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Time varying speed of light as a solution to cosmological puzzles
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~Received 4 November 1997; revised manuscript received 27 October 1998; published 28 January 1999!

We consider the cosmological implications of light travelling faster in the early Universe. We propose a
prescription for deriving corrections to the cosmological evolution equations while the speed of lightc is
changing. We then show how the horizon, flatness, and cosmological constant problems may be solved. We
also study cosmological perturbations in this scenario and show how one may solve the homogeneity and
isotropy problems. As it stands, our scenario appears to most easily produce extreme homogeneity, requiring
structure to be produced in the standard big bang epoch. Producing significant perturbations during the earlier
epoch would require a rather careful design of the functionc(t). The large entropy inside the horizon nowa-
days can also be accounted for in this scenario.@S0556-2821~99!07802-9#

PACS number~s!: 98.80.Cq, 95.30.Sf
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I. PUZZLES OF THE BIG BANG MODEL

Cosmologists have long been dissatisfied with the ‘‘st
dard big bang’’~SBB! model of the Universe. This is not du
to any conflict between the big bang theory and observatio
but because of the limited scope offered by the SBB to
plain certain striking features of the Universe. From the S
perspective the homogeneity, isotropy, and ‘‘flatness’’ of
Universe and the primordial seeds of galaxies and o
structure are all features which are ‘‘built in’’ from the be
ginning as initial conditions. Cosmologists would like to e
plain these features as being the result of calculable phys
processes. A great attraction of the inflationary cosmolog
@1# is that they address these issues by showing on the b
of concrete calculations that a wide variety of initial cond
tions evolve, during a period of cosmic inflation, to refle
the homogeneity, isotropy, flatness and perturbation sp
trum that we observe today.

So far,all attempts to achieve this kind of improveme
over the SBB have wound up taking the basic inflation
form, where the observable Universe experiences a perio
‘‘superluminal’’ expansion. This is accomplished by mod
fying the matter content of the Universe in such a way t
ordinary Einstein gravity becomes repulsive and drives in
tionary expansion. This process is in many ways remarka
straightforward and has found numerous realizations over
years~@2–5#, etc.!, although it might still be argued that
truly compelling microscopic foundation for inflation has y
to emerge.

One interesting question is whether inflation is theright
solution to the cosmological puzzles. Is inflation really wh
nature has chosen to do? When this matter is discussed
is a notable absence of any real competition to inflation,
this must be counted in inflation’s favor. However, we b
lieve the picture would become much clearer if some kind
debate along these lines were possible. To this end, we
cuss here a possible alternative to inflationary cosmol
which, while not as well developed as today’s inflationa
models, might lead to some illuminating discussion.

In this alternative picture, rather than changing the ma
content of the Universe, we change the speed of light in
early Universe. We assume that the Universe matter con
is the same as in the SBB, that is, that the Universe is ra
0556-2821/99/59~4!/043516~13!/$15.00 59 0435
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tion dominated at early times. We also assume that E
stein’s gravity is left unchanged, in a sense made precis
Sec. IV. The geometry and expansion factor of the Unive
are therefore the same as in the SBB. However, thelocal
speed of light, as measured by free falling observers ass
ated with the cosmic expansion, varies in time, decelera
from a very large value to its current value.

We discuss below how varying speed of light~VSL! mod-
els might resolve the same cosmological puzzles as infla
and offer a resolution to the cosmological constant probl
as well. We shall not dwell on the possible mechanisms
means of which the speed of light could have chang
Rather we wish to concentrate on the conditions one sho
impose on VSL models for their cosmological implicatio
to be interesting. This phenomenological approach should
regarded as a curiosity, which, we hope, will prompt furth
work towards an actual theory in which the physical basis
VSL models is realized.

One may doubt that such a self-consistent theory co
ever be constructed. We therefore feel forced to transc
the scope of this paper and discuss essential aspects of
a theory. We find it befitting to start our discussion with
assessment of the experimental meaning of a varyingc ~Sec.
II !. We also need to be more specific about VSL theories
order to tackle the flatness, cosmological constant, homo
neity, and entropy problems. In Sec. IV we state what
actually required from any VSL theory to solve these pro
lems. However, in Appendix A we lay out the foundatio
for such a theory.

II. MEANING OF A VARIABLE SPEED OF LIGHT

We first address the question of the meaning of a vary
speed of light. Could such a phenomenon be proved or
proved by experiment?Physicallyit does not make sense t
talk about constancyor variability of any dimensional ‘‘con-
stant.’’ A measurement of a dimensional quantity must
ways represent its ratio to some standard unit. For exam
the length of my arm in meters is really the dimensionle
quantity given by the ratio of the arm length to the length
a meter stick. If the ratio varied, onecould interpret this as a
variation in either~or both! of the two lengths. In familiar
situations, there is usually a preferred interpretation wh
©1999 The American Physical Society16-1
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distinguishes itself by giving a simpler view of the worl
Choosing a given person’s arm as a standard of length w
require a whole range of simple objects to undergo pecu
dynamics, whereas assuming the meter stick to be cons
would usually give a much simpler picture.

Nonetheless, a given theory of the world requires dim
sional parameters. If these parameters varied, how would
process show up in experiments? Suppose we set out to
sure the speed of light. For this one needs a length mea
~rod! and a clock. In a world described by a theory with tim
varying dimensional parameters, it is quite possible that
rods and clocks, as well as the photon speeds, could all v
Because measurements are fundamentally dimensionles
experimental result will only measure some dimensionl
combination of the fundamental constants. Let us sketc
simple illustration: Suppose we measure time with an ato
clock. Taking the Rydberg energy @ER
5mee

4/2(4pe0)2\2# to represent the dependence of
atomic energy levels on the fundamental constants, the o
lation period of the atomic clock will be}\/ER . Likewise,
taking the Bohr radius (a054pe0\2/mee

2) to reflect the
relationship between the lengths of ordinary objects~made of
atoms! and the fundamental constants, the length of our
is }a0 . Thus a measurement ofc with our equipment is
really a measurement of the dimensionless quantity

c

a0 /~\/ER!
5

8pe0

a
, ~1!

essentially the fine structure constant. We could of cou
use other equipment which depends in different ways on
fundamental dimensionless constants. For example, pe
lum clocks will necessarily involve Newton’s constantG.
Different experiments will result, which measure differe
dimensionless combinations of the fundamental dimensio
constants. Our conclusion that physical experiments are
sensitive to dimensionless combinations of dimensional c
stants is hardly a new one. This idea has been often stre
by Dicke ~e.g. @6#!, and we believe this is not controversia

Thus, speaking in theoretical terms of time varying
mensional constants can lead to problems. To give an
torical example, Refs.@7, 8# were written claiming stringen
experimental upper bounds on the time variability of the
mensional quantity\c. In these the productEl was found to
be the same for light emitted at very different redshifts. Fr
the deBroglie relation\c5El one infers the constancy o
\c. Bekenstein gives an illuminating discussion of the f
lacy built into this argument@9#. Built into E}1/a and l
}a is the assumption that\c is constant, for otherwise th
wave vectorkm and the momentum vectorpm could not both
be parallel transported. Hence the experimental statem
that \c is constant is circular.

