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Time varying speed of light as a solution to cosmological puzzles
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We consider the cosmological implications of light travelling faster in the early Universe. We propose a
prescription for deriving corrections to the cosmological evolution equations while the speed of light
changing. We then show how the horizon, flatness, and cosmological constant problems may be solved. We
also study cosmological perturbations in this scenario and show how one may solve the homogeneity and
isotropy problems. As it stands, our scenario appears to most easily produce extreme homogeneity, requiring
structure to be produced in the standard big bang epoch. Producing significant perturbations during the earlier
epoch would require a rather careful design of the functif). The large entropy inside the horizon nowa-
days can also be accounted for in this scendB86556-282199)07802-9

PACS numbds): 98.80.Cq, 95.30.5f

I. PUZZLES OF THE BIG BANG MODEL tion dominated at early times. We also assume that Ein-
stein’s gravity is left unchanged, in a sense made precise in

Cosmologists have long been dissatisfied with the “stanSec. IV. The geometry and expansion factor of the Universe
dard big bang”(SBB) model of the Universe. This is not due are therefore the same as in the SBB. However, Itical
to any conflict between the big bang theory and observationgpeed of light, as measured by free falling observers associ-
but because of the limited scope offered by the SBB to exated with the cosmic expansion, varies in time, decelerating
plain certain striking features of the Universe. From the SBBTOM a very large value to its current value.
perspective the homogeneity, isotropy, and “flatness” of the ~We discuss below how varying speed of lighSL) mod-
Universe and the primordial seeds of galaxies and othefls might resolve the same cosmological puzzles as inflation
structure are all features which are “built in” from the be- and offer a resolution to the cosmological constant problem
ginning as initial conditions. Cosmologists would like to ex- @S Well. We shall not dwell on the possible mechanisms by
plain these features as being the result of calculable physic&reans of which the speed of light could have changed.
processes. A great attraction of the inflationary cosmologieRather we wish to concentrate on the conditions one should
[1] is that they address these issues by showing on the bad@P0ose on VSL models for their cosmological implications
of concrete calculations that a wide variety of initial condi- {0 be interesting. This phenomenological approach should be
tions evolve, during a period of cosmic inflation, to reflect"€garded as a curiosity, which, we hope, will prompt further
the homogeneity, isotropy, flatness and perturbation Spe(yyork towards_ an ac_tual theory in which the physical basis of
trum that we observe today. VSL models is realized. _

So far, all attempts to achieve this kind of improvement ~One may doubt that such a self-consistent theory could
over the SBB have wound up taking the basic inflationaryeVer be constructed. We therefore feel forced to transcend
form, where the observable Universe experiences a period ¢f€ Scope of this paper and discuss essential aspects of such
“superluminal” expansion. This is accomplished by modi- & theory. We find it befitting to start our discussion with an
fying the matter content of the Universe in such a way tha@Ssessment of the experimental meaning of a vawyifgec.
ordinary Einstein gravity becomes repulsive and drives inflall). We also need to be more specific 'about VSL theories in
tionary expansion. This process is in many ways remarkablfrder to tackle the flatness, cosmological constant, homoge-
straightforward and has found numerous realizations over thBeity, and entropy problems. In Sec. IV we state what is
years([2—-5], etc), although it might still be argued that a actually requwed. from any ySL theory to solve these prob—
truly compelling microscopic foundation for inflation has yet lems. However, in Appendix A we lay out the foundations

to emerge. for such a theory.
One interesting question is whether inflation is tight
solution to the cosmological puzzles. Is inflation really what |, MEANING OF A VARIABLE SPEED OF LIGHT

nature has chosen to do? When this matter is discussed there
is a notable absence of any real competition to inflation, and We first address the question of the meaning of a varying
this must be counted in inflation’s favor. However, we be-speed of light. Could such a phenomenon be proved or dis-
lieve the picture would become much clearer if some kind ofproved by experimentPhysicallyit does not make sense to
debate along these lines were possible. To this end, we disalk about constancgr variability of any dimensional “con-
cuss here a possible alternative to inflationary cosmologgtant.” A measurement of a dimensional quantity must al-
which, while not as well developed as today’s inflationaryways represent its ratio to some standard unit. For example,
models, might lead to some illuminating discussion. the length of my arm in meters is really the dimensionless
In this alternative picture, rather than changing the matteruantity given by the ratio of the arm length to the length of
content of the Universe, we change the speed of light in the meter stick. If the ratio varied, ommuld interpret this as a
early Universe. We assume that the Universe matter contenriation in either(or both of the two lengths. In familiar
is the same as in the SBB, that is, that the Universe is radissituations, there is usually a preferred interpretation which
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distinguishes itself by giving a simpler view of the world. duality, between theories based on any two choices as far as
Choosing a given person’s arm as a standard of length wouldimensionless observations are concerned. However, the
require a whole range of simple objects to undergo peculiaequations for two theories which are observationally equiva-
dynamics, whereas assuming the meter stick to be constalgnt, but which have different dimensional parameters vary-
would usually give a much simpler picture. ing, will in general not look the same, and again simplicity
Nonetheless, a given theory of the world requires dimenwill end up being an important factor in making a choice
sional parameters. If these parameters varied, how would théetween theories. In what follows, we will prefer to work
process show up in experiments? Suppose we set out to meaith models which have the simplicity of “minimal cou-
sure the speed of light. For this one needs a length measuping.”
(rod) and a clock. In a world described by a theory with time  Let us illustrate this point with a topical example. There
varying dimensional parameters, it is quite possible that théas been a recent claifi0] of experimental evidence for a
rods and clocks, as well as the photon speeds, could all varyime changing fine structure constant=e?/(4mhc). Al-
Because measurements are fundamentally dimensionless, tt®ugh the ongoing chase for systematics precludes any de-
experimental result will only measure some dimensionless$initive conclusions, let us assume for the purpose of argu-
combination of the fundamental constants. Let us sketch aent that the effect is real.
simple illustration: Suppose we measure time with an atomic In building a theory which explains a variabdewe must
clock. Taking the Rydberg energy [Er  make a decision. We couldostulatethat electric charge
=m.e*/2(4mey)’h?] to represent the dependence of all changes in time or, say, thAt must change in time. Bek-
atomic energy levels on the fundamental constants, the osciénstein11] constructs a theory based on the first alternative.
lation period of the atomic clock will beci/Eg. Likewise, He postulates a Lorentz invariant action, which does not con-
taking the Bohr radius gy=4me h2/mee?) to reflect the serve electric charge. Our theory is based on the second
relationship between the lengths of ordinary objéntade of choice. We postulate breaking Lorentz invariance, a chang-
atoms and the fundamental constants, the length of our rodng 7c, and consequently non-conservation of energy. Any
is «ay. Thus a measurement af with our equipment is arguments against the experimental meaning of a chamging

