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Amplification of cosmological inhomogeneities by the QCD transition
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The cosmological QCD transition affects primordial density perturbations. If the QCD transition is first
order, the sound speed vanishes during the transition and density perturbations fall freely. For scales below the
Hubble radius at the transition the primordial Harrison-Zel’dovich spectrum of density fluctuations develops
large peaks and dips. These peaks grow with wave number for both the hadron-photon-lepton fluid and for cold
dark matter. At the horizon scale the enhancement is small. This by itself does not lead to the formation of
black holes at the QCD transition. The peaks in the hadron-photon-lepton fluid are wiped out during neutrino
decoupling. For cold dark matter that is kinetically decoupled at the QCD transition~e.g., axions or primordial
black holes! these peaks lead to the formation of CDM clumps of masses 10220M (,M clump,10210M ( .
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I. INTRODUCTION AND RESULTS

In the early universe a transition from a quark-glu
plasma~QGP! to a hadron gas~HG! took place at a certain
transition temperatureT! . At high temperatures the
asymptotic freedom of QCD predicts the existence of a
confined phase, the quark-gluon plasma. At low temperat
quarks and gluons are confined in hadrons. The deconfi
phase at high temperatures was found by lattice QCD si
lations @1#. The order of the QCD transition is still unde
debate, but recent lattice QCD results for three quark flav
with massive strange quarks indicate that the QCD transi
is first order@2#. The value of the latent heat is available on
for quenched lattice QCD~gluons only, no quarks! @3#.
These data give a small latent heatl ; ( l /T!) is about one-
fifth of the difference in entropies between an ideal mass
quark-gluon plasma and hadron gas, respectively. T
flavor calculations giveT!'140 MeV @4#. Ongoing and fu-
ture heavy ion experiments at the world’s largest collid
@Super Proton Synchrotron~SPS!, BNL Relativistic Heavy
Ion Collider ~RHIC!, CERN Large Hadron Collider~LHC!#
are searching for the QGP@5#.

At the QCD transition the Hubble radiusRH;mPl /T!
2 is

about 10 km. The mass inside a Hubble volume is;1M ( .
The transition lasts about a tenth of a Hubble time,tH , with
the latent heat from quenched lattice QCD. The Hubble ti
at the QCD transition istH5RH /c;1025 s. This is ex-
tremely long in comparison with the relaxation time scale
the strong interactions, which is about 10223s. Thus, the
transition is very close to an equilibrium process.

*Email address: chschmid@itp.phys.ethz.ch
†Email address: dschwarz@th.physik.uni-frankfurt.de
‡Email address: widerin@itp.phys.ethz.ch
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For a first-order QCD transition hadronic bubbles nuc
ate during a short period of supercooling. The crucial para
eters for supercooling are the surface tensions and the latent
heatl . Data fors andl are available only for quenched QC
@3# and give a very small surface tension. This gives a v
short period of supercooling,Dtsc;1023tH , and a typical
bubble nucleation distancednucl'1 cm'1026RH for homo-
geneous nucleation@6,7#. The hadronic bubbles grow ver
fast, within 1026tH , until the released latent heat has r
heated the universe toT! . For the remaining 99% of the
transition the HG and the QGP coexist at the press
pHG(T!)5pQGP(T!). During this time the hadronic bubble
grow slowly and the released latent heat keeps the temp
ture constant until the transition is completed. The ene
density decreases continuously fromrQGP(T!) at the begin-
ning of the transition torHG(T!) when the transition is com
pleted.

In the mid 1980s interest in the cosmological QCD tra
sition arose because it was realized that a strongly first-o
QCD phase transition with large surface tension could le
to observable signatures today. Witten@8# pointed out that
the separation of phases during the coexistence of the
ronic and the quark phase could gather most baryons
~strange! quark nuggets. However, the quark nuggets, wh
cooling, lose baryons, and evaporize, unless they con
much more than 1044 baryons initially @9#. This number
should be compared with the number of baryons insid
Hubble volume at the QCD transition, which is 1050. Thus,
the mean bubble nucleation distance should be.1022RH
;100 m, which is about a factor 104 too big compared to the
nucleation distance suggested using recent lattice results@3#.

Applegate and Hogan found that a strongly first-ord
QCD phase transition with a large surface tension could
duce inhomogeneous nucleosynthesis@10#, assuming a
nucleation distance which is ruled out by recent lattice
©1999 The American Physical Society17-1
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sults @3#. The large isothermal baryon fluctuations, induc
during the separation of phases, could lead to inhomo
neous initial conditions for nucleosynthesis. As a minim
requirement for inhomogeneous nucleosynthesis the m
bubble nucleation distance should be larger than the pro
diffusion length, which corresponds to;3 m @11# at the
QCD transition. This is more than 102 times larger than the
nucleation distance based on lattice results@3#. In addition,
the observed cosmic abundances of light elements do
allow inhomogeneous nucleosynthesis, except in a smal
gion in parameter space corresponding to an inhomogen
scale of;40 m @11#.

In a recent Letter@12# and in the present work we look a
matter averaged over scalesl much larger than the bubbl
separation, e.g.l of order of the Hubble radiusRH . There-
fore we deal with the bulk properties of the fluid in contra
to previous investigations which dealt with physics at t
bubble separation scale. We found that the evolution of c
mological density perturbations is strongly affected by
first-order QCD transition for subhorizon scales,l,RH .
Preexisting cosmological perturbations with an approxim
Harrison-Zel’dovich spectrum@13# are predicted by inflation
@14–17# and have been observed in the temperature fluc
tions of the cosmic microwave background by the CO
satellite@18#.

We showed in@12# that pressure gradients and the ise
tropic sound speed~for wavelengthsl much larger than the
bubble separation!, cs5(]p/]r)S

1/2, must be zero during a
first-order phase transition of a fluid with negligible chemic
potential~i.e. no relevant conserved quantum number!. The
sound speed must be zero, because for such a fluid the
sure can only depend on the temperature,p(T), and because
the transition temperatureT! has a given value, it canno
depend on any parameter; hencep(T!)5p! is a given con-
stant, andcs50. This is in contrast e.g. to the water-vap
system, where the number of molecules is conserved, w
the pressure also depends on the particle density in a g
phase,p(T,n), and where a two-phase system has an eq
librium pressure~the vapor pressure! which depends on the
temperature,p!(T), and hencecsÞ0. During the entire QCD
transition the sound speed stays zero and suddenly rises
to the radiation valuecs51/) after the transition is com
pleted. Pressure varies continuously and goes below the
radiation fluid valuep5r/3, but stays positive. Jedamz
@19# independently pointed out that a significant decreas
the effective sound speedcs during the cosmological QCD
transition is expected.

Since the sound speed is zero during a first-order Q
transition, there are no pressure gradients and no resto
forces. Preexisting cosmological perturbations go into a fr
fall. The superhorizon modes~at the time of the transition!,
l.RH , remain unaffected. The spectrum of subhorizon p
turbations develops peaks indr/r which grow with the wave
number. The details of the enhancement depend on the Q
equation of state nearT! . The peaks grow at most linearly i
wave number. The subhorizon peaks arise because pree
ing acoustic oscillations at shorter wavelengths have a hig
velocity ~for a givendr/r) at the beginning of the transitio
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and therefore get a larger amplification factor fordr/r dur-
ing the transition.

Photons and relativistic leptons, i.e. the three neutrin
e6 andm6, also contribute to the energy density at the te
peratures of interest. Weak and electro-magnetic interact
are fast enough to keep the photons and leptons in the
equilibrium with the QGP-HG. Therefore the collective b
havior of all these coupled particles can be described by
perfect~i.e. dissipationless! fluid, which we shall denote as
radiation fluid~RAD!.

As a second fluid we include cold dark matter~CDM!
which dominates the energy density of the universe today
the time of the QCD transitionrCDM(T!);1028rRAD(T!);
therefore the gravity generated by CDM can be neglec
We must distinguish two types of CDM with respect to t
issue of kinetic decoupling at the time of the QCD transitio
The lightest supersymmetric particle, which is probably t
neutralino@20#, is tightly coupled to the radiation fluid~and
is treated as part of the RAD fluid! at T;T! . The scattering
rate of the neutralino is of the order of the weak interact
scattering rate; the neutralino decouples kinetically at a m
lower temperature of a few MeV. Kinetic decoupling mu
be distinguished from freeze-out~when the pair production
and annihilation rates fall below the Hubble rate!, which
happens way before the QCD transition. In contrast the s
ond type of CDM is kinetically decoupled at the QCD tra
sition, e.g. axions or preexisting primordial black holes. No
that in our figures and equations kinetically decoupled CD
will be labeled by CDM for brevity.

Kinetically decoupled CDM falls into the potential well
provided by the dominant radiation fluid. Thus, the CD
spectrum is amplified on subhorizon scales. The peaks in
CDM spectrum go nonlinear shortly after equality. Th
leads to the formation of CDM clumps with mas
,10210M ( . Especially the clumping of axions has impo
tant implications for the axion searches using the magn
field induced axion decay@21#.

The formation of primordial black holes~PBHs! should
be particularly efficient during the QCD epoch due to a su
stantial reduction of pressure forces during adiabatic colla
as pointed out by Jedamzik@19#. The PBH mass function is
expected to exhibit a pronounced peak on the QCD-hori
mass scale;1M ( . He proposes that these black holes cou
account for massive compact halo objects~MACHOs! ob-
served by microlensing@22#. However, we found by our lin-
ear analysis@12# that the amplification of fluctuations at th
QCD horizon crossing scale is only a factor 1.5. For stand
models of structure formation without tilt, the amplitudes a
not big enough to produce a cosmologically relevant amo
of black holes@23#. A tilted spectrum could be fine-tuned t
produce black holes at the QCD scale, but the spect
would need a break just below the QCD scale in order no
overproduce smaller black holes. With the need of suc
doubly fine-tuned preexisting spectrum the main eff
would not be due to the QCD transition.

The influence of the QCD transition on primordial grav
tational waves has been investigated by one of the pre
authors in Ref.@24#. It was found that the dramatic drop i
relativistic degrees of freedom during the QCD transiti
7-2
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AMPLIFICATION OF COSMOLOGICAL . . . PHYSICAL REVIEW D 59 043517
~from 51.25 in the QGP to 17.25 in the HG! induces a step
by 30% in the primordial spectrum of gravitational wave
Today this step is located at;1028 Hz. Gravitational waves
with that frequency could be detected by pulsar timing; ho
ever, for gravitational waves from inflation the amplitud
are far too small to show up in the pulsar timing residua

This paper is organized as follows: A discussion of h
QCD, bubble nucleation, and the vanishing of the sou
speed for wavelengthsl much larger than the bubble sep
ration can be found in Sec. II. In this section we present a
to recent lattice QCD results. We give the thermodynam
curves forw5p/r and the sound speedcs

2 as a function of
the scale factor at the QCD transition for three cases: the
model @25#, which gives a simple parametrization, our fit
lattice QCD and a smooth crossover.

In Sec. III we derive the amplification of density pertu
bations at the QCD transition both numerically and anal
cally. We present the evolution equations for cosmologi
perturbations in a first-order form in a uniform expansi
gauge, which gives the same simple structure for the gen
relativistic dynamics as for the Jeans equations. The de
of the amplification depend on the equation of state at
phase transition. We present three cases: First, we use
bag model@25#, which allows a simple discussion of th
effects. In the bag model, the amplification of subhoriz
perturbations grows linearly in wave numberk. Next, we use
our fit to recent lattice QCD data@26,27#, which indicate a
smaller latent heat@3#. The amplifications for the lattice fi
grow proportional tok3/4. As a third example we study th
possibility of a smooth crossover@28#. In this case, the soun
speed stays finite and subhorizon scales are not ampli
The spectrum for a crossover has peaks only around the
rizon scale. We prove that the spectra of primordial pert
bations are not affected for scales greater than the Hu
horizonRH at the transition.