What would we do therefore if we were to observe cha
ing dimensionless quantities? Any theory explaining the p
nomenon would necessarily have to make use of dimensi
quantities. It woulda priori be a matter of choice, prejudice
or convenience to decide which dimensional quantities
variable and which are constant~as we mentioned in the
illustration above!. There would be a kind of equivalence,
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duality, between theories based on any two choices as fa
dimensionless observations are concerned. However,
equations for two theories which are observationally equi
lent, but which have different dimensional parameters va
ing, will in general not look the same, and again simplic
will end up being an important factor in making a choi
between theories. In what follows, we will prefer to wo
with models which have the simplicity of ‘‘minimal cou
pling.’’

Let us illustrate this point with a topical example. The
has been a recent claim@10# of experimental evidence for a
time changing fine structure constanta5e2/(4p\c). Al-
though the ongoing chase for systematics precludes any
finitive conclusions, let us assume for the purpose of ar
ment that the effect is real.

In building a theory which explains a variablea we must
make a decision. We couldpostulate that electric charge
changes in time or, say, that\c must change in time. Bek
enstein@11# constructs a theory based on the first alternati
He postulates a Lorentz invariant action, which does not c
serve electric charge. Our theory is based on the sec
choice. We postulate breaking Lorentz invariance, a cha
ing \c, and consequently non-conservation of energy. A
arguments against the experimental meaning of a changic
can also be directed at Bekensteins’ changinge theory, and
such arguments are in both cases meaningless. In both c
the choice of a changing dimensional ‘‘constant’’ reverts
the postulates of the theory and is not,a priori, an experi-
mental issue. The observables are always dimension
However, theminimally coupledtheories based on eithe
choice arenot dual ~as we shall point out in Appendix A!.
For this reason one might prefer one formulation over
other.

Finally, and on a different note, suppose that future
periments were to confirm that not onlya changes in time,
but also that there are time variations in dimensionless c
pling constants based on other interactions,a i5gi

2/(\c).1

Suppose further that the ratios between the various const
r i j 5a i /a j , were observed to be constant. Choosing w
dimensional constants were indeed constants would still b
matter of taste. One could still define a theory in which t
various chargesgi change in time, with fixed ratios, and\c
remains constant. However, it would perhaps start to m
more sense, merely for reasons of simplicity, to postul
instead a changing\c.

Therefore, even though a variablec cannot be made a
dimensionless statement, evidence in favor of theoret
models with varyingc could be accrued if the othera i
changed, with fixed ratios.

III. COSMOLOGICAL HORIZONS

Perhaps the most puzzling feature of the SBB is the p
ence of cosmological horizons. At any given time any o

1In writing these constants we have assumed that the coupling
these interactions are defined in terms of ‘‘charges’’~with dimen-
sions of@E#1/2@L#1/2!.
6-2
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TIME VARYING SPEED OF LIGHT AS A SOLUTION . . . PHYSICAL REVIEW D 59 043516
server can only see a finite region of the Universe, w
comoving radiusr h5ch, whereh denotes conformal time
and c the speed of light. Since the horizon size increa
with time, we can now observe many regions in our p
light cone which are causally disconnected, that is, outs
each others’ horizon~see Fig. 1!. The fact that these region
have the same properties~e.g. cosmic microwave back
ground temperatures equal to a few parts in 105! is puzzling
as they have not been in physical contact. This is a mys
one may simply relegate to the setting up of initial conditio
in our Universe.

One may however try to explain these very peculiar init
conditions. The horizon problem is solved by inflationa
scenarios by postulating a period of accelerated or supe
minal expansion, that is, ifa is the expansion factor of th
Universe, a period withä.0. The Friedman equations re
quire that the strong energy conditionr13p/c2>0 must
then be violated, whererc2 andp are the energy density an
pressure of the cosmic matter. This violation is achieved
the inflaton field. Ifä.0 for a sufficiently long period, one
can show that cosmological horizons are a post-inflation
lusion, and that the whole observed Universe has in fact b
in causal contact since an early time.

A more minimalistic way of solving this problem is t
postulate that light travelled faster in the early Univer
Suppose there was a ‘‘phase transition’’ at timetc when the
speed of light changed fromc2 to c1. Our past light cone
intersectst5tc at a sphere with comoving radiusr 5c1(h0
2hc), whereh0 andhc are the conformal times now and
tc . This is as much of the Universe after the phase transi
as we can see today@12#. On the other hand the horizon siz
at tc has comoving radiusr h5c2hc . If c2/c1@h0 /hc ,
thenr !r h , meaning that the whole observable Universe
day has in fact always been in causal contact~see Fig. 2!.
Some simple manipulations show that this requires

log10

c2

c1 @322
1

2
log10zeq1

1

2
log10

Tc
1

TP
1 ~2!

FIG. 1. Conformal diagram~light at 45°! showing the horizon
structure in the SBB model. Our past light cone contains regi
outside each others’ horizon.
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wherezeq is the redshift at matter-radiation equality, andTc
1

and TP
1 are the Universe and the Planck temperatures a

the phase transition. IfTc
1'TP

1 , this implies light travelling
more than 30 orders of magnitude faster before the ph
transition. It is tempting, for symmetry reasons, simply
postulate thatc25` but this is not strictly necessary.

IV. PRESCRIPTION FOR MODIFYING PHYSICAL LAWS
WHILE THE SPEED OF LIGHT IS VARYING

Hidden in the above argument is the assumption that
geometry of the Universe is not affected by a changingc.
We have allowed a changingc to do the job normally done
by ‘‘superluminal expansion.’’ To enhance this effect w
have forced the geometry to still be the SBB geometry. W
now elaborate on this assumption. We will propose a p
scription for how, in general, to modify gravitational law
while c is changing. This prescription is merely the one w
found the most fertile. In Appendix A we describe in detai
theory which realizes this prescription.

The basic assumption is that a variablec does not induce
corrections to curvature in the cosmological frame and t
Einstein’s equations, relating curvature to stress energy,
still valid. The rationale behind this postulate is thatc
changes in the local Lorentzian frames associated with c
mological expansion. The effect is a special relativistic
fect, not a gravitational effect. Therefore curvature sho
not feel a changingc.

The previous statement is not covariant. However, int
ducing a functionc(t) is not even Lorentz invariant. So it i
not surprising that a favored gauge, or coordinate cho
must be made, where the functionc(t) is specified and in
which the above postulate holds true. The cosmolog
frame ~with the cosmological timet! provides such a pre
ferred frame.

In a cosmological setting the postulate proposed imp
that Friedman equations remain valid even whenċÞ0:

s

FIG. 2. Diagram showing the horizon structure in a SBB mo
in which at time tc the speed of light changed fromc2 to c1

!c2. Light travels at 45° aftertc but it travels at a much smalle
angle with the space axis beforetc . Hence it is possible for the
horizon attc to be much larger than the portion of the Universe attc

intersecting our past light cone. All regions in our past have th
always been in causal contact.
6-3
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S ȧ

aD 2

5
8pG

3
r2

Kc2

a2 ~3!

