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We analyze a generalization of general relativity that incorporates a cosmic time variation of the velocity of
light in vacuum,c, and the Newtonian gravitation “constanG proposed by Albrecht and Magueijo. We find
exact solutions for Friedmann universes and determine the rate of variatoregtiired to solve the flatness
and classical cosmological constant problems. Potential problems with this approach to the resolution of the
flatness and classical cosmological constant problems are highlighted. Reformulations are suggested which
give the theory a more desirable limit as a theory of vary@n the limit of constant and its relationship
to theories with varying electron charge and constaate discussed S0556-282199)03404-9

PACS numbds): 98.80.Cq, 95.30.5f

I. INTRODUCTION cleosynthesis and are not necessarily of relevance to the
varying< theory under examination here. The period of
Albrecht and Magueijd1] have recently drawn attention c-variation is expected to be confined to the very early uni-
to the possible cosmological consequences of time variationgerse and its observational consequences are likely to be
in ¢, the velocity of light in vacuum. In particular, there are manifested most sensitively through the spectrum of any mi-
mathematical formulations of this possibility which offer crowave background fluctuations that are created.
new ways of resolving the horizon and flatness problems of

cosmology, distinct from their resolutions in the context of II. THE ALBRECHT-MAGUEIJO MODEL

the standard inflationary universe the¢®] or the pre-big- o . ) o
bang scenario of low-energy string thedB]. Moreover, in If we begin with the field equations of general relativity
contrast with the case of the inflationary universe, vangng

may provide an explanation for the relative smallness of the G,,—g, A= T 1)
cosmological constant today. The study presented in[Rgf. wy Sky ct

envisages a sudden fall in the speed of light, precipitated by
a phase transition or some shift in the values of the fundathen we cannot simply “write in” variations of constants
mental constants, and explores the general consequences thath ass or ¢ as we could in a non-geometrical theory like
might follow from a sufficiently large change. Newtonian gravity{6]. For example, if we wished to allow

In this paper we explore the formulation of RéL] in G, say, to vary in time then we encounter a consistency
further detail, showing that one can solve the cosmologicaproblem if the energy-momentum tensby, and its vanish-
field equations that define it for general power-law variationsng covariant divergence retains its usual form and physical
of c andG. This allows us to determine the rate and sense ofneaning as conservation of energy and momentum. The co-
the changes required mif the flatness, horizon, and cosmo- variant divergence of the left-hand side of Efj) vanishes
logical constant problems are to be solved. We find that thesend if the conservation of energy and momentum is ex-
questions have simple answers that generalize the conditiopsessed by the vanishing divergencerlgf, in the usual way
for an inflationary resolution of the flatness and horizonthenG must be constant. Thus scalar-tensor gravity theories
problems in standard generalized inflation. We will also ex-of the Jordan-Brans-Dick€JBD) sort [7] must derive the
plore some of the consequences of the vangngodel for  variation of G from that of a dynamical scalar field which
other cosmological problems, like isotropy, and its implica-contributes it own energy-momentum tensor to the right-
tions for the evolution of black hole horizon. We will then hand side of the field equations. An alternative way of incor-
look more critically at the formulation of a varyingtheory  porating a varyindgs or ¢ with a minimum of change to the
of gravitation that is proposed in Réfl], and suggest some underlying theory of gravity is to allow the conventional
ways in which it might be improved. In particular, since the energy-momentum tensor to have a non-vanishing diver-
proposed formulation also includes the possibility of varyinggence. Thus the usual energy and momentum will not be
the gravitation “constant”G(t), we consider the relation conserved. Equivalently, one might interpret this as simply
between this part of the theory and other well-defined scalarehanging the definition of the conserved quantity. Thus,
tensor gravity theories which incorporate varyi@g since the divergence left-hand side of Efj. must vanish we

There have been several high-precision tests of any posequire that the divergence @&(x)c(x) *T,, vanishes.
sible space and time variations of the fine structure constant When discussing any theory in which there is a varying of
at different times in the padi4,5]. Although any theory some traditional “constant” of nature, it is important to rec-
which admitsc variation allows us to compare its predictions ognize that invariant operational meaning can only be at-
with the observational constraints on time variations of thetached to space-time variations dimensionlesgonstants.
fine structure constant, these observational limits arise fronvariations in dimensional constants can always be trans-
relatively low-redshift observations or from primordial nu- formed away by a suitable choice of coordinate frame
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(change of unitg this is discussed in detail in R4fL3]. We  differentiating Eq(4) with respect to time and substituting in
will be interested in theories in which a time variation of the Eq. (5), we find the generalized conservation equation incor-
fine structure constant is represented through a variation in porating possible time variations o(t) and G(t),