In the last section~Sec. IV! we discuss observable cons
quences of the large peaks and dips in the spectrum of
sity fluctuations. Collisional damping around the time
neutrino decoupling wipes out all subhorizon inhomoge
ities in the radiation fluid before big bang nucleosynthe
~BBN!, and homogeneous BBN cannot be affected. We
cuss black hole formation during the QCD transition a
conclude that it is highly unlikely unless the primordial spe
trum is fine-tuned at the QCD scale.

The most interesting prediction is the clumping of tho
types of CDM which are kinetically decoupled at the QC
transition and do not suffer from collisional damping by ne
trinos. E.g. axions, if they are the CDM, are not distribut
smoothly within the halo of our galaxy, they come
clumps.

Throughout the paper we assume that our universe is
tially flat (V51) and most of its matter is CDM today
Whenever we give numbers we use a Hubble paramete
H0550 km s21 Mpc21.

II. COSMOLOGICAL QCD TRANSITION

A. Hot QCD

The baryon number density in the universe is extrem
small compared to the entropy density, i.e.nB /s
04351
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5O(10210). At the time of the QCD transition the chemica
potential for quarks and baryons, respectively, is negligi
as far as the pressurep and energy densityr are concerned,
r andp depend on the temperature only.

The behavior ofr(T) and p(T) near the QCD transition
must be given by nonperturbative methods, lattice QCD.
Fig. 1 we plot lattice QCD data forr(T) and p(T) divided
by r of the corresponding ideal gas. We show the latt
results for two systems, quenched QCD~no quarks! @26# and
two-flavor QCD @27#. For quenched QCD the lattice con
tinuum limit is shown. For two flavor QCD the data with s
time steps (Nt56, a'0.2 fm) and a quark massamq
50.0125 are shown. This corresponds to a physical m
mq;14 MeV, a bit heavier than the physical masses of
up and down quarks. On the horizontal axis we plot (T/T!).
We note that the critical temperature for quenched QCD
T!;260 MeV @26#, and for two-flavor QCDT!;140 MeV
@4#. Unfortunatelyr(T) and p(T) for three quarks~u,d,s!
with physical masses are not available yet. ForT/T!54 en-
ergy density and pressure for quenched QCD are still 1
and 15%, respectively, below the ideal gas value. It is
markable thatr/r ideal andp/r ideal versusT/T! is quite simi-
lar for quenched QCD and two-flavor QCD. Moreover, t
temperature dependence of the rescaled pressure for
flavor QCD @29# is quite similar to quenched QCD.

At temperatures belowT! quarks and gluons are confine
to hadrons, mostly pions. At present the hot pion phase is
seen in the two-flavor lattice QCD, since the pion comes
too heavy (0.3,mp /mr,0.7 from@4#, whereas the physica
ratio is 0.18!.

The second law of thermodynamics connects pressure
energy density, and reads, for a fluid without a chemi
potential~no relevant conserved quantum numbers!,

r5T
dp

dT
2p. ~2.1!

The Maxwell relation for the free energy gives the entro
density,

FIG. 1. The energy density and the pressure of hot QCD rela
to the energy density of an ideal quark-gluon plasma are plotte
a function ofT/T! . The lattice QCD data forNf50 @26# and Nf

52 QCD @4# are compared with the predictions of the bag mod
7-3
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s5
dp

dT
. ~2.2!

From homogeneity the free energy densityf (T)52p(T),
and f (T) contains the full thermodynamic information. Th
lattice QCD results fors/sQGP

ideal are shown in Fig. 2.
The bag model gives a simple parametrization forp(T)

and hence forr(T),s(T). The bag model ansatz represen
the short-distance dynamics by an ideal gas of quarks
gluons and the long-distance confinement effects by a c
stant negative contribution to the pressure, the bag cons
B,

pQGP~T!5pQGP
ideal~T!2B. ~2.3a!

We include gluons and u,d quarks, which are effectiv
massless atT'T! ; hencepQGP

ideal(T)5(p2/90)gQGP* T4, where
g* is the effective number of relativistic helicity states,g*
5gbosons17/8gfermions, gQGP* 537. The low temperature
phase is a hadron gas. We model it as an ideal gas of m
less pions,

pHG5
p2

90
gHG* T4, ~2.3b!

because the contribution of pions is small anywa
gHG* /gQGP* 53/37.

At the phase transition (T5T!) the quark-gluon phase
and the hadron phase have the same pressure,p5p! . The
stable phase forTÞT! is the one which gives the minimum
for the free energy densityf (T), hence a maximum for
p(T). The condition for pressure equilibrium atT! gives the
relation betweenT! andB; using Eqs.~2.3a! and ~2.3b! we
obtain

B5
p2

90
~gQGP* 2gHG* !T!

4 . ~2.4!

We takeT! from lattice QCD calculations with two flavors
which giveT!P(140,160) MeV@1,4#. This corresponds to a

FIG. 2. The entropy density of hot QCD relative to the entro
density of an ideal QGP is shown for the same lattice QCD res
as in Fig. 1. We also plot the entropy density for our fit to the latt
QCD data, for the bag model, and for a smooth crossover.
04351
nd
n-
nt

y

ss-

,

range of bag constantsB1/4P(195,221) MeV. This range is
in agreement with fits to the light-hadron masses, wh
yield B1/45145– 245 MeV ~a compilation of various bag
model light-hadron fits can be found in@30#!. We adopt the
valueT!5150 MeV.

Energy density and entropy density in the bag model f
low from Eqs.~2.1!–~2.3a!,

rQGP5rQGP
ideal1B ~2.5a!

sQGP5sQGP
ideal, ~2.5b!

with r ideal5(p2/30)g* T4 and sideal5(2p2/45)g* T3 for
massless particles. The bag results forr/rQGP

ideal, p/rQGP
ideal,

s/sQGP
ideal are shown in Fig. 1 and Fig. 2. Note thats/T3 is a

simple step function in the bag model. The QCD transition
first order in the bag model, and the latent heat per u
volume, l[T!Ds, is

l 5
2p2

45
Dg!T!

454B, ~2.6!

whereDg[gQGP2gHG.
The order of the QCD phase transition and~for a first-

order transition! the magnitude of the latent heat is still
subject of debate. In quenched QCD the phase transition
first order @26#. The latent heat was determined to b
l'1.4T!

4 @3#. It is useful to take the ratioRL of the latent heat
to the valueT!Dsideal, whereDsideal is the difference in en-
tropy between an ideal massless HG and an ideal mas
QGP,

RL[
l

~T!Ds! ideal5H 1 bag model,

0.2 quenched lattice QCD.
~2.7!

For two light quarks it is likely that the transition is a cros
over @4,27#. This is in agreement with theoretical conside
ations@31#, which predict a second-order phase transition
the massless quark limit. For three light flavors and for
physically relevant case of two light and one heavy flavor
phase transition is likely to be of first order@2#. This result
was obtained using the Wilson quark action, whereas res
with staggered quarks@32# indicate a crossover for the phys
cal quark masses. For four quark flavors the transition is fi
order@29#. Since the latent heat for lattice QCD is known f
quenched QCD only, we decided to use the latent heat r
RL50.2 from quenched QCD as an indication for the phy
cal case.

We also need an analytic representation of the lat
QCD data. We decided to fit the entropy density~Fig. 2! and
to derive the other thermodynamic quantities with Eqs.~2.1!
and ~2.2!. Below T! we consider again an ideal gas of th
three pions. We fit the shape of the lattice QCD data by

ts
7-4
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sfit

~2p2/45!T3 5gHG* 1Dg* u~T2T!!

3FRL1~12RL!S 12
T!

T D gG . ~2.8!

A good fit for our purpose is obtained forgP(0.3,0.4). We
fix g51/3. The fit is plotted in Fig. 2.

Finally, we do not neglect the possibility that the QC
transition could be a smooth crossover. Such a crossove
been modeled by a simple interpolation between the id
values of the entropy density with a tanh. It was first given
Ref. @28# and is used in relativistic hydrodynamical simul
tions of heavy-ion collisions@33#. The entropy density is
written as

scrossover

sQGP
ideal 512

1

2

Dg*

gQGP* F12tanhS T2T!

DT D G . ~2.9!

We chooseDT/T!50.1; see Fig. 2. This gives the shape
the initial rise of the lattice data, but it necessarily fails
give the slow rise at higher temperatures froms/sQGP

ideal'0.6 to
1. Comparing this model to the bag model and the lattice
allows us to identify phenomena caused by the cosmolog
QCD transition that are independent of the order of the tr
sition. The effects for wavelengths close to the Hubble sc
will be shown to be approximately independent of the or
of the transition.

The early universe atT around 150 MeV also contain
photons and relativistic leptons (e6,m6, neutrinos! with a
pressure

plg5
p2

90
glg* T4, ~2.10!

whereglg* 514.25. We use the subscript minus to denote
value of some quantity at the beginning of the transition,
when the universe has cooled toT! from above, and the
subscript plus to denote the value of the same quantity a
end of the transition, i.e. when the temperature starts to
crease again.

B. Bubble nucleation

The expansion of the Universe is very slow compared
the strong, electro-magnetic, and weak interactions aro
T! . To be more explicit, the rate of the weak interactions
Gw;GF

2T!
5'10214GeV, the rate of the electro-magnetic in

teractions isGem;a2T!'1025 GeV, and the rate of the
strong interactions isGs;as

2(T!)T!'1021 GeV. These
rates have to be compared to the Hubble rateH;T!

2/mPl

'10221GeV. Thus, leptons, photons, and the QGP-HG
in thermal and chemical equilibrium at cosmological tim
scales. All components have the same temperature loc
i.e. smeared over scalesl;1027RH . At scalesl.1027RH
strongly, weakly, and electro-magnetically interacting ma
makes up a single perfect~i.e. dissipationless! radiation fluid.

In a first-order phase transition the QGP supercools u
hadronic bubbles are formed atTsc,T! @8,34,35#. Without
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‘‘dirt’’ the bubbles nucleate due to thermal fluctuations~ho-
mogeneous nucleation!. The probability to nucleate a bubbl
by a thermal fluctuation is proportional to exp(DS), where
DS is the change in entropy by creating a bubble. The sec
law relatesDS to the minimal work done in this process
which is the change in the free energy because the volu
and temperature are fixed@36#. The change in free energy o
the system by creating a spherical bubble with radiusR is

DF5
4p

3
~pQGP2pHG!R314psR2, ~2.11!

wheres is the surface tension. Bubbles can grow if they a
created with radii greater than the critical bubble radiusRcrit .
Smaller bubbles disappear again, because the free en
gained from the bulk of the bubble is more than compensa
by the surface energy in the bubble wall.Rcrit is determined
from the maximum value ofDF(R), Rcrit(T)52s@pHG(T)
2pQGP(T)#21. At T! the critical bubble size diverges, an
no bubble can be formed. Finally, the probability to form
hadronic bubble with critical radius per unit volume and u
time is given by

I ~T!5I 0expS 2
DFcrit

T D , ~2.12!

with DFcrit516ps3/@3(pHG2pQGP)
2#. For small supercool-

ing h[12T/T!!1 we may evaluate (pHG2pQGP)(T) by
using the second law of thermodynamics, i.e.pHG2pQGP
' lh, and thus

DFcrit'
16p

3

s3

l 2h2 . ~2.13!

For dimensional reasons the prefactorI 0;T!
4. A more de-

tailed calculation ofI 0 within the bag model has been pro
vided in @37#. It was shown in Ref.@7# that the temperature
dependence of the prefactorI 0 can be neglected for the ca
culation of the supercooling temperatureTsc in the cosmo-
logical QCD transition. Furthermore a purely numerical pr
actor toT!

4 would be irrelevant for our purposes as explain
after Eq.~2.15!. Therefore the probability to form a critica
bubble per unit volume and unit time can be written as

I'T!
4exp~2A/h2!, ~2.14!

with A[16ps3/(3l 2T!).
The surface tensions is a crucial parameter forTsc and

Rcrit . The absence of surface excitations in hadronic spe
suggests thats1/3!B1/4 @30#. In lattice QCD rather small
values are found. The authors of Ref.@3# find that s
'0.015T!

