 on scales above

huge amplifications merely by the constant factor 0.83.  the horizon scalé, . o _
During a first-order QCD transition the evolution of the

gravitational potential is dominated by the linear growth in

time of 67AP, Eq.(3.30. From the Poisson equati¢8.18) it
Cold dark matter is assumed to be the major matter confollows that the gravitational potential grows linearly in time,

tent of the universe today. At the time of the QCD transition,

however, the contribution of CDM to the total energy density

was negligible oM/ pRAP = a/aq,4i~10"8. We consider a=—5H(n=n-)

a type of CDM which is non-relativisticq<p) at the QCD

transition and which is only coupled via gravity to the radia-gee Fig. 9. As before, we will take the transition time to be

tion flmd. CDM moves in the e>_<te_rna| grawtatl(_)nal potential ghort compared to the Hubble timet<H 1: henceA

provided by the dominant radiation fluid. During the QCD 7/-1 The gravitational force in the Euler equatich1?)

transition, the big amplifications of the density contrast in the; 4 hence the fluid acceleration for CDM also grow linearly

radiation fluid 5**° leads to a big amplification in the gravi- i time during the transition. The fluid velocity grows qua-
tational potential, i.e., the force term in the Euler equationgaically

for CDM. The CDM is accelerated to higher velocities at the

end of the transition. Therefore, we also get peaks and dips A 3 R R

in the cold dark matter fluid. &‘DM=Z[HA 72 pRAP+ =M, (3.47)
The subhorizon evolution of CDM in a purely radiation

dominated universe is just inertial motion. This can be seen A CDM .

from the Euler equatiori3.17): The sound velocity of cold The initial CDM velocity =" is given by Eq.(3.44. On

dark matter is zera;2=0, and the gravitational potentialis ~ Scales well below the horizon the velocity is redshifted to

given using the Poisson equati¢8.18 for the dominant small values and can be neglected. However, on subhorizon
density contrass™?, Eg. (3.30. In the leading order irx scales closer to the horizon the initial velocity dominates,

—kI'H, the gravitational force can be neglected and the subP&causéH(A 7)]?~0.1(0.01) for the bag moddattice fif
horizon evolution of the CDM velocity is obtained:

D. Analytic solution for CDM

H
k

YRAD: (3.46

is small. According to the continuity equati¢®.16 the den-
sity contrasts®™ grows cubically:

. 1
COM_c = (3.44) i
v X [HA 713”0 (3.48

1/k
CDM__ <CDM, —
orT=0T g H

The velocity of CDM in a radiation dominated universe just

redshifts to zero on subhorizon scales; see Fig. 9. iGei®  Because of the cube, the growth 8f°™ during the QCD
an integration constant of ordés,. The corresponding evo- transition is small.

lution of the density contrast®™ follows from the conti- The major amplification effect comes from the higher ve-
nuity equation(3.16), locity at the end of the transitiofsee Fig. 9, which leads to
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. S " CDM
5OM( ) = Sk, In( T e (349 & n)z[mj (7). (3.55
7+ 5no transitiol

The amplification of the density contrast during the transition Lo _ .
is negligible compared to the enhancement of the velocityl.‘et us evaluate® at equality, i.€.7eq/ 7. ~2X 10
This velocity enhancement during the transition leads to an

additional logarithmic growth o“PM after the transition, 1({An\2. k
E(7e~1+ 2| =] 3R |kn, In| 22| / | ZTeq|
2
3(An Z“RAD CDM " V3
5CDM(77):{2<Z> = |kyn PR +o77. (3.56
(3.50

The enhancement at the smallest scaé®M~ 10 2M, to
Here we have used E¢3.47) to obtain the leading subhori- Which our calculation applies and at some intermediate scale
zon approximation. This additional logarithmic growth of M®®M~10"""M, reads

5°PM is most clearly seen in Fig. 10.

