
PHYSICAL REVIEW D, VOLUME 59, 043515
Cosmologies with varying light speed

John D. Barrow
Astronomy Centre, University of Sussex, Brighton BN1 9QJ, United Kingdom

~Received 2 June 1998; published 28 January 1999!

We analyze a generalization of general relativity that incorporates a cosmic time variation of the velocity of
light in vacuum,c, and the Newtonian gravitation ‘‘constant’’G proposed by Albrecht and Magueijo. We find
exact solutions for Friedmann universes and determine the rate of variation ofc required to solve the flatness
and classical cosmological constant problems. Potential problems with this approach to the resolution of the
flatness and classical cosmological constant problems are highlighted. Reformulations are suggested which
give the theory a more desirable limit as a theory of varyingG in the limit of constantc and its relationship
to theories with varying electron charge and constantc are discussed.@S0556-2821~99!03404-9#

PACS number~s!: 98.80.Cq, 95.30.Sf
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I. INTRODUCTION

Albrecht and Magueijo@1# have recently drawn attentio
to the possible cosmological consequences of time variat
in c, the velocity of light in vacuum. In particular, there a
mathematical formulations of this possibility which offe
new ways of resolving the horizon and flatness problems
cosmology, distinct from their resolutions in the context
the standard inflationary universe theory@2# or the pre-big-
bang scenario of low-energy string theory@3#. Moreover, in
contrast with the case of the inflationary universe, varyinc
may provide an explanation for the relative smallness of
cosmological constant today. The study presented in Ref@1#
envisages a sudden fall in the speed of light, precipitated
a phase transition or some shift in the values of the fun
mental constants, and explores the general consequence
might follow from a sufficiently large change.

In this paper we explore the formulation of Ref.@1# in
further detail, showing that one can solve the cosmolog
field equations that define it for general power-law variatio
of c andG. This allows us to determine the rate and sense
the changes required inc if the flatness, horizon, and cosmo
logical constant problems are to be solved. We find that th
questions have simple answers that generalize the condi
for an inflationary resolution of the flatness and horiz
problems in standard generalized inflation. We will also e
plore some of the consequences of the varyingc model for
other cosmological problems, like isotropy, and its implic
tions for the evolution of black hole horizon. We will the
look more critically at the formulation of a varying-c theory
of gravitation that is proposed in Ref.@1#, and suggest som
ways in which it might be improved. In particular, since t
proposed formulation also includes the possibility of varyi
the gravitation ‘‘constant’’G(t), we consider the relation
between this part of the theory and other well-defined sca
tensor gravity theories which incorporate varyingG.

There have been several high-precision tests of any
sible space and time variations of the fine structure cons
at different times in the past@4,5#. Although any theory
which admitsc variation allows us to compare its prediction
with the observational constraints on time variations of
fine structure constant, these observational limits arise f
relatively low-redshift observations or from primordial n
0556-2821/99/59~4!/043515~8!/$15.00 59 0435
ns

f
f

e

y
-

that

al
s
f

se
ns

-

-

r-

s-
nt

e
m

cleosynthesis and are not necessarily of relevance to
varying-c theory under examination here. The period
c-variation is expected to be confined to the very early u
verse and its observational consequences are likely to
manifested most sensitively through the spectrum of any
crowave background fluctuations that are created.

II. THE ALBRECHT-MAGUEIJO MODEL

If we begin with the field equations of general relativity

Gmn2gmnL5
8pG

c4 Tmn ~1!

