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Stringy mass squared splittings reexamined
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An empirically successful mass formula derived long ago from hadronic string models is not explained by
symmetries of the QCD Lagrangian. Consider thatM r

22Mp
2 5MK*

2
2MK

2 to a few percent accuracy. We derive
this and other equal spacing relations using chiral symmetry and several assumptions about the chiral trans-
formation properties of the hadronic mass-squared matrix. We discuss the possible significance of these
assumptions in the context of QCD.@S0556-2821~99!06001-4#

PACS number~s!: 11.30.Rd, 11.30.Er, 11.55.Jy, 12.38.Aw
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I. INTRODUCTION

Consider the meson mass-squared splittings listed
Table I @1#. Why are these splittings equal to within a fe
percent? The near equality of theD2D* andB2B* mass-
squared splittings is well understood as a consequenc
heavy quark symmetry. However, the equality of all oth
meson pairs is puzzling since there is no obvious QCD s
metry which relates them. The near equality of the pa
could be accidental. There are rigorous mass formulas
heavy hadrons that also happen to work well for light ha
rons, providing a similar mystery@2#. However, the equa
spacing relations of Table 1 are special in that they are
dicted by hadronic string models made consistent with ch
symmetry constraints@3#. The fact that the mass-square
splittings can be understood on the basis of regularity, al
regularity whose link with QCD is not clear, suggests th
they are not accidental. In the modern view, a demonstra
of these relations will be convincing only if there is a sym
metry argument based in QCD. The only post-sixties atte
to understand these relations that we are aware of is in m
ern string theory@4#.

In this paper we show that these relations can be un
stood using SU(N)L3SU(N)R with N52,3 together with an
ansatz for the chiral transformation properties of the hadro
mass-squared matrix. This ansatz completely determines
reducible chiral representations filled out by mesons. T
basic results for the chiral representations have been fo
by Weinberg using algebraic sum rules@5,6#. What is new
here is the inclusion of explicit chiral symmetry breakin
effects in the mass-squared matrix, the extension of the b
multiplets to three flavors of quarks and a discussion of
chiral representations of the heavy mesons. Our derivatio
the equal spacing relations is related to the old string der
tion; the constraints implied by the full chiral algebra and t
mass-squared matrix ansatz are equivalent to standard
sumptions of Regge asymptotic behavior in pion-had
scattering@5#, which are automatically incorporated in ha
ronic string models. What significance does the ansatz h
from the point of view of QCD? We will offer a speculativ
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interpretation of the ansatz in the context of lattice QCD. W
will argue that the mass-squared matrix constraints
equivalent to aZ2 symmetry which is a manifestation o
chiral anomalies in a gauge theory with an intrinsic cutof

This paper is organized as follows. In Sec. II we discu
our basic assumptions and using these assumptions find
chiral representation filled out by the Goldstone bosons.
show that this representation implies equal spacing relat
for the Goldstone bosons and their chiral partners. This is
most important section of the paper. Although Sec. II C p
sents material that is well known@5–7#, it is essential for
what follows. In Sec. III we consider the two-flavor chir
representation involvingh and compare with Sec. II whereh
is a Goldstone boson of three-flavor QCD. Consistency
the two- and three-flavor multiplets unambiguously det
mines members of the 011 scalar octet and requires octe
singlet mixing. In Section IV we consider the chiral repr
sentations of the I 5 1

2 mesons. We find the kaon
representations and compare with the results of Sec. II wh
the kaons are in the Goldstone boson representation of th
flavor QCD. This enables us to express the kaon ma
squared splittings in terms of anI 5 1

2 matrix element, which
we conjecture to be universal. We then construct the ch
representations of the heavy mesons consistent with he
quark symmetry, and show that the heavy meson ma
squared splittings are related to the kaon splittings by
universal I 5 1

2 matrix element. We discuss the baryo
briefly in Sec. V and provide an independent test of the u
versality conjecture. In Sec. VI we discuss the relation
tween our derivation of the equal spacing relations and

TABLE I. Lowest lying mesons of a given character. Masses
central values from the particle data group@1#, and we have defined
a8[0.88 GeV22 so as to normalize ther-p splitting to 0.50. The
h8 andf8 masses are defined by the Gell-Mann–Okubo formu
~see below!.

A* -A a8(MA*
2

2MA
2)

r –p 0.50
K* 2K 0.49
f82h8 0.48
D* 2D 0.48
B* 2B 0.43
©1998 The American Physical Society01-1
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SILAS R. BEANE PHYSICAL REVIEW D 59 036001
old hadronic string derivation. Finally, we give an interpr
tation of our ansatz for the hadronic mass-squared matri
the context of lattice QCD. We summarize and conclude
Sec. VII.

II. THE GOLDSTONE QUARTET

A. Mended chiral symmetry

In a theory where a symmetryG is spontaneously broken
G is not a symmetry of the vacuum, butG is still a symmetry
of the theory. The noninvariance of the vacuum make
difficult to recover consequences of the symmetry in the b
ken phase. However, those consequences are there and
are important. Fortunately, in special Lorentz frames
QCD vacuum can be invariant with respect to chiral symm
try even when chiral symmetry is spontaneously brok
@5,8#. The infinite momentum frame provides an intuitiv
picture of how this can occur. If a system is boosted to in
nite momentum these is a sense in which the vacuum
couples and is thereby rendered irrelevant@8#. In the infinite
momentum frame helicity is conserved and so, for each
licity, hadrons can be classified in representations of the
chiral algebra in the broken phase@8,5#. Since degeneracie
in the broken phase are uncommon, the chiral representa
are generally reducible, and so do allow nontrivial splitti
of states. The symmetry constraints on the hadronic m
squared matrix will be the focus of this paper. The chi
representations also constrain amplitudes for pion emis
and absorption as discussed in many places@5–7,9#.
Throughout this paper it is assumed that we are working
Lorentz frames in which helicity is conserved.

Consider QCD with two massless flavors. There is
anomaly free SU(2)L3SU(2)R symmetry which is assume
to be spontaneously broken to SU(2)V ~isospin!. We assume
that the spectrum is confined. Hadrons fall into isospin m
tiplets. For each helicity, hadrons also fill out representati
of SU~2!3SU~2! @5#. Since all mesons have zero helici
states, we will consider only zero helicity in this paper.