An example(not unique of a representation as a theory with

varying electron charge, but constant has been given by a p G 3Kce
Bekensteirj5], and another by Barrow and Maguejjt3]. In p+3 a p+ Z|=7rg + I G (6)

varying speed of lightVSL) theories a varyinge is inter-
preted a2 ande is constant, Lorentz invariance

is broken, and so by construction there is a preferred frame The cosmo.logical constant is glfurther feature of interest
for the fo1rmulation of the physical laws. In the minimally In these theories. In general relativity we know that there are

coupled theory one then simply replacesy a field in this two equivalent ways of introducing a cosmological constant

; : into the field equations and their cosmological solutions. An
referred frame. Hence, the action remaing 8 s : S
P ¥ explicit constantA term can be added to the Einstein-Hilbert

P$(R+2A) gravitational Lagrangian. Alternatively, a matter field can be

S=f dx* \/__9<W+£M +L, (2 introduced which describes a perfect fluid with a stress sat-
i isfying p=—pc?. In theories other than general relativity
with ¥(x#)=c* The dynamical variables are the metric these two p.rescriptior)s need not I_ead to_the same contribu-
g,.,. any matter field variables contained in the matter La-tion to the.ﬁeld equations and their solutions. For example,
grangian£,,, and the scalar fields itself. The Riemann " Brans-_D_|cke theory or othc_er scalgr—tensor theories one can
tensor(and the Ricci scalaris to be computed frong,,,, at see e>§pI|C|tIy tha_lt they co_ntrlbute different terms to the cos-
constanty in the usual way. This can only be true in one Mological evolution equationsee Barrow and Maedd 1))
frame: additional terms i,y must be present in other The matter Lagrangian te_rmM will in general also contain
frames; see Ref§1—13 for more detailed discussion. large  quantum  contributions,  so Ly=~Ly[class]
Varying the action with respect to the metric and ignoring ™ £mlauantun.

surface terms leads to If we examine the action given in ER) then we see that
there are two ways in which a cosmological constant can
87G arise in a VSL theory. In our discussion we shall model the
G~ 9,A= TT,W- (3)  explicit A term of geometrical origin in Eq2), or Eq.(3).

This can still be interpreted as a matter field obeying the

Therefore, Einstein’s equations do not acquire new terms igduation of statep, = _PA_CZ' as would be contributed by

the preferred frame. Minimal coupling at the level of Ein- @Y slowly changing self-interacting scalar field. We do not

stein’s equations is at the heart of the model’s ability to solve2ddress the quantum gravitational or quantum field theoretic

the cosmological problems. It requires of any action-Versions of the .problem discussed in R¢i,8] or solve the.

principle formulation that the contributiod, must not con- problem associated with the presence of quantum contribu-

tain the metric explicitly, and so does not contribute to thelions described by any constant termdg[quantund.

energy-momentum tensor. If we WIS.h to incorporate such a cosmological constant
Albrecht and MagueijdAM) propose that a time-variable €M, A, (which we shall assume to be constahien we can

¢ should not introduce changes in the curvature terms ifi€fine a vacuum stress obeying an equation of state

Einstein’s equations in the cosmological frame and that Ein- 5

stein’s equations must still hold. Thuschanges in the local PA= —paACT, (7)

Lorentzian frames associated with the cosmological expan-

sion and is a special-relativistic effect. The resulting theory isvhere

clearly not covariant and so implementation of this idea re-

qguires a specific choice of time coordinate. Choosing that Ac?