really a measurement of the dimensionless quantity can also be directed at Bekensteins’ changirtyeory, and
such arguments are in both cases meaningless. In both cases
c 8meg the choice of a changing dimensional “constant” reverts to
ao/(RIER) o @ the postulates of the theory and is natpriori, an experi-

mental issue. The observables are always dimensionless.
essentially the fine structure constant. We could of coursé&lowever, theminimally coupledtheories based on either
use other equipment which depends in different ways on thehoice arenot dual (as we shall point out in Appendix)A
fundamental dimensionless constants. For example, pendfror this reason one might prefer one formulation over the
lum clocks will necessarily involve Newton's consta@t other.
Different experiments will result, which measure different  Finally, and on a different note, suppose that future ex-
dimensionless combinations of the fundamental dimensiondleriments were to confirm that not ondy changes in time,
constants. Our conclusion that physical experiments are onljut also that there are time variations in dimensionless cou-
sensitive to dimensionless combinations of dimensional conpling constants based on other interactioag=g?/(%c).*
stants is hardly a new one. This idea has been often stress&dippose further that the ratios between the various constants,
by Dicke (e.g.[6]), and we believe this is not controversial. Iij=a;/«a;, were observed to be constant. Choosing what

Thus, speaking in theoretical terms of time varying di-dimensional constants were indeed constants would still be a
mensional constants can lead to problems. To give an hignatter of taste. One could still define a theory in which the
torical example, Refd.7, 8] were written claiming stringent various chargesg; change in time, with fixed ratios, arftt
experimental upper bounds on the time variability of the di-remains constant. However, it would perhaps start to make
mensional quantityic. In these the produd\ was found to more sense, merely for reasons of simplicity, to postulate
be the same for light emitted at very different redshifts. Frominstead a changingc.
the deBroglie relatioic=EN one infers the constancy of Therefore, even though a variabtecannot be made a
fic. Bekenstein gives an illuminating discussion of the fal-dimensionless statement, evidence in favor of theoretical
lacy built into this argumenf9]. Built into Ex1/a and A models with varyingc could be accrued if the othe;

«a is the assumption thdtc is constant, for otherwise the changed, with fixed ratios.

wave vectok” and the momentum vect@* could not both

be parallel transported. Hence the experimental statement Ill. COSMOLOGICAL HORIZONS
that#c is constant is circular. ) .

What would we do therefore if we were to observe chang- Perhaps the most puzzling feature of the SBB is the pres-
ing dimensionless quantities? Any theory explaining the phe®nce of cosmological horizons. At any given time any ob-
nomenon would necessarily have to make use of dimensional
guantities. It woulda priori be a matter of choice, prejudice,
or convenience to decide which dimensional quantities are in writing these constants we have assumed that the couplings of
variable and which are constafds we mentioned in the these interactions are defined in terms of “chargésith dimen-
illustration above There would be a kind of equivalence, or sions of[E]¥qL]?.
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TIME TIME

US NOW US NOW

TWO REGIONS IN OUR PAST HORIZON AT
WHICH ARE CAUSALI PAST LIGHT CONE ¢ PAST LIGHT CONE
DISCONNECTED
SOME TIME IN QUR PAST
BIG BANG
BIG BANG SPACE

SPACE
) ) . . . FIG. 2. Diagram showing the horizon structure in a SBB model
FIG. 1. Conformal diagranflight at 45° showing the horizon i, which at timet, the speed of light changed from™ to c*

structure in the SBB model. Our past light cone contains regions<c~ | jght travels at 45° aftet, but it travels at a much smaller
outside each others’ horizon. angle with the space axis befotg. Hence it is possible for the

horizon att, to be much larger than the portion of the Universe.at
server can only see a finite region of the Universe, withintersecting our past light cone. All regions in our past have then
comoving radius',=c7, where 5 denotes conformal time aways been in causal contact.

and ¢ the speed of light. Since the horizon size increases ) ] o ]
with time, we can now observe many regions in our pasf"’herefeq is the redshift at matter-radiation equality, and
light cone which are causally disconnected, that is, outsid@nd Tp are the Universe and the Planck temperatures after
each others’ horizofsee Fig. 1 The fact that these regions the phase transition. If; ~Tp , this implies light travelling
have the same propertig®.g. cosmic microwave back- more than 30 orders of magnitude faster before the phase
ground temperatures equal to a few parts iR)i§ puzzling  transition. It is tempting, for symmetry reasons, simply to
as they have not been in physical contact. This is a mysterpostulate that™ = but this is not strictly necessary.
one may simply relegate to the setting up of initial conditions
in our Universe. IV. PRESCRIPTION FOR MODIFYING PHYSICAL LAWS

One may however try to explain these very peculiar initial WHILE THE SPEED OF LIGHT IS VARYING
conditions. The horizon problem is solved by inflationary i ) ) )
scenarios by postulating a period of accelerated or superlu- Hidden in the above argument is the assumption that the
minal expansion, that is, # is the expansion factor of the 9&ometry of the Universe is not affected by a changing
Universe, a period witta>0. The Friedman equations re- We have allowed a changingto do the job normally done
quire that the strong energy conditignt 3p/c>=0 must by “superluminal expansion.” _To enhance this effect we
then be violated, whergc? andp are the energy density and have forced the geometry to stll_l be the SBB geometry. We
pressure of the cosmic matter. This violation is achieved by'0W €laborate on this assumption. We will propose a pre-
the inflaton field. Ifa>0 for a sufficiently long period, one SCription for how, in general, to modify gravitational laws
can show that cosmological horizons are a post-inflation il While ¢ is changing. This prescription is merely the one we
lusion, and that the whole observed Universe has in fact begigund the most fertile. In Appendix A we describe in detail a
in causal contact since an early time. theory Wh|9h realizes _th|s_ prescription. _

A more minimalistic way of solving this problem is to The_baS|c assumpuon_ls that a varlabl_eloes not induce
postulate that light travelled faster in the early Universe COIrections to curvature in the cosmological frame and that
Suppose there was a “phase transition” at titpavhen the ~ EINStein’s equations, relating curvature to stress energy, are

speed of light changed from™ to c*. Our past light cone still valid. The rationale behind this postulate is that
intersecte =t at a sphere with comoving radius=c* (7, changes in the local Lorentzian frames associated with cos-

— 7.), wherez, and 7, are the conformal times now and at mological expansion. The effect is a special relativistic ef-

t.. This is as much of the Universe after the phase transitiof€Ct: not a gravitational effect. Therefore curvature should

as we can see toddg2]. On the other hand the horizon size N0t fe€l a changing. _ , ,
at t, has comoving radius,=c- 7. If c-/c*> 5ol7 The previous statement is not covariant. However, intro-
Cc [ [}

thenr<r,,, meaning that the whole observable Universe to-dUCing @ functiorc(t) is not even Lorentz invariant. So it is
not surprising that a favored gauge, or coordinate choice,

day has in fact always been in causal confaete Fig. 2 - . - :
must be made, where the functiaft) is specified and in