Meson states carry isospin 0 or 1 and therefore transf
as combinations of~2,2!, ~3,1!, ~1,3!, and ~1,1! irreducible
representations of SU~2!3SU~2!. Charge conjugation leave
~2,2! and ~1,1! unchanged and interchanges~1,3! and ~3,1!.
Physical meson states have definite charge conjugation
isospin and therefore are linear combinations of the isov
tors u2,2&a , $u1,3&a2u3,1&a%/&[uV&a , and $u1,3&a
1u3,1&a%/&[uA&a , and the isoscalarsu2,2&4 and u1,1&. Ro-
man subscripts are isospin indices. OnlyuV&a changes sign
under charge conjugation.

B. An ansatz for the mass-squared matrix

In helicity conserving Lorentz frames the hadronic ma
squared matrixM̂2 is the natural object to study@5,8#. We
assume that the mass-squared matrix can be written as

M̂25M̂0
21M̂ ^q̄q&

2 . ~1!

This is the statement that all mass-squared splittings betw
hadrons in a given chiral multiplet transform like the chir
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order parameter̂ q̄q&; i.e., like ~2,2! with respect to
SU~2!3SU~2!. M̂0

2 transforms like a chiral singlet. The onl
products of the allowed irreducible representations that c
tain ~2,2! are (2,2)̂ (3,1), (2,2)̂ (1,3), and (2,2)̂ (1,1). It
is clear that a chiral representation with mass-squared s
tings must be reducible. All states in an irreducible repres
tation must be degenerate.

The symmetry decomposition of the mass-squared ma
of Eq. ~1! and the allowed representations allow arbitrar
complicated chiral representations for each helicity@5#. In
Ref. @6# Weinberg showed that the further constraint that
two parts of the mass-squared matrix commute,

@M̂0
2,M̂ ^q̄q&

2 #50, ~2!

completely determines the chiral representations and
mixing angles of the reducible representations filled out
the mesons. This constraint is equivalent to a special su
convergent sum rule in pion-hadron scattering@5# and will be
discussed in detail in Sec. VI.

In this paper we will assume that Eqs.~1! and ~2! are
satisfied by the hadronic mass-squared matrix. They are
fundamental assumptions made in this paper. In Sec. VI
will discuss how the mass-squared matrix constraints are
lated to assumptions of Regge asymptotic behavior and
will suggest a possible interpretation from the point of vie
of QCD.

C. The Goldstone multiplet

The assumption thatM̂0
2 and M̂ ^q̄q&

2 commute determines
the reducible chiral representations filled out by the lig
mesons@5–7#. There are two reducible chiral representatio
consistent with the ansatz for the mass-squared matrix.1

~a! (2,2)^ (3,1) and (2,2)̂ (1,3):

uI&a5
1

&
$u2,2&a2uA&a%, M I

25m22d,

uII &a5
1

&
$u2,2&a1uA&a%, M II

25m21d, ~3!

uIII &5u2,2&4 , uIV &a5uV&a , M III
2 5M IV

2 5m2.

StatesuI&, uII &, anduIII & have charge conjugation sign6e, uIV &
has sign7e. In the right column we exhibit the mass rela
tions implied by the representation content. The lowest ly
member of this quartet must be an isovector.

~b! (2,2)^ (1,1)

1In what follows, m2 and d represent generic elements of th
mass-squared matrix which transform as~1,1! and ~2,2!, respec-

tively; that is,m2PM̂0
2 anddPM̂ ^q̄q&

2 .
1-2
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uI&5
1

&
$u2,2&42u1,1&%, M I

25m22d,

uII &5
1

&
$u2,2&41u1,1&%, M II

25m21d, ~4!

uIII &a5u2,2&a , M III
2 5m2.

These states have the same charge conjugation sign.
lowest lying member of this triplet must be an isoscalar. W
will see examples of both~a! and ~b! below.

Since the pion must be the lowest lying member of
chiral representation, the pion must be in a representatio
type ~a!. In the case of zero-helicity normality,P
[P(21)J, is conserved, whereP is intrinsic parity andJ is
spin. Sincep has P521, it follows that P II521,P III
5P IV51. SincePG, whereG is G parity, commutes with
the chiral algebra, the zero-helicity mesons fall into distin
sectors labeled byPG @5#. The pion hasPG511 as do all
states in its chiral representation. The quantum number
signments are discussed in detail in Ref.@5#. Following Ref.
@5#, we will assume that the pion is joined in this represe
tation by a scalare (P511), and the zero-helicity compo
nents ofr (P511) and a1 (P521). We identify uI&a

5up&a , uII &a5ua1&a
(0) , uIII &5ue&, and uIV &a5ur&a

(0) . The
superscript denotes helicity. The chiral representation of
pion is then

up&a5
1

&
$u2,2&a2uA&a%,

ua1&a
~0!5

1

&
$u2,2&a1uA&a%, ~5!

ue&5u2,2&4 , ur&a
~0!5uV&a .

SandwichingM̂2 between the states of Eq.~5! gives

Mp
2 5M0

22M ^q̄q&
2 ,

Ma1

2 5M0
21M ^q̄q&

2 , ~6!

M r
25M e

25M0
2,

where we have defined the matrix elements

^2,2uM̂0
2u2,2&5^AuM̂0

2uA&5^VuM̂0
2uV&[M0

2, ~7a!

^2,2uM̂ ^q̄q&
2 uA&[M ^q̄q&

2 . ~7b!

