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Supersymmetric vacuum configurations in string cosmology
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We examine in a cosmological context the conditions for unbroken supersymmétey Insupergravity in
D =10 dimensions. We show that the cosmological solutions of the equations of motion obtained considering
only the bosonic sector correspond to vacuum states with spontaneous supersymmetry breaking. With a
nonvanishing gravitino-dilatino condensate we find a solution of the equations of motion that satisfies neces-
sary conditions for unbroken supersymmetry and that smoothly interpolates between Minkowski space and de
Sitter space with a linearly growing dilaton, thus providing a possible example of a supersymmetric and
nonsingular pre-big-bang cosmolodg$0556-282(199)01402-2

PACS numbg(s): 98.80.Cq, 11.25.Mj, 11.30.Pb, 98.80.Hw

Supersymmetric vacuum states in string theory can bé&olonomy. There are other ways of obtainiBg=4, N=1
searched in different contexts, depending on the space-timécua of string theory, see, for instance, R&i. for recent
dependence allowed for the fields that appear in the lowreviews. In this paper we address some aspects of the prob-
energy effective action. A simple possibility is to restrict to alem in a cosmological context, i.e., including a time depen-
constant dilaton and vanishing antisymmetric tensor fieldd€nce in the metric, dilaton field, and antisymmetric tensor

The result obtained in this case is well kno\l: looking Eglr?,”aggsvmv;;vl:lcglomggﬁ Orl:)r (r)esséléltisnWF'Ztgg]thSw:iFéLe'ig'g'
for a vacuum state of the form*x K, whereT* is a maxi- 9 9 prop !

: : . based on the bosonic part of the string effective action.
mally symmetric four-dimensional space aKda compact We start from the action oN=1 supergravity inD

six manifold, one finds thal* is necessarily Minkowski —10. we perform some simple field redefinitions on the ac-
space, and requirinl=1 supersymmetry irD=4 space- tjon presented in Refl4] in order to bring it into the so-
time dimensionsK is found to be a manifold oSU(3) called string frame, where it redds
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*Our notation is as followss is the dilaton fieldHyyp is the field strength of the two-form fieB,,y , the gravitony,, is a left-handed
Weyl-Majorana spinor, the dilatink is a right-handed Weyl-Majorana spinor, and the covariant deriv&lliyes with respect to the spin
connectionw(e), which is independent of the fermionic fieldS,4]. IndicesA,B,M,N take values 0...,9. We use theignaturenyy
=(—,+,+,...,+). The conventions for the Riemann and Ricci tensors Rifgs=dJrl'Ns— - - -,Rns=RNms:TNs is the Christoffel
symbol while y*B% - denotes the antisymmetrized product of ten-dimensional gamma matrices, with weight 1.
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The ellipsis in Eq.(1) represents terms of the typéi(;np  three-space is independent of the internal coordinates, it is
X fermion bilinear$, terms with three gravitino fields and straightforward to show that Eq€2),(4) do not admit non-
one dilatino, and terms with four gravitinos. Their explicit trivial cosmological solutions.
form is not needed below and can be obtained from Rigf. The superinflationary pre-big-bang solutions of Rl