The number of CDM peaks in the numerical result, Figs. 60020) bag mode)
5-7, is only half of the radiation peaks. This comes from the & 7780)%( L } for 1072410 ¥)M,
fact that the peaks 5" lie on top of the logarithmic 102)  lattice fit

(3.57

curve, which is still the main contribution at the scales plot-
ted. The dips correspond to modes, with a maximal negative
amplification. where we have used E¢3.37) for the case of the lattice fit.

The jump in the gravitational potential at the end of theThis shows that both models lead to large enhancements of
QCD transition in Fig. 9 follows from the Poisson equationthe CDM density contrast at equality for small enough
(3.18. Sinceé is continuous, butg jumps, the right hand scales. For the lattice fit the enhancement becomes important
side abruptly changes by a factor of 2. Therefajemps by  at scales below “®M~10" M, .
the same factor.

Let us compare the “QCD peaks” in the CDM spectrum
with the CDM spectrum without phase transition. In the limit
pPM/pRAP<1 the exact solution to Eq$3.10—(3.12 in
the radiation dominated universe without transition reads (

IV. IMPLICATIONS: CLUMPS IN CDM
A. Fate of the peaks in the radiation fluid

Before discussing CDM, let us show that the large peaks

=k/'H): . X .
) in the density spectrum of the hadron-lepton-photon fluid do
not lead to any observable consequences.
SCOM_ 3Ain In XL —E—Ci X
2 YET 2 V3 1. Collisional damping at neutrino decoupling
The acoustic oscillations in the radiation fluid get damped
+ 3 isin x +co x (3.51) by neutrino diffusion at the time of neutrino decoupling. This
X°+6|y3 V3 V3 damping is analogous to Silk damping at photon decoupling.
The muon and tau neutrinos, respectively, which are coupled
3A 6 [ x X to the RAD fluid via neutral current interactions only, de-
#COM= 2_'” -7 —sin( _> couple atT%¢ ~2.2 MeV from the Hubble scalR,;, which
Mo T
X X & V3 follows from Ref.[46]. The electron neutrinos interact by

(3.52 Tﬂ:‘:~1.4 MeV. By the time of neutrino decoupling at the

Hubble scale all inhomogeneities in the RAD fluid on scales
below ~10 ®M in CDM mass are wiped out by neutrino

} charged and neutral currents and decouple slightly later,

+cog —
V3

In the subhorizon limit this solution reduces to

diffusion (cf. the QCD horizon scale is I6M, in CDM
mas$, as shown below, Eq4.5). Therefore our QCD peaks

SCOM 3A;n ; X 1 cannot affect BBN.
= | " A T3 (3.53 It is important to distinguish the total decoupling of neu-
NI trinos, i.e. neutrino decoupling at the Hubble scale, when the
~0077 neutrino scattering ratd” is less than the Hubble rate,
I' ,/JH<1, from the neutrino decoupling with respect to a
Acpm_ JAin 1 (3.54 certain mode given by, /wpyns<1, when the typical neu-
¥ T X ' trino scatters less than once during an acoustic oscillation

which fixes the constants andD in Egs.(3.44) and(3.45.
We are now able to calculate the enhancement factor

time of one particular mode. The mode-dependent decou-
pling temperatureT,‘feC(k) is related to the total decoupling
temperature by
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TOTH)

oK)
( (4.1)

1/4
Cskphys)

H T=T9GH)

This follows because the neutrino interaction ralesare
proportional toT> and Konys* 1/axT, and hencd’,/wpnys
T4,

PHYSICAL REVIEW D59 043517

Next we considell < T,‘f‘(H) ~1.4 MeV and evaluate the

final damping factoD (k). At the time of neutrino decou-
pling we take a purely radiation dominated universe, consist-
ing of y, e and v's only to evaluate the damping. Muons
have disappeared sinoe,>T and sincer,<t,. The inter-
action rate for electrons is still given by charged and neutral
currents,FVe=F;e= 1.%§T5, whereas muon and tau neutri-