It is useful to assign spurion transformation properties to
mass-squared matrix elements. By definition, the ma
squared matrix elements transform asM̂0

2→M̂0
2 and M̂ ^q̄q&

2

→LM̂ ^q̄q&
2 R† with respect to SU(2)L3SU(2)R . Of course in

the chiral limit Goldstone’s theorem demandsM0
25M ^q̄q&

2

and it follows thatMa1

2 52M r
252M e

2.
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In summary,a priori, the chiral representations filled ou
by light mesons in the broken phase are unknown. Irred
ible representations imply degeneracies that are uncom
in the hadron spectrum. On the other hand, reducible re
sentations allow mass-squared splittings and yet can be
trarily complicated. However, a reasonable ansatz for
mass-squared matrix reduces thisa priori infinite number of
reducible chiral representations to two representations w
fixed mixing angles, which all light mesons with nontrivia
mass-squared splittings must fall into. The pion falls into t
unique reducible representation that allows massless iso
tor states@6,7#.

D. Explicit chiral symmetry breaking

Assuming two degenerate flavors, to leading order in c
ral perturbation theoryMp

2 52Bmq , where mq5mu5md

andB[2^q̄q&/2 f p
2 with ^q̄q&5^ūu1d̄d& @10#. We assign

B andmq the SU(2)L3SU(2)R spurion transformation prop
erties

G→LGR†, ~8!

whereG5mq or B. These parameters therefore transform
~2,2!. The productBmq transforms like the quark mass op
erator in the QCD Lagrangian and so should be an invar
if spurion transformation properties have been properly
signed. In effect, since (2,2)̂(2,2) contains the singlet bu
not ~2,2!, BmqPM̂0

2. Explicit chiral symmetry breaking ef-
fects are accounted for through the substitutionM0

2→M0
2

12Bmq in Eq. ~6!. With M0
25M ^q̄q&

2 [D we then have

Mp
2 52Bmq ,

Ma1

2 52Bmq12D, ~9!

M r
25M e

252Bmq1D,

from which follows the equal-spacing relation

M r
22Mp

2 5Ma1

2 2M r
25D. ~10!

Note that these mass-squared splittings are independe
O(mq) explicit chiral symmetry breaking effects. This is s
because the quark mass contribution to the mass-squared
trix at leading order in chiral perturbation theory is contain
in M̂0

2 whereasDPM̂ ^q̄q&
2 , a consequence of the structure

the mass-squared matrix implied by the ansatz of Sec. I
This famous mass-squared relation was originally obtai
using spectral function sum rules@11#. We will compare this
relation to experiment in the next section.

E. Extension to SU„3…

Consider QCD with three flavors. Mesons states tra
form as combinations of (3,̄3), (3,3̄), ~8,1!, ~1,8!, and~1,1!
irreducible representations of SU(3)L3SU(3)R . We now
have the combinations $u1,8)2u8,1)%/&[uV), $u1,8)
1u8,1)%/&[uA), $u3,3̄)82u3̄,3)8%/&[uY)8 , and $u3,3̄)8
1-3
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SILAS R. BEANE PHYSICAL REVIEW D 59 036001
1u3̄)8%/&[uX)8 . The subscripts signify that we are sin
gling out the octet components of the (3,̄3)% (3,3̄) represen-
tations. OnlyuV) changes sign with respect to charge con
gation. The symmetry breaking mass-squared matrixM̂ ^q̄q&

2

transforms as (3̄,3)% (3,3̄) with respect to SU(3)L
3SU(3)R . Identical arguments as used above give the ch
representations consistent with the ansatz for the m
squared matrix. The Goldstone boson representation is@6#

uI&5
1

&
$uX!82uA)%,

uII &5
1

&
$uX!81uA)%, ~11!

uIII) 5uY)8 , uIV) 5uV),

where it is understood that we have kept only the ze
helicity states. We identifyuI) 5uP), uII) 5uA), uIII) 5uS),
anduIV) 5uV), whereP is the 021 Goldstone octet,A is the
111 axialvector octet,S is the 011 scalar octet, andV is the
122 vector octet. Labeling by isospin as$1,1

2,0% we have
P5$p,K,h8%, V5$r,K* ,f8%, S5$?,K0* ,?% and A
5$a1 ,K1A , f 8% @1#. Several comments are in order. Th
question marks refer to slots that are not unambiguou
filled by observed particles.2 The assignments are consiste
with the two-flavor chiral representation of Eq.~5! if we
identify e8 as the I 50 member of the scalar octet. Th
physicale of the previous sections is then a mixture ofe8
with an SU~3! singlet. We postpone further discussion of t
scalars to the next section. Generally, theI 50 members of
the octets mix with SU~3! singlets when there is explici
symmetry breaking. Specifically,h8 mixes with the singlet
h0 to giveh andh8, f8 mixes with the singletf0 to givev
andf and f 8 mixes with the singletf 0 to give f 1(1285) and
f 1(1510) @1#. We will further discuss octet-singlet mixin
below. Following the particle data group we treatK1A as an
equal mixture ofK1(1270) andK1(1400) @1#.

In extending to three flavors we assume thatmu5md
[mÞms . It is straightforward to generalize our results f
the mass-squared matrix. The mass-squared matrix elem
are replaced with the column vectors

M̂P
25~Mp

2 MK
2 Mh

2 !T,

M̂V
25~M r

2 MK*
2 Mf8

2 !T, ~12!

M̂A
2 5~Ma1

2 MK1A

2 M f 8

2 !T,

as is the quark mass:

m̂q5@m ~m1ms!/2 ~m12ms!/3#T, ~13!

2For a nice review of the current situation, see Ref.@12#.
03600
-

al
s-

-

ly
t

nts

whose elements are inferred from leading order chiral p
turbation theory@10#. We then have the generalization of E
~9! to three flavors:

M̂P
252Bm̂q ,

M̂V
252Bm̂q1D1, ~14!

M̂A
2 52Bm̂q12D1,

where1 is the unit vector. The Gell-Mann–Okubo formula
follow trivially from Eq. ~14!:

3Mh8

2 1Mp
2 54MK

2 , ~15a!

3Mf8

2 1M r
254MK*

2 , ~15b!

3M f 8

2 1Ma1

2 54MK1A

2 . ~15c!

We defineMh8 , Mf8 , and M f 8 by the Gell-Mann–Okubo
formulas. From Eq.~14! follow also the equal spacing rela
tions

M̂V
22M̂P

25M̂A
2 2M̂V

25D1, ~16!

which imply

M r
22Mp

2 5MK*
2

2MK
2 5Mf8

2 2Mh8

2 5D, ~17a!

