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An empirically successful mass formula derived long ago from hadronic string models is not explained by
symmetries of the QCD Lagrangian. Consider gt~ M2 = M2, — M to a few percent accuracy. We derive
this and other equal spacing relations using chiral symmetry and several assumptions about the chiral trans-
formation properties of the hadronic mass-squared matrix. We discuss the possible significance of these
assumptions in the context of QC[50556-282(199)06001-4

PACS numbes): 11.30.Rd, 11.30.Er, 11.55.Jy, 12.38.Aw

[. INTRODUCTION interpretation of the ansatz in the context of lattice QCD. We
will argue that the mass-squared matrix constraints are
Consider the meson mass-squared splittings listed iequivalent to aZ, symmetry which is a manifestation of
Table 1[1]. Why are these splittings equal to within a few chiral anomalies in a gauge theory with an intrinsic cutoff.
percent? The near equality of tbe—D* andB—B* mass- This paper is organized as follows. In Sec. Il we discuss
squared splittings is well understood as a consequence oOur basic assumptions and using these assumptions find the
heavy quark symmetry. However, the equality of all otherchiral representation filled out by the Goldstone bosons. We
meson pairs is puzzling since there is no obvious QCD symshow that this representation implies equal spacing relations
metry which relates them. The near equality of the pairdor the Goldstone bosons and their chiral partners. This is the
could be accidental. There are rigorous mass formulas foamost important section of the paper. Although Sec. Il C pre-
heavy hadrons that also happen to work well for light had-sents material that is well knowi5—7], it is essential for
rons, providing a similar mysterj2]. However, the equal what follows. In Sec. Ill we consider the two-flavor chiral
spacing relations of Table 1 are special in that they are precepresentation involvingy and compare with Sec. Il wheng
dicted by hadronic string models made consistent with chirals a Goldstone boson of three-flavor QCD. Consistency of
symmetry constraint$3]. The fact that the mass-squared the two- and three-flavor multiplets unambiguously deter-
splittings can be understood on the basis of regularity, albeimines members of the 0" scalar octet and requires octet-
regularity whose link with QCD is not clear, suggests thatsinglet mixing. In Section IV we consider the chiral repre-
they are not accidental. In the modern view, a demonstratiogentations of thel=3 mesons. We find the kaon
of these relations will be convincing only if there is a sym- representations and compare with the results of Sec. Il where
metry argument based in QCD. The only post-sixties attempthe kaons are in the Goldstone boson representation of three-
to understand these relations that we are aware of is in modlavor QCD. This enables us to express the kaon mass-
ern string theonf4]. squared splittings in terms of di 3 matrix element, which
In this paper we show that these relations can be undewe conjecture to be universal. We then construct the chiral
stood using SU{), X SU(N)g with N=2,3 together with an representations of the heavy mesons consistent with heavy
ansatz for the chiral transformation properties of the hadroniguark symmetry, and show that the heavy meson mass-
mass-squared matrix. This ansatz completely determines tisgjuared splittings are related to the kaon splittings by the
reducible chiral representations filled out by mesons. Themniversal =3 matrix element. We discuss the baryons
basic results for the chiral representations have been fourriefly in Sec. V and provide an independent test of the uni-
by Weinberg using algebraic sum rulgs6]. What is new  versality conjecture. In Sec. VI we discuss the relation be-
here is the inclusion of explicit chiral symmetry breaking tween our derivation of the equal spacing relations and the
effects in the mass-squared matrix, the extension of the basic _ )
multiplets to three flavors of quarks and a discussion of the ABLE I Lowest lying mesons of a given character. Masses are
chiral representations of the heavy mesons. Our derivation ocﬁn_tral values 1;rom the particle qata grdag an_d_we have defined
the equal spacing relations is related to the old string deriva® =0688 Gev=soas tz r}_ormallze rt}hp-w”sphttmg tok0.50. The
tion; the constraints implied by the full chiral algebra and the’2. 2" ¢s masses are defined by the Gell-Mann-Okubo formulas

. : (see below.
mass-squared matrix ansatz are equivalent to standard as-
sumptions of Regge asymptotic behavior in pion-hadron A*-A o' (M2, — M2)
scattering[5], which are automatically incorporated in had- A A
ronic string models. What significance does the ansatz have p—1r 0.50
from the point of view of QCD? We will offer a speculative K*—K 0.49
b= 7g 0.48
D*-D 0.48
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old hadronic string derivation. Finally, we give an interpre- order parameter(qq); i.e., like (2,2 with respect to
tation of our ansatz for the hadronic ma§s—squared matrix.itgu(z)xsu(z)_ M 2 transforms like a chiral singlet. The only
the context of lattice QCD. We summarize and conclude ifyroducts of the allowed irreducible representations that con-
Sec. VII. tain (2,2) are (2,2)(3,1), (2,2)2(1,3), and (2,2 (1,1). It
is clear that a chiral representation with mass-squared split-
Il. THE GOLDSTONE QUARTET tings must be reducible. All states in an irreducible represen-
tation must be degenerate.
The symmetry decomposition of the mass-squared matrix
In a theory where a symmetfy is spontaneously broken, of Eq. (1) and the allowed representations allow arbitrarily
G is not a symmetry of the vacuum, b@tis still a symmetry complicated chiral representations for each heli¢gy. In
of the theory. The noninvariance of the vacuum makes iRef.[6] Weinberg showed that the further constraint that the
difficult to recover consequences of the symmetry in the brotwo parts of the mass-squared matrix commute,
ken phase. However, those consequences are there and they
are important. Fortunately, in special Lorentz frames the
QCD vacuum can be invariant with respect to chiral symme-
try even when chiral symmetry is spontaneously broken