then we cannot simply ‘‘write in’’ variations of constant
such asG or c as we could in a non-geometrical theory lik
Newtonian gravity@6#. For example, if we wished to allow
G, say, to vary in time then we encounter a consisten
problem if the energy-momentum tensorTab and its vanish-
ing covariant divergence retains its usual form and phys
meaning as conservation of energy and momentum. The
variant divergence of the left-hand side of Eq.~1! vanishes
and if the conservation of energy and momentum is
pressed by the vanishing divergence ofTab in the usual way
thenG must be constant. Thus scalar-tensor gravity theo
of the Jordan-Brans-Dicke~JBD! sort @7# must derive the
variation of G from that of a dynamical scalar field whic
contributes it own energy-momentum tensor to the rig
hand side of the field equations. An alternative way of inc
porating a varyingG or c with a minimum of change to the
underlying theory of gravity is to allow the convention
energy-momentum tensor to have a non-vanishing div
gence. Thus the usual energy and momentum will not
conserved. Equivalently, one might interpret this as sim
changing the definition of the conserved quantity. Th
since the divergence left-hand side of Eq.~1! must vanish we
require that the divergence ofG(x)c(x)24Tab vanishes.

When discussing any theory in which there is a varying
some traditional ‘‘constant’’ of nature, it is important to re
ognize that invariant operational meaning can only be
tached to space-time variations ofdimensionlessconstants.
Variations in dimensional constants can always be tra
formed away by a suitable choice of coordinate fram
©1999 The American Physical Society15-1
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JOHN D. BARROW PHYSICAL REVIEW D 59 043515
~change of units!; this is discussed in detail in Ref.@13#. We
will be interested in theories in which a time variation of t
fine structure constant is represented through a variation ic.
An example~not unique! of a representation as a theory wi
varying electron charge,e, but constantc has been given by
Bekenstein@5#, and another by Barrow and Magueijo@13#. In
varying speed of light~VSL! theories a varyinga is inter-
preted asc}\}a21/2 ande is constant, Lorentz invarianc
is broken, and so by construction there is a preferred fra
for the formulation of the physical laws. In the minimal
coupled theory one then simply replacesc by a field in this
preferred frame. Hence, the action remains as@13#

S5E dx4XA2gS c~R12L!

16pG
1LM D1LcC ~2!

with c(xm)5c4. The dynamical variables are the metr
gmn , any matter field variables contained in the matter L
grangianLM , and the scalar fieldc itself. The Riemann
tensor~and the Ricci scalar! is to be computed fromgmn at
constantc in the usual way. This can only be true in on
frame: additional terms in]mc must be present in othe
frames; see Refs.@1–13# for more detailed discussion.

Varying the action with respect to the metric and ignori
surface terms leads to

Gmn2gmnL5
8pG

c
Tmn . ~3!

Therefore, Einstein’s equations do not acquire new term
the preferred frame. Minimal coupling at the level of Ei
stein’s equations is at the heart of the model’s ability to so
the cosmological problems. It requires of any actio
principle formulation that the contributionLc must not con-
tain the metric explicitly, and so does not contribute to t
energy-momentum tensor.

Albrecht and Magueijo~AM ! propose that a time-variabl
c should not introduce changes in the curvature terms
Einstein’s equations in the cosmological frame and that E
stein’s equations must still hold. Thus,c changes in the loca
Lorentzian frames associated with the cosmological exp
sion and is a special-relativistic effect. The resulting theor
clearly not covariant and so implementation of this idea
quires a specific choice of time coordinate. Choosing t
specific time to be comoving proper time, and assuming
universe is spatially homogeneous and isotropic, so that t
are no spatial variations inc or G, leads to the requiremen
that the Friedmann equations still retain their form withc(t)
andG(t) varying. Thus the expansion scale factor obeys
equations

ȧ2

a2 5
8pG~ t !r

3
2

Kc2~ t !

a2 ~4!

ä52
4pG~ t !

3 S r1
3p

c2~ t ! Da ~5!

where p and r are the density and pressure of the matt
respectively, andK is the metric curvature parameter. B
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differentiating Eq.~4! with respect to time and substituting i
Eq. ~5!, we find the generalized conservation equation inc
porating possible time variations inc(t) andG(t),

ṙ13
ȧ

a S r1
p

c2D52r
Ġ

G
1

3Kcċ

4pGa2 . ~6!