3 for quenched lattice QCD. There are no values
unquenched QCD available yet. However, an upper bo
was obtained for the case of four-flavor lattice QCD in R
@38#, i.e., s,0.1T!

3. Using the results from quenched lattic
QCD we findA52.931025.

After the first bubbles have been nucleated, they gr
most probably by weak deflagration@34,39,40,6#. The defla-
gration front ~the bubble wall! moves with the velocity
7-5
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vdefl!1/) @41#. The energy that is released from the bubb
is distributed into the surrounding QGP by a superso
shock wave and by neutrino radiation. This reheats the Q
to T! and prohibits further bubble formation. The shock fro
propagates with a speed slightly above the sound speed.
amplitude of the shock is very small@39#. Neutrinos have a
mean free path of 1027TH at T! . If they do most of the hea
transport, it goes withvheat5O(c). A detailed calculation of
the supercooling temperature in the cosmological QCD tr
sition was given in Refs.@35,6#. These calculations assum
small supercooling. The suppression of bubble nuclea
due to already existing bubbles is neglected.

The supercooling temperature fractionhsc turns out to be
about the same for the schematic case of one single bu
nucleated per Hubble volume per Hubble time,

hsc'F A

4 ln~T! /H!!G
1/2

'431024, ~2.15!

or the realistic case obtained below of one bubble nuclea
per cm3 per 1026 of a Hubble time, which needs a supe
cooling 20% larger. This small increase of 20% inhsc makes
the bubble nucleation rate larger by a factor 1024.

The time needed for the supercooling is given
Dtsc/tH5hsc/(3cs

2)5O(1023). The critical size of the
bubbles created at the supercooling temperature is

Rcrit~hsc!'
2s

lhsc
'30 fm . ~2.16!

Bubbles present at a given time have been nucleated
cally during the preceding time intervalDtnucl[I /(dI /dt)
5O(1026). Using the relation between time and superco
ing h, dh/dt53cs

2/tH , we findDtnucl/tH5h3/(6Acs
2). Dur-

ing this time interval each bubble has distributed relea
latent heat over a distance'Dtnuclvheat. This distance has a
weak dependence on the precise value ofhsc, but the bubble
nucleation rate increases exceedingly strongly withh until
one bubble per volume;(Dtnuclvheat)

3 is nucleated. There
fore the mean bubble separation is

dnucl'vheatDtnucl'
vheat

3cs
2

hsc
3

A
RH5O~1026RH!5O~1 cm!,

~2.17!

where we usedvheat5O(c), cs5O(c), which gives a typical
value for the nucleation distance. In@7# the mean bubble
nucleation distance due to thermal fluctuations~homoge-
neous nucleation! is calculated to be less than 2 cm, where
for inhomogeneous nucleation~the first bubbles form at im-
purities like topological defects or primordial black holes! it
might be a few m.

The above estimate of bubble separation applies if
limiting factor for quenching is the distribution of release
latent heat by means of sound waves and by neutrino
streaming. On the other hand the limiting factor could
given by the rate of release of latent heat, i.e. by the bub
wall velocity vdefl. Since the period of supercooling las
about 1% of the time needed for completing the entire fi
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order phase transition, 1% of the QGP must be converte
HG in the process of sudden reheating toT! ; hence the
bubble radius at quenching must reach 0.2 of the bub
separation,Rbubble'0.2dnucl. With Rbubble'vdeflDtnucl and
using the above relationdnucl'vheatDtnucl, we requirevdefl
>0.2vheat for consistency. Ifvdefl is smaller than this, the
limiting factor for quenching is the rate of release of late
heat by bubble growth, and the bubble separation is

dnucl'vdeflDtnucl'
vdefl

3cs
2

hsc
3

A
RH ; ~2.18!

i.e., the bubble separation will be smaller than the estim
Eq. ~2.17!.

To summarize, the scales on which non-equilibrium ph
nomena occur are given by the mean bubble separa
which is about 1026RH . The entropy production is tiny, i.e
DS/S;1026, since the supercooling is small;1023. After
supercooling, which lasts 1023tH , the universe reheats in
Dtnucl'1026tH . After reheating the thermodynamic var
ables follow their equilibrium values and bubbles grow d
to the expansion of the Universe only. This is in strikin
contrast to bubble nucleation at the grand unified the
~GUT! transition, where the particle interaction rate is of t
order of the Hubble rate and the bubble nucleation rate
unit volume is very much smaller thanH4.

C. Adiabatic phase conversion

We now discuss the evolution of the temperature a
other thermodynamic variables as a function of the scale
tor a. The evolution ofw[p/r for the bag model, our lattice
QCD fit, and for the smooth crossover~2.9! is shown in Fig.
3.

Entropy is conserved, apart from the very short stage
reheating (;1026tH) after the first bubbles have been nucl
ated. This allows us to calculateT5T(a) from d@s(T)a3#
50, i.e.

dT

d lna
52

3s

ds/dT
, ~2.19!

FIG. 3. The behavior ofw5p/r during the QCD transition as a
function of the scale factora. Although the pressure is reduced,
stays positive throughout the transition.
7-6
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except forT5T! in the case of a first-order phase transitio
In the bag models;T3 and thereforeT}1/a for TÞT! . In
the case of the lattice fit and the crossover the entrop
given by Eq.~2.8! and Eq.~2.9!, respectively, plus the con
tribution of photons and leptons. Pressure as a function of
scale factor is obtained froms5dp/dT, using Eq.~2.19!.
The energy density, hencew, follows from Eq.~2.1!.

While the QGP and HG coexist in a first-order QCD tra
sition the expansion factor is determined by entropy con
vation,

a1

a2
5S s2

s1
D 1/3

, ~2.20!

where the index2 ~1! denotes the value of a quantity at th
beginning~end! of the coexistence epoch. In the bag mod
the Universe expands by a factora1 /a2'1.4 until all QGP
has been converted into the HG, whereas for our lattice Q
fit ~2.8! the Universe expands by a factora1 /a2'1.1. The
growth of the scale factor is related to a lapse in cosmic t
by d lna5Hdt. In terms of Hubble time the transition las
0.3tH for the bag model and 0.1tH for our lattice QCD fit.

During a first-order QCD transition, i.e.T5T! , the pres-
surep(T!)[p! is constant. For any first-order QCD pha
transitionr(a) is obtained from the first law of thermody
namicsdr523(r1p!)da/a. The result fora2<a<a1 is

r~a!5„r~a2!1p!…S a2

a D 3

2p! , ~2.21!

w~a!5F S r~a2!

p!
11D S a2

a D 3

21G21

, ~2.22!

wherew[p/r. After the end of the phase transition we ha
made the approximation of noninteracting and mass
pions, leptons and photons,p5r/3, and thereforep!

5r(a1)/3.

D. Sound speed

As explained in the Introduction, the isentropic sou
speed~for wavelengthsl much larger than the bubble sep
ration!, given by

cs
25S ]p

]r D
s

5S dp/da

dr/daD
s

, ~2.23!

must be zero during a first-order phase transition for a fl
with negligible chemical potential~i.e. no relevant conserve
quantum number!. This behavior is shown in Fig. 4 for th
lattice QCD fit and the bag model. In the bag modelcs

2

51/3 before and after the transition. For a crossover
sound speed does not drop to zero.

A strong decrease in the sound speed is observed in la
QCD for Nf50 @26# and for Nf52 @4#. From our lattice
QCD fit we can calculate the sound speed forT.T! . From
Eq. ~2.1! and Eq. ~2.2! the sound speed is given b
cs

25(d lns/d lnT)21. Inserting Eq.~2.8!, we obtain
04351
.

is

e

-
r-

l

D

e

ss

d

e

ce

cs
2}S 12

T!

T D 12g

. ~2.24!

For an analytic discussion of the behavior of acoustic mo
during the phase transition it is important to knowcs

2 as a
function of conformal timeh[*a21(t)dt. In the radiation
dominated regimea}h. Up to small corrections, this hold
true during the transition. Let us denote the value of conf
mal time at which the sound speed vanishes byh2 . From
Eq. ~2.19! we find (h22h)/h2}(12T! /T)g, which im-
plies

cs
25C2@~h22h!/h2#~12g!/g, ~2.25!

with C25$312g@g1* 1Dg* RL#/@Dg* (12RL)#%1/g/g. For
g51/3 the sound speed goes to zero linearly in conform
time.

We now discuss why the isentropic condition applies d
ing the part of the phase transition after the initial superco
ing, bubble nucleation, and sudden reheating toT! . During
the second part of the transition, which takes about 99%
the transition time, the fluid is extremely close to therm
equilibrium, because the time to reach equilibrium is ve
much shorter than a Hubble time; i.e., the fluid makes
reversible transformation. This can be seen as follo
Across the bubble walls local pressure equilibrium is est
lished immediately,pQGP5pHG locally. Local temperature
equilibrium TQGP5THG is established by neutrinos, whic
have a mean free path of 1027RH , enormously larger than
the bubble wall thickness, and a collision time much shor
than the Hubble time. This local pressure and tempera
equilibrium can only be satisfied ifp5p! andT5T! at the
bubble walls. Over distance scales of the order of the bub
separation (;1 cm) pressure~and therefore also tempera
ture! is equalized with the velocity of sound, and thereby t
released latent heat is distributed. This pressure equaliza
is very fast compared to the Hubble expansion velocityvH
'1026c at the 1 cm scale. When analyzing cosmologic
perturbations we shall consider wavelengthsl.1024RH ,
for which neutrinos are tightly coupled,Gn /k@1; see Sec.
IV. For these wavelengths the radiation fluid behaves a

FIG. 4. The behavior of the sound speedcs
25(]p/]r)s during

the QCD transition as a function ofa. For a first-order transition
~lattice fit and bag model! the sound speed vanishes.
7-7
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perfect~i.e. dissipationless! fluid, entropy in a comoving vol-
ume is conserved, and one has a reversible process. O
other hand, below the neutrino diffusion scale,l
,1024RH , acoustic oscillations are damped away before
QCD transition.

We have been criticized in@42# for the use of the isentro
pic condition. In@42# it was claimed that the isentropic con
dition leads to an infinite sound speed in the bag model. T
claim was wrong, because it was based on non-relativi
hydrodynamical equations which neglect the pressure co
bution to the momentum density and neglect that so
waves in a radiation fluid move with relativistic speed. In
revised version of their work@43# they correct these mis
takes. However, they still maintain that the isentropic con
tion does not hold, but that instead the volume fraction of
two phases is frozen. They do not give any argument w
such a freezing should occur, and their freezing assump
contradicts the rapid equilibration of pressure and temp
ture between the two phases explained in the previous p
graph. Their freezing assumption would also entail sup
cooling from the Hubble expansion in the presence of a fin
volume fraction of bubbles. This is in dramatic conflict wi
the extremely rapid reheating toT! ~within 1026tH) once
enough bubbles (;1% of volume! have been formed as dis
cussed in Sec. II B.