ä

a
52

4pG

3 S r13
p

c2D ~4!

where, we recall,rc2 and p are the energy and pressu
densities,K50, 61 and G the curvature and the gravita
tional constants, and the overdot denotes a derivative w
respect to proper time. If the Universe is radiation dom
nated, p5rc2/3, and we have as usuala}t1/2. We have
assumed that a frame exists wherec5c(t), and identified
this frame with the cosmological frame.

The assumption that Einstein’s equations remain un
fected by decelerating light carries with it an important co
sequence. Bianchi identities apply to curvature, as a g
metrical identity. These then imply stress ener
conservation as an integrability condition for Einstein
equations. IfċÞ0, however, this integrability condition i
not stress energy conservation. Source terms, proportion
ċ/c, come about in the conservation equations.

Seen in another way, the conservation equations imply
equation of motion for free falling point particles. This
normally the geodesic equation, but now source terms
appear in the geodesic equation. Clearly a violation of
weak equivalence principle is implied whilec is changing
@13#. This, of course, does not conflict with experiment,
we takeċÞ0 only in the early Universe, possibly for only
very short time~such as a phase transition!.

Although this is a general remark we shall be concern
mostly with violations of energy conservation in a cosm
logical setting. Friedman equations can be combined in
‘‘conservation equation’’ with source terms inċ/c andĠ/G:

ṙ13
ȧ

a S r1
p

c2D52r
Ġ

G
1

3Kc2

4pGa2

ċ

c
. ~5!

In a flat universe (K50) a changingc does not violate mas
conservation. Energy, on the other hand, is proportiona
c2. If, however,KÞ0, not even mass is conserved.

In Eq. ~5! we have included the effects ofĠ under the
same postulate merely for completeness. In such a form
tion VSL does not reduce to Brans-Dicke theory whenċ

50 andĠÞ0. This is because we postulate that Friedma
equations remain unchanged, which implies that the con
vation equations acquire terms inċ and Ġ. In Brans-Dicke
theory one postulates exactly the opposite: the conserva
equations must still be valid, so that the weak equivale
principle is satisfied. While we could have taken this stan
for c as well we feel that violation of energy conservation
the hallmark of changingc. Variablec must break Poincare´
invariance, for which energy is the Noether current. Barr
@14# has proposed a formulation of VSL which has the c
rect Brans-Dicke limit.
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V. FLATNESS PUZZLE

We now turn to the flatness puzzle. The flatness puz
can be illustrated as follows. Letrc be the critical density of
the Universe:

rc5
3

8pG S ȧ

aD 2

~6!

that is, the mass density corresponding toK50 for a given
value of ȧ/a. Let us definee5V21 with V5r/rc . Then

ė5~11e!S ṙ

r
2

ṙc

rc
D . ~7!

If p5wrc2 ~with ẇ50!, using Eqs.~3!, ~4!, and~5! we have

ṙ

r
523

ȧ

a
~11w!2

Ġ

G
12

ċ

c

e

11e
~8!

ṙc

rc
52

ȧ

a
@21~11e!~113w!#2

Ġ

G
~9!

and so

ė5~11e!e
ȧ

a
~113w!12

ċ

c
e. ~10!

In the SBBe grows likea2 in the radiation era, and likea in
the matter era, leading to a total growth by 32 orders
magnitude since the Planck epoch. The observational
thate can at most be of order 1 nowadays requires that ei
e50 strictly, or an amazing fine-tuning must have existed
the initial conditions (e,10232 at t5tP). This is the flatness
puzzle.

The e50 solution is in fact unstable for any matter fie
satisfying the strong energy condition 113w.0. Inflation
solves the flatness problem with an inflaton field which s
isfies 113w,0. For such a fielde is driven towards zero
instead of away from it. Thus inflation can solve the flatne
puzzle.

As Eq. ~10! shows a decreasing speed of light (ċ/c,0)
would also drivee to 0. If the speed of light changes in
sharp phase transition, withuċ/cu@ȧ/a, we can neglect the
expansion terms in Eq.~10!. Then ė/e52ċ/c so that e
}c2. A short calculation shows that the condition~2! also
ensures thate!1 nowadays, ife'1 before the transition.

The instability of theKÞ0 universes whileċ/c,0 can be
expected simply from inspection of the nonconservat
equation~5!. Indeed, ifr is above its critical value, thenK
51, and Eq.~5! tells us that mass is taken out of the Un
verse. If r,rc , then K521, and then mass is produce
Either way the mass density is pushed towards its crit
value rc . In contrast with the big bang model, during
period with ċ/c,0 only theK50 universe is stable.

Note that with the set of assumptions we have use
changingG cannot solve the flatness problem~cf. @15–17#!.

We have assumed in the previous discussion that we
close, but not fine-tuned, to flatness before the transition.
6-4
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TIME VARYING SPEED OF LIGHT AS A SOLUTION . . . PHYSICAL REVIEW D 59 043516
curious to note that this need not be the case. Suppos
stead that the Universe acquires ‘‘natural initial condition
~e.g. e'1! well before the phase transition occurs. If su
universes are closed, they recollapse before the transitio
they are open, then they approache521. This is the Milne
universe, which in our case~constantG! may be seen as
Minkowski space-time. Such a curvature dominated unive
is essentially empty, and a coordinate transformation
transform it into Minkowski space-time. Inflation cann
save these empty universes, as can be seen from Eq.~10!.
Indeed, even if 113w,0, the first term will be negligible if
e'21. This is not true for VSL: the second term will sti
push ane521 universe towardse50.

Heuristically this results from the fact that the violatio
of energy conservation responsible for pushing the Unive
towards flatness do not depend on there being any matt
the Universe. This can be seen from inspection of Eq.~5!.

In this type of scenario it does not matter how far befo
the transition the ‘‘initial conditions’’ are imposed. We en
up with a chaotic scenario in which Darwinian selection g
rid of all the closed universes. The open universes beco
empty and cold. In the winter of these universes a ph
transition inc occurs, producing matter, and leaving the u
verse very fine tuned, indeed as an Einstein–de Sitter
verse~EDSU!.

VI. COSMOLOGICAL CONSTANT PROBLEM

There are two types of cosmological constant proble
and we wish to start our discussion by differentiating the
Let us write the action as

S5E dx4A2gS c4~R12L1!

16pG
1LM1LL2D ~11!

whereLM is the matter field Lagrangian. The term inL1 is a
geometrical cosmological constant, as first introduced
Einstein. The term inL2 represents the vacuum energy de
sity of the quantum fields@18#. Both tend to dominate the
energy density of the Universe, leading to the so-called c
mological constant problem. However, they represent
rather different problems. We shall attempt to solve the pr
lem associated with the first, not the second, term. Usu
one hopes that the second term will be cancelled by an
ditional counter-term in the Lagrangian. In the rest of th
paper it is the geometrical cosmological constant that is
der scrutiny.