The cosmological constant is a further feature of inter
in these theories. In general relativity we know that there
two equivalent ways of introducing a cosmological const
into the field equations and their cosmological solutions.
explicit constantL term can be added to the Einstein-Hilbe
gravitational Lagrangian. Alternatively, a matter field can
introduced which describes a perfect fluid with a stress
isfying p52rc2. In theories other than general relativit
these two prescriptions need not lead to the same contr
tion to the field equations and their solutions. For examp
in Brans-Dicke theory or other scalar-tensor theories one
see explicitly that they contribute different terms to the co
mological evolution equations~see Barrow and Maeda@11#!.
The matter Lagrangian termLM will in general also contain
large quantum contributions, so LM[LM@class#
1LM@quantum#.

If we examine the action given in Eq.~2! then we see tha
there are two ways in which a cosmological constant c
arise in a VSL theory. In our discussion we shall model t
explicit L term of geometrical origin in Eq.~2!, or Eq. ~3!.
This can still be interpreted as a matter field obeying
equation of statepL52rLc2, as would be contributed by
any slowly changing self-interacting scalar field. We do n
address the quantum gravitational or quantum field theor
versions of the problem discussed in Refs.@12,8# or solve the
problem associated with the presence of quantum contr
tions described by any constant term inLM@quantum#.

If we wish to incorporate such a cosmological consta
term,L, ~which we shall assume to be constant! then we can
define a vacuum stress obeying an equation of state

pL52rLc2, ~7!

where

rL5
Lc2

8pG
. ~8!

Then, replacingr by r1rL in Eq. ~6!, we have the gener
alization

ṙ13
ȧ

a S r1
p

c2D1 ṙL52r
Ġ

G
1

3Kcċ

4pGa2 . ~9!

We shall assume that the remaining matter obeys an e
tion of state of the form

p5~g21!rc2~ t ! ~10!

whereg is a constant.
5-2
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COSMOLOGIES WITH VARYING LIGHT SPEED PHYSICAL REVIEW D59 043515
III. THE FLATNESS AND LAMBDA PROBLEMS

If we specialize the standard situation in general relativ
in which we setĠ[0[ ċ then the conservation equation, E
~9!, givesr}a23g and the 8pGr/3 term will dominate the
curvature term,Kc2a22 at large a so long as the matte
stress obeysr13p/c2,0, r1p/c2>0, that is, if

0<g,
2

3
. ~11!

This is what we shall mean by theflatness problem. Since
the scale factor then evolves asa(t)}t2/3g if g.0 or
exp$H0t%, H0 constant if g50, we see that it also grow
faster than the proper size of the particle horizon sc
(}t) so long asg,2/3. Thus, a sufficiently long period o
evolution in the early universe during which the expansion
dominated by a gravitationally repulsive stress withr
13p/c2,0 can solve the flatness and horizon problem
Such a period of accelerated expansion is called ‘‘inflation
However, we notice that if a constant vacuum stress,rL ,
associated with a non-zero cosmological constant is adde
the right-hand side of Eq.~9! then, in order to explain why it
does not totally dominate the 8pGr/3 term at largea(t), we
would need a period during which the early universe w
dominated by an extreme fluid withg,0, that isr1p/c2

,0. This is problematic because it leads to contractionȧ
,0, and apparent instabilities of the vacuum and of
space-time. This is what we shall mean by thecosmological
constant (or lambda) problem. Other quantum cosmologica
attempts to solve this cosmological constant problem hav
far proved unsuccessful@8#.

We see that the inflationary solution of the flatness pr
lem relies on a change in the evolutionary behavior of
matter term in the Friedmann equation which allows it
dominate the curvature term at largea(t) and transform the
zero-curvature solution into the late-time attractor. In co
trast, the varying-c model of AM will provide a solution of
the flatness and lambda problems by introducing a varia
that increases the rate of fall-off of the curvature (Kc2a22)
and cosmological constant (rL) terms in the Friedmann
equation with respect to the 8pGr/3 term at largea(t). This
is possible for all values ofg and does not necessarily re
quire the existence of a period during whichr13p/c2 is
negative.