[5,8]. The infinite. momentum frame provides an intuitive completely determines the chiral representations and the
picture of how this can occur. If a system is boosted to infi-mixing angles of the reducible representations filled out by
nite momentum these is a sense in which the vacuum dene mesons. This constraint is equivalent to a special super-
couples and is thereby rendered irrelevi@it In the infinite convergent sum rule in pion-hadron scattefiand will be
momentum frame helicity is conserved and so, for each hegiscussed in detail in Sec. VI.

licity, hadrons can be classified in representations of the full | this paper we will assume that Eqd) and (2) are
chiral algebra in the broken phaf&5]. Since degeneracies gatisfied by the hadronic mass-squared matrix. They are the
in the broken phase are uncommon, the chiral representatiofgndamental assumptions made in this paper. In Sec. VI we
are generally reducible, and so do allow nontrivial splittingyy|| discuss how the mass-squared matrix constraints are re-
of states. The symmetry constraints on the hadronic massated to assumptions of Regge asymptotic behavior and we

squared matrix will be the focus of this paper. The chiralyij| suggest a possible interpretation from the point of view
representations also constrain amplitudes for pion emissiogs Qcp.

and absorption as discussed in many pla¢és-7,9.
Throughout this paper it is assumed that we are working in .
Lorentz frames in which helicity is conserved. C. The Goldstone multiplet

an(?n(ngSIdf(raereQSCLJI?ZB\thUt\évzc; n;afnsrlﬁes; ﬂv?/\rg(i)crﬁ .isTQSegzn;se dan The assumption tha#13 and I\A/Izaq commute determines
y R SY y the reducible chiral representations filled out by the light

:ﬁ;ﬁ;ﬁgg@gﬁﬁﬁg ggﬂ'ﬁﬁgf :;j(’r?r?:?glﬂhyg?siz?:ﬁul_mesc_ms{S—?]_. There are two reducible chiral representgtions
. - ' . consistent with the ansatz for the mass-squared nmatrix.
tiplets. For each helicity, hadrons also fill out representations @ (2,2)2(3,1) and (2,25 (1,3):
of SU(2)xXSU(2) [5]. Since all mesons have zero helicity ' ' ' =
states, we will consider only zero helicity in this paper. 1
Meson states carry isospin 0 or 1 and therefore transform INa=—{]2,22—|A)a}, Mf:,ﬁ_ 5,
as combinations 0f2,2), (3,1), (1,3, and(1,1) irreducible V2
representations of SB)XSU(2). Charge conjugation leaves
(2,2) and(1,1) unchanged and interchanggs3) and (3,1).
Physical meson states have definite charge conjugation and
isospin and therefore are linear combinations of the isovec-
tors |2’2>a1{|1’3>a_|311>a}/‘/25|v>a’ and {|113>a
+13,2),}/v2=|A),, and the isoscalai®,2), and|1,1). Ro-
man subscripts are isospin indices. Of\§), changes sign 11Y=12,24, [IV)a=V)a, M{i=M=p?
under charge conjugation.

A. Mended chiral symmetry

[M3.M{,1=0, @

1 2 2
|”>a:‘5{|212>a+|A>a}v Mjj=u"+9, )

_ Stategl), |1}, and|lll ) have charge conjugation signe, [IV)
B. An ansatz for the mass-squared matrix has sign¥e. In the right column we exhibit the mass rela-

In helicity conserving Lorentz frames the hadronic massdions implied by the representation content. The lowest lying

squared matriM? is the natural object to studp,8. We  Member of this quartet must be an isovector.
assume that the mass-squared matrix can be written as (b) (2,2)2(1,1)

A
M2=Mg+M 0 )

o

lin what follows, x? and & represent generic elements of the

This is the statement that all mass-squared splittings betwegnass-squared matrix which transform @sl) and (2,2), respec-
hadrons in a given chiral multiplet transform like the chiral tively; that is, u>e M2 and 5e '\7'<26q>~
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1 In summary,a priori, the chiral representations filled out
Ih=—{2,2,—|1,1}, M2=pu?-35, by light mesons in the broken phase are unknown. Irreduc-
V2 ible representations imply degeneracies that are uncommon
in the hadron spectrum. On the other hand, reducible repre-
sentations allow mass-squared splittings and yet can be arbi-
trarily complicated. However, a reasonable ansatz for the
mass-squared matrix reduces thigriori infinite number of
11Y.=12,2., Mﬁ.Z,U«Z- rgducibl_e_ chiral represe_ntation; to two repres.entationg _With
fixed mixing angles, which all light mesons with nontrivial
These states have the same charge conjugation sign. THeass-squared splittings must fall into. The pion falls into the
lowest lying member of this triplet must be an isoscalar. Weunique reducible representation that allows massless isovec-

1 2
=7 1224410} Mi=p®+o, )

will see examples of botka) and (b) below. tor stateg6,7].
Since the pion must be the lowest lying member of its
chiral representation, the pion must be in a representation of D. Explicit chiral symmetry breaking

type (@). In the case of zero-helicity normality]l

=P(—1)’, is conserved, wher® is intrinsic parity and] is . 2_ —m —
spin. Sincew hasII=-1, it follows that II,=—1,II,, ral perturbation theoryM?,=2Bm,, where m,=m,=mq

=1I,y=1. SincellG, whereG is G parity, commutes with andB=—(qa)/2 % with (qq)=(uu+dd) [10]. We assign
the chiral algebra, the zero-helicity mesons fall into distinct® @ndmg the SU(2) X SU(2)r spurion transformation prop-
sectors labeled byIG [5]. The pion hadIG=+1 as do all  ©rties

states in its chiral representation. The quantum number as- r—LTR' )
signments are discussed in detail in Réf. Following Ref. '