III. PEAKS AND DIPS IN THE DENSITY SPECTRUM

A. Evolution equations for cosmological perturbations
in uniform expansion gauge

The evolution of cosmological perturbations at the QC
transition is analyzed for perfect fluids. We linearize the E
stein equations, e.g.r(x,t)5:r0(t)1dr(x,t). It is an excel-
lent approximation at early times to take the Friedma
Robertson-Walker metric flat,ds252dt21a(t)2dx•dx.
The evolution of the background quantities is given by
Friedmann equations

H25
8pG

3
r0

Ḣ524pG~r01p0!, ~3.1!

where the subscript 0 denotes background quantities.
The perturbed metric is decomposed in in a scalar, a v

tor, and a tensor part. We are only interested in density
turbations, which means the scalar~longitudinal! sector. For
a time-orthogonal foliation of space-time the perturbed m
ric can be written as

ds252~112a!dt21a~ t !2@d i j ~112w!12] i] jg#dxidxj ,
~3.2!

with ] i[]/]xi . We follow Bardeen~1989! @16# and focus on
the geometric properties of the constant-t hypersurfaces
~slices! S. The perturbation of the lapse function between
S’s is given bya(x,t). The intrinsic curvature ofS is gen-
erated byw(x,t),

~3!R@S#524Dw. ~3.3!
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The extrinsic curvatureKi
j of S has 3 terms, the unperturbe

term, the perturbation of the isotropic part,d@ tr Ki
j (S)#

[k, and the anisotropic part ([shear of normals onS!,
which is generated byx(x,t),

Ki
j@S#52Hd j

i 1
1

3
kd j

i 2S ] i] j2
1

3
Dd i

j Dx, ~3.4!

where ] i5a22d i j ] i . These geometric properties ofS are
computed from the metric perturbations as follows:x
5a2ġ, k523(ẇ2Ha)2Dx. Vanishing shear ofnI (S)
meansx50 and vice versa, but note thatx ~respectively,g!
contributes both to the anisotropic part and to the isotro
part of Ki

j .
We choose a slicing of space-time with unperturbed m

extrinsic curvature,d@ tr Ki
j (S)#[k50. This implies that

our fundamental observers, which are defined to be at res
the sliceS, uI (obs)5nI (S), have relative velocities, which in
the mean over all directions follow an unperturbed Hub
flow. If the coordinate choice~gauge choice! is such that the
time coordinatet is constant on the slicesS, the gauge is
fixed to be the uniform expansion gauge~UEG![uniform
Hubble gauge~UHG! @16#.

In the literature the most common gauges are the sync
nous gauge, where the fundamental observers are mo
inertially ~i.e. a[0), the longitudinal gauge ([zero shear
gauge,x[0), where the fundamental observers expand i
tropically, and the comoving gauge, where the fundame
observers sit in the fluid rest frame,uI (obs)5uI (matter). The
uniform expansion gauge~UEG! is free of spurious gauge
modes~in contrast to the synchronous gauge!, it is nonsin-
gular in the superhorizon limit and therefore easy to han
in numerical calculations~in contrast to zero-shear variable
as pointed out by Bardeen@16#!, and it has the two basic
fluid variablesdr and vpeculiar ~in contrast to the comoving
gauge!.

As fundamental evolution equations in UEG for perfe
fluids we take the energy-momentum conservation¹mTm

n

50, i.e., the continuity equation and~in the longitudinal sec-
tor! the 3-divergence of the Euler equation of general re
tivity. Each fluid separately must satisfy

] te523H~e1p!2Dc23H~r01p0!a ~3.5!

] tc523Hc2p2~r01p0!a, ~3.6!

where e[dr5dT0
0 , p[dp51/3d@ tr Ti

j #, ¹ ic[dT0
i for

each fluid separately. Note that¹ ic[Si5momentum den-
sity ~Poynting vector!. The system of dynamical equations
closed by Einstein’sR0

0-equation

~D13Ḣ !a54pG~e13p!, ~3.7!

where the sum over all fluids is taken on the right-hand si
In addition we need (p/r) and (p/e)s5cs

2 ~Figs. 3 and 4! for
adiabatic perturbations. Equations~3.5!–~3.7! define our
general relativistic Cauchy problem~linear perturbations,
longitudinal sector, perfect fluids!. The initial data~e,c! can
be chosen freely onSUE.
7-8
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Einstein’s R0
0-equation in linear perturbation theory i

the UEG is an elliptic equation. Its Green function is
Yukawa potential with exponential cutoff at the Hubble r
dius, a;r 21 exp(2mr), wherem2523Ḣ, instead of New-
ton’s 1/r -potential in the Jeans equations.R0

0 gives the rela-
tive gravitational acceleration~geodesic deviation!, averaged
over all directions, of two test particles, which are movi
nonrelativistically in the coordinate system at hand. In
UEG dR0

0 is determined bya, the perturbation of the lapse
In Newtonian physics the relative acceleration averaged o
directions is given byDFNewton; i.e., R0

0 andDFNewton an-
swer the same physics question. In the UEGa plays the role
of the gravitational potential.

Our basic equations have exactly the same structure a
Jeans equations: two first-order time-evolution equations
each fluid, Eqs.~3.5! and~3.6!, supplemented by one ellipti
equation, Eq.~3.7!. The UEG is the only gauge with thi
structure and with Einstein’s equation appearing only in
elliptic equation. In the subhorizon limit@drop the last term
in ~3.5! and theḢ-term in ~3.7!# and withp!r these equa-
tions automatically reduce to the Jeans equations. The U
is singled out for two reasons: First, the relative velocity
the fundamental observers in the mean over all direction
an unperturbed Hubble flow both in the UEG of gene
relativity and in the Jeans analysis. Second, only the m
over all directions appears in the continuity equation, in
3-divergence of the Euler equation, and in theR0

0-equation.
Out of the geometric quantities~k,x,w,a! only the lapsea

appears in the equations needed to solve the dynamic
UEG. The spatial curvature~w! and the shear of the funda
mental observers~x! are automatically absent from the abo
equations for perfect fluids, since these geometrical pro
ties of S are irrelevant for the dynamical question at han
~w,x! are not needed at all to solve the dynamics. One
computew and x at any time from the energy and the m
mentum constraints, i.e. from theG0

0 equation and the lon
gitudinal contribution to theG0

i equation,

Dw524pGe ~3.8!

Dx5212pGc. ~3.9!

This sequence, solving the dynamics before using theG0
0

andG0
i constraint equations, is different from the usual s

lution strategies in linear perturbation theory.
Since the evolution equations are linear, and the ba

ground is spatially homogeneous, each spatial Fourier m
with comoving wavelengthkªkphysa evolves independently
It is convenient to rewrite Eqs.~3.5!–~3.7! in the dimension-
less variablesd[e/r ~density contrast!, ĉ[kphysc/r. The
variableĉ is related to the fluid velocity~peculiar velocity!

vpec5@r/(r1p)#uĉu and has the same order of magnitude
d on subhorizon scales,lphys!RH5H21. In the UEG the
system of evolution equations, written in terms of conform
time ()8[]h[a] t , now reads

1

H d813~cs
22w!d5

k

H ĉ23~11w!a ~3.10!
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1

H ĉ81~123w!ĉ52cs
2 k

H d2~11w!
k

Ha

~3.11!

F S k

HD 2

1
9

2
~11w!Ga52

3

2
~113cs

2!d,

~3.12!

with H[(da/dh)/a and w5p/r. The Friedmann equation
and the continuity equation for the background were us
The continuity and Euler equations refer to each fluid se
rately. In the R0

0-equation w5(( f p
( f ))/(( fr

( f )), d
5(( fe

( f ))/(( fr
( f )) andcs

25(( fp
( f ))/(( fe

( f )).
In our numerical analysis we have used the exact gen

relativistic equations~3.10!–~3.12!, but it is instructive to
look at the superhorizonlphys@H21 and at the subhorizon
lphys!H21 limit of Eqs. ~3.10!–~3.12! for general pressure
and sound speed.

For superhorizon perturbations with arbitrary equation
state~e.g. QCD transition!, we only have to keep the lowes
order in k/H in the evolution equations. Equations~3.10!–
~3.12! for a one fluid model simplify to

1

H d82~113w!d5
k

H ĉ ~3.13!

1

H ĉ81~123w!ĉ5
1

3

k

H d, ~3.14!

where the superhorizon limit of the Poisson equation
1w)a52 1

3 (113cs
2)d was inserted. Note that the soun

speed drops out in the superhorizon equations. For the gr
ing mode the terms on the left hand side of the Euler eq
tion add and@ĉ/d#grow}k/H. Therefore, the right hand sid
of the continuity equation is negligible and the solution f
the growing mode of the density contrast is

d}~k/H!25~kphys/H !2 ~3.15!

for superhorizon perturbations in the uniform expans
gauge. This result is independent of the thermodynamic
havior. It says that the evolution of the growing superhoriz
mode, if expressed in terms ofH ~as opposed to expressing
in terms oft or a), is unaffected by a phase transition. Ther
fore the QCD-transition cannot affect superhorizon sca
and the spectrum of density perturbations stays flat
lphys@H21. This result can also be formulated differentl
using the energy-constraint~3.8! we find w5const for the
dominant mode on superhorizon scales in the UEG. Thi
the ‘‘conservation law’’@15# for the quantityz[w1@1/3(1
1w)#d for wÞ21, sincez'w in the superhorizon limit.

For subhorizon analysis,lphys!H21, with arbitrary equa-
tion of state, we can dropḢ in the general relativistic Pois
son equation~3.7! sinceuḢu5O(H2)!kphys

2 . In the continu-
ity equation~3.5! the time dilation term~last term! can be
omitted since it follows from the Poisson equation th
a5O(H2/kphys

2 )d!d. In the subhorizon limit Eqs.~3.10!–
~3.12! simplify to
7-9
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1

H d813~cs
22w!d5

k

H ĉ ~3.16!

1

H ĉ81~123w!ĉ52cs
2 k

H d2~11w!
k

Ha ~3.17!

S k

HD 2

a52
3

2
~113cs

2!d. ~3.18!

In the case of the QCD transition, the transition time is sh
compared to the Hubble time (t12t2),tH5H21 and there-
fore self-gravity of the dominant radiation fluid can be n
glected in the Euler equation~3.17! for this component. On
the other hand, CDM moves in the external gravitatio
potential provided by the radiation fluid, and is coupled
the radiation fluid via the gravity term in the Euler equatio
Therefore we have to keep the gravity term in the CD
Euler equation.

For a purely radiation dominated universew5cs
25 1

3 , the

solution for the density contrastd and the peculiar velocityĉ
can be written in terms of spherical Bessel and Neum
functions@44#

d5x f~x!1
3

x216
x2

d

dx
f ~x! ~3.19!

ĉ5
1

x216
x3

d

dx
f ~x!, ~3.20!

wherex[kphys/H5k/H. For a radiation dominated univers
x5kh, f (x)[@A j1(x/))1Bn1(x/))#/). The normal-
ization is chosen in such a way that the subhorizon mod
lphys!H21, of d and)ĉ are acoustic oscillations with con
stant amplitudeAA21B2. We will fix our initial conditions
to be the growing mode in the radiation dominated super
rizon regime,

d5A
1

6
x2 ~3.21!

ĉ5A
1

54
x3. ~3.22!

B. Numerical results

The transfer functions for the radiation fluid and the co
dark matter are calculated by integrating the exact gen
relativistic set of equations~3.10!–~3.12! throughout the
QCD transition. The initial conditions are fixed atT
5100 GeV, where all scales under considerations were
above the horizon. We fix the initial amplitude of the rad
tion fluid, Ain , by the growing mode of an exactly radiatio
dominated solution, Eqs.~3.21! and ~3.22!. The normaliza-
tion constant is given by the COBE normalized@45#
Harrison-Zel’dovich spectrum@13#, but it drops out in the
transfer functions. The initial conditions for CDM are o
tained assuming adiabatic perturbations; i.e., the entropy
cold particle is unperturbedd(sRAD/nCDM)50. SincerCDM
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5mnCDM}1/Vcomoving and rRAD}(1/Vcomoving)
4/3, the adia-

batic initial conditions fordCDM can be written

dCDM5
3

4
dRAD. ~3.23!

The initial fluid velocities are equal. Since we are in t
linear regime, each spatial Fourier mode evolves indep
dently.

For a first-order phase transition it is convenient to use
volume of a comoving box}a3 instead of time as the evo
lution variable. Thus, the derivatives in Eqs.~3.10! and
~3.11! have to be replaced,H21(d/dh)5a(d/da). In Secs.
II C and II D we have givenw andcs

2 in terms of the scale
factor. In the case of a crossover we use the temperatureT as
the independent evolution variable, since temperature is
creasing strictly monotonically in time. The derivatives
Eqs. ~3.10! and ~3.11! are replaced byH21(d/dh)5
23cs

2T(d/dT). We obtainp(T) by integrating the entropy
densitys(T), Eq. ~2.2!.