Some simple manipulations show that this requires ) :
which the above postulate holds true. The cosmological
frame (with the cosmological time) provides such a pre-

_ + ferred frame.
c 1 T. loical . h | d imoli
log;o—> 32— §|09102eq+ 5'0910T—+ 2) In a cosmological setting the postulate proposed implies
c P that Friedman equations remain valid even wien0:
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a\’> 8mG  Kc? 2
a ~ 3 & ®
a_ 4nG L3P .
a~ 3 |PT3e @

where, we recallpc? and p are the energy and pressure
densities,K=0, =1 and G the curvature and the gravita-
tional constants, and the overdot denotes a derivative wit

respect to proper time. If the Universe is radiation domi-

nated, p=pc?/3, and we have as usuakt?. We have
assumed that a frame exists where c(t), and identified
this frame with the cosmological frame.
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V. FLATNESS PUZZLE

We now turn to the flatness puzzle. The flatness puzzle
can be illustrated as follows. Let, be the critical density of
the Universe:

3 2

Pe=8 4G

a
a

(6)

that is, the mass density correspondingkte 0 for a given
value ofa/a. Let us definee=Q—1 with Q=p/p.. Then

: ).

If p=wpc? (with w=0), using Eqs(3), (4), and(5) we have

PP

P Pc

e=(1l+e) (7)

The assumption that Einstein’'s equations remain unaf-

fected by decelerating light carries with it an important con-
sequence. Bianchi identities apply to curvature, as a geo-
imply stress energy

metrical identity. These then
conservation as an integrability condition for Einstein’s
equations. Ifc#0, however, this integrability condition is

not stress energy conservation. Source terms, proportional
¢/c, come about in the conservation equations.

Seen in another way, the conservation equations imply aA"d SO

equation of motion for free falling point particles. This is
normally the geodesic equation, but now source terms wil

appear in the geodesic equation. Clearly a violation of the

weak equivalence principle is implied whikeis changing

[13]. This, of course, does not conflict with experiment, as

we takec# 0 only in the early Universe, possibly for only a
very short time(such as a phase transitjon

LTI 8
,- 3w m g 2o ®
Po a[2+(1+ )(1+3w)] G 9)
—_—— — W —_—
to pc @ ¢ G
, a ¢
' e=(1+e)e_(1+3w)+2_e. (10)

In the SBBe grows likea? in the radiation era, and like in
the matter era, leading to a total growth by 32 orders of
magnitude since the Planck epoch. The observational fact

Although this is a general remark we shall be concernedhate can at most be of order 1 nowadays requires that either

mostly with violations of energy conservation in a cosmo-
logical setting. Friedman equations can be combined into

“conservation equation” with source terms iic andG/G:

G 3Kc? ¢

p
PG 4nGatc

-

Pt

'+3a
P73

©)

In a flat universe K=0) a changing does not violate mass
conservation. Energy, on the other hand, is proportional t
c2. If, however,K #0, not even mass is conserved.

In Eqg. (5) we have included the effects @& under the

same postulate merely for completeness. In such a formulas,gres that<1 nowadays, ife~

tion VSL does not reduce to Brans-Dicke theory when

(6]

e=0 strictly, or an amazing fine-tuning must have existed in
the initial conditions €<10™%* att=tp). This is the flatness
puzzle.

The e=0 solution is in fact unstable for any matter field
satisfying the strong energy conditiontBw>0. Inflation
solves the flatness problem with an inflaton field which sat-
isfies 1+ 3w<0. For such a fielce is driven towards zero
instead of away from it. Thus inflation can solve the flatness
puzzle.

As Eg. (10) shows a decreasing speed of ligsi¢<0)
would also drivee to 0. If the speed of light changes in a
sharp phase transition, wifle/c|>a/a, we can neglect the
expansion terms in Eqg(10). Then e/e=2c¢/c so thate
«c?. A short calculation shows that the conditié®) also
1 before the transition.
The instability of theK # 0 universes whil&/c<0 can be

=0 andG+0. This is because we postulate that Friedmanrexpected simply from inspection of the nonconservation

equations remain unchanged, which implies that the conse
vation equations acquire terms iand G. In Brans-Dicke

Equation(5). Indeed, ifp is above its critical value, thel
=1, and Eq.(5) tells us that mass is taken out of the Uni-

theory one postulates exactly the opposite: the conservatiorerse. If p<p., thenK=—1, and then mass is produced.
equations must still be valid, so that the weak equivalenc&ither way the mass density is pushed towards its critical
principle is satisfied. While we could have taken this stancevalue p.. In contrast with the big bang model, during a

for ¢ as well we feel that violation of energy conservation is
the hallmark of changing. Variablec must break Poincare

period with¢/c<0 only theK=0 universe is stable.
Note that with the set of assumptions we have used a

invariance, for which energy is the Noether current. BarrowchangingG cannot solve the flatness probldof. [15—-17).

[14] has proposed a formulation of VSL which has the cor-
rect Brans-Dicke limit.

We have assumed in the previous discussion that we are
close, but not fine-tuned, to flatness before the transition. It is
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curious to note that this need not be the case. Suppose in- a P G  3Ke? &

stead that the Universe acquires “natural initial conditions” pmt3=| pmt —r;) =—prp—p=t—F—=-. (13
(e.g. e~1) well before the phase transition occurs. If such a ¢ G 4mnGa’c
universes are closed, they recollapse before the transition. |f A is indeed a constant, then, from H4.2),

they are open, then they approach — 1. This is the Milne

universe, which in our cas&onstantG) may be seen as PA ¢ G

Minkowski space-time. Such a curvature dominated universe —=2-——=. (14
is essentially empty, and a coordinate transformation can PA ¢c G

transform it into Minkowski space-time. Inflation cannot
save these empty universes, as can be seen fronilEyg.
Indeed, even if ¥ 3w<0, the first term will be negligible if
e~—1. This is not true for VSL: the second term will still ) a Cl+ey
push ane=—1 universe towardg=0. ex=en|37(1+w)+2-———). (15
Heuristically this results from the fact that the violations
of energy conservation responsible for pushing the Univers&hus, in the SBB modek, increases like* in the radiation
towards flatness do not depend on there being any matter ira and likea® in the matter era, leading to a total growth by
the Universe. This can be seen from inspection of &y. 64 orders of magnitude since the Planck epoch. Again it is
In this type of scenario it does not matter how far beforepuzzling thate, is observationally known to be at most of
the transition the “initial conditions” are imposed. We end order 1 nowadays. We have to face another fine-tuning prob-
up with a chaotic scenario in which Darwinian selection getdem in the SBB model: the cosmological constant problem.
rid of all the closed universes. The open universes become |f ¢=0, the solutione,=0 is in fact unstable for anw
empty and cold. In the winter of these universes a phase- —1. Hence violating the strong energy conditior 3w

transition inc occurs, producing matter, and leaving the uni- >0 would not solve this problem. Even in the limiting case
verse very fine tuned, indeed as an Einstein—de Sitter uniy=—1 the solutione, =0 is not an attractore, would