If |Q) is a vacuum state annihilated by a supersymmetnare therefore rotated by supersymmetry transformations into
generator Q, and 6% is the supersymmetry variation different classical solutions of the acti¢h). Since each clas-
of any fermionic field ¥, then (S¥)=(Q|s¥|Q)  sical solution of the equations of motion corresponds to a
=(Q{Q,¥}|Q)=0. The variation of the bosonic fields give string vacuum, this means that selecting such a vacuum cor-
fermionic fields, and their expectation values are automatifesponds to a spontaneous breaking of supersymmetry. If we
cally zero. So, in our case we need to impose the conditiongant to preserve the advantages of supersymmetry for low-
(\Y={(S¥n)=0. We consider first the case in which the energy physics, for instance for the hierarchy problem, we do
expectation values of all bilinears in the Fermi fields are sefot wish to break supersymmetry already in the pre-big-bang
to zero. This corresponds to solutions of the equations oera. Therefore we now look for vacuum states with unbroken
motion of the bosonic part of the acti¢h), and therefore to  supersymmetry. The above results suggest that, in order to
the pre-big-bang cosmology studied in RES]. The super- find supersymmetric solutions, the effect of Fermi fields
symmetry variations of the dilatino and gravitino field can bemust be switched on, which means that we must consider the
found, e.g., in Ref[4]. Writing them in the string frame, and effect of nonvanishing fermion condensates. We have found
setting the fermion condensates to zero, the equatiény @ particularly simple and appealing solution assuming that
=(8¢y)=0 give the only nonvanishing fermion bilinear is the mixed

gravitino-dilatino condensate{fsz). Let us definevy

M 1 MNP| =—(/2/8) E/;M . Itis a composite vector field and in gen-

7 omd = gHuney 7=0, @ eral in a césmol>ogical setting it depends on titnete that
while in global supersymmetry the fermion condensates are
space-time independef], this is not the case with local

Dun—gHu»=0, (3)  supersymmetry Furthermore, we look for solutions with

Hunp=0. In this case the equation®\)=0, (S¢y)=0
where 7z is the parameter of the supersymmetry transforma®'V®
tion andHy=Hynpy\". Note that in the string frame Eq.

M — =
(3) is independent of the dilaton field, contrarily to what 7 (Imd=8um) =0, ®)
happens in the Einstein franj&]. This simplifies consider- 1
ably the analysis of the equations. WritinGy=D Dun—|8uw+ Ey',\“,'vN)n=O. (6)

—(1/8)Hy, Eg. (3) implies the integrability condition
[Dm,Dn]#7=0, which gives The integrability condition of Eq(6) is

R —
[ZRMNPQVPQ+(DNHM)_(DMHN)_HMQHRNsyQS]n_&’) [RunpqY” =20 08(gagymn+ Ganyem— Gem¥an)

—32f N+ 2(ymaD N0~ YnaDwv ™) 19=0, (7)
which is therefore a necessaftyut not sufficient condition
for supersymmetry. One can now see by inspection that thetheref yn=dyvn— Invm andDyv”= v+ F{\*ABvB. For
solutions used in homogeneous pre-big-bang cosmdi8py the metric we make an isotropic ansatds’= —dt?
do not satisfy Eqs(2) and(4). This is obvious for the solu- +a?(t)dxdx', withi=1,...,9, and walefine as usual the
tions with vanishingHyyp, since in this case Eq(2)  Hubble parameter (t)=a/a. Our strategy is to find a field
I’equil’es a constant dilaton. ) In fa.Ct, we aI-SO tried aconfiguration¢(t)1H(t),UM(t) such that Equ) and(?) are
rather general ansatz compatible with a maximally symigentically satisfied, without requiring any condition on
metric three-dimensional spacegs’=—dt>+a?(t)dx?>  This is because Eq7) is only the integrability condition for
+gma(t,y)dy™dy", in which the three-space, with coordi- Ed. (6), and as such it is a necessary but not sufficient con-

nates, is isotropic and has a scale factor independent of thémion fqr unbroken supersymmetry. If it is satisfied for any
. . N . . . 7 we still have the freedom to choosgeso that also Eq(6)
internal coordinatesy, while the metric in the six-

) : . . is satisfied.
d|m§n3|ona_l internal space is independent of xhéut oth- Examining Eqs.(5) and (7) we see that this is possible
erwise arbitrary. ForHyyp we made the ansatH;j,