If the cosmological constantLÞ0, then the argument in
the previous section still applies, withr5rm1rL , where
rm is the mass density in normal matter, and

rL5
Lc2

8pG
~12!

is the mass density in the cosmological constant. One
predicts Vm1VL51, with Vm5rm /rc and VL5rL /rc .
However, now we also have
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ṙm13
ȧ

a S rm1
pm

c2 D52 ṙL2r
Ġ

G
1

3Kc2

4pGa2

ċ

c
. ~13!

If L is indeed a constant, then, from Eq.~12!,

ṙL

rL
52

ċ

c
2

Ġ

G
. ~14!

If we defineeL5rL /rm , we then find, after some straigh
forward algebra, that

ėL5eLS 3
ȧ

a
~11w!12

ċ

c

11eL

11e D . ~15!

Thus, in the SBB model,eL increases likea4 in the radiation
era and likea3 in the matter era, leading to a total growth b
64 orders of magnitude since the Planck epoch. Again i
puzzling thateL is observationally known to be at most o
order 1 nowadays. We have to face another fine-tuning pr
lem in the SBB model: the cosmological constant proble

If ċ50, the solutioneL50 is in fact unstable for anyw
.21. Hence violating the strong energy condition 113w
.0 would not solve this problem. Even in the limiting ca
w521 the solutioneL50 is not an attractor:eL would
merely remain constant during inflation, then starting
grow like a4 after inflation. Therefore inflation cannot ‘‘ex
plain’’ the small value ofeL , as it can withe, unless one
violates the dominant energy conditionw>21.

However, as Eq.~15! shows, a period withċ/c!0 would
drive eL to zero. If the speed of light changes sudden
(uċ/cu@ȧ/a), then we can neglect terms inȧ/a, and so

ėL

eL~11eL!
52

ċ

c

1

11e
~16!

which when combined withė/e52ċ/c leads to

eL

11eL
}

e

11e
. ~17!

The exact constraint on the required change inc depends on
the initial conditions ine and eL . In any case once bothe
'1 andeL'1 we haveeL}c2. Then we can solve the cos
mological constant problem in a sudden phase transition
which

log10

c2

c1 @642
1

2
log10zeq12 log10

Tc
1

TP
1 . ~18!

This condition is considerably more restrictive than Eq.~2!,
and means a change inc by more than 60 orders of magn
tude, if Tc

1'TP
1 . Note that once again a period withĠ/G

would not solve the cosmological constant problem.
Equations~10! and ~15! are the equations one should in

tegrate to find conditions for solving the flatness and cosm
logical constant problems for arbitrary initial conditions a
with arbitrary curvesc(t). They generalize the conditions~2!
and ~18! which are valid only for a starting point withe
'1 andeL'1 and for a step functionc(t).
6-5
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As in the case of the flatness problem we do not nee
impose ‘‘natural initial conditions’’ (eL'1) just before the
transition. These could have existed any time before the t
sition, and the argument would still go through, albeit with
rather different overall picture for the history of the Un
verse.

If eL'1 well before the transition, then the Univers
soon becomes dominated by the cosmological constant.
have inflation. The curvature and matter will be inflat
away. We end up in a de Sitter universe. When the transi
is about to occur it finds a flat universe (e50), with no
matter (rm50), and with a cosmological constant. If w
rewrite Eq. ~15! in terms of em5rm /rL , for e50 and
uċ/cu@ȧ/a, we have ėm522(ċ/c)(11em). Integrating
leads to 11em}c22. We conclude that we do not need th
presence of any matter in the Universe for a VSL transit
to convert a cosmological constant dominated universe in
EDSU universe full of ordinary matter. This can be se
from Eqs.~13!, ~14!. A sharp decline inc will always dis-
charge any vacuum energy density into ordinary matter.

We stress the curious point that in this type of scena
the flatness problem is not solved by VSL, but rather by
period of inflation preceding VSL.

VII. HOMOGENEITY OF THE UNIVERSE

Solving the horizon problem by no means guarant
solving the homogeneity problem, that is, the uncanny
mogeneity of the currently observed Universe across m
regions which have apparently been causally disconnec
Although solving the horizon problem is a necessary con
tion for solving the homogeneity problem, in a generic infl
tionary model solving the first causes serious problems
solving the latter. Early causal contact between the en
observed Universe allows equilibration processes to hom
enize the whole observed Universe. It is crucial to the in
tion picture that before inflation the observable universe
well inside the Jeans length and thus equilibrate towar
homogeneous state. However, no such process is perfect
small density fluctuations tend to be left outside the Hub
radius, once the Universe resumes its standard big b
course. These fluctuations then grow likea2 during the ra-
diation era and likea during the matter era, usually entailin
a very inhomogeneous universe nowadays. This is a com
flaw in early inflationary models@19# which requires addi-
tional fine-tuning to resolve.

In order to approach this problem we study in Appendix
the effects of a changingc on the theory of scalar cosmo
logical perturbations@20#. The basic result is that the comov
ing density contrastD and gauge-invariant velocityv are
subject to the equations

D82S 3w
a8

a
1

c8

c DD52~11w!kv22
a8

a
wPT ~19!
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v81S a8

a
22

c8

c D v

5F cs
2k

11w
2

3

2k

a8

a S a8

a
1

c8

c D GD
1

kc2w

11w
G2kcF 2/3

11w
1

3

k2c2 S a8

a D 2GwPT

~20!

wherek is the wave vector of the fluctuations,G is the en-
tropy production rate,PT the anisotropic stress, andcs the
speed of sound, according to definitions spelled out in A
pendix B.

In the case of a sudden phase transition Eq.~19! shows us
that D}c, regardless of the chosen equations of state foG
andPT . Hence

D1

D2 5
c1

c2 , ~21!

meaning a suppression of any fluctuations before the ph
transition by more than a factor of 10260 if condition ~18! is
satisfied. The suppression of fluctuations induced by a s
den phase transition inc can be intuitively understood in th
same fashion as the solution to the flatness problem. M
conservation violation ensures that only a universe at crit
mass density is stable, ifċ/c!0. But this process occur
locally; so after the phase transition the Universe should
left at critical densitylocally. Hence the suppression of den
sity fluctuations.

We next need to know what are the initial conditions f
D and v. Suppose that at some very early timet i one has
ċ/c50 and the whole observable Universe nowadays is
side the Jeans length:h0!cih i /). The latter condition is
enforced as a by-product of solving the horizon proble
The whole observable Universe nowadays is then initially
a thermal state. What is more each portion of the Unive
can be described by the canonical ensemble and so the
verse is homogeneous apart from thermal fluctuations@21#.
These are characterized by the mass fluctuation

sM
2 5

^dM2&

^M &2 5
4kbTi

Mci
2 . ~22!

Converted into a power spectrum forD this is a white noise
spectrum with amplitude

PD~k!5^uD~k!2u&}
4kbTi

r ici
2 . ~23!