specific time to be comoving proper time, and assuming the Pr=gnG" ®

universe is spatially homogeneous and isotropic, so that there

are no spatial variations ia or G, leads to the requirement : : _

that the Friedmann equations still retain their form wdtt) ;’ITZe;\t,iorr?placmgo by p+pa In Eq. (6), we have the gener

andG(t) varying. Thus the expansion scale factor obeys the

equations _ : .
i a Py, . G 3Kcc
a2 87G(p KcA(1) . pr3girt | tPa= Pt g O
gZ - 3 a2 ( )
We shall assume that the remaining matter obeys an equa-
47G(1) 3p tion of state of the form
- 3 p+ Cz(t) a (5)

p=(y—1)pc(t) (10)
wherep and p are the density and pressure of the matter,
respectively, anK is the metric curvature parameter. By wherey is a constant.
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Ill. THE FLATNESS AND LAMBDA PROBLEMS We shall see that we do not need to prescribe a form for the

If we specialize the standard situation in general relativitytlmgr(\)/%”?aosn(gir(g('lo) we have

in which we seG=0=¢ then the conservation equation, Eq.
(9), givespeca™ 37 and the 8Gp/3 term will dominate the (pad?)’ G  3Kctc
curvature termKc?a~? at largea so long as the matter —37=—€+m,
stress obeyg +3p/c2<0, p+ p/c?=0, that is, if pa mopa

2 hence

<y<-. .
O=r<3 (1) (Gpa®)  3Kct

Gpa®”  4wGpa’

This is what we shall mean by tHeatness problemSince

the scale factor then evolves at)oct”® if y>0 or  and so, using Eq12), we obtain

exp[Hqt}, Hy constant if y=0, we see that it also grows

faster than the proper size of the particle horizon scale . 3Kcina?" 373,

(ect) so long asy<2/3. Thus, a sufficiently long period of (Gpa™?) = 4 : (13
evolution in the early universe during which the expansion is

dominated by a gravitationally repulsive stress with Integrating, we have the exact solutions

+3p/c?<0 can solve the flatness and horizon problems.

Such a period of accelerated expansion is called “inflation.” 5 3Kcgna?"t3r—2 _

However, we notice that if a constant vacuum strgss, Cpa = ona,—g) T8 1 2n+3y#2,
associated with a non-zero cosmological constant is added to (14)
the right-hand side of Eq9) then, in order to explain why it

does not totally dominate the85p/3 term at largea(t), we 3Kc(2)n Ina .

would need a period during which the early universe was G(t)P337:T+B, if 2n+3y=2, (15

dominated by an extreme fluid with<0, that isp+ p/c?

<0. This is problematic because it leads to contract®n, with a constant of integratior3>0. This holds for arbitrary

<0, and apparent instabilities of the vacuum and of flatg(t) variations. Analogous solutions can be found from Eq.

space-time. This is what we shall mean by tosmological  (13) for other possible variations afwith respect taa(t) or

constant (or lambda) problen®©ther quantum cosmological t put we shall confine our attention to the simple case of Eq.

attempts to solve this cosmological constant problem have s@ ),

far proved unsuccessf{8]. Returning to the Friedmann equatiof), we see that the
We see that the inflationary solution of the flatness probrondition for the solution of the flatness problem is the same

lem relies on a change in the evolutionary behavior of theys that which would hold itS were constant. The only im-

matter term in the Friedmann equation which allows it topact of G(t) is to multiply p, S0 we have, in Eq(4) (writing
dominate the curvature term at largét) and transform the only the 2n+3y#2 case explicitly,

zero-curvature solution into the late-time attractor. In con-

trast, the varyings model of AM will provide a solution of a? 2Kchna?? 2 o
the flatness and lambda problems by introducing a variation i mJF B'a™*"—Kcga
that increases the rate of fall-off of the curvatukecfa?2)
and cosmological constanfp() terms in the Friedmann
equation with respect to ther&p/3 term at largea(t). This

is possible for all values ofy and does not necessarily re-
quire the existence of a period during whigh-3p/c? is

negative. and theB’ term dominates the curvatur&) terms at large
a, so the flatness problem can be solved so long as

N

Kcga®""2(2—3y)

—R’'g 37
Bla T —ont3,-2)

, B’ const,
(16)

QJN| Oy

IV. EXACT SOLUTIONS WITH VARYING  G(t) AND c(t)

1
We need to obtain solutions of Eq$) and(9) in order to n< 5(2—37/) (17)
evaluate the effects of varyinG and c on the expansion
dynamics. Let us first consider the implications for the flat-

h h ted f E that the flat I
ness and horizon problems alone by setting 0. [where we have noted from EQLS) that the flainess problem

is also resolved in ther2+3y=2 casg¢. We see that this
condition is a straightforward generalization of the inflation-
A. The flatness problem ary condition(11) that obtains whem is constant. We con-

In order to solve Eq(6) we assume that the rate of varia- firm that the variation irG does not enter this condition in a
tion of ¢ is proportional to the expansion rate of the universe;Significant way. Also, the sign of -2 determines the
that is, overall sign of the curvature term in the Friedmann equation.