To compute the damping of acoustic oscillations in theNoS have the same lowéneutral currentrate, I', =I%,

radiation fluid by neutrino diffusion we follow Weinberg

=F,,T=F77=0.3G§T5 [46]. The final damping of a certain

[47]. For a radiation fluid shear viscosity is dominant, bulk scale(expressed in invariant CDM masom Eq. (4.4) is
viscosity vanishes and heat conduction is negligible. The

shear viscosity is given by

4
nViSC:1_52i pvi TVi' (42)

Py, denotes the energy density of a neutrino spec:'gisis

the typical collision time. In the subhorizon limit the Navier-
Stokes equation and the continuity equation give

kphys

8"+ —=nyisckd’ + w26=0, (4.3
Ptot

a damped oscillator. The damping factor for the mids a
given conformal timey is

. (4.4

1 Tmax
D(k,n)= exr{ ) fo (kphys/Ptot) Misdkdn’

Here the upper limit of the integral is the conformal time
Nmax=Min[ 7, n4e{K) ], because collisional damping of the
v-1*-hadron fluid by neutrinos ceases at decoupling of th
modek considered. The damping per oscillation is largest fo
oT,=wl/l' ,~1, i.e. immediately before neutrino decoupling

(4.5

oo 2]

with the neutrino damping scal®lp~1.9x10"%Mg in
CDM mass. This is 10" °M 5P at T=1.4 MeV and cor-
responds to length scalas=1/30Ry.

We conclude that the large peaks in the spectrum of the
radiation fluid are damped away by the time of BBN. The
large peaks in the RAD fluid generated by the QCD transi-
tion do not give a new mechanism for inhomogeneous BBN.

2. Black hole formation at the QCD transition?

It was suggested in the literaturé9,19,5Q that the QCD
transition could lead to the formation ofMl, black holes,
which could account for dark matter today. Jedan{ZiR]
proposed to identify such black holes with the MACHOs
observed by microlensing2]. He pointed out that the for-
mation of black holes should be particularly efficient during
the QCD epoch due to the significant decrease in the effec-
tive sound speed.

In order to form a black hole in a radiation dominated
niverse, the density contrast inside the Hubble radius should
e in the range 18 §4<1 [51]. For an observable amount

of 1M, black holes today, i.eQ{%)= (1), thefraction of

for a given mode. But note that subhorizon modes gefNergy density converted to bla(_:l; holes at the QCD transi-
strongly damped long before the mode decouples from netHon must beO(aqco/equair) ~ 10" °. For a Gaussian distri-
trinos, because a weak damping per oscillation is comperfution this requiressy,s~0.06 (without including any en-

sated by many oscillations per Hubble time.

hancement from the QCD transitipn{52]. The QCD

damped by the time of the QCD transition. At the QCD ©of 2 for the bag model and of 1.5 for lattice QCD in our

neutrinos (respectively, antineutrinpsvith the leptons are
the same[’, = F;e=FV#=F7M=3.1G§T5 [46], since elec-
trons and muons are still relativistic. Theneutrinos interact

only via neutral currents with the leptons and have a lower

interaction ratel’VT= F;T=0.GG§T5. Evaluating the damp-
ing integral, Eq.(4.4), at T=T, we find that the damping
factor D(k,T,) is <1/e for (Kpnys/H)1,> 10*, which corre-

sponds toMpy<10"2°M; i.e., acoustic oscillations on

responding reduction in the required preexisting perturbation
spectrum at the solar mass scale. Cardall and Fuller used a
qualitative argument of Carr and Hawkifi§3] and the bag
model and also obtained a factor of 2 reduction in the re-
guired preexisting perturbation spectrdy®¥]. These QCD
factors of 1.5 or 2 are so modest that a preexisting Harrison-
Zel'dovich spectrum with COBE normalization is very far
from giving a cosmologically relevant amount of black holes
[23]. One would have to put in a fine-tuned tilh€1)

these small scales are wiped out before the QCD transitior= 0.4 to get the desired amount of black holes. However, this
Therefore no peaks in the RAD or in the CDM transfer func-tilted spectrum would overproduce primordial black holes on
tion can develop below this scale. This small-scale cutoff isscales which are only a factor 50 below the Hubble radius at
independent of the bubble separation scale. the QCD transition. Therefore a break in the preexisting