IV. EXACT SOLUTIONS WITH VARYING G„t… AND c„t…

We need to obtain solutions of Eqs.~6! and~9! in order to
evaluate the effects of varyingG and c on the expansion
dynamics. Let us first consider the implications for the fl
ness and horizon problems alone by settingL50.

A. The flatness problem

In order to solve Eq.~6! we assume that the rate of vari
tion of c is proportional to the expansion rate of the univer
that is,

c~ t !5c0an;c0 , n const. ~12!
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We shall see that we do not need to prescribe a form for
time variation ofG(t).

From Eqs.~6! and ~10!, we have

~ra3g!•

ra3g 52
Ġ

G
1

3Kcċ

4pGra2 ,

hence

~Gra3g!•

Gra3g 5
3Kcċ

4pGra2

and so, using Eq.~12!, we obtain

~Gra3g!•5
3Kc0

2na2n13g23ȧ

4p
. ~13!

Integrating, we have the exact solutions

G~ t !ra3g5
3Kc0

2na2n13g22

4p~2n13g22!
1B, if 2n13gÞ2,

~14!

G~ t !ra3g5
3Kc0

2n ln a

4p
1B, if 2n13g52, ~15!

with a constant of integration,B.0. This holds for arbitrary
G(t) variations. Analogous solutions can be found from E
~13! for other possible variations ofc with respect toa(t) or
t but we shall confine our attention to the simple case of
~12!.

Returning to the Friedmann equation~4!, we see that the
condition for the solution of the flatness problem is the sa
as that which would hold ifG were constant. The only im
pact ofG(t) is to multiply r, so we have, in Eq.~4! ~writing
only the 2n13gÞ2 case explicitly!,

ȧ2

a2 5
2Kc0

2na2n22

~2n13g22!
1B8a23g2Kc0

2a2n22

ȧ2

a2 5B8a23g1
Kc0

2a2n22~223g!

~2n13g22!
, B8 const,

~16!

and theB8 term dominates the curvature (K) terms at large
a, so the flatness problem can be solved so long as

n<
1

2
~223g! ~17!

@where we have noted from Eq.~15! that the flatness problem
is also resolved in the 2n13g52 case#. We see that this
condition is a straightforward generalization of the inflatio
ary condition~11! that obtains whenc is constant. We con-
firm that the variation inG does not enter this condition in
significant way. Also, the sign of 3g22 determines the
overall sign of the curvature term in the Friedmann equati
However, unlike in the constantc case, it is possible to re
solve the flatness problem without appeal to a matter sou
5-3
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JOHN D. BARROW PHYSICAL REVIEW D 59 043515
with 3g22,0. In particular, we see that in a radiatio
dominated universe (g54/3), the flatness problem is solub
if c(t) falls sufficiently rapidly as the universe expands, w

n<21, ~18!

while for dust (g51) we require a slower decrease, with

n<2
1

2
. ~19!

B. The horizon problem

The variation of the expansion scale factor at largea(t)
approaches

a~ t !}t2/3g ~20!

when the curvature term becomes negligible, as in the si
tion whenc is constant. The proper distance to the horiz
increases as

dh}ct}ant}t ~3g12n!/3g ~21!

and so we see that the scale factor can grow as fast, or fa
thandh as t increases if

2>2n13g.

This is the condition to solve the horizon problem and
identical to that for the solution of the flatness problem, j
as in the situation with constantc.

C. The Lambda problem

If we consider the case with a non-zeroL term, that is
contributed by a stress obeyingpL52rLc2, then we need
to solve Eq.~9! with c(t) varying as Eq.~12!. In this case we
need to assume a form for the variation ofG with a or t, and
we shall again assume that its rate of variation is prop
tional to the expansion rate of the universe, with

G~ t !5G0aq ~22!

whereG0 andq are constants. We assume thatL is constant.
From Eq.~8! we have

ṙL5
Lc0

2~2n2q!a2n2q21ȧ

8pG0
.