If we defineey=py/pm, We then find, after some straight-
forward algebra, that

verse(EDSU). merely remain constant during inflation, then starting to
grow like a* after inflation. Therefore inflation cannot “ex-
VI. COSMOLOGICAL CONSTANT PROBLEM plain” the small value ofe,, as it can withe, unless one

violates the dominant energy conditior= — 1.
There are two types of cosmological constant problems, However, as Eq(15) shows, a period witlt/c<0 would
and we wish to start our discussion by differentiating themdrive e, to zero. If the speed of light changes suddenly

Let us write the action as (|¢/c|>ala), then we can neglect terms &la, and so
: —
c*(R+2A,) €A _,C
SZJ' d%\/—g(TGl-I—EM-FEAZ (11 ex(l+ey) 2C l+e (16

which when combined witle/ e=2c¢/c leads to
whereL,, is the matter field Lagrangian. The termAn is a
geometrical cosmological constant, as first introduced by €A € (17)

o .
Einstein. The term in\, represents the vacuum energy den- l+ey, 1+e

sity of the quantum field$18]. Both tend to dominate the ) ) )
energy density of the Universe, leading to the so-called cos! N€ €xact constraint on the required change gepends on
mological constant problem. However, they represent twdhe initial conditions ine andzfA- In any case once bota
rather different problems. We shall attempt to solve the prob=1 ande,~1 we havee,=c®. Then we can solve the cos-
lem associated with the first, not the second, term. Usuallynological constant problem in a sudden phase transition in
one hopes that the second term will be cancelled by an agvhich
ditional counter-term in the Lagrangian. In the rest of this _ +
paper it i_s the geometrical cosmological constant that is un- Iogloc—+>64— E|09102e +2 |0910—C+- (18)
der scrutiny. c 2 a T

If the cosmological constant #0, then the argument in _ o ) o
the previous section still applies, with=p,+p,, Where This condition is considerably more restrictive than E),

pum is the mass density in normal matter, and and means a change inby more than 60 orders of magni-
tude, if T, =T, . Note that once again a period wit/G
Ac2 would not solve the cosmological constant problem.
PATg G (12 Equations(10) and (15) are the equations one should in-
a

tegrate to find conditions for solving the flatness and cosmo-
logical constant problems for arbitrary initial conditions and
is the mass density in the cosmological constant. One stillvith arbitrary curveg(t). They generalize the conditioi2)
predicts Q,,+Q =1, with Q,,=pn/p: and Qy=py/pc. and (18) which are valid only for a starting point witla
However, now we also have ~1 ande,~1 and for a step function(t).
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As in the case of the flathess problem we do not need to a’ c’
impose “natural initial conditions” €,~1) just before the v+ E_ZF)U
transition. These could have existed any time before the tran-
sition, and the argument would still go through, albeit with a ck 3afa c
rather different overall picture for the history of the Uni- “l1+w 2k a E”L ?) A
verse.
If ex~1 well before the transition, then the Universe N ke?w ka2 3 2 Wil
soon becomes dominated by the cosmological constant. We 1+w 1+w k% a T
have inflation. The curvature and matter will be inflated (20)

away. We end up in a de Sitter universe. When the transition
is about to occur it finds a flat universe=£0), with no  wherek is the wave vector of the fluctuation, is the en-
matter p,=0), and with a cosmological constant. If we tropy production rate]I; the anisotropic stress, amd the
rewrite Eq. (15) in terms of e,=pn/pa, for e=0 and speed of sound, according to definitions spelled out in Ap-
|c/c|>ala, we have e,=—2(c/c)(1+¢,). Integrating pendix B.

leads to H ecc” 2. We conclude that we do not need the  In the case of a sudden phase transition (£§) shows us
presence of any matter in the Universe for a VSL transitiorthat Ac, regardless of the chosen equations of statd for
to convert a cosmological constant dominated universe into andIl;. Hence
EDSU universe full of ordinary matter. This can be seen N N
from Egs.(13), (14). A sharp decline irc will always dis- A_:
charge any vacuum energy density into ordinary matter. A”

We stress the curious point that in this type of scenario

the flatness problem is not solved by VSL, but rather by thénear_li!ﬂg a suppression of any fluctua_tions b_e_fore the_ phase
period of inflation preceding VSL. transition by more than a factor of 16 if condition (18) is

satisfied. The suppression of fluctuations induced by a sud-
den phase transition in can be intuitively understood in the
same fashion as the solution to the flathess problem. Mass
conservation violation ensures that only a universe at critical
mass density is stable, #/c<0. But this process occurs

Solving the horizon problem by no means guaranteesocally; so after the phase transition the Universe should be
solving the homogeneity problem, that is, the uncanny hoteft at critical densitylocally. Hence the suppression of den-
mogeneity of the currently observed Universe across mangity fluctuations.
regions which have apparently been causally disconnected. We next need to know what are the initial conditions for
Although solving the horizon problem is a necessary condiA andv. Suppose that at some very early timeone has
tion for solving the homogeneity problem, in a generic infla-c/c=0 and the whole observable Universe nowadays is in-
tionary model solving the first causes serious problems irside the Jeans lengthjy<<c;#; /v3. The latter condition is
solving the latter. Early causal contact between the entirenforced as a by-product of solving the horizon problem.
observed Universe allows equilibration processes to homogFhe whole observable Universe nowadays is then initially in
enize the whole observed Universe. It is crucial to the infla@ thermal state. What is more each portion of the Universe
tion picture that before inflation the observable universe b&an be described by the canonical ensemble and so the Uni-
well inside the Jeans length and thus equilibrate toward ¥€rse is homogeneous apart from thermal fluctuat{@is.
homogeneous state. However, no such process is perfect, ahf€S€ are characterized by the mass fluctuation
small density fluctuations tend to be left outside the Hubble 2

; . : : (M%) 4k, T,
radius, once the Universe resumes its standard big bang 032_2:_2_ (22
course. These fluctuations then grow lié during the ra- (M) Mc;
diation era and like during the matter era, usually entailing
a very inhomogeneous universe nowadays. This is a comm
flaw in early inflationary model$19] which requires addi-
tional fine-tuning to resolve. 4k, T;

In order to approach this problem we study in Appendix B Pa(k)={(]A(k)?|)e 5. (23
the effects of a changing on the theory of scalar cosmo- PiCi
!ogical pe_rturbation$20]. The basic_resul_t is that th_e COMOV-  \what happens to a thermal distribution, its temperature,
ing density contrasiA and gauge-invariant velocity are  gnq jts fluctuations, while is changing? In thermal equilib-
subject to the equations rium the distribution function of particle energies is the
Planck distributionP(E)=1/(e¥"—1), whereT is the
temperature. When one integrates over the whole phase
space, one obtains the bulk energy densipc?
= (k,T)* (#c)®. Let us now consider the time when the Uni-

, (21)

OlO
|

VII. HOMOGENEITY OF THE UNIVERSE

O(f”ionverted into a power spectrum farthis is a white noise
spectrum with amplitude

! !

a
A’—<3w—+—
a c¢

!

a
A=—(1+wko—2—_—wll; (19
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verse has already flattened out sufficiently for mass to ba scale-invariant spectrum. However, we feel that until a
approximately conserved. To define the situation more commechanism for inducing(t) is found such efforts are bound
pletely, we make two additional microphysical assumptionsto look ludicrously contrived.