043517-16



AMPLIFICATION OF COSMOLOGICAL . .. PHYSICAL REVIEW D 59 043517

spectrum below the QCD scale would be required, a secondcoustic oscillation or the Hubble time, etc. A fluid behaves
fine-tuning. as a perfect fluid, itv 7 5x<1; i.€., the external time scale is
We conclude that the QCD transition enhances the problarger than the relevant relaxation time, the fluid is continu-
ability of black hole formation, but the preexisting spectrumally in local thermal equilibrium, and no entropy production
needs to be fine-tuned around the QCD scale and the majaiccurs. For the coupling of neutralinos to the radiation fluid
effect would not be due to the QCD transition. the relaxation time is given by,gax=N7con, WhereN is the
number of collisions needed to completely change the mo-
mentum of the neutralino due to collisions with the radiation
B. Kinetic decoupling of CDM fluid. The momentum transfer at a collision of a lepton with
i i i the neutralino is of ordep,~T. The kinetic energy of the
In Sec. Il we established the generation of peaks in th‘?leutralino is given by equipartitiorpi/ZmX~T; hence its

CDM spectrum during a first-order QCD transition. Below, momentum isp ~ \/m_XT The fractional change of the neu-

we discuss the properties of the most prominent CDM CaNt alino momentum from one collision at the QCD transition
didates at temperatures of the QCD scale. We show thal

weakly interacting massive particles, like the lightest :superlS Py Py~ VT/mX<1'. After N colllehe total rms
symmetric particle or a heavy neutrino, are kinetically tightly €hange of momentum i3, /p,)yms™~ VNT/m,. Local ther-

coupled to the radiation fluid at the QCD transition and arema! equjlibrium is obtained if the b.U|k motion Qf the neu-
included in the radiation fluid in our equations. Two CDM tralinos is governed by the leptons; i.e., the fractional change

candidates that are kinetically decoupled from the radiatior?’ t_h‘_e neutralino momentum s of order 1. The n_umber of
fluid and havep=0 at the QCD epoch are the axion and collisions needed to completely change direction Ns

primordial black holes. In our figures and equations kineti-~Mx/T~300 for m,=50GeV andT=T,. The collisi_oln
cally decoupled CDM have been labeled by CDM for brey-ime 1S given by the weak interactions rate,= e
ity. ~GgT,, and the relaxation time is given by

Trelax— N Teoll ™ N X 107 7tH y (46)

1. Neutralinos and heavy neutrinos

We start our discussion with the lightest supersymmetric L .
particle[20]. In the minimal supersymmetric standard modelWith N~m, /T. If we compare the relaxation time with the
this is the neutralindwe assume it is stableConstraints frequency of the acoustic oscillations, we find that the con-

from LEP 2 and cosmology, together with the assumption oflition for a perfect fluid o 7eix<1, aLtlhe QCD transition is
universality at the GUT scale, show that its massnig ~ Satisfied for scales.>X¢edT.)~10 "Ry (m,=50GeV).
>42 GeV [55]. It is essential to distinguish between the Hence the neutralinos on these scales are part of the radiation

chemical freeze-out and the kinetic decoupling of neutralifluid at the QCD transition. Below this scale, the neutralinos

nos. The chemical freeze-out determines the amount of negannot follow the acoustic oscillations. On the other hand, on

tralinos today, and it happens when the annihilation rate of"® Hubble scale the perfect kinetic coupling of neutralinos

neutralinos drops below the Hubble rafe,,/H<1. When to the radiation fluid stops when the required relaxation time
nn .