Ma1

2 2M r
25MK1A

2 2MK*
2

5M f 8

2 2Mf8

2 5D. ~17b!

These equal spacing relations are the main result of this
per. Clearly not all Gell-Mann–Okubo and equal-spacing
lations are independent. For instance Eqs.~15a!, ~15b!, and
~17a! together comprise four relations, three of which a
independent.

The V-P equal spacing rule works remarkably well~see
Table I!. TheA-V equal spacing rule is consistent within th
error bars~see Table II!. However, the equality of Eqs.~17a!
and~17b! is not very good. The reason underlying this com
bination of remarkable accuracy and mediocrity is myste
ous. But we emphasize that the lack of agreement betw
Eqs.~17a! and ~17b! is nothing new; Eq.~17! is a generali-
zation of the famous relation, Eq.~10!, familiar from spectral
function sum rules@11#. For instance, using Eq.~10! to pre-

TABLE II. The f8 and f 8 masses are taken from the Ge
Mann–Okubo formulas.K1A is assumed to be an equal mixture
K1(1270) andK1(1400) @1#. The quoted uncertainties are due
the a1 , K1(1270), andK1(1400) masses.

A* -A a8(MA*
2

2MA
2)

a12r 0.8160.10
K1A2K* 0.8660.02
f 82f8 0.9060.05
1-4
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dict the a1 mass from ther and p masses givesMa1

51080 MeV compared with the measured value of 12
640 MeV.

F. Isospin violation and current quark masses

We now considermuÞmd , to leading order in chiral per
turbation theory, and include an electromagnetic massDmg

2,

consistent with Dashen’s theorem@13# in the elements ofM̂0
2

that carry electromagnetic charge. We can thus test the
versality of the electromagnetic corrections in theV-P equal
spacing rule. We find

MK* 1
2

2MK1
2

5MK* 0
2

2MK0
2 , ~18a!

M r1
2

2Mp1
2

5M r0
2

2Mp0
2 . ~18b!

Equation~18b! is consistent within error bars. Equation~18a!
is compared with experiment in Table III. The charged a
neutral kaon splittings do not agree within experimental
rors. Therefore this is equal-spacing rule distinguishes is
pin violating contributions to theP andV octets. It is there-
fore of interest to calculate ratios of quark masses usingV.
We have

mu

md
5

MK* 1
2

2MK* 0
2

12Mp0
2

2Mp1
2

MK* 0
2

2MK* 1
2

1Mp1
2 50.3360.05, ~19!

which is related by Eq.~18a! to the usual relation involving
P alone which givesmu /md50.55 @10#. The errors are due
to theK* masses@1#. We also find

ms

md
5

MK* 0
2

2MK* 1
2

12MK1
2

2Mp1
2

MK* 0
2

2MK* 1
2

1Mp1
2 516.760.6, ~20!

which is again related by Eq.~18a! to the usual relation
involving P alone which givesms /md520.1. The values of
the quark mass ratios implied by the chiral multiplet stru
ture are not at odds with the usual predictions implied
chiral symmetry alone if one takes into account theoret
error due to omitted higher orders in the chiral expansion@1#.

III. THE ETA TRIPLET AND THE SCALAR OCTET

Hadrons participating in representations of SU~3!3SU~3!
must also participate in representations of SU~2!3SU~2!.
That the representations be compatible is a nontrivial con
tency check and provides insight into the nature of oc
singlet mixing. We saw above that consistency of the p
representations required thate8 be theI 50 member of the

TABLE III. Charged and neutral kaon mass-squared splittin
from the particle data group@1#. We again usea8[0.88 GeV22.

A* -A a8(MA*
2

2MA
2)

K* 12K1 0.485160.0004
K* 02K0 0.488660.0004
03600
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scalar octet. Consistency of the kaonI 5 1
2 representation

with the Goldstone boson representation will prove usefu
relating matrix elements of light mesons to those of hea
mesons in the heavy quark limit, as we will see in the n
section. Here we discuss the lowest lying isoscalarh. As-
sumeh is in an irreducible representation of SU~2!3SU~2!.
If h is an SU~2!3SU~2! singlet then it does not communica
with other states by pion emission and absorption. This is
contradiction with the SU~3!3SU~3! assignment and is
therefore ruled out. Ifh is in a nontrivial irreducible repre-
sentation, then it must be degenerate with at least an iso
tor other thanp. This is again in contradiction with the
SU~3!3SU~3! assignments. Therefore,h must be in a reduc-
ible representation of type~b!, found in Sec. II C.

Sinceh hasP521, it follows thatP II521,P III 51. All
states have positive charge conjugation sign. Theh represen-
tation is labeled byPG521. Consultation of the particle
data tables@1# makes clear thath must be joined in this
representation by a scalar~isovector! a0(980) (P511),
and the zero-helicity component off 1(1285) (P521). The
next candidateI 51 state with appropriate quantum numbe
to participate in theh triplet is the recently discovered
a0(1450) @1#. However, this state, being heavier tha
f 1(1285), cannot participate in theh representation. We
therefore identifyuI&5uh&, uII &5u f 1&

(0), and uIII &a5ua0&a .
The chiral representation ofh is then

uh&5
1

&
$u2,2&42u1,1&%,

u f 1&
~0!5

1

&
$u2,2&41u1,1&%, ~21!

ua0&a5u2,2&a .

It follows that

Mh
25M̄0

22M̄ ^q̄q&
2 ,

M f 1

2 5M̄0
21M̄ ^q̄q&

2 , ~22!

Ma0

2 5M̄0
2,

where we have defined the matrix elements

^2,2uM̂0
2u2,2&5^1,1uM̂0

2u1,1&[M̄0
2, ~23a!

^2,2uM̂ ^q̄q&
2 u1,1&[M̄ ^q̄q&

2 . ~23b!