However, unlike in the constarmt case, it is possible to re-
c(t)=cpa";cqy, nconst. (12 solve the flatness problem without appeal to a matter source
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with 3y—2<0. In particular, we see that in a radiation- AcS(q—Zn)
dominated universey=4/3), the flatness problem is soluble D= 87G,(2n+37) (26)
if c(t) falls sufficiently rapidly as the universe expands, with 0 Y

3Kcan

n<-1, (18 E=
47Gy(2n+3y—2)

(27)

while for dust (y=1) we require a slower decrease, with
where we only write down the solution for the cases where

1 2n+3y#0 or 2. Thus, the density is
ns-— E (19)

Aci(g—2n)a?" 6Kcina?" 2
+ :
2n+3y 2n+3y—2

8mwG(t)p= (28

B. The horizon problem

The variation of the expansion scale factor at laage) If we substitute in the Friedmann equation containing
approaches _
a? 8nG Kc?

a(t)oct?3y (20) 2~ 3 (PteA)— 7 (29

when the curvature term becomes negligible, as in the situgnen we have

tion whenc is constant. The proper distance to the horizon

increases as a2 Acla®"(q+3y) Kcia?""?(2—3y)
2

a2~ 32n+3y | 2nta,—z  ©0

dpocctocatoct(3y+2m/3y (21

We see that the term on the right-hand side of E(B0)
| fall off faster than the curvature and matter density terms
so long asc(t) falls off fast enough, with

and so we see that the scale factor can grow as fast, or fast%l
thand,, ast increases if

2=2n+3y.

3
o 3 _ _ n<-——V, (31)
This is the condition to solve the horizon problem and is 2
identical to that for the solution of the flatness problem, just ] ] o
as in the situation with constaot As expected, this requires a more rapid increasg(ij than

is required to solve the flatness or horizon problems. In par-
ticular, in the radiation and dust cases it requices fall as
the Universe expands, with<—2 andn<—3/2, respec-
If we consider the case with a non-zefoterm, that is tively.
contributed by a stress obeyinm, = — p,c?, then we need
to solve Eq(9) with c(t) varying as Eq(12). In this case we V. BETTER EORMULATIONS
need to assume a form for the variation®fwith a or t, and
we shall again assume that its rate of variation is propor- The most challenging problem besetting any attempt to

C. The Lambda problem

tional to the expansion rate of the universe, with examine the cosmological consequences of varging the
q formulation of a self-consistent theory which incorporates
G(1)=Goa (22)  such a variation. The AM approach is not the only way of

, proceeding and so we should look more critically at its rela-
whereG, andq are constants. We assume thais constant.  tjon to other things that we know. The most interesting fea-

From Eq.(8) we have ture in this respect is the fact that it permits a description of
2 2n-g-1. varying G whenc is kept constant. However, it is clear that
_Ac(2n—gla a in this case the resulting cosmological equatiéfs (5) and
Pa 87G ' (6) are not the equations describing the evolution of the
Friedmann universe in a scalar-tensor gravity theory, like
Now we look for solutions of Eq(9) with JBD. The reasons are clear. JBD theory meets the covariant
divergence constraints imposed by the Bianchi identities by
pa®’=Da '+Ea™ 9 (23 including the energy density contributed by the scalar field
that acts as the source of the variationsGin These contri-
whereB, D, andE are constants. butions are not included in the AM formulation. In order to
This requires improve upon it we could take a scalar-tensor gravity theory
and carry out the same procedure used to derivel@cand
f=g-2n-3y (24 check that the time variation of is still permitted. This
means that we assume that the JBD equations hold for the
g=2+q—2n—3y=2+f (25 Friedmann model, witlt allowed to be a time variable, and
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then derive the conservation equation from them. For JBDBscalar field¢ [11]. For these theories, the Friedmann uni-

theory we havg9,11], verse(with ¢ constant is governed by the equatioris the
A=0 case
a? 8mp ¢a wd? KcA(t) ) ) .
736 da 65 a 32 Y e P L 0
a ap a’ 24° oc® P’
3a m 3(1+w)p] ¢ we? .2 - 2 2
a Gree| T T e e 2t 2P AP B w9
(33) a 3¢ a¢ 6¢ a
N ) : '$?  8mp(4—3y)
. 3ap 8w 3p | 8mp(4-3y) BeaHps O 8T _ (37)
Pt 3720\ cz(t))_ 3120 - Y 20+3 20+3