=const € for i,j,k=1,2,3,Hq;=0, Hynp vanishes also only if v;(t) 0." 4 e ,9.Denot.|ngvM:0(t)—_a(t), _Eq

if indices of the three-space and indices of the internal spac@ beco”.‘es _S|mplyz>— 80. Equation(7), for M=0,N=i,
appear simultaneously, amth,yp is arbitrary if all the indi- becomesH—-o+H(H-0)=0, while for M=i, N=j we

ces MNP take values 0,4 . .,9. Wealso considered the 9et (H—0)?=0. We see that these equations are identically
case of spatially curved sections of the three-space. Evegdtisfied by H(t)=o(t). We now ask whetherH(t)
with this ansatz, which is the most general compatible with=o(t), ¢(t)=80(t) is a solution of the equations of mo-
maximal symmetry of the three-space when the metric of theion, as we expect for a supersymmetric configuration. The
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equations of motion obtained with a variation with respect to 10
fermionic fields are automatically satisfied when we take the
expectation value over the vacuum, and we only need to
check the variation with respect to bosonic fields. We intro-
duce the shifted dilatop=¢—dg3, where=Iloga andd

=9 is the number of spatial dimensions, and we also retain
the lapse functiorN in the metric, so thads®= —N2dt? —_
+e?Pdx;dx . Restricting to homogeneous fields, the relevant 2

05

part of the action can be written as =
0.0
1 -1 L V2
S —¢_| —dB2 2 -
S szj dte N dBe+ ¢ +2 s )u,bo)¢
v . (V2 |2
+2d _?Mpo p-8 ?Mﬂo ® %50 10 0.0 10 2.0
s}

The last term in the action8) comes from the term
(fyABC)\)(EM yagciy) in Eq. (1), making use of the Fierz FIG. 1. A symmetry breaking potential for the fiedt).

identity  (\Y*%N) (0 yascim) =96 YM) (N ih)  (see, _ ,
e.g., the appendix of Ref[4]). Instead, the terms minimum ato=o0#0, see Fig. 1. If we choose as initial

S _© = = " v . B
OV BON) (WM yuastvc) and (N BN) (Paysic) in the ac- condition c—0" ast— —x, g(t) will evolve from ¢=0

tion (1) are independent from)\(z/;'\")(ﬂ/;M) and their con- toward the positive minimum of the potential, and it will

densates can be consistently set to zero. We now variate tﬁ'éake d_ampeq OSC”I"’.‘“O”S around=o, . the damping
" ith N D d then take th i mechanism being provided by the expansion of the Universe
action with respec 4.8 an en take the expectation 5.4 possibly by the creation of particles coupled to the

value of the terma. o, (N 49)* over the vacuum. We get the field. The qualitative behavior of(t) will be therefore of

equations the form plotted in Fig. 2. For illustrative purposes, we have
d B shown in Fig. 2 the evolution of obtained assuming an
a[e*‘/’(H —0)]=0, effective action, in the string frame, of the form

. - V2 \2 S=J dteg(lc'rz—V(a)) (11)

$*—9H%+20 ¢+ 18crH—8< ?WO) >=0, 9 2 ’

whereV (o) =—o*+(2/3)0® is the potential shown in Fig.
1. (We use units such that the minimum is@t1.) This
gives the equation of motio&—$&+v’ =0, with —Eza

. V2 |2 providing the friction term. However, the qualitative behav-
+20¢+180H—8 (?)\ ¢0) =0. ior is independent from these specific choices.

2(b+0)—2h( b+ o) — IH2+ 2

1.5

(10

For the configurationH= o, =80 (and therefored= ¢
—9H= — ) we see that the equations of motion are identi-

cally satisfied if((\ o)) =(\g)2. Consistency therefore 1o
requires that supersymmetry enforces this relation between
the condensates. In general, it is well known that relations of ¢
this kind are indeed enforced by supersymmetry; for in-

stance, the relatiof{ xx)|>={|xx|?) holds for the gaugino os |
condensate in the case of super-Yang-Mills thedrdsand
in supergravity coupled to super-Yang-Mi(l3] theory.