From Eq.~22! follows the equal-spacing relation

M f 1

2 2Ma0

2 5Ma0

2 2Mh
2, ~24!

which is compared with experiment in Table IV. This rel
tion works remarkably well. Of course in two-flavor QC
there is no reason why these splittings should be relate
those involving the pion quartet, Eq.~10!. However, in three-
flavor QCD h8 is in the pseudoscalar octet of Goldsto

s

1-5
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bosons andf 8 is in the axial vector octet. Consistency r
quires that we treata0 as theI 51 member of the scala
octet. Noting thatM̂ s

25M̂V
2 we find

Mh8

2 52B~m12ms!/3,

M f 8

2 52B~m12ms!/312D, ~25!

Ma0

2 52Bm1D,

which when combined with Eq.~24! gives

~Mh8

2 2Mh
2 !1~M f 8

2 2M f 1

2 !5
8

3
~MK

2 2Mp
2 !. ~26!

Notice that consistency of the two- and three-flavor ch
representations requires nontrivial mixings in the presenc
explicit SU~3! breaking effects. Therefore, without octe
singlet mixing the two- and three-flavor chiral represen
tions cannot be made compatible. We can use this equa
together with the Gell-Mann–Okubo formulas to pred
MK1A

51315 MeV which is consistent with the value 134

MeV which follows from assumingK1A to be an equal mix-
ture of K1(1270) andK1(1400) @1#.

Similar considerations apply to theI 50 member of the
scalar octet. UsingM e8

2 52B(m12ms)/31D and M e
2

52Bm1D we find

~M e8

2 2M e
2!5

4

3
~MK

2 2Mp
2 !. ~27!

Presumablye, a mixture ofe8 with an SU~3! singlet, is iden-
tified with f 0(40021200) @1#. Combining Eqs.~26! and~27!
gives the remarkable equation

~Mh8

2 2Mh
2 !1~M f 8

2 2M f 1

2 !52~M e8

2 2M e
2!. ~28!

We emphasize that this relation is a consequence of ch
symmetry and the mass-squared matrix ansatz.

In summary, we have found the two-flavor reducible c
ral representation filled out byh and its chiral partners. Con
sistency with the three-flavor representation is achieved o
if there is octet-singlet mixing. Similar considerations app
to e. We conclude on the basis of the consistency of the tw
and three-flavor chiral representations ofp and h that the
scalar octet isS5$a0(980),K0* ,e8%. Consistency conditions
for the kaons require discussion ofI 5 1

2 chiral multiplets
consistent with the assumed properties of the mass-squ
matrix.

TABLE IV. Mass-squared splittings for theh triplet from the
particle data group@1#.

A* -A a8(MA*
2

2MA
2)

f 12a0 0.59
a02h 0.59
03600
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IV. ISOSPINOR MULTIPLETS

A. Isospinor doublets

The only representations of SU~2!3SU~2! that contain
only a singleI 5 1

2 representation of the diagonal isospin su
group are~0, 1

2! and~1
2, 0!.3 So, in general,I 5 1

2 meson states
of definite helicity are linear combinations of any number
these irreducible representations with undetermined co
cients@6#. Mass splitting can only occur as a consequence
mixing between these representations sinceM̂2 is a sum of
~0,0! (M̂0

2) and ~1
2,

1
2! (M̂ ^q̄q&

2 ) contributions. In Ref.@6#
Weinberg showed that the further assumption that these
parts of the mass-squared matrix commute imply thatI 5 1

2

states communicate through pion transitions only in pa
and fall into chiral multiplets of the form

uI&5
1

A2
$u0 1

2 &2u 1
2 0&%, M I

25m22d,

~29!

uII &5
1

A2
$u0 1

2 &1u 1
2 0&%, M II

25m21d,

where in the right column we exhibit the mass relations i
plied by the representation content. It also follows from E
~29! that ^IuXauII &5Ta whereXa is related to the amplitude
for pion transitions andTa5ta/2 is an SU~2! generator@6#.
Note also that̂ IuXauI&5^II uXauII &50. StatesuI& and uII & ex-
perience no pion transitions to states outside the multip
We will further discuss the axial transitions implied by th
multiplet in Sec. VI.

It is possible to build more complicated representatio
out of the basic multiplet of Eq.~29! which are consisten
with the mass-squared matrix ansatz. However, the m
squared splittings and pion transitions will always be equi
lent to what is implied by the basic multiplet of Eq.~29!. We
will see an example of this below.

B. K-K* and K0* -K1A consistency

Since the kaons carryI 5 1
2 they must fall into

SU~2!3SU~2! representations as well as the SU~3!3SU~3!
representation found in Sec. II. On the basis of our assu
tions about the mass-squared matrixK andK* must either be
paired with each other in the sense of Eq.~29! or with other
states. IfK* andK are not paired with each other then the
do not communicate by single pion emission and absorpt
But this cannot be. The SU~3!3SU~3! representation of Eq
~11! implies that u^KuXauK* &uÞ0. In particular, it implies
u^KiXiK* &u5u^piXir&u for reduced matrix elements in th
chiral limit. Since the latter does not vanish in any lim
neither does the former. ThereforeK* andK must be paired
as

3Note that here we label states by their isospin rather than
number of independent components. For instance, in terms or

previous notation we have (0,1
2 )5(1,2).
1-6
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uK* &~0!5
1

A2
$u0 1

2 s&1u 1
2 0 s&%,

~30!

uK&5
1

A2
$u0 1

2 s&2u 1
2 0 s&%,

wheres denotes strange quark content. One can check
the SU~3!3SU~3! and SU~2!3SU~2! predictions for the pion
transition matrix element̂KuXauK* & are consistent@9#. It is
straightforward to find

MK*
2

2MK
2 52^ 1

2 0 suM̂ ^q̄q&
2 u0 1

2 s&. ~31!

Consistency with the SU~3!3SU~3! result of Eq.~17a! then
implies

^ 1
2 0 suM̂ ^q̄q&

2 u0 1
2 s&5^ 1

2 0uM̂ ^q̄q&
2 u0 1

2 &5 1
2 D, ~32!

where in the second step we have removed thes label since
this matrix element does not depend on strange quark p
erties. Of course we have only shown this to be the case
leading order in chiral perturbation theory.