Now we look for solutions of Eq.~9! with

ra3g5Da2 f1Ea2g ~23!

whereB, D, andE are constants.
This requires

f 5q22n23g ~24!

g521q22n23g521 f ~25!
04351
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Lc0

2~q22n!

8pG0~2n13g!
~26!

E5
3Kc0

2n

4pG0~2n13g22!
~27!

where we only write down the solution for the cases wh
2n13gÞ0 or 2. Thus, the density is

8pG~ t !r5
Lc0

2~q22n!a2n

2n13g
1

6Kc0
2na2n22

2n13g22
. ~28!

If we substitute in the Friedmann equation containingrL ,

ȧ2

a2 5
8pG

3
~r1rL!2

Kc2

a2 ~29!

then we have

ȧ2

a2 5
Lc0

2a2n~q13g!

3~2n13g!
1

Kc0
2a2n22~223g!

2n13g22
. ~30!

We see that theL term on the right-hand side of Eq.~30!
will fall off faster than the curvature and matter density term
so long asc(t) falls off fast enough, with

n,2
3g

2
. ~31!

As expected, this requires a more rapid increase inc(t) than
is required to solve the flatness or horizon problems. In p
ticular, in the radiation and dust cases it requiresc to fall as
the Universe expands, withn,22 and n,23/2, respec-
tively.

V. BETTER FORMULATIONS

The most challenging problem besetting any attempt
examine the cosmological consequences of varyingc is the
formulation of a self-consistent theory which incorporat
such a variation. The AM approach is not the only way
proceeding and so we should look more critically at its re
tion to other things that we know. The most interesting fe
ture in this respect is the fact that it permits a description
varying G whenc is kept constant. However, it is clear th
in this case the resulting cosmological equations~4!, ~5! and
~6! are not the equations describing the evolution of
Friedmann universe in a scalar-tensor gravity theory, l
JBD. The reasons are clear. JBD theory meets the cova
divergence constraints imposed by the Bianchi identities
including the energy density contributed by the scalar fi
that acts as the source of the variations inG. These contri-
butions are not included in the AM formulation. In order
improve upon it we could take a scalar-tensor gravity the
and carry out the same procedure used to derive Eq.~6! and
check that the time variation ofc is still permitted. This
means that we assume that the JBD equations hold for
Friedmann model, withc allowed to be a time variable, an
5-4
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COSMOLOGIES WITH VARYING LIGHT SPEED PHYSICAL REVIEW D59 043515
then derive the conservation equation from them. For J
theory we have@9,11#,

ȧ2

a2 5
8pr

3f
2

ḟȧ

fa
1

vḟ2

6f2 2
Kc2~ t !

a2 , ~32!

3ä

a
52

8p

~312v!f F ~21v!r1
3~11v!p

c2~ t ! G2
f̈

f
2

vḟ2

f2 ,

~33!

f̈1
3ȧḟ

a
5

8p

312v S r2
3p

c2~ t ! D5
8pr~423g!

312v
. ~34!

From these three equations we obtain the generalized co
vation equation. Since after we impose the equation of st
the varyingc term only appears in the first of these equ
tions, the only new contribution to 2ȧä is from the22Kcċ
term. Hence, we have@10#

ṙ13
ȧ

a S r1
p

c2D5
3Kcċf

4pa2 . ~35!

It is instructive to compare this to the AM equation~6!. We
see that the incorporation ofG variation differs. TherĠ/G
term of Eq.~35! is absent but theK term has the same form
with G(t) replaced byf21(t) as usual in JBD theory. How
ever, the new system is more constrained because solu
to Eqs.~34! and ~35! must be consistent.