First, let mass be conserved also for individual quantum par- We feel that the power of VSL scenarios is precisely in

ticles, so that their energies scale liEs<c?. Second, we
assume the particle wavelengths do not change withf

leaving the Universe very homogenous, aftehas stopped
changing. This would then set the stage for causal mecha-

homogeneity is preserved, indeed the wavelength is an adi@isms of structure formation to do their j§B2,23.

batic invariant, fixed by a set of quantum numbers, @&.g.
=L/n for a particle in a box of sizé&.

V1. ISOTROPY OF THE UNIVERSE

Under the first of these assumptions a Planckian distribu-

tion with temperaturd remains Planckian, bdte=c2. Under
the second assumption, we have-2#f#ic/E, and sof/c

There is a sense in which there is an isotropy problem in
the SBB model, similar to the homogeneity problem. We

should remain constant. Therefore the phase space structd@low closely the remark made if20], p. 26.

is changed so that, without particle production, one still has

pc?oc(k,T)*/(Ac)3, with Tcc?. A blackbody therefore re-
mains a blackbody, with a temperatdre c2. If we combine
this effect with expansion, with the aid of E(h) we have
. a ¢
T+T|-—2-
a ¢

=0. (24)

We can then integrate this equation through the epoch whe

c is changing to find the temperatufg of the initial state.
This fully fixes the initial conditions for scalar fluctuations,
by means of Eq(23).

In the case of a sudden phase transition we have
=T ¢?"/c?7, and so

Ak, T~ 4k T+

= MC2+

27:—_
Mc?~

OMm

(29

or

Ak T

- p+C2+

2 (26)

but sinceA «c we have

4k T c™
+ ~ 2
A7 (k) Vp*CZ*c*'

Evenif T"=T7 =10""GeV, these fluctuations would still be

(27)

In Appendix C we write down the vector Einstein’s equa-
tions in the vector gauge, and from them we derive the vor-
ticity “conservation” equation whe/c#0. If v is the vor-
ticity (defined in Appendix CandII' the vector stress, we
have

!

a’ c kc w
U’+(1—3W)Ev—2—v=———HT.

C 2 1+w (28)

fh the absence of driving stress,remains constant during
the radiation dominated epoch, and decays like it/ the
matter epoch. 1{20] it is further argued that the relevant
dimensionless quantity is

(kla)v 1
W= (a'/ca) x I w2

(29

Hence forw>1/9 vorticity grows, leading to a further fine-
tuning problem.

This is most notably a problem if we accept the Planck
equipartition proposal, introduced [24]. At the Planck ep-
och there would then be a significant vorticity. Depending on
how one looks at it, this vorticity would then get frozen in or
grow, leading to a very anisotropic universe nowadays.

Whether or not this is a problem is clearly debatable. In
any case either inflation or VSL models could solve this
prospective problem. Fov<—1/3 we have that decays
faster than H2. Whatever dimensionless quantity one
chooses to look at, vorticity is therefore safely inflated away.
If ¢/c#0, we have thab =c?. Again any primordial vortic-
ity is safely suppressed after a phase transition $atisfying

negligible nowadays. Therefore, although the Universe endsither condition(2) or (18).
up in a thermal state after the phase transition, its thermal
fluctuations, associated with the canonical ensemble, are|y ENTROPY PROBLEM AND SETTING THE INITIAL

strongly suppressed.

For a more general(t) function the procedure is as fol-
lows. Integrate Eq(24) backwards up to a timg when¢
=0, to findT(t;). Give A(t;) a thermal spectrum of fluctua-
tions, according to Eq(23), with T(t;). With this initial
condition integrate Eqs(19) and (20) [or even better the
second order equatigiB12) given in Appendix B, to find A
nowadays.

It is conceivable that a careful designaftt) would leave
fluctuations, onc&=0 again, with the right amplitude and
spectrum to explain structure formation. In particutft)

CONDITIONS

Let us first consider the SBB model. L&{ be the entropy
inside the horizon and,=S;,/kg be its dimensionless coun-
terpart.oy, is of order 168° nowadays. If we assume that the
only scales in the cosmological model are the ones provided
by the fundamental constants, thentatthe temperature is
Tp. At Planck time,o, (being dimensionlegss naturally of
order 1. In the SBB model the horizon distanceljs=2t in
the radiation dominated epoch, and ignoring mass thresholds
toc 1/T2. If evolution is adiabatic, one then hés a flat uni-

may be designed so as to convert a white noise spectrum interse

043516-7
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Tp\3 there must be creation of particles, and entropy is produced.
op(t)~on(tp) 7) (30 If the Universe is closed, particles are taken away, and the
entropy decreases.

Since ay,(tp)~1, one hassy(to)~10°. Thus the large en- The most suspicious case is therefore if the Universe was

tropy inside the horizon nowadays is a reflection of the lackEINstein—de Sitter b?fore the phase_ trans!tlon. Let us assume
of scales beyond the ones provided by the fundamental coriterefore that at=t, (the Planck time with the constants
stants, the fact that the horizon size is much larger nowaday2efore the transitionthe entropy inside the horizofwhich
than at Planck time, and the flatness of the Universe. OnBas proper size™tp) was of order 1. Then the entropy in-
may rephrase the horizon and flatness problems in terms @ide the Hubble volume at=t} , before and after the tran-
entropy[2]. However, if one is willing to accept the horizon sition, is
structure and flatness of the Universe simply as features of
the initial conditions(rather than problemsthere is no ad-
ditional entropy problem.