[5], we will assume that the pion is joined in this represenywherel’ = m, or B. These parameters therefore transform as
tation by a scalae (I1=+1), and the zero-helicity compo- (35 The productBm, transforms like the quark mass op-
nents ofp (IT=+1) anda; (II=—1). We identify |l)a  erator in the QCD Lagrangian and so should be an invariant
=|m)a, [Iha=la)®, [)y=e), and [IV),=]p){’. The it spurion transformation properties have been properly as-
superscript denotes helicity. The chiral representation of thgigned. In effect, since (2,2)(2,2) contains the singlet but

Assuming two degenerate flavors, to leading order in chi-

pion is then not (2,2, Bmye M3. Explicit chiral symmetry breaking ef-
1 fects are accounted for through the substitutMd§— M3
|7T>a:‘7 {12,2)a— |A)al, +2Bmy in Eq. (6). With Mj=MZ, =A we then have
2
M2=2Bm,,
1
0 _ =
|a1)a Y {122 +[A)a} ) M§1=28mq+2A, 9)
&)=1224, [P =IV)a. MP=MZ=2Bmg+A,
Sandwiching¥? between the states of E¢F) gives from which follows the equal-spacing relation
2 2_pp2 2_
M127:M(2)_M<Zaq>' M,—MZ=Mz —M_=A. (10
M2 = M2+ M2 6) Note that these mass-squared splittings are independent of
a0 Taa) O(my,) explicit chiral symmetry breaking effects. This is so

because the quark mass contribution to the mass-squared ma-
trix at leading order in chiral perturbation theory is contained

i K12 2
where we have defined the matrix elements in Mg whereasA e M@q): a consequence of the structure of
the mass-squared matrix implied by the ansatz of Sec. Il B.
(2,2M2]2,2=(A|M2|A)=(V|M3V)=M2  (7a) This famous mass-squared relation was originally obtained
using spectral function sum rulg¢$l]. We will compare this
1 2 — 2 relation to experiment in the next section.
(2.2qM ) | A) =Migq)- (70)

2_\2_p2
Mo=M¢=Mg,

It is useful to assign spurion transformation properties to the E. Extension to SU3)

mass-squared matrix elements. By definition, the mass- consider QCD with three flavors. Mesons states trans-

squared matrix elements transform Bg—M5 and My form as combinations of (3), (3,3, (8,1), (1,8, and(1,1)
—>LM<25q>R’r with respect to SU(Z)X SU(2)z. Of course in irreducible representations of SU({3ySU(3)z. We now
the chiral limit Goldstone’s theorem demant#=M¢,,, ~ have the combinations {|1,8)—[8,1)}/v2=|V), {|1.8)
and it follows thatM3 =2M2=2M2. +18,1)/v2=|A), {|3,3)s—|3.,3)s}/v2=|Y)5, and {|3,3)g
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+|§)8}/‘/§E|X)8- The subscripts signify that we are sin- TABLE Il. The ¢g and fg masses are taken from the Gell-

. — = Mann—Okubo formulask, is assumed to be an equal mixture of
gling out the octet components of the, 83 (3,3) represen- K1(1270) andK,(1400) [1]. The quoted uncertainties are due to

tations. Only|V) changes sign with respect to charge CoNnju-y o a,, K;(1270), andK,(1400) masses.
gation. The symmetry breaking mass-squared ma?r%

- a)
transforms as (3)®(3,3) with respect to SU(3) A*-A a' (M5, —M3)
X SU(3)g. Identical arguments as used above give the chiral
. . . a;—p 0.81+0.10
representations consistent with the ansatz for the mass- Koo K* 0.86+0.02
squared matrix. The Goldstone boson representatip@l is A ' '
fg— ¢g 0.90+0.05

1
[h=—{IX)s—|A)}, . . .
V2 whose elements are inferred from leading order chiral per-

turbation theory10]. We then have the generalization of Eq.
(9) to three flavors:

1
1= —{[X)a+|A)}, (19)

vi® N2=2Bf,
) =[¥)g, [V) =|V), M2= 2By + AL 14

where it is understood that we have kept only the zero- -

helicity states. We identify|l) =|P), |Il) =|.4), |1ll) =|S), M%=2Bf,+2A1,

and|1V) =|V), whereP is the 0" * Goldstone octetA is the

1** axialvector octetS is the 0" © scalar octet, an¥ isthe =~ wherel is the unit vector. The Gell-Mann—Okubo formulas
1~ vector octet. Labeling by isospin d4,3,0} we have follow trivially from Eq. (14):

P={mK,ng}, V={p,K*, g}, S={? K} ,?} and A

={a;,Ka,fg} [1]. Several comments are in order. The 3M7 +M2=4Mg, (159
guestion marks refer to slots that are not unambiguously

filled by observed particlesThe assignments are consistent 3M$) + M2:4Mi*! (15b)
with the two-flavor chiral representation of E(p) if we 8 P

identify eg as thel=0 member of the scalar octet. The 2 2 2

physical e of the previous sections is then a mixture af 3Mf8+ Ma1:4MK1A' (159

with an SUS3) singlet. We postpone further discussion of the
scalars to the next section. Generally, theO members of We defineM, g, M 45, and Mg by the Gell-Mann—Okubo
the octets mix with S(B) singlets when there is explicit formulas. From Eq(14) follow also the equal spacing rela-
symmetry breaking. Specificallyyg mixes with the singlet tions

770 to give p and ', ¢pg mixes with the singlet), to give w . . ) A

and ¢ andfg mixes with the singlef, to give f;(1285) and M2—M%=M%—M3=A1, (16)
f1(1510) [1]. We will further discuss octet-singlet mixing

below. Following the particle data group we tréat, as an  which imply

equal mixture ofK,(1270) andK,(1400) [1].