The transfer functions are evaluated by evolving ea
mode from the initial temperatureTin5100 GeV to the final
temperatureTf5T!/10515 MeV, i.e. until the peculiar ve-
locity of CDM has redshifted away. AtTf the universe is
exactly radiation dominated. The amplitude of the acous
oscillations isARAD[(dRAD

2 13ĉRAD
2 )1/2. The final ampli-

tude of CDM isACDM5udCDMu. The transfer functions for
the radiation and the CDM fluid are defined by

TRAD~k, in→f![
ARAD~k!uTf

Ain
~3.24!

TCDM~k, in→f![
ACDM~k!uTf

Ain
, ~3.25!

whereAin5Ain
RAD .

For the bag model the transfer functions are shown in F
5. Both transfer functions show huge peaks on small sca
The different scalesk52p/l are represented by the invar
ant CDM mass contained in a sphere with radiusl/2,

MCDM~lphys![
4p

3
rCDMS lphys

2 D 3

, ~3.26!

assuming thatVCDM'1 today. The largest scales in Fig.
correspond to the horizon atTf5T!/10. The CDM curve
also shows the logarithmic growth of subhorizon scales
CDM in a radiation dominated universe. The CDM peaks
on top of this logarithmic curve.

The peak structure starts at a scale'1028M ( in CDM
mass. This scale corresponds to the horizon scale at the Q
transition,MH[(4p/3)rCDM(RH/2)3. The radiation energy
inside the horizon atT! is ;1M ( , but it is redshifted as
MRAD(a);(aequality/a)MCDM. Scales which are above th
horizon at the QCD transition are not affected in accorda
with the general proof in the previous section, Eq.~3.15!. For
scales belowM1

CDM'931029M ( the radiation peaks grow
linearly in wave number. This linear growth comes from t
7-10
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fact that the vanishing sound speed during the QCD tra
tion implies a vanishing restoring force in the acoustic os
lations on subhorizon scales. Therefore, the radiation fl
falls freely during the transition, with a constant veloci
given at the beginning of the transition. The density contr
dRAD grows linearly in time with a slopek. CDM is moving
in an external potential provided by the dominant radiat
fluid, and is pushed by the strong increase in the gravitatio
force during the transition. The highest peaks havek/k1
;104, because on smaller scales the acoustic oscillations
damped away by neutrino diffusion already before the Q
transition~see Sec. IV!.

For our fit to lattice QCD the transfer function
TRAD,TCDM are shown in Fig. 6. The peak structure starts
the horizon scaleM1 , but the asymptotic growth on sma
scales is different. It grows}k3/4 starting at a scalek2 which
corresponds to an invariant CDM mass ofM252
310210M ( . The asymptotic envelope for small scales
indicated by the straight line in Fig. 6. The highest pea

FIG. 5. The modifications of the density contrast for kinetica
decoupled CDM~like axions or primordial black holes!, ACDM

[udCDMu(T!/10), and of the radiation fluid amplitudeARAD

[(dRAD
2 13ĉRAD

2 )1/2 due to the QCD transition in the bag mode
Both quantities are normalized to the pure Harrison-Zel’dovich
diation amplitude. On the horizontal axis the wave numberk is
represented by the CDM mass contained in a sphere of radiusp/k.

FIG. 6. The same as Fig. 5, but for our lattice QCD fit. T
straight line denotes the asymptotic envelope for small scales}k3/4.
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show an amplification of a factor 400 and correspond
wave numbersk/k2;33103. The smaller amplification
compared to the bag model is due to the decrease of
radiation fluid velocity before the transition. This happe
because the sound speed drops below 1/) already before the
transition. The values forM2 and the exponent of asymptoti
growth depend on our specific choice of the latent heat (RL
50.2) and the thermodynamic behavior atT.T! , param-
etrized byg (g51/3). In the next section we will show tha
the exponent of the asymptotic envelope forgP(0,1) varies
between 1/2 and 1.

The processed spectrum for a crossover, Fig. 7, show
similar behavior as for the bag model and the lattice fit
superhorizon and horizon scales. The peak structure star
M1 , but on subhorizon scales there are no peaks. The l
of the subhorizon transfer function for the radiation fluid
reduced to 0.83. This comes from the damping of the aco
tic oscillations during the time withcs

2Þ1/3.

C. Analytic solution for the radiation fluid

The time evolution for subhorizon modes,lphys!RH
5H21, at the transition can be solved analytically. For t
dynamics of the radiation fluid~QCD, photons, leptons! one
can neglect cold dark matter, sincerCDM/rRAD5a/aequality
'1028. The transition time is short compared to the Hubb
time at the transition, (t12t2),tH5H21. For subhorizon
modes we can neglect gravity during the whole transition
we will show below. The damping terms in the continui
equation~3.16! and Euler equation~3.17! are absent in the
purely radiation dominated regime. During the transition t
damping terms can be neglected in view of the huge am
fication for a first-order phase transition. Equations~3.16!
and ~3.17! now read

d82kĉ50

ĉ81cs
2kd50. ~3.27!

Written as a second order differential equation ford, this is
just an oscillator equation

-

FIG. 7. The same as Fig. 5, but for a QCD crossover.
7-11
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d91v2d50, ~3.28!

with the time-dependent frequencyv(h)[kcs(h).

1. Bag model

We first discuss the origin of large amplifications f
small scales in the bag model. Before and after the Q
transition the radiation fluid makes standing acoustic osc
tions in each modek with sound speedcs

251/3 and with
amplitudeAin andAout for the incoming and outgoing solu
tion respectively; see Fig. 8. The incoming solution for t
density contrastd and the peculiar velocity)ĉ reads

d52Ain cos@v~h2h2!1w2#

)ĉ5Ain sin@v~h2h2!1w2#. ~3.29!

This solution is valid until the beginning of the transition
h5h2 , andw2 denotes the phase of the oscillation ath2 .
During the transition the sound speed is zero. There are
restoring forces from pressure gradients and the radia
fluid falls freely. Since the duration of the transition is sho
compared to the Hubble timeDt[(t12t2),H21, gravity
is negligible during this free fall. If we estimate the cont
bution of the gravity term in the Euler equation~3.17! during
the transition, we get (t12t2)] tĉ25O(Dtkphys)a2

5O@(HDt)(H/kphys)#d25O@(HDt)(H/kphys)#ĉ2!ĉ2 ex-
cept for an initial phasew250 modp ~which leads to a dip
in the spectrum!. Thus, the fluid is moving inertially in the
sense of Newton, the velocity stays constant, and the den
contrast grows linearly in time,

d5d21k~h2h2!ĉ2 ,

)ĉ5)ĉ2 , ~3.30!

where)ĉ25Ain sin(w2) is the peculiar velocity ath2 .

FIG. 8. The time evolution of the density contrast,dRAD, and the

peculiar velocity,3
4 ĉRAD, of the radiation fluid for the modek/k1

57 in the uniform expansion gauge. During the QCD transition
the bag model—marked by the 2 vertical lines—the velocity st
approximately constant and the density contrast grows linearly.
amplitude is normalized to 1 long before the transition.
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Since we have no jumps in pressurep0 , the density con-
trast d and the fluid velocityĉ stay continuous throughou
the whole transition, in particular at the matching points
the different regimes. Gravity remains negligible during t
entire transition since the growth ofĉ due to gravity at the
end of the transition can be estimated byĉ12ĉ2

5O(Dtkphysa1)5O@HDt(H/kphys)d1#5O@(HDt)2ĉ2#

!ĉ2 , in the limit under consideration. At the end of th
transition this solution has to be joined to the pure radiat
dominated regime forT<T! . Since the amplitude of the
density contrast grows linearly during the transition, the fin
amplitudeAout5A1 is enhanced linearly ink, modulated by
the incoming phase

S Aout

Ain
D 2

5S k

k1
D 2

sin2~w2!, ~3.31!

with k1[)/Dh, Dh[h12h2 . The envelope of the lin-
early growing peak structure for subhorizon scales start
the scalek1 which corresponds to a CDM mass ofM159
31029M ( .

2. Lattice QCD

For our fit to lattice QCD, Eq.~2.8!, the time evolution
separates into four regimes. First we have a WKB regim
where the sound speed is slowly changing compared to
frequency of the oscillation; i.e., the WKB conditio
udcs /dhu/cs!v5kcs is satisfied. The WKB solution is

d52
Ain

~3cs
2!1/4cosE

0

h
v~h8!dh8

)ĉ5Ain~3cs
2!1/4sinE

0

h
v~h8!dh8, ~3.32!

whereAin , as before, denotes the incoming subhorizon a
plitude in a radiation dominated universe. The decreas
sound speed in the WKB regime leads to an increase in
density contrast and a decrease in peculiar velocity comp
to the purely radiation dominated case. Close toh2 the
WKB condition can no longer be satisfied: Sincecs de-
creases by some power in (h22h), Eq. ~2.25!, the left hand
side of the WKB condition diverges like 1/(h22h),
whereas the right hand side for any fixedk goes to zero.
Therefore, the WKB solution for a given mode is valid up
a certain timeh̃(k),h2 . h̃(k) approachesh2 for increas-
ing k.

Close toh2 there is a second regime~overlapping with
the WKB regime for large enough k!, wherecs can be ap-
proximated by the power law of Eq.~2.25!,

cs5CS h22h

h2
D 1/~2b!21

b[
g

g11
, ~3.33!

s
e
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where b is defined for convenience below. Inserting th
power law into the oscillator equation~3.28! gives a Besse
differential equation. The new variablez is the argument of
the cosine in the WKB expansion,

z[kE
h

h2

cs~h8!dh852Cb~kh2!S h22h

h2
D 1/~2b!

.

~3.34!

The indexb̄ of the Bessel functions is obvious from the rat

of the two fundamental solutionsJb̄(z)/Nb̄(z)}z2b̄}(h2

2h) b̄/b. Since the two fundamental solutions forcs→0 are
d→const andd}(h22h), it follows that b̄5b. The pref-
actor must bezb to make the second fundamental soluti
constant,

d5zb@2B1Jb~z!1B2Nb~z!#. ~3.35!

The peculiar velocity follows viaĉ5d8/k; see Eq.~3.27!.
Matching the WKB solution with the Bessel solution in th
overlap regionz@1, where Jb(z), Nb(z)→A2/(pz) cos@z
2(p/2)(b11/2,3/2)#, gives the normalizationB2[B1

2

1B2
2,

B5Ain

Apb

31/4 ~2Cb!2b~kh2!1/22b. ~3.36!

At the beginning of the first-order transition,h5h2 , the
Bessel solution~second regime! is matched to the third re
gime, i.e. the free fall regime withcs

250. As in the bag
model, peaks in the transfer function for largek are obtained
for the mixing angles w in the Bessel solution (B1

5B cosw, B25B sinw) which give the maximaluĉu at the
matching point. WithJb(z)→(z/2)b/G(b11) for z!1 and
Nb(z)5@Jb(z)cos(bp)2J2b(z)#/sin(bp) we find

ĉ2
max5Ain

Apb

31/4

~Cb!b

G~b11!sinbp
~kh2!b21/2. ~3.37!

The evolution in the third regime,cs
250, is as before. The

restoring force in the oscillator equation~3.28! vanishes, the
fluid moves with constant peculiar velocity,ĉ(h)5ĉ2 , and
the density contrast grows linearly in time.

After the transition (h.h1 , fourth regime! the universe
is radiation dominated (cs

251/3) and the solutions are osci
lations with amplitudeAout5A1 . The amplification of peaks
in the outgoing amplitudeAout is given by Aoutupeaks

5ĉ2
maxkDh,

Aout

Ain
U

peaks

5
Apb

31/4

~Cb!b

G~b11!sinbp
~kh2!b21/2kDh.

~3.38!

The dependence on the latent heat is encoded in the dur
Dh of the transition.C andb are determined by the norma
ization and the power law forcs(h) shortly before the onse
04351
ion

of the first-order phase transition, Eq.~3.33!. Replacingb by
g ~5the exponent in the QCD fit to the entropy density! the
amplification factor is

Aout

Ain
U

peaks

5S k

k2
D ~3g11!/@2~g11!]