: . . From these equations we obtain the same generalization
From these three equations we obtain the generalized consefe mass-energy conservation as in JBiich is the case
vation equation. Since after we impose the equation of Statecb(¢)=constant] given by Eq.(35). Again, radiation-
t_he varyingc term only appears ir_1 _th_e first of these €au2a- yominated solutibn$with ¢»=G 'const) and {/arying: of
':|ons, |t_|he only ne\r/]v con(;rlbutlon toei is from the —2Kce the form found in the last section are always exact particular
erm. Hence, we havgi0] solutions of these equations.

. L8 p|_3Kcce VI. SOME PROBLEMS
+3—|p+t=|=—. -
P33\PY 2|~ ara2 (35 .
A. The velocity problem
It is instructive to compare this to the AM equati@®). We If ¢ varies there may be a problem with the perturbations

see that the incorporation @& variation differs. ThepG/G  to the isotropic expansion of the universe which are powers
term of Eq.(35) is absent but th& term has the same form of v/c. For example, for rotational velocity perturbations in
with G(t) replaced byp~'(t) as usual in JBD theory. How- Mmatter obeylngo=(47— 1)pc?, the conservation of angular
ever, the new system is more constrained because solutiofid@mentum givega“v = constant. Although the original for-

to Egs.(34) and(35) must be consistent. mulation described above does not allow us to impose en-
When the matter content is radiation the conservatiorergy conservation in the usual wai¢c?), we shall assume
equation(34) has the particular solution that angular momentum conservation is preserved since it
does not incorporate directdependence. Hence, we have
—~-1_
¢=G~"=const poadr4,

and then Eq(35) is identical to the AM equatio6) in the
case wherds is constant but varies with time. The condi-
tions for resolving the flatness and cosmological constant c(t)=cpa"
problems then become the same as given for the AM formu-

lation above. For other equations of state the situation isve have

more complicated. Rearranging the equations, we need to

Now, if

solve gocag,/,zl,n.
c
5 3Kccpadr? ,
(pa 7)‘=T If the flatness problem is to be solved, we need 2Zh

>3y so we will have 3y—4—n<—2-3n. For theA prob-
lem to be solved we needy3+2n<0. Hence, in the radia-

(¢ag).:87PaS(4_37) tion era we neech<—1 to solve the flatness problem and
3+ 2w n<—2 to solve theA problem. Therefore, when=4/3, we
have

together with Eq(32). WhenK =0 they are solved by the
usual exact solutions of JBD theory. When the universe is
radiation dominated these equations have particular solutions
with ¢ constant which are identical to those derived in the
last section for the case of varyimgand constanG. These Wwe see thab/c grows in time in both cases as- . During
equations will be studied in more detail elsewhEtd]. the dust eray=1, and so

The JBD theory is not the most general scalar-tensor
gravity theory. It is a particular case of a general class in
which the constant BD parametap, is a function of the

v
_o(afn
C
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where n<—1/2 solves flatnessallowing v/c to decay in  This seems to imply that i& is constant and is falling then
—1<n<-1/2) andn<-—3/2 solvesA (which would al- primordial black holes would grow in size at the same rate as
ways requirev/c to grow). the universe is expanding. There will also be consequences
In general, the condition for solution of the flatness prob-for black hole evaporation. The Planck scale will grow rap-
lem hasv/c growing as a power o equal to 3y—4—n idly «<c~°. It is possible to examine the changes to the laws
>9+y/2—5, while a solution of the\ problem has it growing of black hole mechanics using the results for the change in
as 3y—4—n>9y/2—4. So we can onhavoid blow-up of  the characteristics of black body radiation thermodynamics
the velocity perturbations at large if y<10/9 (if we also  but we do not digress to discuss this here.
want to solve flatnegsor y<<8/9 (if we also want to solve