What happens to a thermal distribution, its temperatu
and its fluctuations, whilec is changing? In thermal equilib
rium the distribution function of particle energies is th
Planck distributionP(E)51/(eE/kbT21), where T is the
temperature. When one integrates over the whole ph
space, one obtains the bulk energy densityrc2

}(kbT)4/(\c)3. Let us now consider the time when the Un
6-6
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verse has already flattened out sufficiently for mass to
approximately conserved. To define the situation more co
pletely, we make two additional microphysical assumptio
First, let mass be conserved also for individual quantum p
ticles, so that their energies scale likeE}c2. Second, we
assume the particle wavelengths do not change withc. If
homogeneity is preserved, indeed the wavelength is an a
batic invariant, fixed by a set of quantum numbers, e.gl
5L/n for a particle in a box of sizeL.

Under the first of these assumptions a Planckian distr
tion with temperatureT remains Planckian, butT}c2. Under
the second assumption, we havel52p\c/E, and so\/c
should remain constant. Therefore the phase space stru
is changed so that, without particle production, one still h
rc2}(kbT)4/(\c)3, with T}c2. A blackbody therefore re-
mains a blackbody, with a temperatureT}c2. If we combine
this effect with expansion, with the aid of Eq.~5! we have

Ṫ1TS ȧ

a
22

ċ

cD50. ~24!

We can then integrate this equation through the epoch w
c is changing to find the temperatureTi of the initial state.
This fully fixes the initial conditions for scalar fluctuation
by means of Eq.~23!.

In the case of a sudden phase transition we haveT1

5T2c21/c22, and so

sM
225

4kbT2

Mc22 5
4kbT1

Mc21 ~25!

or

D2~k!2'
4kbT1

r1c21 ~26!

but sinceD}c we have

D1~k!'A4kbT1

r1c21

c1

c2 . ~27!

Even if T15TP
151019GeV, these fluctuations would still b

negligible nowadays. Therefore, although the Universe e
up in a thermal state after the phase transition, its ther
fluctuations, associated with the canonical ensemble,
strongly suppressed.

For a more generalc(t) function the procedure is as fo
lows. Integrate Eq.~24! backwards up to a timet i when ċ
50, to findT(t i). Give D(t i) a thermal spectrum of fluctua
tions, according to Eq.~23!, with T(t i). With this initial
condition integrate Eqs.~19! and ~20! @or even better the
second order equation~B12! given in Appendix B#, to findD
nowadays.

It is conceivable that a careful design ofc(t) would leave
fluctuations, onceċ50 again, with the right amplitude an
spectrum to explain structure formation. In particularc(t)
may be designed so as to convert a white noise spectrum
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a scale-invariant spectrum. However, we feel that unti
mechanism for inducingc(t) is found such efforts are boun
to look ludicrously contrived.

We feel that the power of VSL scenarios is precisely
leaving the Universe very homogenous, afterc has stopped
changing. This would then set the stage for causal mec
nisms of structure formation to do their job@22,23#.

VIII. ISOTROPY OF THE UNIVERSE

There is a sense in which there is an isotropy problem
the SBB model, similar to the homogeneity problem. W
follow closely the remark made in@20#, p. 26.

In Appendix C we write down the vector Einstein’s equ
tions in the vector gauge, and from them we derive the v
ticity ‘‘conservation’’ equation whenċ/cÞ0. If v is the vor-
ticity ~defined in Appendix C! andPT the vector stress, we
have

v81~123w!
a8

a
v22

c8

c
v52

kc

2

w

11w
PT. ~28!

In the absence of driving stress,v remains constant during
the radiation dominated epoch, and decays like 1/a in the
matter epoch. In@20# it is further argued that the relevan
dimensionless quantity is

v5
~k/a!v
~a8/ca!

}
1

a~129w!/2 . ~29!

Hence forw.1/9 vorticity grows, leading to a further fine
tuning problem.

This is most notably a problem if we accept the Plan
equipartition proposal, introduced in@24#. At the Planck ep-
och there would then be a significant vorticity. Depending
how one looks at it, this vorticity would then get frozen in
grow, leading to a very anisotropic universe nowadays.

Whether or not this is a problem is clearly debatable.
any case either inflation or VSL models could solve th
prospective problem. Forw,21/3 we have thatv decays
faster than 1/a2. Whatever dimensionless quantity on
chooses to look at, vorticity is therefore safely inflated aw
If ċ/cÞ0, we have thatv}c2. Again any primordial vortic-
ity is safely suppressed after a phase transition inc satisfying
either condition~2! or ~18!.

IX. ENTROPY PROBLEM AND SETTING THE INITIAL
CONDITIONS

Let us first consider the SBB model. LetSh be the entropy
inside the horizon andsh5Sh /kB be its dimensionless coun
terpart.sh is of order 1096 nowadays. If we assume that th
only scales in the cosmological model are the ones provi
by the fundamental constants, then attP the temperature is
TP . At Planck time,sh ~being dimensionless! is naturally of
order 1. In the SBB model the horizon distance isdh52t in
the radiation dominated epoch, and ignoring mass thresh
t}1/T2. If evolution is adiabatic, one then has~in a flat uni-
verse!
6-7
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sh~ t !'sh~ tP!S TP

T D 3

. ~30!

Sincesh(tP);1, one hassh(t0);1096. Thus the large en-
tropy inside the horizon nowadays is a reflection of the la
of scales beyond the ones provided by the fundamental
stants, the fact that the horizon size is much larger nowad
than at Planck time, and the flatness of the Universe. O
may rephrase the horizon and flatness problems in term
entropy@2#. However, if one is willing to accept the horizo
structure and flatness of the Universe simply as feature
the initial conditions~rather than problems!, there is no ad-
ditional entropy problem.

There is a problem that arises if one tries to solve t
horizon problem, keeping the adiabatic assumption,
means of superluminal expansion. This blows what at Pla
time is a region much smaller than the Planck size int
comoving region containing the whole observable Unive
nowadays. This solves the horizon problem. However
evolution is adiabatic, such a process implies thatsh(t0)
!1. Stated in another way, since the number of partic
inside the horizonnh is of the same order assh , this implies
an empty universe nowadays.

More mathematically, ifdh is the horizon proper distance
one has

ṡh

sh
5

3

dh
~31!

where we have useddh5a* tdt8/a. With any standard mat
ter (p.2rc2/3) the horizon grows liket. Accordingly sh
grows like a power oft. On the other hand the horizon grow
faster thant if p,2rc2/3: it grows exponentially ifp
52rc2, and like tn ~with n.1! for 2rc2,p,2rc2/3.
This provides the inflationary solution to the horizon pro
lem. However, in the latter case Eq.~31! implies thatsh
decreases exponentially, leading tosh(t0)!1. The way in-
flation bypasses this problem is by dropping the adiab
assumption. Indeed during inflation the Universe superco
and a period of reheating follows the end of inflation.2

In VSL scenarios the detailed solution to the entro
problem depends on when and what type of ‘‘natural con
tions’’ are given to the pre-transition universe. We first d
rive equations for the entropy under varyingc. From s
5(4/3)rc2/T, r}T4/(\c)3, and from Eqs.~5! and ~13! we
obtain that the entropy of radiation satisfies

ṡ

s
5

3

4

ṙ

r
523

ȧ

a
1

3

2

ċ

c

e~11eL!