~3.39!

for large k. Since 0,g,1, the exponent of the power law
varies between 1/2 and 1. The normalization of the pe
amplification for largek is encoded ink2 . In our fit to lattice
QCD we takeg51/3, and henceb51/4,

Aout

Ain
U

peaks

5S k

k2
D 3/4

. ~3.40!

For RL50.2, k2 corresponds to a CDM mass ofM252
310210M ( . The spectrum for this case together with t
asymptotic envelope is plotted in Fig. 6.

3. Crossover

In the case of a crossover, the amplification is occurr
for scales around the Hubble radius at the transition on
Subhorizon scales always stay in the WKB-regime a
therefore the spectrum is flat for these scales. However,
amplitude for subhorizon scales is damped during the ph
transition. The same damping occurs in the case of a fi
order phase transition. It has been neglected in the ana
discussion, since it is a small correction. The time evolut
of the density contrast of subhorizon scales, including dam
ing terms, reads

d91~113cs
226w!

a8

a
d81v2~h!d50. ~3.41!

The friction term in this equation can be eliminated if w
write the density contrast asd5:@(A11w)/a8#u(h). Insert-
ing this ansatz into Eq.~3.41!, using the Friedmann equatio
and w853aH(11w)(w2cs

2), we obtain an undamped os
cillator equation with frequencyv(h)5kcs(h) for the quan-
tity u(h). For a crossover the sound velocity never vanish
and subhorizon modes always satisfy the WKB-conditio
Therefore, we obtain, for the density contrast and the pe
liar velocity,

d52
Ain

~3cs
2!1/4

ain8

a8

A3~11w!

2
cosE v~h!dh

ĉ5Ain~3cs
2!1/4

ain8

a8

A3~11w!

2
sinE v~h!dh.

~3.42!

The reduction of the amplitude of subhorizon scales is giv
by

Aout

Ain
5

~Ha2! in

~Ha2!out
5S g1

g2
D 1/6

. ~3.43!

Therefore the subhorizon amplitudes are reduced to 83%
their initial value. This damping is a general feature appe
7-13
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ing whenever the number of degrees of freedom is redu
Also in the case of a first-order transition, this damping fa
tor should be taken into account. However, it changes
huge amplifications merely by the constant factor 0.83.

D. Analytic solution for CDM

Cold dark matter is assumed to be the major matter c
tent of the universe today. At the time of the QCD transitio
however, the contribution of CDM to the total energy dens
was negligible,rCDM/rRAD5a/aequality'1028. We consider
a type of CDM which is non-relativistic (p!r) at the QCD
transition and which is only coupled via gravity to the rad
tion fluid. CDM moves in the external gravitational potent
provided by the dominant radiation fluid. During the QC
transition, the big amplifications of the density contrast in
radiation fluiddRAD leads to a big amplification in the grav
tational potential, i.e., the force term in the Euler equat
for CDM. The CDM is accelerated to higher velocities at t
end of the transition. Therefore, we also get peaks and
in the cold dark matter fluid.

The subhorizon evolution of CDM in a purely radiatio
dominated universe is just inertial motion. This can be s
from the Euler equation~3.17!: The sound velocity of cold
dark matter is zero,cs

2[0, and the gravitational potentiala is
given using the Poisson equation~3.18! for the dominant
density contrastdRAD, Eq. ~3.30!. In the leading order inx
5k/H, the gravitational force can be neglected and the s
horizon evolution of the CDM velocity is obtained:

ĉCDM5C
1

x
. ~3.44!

The velocity of CDM in a radiation dominated universe ju
redshifts to zero on subhorizon scales; see Fig. 9. HereC is
an integration constant of orderAin . The corresponding evo
lution of the density contrastdCDM follows from the conti-
nuity equation~3.16!,

FIG. 9. The time evolution of the peculiar velocity,ĉCDM, of the
kinetically decoupled cold dark matter fluid~axions or primordial
black holes! and the external gravitational potential gradie
(kphys/H)a for the modek/k1537 in the uniform expansion gauge
a is provided by the radiation fluid. During the QCD transition
the bag model—marked by the 2 vertical lines—the cold dark m
ter fluid is accelerated by the gravitational force.
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dCDM5C ln x1D. ~3.45!

This logarithmic growth ofdCDM can be seen in Fig. 10
before and after the transition. The shape ofdCDM can also
be seen in the transfer functions, Figs. 5, 6, 7 on scales ab
the horizon scaleM1 .

During a first-order QCD transition the evolution of th
gravitational potential is dominated by the linear growth
time of dRAD, Eq.~3.30!. From the Poisson equation~3.18! it
follows that the gravitational potential grows linearly in tim

a52
3

2
H~h2h2!SHk D ĉ2

RAD ; ~3.46!

see Fig. 9. As before, we will take the transition time to
short compared to the Hubble timeDt,H21; henceDh
,H21. The gravitational force in the Euler equation~3.17!
and hence the fluid acceleration for CDM also grow linea
in time during the transition. The fluid velocity grows qu
dratically,

ĉ1
CDM5

3

4
@HDh#2ĉ2

RAD1ĉ2
CDM . ~3.47!

The initial CDM velocity ĉ2
CDM is given by Eq.~3.44!. On

scales well below the horizon the velocity is redshifted
small values and can be neglected. However, on subhor
scales closer to the horizon the initial velocity dominat
because@H(Dh)#2'0.1(0.01) for the bag model~lattice fit!
is small. According to the continuity equation~3.16! the den-
sity contrastdCDM grows cubically:

d1
CDM5d2

CDM1
1

4 S k

HD @HDh#3ĉ2
RAD . ~3.48!

Because of the cube, the growth ofdCDM during the QCD
transition is small.

The major amplification effect comes from the higher v
locity at the end of the transition~see Fig. 9!, which leads to

t-

FIG. 10. The time evolution of the CDM density contrast,dCDM,
corresponding to the CDM velocity of Fig. 9. The major amplific
tion of dCDM is due to the higher peculiar velocity at the end of t
transition.
7-14
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dCDM~h!5ĉ1
CDMkh1 lnS h

h1
D1d1

CDM . ~3.49!

The amplification of the density contrast during the transit
is negligible compared to the enhancement of the veloc
This velocity enhancement during the transition leads to
additional logarithmic growth ofdCDM after the transition,

dCDM~h!5F3

4 S Dh

h1
D 2

ĉ2
RADGkh1lnS h

h1
D1d1

CDM .

~3.50!

Here we have used Eq.~3.47! to obtain the leading subhori
zon approximation. This additional logarithmic growth
dCDM is most clearly seen in Fig. 10.

The number of CDM peaks in the numerical result, Fi
5–7, is only half of the radiation peaks. This comes from
fact that the peaks indCDM lie on top of the logarithmic
curve, which is still the main contribution at the scales pl
ted. The dips correspond to modes, with a maximal nega
amplification.

The jump in the gravitational potential at the end of t
QCD transition in Fig. 9 follows from the Poisson equati
~3.18!. Sinced is continuous, butcs

2 jumps, the right hand
side abruptly changes by a factor of 2. Thereforea jumps by
the same factor.

Let us compare the ‘‘QCD peaks’’ in the CDM spectru
with the CDM spectrum without phase transition. In the lim
rCDM/rRAD!1 the exact solution to Eqs.~3.10!–~3.12! in
the radiation dominated universe without transition readsx
5k/H):

dCDM5
3Ain

2 H lnS x

)
D 1gE2

1

2
2CiS x

)
D

1
3

x216 F x

)
sinS x

)
D 1cosS x

)
D G J ~3.51!

ĉCDM5
3Ain

2x H 12
6

x216 F x

)
sinS x

)
D

1cosS x

)
D G J . ~3.52!

In the subhorizon limit this solution reduces to

~3.53!

~3.54!

which fixes the constantsC andD in Eqs.~3.44! and~3.45!.
We are now able to calculate the enhancement factor
04351
n
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n

.
e

-
e

E~h![F d transition

dno transition
GCDM

~h!. ~3.55!

Let us evaluateE at equality, i.e.,heq/h1'23108:

E~heq!'11F1

2 S Dh

h1
D 2

ĉ2
RADGkh1 lnS heq

h1
D Y lnS kheq

)
D .

~3.56!

The enhancement at the smallest scalesMCDM;10220M ( to
which our calculation applies and at some intermediate s
MCDM;10215M ( reads

E~heq!'H 600~20! bag model

10~2! lattice fit J for 10220~10215!M ( ,

~3.57!

where we have used Eq.~3.37! for the case of the lattice fit
This shows that both models lead to large enhancement
the CDM density contrast at equality for small enou
scales. For the lattice fit the enhancement becomes impo
at scales belowMCDM;10215M ( .

IV. IMPLICATIONS: CLUMPS IN CDM

A. Fate of the peaks in the radiation fluid

Before discussing CDM, let us show that the large pe
in the density spectrum of the hadron-lepton-photon fluid
not lead to any observable consequences.

1. Collisional damping at neutrino decoupling

The acoustic oscillations in the radiation fluid get damp
by neutrino diffusion at the time of neutrino decoupling. Th
damping is analogous to Silk damping at photon decoupli
The muon and tau neutrinos, respectively, which are coup
to the RAD fluid via neutral current interactions only, d
couple atTnmnt

dec ;2.2 MeV from the Hubble scaleRH , which

follows from Ref. @46#. The electron neutrinos interact b
charged and neutral currents and decouple slightly la
Tne

dec;1.4 MeV. By the time of neutrino decoupling at th

Hubble scale all inhomogeneities in the RAD fluid on sca
below '1026M ( in CDM mass are wiped out by neutrin
diffusion ~cf. the QCD horizon scale is 1028M ( in CDM
mass!, as shown below, Eq.~4.5!. Therefore our QCD peaks
cannot affect BBN.

It is important to distinguish the total decoupling of ne
trinos, i.e. neutrino decoupling at the Hubble scale, when
neutrino scattering rateG is less than the Hubble rate
Gn /H,1, from the neutrino decoupling with respect to
certain mode given byGn /vphys,1, when the typical neu-
trino scatters less than once during an acoustic oscilla
time of one particular mode. The mode-dependent dec
pling temperatureTn

dec(k) is related to the total decouplin
temperature by
7-15
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Tn i

dec~k!

Tn i

dec~H !
'S cskphys

H D
T5T

n i

dec~H !

1/4

. ~4.1!

This follows because the neutrino interaction ratesGn are
proportional toT5 and kphys}1/a}T, and henceGn /vphys
}T4.

To compute the damping of acoustic oscillations in t
radiation fluid by neutrino diffusion we follow Weinber
@47#. For a radiation fluid shear viscosity is dominant, bu
viscosity vanishes and heat conduction is negligible. T
shear viscosity is given by

hvisc5
4

15(
i

rn i
tn i

. ~4.2!

rn i
denotes the energy density of a neutrino species;tn i

is
the typical collision time. In the subhorizon limit the Navie
Stokes equation and the continuity equation give

d91
kphys

r tot
hvisckd81v2d50, ~4.3!

a damped oscillator. The damping factor for the modek at a
given conformal timeh is

D~k,h!5expF2
1

2 E0

hmax
~kphys/r tot!hvisckdh8G . ~4.4!

Here the upper limit of the integral is the conformal tim
hmax5Min@h,hdec(k)#, because collisional damping of th
g- l 6-hadron fluid by neutrinos ceases at decoupling of
modek considered. The damping per oscillation is largest
vtn[v/Gn'1, i.e. immediately before neutrino decouplin
for a given mode. But note that subhorizon modes
strongly damped long before the mode decouples from n
trinos, because a weak damping per oscillation is comp
sated by many oscillations per Hubble time.