A). D. Late-time fields

Another aspect of this model is worth commenting on.
We have determined the rate of variationagf) that would

We can extend the AM model to include the effects ofgllow the flatnesgor A) to be solved. However, we could
simple anisotropies with isotropic curvatures. This wouldalso use these equations in the cases where the flatness prob-
correspond to generalizations of the Bianchi type | and typgem wasnot solved in the same way as a description of a
V universes in the flat and open cases, respectively. In theosmological matter field that plays the role of a matter field
spirit of Egs.(4), (5) the required generalization which in- which can dominate the expansion dynamics of the universe
cludes the shear anisotropy scalayis at late times. Of course, as with the possibility of present-day

, contributions to the dynamics by the curvaturedoterms in

a_2 — 87G(Vp ‘7_2_ Ke2(t) (38) the case where is cor)(stant, thisyrequires a special tuning of

a’ 3 3 a’ the initial sizes of these terms in the Friedmann equation
with respect to the density term in order that their effects just
start to become significant close to the present epoch.

An interesting point to notice aboutvarying models is
that if the universe were to contain a dynamically significant
wherea(t) is now the geometric-mean expansion scale factosmological constant term at late times then it would natu-
tor. From these equations we may derive the analogue of thylly have negligible curvature term and so resemble a zero-

B. Shear evolution

&  4nG(1) 3p 2
a 3

p+ CZ(t))a_T (39)

matter conservation equation: curvature universe with subcritical total density, just like in-
] ) & 3Ke flationary universes with a residual lambda term. This
. a p o . a \_ cc property allows natural almost flat asymptotes to arise, as
P3Pt 2|t 2726|0359 = PG T amGa pointed out in Ref[14].
(40)

. . . . E. Fine structure constant variations
This equation resembles the conservation equation for

two non-interacting perfect fluids, one of whithe “anisot- One interesting feature of any self-consistent theorg of

ropy” energy density has the equation of state=pc?. variation is that it enables us to evaluate the consequences of

However, we see that the original AM prescription leaves thdime (and spacevariations in dimensionless coupling con-

material density coupled to the shear evolution. If we add thétants like the fine structure constant. In an expanding uni-

shear evolution equation from the standédnstantc) case  Verse withc varying we requirgpc?ec (kgT)*/(%ic)3. Assum-

then we have ing particle wavelengths are unchanged in the absence of
expansion and the masses of quantum particles are conserved

13 a —0 41 so#i/c remains constant. As the universe expands the Planck
o+ 27" (42) spectrum remain Planckian but the temperature vari¢d]as
and the density evolution obeys the same equation as that for TaT é_ 29 -0
the isotropic model §=0). a ¢ ’
C. Black holes Hence,
It is interesting to note that if a black hole forms with 5
radius Tocc—ocazn_l
a
2GM
Rg: 2 (42) L.
c for the power-law variation, Eq12), assumed above. Strong
then, from Eq.(42) observational limits could be placed on any deviatiomnof
' 9 from zero using data which establish bounds on the tempera-
R G & . ture of the microwave background at low redshifts.
9 _ o __ p_A_ The required variation of/c means thatfor constane?)
Ry, G c PA the fine structure constant varies as
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N