the neutralinos become nonrelativistic the rate for neutralin®©comes more tz‘e%” a Hubble timge,,>1y. This gives a
annihilation,FannI(annQHX, is suppressed by the Boltz- tempergture of T>"*~10MeV. Down to this tem_pe_rature_
mann factor in the number density of the neutralinog, neutralinos on the Hub.ble sqale belong to the. radlgtlon fluid.
~(mXT)3’2exp(—mX/T). The freeze-out temperature of the Another CDM candidate is a heavy neutrino Wrth)z/Z_
neutralino[20] is T¢~m,/20>2 GeV, and neutralinos are <~M,<1TeV [56], where only the upper mass bound gives
chemically decoupled at the QCD transition. cosmologlcally_ relevant CDM. Again, the kinetic decoupling
Kinetic decoupling, in contrast, is determined by the elasOf these neutrinos happens way beldy. Therefore, we
tic scattering between neutralinos and the dominant radiatiofind that the neutralino or a heavy neutrino would be tightly
fluid. The interaction rate for elastic scatteringTig= 7.} coupled to the radiation fluid during the QCD transition.
=(vae)n, wheren~T? is the number density of relativistic
particles, e.g. electrons or neutrinos. An order of magnitude
estimate shows that,, is similar to the cross section for the
elastic scattering of neutrinos and neutromg, - GﬁT2 [48]. One candidate for CDM at the QCD epoch is the axion
We have to distinguish between the regime of perfect kineti¢57]. We therefore find a new mechanism to make axion
coupling, i.e. neutralinos tightly coupled to the radiation clumps.
fluid, an intermediate regime where the neutralinos scatter Axions could be the dominant matter today if their mass
elastically but the number of collisions is not sufficient to is small, i.e.m,~ 10 ° eV, which corresponds to a breaking
drag them along dissipationless, and the regime of kinetiof the Peccei-Quinn(PQ symmetry at the scalefpg
decoupling ' ;/H<1, which is roughly af<1 MeV, since ~102GeV[57]. These axions could be produced coherently
the neutralino interacts weakly. due to the initial misalignment of the axion field and by the
Let us estimate the regime where the neutralinos belondecay of axionic strings. The initially misaligned axion field
to the perfect radiation fluid. Perfectness of a fl(dissipa-  starts to oscillate coherently when the axion mass has grown
tionless always refers to an external time scake,! of an  to m,(T;)~3H(T,), whereT,;~1 GeV [58]. Thus, below

2. Axions
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T,~1 GeV the oscillating axion field evolves as CD, ting these factors together we obtain the amplitude of CDM
«a 3, perturbations of siz® at the time of equality:

~ In afirst-order QCD transition axionic CDM falls freely 5 COM K| (- D2 K| 132

into the large potential wells from the dominant radiation _p) (t q)~2><104<—) |n<_q” Elteg

fluid. This produces peaks and dips in the spectrum of ax- \ p /4 € Ko Ke I teq

ionic CDM. These peaks trigger the formation of clumps of 4.7
axions with masses (16°-10 %)M shortly after equal-

ity; see Sec. IV C. ko, denotes the comoving wave number of the mode crossing

Another mechanism to produce clumps of axions has bee : . fo 2 —
suggested in Ref59]. If the reheating temperature after in- aned hor;ﬁzg tozdai.6l(|)floghe follzlg;/vm%weggi/llj nr:agslm’of
eq .

flation is abovefpq, the axion field is inhomogeneous on 1015V, (10" 2M ) a tilt of n—1=0.2 gives a factor-16

scales Ia_rger tha.RH(Tl).' _Inhomogeneities_in axion density (23). The logarithms contribute another facter94 (140).
evolve into axion miniclusters of typical masipm The enhancement factor has been calculated in Sec. Ill to be