For a first application we ask what modes are alrea
damped by the time of the QCD transition. At the QC
transition,T5T! , the interaction rates for electron and mu
neutrinos~respectively, antineutrinos! with the leptons are
the same,Gne

5Gn̄e
5Gnm

5Gn̄m
53.1GF

2T5 @46#, since elec-
trons and muons are still relativistic. Thet-neutrinos interact
only via neutral currents with the leptons and have a low
interaction rate,Gnt

5Gn̄t
50.6GF

2T5. Evaluating the damp-

ing integral, Eq.~4.4!, at T5T! we find that the damping
factor D(k,T!) is ,1/e for (kphys/H)T!

.104, which corre-

sponds toMCDM,10220M ( ; i.e., acoustic oscillations on
these small scales are wiped out before the QCD transit
Therefore no peaks in the RAD or in the CDM transfer fun
tion can develop below this scale. This small-scale cutof
independent of the bubble separation scale.
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Next we considerT,Tne

dec(H)'1.4 MeV and evaluate the

final damping factorD(k). At the time of neutrino decou-
pling we take a purely radiation dominated universe, cons
ing of g, e6 and n’s only to evaluate the damping. Muon
have disappeared sincemm@T and sincetm!tH . The inter-
action rate for electrons is still given by charged and neu
currents,Gne

5Gn̄e
51.3GF

2T5, whereas muon and tau neutr

nos have the same lower~neutral current! rate, Gnm
5Gn̄m

5Gnt
5Gn̄t

50.3GF
2T5 @46#. The final damping of a certain

scale~expressed in invariant CDM mass! from Eq. ~4.4! is

D5expF2S MD

M D 1/4G , ~4.5!

with the neutrino damping scaleMD'1.931026M ( in
CDM mass. This is 331025MH

CDM at T51.4 MeV and cor-
responds to length scalesl51/30RH .

We conclude that the large peaks in the spectrum of
radiation fluid are damped away by the time of BBN. T
large peaks in the RAD fluid generated by the QCD tran
tion do not give a new mechanism for inhomogeneous BB

2. Black hole formation at the QCD transition?

It was suggested in the literature@49,19,50# that the QCD
transition could lead to the formation of 1M ( black holes,
which could account for dark matter today. Jedamzik@19#
proposed to identify such black holes with the MACHO
observed by microlensing@22#. He pointed out that the for-
mation of black holes should be particularly efficient duri
the QCD epoch due to the significant decrease in the ef
tive sound speed.

In order to form a black hole in a radiation dominate
universe, the density contrast inside the Hubble radius sho
be in the range 1/3,dH,1 @51#. For an observable amoun
of 1M ( black holes today, i.e.VBH

(0)5O(1), thefraction of
energy density converted to black holes at the QCD tra
tion must beO(aQCD/aequality)'1028. For a Gaussian distri-
bution this requiresd rms'0.06 ~without including any en-
hancement from the QCD transition! @52#. The QCD
transition gives an enhancement factor~at the horizon scale!
of 2 for the bag model and of 1.5 for lattice QCD in ou
linear perturbation treatment, Figs. 5–7. This indicates a c
responding reduction in the required preexisting perturba
spectrum at the solar mass scale. Cardall and Fuller us
qualitative argument of Carr and Hawking@53# and the bag
model and also obtained a factor of 2 reduction in the
quired preexisting perturbation spectrum@54#. These QCD
factors of 1.5 or 2 are so modest that a preexisting Harris
Zel’dovich spectrum with COBE normalization is very fa
from giving a cosmologically relevant amount of black hol
@23#. One would have to put in a fine-tuned tilt (n21)
'0.4 to get the desired amount of black holes. However,
tilted spectrum would overproduce primordial black holes
scales which are only a factor 50 below the Hubble radiu
the QCD transition. Therefore a break in the preexist
7-16
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spectrum below the QCD scale would be required, a sec
fine-tuning.

We conclude that the QCD transition enhances the pr
ability of black hole formation, but the preexisting spectru
needs to be fine-tuned around the QCD scale and the m
effect would not be due to the QCD transition.

B. Kinetic decoupling of CDM

In Sec. III we established the generation of peaks in
CDM spectrum during a first-order QCD transition. Belo
we discuss the properties of the most prominent CDM c
didates at temperatures of the QCD scale. We show
weakly interacting massive particles, like the lightest sup
symmetric particle or a heavy neutrino, are kinetically tigh
coupled to the radiation fluid at the QCD transition and
included in the radiation fluid in our equations. Two CD
candidates that are kinetically decoupled from the radia
fluid and havep50 at the QCD epoch are the axion an
primordial black holes. In our figures and equations kine
cally decoupled CDM have been labeled by CDM for bre
ity.

1. Neutralinos and heavy neutrinos

We start our discussion with the lightest supersymme
particle@20#. In the minimal supersymmetric standard mod
this is the neutralino~we assume it is stable!. Constraints
from LEP 2 and cosmology, together with the assumption
universality at the GUT scale, show that its mass ismx

.42 GeV @55#. It is essential to distinguish between th
chemical freeze-out and the kinetic decoupling of neutr
nos. The chemical freeze-out determines the amount of n
tralinos today, and it happens when the annihilation rate
neutralinos drops below the Hubble rate,Gann/H,1. When
the neutralinos become nonrelativistic the rate for neutra
annihilation,Gann5^vsann&nx , is suppressed by the Boltz
mann factor in the number density of the neutralinos,nx

;(mxT)3/2exp(2mx /T). The freeze-out temperature of th
neutralino @20# is Tf;mx/20.2 GeV, and neutralinos ar
chemically decoupled at the QCD transition.

Kinetic decoupling, in contrast, is determined by the el
tic scattering between neutralinos and the dominant radia
fluid. The interaction rate for elastic scattering isGel5tcoll

21

5^vsel&n, wheren;T3 is the number density of relativisti
particles, e.g. electrons or neutrinos. An order of magnit
estimate shows thatsel is similar to the cross section for th
elastic scattering of neutrinos and neutrons,sel;GF

2T2 @48#.
We have to distinguish between the regime of perfect kin
coupling, i.e. neutralinos tightly coupled to the radiati
fluid, an intermediate regime where the neutralinos sca
elastically but the number of collisions is not sufficient
drag them along dissipationless, and the regime of kin
decoupling,Gel /H,1, which is roughly atT<1 MeV, since
the neutralino interacts weakly.

Let us estimate the regime where the neutralinos bel
to the perfect radiation fluid. Perfectness of a fluid~dissipa-
tionless! always refers to an external time scale,v21 of an
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acoustic oscillation or the Hubble time, etc. A fluid behav
as a perfect fluid, ifvt relax!1; i.e., the external time scale i
larger than the relevant relaxation time, the fluid is contin
ally in local thermal equilibrium, and no entropy productio
occurs. For the coupling of neutralinos to the radiation flu
the relaxation time is given byt relax5Ntcoll , whereN is the
number of collisions needed to completely change the m
mentum of the neutralino due to collisions with the radiati
fluid. The momentum transfer at a collision of a lepton w
the neutralino is of orderpl;T. The kinetic energy of the
neutralino is given by equipartition,px

2/2mx;T; hence its
momentum ispx;AmxT. The fractional change of the neu
tralino momentum from one collision at the QCD transitio
is dpx /px;AT/mx!1. After N collisions the total rms
change of momentum is (dpx /px)rms;ANT/mx. Local ther-
mal equilibrium is obtained if the bulk motion of the neu
tralinos is governed by the leptons; i.e., the fractional cha
of the neutralino momentum is of order 1. The number
collisions needed to completely change direction isN
;mx /T;300 for mx550 GeV andT5T! . The collision
time is given by the weak interactions rateGw5tcoll

21

;GF
2T!

5 , and the relaxation time is given by

t relax5Ntcoll;N31027tH , ~4.6!

with N;mx /T. If we compare the relaxation time with th
frequency of the acoustic oscillations, we find that the co
dition for a perfect fluid,vt relax!1, at the QCD transition is
satisfied for scalesl.ldec(T!)'1024RH (mx550 GeV).
Hence the neutralinos on these scales are part of the radi
fluid at the QCD transition. Below this scale, the neutralin
cannot follow the acoustic oscillations. On the other hand,
the Hubble scale the perfect kinetic coupling of neutralin
to the radiation fluid stops when the required relaxation ti
becomes more than a Hubble time,t relax.tH . This gives a
temperature ofTx

dec;10 MeV. Down to this temperature
neutralinos on the Hubble scale belong to the radiation flu

Another CDM candidate is a heavy neutrino withmZ/2
,mn,1 TeV @56#, where only the upper mass bound giv
cosmologically relevant CDM. Again, the kinetic decouplin
of these neutrinos happens way belowT! . Therefore, we
find that the neutralino or a heavy neutrino would be tigh
coupled to the radiation fluid during the QCD transition.

2. Axions

One candidate for CDM at the QCD epoch is the axi
@57#. We therefore find a new mechanism to make ax
clumps.

Axions could be the dominant matter today if their ma
is small, i.e.ma;1025 eV, which corresponds to a breakin
of the Peccei-Quinn~PQ! symmetry at the scalef PQ
;1012GeV @57#. These axions could be produced coheren
due to the initial misalignment of the axion field and by t
decay of axionic strings. The initially misaligned axion fie
starts to oscillate coherently when the axion mass has gr
to ma(T1);3H(T1), whereT1;1 GeV @58#. Thus, below
7-17
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T1;1 GeV the oscillating axion field evolves as CDM,ra
}a23.

In a first-order QCD transition axionic CDM falls freel
into the large potential wells from the dominant radiati
fluid. This produces peaks and dips in the spectrum of
ionic CDM. These peaks trigger the formation of clumps
axions with masses (10220– 10210)M ( shortly after equal-
ity; see Sec. IV C.

Another mechanism to produce clumps of axions has b
suggested in Ref.@59#. If the reheating temperature after in
flation is abovef PQ, the axion field is inhomogeneous o
scales larger thanRH(T1). Inhomogeneities in axion densit
evolve into axion miniclusters of typical massMmc
;10212M ( and typical radius Rmc;108 m;0.1R(

;1023 AU. These axion miniclusters may be enhanced
the free-fall of matter during a first-order QCD transitio
For these non-linear axion inhomogeneities a quantitative
sult cannot be obtained from the linear analysis of Sec.
Let us emphasize that, in contrast to Ref.@59#, we predict
axion clumps independently from the reheating tempera
after inflation.

3. Primordial black holes formed before the QCD transition

A further possibility for CDM that decoupled kineticall
long before the QCD transition is primordial black hol
produced before the QCD transition and therefore w
massesMBH!1M ( . In order to survive until today PBHs
should haveMBH.1015g'10218M ( . PBHs in the range
from 10218M ( to 10216M ( would radiate too strongly to be
compatible withg-ray observations@60#. The production of
PBHs arises naturally from hybrid inflationary scenar
@61,52#.

Our analysis of the QCD phase transition predicts t
these small black holes would be attracted by the large
tential wells in the radiation fluid and would therefore tend
form miniclusters of masses up to 10210M ( .

C. Clumps in CDM

CDM in the form of axions or PBHs is not subject
damping as the radiation fluid; thus the peaks in CDM w
survive until structure formation starts. The free stream
scale of CDM is way below our smallest scales, because
initial velocity of axions or PBHs is completely negligible
An overdensity of CDM in the form of axions or PBHs~or
any other matter that is kinetically decoupled at the QC
epoch! decouples from the cosmic expansion when its d
sity contrast becomes nonlinear, (dr/r)R;1 ~condition for
turnaround!. It collapses and virializes by violent gravita
tional relaxations and forms a clump of CDM. For spheric
collapse the final viral radius is half of the radius at tur
around@62#.

We take a COBE@45# normalized spectrum and allow fo
a tilt un21u<0.2. During the radiation dominated regim
(dr/r)k for CDM continues to grow logarithmically. In
(dr/r)R

2 another logarithm comes from summing modes
to k;1/R, whereR is the radius of the window function
The enhancement factorE of CDM density fluctuations dur-
ing the QCD transition has been obtained in Eq.~3.55!. Put-
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ting these factors together we obtain the amplitude of CD
perturbations of sizeR at the time of equality:

S dr

r D
R

CDM

~ teq!'231024S k

k0
D ~n21!/2F lnS k

keq
D G3/2

Ek~ teq!.