Similarly, K0* andK1A must be paired as

uK1A&~0!5
1

A2
$u0 1

2 s&1u 1
2 0 s&%,

~33!

uK0* &5
1

A2
$u0 1

2 s&2u 1
2 0 s&%,

where the bar denotes that the states are distinct from t
of the K-K* pair. It follows that

MK1A

2 2MK
0*

2
52^ 1

2 0 suM̂ ^q̄q&
2 u0 1

2 s&. ~34!

Again we find the consistency condition

^ 1
2 0 suM̂ ^q̄q&

2 u0 1
2 s&5^ 1

2 0uM̂ ^q̄q&
2 u0 1

2 &5 1
2 D. ~35!

Given Eqs.~32! and ~35! we will assume that there is
universalmatrix element in the sense that

^ 1
2 0X uM̂ ^q̄q&

2 u0 1
2 X &5 1

2 D, ~36!

whereX represents other quantum numbers carried by
I 5 1

2 state. This additional assumption will prove essentia
relating the light- and heavy-meson mass-squared splitti

It might appear that the heavy meson pairs,D-D* and
B-B* , should be paired asK-K* is in Eq.~30!. We will see
that such a simplistic assignment would violate constra
due to heavy quark symmetry.

C. The heavy mesons

Heavy quark symmetry places constraints of its own
the heavy meson mass matrix. The ground state heavy
03600
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sons have light-quark spinsl 51/2 andp l 5(2) and are
denotedP(02) and P* (12) @14# whereP is D or B. Their
masses can be expressed as

M P5mQ1L̄1$K̃1G̃%/mQ1O~1/mQ
2 !, ~37!

M P* 5mQ1L̄1$K̃2 1
3 G̃%/mQ1O~1/mQ

2 !,
~38!

where L̄ is a positive contribution—independent of th
heavy quark mass—andK̃ and G̃ are matrix elements o
heavy quark operators which are also independent of
heavy quark mass@15#. Squaring the masses gives

M P*
2

2M P
2 52 8

3 G̃, ~39!

3M P*
2

1M P
2 54~mQ1L̄ !218K̃,

~40!

in the heavy quark limit. Heavy quark symmetry constra
the combination Eq.~40! to be independent of the mas
squared splitting, Eq.~39!. Of course, it follows from Eq.
~40! that theD-D* and B-B* mass-squared splittings ar
equal in the heavy quark limit sinceG̃ is independent of the
heavy quark mass.

If P andP* are paired in the sense of Eq.~29!, the masses
must be related asm26d. But this would violate the heavy
quark symmetry constraints on the mass-squared matrix
order to reconcile the chiral constraint with the heavy qu
symmetry constraints of Eqs.~39! and ~40! we must intro-
duce additional heavy meson states. The first excited he
mesons~not yet observed! havesl 51/2 andp l 5(1), and
are denotedP0* (01) andP18(1

1). The unique solution to the
combined chiral and heavy quark constraints is then@9#

M P
2 5m22 3

2 e, M P*
2

5m21 1
2 e,

~41!
M P

0*
2

5m21 3
2 e, M P8

2
5m22 1

2 e,

where m25(mQ1L̄)212K̃PM̂0
2 and e524G̃/3PM̂ (q̄q)

2 .
HenceP andP0* are paired andP18 andP* are paired. What
representation of SU~2!3SU~2! does this solution corre
spond to? We consider two scenarios. Scenario~a! corre-
sponds to naive pairing of the meson states consistent
Eq. ~29!:

~a! uP&5uc2&1 , uP* &~0!5uc1&2 ,
~42!

uP0* &5uc1&1 , uP18&
~0!5uc2&2 ,

where

uc6& i5
1

A2
$u0 1

2 Q& i6u 1
2 0Q& i%. ~43!

The subscripts denote distinct states. The symbolQ repre-
sents quantum numbers carried by the heavy quark. With
representation content we have
1-7
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M P
2 5m̄22 ē, M P*

2
5n21k,

~44!
M P

0*
2

5m̄21 ē, M P
18

2
5n22k,

where we have defined

1^
1
2 0QuM̂ ^q̄q&

2 u0 1
2 Q&15 ē, 2^

1
2 0QuM̂ ^q̄q&

2 u0 1
2 Q&25k,

~45!

1^
1
2 0QuM̂0

2u 1
2 0Q&15m̄2, 2^

1
2 0QuM̂0

2u 1
2 0Q&25 n̄2.

~46!

In the heavy quark limit the solution of Eq.~41! is recovered
if m̄5 n̄5m, ē53e/2 andk5e/2. We then have

1^
1
2 0uM̂ ^q̄q&

2 u0 1
2 &153 2^

1
2 0uM̂ ^q̄q&

2 u0 1
2 &2 , ~47!

where we have removed theQ label since these matrix ele
ments are independent of heavy quark properties. This e
tion is clearly incompatible with the universality conjectur
We therefore rule out scenario~a! as a viable chiral repre
sentation of the heavy mesons.

As pointed out above, we can instead make combinati
of Eq. ~29! which give identical predictions for the observ
able mass-squared splittings and pion transitions and
which order matrix elements differently:

~b! uP&5
1

A2
$uc2&11uc2&2%,

uP* &~0!5
1

A2
$uc1&12uc1&2%,

~48!

uP0* &52
1

A2
$uc1&11uc1&2%,

uP18&
~0!52

1

A2
$uc2&12uc2&2%.

We then have

M P
2 5~m̄21n2!2~ ē1k!, M P*

2
5~m̄22n2!1~ ē2k!,

~49!
M P

0*
2

5~m̄21n2!1~ ē1k!, M P
18

2
5~m̄22n2!2~ ē2k!,

where we have defined

i^
1
2 0QuM̂ ^q̄q&

2 u0 1
2 Q& j5d i j ē1~12d i j !k, ~50!

i^
1
2 0QuM̂0

2u 1
2 0Q& j5d i j m̄

21~12d i j !n
2. ~51!
03600
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In the heavy quark limit the solution of Eq.~41! is recovered
if m̄5m, n50, ē5e andk5e/2. We then have

i^
1
2 0QuM̂ ^q̄q&

2 u0 1
2 Q& j5 i ^ 1

2 0uM̂ ^q̄q&
2 u0 1

2 & j5
1
2 ~d i j 11!e,

~52!

i^
1
2 0 QuM̂0

2u 1
2 0Q& j5d i j m

2, ~53!

where in Eq.~52! we have made use of the fact thate is
independent of heavy quark properties. This assignmen
states is consistent with universality. Moreover, one can e
ily check that universality is not inconsistent with 1/m cor-
rections. Therefore scenario~b! is a viable chiral representa
tion. We have

M P
0*

2
2M P

18
2

5M P*
2

2M P
2

52 1^
1
2 0uM̂ ^q̄q&

2 u0 1
2 &152 2^

1
2 0uM̂ ^q̄q&

2 u0 1
2 &2 .