In extending to three flavors we assume thaf=my M2-M2=Mg, — ME=M3 —M7 =4, (173
=m#mg. It is straightforward to generalize our results for
the mass-squared matrix. The mass-squared matrix elements
are replaced with the column vectors

M3 —M2= Mg Mﬁ*zMEB—Mg;A. (170

Kia

M2=(M2 M2 M2)T These equal spacing relations are the main result of this pa-
P = K Tl per. Clearly not all Gell-Mann—Okubo and equal-spacing re-
. lations are independent. For instance Ed%a), (15b), and
M12/=(M§ Mi* Mfﬁs)T, (12 (179 together comprise four relations, three of which are
independent.
“7',24:(’\/'2 ﬁ Mfz )7, The V-P equal spacing rule works remarkably wédkee
L 1A 8 Table ). The A-V equal spacing rule is consistent within the

error bargsee Table ). However, the equality of Eq$173
and(17b) is not very good. The reason underlying this com-
bination of remarkable accuracy and mediocrity is mysteri-

as is the quark mass:

Mg=[m (m+my)/2 (m-+2m)/3]", 13 ous. But we emphasize that the lack of agreement between
Egs. (173 and (17b) is nothing new; Eq(17) is a generali-
zation of the famous relation, E(LO), familiar from spectral
2For a nice review of the current situation, see R&g]. function sum rule$11]. For instance, using Eq10) to pre-
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TABLE Ill. Charged and neutral kaon mass-squared splittingsscalar octet. Consistency of the kad)ﬁ% representation

from the particle data groufi]. We again user’=0.88 GeV 2. with the Goldstone boson representation will prove useful in
" " " relating matrix elements of light mesons to those of heavy
AT-A a’'(Mp —M3) mesons in the heavy quark limit, as we will see in the next

section. Here we discuss the lowest lying isoscajais-
sumes is in an irreducible representation of SYxSU(2).
If nis an SY2)xSU(2) singlet then it does not communicate
with other states by pion emission and absorption. This is in
dict the a; mass from thep and = masses givevl, contradiction with the_ S_(.B)XSU(3) _as_signme_nt and is

, 1 therefore ruled out. Ify is in a nontrivial irreducible repre-
=1080 MeV compared with the measured value of 126050n1ation, then it must be degenerate with at least an isovec-

K*+t—K* 0.4851+0.0004
K*0—K?O 0.4886+0.0004

+40 MeV. tor other thans. This is again in contradiction with the
o SU(3) X SU(3) assignments. Therefore,must be in a reduc-
F. Isospin violation and current quark masses ible representation of typé), found in Sec. Il C.
We now considem,# my, to leading order in chiral per- ~ Sincen hasll=—1, it follows thatIl, = —1,1I,; = 1. All

consistent with Dashen’s theordii] in the elements olf/l% tation is labeled bf1G=—1. Consultation Qf. the parthle
) data tabled1] makes clear thaty must be joined in this
that carry electromagnetic charge. We can thus test the uni-

i : . . representation by a scaldisovectoj ay(980) (II=+1),
versality of the electromagnetic corrections in & equal 2 I
spacing rule. We find and the zero-helicity component 6f(1285) [I=—1). The

next candidaté=1 state with appropriate quantum numbers
Mi*+_Mi+:Mi*0_MiOv (189 to participate in they triplgt is the recgntly disc_overed
ay(1450) [1]. However, this state, being heavier than
(18b) f,(1285), cannot participate in the representation. We
therefore identify|l)=|7), [I1)=|,)©®, and|lll),=|ag)a.

Equation(18b) is consistent within error bars. Equatict8g  1he chiral representation of is then

is compared with experiment in Table Ill. The charged and

neutral kaon splittings do not agree within experimental er- | 7)= i {12,2.— |11}

rors. Therefore this is equal-spacing rule distinguishes isos- vz e

pin violating contributions to thé andV octets. It is there-

fore of interest to calculate ratios of quark masses u3ing 1

We have |f1>(°)=‘5 {1224+]1,}, (21)

2 2 2 2
Mp+_M7T+:MpO_M7TO'

2 2 2 2
ﬂ_ Mix+— Mot 2M o—M

LA LA " —0.33+0.05, (19) |80)a=12.2)a.
md MK*O_MK*++MW+

It follows that
which is related by Eq(184a to the usual relation involving P —
P alone which givesn,/my=0.55[10]. The errors are due M7, =Mo—Migq):
to theK* masseg1]. We also find y oy

Mf =M3+Mg,, (22)

me Mio—MZi, +2M2. —M2, '

—= > 5 > =16.7+0.6, (20
my MK*O_MK*++MW+

2 _ a2
M3 =M§,

which is again related by Eq183 to the usual relation where we have defined the matrix elements
involving P alone which givesng/my=20.1. The values of

the quark mass ratios implied by the chiral multiplet struc- (2,2M3]2,2=(1,1M3|1,H=M3, (2339
ture are not at odds with the usual predictions implied by . .
chiral symmetry alone if one takes into account theoretical (2,2M<25q>|1,1>EM<25q>. (23b)

error due to omitted higher orders in the chiral expangidn
From Eq.(22) follows the equal-spacing relation

Ill. THE ETA TRIPLET AND THE SCALAR OCTET Mle— M§O= Mio— Mfy, (24)
Hadrons participating in representations of(SIk SU(3)

must also participate in representations of (X SU(2). which is compared with experiment in Table IV. This rela-

That the representations be compatible is a nontrivial consigion works remarkably well. Of course in two-flavor QCD

tency check and provides insight into the nature of octetthere is no reason why these splittings should be related to

singlet mixing. We saw above that consistency of the piorthose involving the pion quartet, E(.0). However, in three-

representations required thej be thel =0 member of the flavor QCD 74 is in the pseudoscalar octet of Goldstone
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TABLE IV. Mass-squared splittings for the triplet from the IV. ISOSPINOR MULTIPLETS
particle data groupl].