Thereis a problem that arises if one tries to solve the
horizon problem, keeping the adiabatic assumption, byvhere we have useid/t, =(c”/c*)2. One takes a fraction
means of superluminal expansion. This blows what at Planckc*/c™)® of the horizon volume before the transition to
time is a region much smaller than the Planck size into anake the Hubble volume after the transition. However, the
comoving region containing the whole observable Universeentropy inside the horizon has increased sibgeby the
nowadays. This solves the horizon problem. However, ifsame factor. Therefore entropy conservation in this case does
evolution is adiabatic, such a process implies thafts)  not conflict witho,(t5)~1 after the transition. One way of
<1. Stated in another way, since the number of particlesinderstanding this is that by imposing flatness from the out-
inside the horizomy, is of the same order as;,, this implies  set(before the transitionone has already “solved” the en-

3

a(tp) 1 33

cth )3
a(tp)

on(tp)=on(tp) (E

an empty universe nowadays. tropy problem. Notice that the above argument works for any
More mathematically, ifl,, is the horizon proper distance, ygJye oft./t7 .
one has Now consider the case where “natural” initial conditions

were also imposed & , with A=0. One should have(t)

Zh_ = (31) of order 1. We have already discussed how the flatness prob-
on  dy lem is solved in this case, when large empty curvature domi-
nated universes are filled with @early perfectly critical

where we have used,=a/'dt'/a. With any standard mat- energy density during the transition. Open universes become
ter (p>— pc?/3) the horizon grows like. Accordingly o,  very empty, but they are still pushed to EDSU at the transi-
grows like a power of. On the other hand the horizon grows tion. One may integrate Eq32) to find thats*/s™=(1
faster thant if p<-—pc?/3: it grows exponentially ifp +€7)7 % One may also use Eq10) to find that e has
=—pc? and liket" (with n>1) for —pc®’<p<—pc?3. evolved since t, to e (t3)+1~[a(tp)/a(ty)]?
This provides the inflationary solution to the horizon prob-%(t;/t;){ where we have usest<t for the Milne universe.
lem. However, in the latter case E(B1) implies thato,  Hence we have that during the transition entropy is produced
decreases exponentially, leadingdg(to) <1. The way in-  jike s*/s™ =(t//t5)¥?=(c"/c*)3. Given thatact for such

flation bypasses this problem is by dropping the adiabaticniyerses, the entropy before the transition in the proper vol-
assumption. Indeed during inflation the Universe supercools, o of sizectt} is

and a period of reheating follows the end of inflatfon.
In VSL scenarios the detailed solution to the entropy

problem depends on when and what type of “natural condi- S (cTtp)=

tions” are given to the pre-transition universe. We first de-

rive equations for the entropy under varyimg From s

=(4/3)pc?IT, p=T4(#c)3, and from Eqgs(5) and (13) we

obtain that the entropy of radiation satisfies

o 3

3

ctth
: . (39

ctp

G

a(tp) c”

that is, there is practically no entropy in relevant volume
before the transition. However, we have that, after the tran-
sition,

5§ 3p _a Bte(lte) 3¢ o\ 3
sTap %atzc 1re 2c &P oha;):s*(c*t;):s<c+t;>(c—+) ~1. (@39

If the Universe is EDSU, there are no violations of massin such scenarios the Universe is rather cold and empty be-

conservation, and entropy is conserved. However, if the Unifore the transition. However, the transition itself reheats the

verse is open or has a positive cosmological constant, thegniverse. Notice that, like in the first case discussed, the

we have seen that there is creation of mass. Accordinglgbove argument works for any value tpfity .

If att=t, one also hag,~1, then we have a scenario in

which the cosmological constant dominates, solves the flat-

2This issue has been carefully analyzed in the context of inflationn€ss problem, and is discharged into normal matter. How-
ary models and models with time varyir@ in [17]. ever, ifppy~pp att~ty, then whatever the transition time,
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after the transition the Universe will have a density in normalmological problems, but it may do so in a modified form. We
matter equal tgp,,=pp . Hence the Hubble time after the are currently investigating this possibility. We regret that be-
transition will bet, , whatever the actual age of the Uni- cause we were unaware of this work, we did not cite it in the
verse. One may integrate E(B2) to find that in this case first publicly distributed version of this paper.

(settinge=0) the entropy production during the transition is

stIsT=(1+¢€,)%% In the period between=t; and the ACKNOWLEDGMENTS

transition, e, increases likea*, and the entropy density is )
diluted like 143, Hence after the transition the entropy den- e would like to thank John Barrow, Ruth Durrer, Robert

Brandenberger, Gary Gibbons, and Erick Weinberg for dis-
cussion. We acknowledge support from PPARCA.) and
the Royal SocietyJ.M.).

sity is what it was at=t , that iss"~1/L53. If we now
follow the Universe until its Hubble time iss (when its
density ispp), we must wait until the expansion factor has
increased by a factor ofpfs/pp) Y4 Given thatse1/a® the

entropy density is diluted by a factor oﬁK/P;)?’M- There- APPENDIX A: A SPECIFIC REALIZATION OF VSL

fore thfsentropy density when the Hubble timetisty is In this appendix we set up a specific VSL theory. We first
s~1Lp”. Again the dimensionless entropy inside thediscuss the simple case of the electrodynamics of the point
Hubble volume, when this has sitg , is of order 1. particle in Minkowski space time. We start from Beken-

Finally it is worth noting that treating the pre-transition stein’s theory of variabler, and show how a VSL alternative
universe simply as a Roberston-Walker model is no doubtould be set up. We highlight the subtleties encountered in
overly simplistic, and we use it simply as a device to intro-the VSL formulation. We then perform the same exercise
ducing our ideas. We expect that further development ofvith the Einstein-Hilbert action. We briefly consider the dy-
these ideas could result in a radically different view of thenamics of the fieldy=c*. Finally we cast the key elements
pre-transition phasémuch as has happened with the infla- of our construction into a body of axioms.
tionary scenarip One interesting observation is that one
could avoid having multiple Planck times by considering that
Goxc?. Such assumption would not conflict with the dynam-
ics of flatness and\, as shown before, but noty =t .

1. Electrodynamics in flat space time

A changing « theory was proposed by Bekenstgihl]
based on the postulate of Lorentz invariance. The electrody-
namics of a point particle was first analyzed. If Lorentz in-
X. CONCLUSIONS variance is to be preserved, then the particle nmassd its
chargee must be variable. In order to preserve “minimal
coupling” (reduction to standard electromagnetism wlen
‘'=cons} one chooses the world line action

We have shown how a time varying speed of light could
provide a resolution to the well known cosmological puzzles
These “VSL” models could provide an alternative to the
standard inflationary picture and, furthermore, resolve the e
classical cosmological constant puzzle. At a technical level, L=—-mcy—-u*u,+ EUMAP« (A1)
the proposed VSL picture is not nearly as well developed as
the inflationary one, and one purpose of this article is to

. . . i K=y = =e(x* = Iz ini-
stimulate further work on the unresolved technical |ssues\."”th Um=X" 0uy= Ny, © e(x*), andm=m(x*). Mini

We are not trying to take an “anti-inflation” stand, but we mal coupling means si_mply to _take the sta_ndard actioq and
do strongly feel that broadening the range of possible modeIEEp_l"j‘Cee andm by variables without break_lng Lo“?“tz In-
of the very early Universe would be very healthy for the field V&M ancee andm must then be scalar functions. This action
of cosmology and would ultimately allow us to state in more!€2ds to the equation

concrete terms the extent to which one model is preferred.