~54!

On the basis of the universality assumption of Eq.~36! we
then find

M P*
2

2M P
2 5D5MK*

2
2MK

2 , ~55!

where the last equality follows from Eq.~32!. Equation~55!
is compared with experiment in Table I. This derivation
rendered less persuasive by the universality conjecture. N
ertheless, it is the best that we can do. We will give
independent test of universality in the next section.

V. A NOTE ON THE BARYONS

The excitedI 5 1
2 cascadeJ~1530! decays toJ and a pion

with a branching ratio of 1@1#. We therefore expect thes
states to be paired in the sense of Eq.~29!. Hence we have
another test of universality. Note that since baryons are
mions, here we are focusing onulu51/2 transitions. We
have

uJ~1530!&5
1

A2
$u0 1

2 2s&1u 1
2 0 2s&%,

~56!

uJ&5
1

A2
$u0 1

2 2s&2u 1
2 0 2s&%,

where 2s denotes the strange quark content and it is impl
that these areulu5 1

2 states. It follows that

MJ~1530!
2 2MJ

2 52^ 1
2 0 2suM̂ ^q̄q&

2 u0 1
2 2s&5D, ~57!
1-8
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where the last equality follows from the universality assum
tion of Eq. ~36!. This predicts aJ(1530)2J mass-squared
splitting of 0.50 in units of 1/a8, as compared to the ob
served splitting of 0.54. Of the baryon pairs listed in Tab
V, this splitting is in fact closest to ther-p splitting, thus
providing a gratifying test of the universality conjecture.

Other baryons require separate discussion. For insta
the I 5 1

2 baryons made out of three light quarks clearly ha
single-pion transitions to states withI 5 3

2 . So states such a
N and D will in general fill our reducible combinations o
any number of~0, 1

2!, ~1
2, 0!, ~0, 3

2!, ~3
2, 0!, ~1, 1

2!, and ~1
2, 1!

irreducible representations of SU~2!3SU~2! @6#. Many mul-
tiplets can be constructed consistent with the allowed m
squared splittings. One might further expect that theI 50
and I 51 baryons have a quartet structure similar to that
the light mesons.

VI. REGGE BEHAVIOR AND QCD

It might seem mysterious that using the full chiral algeb
and special assumptions about the chiral transforma
properties of the mass-squared matrix we recovered re
that are predicted by hadronic string models. Consider, h
ever, thatthe basic assumptions that have been made in
paper are in one-to-one correspondence with statement
Regge asymptotic behavior. This correspondence is exhibite
in Table VI and was demonstrated long ago by Weinberg
Ref. @5# and further developed in Ref.@6#. The constraints on
the mass-squared matrix are known as superconvergent
rules. Hadronic string models exhibit very soft asympto
behavior; in fact, they satisfy an infinite number of superco
vergence relations@16#. We required only two superconve

TABLE V. Lowest lying baryons of a given character. Mass
are central values from the particle data group, anda8
50.88 GeV22.

A* -A a8(MA*
2

2MA
2)

D2N 0.56
S(1385)2L 0.59
S(1385)2S 0.44
J(1530)2J 0.54

Sc2Lc 0.70

TABLE VI. The equivalence of the first and second columns
exact in the tree-graph approximation~large-Nc for pion-meson
scattering!. The first row implies that, for each helicity, mass eige
states fill out generally reducible representations of SU(L

3SU(2)R . That the two parts ofM̂2 commute is a statement of
Z2 symmetry in theI 5

1
2 sector.

Hadrons Regge inpa→pb

SU(2)L3SU(2)R a1(0),1

M̂25M̂0
21M̂ ^q̄q&

2 a2(0),0, a0(0)51

Z2↔@M̂0
2,M̂ ^q̄q&

2 #50 a0(0),0 aÞb
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gence relations to derive equal spacing relations for the l
lying mesons.

We have seen that the algebraic relation@M̂0
2,M̂ ^q̄q&

2 #50,
which is a statement about diffraction in pion-hadron scat
ing ~see Table VI!, fixes the reducible chiral representatio
filled out by the mesons. Here we will give a symmet
interpretation of this relation. Recall the chiral multipl
structure of theI 5 1

2 states implied by the mass-squared m
trix constraints and given by Eq.~29!. In order to better
demonstrate our point consider this multiplet with an ar
trary mixing angleu :

uI&5sin uu0 1
2 &2cosuu 1

2 0&,
~58!

uII &5cosuu0 1
2 &1sin uu 1

2 0&.

We define the axial couplingŝIuXauII &[gI,IIpTa , ^IuXauI&
[gI,IpTa , and ^II uXauII &[gII,II pTa . Since Xau0,1

2 &
5Tau0,1

2 & and Xau 1
2 ,0&52Tau 1

2 ,0& it follows from Eq. ~58!
that gI,IIp5sin 2u, gI,Ip52cos 2u, andgII,II p5cos 2u.