11e
2

3

2

ċ

c
eL . ~32!

If the Universe is EDSU, there are no violations of ma
conservation, and entropy is conserved. However, if the U
verse is open or has a positive cosmological constant,
we have seen that there is creation of mass. Accordin

2This issue has been carefully analyzed in the context of inflat
ary models and models with time varyingG in @17#.
04351
k
n-
ys
e
of

of

y
k
a
e
if

s

-

ic
s,

i-
-

s
i-
en
ly

there must be creation of particles, and entropy is produc
If the Universe is closed, particles are taken away, and
entropy decreases.

The most suspicious case is therefore if the Universe
Einstein–de Sitter before the phase transition. Let us ass
therefore that att5tP

2 ~the Planck time with the constant
before the transition! the entropy inside the horizon~which
has proper sizec2tP

2! was of order 1. Then the entropy in
side the Hubble volume att5tP

1 , before and after the tran
sition, is

sh~ tP
1!5sh~ tP

2! S c1tP
1

c2tP
2D 3 S a~ tP

2!

a~ tP
1!

D 3

'1 ~33!

where we have usedtP
1/tP

25(c2/c1)2. One takes a fraction
(c1/c2)3 of the horizon volume before the transition
make the Hubble volume after the transition. However,
entropy inside the horizon has increased sincetP

1 by the
same factor. Therefore entropy conservation in this case d
not conflict withsh(tP

1)'1 after the transition. One way o
understanding this is that by imposing flatness from the o
set ~before the transition! one has already ‘‘solved’’ the en
tropy problem. Notice that the above argument works for a
value of tc /tP

1 .
Now consider the case where ‘‘natural’’ initial condition

were also imposed attP
2 , with L50. One should havee(tP

2)
of order 1. We have already discussed how the flatness p
lem is solved in this case, when large empty curvature do
nated universes are filled with a~nearly perfectly! critical
energy density during the transition. Open universes beco
very empty, but they are still pushed to EDSU at the tran
tion. One may integrate Eq.~32! to find that s1/s25(1
1e2)23/4. One may also use Eq.~10! to find that e has
evolved since tP

2 to e2(tP
1)11'@a(tP

2)/a(tP
1)#2

'(tP
2/tP

1)2, where we have useda}t for the Milne universe.
Hence we have that during the transition entropy is produ
like s1/s25(tP

1/tP
2)3/25(c2/c1)3. Given thata}t for such

universes, the entropy before the transition in the proper v
ume of sizec1tP

1 is

S2~c1tP
1!5S c1tP

1

c2tP
2D 3 S a~ tP

2!

a~ tP
1!

D 3

' S c1

c2D 3

, ~34!

that is, there is practically no entropy in relevant volum
before the transition. However, we have that, after the tr
sition,

sh~ tP
1!5S1~c1tP

1!5S2~c1tP
1!S c2

c1D 3

'1. ~35!

In such scenarios the Universe is rather cold and empty
fore the transition. However, the transition itself reheats
Universe. Notice that, like in the first case discussed,
above argument works for any value oftc /tP

1 .
If at t5tP

2 one also haseL'1, then we have a scenario i
which the cosmological constant dominates, solves the
ness problem, and is discharged into normal matter. H
ever, if rL'rP

2 at t'tP
2 , then whatever the transition time

-

6-8
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after the transition the Universe will have a density in norm
matter equal torm5rP

2 . Hence the Hubble time after th
transition will be tP

2 , whatever the actual age of the Un
verse. One may integrate Eq.~32! to find that in this case
~settinge50! the entropy production during the transition
s1/s25(11eL

2)3/4. In the period betweent5tP
2 and the

transition,eL increases likea4, and the entropy density i
diluted like 1/a3. Hence after the transition the entropy de
sity is what it was att5tP

2 , that iss1'1/LP
23 . If we now

follow the Universe until its Hubble time istP
1 ~when its

density isrP
1!, we must wait until the expansion factor ha

increased by a factor of (rP
1/rP

2)1/4. Given thats}1/a3 the
entropy density is diluted by a factor of (rP

1/rP
2)3/4. There-

fore the entropy density when the Hubble time ist5tP
1 is

s'1/LP
13 . Again the dimensionless entropy inside t

Hubble volume, when this has sizeLP
1 , is of order 1.

Finally it is worth noting that treating the pre-transitio
universe simply as a Roberston-Walker model is no do
overly simplistic, and we use it simply as a device to intr
ducing our ideas. We expect that further development
these ideas could result in a radically different view of t
pre-transition phase~much as has happened with the infl
tionary scenario!. One interesting observation is that on
could avoid having multiple Planck times by considering th
G}c4. Such assumption would not conflict with the dynam
ics of flatness andL, as shown before, but nowtP

25tP
1 .

X. CONCLUSIONS

We have shown how a time varying speed of light cou
provide a resolution to the well known cosmological puzzl
These ‘‘VSL’’ models could provide an alternative to th
standard inflationary picture and, furthermore, resolve
classical cosmological constant puzzle. At a technical le
the proposed VSL picture is not nearly as well developed
the inflationary one, and one purpose of this article is
stimulate further work on the unresolved technical issu
We are not trying to take an ‘‘anti-inflation’’ stand, but w
do strongly feel that broadening the range of possible mo
of the very early Universe would be very healthy for the fie
of cosmology and would ultimately allow us to state in mo
concrete terms the extent to which one model is preferre

On a more fundamental level we hope to expand the p
nomenological approach presented in this paper into a th
where the concept of~Poincare´! symmetry breaking provide
the physical basis for VSL. Symmetry breaking is also
central ingredient in causal theories of structure formati
We therefore hope to arrive at a scenario where symm
breaking provides a complete and consistent complemen
the SBB model which can resolve the standard puzzles
well as explain the origin of cosmic structure.

Note added in proof. After this paper, as well as its sequ
@26#, were completed J. Moffat brought to our attention tw
papers in which he proposes a similar idea@27#. While Mof-
fat’s work does not go as far as ours in addressing the
ness and entropy problems, he does go considerably fu
than we have in terms of specific model building. Moffa
model does not satisfy our prescription for solving the c
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mological problems, but it may do so in a modified form. W
are currently investigating this possibility. We regret that b
cause we were unaware of this work, we did not cite it in t
first publicly distributed version of this paper.
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APPENDIX A: A SPECIFIC REALIZATION OF VSL

In this appendix we set up a specific VSL theory. We fi
discuss the simple case of the electrodynamics of the p
particle in Minkowski space time. We start from Beke
stein’s theory of variablea, and show how a VSL alternative
could be set up. We highlight the subtleties encountered
the VSL formulation. We then perform the same exerc
with the Einstein-Hilbert action. We briefly consider the d
namics of the fieldc5c4. Finally we cast the key element
of our construction into a body of axioms.