On a more fundamental level we hope to expand the phe-
nomenological approach presented in this paper into a theory
where the concept dPoincar¢ symmetry breaking provides
the physical basis for VSL. Symmetry breaking is also thewith the electromagnetic field tensor defined as
central ingredient in causal theories of structure formation.

We therefore hope to arrive at a scenario where symmetry 1

breaking provides a complete and consistent complement to Fu=gldu(eA)—d,(eA,)]. (A3)
the SBB model which can resolve the standard puzzles as

well as explain the origin of cosmic structure.

Note added in proofAfter this paper, as well as its sequel
[26], were completed J. Moffat brought to our attention two
papers in which he proposes a similar id2]. While Mof- S :__1f d*xE . EMY (A4)

. . M v .
fat's work does not go as far as ours in addressing the flat- 167 "
ness and entropy problems, he does go considerably further
than we have in terms of specific model building. Moffat's Also, the particle actiofA1) may be written as a Lagrangian
model does not satisfy our prescription for solving the cos-density:

e
(mx,)=—m ,c?+ Eu”FM,, (A2)

The electromagnetic action can therefore be defined as
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(3) (y — 1
Ssz d‘&M[—mczﬂL(e/c)u“Au] (A5) E&M(CF‘“’)=47TJ/‘ (A11)

in which y is the Lorentz factor. Maxwell's equations are the light frame. Given that Lorentz invariance is broken,
then one can no longer expect the general expression for a con-
LV)ay A served current to take the fora),j#=0. Indeed one could
ed,u(F1e)=4m] (A6) try and computey,, of Eq. (All)%ut nowd, andd, do not
commute. Also their commutator is not Lorentz invariant: for
instance] dg,d;]1=(— d;c/c?)dy. Still, d,j#=0 holds in the
S (x—x(7)) ew* time frame. It is just that this expression transforms into
:f P (A7) something more complicated in other frames. The more com-
plicated expression would still place constraints on the

This current is the current which couples to the gauge field, theory, which could still be called “conservation of charge.”
and in the rest frame it equaks Therefore it cannot be

with the current

jM

conserved, and indeed we have that 2. Minimal coupling to gravity
R L Let us now examine gravity in such a thednps in the
Il =g29ue (A8)  previous case we will impose a minimal coupling principle.

Working in analogy with Brans-Dicke theory, let us define a

Let us now postulate instead that a changings to be  field ¢=c*, and introduce the following action:
interpreted ag=#% a2 and thate andm are to be seen
L - e P(R+2A)
as constants. Minimal coupling, in the above sense, would S=| dx* Vg W+£M
then prompt us to consider the actigAl), but with c 4

=c(x*) everywhere, ance and m constants. This action _ _ _ _
leads to the equation The dynamical variables are a metdg,, any matter field

variables contained id,,, and itself. The Riemann tensor

+L,]. (A12)

1 e (and the Ricci scalaiis to be computed frorg,, at constant
X, == +—U"F A , w
M, 2(mcz)"‘ cu wy (A9) ¢ in the usual way.
. . . As in the previous subsection covariance is broken, in
with the electromagnetic tensor defined as spite of all appearances/ does not appear in coordinate
FL=Ccla.(A,[c)—a,(A,lc)]. (A10) transformations of the metric, and so the conneclitm

does not contain terms Ny in any frame. However, the

However, the above construction is not complete. In spit€onnection will contain different terms igy in different
of the appearance of EqéAl), (A9), and (A10), Lorentz ~ frames. Hence the statement that the Riemann tensor is to be
invariance is broken. This boils down to the fact that, sgy, computed from the metric at constapitcan only be true in
is no long a 4-vector. Even it were to be regarded as a € preferred frame. Minimal coupling requires the defini-
scalar,d,, would containc in its zero component, but not in tion of a light frame. The actioitA12) is only Lorentz in-
its spatial components. The usual contractions leading to Variant in appearance. ,
could still be taken bus would no longer be a scalar. This ~ Varying the action with respect to the metric leads to
manifests itself in Eq(A9) in the fact that ink* there are

terms ingc which break Lorentz invariance. S _ N _9¢[G —g,A] (A13)
Since the action is not Lorentz invariant, a minimal cou- oghr  8wG - TAY TR

pling prescription cannot possibly be true in every coordinate

system. Minimal coupling is now the statement that there is a 5Su NEY

preferred reference frame in which the action is to be ob- g B Tur (A14)

tained from the standard action simply by replacingith a

field. Let us call this frame the “light frame.” In regions in . ) . ] )

which ¢ changes very little changes in the action upon Lor-leading to a set of Einstein’s equations without any extra

entz transformations are negligible. Hence all boosts pert€MS,

formed upon the light frame become nearly equivalent and

Lorentz invariance is recovered. G, —g, A= %T (A15)
The Maxwell equations in a VSL theory become wy o Spv pve

¥

3There is an alternative view in which rather than a changing  “Gravitation is normally regarded as the gauge theory of the Poin-
one considers that the vacuum is a dielectric medium with variableare group [25]. Here we simply abandon this point of view. In
e. One may then identify a conserved charge, but this is not thesome future work we will try to define a gauge principle for broken
charge which couples to the gauge field. symmetries, thereby recovering the standard view.
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valid in the light frame. This is the way we chose to phrasesolve the quantum version of the cosmological constant
our postulates in Sec. Il above. In other words all we need iproblem, but this might require a rather contorted choice of
minimal coupling at the level of Einstein’s equations. Ly.

The fact that a favored set of coordinates is picked by our
action principle is not surprising as Lorentz invariance is 4. Axiomatic formulation of VSL theories
broken. On the other hand notice that the dielectric vacuum ) ] )
of Bekenstein theory is an ether theory. His theory also Postulate 1A changinga s to be:igterpreted as a chang-
breaks Lorentz invariance, not at the level of the laws of"d ¢ andf in the ratios c<fi<a” " The coupling e is
physics, but in the form of the contents of space-time. constant. o _

In changinga theories a favored frame is always picked This pos_tulate mer_ely sets up the theoret|cal_|nterpretat|0n
up. In a cosmological setting it makes sense to identify thif the possible experimental fact thatchanges, in terms of
frame with the cosmological frame. Free falling observers/ariable dimensional quantities. This is a matter of conven-
comoving with the cosmological flow define a proper time-1ion and not experiment, as much as a constans a matter
charge which couples to the gauge field. and a set of spatié]f convention. \_Nlth the above choice a system _of units for
coordinates, to be identified with the light frame. In this Mass, length, time, and temperature is unambiguously de-
frame the Einstein-Hilbert action is minimally coupled to a fined. .
changingy, and the same happens to Friedmann equations. Postulate 2There is a preferred frame for the laws of

The rest of our paper follows. physics. This preferred frame is normally suggested by the
symmetries of the problem, or by a criterium such as
c=c(t).