A. Isospinor doublets

A*-A a'(M * M3) The only representations of $2)XSU(2) that contain
only a singlel = 3 representation of the diagonal isospin sub-
group are(0, 3) and(3, 0).2 So, in generall = 3 meson states

of definite helicity are linear combinations of any number of
these irreducible representations with undetermined coeffi-
bosons andy is in the axial vector octet. Consistency re- cients[6]. Mass splitting can only occur as a consequence of

quires that we treag, as thel =1 member of the scalar Mixing between these representations siNteis a sum of

fl_ao 059
ag— 7 0.59

octet. Noting that2= K12 we find (0,0 (M%) and (3, 3) (M7,) contributions. In Ref.[6]
Weinberg showed that the further assumption that these two
Mf] =2B(m+2m)/3, parts of the mass-squared matrix commute imply thag
8

states communicate through pion transitions only in pairs

Mfg=28(m+2ms)/3+ 24, (25) and fall into chiral multiplets of the form
1
M3,=2Bm+A, =g loH-1z0) Mi=x*-5

which when combined with Eq24) gives (29
1
2_ .2
(M3, =MD+ (M7 —M7)=2 (Mi-M2). (26 V2

. . . where in the right column we exhibit the mass relations im-
Notice that consistency of the two- and three-flavor chiral lied by the representation content. It also follows from Eq.

representations requires nontrivial mixings in the presence 9) that (I|X,[I1Y=T, whereX, is related to the amplitude
explicit SU3) breaking effects. Therefore, without octet- ¢, pion t<ra|1ng!tio>ns :jnd’ Ta/% is an SU2) generatgr[6]
smglet mixing the two- and three-flavor chiral representa-\ e also that 1| X,[1)= <”|Xa|”> 0. Stated|) and|ll) ex-

O&EI’IGHCQ no pion transitions to states outside the multiplet.
':\(/I)gethelr3\1vgrl]\/l tt\]/e ?le” -Mann—Okubo formulas to predictyyo iy frther discuss the axial transitions implied by this

Kip™ eV which is consistent with the value 1340 multiplet in Sec. V.
MeV which follows from assumingl4 to be an equal mix- It is possible to build more complicated representations
ture ofK;(1270) andK,(1400) [1]. out of the basic multiplet of Eq(29) which are consistent

Similar considerations apply to tHe=0 member of the with the mass-squared matrix ansatz. However, the mass-
scalar octet. Using M§8= 2B(m+2mg)/3+A and M2 squared splittings and pion transitions will always be equiva-
=2Bm+ A we find lent to what is implied by the basic multiplet of EQ9). We

will see an example of this below.
2 2\ _ 4 2 2
(Mg, =M 3 (Mig=M2). @7) B. K-K* and K%-K, consistency

. 1 .
Presumablye, a mixture ofeg with an SU3) singlet, is iden- Since the kaons camyl=; they must fall into

o : . SU(2) XSU(2) representations as well as the SW<SU(3)
tg;];i/eedsvgrlltg Ieog:wlgrcl)(_ailzeogégjle]&igﬁ mbining Eqs(26) and(27) representation found in Sec. Il. On the basis of our assump-

tions about the mass-squared makiandK* must either be
(M2 —M2)+ (M2 —M2)=2(M2 —M?). (28) paired with each other in the sense of E20) or with other
8 K 8 f1 8 € states. IfK* andK are not paired with each other then they
. . . . do not communicate by single pion emission and absorption.
We emphasize that this relation is a consequence of c:h|ragut this cannot be. The SB)xSU(3) representation of Eq.

symmetry and the mass-squared matrix ansatz. L : L
. . (12) implies that|(K|X,K*})|#0. In particular, it implies
| have found the two-fi le chi-{ a ! )
n summary, we have found the two-flavor reducible chi [(KIIXIK* )| = |{#lIXllp)| for reduced matrix elements in the

ral representation filled out by and its chiral partners. Con- ) AN A o
P by P hiral limit. Since the latter does not vanish in any limit,

sistency with the three-flavor representation is achieved only . .
if there is octet-singlet mixing. Similar considerations apply either does the former. Therefdk® andK must be paired

to e. We conclude on the basis of the consistency of the two?S

and three-flavor chiral representations ®»fand » that the

scalar octet isS={ay(980) K ,es}. Consistency conditions

for the kaons require discussion b#% chiral multiplets SNote that here we label states by their isospin rather than the
consistent with the assumed properties of the mass-squar@dmber of independent components. For instance, in terms or our
matrix. previous notation we have @,z(l,Z).
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sons have light-quark spis,=1/2 andw,=(—) and are
denotedP(0~) and P*(17) [14] whereP is D or B. Their

1
|K*>(°)=—§ {0z s)+|3 0s)},
masses can be expressed as

(30
1 Mp=mg+ A +{K+G}Hme+0(1/m3), (37)
K)= 503 9~ 09, P Mot AT Glme+ Ol
Mpx = Mg+ A +{K— 3G}/mg+0(1/md),
wheres denotes strange quark content. One can check that (38

the SU3)XSU(3) and SUW2)xXSU(2) predictions for the pion
transition matrix elementK|X,|K*) are consistenit9]. It is
straightforward to find

where A is a positive contribution—independent of the

heavy quark mass—anl{ and G are matrix elements of
heavy quark operators which are also independent of the

M2, —M2=2( 0s|MZ%. |0} s). (31)  heavy quark masgl5]. Squaring the masses gives
K K (aq)
Consistency with the S(3)XSU(3) result of Eq.(179 then Mﬁ,* - M§,= - §G, (39
implies _
. . 3M2, +M2=4(mg+A)%+8K,
(3 0[Mf|03 8)=(3 O[M{,[05)=34, (32 (40)

where in the second step we have removedstlabel since

in the heavy quark limit. Heavy quark symmetry constrains

this matrix element does not depend on strange quark propthe combination Eq(40) to be independent of the mass-
erties Of course we have only shown this to be the case tequared splitting, Eq(39). Of course, it follows from Eq.
leading order in chiral perturbation theory. (40) that theD-D* and B-B* mass-squared splittings are

Similarly, K§ andK;, must be paired as equal in the heavy quark limit sind@ is independent of the
heavy quark mass.