1. Electrodynamics in flat space time

A changinga theory was proposed by Bekenstein@11#
based on the postulate of Lorentz invariance. The electro
namics of a point particle was first analyzed. If Lorentz i
variance is to be preserved, then the particle massm and its
chargee must be variable. In order to preserve ‘‘minim
coupling’’ ~reduction to standard electromagnetism whena
5const! one chooses the world line action

L52mcA2umum1
e

c
umAm ~A1!

with um5 ẋm, gmn5hmn , e5e(xm), andm5m(xm). Mini-
mal coupling means simply to take the standard action
replacee and m by variables without breaking Lorentz in
variance.e andm must then be scalar functions. This actio
leads to the equation

~mẋm!52m,mc21
e

c
unFmn ~A2!

with the electromagnetic field tensor defined as

Fmn5
1

e
@]m~eAn!2]n~eAm!#. ~A3!

The electromagnetic action can therefore be defined as

SEM5
21

16p E d4xFmnFmn. ~A4!

Also, the particle action~A1! may be written as a Lagrangia
density:
6-9
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SM5E d4x
d~3!

„x2x~t!…

g
@2mc21~e/c!umAm# ~A5!

in which g is the Lorentz factor. Maxwell’s equations a
then

e]m~Fmn/e!54p j m ~A6!

with the current

j m5
d~3!

„x2x~t!…

g

eum

c
. ~A7!

This current3 is the current which couples to the gauge fie
and in the rest frame it equalse. Therefore it cannot be
conserved, and indeed we have that

]m j m5
j m

e2 ]me. ~A8!

Let us now postulate instead that a changinga is to be
interpreted asc}\}a21/2, and thate andm are to be seen
as constants. Minimal coupling, in the above sense, wo
then prompt us to consider the action~A1!, but with c
5c(xm) everywhere, ande and m constants. This action
leads to the equation

mẍm5
1

2
~mc2! ,m1

e

c
unFmn ~A9!

with the electromagnetic tensor defined as

Fmn5c@]m~An /c!2]n~Am /c!#. ~A10!

However, the above construction is not complete. In sp
of the appearance of Eqs.~A1!, ~A9!, and ~A10!, Lorentz
invariance is broken. This boils down to the fact that, say,]m
is no long a 4-vector. Even ifc were to be regarded as
scalar,]m would containc in its zero component, but not in
its spatial components. The usual contractions leading tS
could still be taken butS would no longer be a scalar. Thi
manifests itself in Eq.~A9! in the fact that inẍm there are
terms in]c which break Lorentz invariance.

Since the action is not Lorentz invariant, a minimal co
pling prescription cannot possibly be true in every coordin
system. Minimal coupling is now the statement that there
preferred reference frame in which the action is to be
tained from the standard action simply by replacingc with a
field. Let us call this frame the ‘‘light frame.’’ In regions in
which c changes very little changes in the action upon L
entz transformations are negligible. Hence all boosts p
formed upon the light frame become nearly equivalent a
Lorentz invariance is recovered.

The Maxwell equations in a VSL theory become

3There is an alternative view in which rather than a changine
one considers that the vacuum is a dielectric medium with varia
e. One may then identify a conserved charge, but this is not
charge which couples to the gauge field.
04351
,

ld

e

-
e
a
-

-
r-
d

1

c
]m~cFmn!54p j m ~A11!

in the light frame. Given that Lorentz invariance is broke
one can no longer expect the general expression for a
served current to take the form]m j m50. Indeed one could
try and compute]n of Eq. ~A11!, but now]m and]n do not
commute. Also their commutator is not Lorentz invariant: f
instance@]0 ,] i #5(2] ic/c2)]0 . Still, ]m j m50 holds in the
time frame. It is just that this expression transforms in
something more complicated in other frames. The more co
plicated expression would still place constraints on
theory, which could still be called ‘‘conservation of charge

2. Minimal coupling to gravity

Let us now examine gravity in such a theory.4 As in the
previous case we will impose a minimal coupling princip
Working in analogy with Brans-Dicke theory, let us define
field c5c4, and introduce the following action:

S5E dx4FA2gS c~R12L!

16pG
1LM D1LcG . ~A12!

The dynamical variables are a metricgmn , any matter field
variables contained inLM , andc itself. The Riemann tenso
~and the Ricci scalar! is to be computed fromgmn at constant
c in the usual way.

As in the previous subsection covariance is broken,
spite of all appearances.c does not appear in coordinat
transformations of the metric, and so the connectionGmn

a

does not contain terms in¹c in any frame. However, the
connection will contain different terms inc in different
frames. Hence the statement that the Riemann tensor is t
computed from the metric at constantc can only be true in
one preferred frame. Minimal coupling requires the defi
tion of a light frame. The action~A12! is only Lorentz in-
variant in appearance.

Varying the action with respect to the metric leads to

dS

dgmn 5
A2gc

8pG
@Gmn2gmnL# ~A13!

dSM

dgmn 52
A2gc

8pG
Tmn , ~A14!

leading to a set of Einstein’s equations without any ex
terms,

Gmn2gmnL5
8pG

c
Tmn , ~A15!

le
e

4Gravitation is normally regarded as the gauge theory of the P
caré group @25#. Here we simply abandon this point of view. I
some future work we will try to define a gauge principle for brok
symmetries, thereby recovering the standard view.
6-10
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valid in the light frame. This is the way we chose to phra
our postulates in Sec. III above. In other words all we nee
minimal coupling at the level of Einstein’s equations.

The fact that a favored set of coordinates is picked by
action principle is not surprising as Lorentz invariance
broken. On the other hand notice that the dielectric vacu
of Bekenstein theory is an ether theory. His theory a
breaks Lorentz invariance, not at the level of the laws
physics, but in the form of the contents of space-time.

In changinga theories a favored frame is always picke
up. In a cosmological setting it makes sense to identify t
frame with the cosmological frame. Free falling observ
comoving with the cosmological flow define a proper tim
charge which couples to the gauge field. and a set of sp
coordinates, to be identified with the light frame. In th
frame the Einstein-Hilbert action is minimally coupled to
changingc, and the same happens to Friedmann equati
The rest of our paper follows.

3. Dynamics ofc

The definition ofLc controls the dynamics ofc. This is
the most speculative aspect of our theory, but it also op
the doors to empirical model building. In our paper we p
ferred a scenario in whichc changes in an abrupt phas
transition, but one could also imaginec}an. The latter sce-
nario would result from a Brans-Dicke type of Lagrangia

Lc5
2v

16pGc
ċ2 ~A16!

~wherev is a dimensionless coupling! and is being investi-
gated. Addition of a temperature dependent potentialV(c)
would induce a phase transition, as in the scenario develo
in our paper.