~10" M, and typical radius Ry~10® m~0.1R, - . . )
~10 3AU. These axion miniclusters may be enhanced byg.(te")w.2 ®) fqr the IatEce QCD fit. Looking at 8 peaks we
find, without tilt (h—1=0),

the free-fall of matter during a first-order QCD transition.
For these non-linear axion inhomogeneities a quantitative re-

sult cannot be obtained from the linear analysis of Sec. lII. Sp\3on=1
Let us emphasize that, in contrast to Rg9], we predict (7)
axion clumps independently from the reheating temperature
after inflation. =10 Mo (102 M) . (4.9

(teq) ~0.1(0.6) for M clump
R

3. Primordial black holes formed before the QCD transition H | H H | b |
. N This implies that these clumps become nonlinearzat
A further possibility for CDM that decoupled kinetically ~600 (3600 and collapse to clumps of radiuBegymp

long before the QCD transition is primordial black holes _ L 4 :
produced before the QCD transition and therefore with - 14Ro(0.0Re) . With tilt (n=1=0.2) we find
massedM g <1Mg . In order to survive until today PBHs
should haveMg,>10%g~10 ¥M,. PBHs in the range Sp
from 10 M, to 10 M, would radiate too strongly to be r3
compatible withy-ray observation$60]. The production of
PBHs arises naturally from hybrid inflationary scenarios =10 M 5(10 )M . (4.9
[61,52.

Our analysis of the QCD phase transition predicts that

these small black holes would be attracted by the large po'[hese overdensities start to collapse even betigrbecause

tential wells in the radiation fluid and would therefore tend to!°C@lly CDM starts to dominate at 2T¢{16T,) . This leads

form miniclusters of masses up to 76M, . to clump radii 0fRjymp=0.7R5(0.00Ro) .
We conclude that the peaks in the CDM spectrum lead to

clumps of masses (16°-10 '9YM,. Today, these clumps
would have a density contrast of 8 107, where the lower
CDM in the form of axions or PBHs is not subject to value corresponds to a 1M clump from an untilted
damping as the radiation fluid; thus the peaks in CDM willCDM spectrum; the bigger value is for a 1M clump
survive until structure formation starts. The free streamingrom a tilted CDM spectrum. The evolution of these clumps
scale of CDM is way below our smallest scales, because thig the late stages of structure formation remains to be inves-
initial velocity of axions or PBHs is completely negligible. tigated(disruption, mergers, efc.
An overdensity of CDM in the form of axions or PBHer For larger enhancement, e.g., if it should turn out that the
any other matter that is kinetically decoupled at the QCDiatent heat is bigger than the value from present lattice QCD
epoch) decouples from the cosmic expansion when its dencalculations, more compact clumps are possible. These could
sity contrast becomes nonlineagg(p)g~1 (condition for  be subject to femto-lensind3]. With the values of our lat-
turnaround. It collapses and virializes by violent gravita- tice fit, the CDM clumps are not compact enough to lie
tional relaxations and forms a clump of CDM. For sphericalwithin the Einstein radius, which ifRg~0.0R, for a
collapse the final viral radius is half of the radius at turn-10-*M clump.
around[62]. The clumping of CDM changes the expected reaction
We take a COBEA45] normalized spectrum and allow for rates for some dark matter searches, because some of the
a tilt [n—1[<0.2. During the radiation dominated regime, rates depend on the space-time position of the detector, star,
(6plp) for CDM continues to grow logarithmically. In  or planet. Especially experiments looking for axion decay in
(8plp)5 another logarithm comes from summing modes upstrong magnetic fieldi21,57] would not yield limits on the
to k~1/R, whereR is the radius of the window function. axion mass. Maybe these experiments just tell us that we are
The enhancement factérof CDM density fluctuations dur- not sitting in an axion cloud currently. These consequences
ing the QCD transition has been obtained in B8155. Put-  remain to be studied further.

30,n=1.2
) (teg=~2(16) for Mgymp

R

C. Clumps in CDM
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