It remains to discuss the dynamics of the condensate
a(t). This is a composite field whose dynamics will be gov-

erned by an effective action which in principle follows from 0.0

the fundamental actioril). To assume that a condensate 780 t 1250
forms is the same as assuming that the field) has an

effective action with a potentiaV (o) with the absolute FIG. 2. The evolution of the field-(t).
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Since H(t)=o(t) and ¢=80(t), this solution corre- condensater has an effect on gauginos. However, in mini-

sponds to a cosmological model that starts-at—o from  mal supergravity coupled to super Yang-Mills theoryOn
Minkowski space with constant dilaton and vanishing fer-=10, the gaugino-gravitino-dilatino coupling is proportional
mion condensates, i.e., from the string perturbative vacuumo terms of the typé4] ;’)’ABCXEM Y*BEYM\, and the con-
and evolves toward a de Siter metht-- const, with I onsaig(, 2y, is independent from ).

early growing difaton. 1his 1S simifarto the scenario foundin - ;¢ 515 interesting to observe that, if at smallthe

Ref. [8] in the bosonic sector witly’ corrections. In the . 2 5 . )
present case the scale at which the curvature is regularized pl)é)tentlaIV(a) behaves a¥/(o)= 7 [(2c%), W'th.c aposk-

_ i — ; tive constant, then at large negative values of time the solu-
given by the fermion condensatewhile in Ref.[8] it was

given by thea' corrections. However, in the case studied intion of the equation of motion fovr Is o(t)=c/(~t) and
102 . . .
. e ' hereforeH (t)=c/(— rr ndin rinflation-
Ref.[8], higher ordera’ corrections were not under control, thereforeH (t)=c/(~1), corresponding to a superinflation

so that a definite statement about the effectiveness of thary stage of expansion, as it also happens for the solutions

regularization mechanism could not be madee also the f%uvr\\/d n Relf.[dB] ”1 the_bost%mtctﬁecto: ?f th?hmtodel.h
discussion in Ref(11]). In the present case, instead, the fact € conclude stressing that he solution that we have pre-

that d therefordd and . st ing foll ; sented has more an illustrative rather than a realistic value.

thz Uénae?al reere'r?armer?tnthﬁ'é t?]gpsotgerr?\v'!\ggg); t:)e c;)vgsn:j%rg For one thing, we have discussed an isotropic ten-
9 qui o P u dimensional solution and we have not touched upon the issue

from below and has a minimum, as we expect for the effec-

tive potential derived from any well-defined fundamental ac-Olc _compa_ctlflcanon Of the extra Q|men_3|ons. o obte}ln an
tion as the actiori1). As in the case studied in RdB], the anisotropic cosmological model, in which three spatial di-

de Sitter solution should finally be matched to a standardﬂenSionS ex_pand and six get compactified, most probably
radiation-dominated era. For the matchir@(e?) correc- ©ON€ Must switch on the effect of the three-fofpg [12] or

tions to the string effective action are probably impor{@jt  include the effect of a dilatino condensatey,gc\, or a
sinceé;s is positive and therefore at some stafebecomes gravitino condensate such égygic, or a gaugino conden-
large. The so-called graceful exit problem, however, takes 8ate y yagcy. They can separate three spatial dimensions
different form in our scenario, sinqu — o is always nega- from the remaining six if either all the three indicasB,C

tive in our model and no “branch changd10] needs to belong to the three-dimensional space, or if they are the ho-
occur. Instead, when the gauge couplinge? becomes lomorfic indices of a six-dimensional complex manifold.
strong, gaugino condensation is also expected to occur, sufill, the toy solution that we have discussed illustrates the
gesting that the gaugino condensate might play a role imole of fermion condensates in a supersymmetric cosmology
matching the de Sitter phase to a radiation dominated erand provides a novel mechanism for the regularization of the
One might also ask whether, including the gauge sector, theingularity of the pre-big-bang cosmological solutions.
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