However, here we only make the following remark
which are independent of any concrete choice ofLc . If K
5L50, one has

dLc

dc
5

A2gT

4c
~A17!

and so in the radiation dominated epoch (T50), onceK
5L50, one should not expect driving terms for thec equa-
tion. Hence, once the cosmological problems are solved
the radiation epoch,c and\ should be constants. Incidently
once the matter dominated epoch (TÞ0) is reached,c
should perhaps start changing again, with interesting ob
vations consequences@10#. We are studying the phase spa
portraits of these cosmologies, when sayLÞ0, and with
variousLc .

During phase transitions the perfect fluid approximat
must break down. One should then use, say, scalar
theory~let us call itf!. Now notice that terms inḟ will act
as a source toc ~as they contain the speed of light!. Hence
whenever there is a phase transition and the vacuum ex
tation value~VEV! of a field changes a large amount, o
may expect a large change in the speed of light, with m
choices ofLc . A changingc associated with SSB could the
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solve the quantum version of the cosmological const
problem, but this might require a rather contorted choice
Lc .

4. Axiomatic formulation of VSL theories

Postulate 1.A changinga is to be interpreted as a chang
ing c and \ in the ratios c}\}a21/2. The coupling e is
constant.

This postulate merely sets up the theoretical interpreta
of the possible experimental fact thata changes, in terms o
variable dimensional quantities. This is a matter of conv
tion and not experiment, as much as a constant\c is a matter
of convention. With the above choice a system of units
mass, length, time, and temperature is unambiguously
fined.

Postulate 2.There is a preferred frame for the laws o
physics. This preferred frame is normally suggested by
symmetries of the problem, or by a criterium such
c5c(t).

If c is variable, Lorentz invariance must be broken. Ev
if one writes Lorentz invariant looking expressions, these
not transform covariantly. In general this boils down to t
explicit presence ofc in the operator]m . Once one admits
that Lorentz invariance must be explicitly broken, then
preferred frame must exist to formulate the laws of physi
These laws are not invariant under frame transformation,
one may expect that a preferred frame exists where th
laws simplify.

Postulate 3.In the preferred frame one may obtain th
laws of physics simply by replacing c in the standard (Lo
entz invariant) action, wherever it occurs, by a fie
c5c(xm).

This is the principle of minimal coupling. Because th
laws of physics cannot be Lorentz invariant it will not ho
in every frame. Hence the application of this postulate
pends crucially on the previous postulate supplying us wit
favored frame. This principle may apply in Minkowski spa
time electrodynamics, scalar field theory, etc., in which c
the frame in whichc5c(t) is probably the best choice. Th
cosmological frame, endowed with the cosmic proper tim
is probably the best choice in a cosmological setting.

Postulate 4.The dynamics of c must be determined by
action principle deriving from adding an extra term to th
Lagrangian which is a function of c only.

This is work in progress. We do not wish to specify th
postulate further because for all we know this extra term
be anything. We merely specify that no fields~including the
metric! must be present in this extra term because we w
minimal coupling to propagate into the Einstein’s equatio

APPENDIX B: SCALAR PERTURBATION EQUATIONS
FOR VSL MODELS

In this appendix we derive the scalar cosmological pert
bation equations in VSL scenarios. We assumeK5L50,
and use a gauge where the perturbed metric is written a

ds25a2@2~112AY!dh222BYkidxidh1d i j dxidxj #
~B1!
6-11
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for a Fourier component with wave vectorki . Here Y is a
scalar harmonic. We shall use conformal timeh to study
fluctuations, and denote85d/dh. The stress energy tenso
is also written as

dT0
052rYd

dT0
i 52S r1

p

c2D v
c

kiY

dTj
i 5pPLYd j

i 1~kikj

21/3d j
i k2!Y pPT . ~B2!

The Einstein’s constraint equations then read@20#

3

c2 S a8

a D 2

A2
1

c

a8

a
kB52

4pGa2

c2 rd ~B3!

k

c

a8

a
A2F S a8

a D 8
2S a8

a D 2G B

c2 5
4pGa2

c2 S r1
p

c2D v
c

~B4!

and the dynamical equations are

A1
1

kc S B812
a8

a
BD52

8pGa2

c2

p

c2

PT

k2 ~B5!

a8

a

A8

c2 1F2
a9

a
2S a8

a D 2G A

c2 5
4pGa2

c2

p

c2 ~PL22PT!.

~B6!

We assume that these equations do not receive correctio
ċ/c. This statement is gauge-dependent, much like its co
terpart for the unperturbed Einstein’s equations. We can o
hope that the physical result does not change qualitativ
from gauge to gauge. Complying with tradition we now d
fine the comoving density contrast@20#

D5d13~11w!
a8

ca

1

k S v
c

2BD . ~B7!

We also introduce the entropy production rate

G5PL2
cs

2

wc2 d ~B8!

where the speed of soundcs is given by

cs
25

p8

r8
5wc2S 12

2

3

1

11w

c8

c

a

a8D . ~B9!

Note that the thermodynamical speed of sound is given
cs

25(]p/]r)uS . Since in SBB models evolution is isentro
pic, cs

25(]p/]r)uS5 ṗ/ ṙ5p8/r8. When ċÞ0 evolution
need not be isentropic. However, we keep the definitioncs

2

5p8/r8 since this is the definition used in perturbative c
culations. One must however remember that the spee
sound given in Eq.~B9! is not the usual thermodynamica
quantity. With this definition one has for adiabatic perturb
tions dp/dr5p8/r8, that is the ratio between pressure a
density fluctuations mimics the ratio of their backgrou
rates of change.
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Combining all four Einstein’s equations we can then o
tain the~non-!conservation equations@20#

D82S 3w
a8

a
1

c8

c DD52~11w!kv22
a8

a
wPT

~B10!

v81S a8

a
22

c8

c D v5F cs
2k

11w
2

3

2k

a8

a S a8

a
1

c8

c D GD
1

kc2w

11w
G2kcF 2/3

11w

1
3

k2c2 S a8

a D 2GwPT . ~B11!

These can then be combined into a second order equatio
D. If G5PT50, this equation takes the form

D91 f D81~g1h1cs
2k2!D50 ~B12!

with

f 5~123w!23
c8

c
~B13!

g5 S a8

a D 2S 9

2
w223w2

3

2D ~B14!

h52S c8

c D 2

1S 9w

2
2

5

2D c8

c

a8

a
2 S c8

c D 8
.

~B15!

APPENDIX C: VECTOR PERTURBATION EQUATIONS
FOR VSL MODELS

In a similar fashion we can study vector modes in a gau
where the metric may be written as

ds25a2@2dh212BYidxidh1d i j dxidxj # ~C1!

whereYi is a vector harmonic. The stress energy tenso
written as

dTi
05S r1

p

c2D S v
c

2BDYi ~C2!

dTi j 5pPTY~ i , j ! . ~C3!

Einstein’s equations then read@20#

k2B5
16pG

c2 a2S r1
p

c2D v
c

~C4!

k

c S B812
a8

a
BD52

8pG

c2

p

c2 a2PT. ~C5!

We assume that these do not receiveċ/c corrections. The
conservation equation is then

v81~123w!
a8

a
v22

c8

c
v52

kc

2

w

11w
PT. ~C6!
6-12
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