If PandP* are paired in the sense of H§9), the masses
must be related ag2+ §. But this would violate the heavy
quark symmetry constraints on the mass-squared matrix. In
order to reconcile the chiral constraint with the heavy quark
i symmetry constraints of Eq$39) and (40) we must intro-

J2 duce additional heavy meson states. The first excited heavy
mesongnot yet observedhaves,=1/2 and#w,=(+), and
where the bar denotes that the states are distinct from thosee denoted (0*) andP;(1™). The unique solution to the
of the K-K* pair. It follows that combined chiral and heavy quark constraints is tf&n

1
|K1A>(O):E {l0z s)+[3 0s)},

(33

[Kg)=—7=1{l03 s)—[3 0s)},

2

y 2
MilA_Mi*:2<%OS|M<ZEq>|O% S). (34 M3=pu2— 3¢, MZ,=p2+13 e,
0
(41
2 _ 2.3 2 _ 2 1
Again we find the consistency condition MF,3 =u?+3e, M2, =p2— ie,
v 1ol 0} A KeN & 12

(305|M%,[0% s)=(3 OMZ, [0%)=2A. (35  where u?=(mg+A)*+2K Mg and e=—4G/3eMg,.

HenceP andP§ are paired and®; andP* are paired. What
representation of S@)xSU(2) does this solution corre-
spond to? We consider two scenarios. Scengocorre-
sponds to naive pairing of the meson states consistent with
Eq. (29):

Given EQs.(32) and (35 we will assume that there is a
universalmatrix element in the sense that

(30.2IM7,[03 2)= 3 A, (36)
|P*>(O):|l//+>2,

PDO=1y-)2,

(@ [Py=[¢-)1,
|P6>:|¢+>1,

where.Z" represents other quantum numbers carried by the
| = 3 state. This additional assumption will prove essential in
relating the light- and heavy-meson mass-squared splittings.

It might appear that the heavy meson palbsD* and
B-B*, should be paired as-K* is in Eq.(30). We will see
that such a simplistic assignment would violate constraints
due to heavy quark symmetry.

(42

where

: 1 + |1 )
|‘/’t>izﬁ{|oi Q>i—|2 0Q>|}- (43

C. The heavy mesons The subscripts denote distinct states. The syn@akpre-

Heavy quark symmetry places constraints of its own orsents quantum numbers carried by the heavy quark. With this
the heavy meson mass matrix. The ground state heavy meepresentation content we have
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M|23*=V2+K,
2y , , (44)
MP3=,U, +€, Mpi:V_K’

where we have defined

(3 0QIMZ,[03 Q)i=€,  »(30QIMZ,)[03 Q).=x,
(45

(3 0QIM3|3 0Q) =%, X30Q|MJ|3 0Q>2=7-( )
46

In the heavy quark limit the solution of E¢41) is recovered
if u=v=u, €=3€/2 andx=€/2. We then have

K3 OMZ,108)1=3 5 (3 O[MZ,)[05),,  (47)

PHYSICAL REVIEW D 59 036001

In the heavy quark limit the solution of E(41) is recovered
if wu=pu, v=0,e=¢€ andk=€e/2. We then have

(3 0QIMZ,|03 Q)y=i(3 O[MZ, [0 3);=3(8;+ D),
(52)
(3 0QIME[3 0Q); =8y u2, (53
where in Eq.(52) we have made use of the fact thais
independent of heavy quark properties. This assignment of
states is consistent with universality. Moreover, one can eas-
ily check that universality is not inconsistent withnitor-

rections. Therefore scenarib) is a viable chiral representa-
tion. We have

2 .2 2
~Mpg, =Mz~ M3

=2 1(3 0[MG 0 3)1=2 5(3 O[M 5[0 3),.
(54)

where we have removed tt@ label since these matrix ele- on the basis of the universality assumption of E2f) we
ments are independent of heavy quark properties. This equgsen find

tion is clearly incompatible with the universality conjecture.
We therefore rule out scenari@) as a viable chiral repre-
sentation of the heavy mesons.

As pointed out above, we can instead make combinations
of Eg. (29) which give identical predictions for the observ-
able mass-squared splittings and pion transitions and y

M2, —M2=A=MZ, — M2, (55)

SWhere the last equality follows from E¢B2). Equation(55)

which order matrix elements differently:

1
(b) |P)= E {lo)1+lv-)o,

1
|P*>(O):E {|¢+>1_|¢+>2}’
(48)
N 1
|P0>: - E {|¢+>1+|¢+>2}’

|P1><O):_%{|¢f—>1—|¢—>2}-

We then have

M2=(u?+1?)—(e+k), MZ,=(u?—1?)+(e—x),
2 _ ’ (49
Mis=(u®+ 02+ (€4 k), M, =(w?=1?) = (€ x),

where we have defined
(3 0QIMZ,|0% Q)y=djer(1-djx, (50

(3 0QIM2|3 0Q);=8;m2+(1—&;)v? (51

is compared with experiment in Table I. This derivation is
rendered less persuasive by the universality conjecture. Nev-
ertheless, it is the best that we can do. We will give an
independent test of universality in the next section.