When the matter content is radiation the conservat
equation~34! has the particular solution

f5G215const

and then Eq.~35! is identical to the AM equation~6! in the
case whereG is constant butc varies with time. The condi-
tions for resolving the flatness and cosmological cons
problems then become the same as given for the AM form
lation above. For other equations of state the situation
more complicated. Rearranging the equations, we nee
solve

~ra3g!•5
3Kcċfa3g22

4p

~ḟa3!•5
8pra3~423g!

312v

together with Eq.~32!. WhenK50 they are solved by the
usual exact solutions of JBD theory. When the universe
radiation dominated these equations have particular solut
with f constant which are identical to those derived in t
last section for the case of varyingc and constantG. These
equations will be studied in more detail elsewhere@14#.

The JBD theory is not the most general scalar-ten
gravity theory. It is a particular case of a general class
which the constant BD parameter,v, is a function of the
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scalar fieldf @11#. For these theories, the Friedmann un
verse~with c constant! is governed by the equations~in the
L50 case!

2S ȧ

aD •1S ȧ

aD 2

12
ȧḟ

af
1

Kc2

a2 52
v~f!ḟ2

2f2 2
8pp

fc2 2
f̈

f
,

ȧ2

a2 5
8pr

3f
2

ȧḟ

af
1

v~f!ḟ2

6f2 2
Kc2

a2 , ~36!

f̈13Hḟ1
v8ḟ2

2v13
5

8pr~423g!

2v13
. ~37!

From these equations we obtain the same generaliza
of the mass-energy conservation as in JBD@which is the case
v(f)5constant], given by Eq.~35!. Again, radiation-
dominated solutions~with f5G21 const) and varyingc of
the form found in the last section are always exact particu
solutions of these equations.

VI. SOME PROBLEMS

A. The velocity problem

If c varies there may be a problem with the perturbatio
to the isotropic expansion of the universe which are pow
of v/c. For example, for rotational velocity perturbations
matter obeyingp5(g21)rc2, the conservation of angula
momentum givesra4v5constant. Although the original for
mulation described above does not allow us to impose
ergy conservation in the usual way (E}c2), we shall assume
that angular momentum conservation is preserved sinc
does not incorporate directc dependence. Hence, we have

v}a3g24.

Now, if

c~ t !5c0an

we have

v
c

}a3g242n.

If the flatness problem is to be solved, we need 222n
.3g so we will have 3g242n,2223n. For theL prob-
lem to be solved we need 3g12n,0. Hence, in the radia-
tion era we needn,21 to solve the flatness problem an
n,22 to solve theL problem. Therefore, wheng54/3, we
have

v
c

}a2n

we see thatv/c grows in time in both cases asa→`. During
the dust era,g51, and so

v
c

}a212n
5-5
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JOHN D. BARROW PHYSICAL REVIEW D 59 043515
where n,21/2 solves flatness~allowing v/c to decay in
21,n,21/2) and n,23/2 solvesL ~which would al-
ways requirev/c to grow!.

In general, the condition for solution of the flatness pro
lem hasv/c growing as a power ofa equal to 3g242n
.9g/225, while a solution of theL problem has it growing
as 3g242n.9g/224. So we can onlyavoid blow-up of
the velocity perturbations at largea if g,10/9 ~if we also
want to solve flatness! or g,8/9 ~if we also want to solve
L!.

B. Shear evolution

We can extend the AM model to include the effects
simple anisotropies with isotropic curvatures. This wou
correspond to generalizations of the Bianchi type I and t
V universes in the flat and open cases, respectively. In
spirit of Eqs.~4!, ~5! the required generalization which in
cludes the shear anisotropy scalar,s, is

ȧ2

a2 5
8pG~ t !r

3
1

s2

3
2

Kc2~ t !

a2 ~38!

ä

a
52

4pG~ t !