~4.7!

k0 denotes the comoving wave number of the mode cross
the horizon today. In the following we assumeV0h251/4,
and thus zeq'6000. For a CDM mass o
10215M ((10220M () a tilt of n2150.2 gives a factor'16
~23!. The logarithms contribute another factor'94 ~140!.
The enhancement factor has been calculated in Sec. III t
E(teq)'2 ~8! for the lattice QCD fit. Looking at 3s peaks we
find, without tilt (n2150),

S dr

r D
R

3s,n51

~ teq!'0.1~0.6! for M clump

510215M (~10220M (! . ~4.8!

This implies that these clumps become nonlinear atznl
'600 ~3600! and collapse to clumps of radiusRclump
'14R((0.04R() . With tilt ( n2150.2) we find

S dr

r D
R

3s,n51.2

~ teq!'2~16! for M clump

510215M (~10220!M ( . ~4.9!

These overdensities start to collapse even beforeteq because
locally CDM starts to dominate at;2Teq(16Teq) . This leads
to clump radii ofRclump'0.7R((0.003R() .

We conclude that the peaks in the CDM spectrum lead
clumps of masses (10220– 10210)M ( . Today, these clumps
would have a density contrast of 1010– 1017, where the lower
value corresponds to a 10215M ( clump from an untilted
CDM spectrum; the bigger value is for a 10220M ( clump
from a tilted CDM spectrum. The evolution of these clum
in the late stages of structure formation remains to be inv
tigated~disruption, mergers, etc.!.

For larger enhancement, e.g., if it should turn out that
latent heat is bigger than the value from present lattice Q
calculations, more compact clumps are possible. These c
be subject to femto-lensing@63#. With the values of our lat-
tice fit, the CDM clumps are not compact enough to
within the Einstein radius, which isRE;0.02R( for a
10215M ( clump.

The clumping of CDM changes the expected react
rates for some dark matter searches, because some o
rates depend on the space-time position of the detector,
or planet. Especially experiments looking for axion decay
strong magnetic fields@21,57# would not yield limits on the
axion mass. Maybe these experiments just tell us that we
not sitting in an axion cloud currently. These consequen
remain to be studied further.
7-18



o-
J
s
v

ns
the
y.
da-

he
.

AMPLIFICATION OF COSMOLOGICAL . . . PHYSICAL REVIEW D 59 043517
ACKNOWLEDGMENTS

We are very grateful to U. Heller and F. Karsch for pr
viding us with their lattice QCD data sets. We like to thank
A. Bardeen, V. Berezinsky, B. J. Carr, U. Heller, J. Ignatiu
P. Jetzer, K. Kajantie, F. Karsch, H. Markum, V. Mukhano
B

-
,

.

v.

er

p

04351
.
,
,

J. Silk, P. Sikivie, and N. Straumann for helpful discussio
and references to the literature. C.S. thanks J. Silk and
Center for Particle Astrophysics in Berkeley for hospitalit
D.J.S. and P.W. thank the Swiss National Science Foun
tion for financial support. D.J.S. would also like to thank t
Alexander von Humboldt foundation for financial support
D

.

@1# For recent reviews see K. Kanaya, Nucl. Phys. B~Proc.
Suppl.! 47, 144 ~1996!; E. Laermann,ibid. 63, 141 ~1998!.

@2# Y. Iwasaki et al., Z. Phys. C71, 343 ~1996!; Nucl. Phys. B
~Proc. Suppl.! 47, 515 ~1996!.

@3# Y. Iwasaki et al., Phys. Rev. D46, 4657 ~1992!; 49, 3540
~1994!; B. Beinlich, F. Karsch, and A. Peikert, Phys. Lett.
390, 268 ~1997!.

@4# C. Bernardet al., Phys. Rev. D54, 4585~1996!.
@5# J. W. Harris and B. Mu¨ller, Annu. Rev. Nucl. Part. Sci.46, 71

~1996!.
@6# J. Ignatiuset al., Phys. Rev. D49, 3854 ~1994!; 50, 3738

~1994!.
@7# M. B. Christiansen and J. Madsen, Phys. Rev. D53, 5446

~1996!.
@8# E. Witten, Phys. Rev. D30, 272 ~1984!.
@9# K. Sumiyoshi and T. Kajino, Nucl. Phys. B~Proc. Suppl.! 24,

80 ~1991!; P. Bhattacharjeeet al., Phys. Rev. D48, 4630
~1993!.

@10# J. H. Applegate and C. J. Hogan, Phys. Rev. D31, 3037
~1985!; J. H. Applegate, C. J. Hogan, and R. J. Scherrer,ibid.
35, 1151 ~1987!; G. M. Fuller, G. J. Mathews, and C. R. Al
cock,ibid. 37, 1380~1988!; R. A. Malaney and G. J. Mathews
Phys. Rep.229, 145 ~1993!.

@11# In-Saeng Suh and G. J. Mathews, Phys. Rev. D58, 123002
~1998!.

@12# C. Schmid, D. J. Schwarz, and P. Widerin, Phys. Rev. Lett.78,
791 ~1997!.

@13# E. R. Harrison, Phys. Rev. D1, 2726 ~1970!; Ya. B.
Zel’dovich, Mon. Not. R. Astron. Soc.160, 1P ~1972!.

@14# V. Mukhanov and G. Chibisov, Pis’ma Zh. E´ ksp. Teor. Fiz.
33, 549 ~1981! @JETP Lett.33, 532 ~1981!#; A. Starobinsky,
Phys. Lett.117B, 175~1982!; A. Guth and S.-Y. Pi, Phys. Rev
Lett. 49, 1110 ~1982!; S. Hawking, Phys. Lett.115B, 295
~1982!.

@15# J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, Phys. Re
28, 679 ~1983!.

@16# J. M. Bardeen, inCosmology and Particle Physics, edited A.
Zee ~Gordon and Breach, New York, 1989!; see also J. M.
Bardeen, Phys. Rev. D22, 1882~1980!.

@17# V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberg
Phys. Rep.215, 203 ~1992!.

@18# G. F. Smootet al., Astrophys. J.396, L1 ~1992!.
@19# K. Jedamzik, Phys. Rev. D55, 5871~1997!.
@20# G. Jungman, M. Kamionkowski, and K. Griest, Phys. Re

267, 195 ~1996!.
@21# P. Sikivie, Phys. Rev. Lett.51, 1415 ~1983!; C. Hagmann

et al., Phys. Rev. Lett.80, 2043~1998!.
@22# MACHO Collaboration, Astrophys. J.486, 697 ~1997!; EROS

Collaboration, Astron. Astrophys.324, L69 ~1997!.
@23# P. Widerin and C. Schmid, astro-ph/9801163, 1998.
@24# D. J. Schwarz, Mod. Phys. Lett. A13, 2771~1998!.
D

,

.

@25# A. Chodoset al., Phys. Rev. D9, 3471 ~1974!; T. De Grand
et al., ibid. 12, 2060 ~1975!; T. D. Lee,Particle Physics and
Introduction to Field Theory~Harwood Academic, Chur, Swit-
zerland, 1981!.

@26# G. Boyd et al., Phys. Rev. Lett.75, 4169~1995!; Nucl. Phys.
B469, 419 ~1996!.

@27# MILC Collaboration, C. Bernardet al., Phys. Rev. D55, 6861
~1997!.

@28# J. P. Blaizot and J. Y. Ollitrault, Phys. Rev. D36, 916 ~1987!.
@29# J. Engelset al., Phys. Lett. B396, 210 ~1996!.
@30# E. Farhi and R. L. Jaffe, Phys. Rev. D30, 2379~1984!.
@31# R. Pisarski and F. Wilczek, Phys. Rev. D29, 338 ~1984!; F.

Wilczek, Int. J. Mod. Phys. A7, 3911 ~1992!; K. Rajagopal
and F. Wilczek, Nucl. Phys.B399, 395 ~1993!.

@32# F. R. Brownet al., Phys. Rev. Lett.20, 2491~1990!.
@33# See e.g. D. H. Rischke and M. Gyulassy, Nucl. Phys.A597,

701 ~1996!.
@34# T. DeGrand and K. Kajantie, Phys. Lett.147B, 273 ~1984!.
@35# G. M. Fuller, G. J. Mathews, and C. R. Alcock, Phys. Rev.

37, 1380~1988!.
@36# L. D. Landau, E. M. Lifschitz, and L. P. Pitajewski,Lehrbuch

der theoretischen Physik~Akademie Verlag, Berlin, 1987!,
Vol. V.

@37# L. P. Csernai and J. I. Kapusta, Phys. Rev. D46, 1379~1992!.
@38# M. Hackelet al., Phys. Rev. D46, 5648~1992!.
@39# H. Kurki-Suonio, Nucl. Phys.B255, 231 ~1985!.
@40# K. Kajantie and H. Kurki-Suonio, Phys. Rev. D34, 1719

~1986!.
@41# K. Kajantie, Phys. Lett. B285, 331 ~1992!.
@42# M. Nagasawa and J. Yokoyama, Prog. Theor. Phys.97, 173

~1997!.
@43# M. Nagasawa and J. Yokoyama, astro-ph/9612014, 1997.
@44# J. Hwang, Astrophys. J.415, 486 ~1993!.
@45# C. L. Bennettet al., Astrophys. J.464, L1 ~1996!.
@46# A. Heckler and C. J. Hogan, Phys. Rev. D47, 4256~1993!.
@47# S. Weinberg, Astrophys. J.168, 175 ~1971!.
@48# D. L. Tubbs and D. N. Schramm, Astrophys. J.201, 467

~1975!.
@49# M. Crawford and D. N. Schramm, Nature~London! 298, 538

~1982!.
@50# K. Jedamzik, astro-ph/9805147, 1998.
@51# D. K. Nadezhin, I. D. Novikov, and A. G. Polnarev, Astron

Zh. 55, 216~1978! @Sov. Astron.22, 129~1978!#; G. V. Bick-
nell and R. N. Henriksen, Astrophys. J.232, 670 ~1979!.

@52# J. S. Bullock and J. R. Primack, Phys. Rev. D55, 7423~1997!.
@53# B. J. Carr and S. W. Hawking, Mon. Not. R. Astron. Soc.168,

399 ~1974!.
@54# C. Y. Cardall and G. M. Fuller, astro-ph/9801103, 1998.
@55# J. Ellis et al., Phys. Lett. B413, 355 ~1997!; Phys. Rev. D58,

095002~1998!.
7-19



ic

.

.

SCHMID, SCHWARZ, AND WIDERIN PHYSICAL REVIEW D59 043517
@56# J. Ellis, inCosmology and Large Scale Structure, Proceedings
of the Les Houches Summer School of Theoretical Phys
Les Houches, 1993, edited by R. Schaefferet al. ~Elsevier,
Amsterdam, 1996!, Session, LX, p. 825.

@57# J. E. Kim, Phys. Rep.150, 1 ~1987!; M. S. Turner,ibid. 197,
67 ~1990!; G. G. Raffelt, ibid. 198, 1 ~1990!;
astro-ph/9707268, 1997; P. Sikivie, hep-ph/9611339, 1996

@58# D. Gross, R. Pisarski, L. Yaffe, Rev. Mod. Phys.53, 43
~1981!; M. S. Turner, Phys. Rev. D33, 889 ~1986!.

@59# C. J. Hogan and M. J. Rees, Phys. Lett. B205, 228 ~1988!; E.
Kolb and I. I. Tkachev, Phys. Rev. Lett.71, 3051 ~1993!;
04351
s,
Phys. Rev. D49, 5040~1994!; Astrophys. J.460, L25 ~1996!.

@60# B. J. Carr and J. E. Lidsey, Phys. Rev. D48, 543 ~1993!; B. J
Carr, J. Gilbert, and J. Lidsey,ibid. 50, 4853~1994!.
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