1 ppr=—paC? associated with a geometrical cosmological
*2 constant term to become negligible a&s- is thatc fall at
a rate such that<<—3y/2.
L , (c) We have shown how it is possible to improve the
If we assume a more modest variation in the evolution Oftqrmylation of the problem in order to recover a scalar-tensor
c(t)e<(Int) ~ then it becomes possible to examine SOMe POS¢eory describings variation in the limit of constant. This
sible late-time consequences of varyiagising this model.  tormylation only allows the solutions of the AM theory to
A detailed particular theoretical formulation has been proersist in the case when the equation of state is that of black
vided by Bekenstein5]. Elsewhere, Barrow and Magueijo gy ragdiation. This problem also suggests that we should
[13] have provided a Lagrangian-based theory with varyingaempt a fuller formulation of the varying-theory by de-
e which differs from Bekenstein'siuniike Bekenstein's i ing 'the variation ofc from some scalar field that contrib-
t_heory it dc_Jes not postulat_e that the gravitational field equay;ag an energy density to the evolution of the Universe.
tions remain unchangedrhis theory may be transformed by () e have highlighted some potential problems with the
a suitable change of units into a theory with constant electrop, o ytion of rotational velocities as the universe expands. It
chargee and varyingc like the one described above, or it 5 5150 worth noting that the varyingmodel does not solve
may be presented as a theory with constaand varyinge.  he flatness and horizon problems by means of a period of
This features displays explicitly that invariant meaning cang, o|ution that is close to that described by a time-translation
only be ascribed to variations of dimensionless “constants”j,ariant de Sitter space-time. As a result there does not
(in this case the fine structure constant appear to be any distinctive set of fluctuations that should
A more far-reaching aspect ofvariation is the fact that a emerge from a period of cosmological evolution in which
fall in the value ofc at very early times would lead to a changes.
strengthe_nmg of dimensionless gauge couplings un!ess other (e) Possible variations irt lead to changes in the fine
changes in the structure of physms could offset this. _Thusstructure constant and to other gauge couplings in the very
attempts to reconstruct the history of the very early universe gy ynjverse if no other changes in physics exist. However,
could not count on the applicability of asymptotic freedomit e yariation inc is confined to a very early period of
and the ideal gas condition at early times in the usual way.e\o|ytion soon after the expansion commenced there need be
no conflict with astronomical constraints on any time or
VII. DISCUSSION space variation in the fine structure constant.
(f) A varying-c theory can be transformed in to a varying-

a=

ol ®

The contemplation of a variation in the speed of light in 4 ) ;
the very early universe presents a host of self-consistency (heory with constant by a suitable transformation of
problems and boundary effects with other parts of the core o nits. Theo”_es of this sort can be given a Lagrangian formu-
modern physical theory. Unlike the case of varyi@g it lation if reqwred. : .
requires deep structural changes to many of the foundations We believe that these features of th? naive vanang-
of physics. In this paper we have considered a minimalisf’®de! proposed by Albrecht and Magueijo are sufficiently

varyingc theory recently proposed by Albrecht and interesting for it to be worthwhile exploring a fuller, more
Magueijo[1] as a new way of solving the horizon and flat- 90rous formulaﬂon ‘?f a varying- gravity theory based
ness problems. However, unlike inflation, it also offers a wayPon an action principle which would enable its conse-
of solving the cosmological constant problem. Whereas Al-duences for other aspects of physics and cosmology to inves-

brecht and Magueijo modelled change<ias a sudden fall t'gﬁed mg:je (;ig?rouily. eted. th hor
in the universal value of, occurring as if at a phase transi- ote addedAiter this paper was completed, the author's

tion, we have considered the behavior of variations whicrfitténtion was drawn to two early papers by Moffas)

vary as a power of the cosmological scale factor in order td(vhlc:h investigate the sudden variation in the value of the

determine the rates of change that are needed to solve diffe Ipeed of “gk?lt as ahpor?smled solutrl]on fo:j the; hca)arlzzn and
ent cosmological problems. Our main results are as follows\atness problems which predate the study o .FE . that
(@ If the velocity of light varies with the cosmological motivated the discussion above. The reader is referred to

scale factora(t), asc=cya" and the equation of state of these papers for further details of the model for discontinu-

matter isp=(y—1)pc?, then the curvature term becomes ous change ire that is proposed by Moffat.
negligible for the expansion of the Universe as>» if ¢
falls fast enough, witm<31(2—34), regardless of the be-
havior of G(t). The same condition allows for a resolution
of the horizon problem. This generalizes the conditions for This work was supported by PPARC and the University
the inflationary resolution of the flatness and horizon prob-of New South Wales, Sydney. | would like to thank Andy
lems which apply wher is constant (=0) andG is con-  Albrecht and Joa Magueijo for detailed discussions and for
stant. showing me their results prior to publication, and E. Wein-

(b) If the velocity of light varies with the cosmological berg for helpful comments. | would also like to thank John
scale factora(t), asc=cya", the gravitation “constant” Webb for discussions and hospitality in Sydney and John
varies as€G(t) =Gya", and the equation of state of matter is Moffat for drawing my attention to his papers on superlumi-
p=(y—1)pc?, then the condition for a vacuum stress with nary expansion.
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