3 S r1
3p

c2~ t ! Da2
2s2

3
~39!

wherea(t) is now the geometric-mean expansion scale f
tor. From these equations we may derive the analogue o
matter conservation equation:

ṙ13
ȧ

a S r1
p

c2D1
s

4pG S ṡ13
ȧ

a
s D52r

Ġ

G
1

3Kcċ

4pGa2 .

~40!

This equation resembles the conservation equation
two non-interacting perfect fluids, one of which~the ‘‘anisot-
ropy’’ energy density! has the equation of statep5rc2.
However, we see that the original AM prescription leaves
material density coupled to the shear evolution. If we add
shear evolution equation from the standard~constantc) case
then we have

ṡ13
ȧ

a
s50 ~41!

and the density evolution obeys the same equation as tha
the isotropic model (s50).

C. Black holes

It is interesting to note that if a black hole forms wi
radius

Rg5
2GM

c2 ~42!

then, from Eq.~42!

Ṙg

Rg
5

Ġ

G
22

ċ

c
52

ṙL

rL
.
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This seems to imply that ifG is constant andc is falling then
primordial black holes would grow in size at the same rate
the universe is expanding. There will also be consequen
for black hole evaporation. The Planck scale will grow ra
idly }c25. It is possible to examine the changes to the la
of black hole mechanics using the results for the change
the characteristics of black body radiation thermodynam
but we do not digress to discuss this here.

D. Late-time fields

Another aspect of this model is worth commenting o
We have determined the rate of variation ofc(t) that would
allow the flatness~or L! to be solved. However, we coul
also use these equations in the cases where the flatness
lem wasnot solved in the same way as a description of
cosmological matter field that plays the role of a matter fi
which can dominate the expansion dynamics of the unive
at late times. Of course, as with the possibility of present-d
contributions to the dynamics by the curvature orL terms in
the case wherec is constant, this requires a special tuning
the initial sizes of these terms in the Friedmann equat
with respect to the density term in order that their effects j
start to become significant close to the present epoch.

An interesting point to notice aboutc-varying models is
that if the universe were to contain a dynamically significa
cosmological constant term at late times then it would na
rally have negligible curvature term and so resemble a ze
curvature universe with subcritical total density, just like i
flationary universes with a residual lambda term. Th
property allows natural almost flat asymptotes to arise,
pointed out in Ref.@14#.

E. Fine structure constant variations

One interesting feature of any self-consistent theory oc
variation is that it enables us to evaluate the consequence
time ~and space! variations in dimensionless coupling con
stants like the fine structure constant. In an expanding u
verse withc varying we requirerc2}(kBT)4/(\c)3. Assum-
ing particle wavelengths are unchanged in the absenc
expansion and the masses of quantum particles are conse
so\/c remains constant. As the universe expands the Pla
spectrum remain Planckian but the temperature varies as@1#

Ṫ1T S ȧ

a
22

ċ

cD50.

Hence,

T}
c2

a
}a2n21

for the power-law variation, Eq.~12!, assumed above. Stron
observational limits could be placed on any deviation ofn
from zero using data which establish bounds on the temp
ture of the microwave background at low redshifts.

The required variation of\/c means that~for constante2)
the fine structure constant varies as
5-6
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a5
e2

\c
}

1

c2 .

If we assume a more modest variation in the evolution
c(t)}(ln t)21 then it becomes possible to examine some p
sible late-time consequences of varyinga using this model.
A detailed particular theoretical formulation has been p
vided by Bekenstein@5#. Elsewhere, Barrow and Magueij
@13# have provided a Lagrangian-based theory with vary
e which differs from Bekenstein’s~unlike Bekenstein’s
theory it does not postulate that the gravitational field eq
tions remain unchanged!. This theory may be transformed b
a suitable change of units into a theory with constant elec
chargee and varyingc like the one described above, or
may be presented as a theory with constantc and varyinge.
This features displays explicitly that invariant meaning c
only be ascribed to variations of dimensionless ‘‘constan
~in this case the fine structure constant!.