3. Dynamics of g If c is variable, Lorentz invariance must be broken. Even

The definition of£,, controls the dynamics of. This is if one writes Lorentz invariant looking expressions, these do
the most speculative aspect of our theory, but it also opensot transform covariantly. In general this boils down to the
the doors to empirical model building. In our paper we pre-explicit presence o in the operatoi,,. Once one admits
ferred a scenario in whicle changes in an abrupt phase that Lorentz invariance must be explicitly broken, then a
transition, but one could also imagigeca”. The latter sce- preferred frame must exist to formulate the laws of physics.
nario would result from a Brans-Dicke type of Lagrangian These laws are not invariant under frame transformation, and

one may expect that a preferred frame exists where these
R ¥ laws simplify.
v 167TGI/I¢ (A16) Postulate 3In the preferred frame one may obtain the
laws of physics simply by replacing c in the standard (Lor-
(Wherew is a dimensionless couplingnd is being investi- entz invariant) action, wherever it occurs, by a field
gated. Addition of a temperature dependent potential) c=c(xH).
would induce a phase transition, as in the scenario developed This is the principle of minimal coupling. Because the
in our paper. laws of physics cannot be Lorentz invariant it will not hold

However, here we only make the following remarks,in every frame. Hence the application of this postulate de-
which are independent of any concrete choiceCgf If K pends crucially on the previous postulate supplying us with a
=A=0, one has favored frame. This principle may apply in Minkowski space

time electrodynamics, scalar field theory, etc., in which case
oLy V=aT the frame in whichc=c(t) is probably the best choice. The
Sy Ay cosmological frame, endowed with the cosmic proper time,
is probably the best choice in a cosmological setting.

and so in the radiation dominated epochi=(0), onceK Postulate 4The dynamics of ¢ must be determined by an
= A =0, one should not expect driving terms for thequa-  action principle deriving from adding an extra term to the
tion. Hence, once the cosmological problems are solved, ik@grangian which is a function of ¢ only. o
the radiation epoct; and# should be constants. Incidently, ~ This is work in progress. We do not wish to specify this
once the matter dominated epocfi#0) is reached,yy ~ Postulate further because for all we know this extra term can
should perhaps start changing again, with interesting obseRe anything. We merely specify that no fieldscluding the
vations consequencés0]. We are studying the phase spaceMetric must be present in this extra term because we wish
portraits of these cosmologies, when say:0, and with ~Minimal coupling to propagate into the Einstein’s equations.

(A17)

various.L,, .
v
During phase transitions the perfect fluid approximation APPENDIX B: SCALAR PERTURBATION EQUATIONS
must break down. One should then use, say, scalar field FOR VSL MODELS
theory (let us call it¢). Now notice that terms i will act In this appendix we derive the scalar cosmological pertur-

as a source t@ (as they contain the speed of lighHence  pation equations in VSL scenarios. We assuie A =0,

Wh.enever there is a pha_se transition and the vacuum expegpd use a gauge where the perturbed metric is written as
tation value(VEV) of a field changes a large amount, one

may expect a large change in the speed of light, with most ds*=a?[ —(1+2AY)d7*~2BYkdxdn+ &;dxdx]
choices of£,,. A changingys associated with SSB could then (B1)
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for a Fourier component with wave vectkr. HereY is a Combining all four Einstein’s equations we can then ob-
scalar harmonic. We shall use conformal timeto study tain the(non)jconservation equatiorf20]
fluctuations, and denoté=d/d». The stress energy tensor

. . ! ! a!
is also written as A 3w+ A= — (1+whko -2 —wil;
0_ _ a ¢ a
oTo=—pYo (B10)
i Plv.; 2
6To=—| p+ =|=K'Y a’ c’ cck 3 a'fa ¢
c/c v+l —2—|jv=|l——5-—| =+ —||A
) ) _ a C 1+w 2kala c
STi=pII Y& +(Kk;
=P (K, kc2w 2/3
—1/38k?)Y plly. (B2) t1w! K TTw
The Einstein’s constraint equations then r¢2d] 3 12
+ =] |wllt. B11
3/a’\2 1a 47Ga? k’c?\ a T (BLY
—|—| A-=—kB=——5—pé (B3)
c\a ca ¢ These can then be combined into a second order equation for
, A. If T'=1I1=0, this equation takes the form
ka' a' a'\?|B 4nGa? p\v T g
ca™Mllal \3) |27 &2 p+? c A"+fA'+(g+h+c2k?)A=0 (B12
B4 .
B4 with
and the dynamical equations are )
c
At 1 B’+2a,B _ 8wGa’ p Iy a5 f=(1-3w)—3— (B13
kc a | c® c?k® B5)
a'\%9 3
a’ ’+ 2a” a'\’|A 4nGa’ p - 9=| 5/ |zW—3w—3 (B14)
a C2 a a CZ_ C2 C2( L T)-
(B6) _Z(C')2 (Qw 5\c’a [c'\’
We assume that these equations do not receive corrections in e 2 2/c a c

¢/c. This statement is gauge-dependent, much like its coun- (B1Y
terpart for the unperturbed Einstein’s equations. We can only

hope that the physical result does not change qualitatively APPENDIX C: VECTOR PERTURBATION EQUATIONS
from gauge to gauge. Complying with tradition we now de- FOR VSL MODELS

fine the comoving density contrafs20] In a similar fashion we can study vector modes in a gauge

a’'1/v where the metric may be written as
A=5+3(1+wW)——|——B]. (B7) . o
caklic ds?=ay—d»?+2BY,dxdy+§;dxdx]  (CI)
We also introduce the entropy production rate whereY; is a vector harmonic. The stress energy tensor is
c2 written as
F=Il,— —6 (B8)
WC o p\fv
wocle el o
where the speed of sound is given by VAR
, P L 21 ca OTij=pI"Y (i ). €3
Co=—=WC | 1- 5 o= — —|. (B9) o .
p 31+wc a Einstein’s equations then re§20]
Note that the thermodynamical speed of sound is given by 167G p\o
c2=(oplap)|s. Since in SBB models evolution is isentro- k?B= 2 a?| p+ ?)E (C4

pic, c2=(aplap)|s=p/p=p’'lp’. When ¢+#0 evolution

need not be isentropic. However, we keep the definitiﬁm

=p’'/p’ since this is the definition used in perturbative cal- c
culations. One must however remember that the speed of
sound given in Eq(B9) is not the usual thermodynamical We assume that these do not reced/e corrections. The
quantity. With this definition one has for adiabatic perturba-conservation equation is then

tions 8p/ Sp=p’lp’, that is the ratio between pressure and , ,

density fluctuations mimics the ratio of their background v’+(1—3w)a—v—2c—v=—k—clHT. )
rates of change. a c 2 1+w

a’ 87G p
I+ — 2 T.
B'+2 a B) =z 28 IT (CH
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