V. ANOTE ON THE BARYONS

The excited = 3 cascad&= (1530 decays tdE and a pion
with a branching ratio of 11]. We therefore expect these
states to be paired in the sense of E2p). Hence we have
another test of universality. Note that since baryons are fer-
mions, here we are focusing din|=1/2 transitions. We
have

1 1 1
|:(153Q>——\/§ {]03 2s)+|3 0 2s)},
(56)
|2 —i |03 2s)—|502
~>_\/§{ 7 25)— |3 S)},

where X denotes the strange quark content and it is implied
that these aré\|=3 states. It follows that

MZ 1530~ ME=2(3 025|M7,[03 25)=A,  (57)
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TABLE V. Lowest lying baryons of a given character. Masses gence relations to derive equal spacing relations for the low-
are central values from the particle data group, aad lying mesons.

— 2 ~ ~
=0.88 GeV™. We have seen that the algebraic relatﬁdimz,Mfam]:O,
which is a statement about diffraction in pion-hadron scatter-

A*-A @' (M5, —M3) . . . ! ;
ing (see Table V), fixes the reducible chiral representations
A—N 0.56 filled out by the mesons. Here we will give a symmetry
3(1385)- A 0.59 interpretation of this relation. Recall the chiral multiplet
(13853 0.44 structure of thd = 3 states implied by the mass-squared ma-
=(1530)- = 0.54 trix constraints and.given py Eq2_9). In prder to better .
S~ A, 0.70 demonstrate our point consider this multiplet with an arbi-

trary mixing angleé:

where the last equality follows from the universality assump- [1)=sin 6]0 2)—cos¢|; 0),
tion of Eq.(36). This predicts & (1530)— E mass-squared (58)
splitting of 0.50 in units of 1&’, as compared to the ob- _ 1 : 1
sgrvedgsplitting of 0.54. Of the baryon szirs listed in Table [11)=cos6[0z)+sin 6]3 0).
V, this splitting is in fact closest to thg-= splitting, thus
providing a gratifying test of the universality conjecture. ' : , _

Other baryons require separate discussion. For instanc\e/\,/e define the axial coupl|ng(sl|xa|II>=g|Y.,,,TTa, <I|Xa|l|>
thel =1 baryons made out of three light quarks clearly have=91i=Ta, and (Il [Xa[l)=guu~Ta- Since X;/03)
single-pion transitions to states with=3. So states such as =T,/0,5) and X,|3,00=—T,4|3,0) it follows from Eq. (58)
N and A will in general fill our reducible combinations of thatg,,,=sin 26, g,,,=—cos %, andg, ,, ,=C0s &.
any number of(0, 3), (3,0), (0,9, (%,0), (1,3), and (3, 1) It is possible to understand why the mixing angles are
irreducible representations of &)XSU(2) [6]. Many mul-  fixed so that each representation has equal weight, by assum-
tiplets can be constructed consistent with the allowed massng that there is &, symmetry which permutes chiral rep-

squared splittings. One might further expect that kel resentations as (@)« (%, 0). If sin @=cosf=1#2 then|l)

and I_=1 baryons have a quartet structure similar to that Ofand|||> form aZ, doublet and we can assighy charges as
the light mesons.

hadron Z,

VI. REGGE BEHAVIOR AND QCD ||> -1

It might seem mysterious that using the full chiral algebra 1) 1
and special assumptions about the chiral transformation ™ -1

properties of the mass-squared matrix we recovered results
that are predicted by hadronic string models. Consider, howsince 9= /4, g,,.=g,,,=0 as they must since they are
ever, thatthe basic assumptions that have been made in thigot 7, respecting transitions. Hence the assumption @ a
paper are in one-to-one correspondence with statements @ymmetry is in this case equivalent to the mass-squared ma-
Regge asymptotic behavidrhis correspondence is exhibited {rix ansatz [6]. The Z, interpretation of the constraint
in Table VI and was demonstrated long ago by Weinberg in ~2 « 2 :

; ; Mg, M7~ 1=0 is more subtle for the=0,1 states. We have
Ref.[5] and further developed in RE]. The constraints on r[ eon té?t>]the mass-squared constraint fixes the representa-
the mass-squared matrix are known as superconvergent s 1ass-sq : 1 P

lons and the mixing angles as in the-5 case. However

rules. Hadronic string models exhibit very soft asymptoticth < clearl d ch flected in th
behavior; in fact, they satisfy an infinite number of supercon- €re IS clearly no new conserved charge refiected in the

vergence relationgl6]. We required only two superconver- spegtrum and so t.hZZ symmetry interpretatiqn is nqt SO
9 KL6] q y P straightforward. This subtlety has been considered in Ref.

TABLE VI. The equivalence of the first and second columns is
exact in the tree-graph approximatidtargeN, for pion-meson
scattering. The first row implies that, for each helicity, mass eigen-
states fill out generally reducible representations of SY(2)
X SU(2)g. That the two parts ofM2 commute is a statement of a
Z, symmetry in thel = 3 sector.