A more far-reaching aspect ofc-variation is the fact that a
fall in the value ofc at very early times would lead to
strengthening of dimensionless gauge couplings unless o
changes in the structure of physics could offset this. Th
attempts to reconstruct the history of the very early unive
could not count on the applicability of asymptotic freedo
and the ideal gas condition at early times in the usual w

VII. DISCUSSION

The contemplation of a variation in the speed of light
the very early universe presents a host of self-consiste
problems and boundary effects with other parts of the cor
modern physical theory. Unlike the case of varyingG, it
requires deep structural changes to many of the foundat
of physics. In this paper we have considered a minima
varying-c theory recently proposed by Albrecht an
Magueijo @1# as a new way of solving the horizon and fla
ness problems. However, unlike inflation, it also offers a w
of solving the cosmological constant problem. Whereas
brecht and Magueijo modelled changes inc as a sudden fal
in the universal value ofc, occurring as if at a phase trans
tion, we have considered the behavior of variations wh
vary as a power of the cosmological scale factor in orde
determine the rates of change that are needed to solve d
ent cosmological problems. Our main results are as follo

~a! If the velocity of light varies with the cosmologica
scale factor,a(t), as c5c0an and the equation of state o
matter isp5(g21)rc2, then the curvature term become
negligible for the expansion of the Universe asa→` if c
falls fast enough, withn< 1

2 (223g), regardless of the be
havior of G(t). The same condition allows for a resolutio
of the horizon problem. This generalizes the conditions
the inflationary resolution of the flatness and horizon pr
lems which apply whenc is constant (n50) andG is con-
stant.

~b! If the velocity of light varies with the cosmologica
scale factor,a(t), as c5c0an, the gravitation ‘‘constant’’
varies asG(t)5G0aq, and the equation of state of matter
p5(g21)rc2, then the condition for a vacuum stress wi
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pL52rLc2, associated with a geometrical cosmologic
constant term to become negligible asa→` is thatc fall at
a rate such thatn,23g/2.

~c! We have shown how it is possible to improve th
formulation of the problem in order to recover a scalar-ten
theory describingG variation in the limit of constantc. This
formulation only allows the solutions of the AM theory t
persist in the case when the equation of state is that of b
body radiation. This problem also suggests that we sho
attempt a fuller formulation of the varying-c theory by de-
riving the variation ofc from some scalar field that contrib
utes an energy density to the evolution of the Universe.

~d! We have highlighted some potential problems with t
evolution of rotational velocities as the universe expands
is also worth noting that the varying-c model does not solve
the flatness and horizon problems by means of a period
evolution that is close to that described by a time-translat
invariant de Sitter space-time. As a result there does
appear to be any distinctive set of fluctuations that sho
emerge from a period of cosmological evolution in whichc
changes.

~e! Possible variations inc lead to changes in the fin
structure constant and to other gauge couplings in the v
early universe if no other changes in physics exist. Howev
if the variation in c is confined to a very early period o
evolution soon after the expansion commenced there nee
no conflict with astronomical constraints on any time
space variation in the fine structure constant.

~f! A varying-c theory can be transformed in to a varyin
e theory with constantc by a suitable transformation o
units. Theories of this sort can be given a Lagrangian form
lation if required.

We believe that these features of the naive varyingc
model proposed by Albrecht and Magueijo are sufficien
interesting for it to be worthwhile exploring a fuller, mor
rigorous formulation of a varying-c gravity theory based
upon an action principle which would enable its cons
quences for other aspects of physics and cosmology to in
tigated more rigorously.

Note added.After this paper was completed, the author
attention was drawn to two early papers by Moffat@15#
which investigate the sudden variation in the value of
speed of light as a possible solution for the horizon a
flatness problems which predate the study of Ref.@1# that
motivated the discussion above. The reader is referred
these papers for further details of the model for disconti
ous change inc that is proposed by Moffat.
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