Here we suggest a QCD-based interpretation of Zhe
symmetry in thel =% sector. Consider an underlying quark
description with an S(2)xSU(2) flavor symmetry and the
desiredZ, symmetry. There can be any number of heavy
guarks which transform as chiral singlets. Assume that the
light quarks transform a0, 3) and (3, 0) with respect to
SU(2)xXSU(2). TheZ, transformation permutes quarks with

Hadrons Regge imra— 7B ) - ) 1 o
opposite chiral charges: i.e., (§)« (3, 0). It is important
SU(2) X SU(2)r a(0)<1 to realize that this symmetry isot ordinary parity; theZ,
M2=M3+ Mg, a3(0)<0, ag(0)=1 symmetry is an internal symmetry, not a spacetime symme-
ZZH[MS,M%@]ZO ap(0)<0 a# B try. Therefore, theZ, symmetry must act independently on

left- and right-handed quarks. For instance, a left-handed
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Weyl fermion of charg€0, ) must have a left-handed part- symmetry and give precisely constant mass-squared split-
ner of charge(3, 0). If parity is conserved, then the quark tings.

description must have equal numbers of left- and right-

handed quarks assigned to each chiral chafge;) and

(3, 0). This implies that the S(2)xXSU(2) flavor symmetry VIl. SUMMARY AND CONCLUSION

in the underlying quark description with th®, symmetry There has been little progress in understanding empiri-
must bevectorlike[17]. This is easy to see by noticing that cally successful predictions of Regge theory and string mod-
SU(2)XSU(2) invariant mass operators can always beels of hadrons from QCD. One piece of phenomenology that
formed whenZ, is a symmetryf9]. has received little attention is the remarkable equality of
Clearly theZ, symmetry is not a symmetry of the QCD various hadron mass-squared splittings predicted long ago by
Lagrangian in which the S@)xSU(2) flavor symmetry is hadronic string models.
chiral. But what then do we learn from the relation between In this paper we have used symmetry arguments to derive
the Z, symmetry and sum rules derived from Reggea cornucopia of equal spacing relations. Our arguments rest
asymptotic behavior? Consider the following argument. AnOn consequences of the full chiral algebra with two and three
underlying quark description with thg, symmetry is vec- flavors of quarks, together with an ansatz for the chiral sym-
torlike and is therefore automatically consistent with theMetry transformation properties 2°f tr21e hgdronlc; mass-
Nielsen-Ninomiya theorerfil 7]. This implies that the quark Sduared matrix. We showed thit,—M?7 =M, —Mj to
description can be defined on the lattice with eract leading order irm,. This and other equal spacing relations
SU(2)xSU(2) symmetry at nonzero lattice spacing. In prac-for the masses of the low-lying pseudoscalar, vector, scalar
tice such a description will have four flavors of quarks and snd axialvector octets are our most robust results. We also

will look similar to QCD with doublerg9]. The origin of the considered isospin violation and gave new determinations of

doublers on the lattice has a physical interpretation in term%atios of current quark masses. The requirement that all states

of chiral anomalie$18]. Since a gauge theory with an intrin- ill out representations of S@)xSU2) and SU3)XSUS3)

sic cutoff cannot feel the effects of anomalies, each left- andave several interesting results. It enabled us to determine

. C . members of the scalar octet that are ambiguous from the

right-handed Weyl fermion in the theory will have a doubler _ - . X .

of opposite chiral charge. However, only for special value§)0mt of view of SU3) alone and it required that there be
PP ge. » only for sp nontrivial octet-singlet mixings. It further allowed us to ex-

of the vacuum parameters of the theory will there bg,a

) ) ress the kaon mass-squared splittings in terms df=ah
symmetry corresponding to permutations of these chargeg,ayix element which is independent of strange quark prop-

For instance, th&, symmetry can be spontaneously brokengties We conjectured that this matrix element is universal.
by quark condensates. This would correspond to a lowyye then found the chiral representations of the heavy me-

energy theory witt[l\?l%,l\A/lf@]#O. It is intriguing that the sons that are consistent with the mass-squared matrix ansatz

Z, symmetry is also brokennlessd takesCP conserving and heavy quark symmetry and showed that the relevant
values[9,19]. mass-squared splittings are determined by the universal ma-

It is surprising that thiZ, symmetry has physical conse- [rix element. This result gavie! 2x ~MZ=MZ, —M% where
quences relevant to low-energy QCD. A possible explanatiof® represent® or B. Unfortunately, the necessity of conjec-
is that theZ, symmetry will play a role in any nonperturba- tUring the existence of a universal matrix element renders
tive definition of QCD where the flavor symmetries are un_t_hls derivation less persuasive _than the derlva_t|on of the
broken by the regulatdrSince the lattice is the only known light-meson mass-squared splittings. We then discussed the

means of defining QCD in the nonperturbative region, anObaryons and gave an independent successful test of the uni-

no lattice definition exists in which the flavor symmetries areversallty conjecture using the ca§cades. .
In Sec. VI we attempted an interpretation of the mass-

&r:]hlralthanq unb.rokerlhthls'\lh%pothzgs |s_safet.hln esse?ce, thIss‘quared matrix constraints in the context of QCD. First we
ypothesis raises the Nielsen-iNinomiya theorem irom ompared our derivation to that of hadronic string models
statement specific to the lattice to the level of a genera

hvsical BANCID| nd showed that the mass-squared matrix ansatz maps pre-
physical principle. cisely to superconvergent sum rules in pion-hadron scatter-

There is some evidence backing our hypothesis. The,y \ye showed that these sum rules for: mesons are
equal-spacing relations have been tested in lattice QCD Ugquivalent to assigning a nove, symmetry to physical
ing improved lattice actionf21]. Improved actions do sub- gtates. Finally, we gave an interpretation of thjssymmetry
stantially better at generating univers@lonstant mass- in the context of lattice QCD. We suggested that.aper-

squared splittings than do Wilson or staggered fermionmutation of chiral charges is a fundamental property of a
actions. In the Wilson action the chiral symmetry breakinggauge theory with an intrinsic cutoff.

Wilson term is dimension 5 whereas in the improved action
it is dimension severj21]. It is conceivable that only an ACKNOWLEDGMENTS
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