It is possible to understand why the mixing angles a
fixed so that each representation has equal weight, by ass
ing that there is aZ2 symmetry which permutes chiral rep

resentations as (0,1
2 )↔( 1

2 , 0). If sinu5cosu51/& then uI&
and uII & form a Z2 doublet and we can assignZ2 charges as

hadron Z2

uI& 21
uII & 1
p 21

Sinceu5p/4, gI,Ip5gII,II p50 as they must since they ar
not Z2 respecting transitions. Hence the assumption of aZ2
symmetry is in this case equivalent to the mass-squared
trix ansatz @6#. The Z2 interpretation of the constrain

@M̂0
2,M̂ ^q̄q&

2 #50 is more subtle for theI 50,1 states. We have
seen that the mass-squared constraint fixes the repres
tions and the mixing angles as in theI 5 1

2 case. However
there is clearly no new conserved charge reflected in
spectrum and so theZ2 symmetry interpretation is not s
straightforward. This subtlety has been considered in R
@7#.

Here we suggest a QCD-based interpretation of theZ2
symmetry in theI 5 1

2 sector. Consider an underlying qua
description with an SU~2!3SU~2! flavor symmetry and the
desiredZ2 symmetry. There can be any number of hea
quarks which transform as chiral singlets. Assume that
light quarks transform as~0, 1

2! and ~1
2, 0! with respect to

SU~2!3SU~2!. TheZ2 transformation permutes quarks wit

opposite chiral charges: i.e., (0,1
2 )↔( 1

2 , 0). It is important
to realize that this symmetry isnot ordinary parity; theZ2
symmetry is an internal symmetry, not a spacetime symm
try. Therefore, theZ2 symmetry must act independently o
left- and right-handed quarks. For instance, a left-han
1-9
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Weyl fermion of charge~0, 1
2! must have a left-handed par

ner of charge~1
2, 0!. If parity is conserved, then the quar

description must have equal numbers of left- and rig
handed quarks assigned to each chiral charge,~0, 1

2! and
~1

2, 0!. This implies that the SU~2!3SU~2! flavor symmetry
in the underlying quark description with theZ2 symmetry
must bevectorlike@17#. This is easy to see by noticing tha
SU~2!3SU~2! invariant mass operators can always
formed whenZ2 is a symmetry@9#.

Clearly theZ2 symmetry is not a symmetry of the QC
Lagrangian in which the SU~2!3SU~2! flavor symmetry is
chiral. But what then do we learn from the relation betwe
the Z2 symmetry and sum rules derived from Reg
asymptotic behavior? Consider the following argument.
underlying quark description with theZ2 symmetry is vec-
torlike and is therefore automatically consistent with t
Nielsen-Ninomiya theorem@17#. This implies that the quark
description can be defined on the lattice with anexact
SU~2!3SU~2! symmetry at nonzero lattice spacing. In pra
tice such a description will have four flavors of quarks and
will look similar to QCD with doublers@9#. The origin of the
doublers on the lattice has a physical interpretation in te
of chiral anomalies@18#. Since a gauge theory with an intrin
sic cutoff cannot feel the effects of anomalies, each left- a
right-handed Weyl fermion in the theory will have a doub
of opposite chiral charge. However, only for special valu
of the vacuum parameters of the theory will there be aZ2

symmetry corresponding to permutations of these char
For instance, theZ2 symmetry can be spontaneously brok
by quark condensates. This would correspond to a lo

energy theory with@M̂0
2,M̂ ^q̄q&

2 #Þ0. It is intriguing that the

Z2 symmetry is also brokenunlessū takesCP conserving
values@9,19#.

It is surprising that thisZ2 symmetry has physical conse
quences relevant to low-energy QCD. A possible explana
is that theZ2 symmetry will play a role in any nonperturba
tive definition of QCD where the flavor symmetries are u
broken by the regulator.4 Since the lattice is the only know
means of defining QCD in the nonperturbative region, a
no lattice definition exists in which the flavor symmetries a
chiral and unbroken, this hypothesis is safe. In essence,
hypothesis raises the Nielsen-Ninomiya theorem from
statement specific to the lattice to the level of a gene
physical principle.

There is some evidence backing our hypothesis. T
equal-spacing relations have been tested in lattice QCD
ing improved lattice actions@21#. Improved actions do sub
stantially better at generating universal~constant! mass-
squared splittings than do Wilson or staggered ferm
actions. In the Wilson action the chiral symmetry breaki
Wilson term is dimension 5 whereas in the improved act
it is dimension seven@21#. It is conceivable that only an
action improved to all orders will explicitly realize theZ2

4This viewpoint is elaborated in Ref.@20#.
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symmetry and give precisely constant mass-squared s
tings.

VII. SUMMARY AND CONCLUSION

There has been little progress in understanding emp
cally successful predictions of Regge theory and string m
els of hadrons from QCD. One piece of phenomenology t
has received little attention is the remarkable equality
various hadron mass-squared splittings predicted long ag
hadronic string models.

In this paper we have used symmetry arguments to de
a cornucopia of equal spacing relations. Our arguments
on consequences of the full chiral algebra with two and th
flavors of quarks, together with an ansatz for the chiral sy
metry transformation properties of the hadronic ma
squared matrix. We showed thatM r

22Mp
2 5MK*

2
2MK

2 to
leading order inmq . This and other equal spacing relation
for the masses of the low-lying pseudoscalar, vector, sc
and axialvector octets are our most robust results. We
considered isospin violation and gave new determination
ratios of current quark masses. The requirement that all st
fill out representations of SU~2!3SU~2! and SU~3!3SU~3!
gave several interesting results. It enabled us to determ
members of the scalar octet that are ambiguous from
point of view of SU~3! alone and it required that there b
nontrivial octet-singlet mixings. It further allowed us to e
press the kaon mass-squared splittings in terms of anI 5 1

2

matrix element which is independent of strange quark pr
erties. We conjectured that this matrix element is univer
We then found the chiral representations of the heavy m
sons that are consistent with the mass-squared matrix an
and heavy quark symmetry and showed that the relev
mass-squared splittings are determined by the universal
trix element. This result gaveMK*

2
2MK

2 5M P*
2

2M P
2 where

P representsD or B. Unfortunately, the necessity of conjec
turing the existence of a universal matrix element rend
this derivation less persuasive than the derivation of
light-meson mass-squared splittings. We then discussed
baryons and gave an independent successful test of the
versality conjecture using the cascades.

In Sec. VI we attempted an interpretation of the ma
squared matrix constraints in the context of QCD. First
compared our derivation to that of hadronic string mod
and showed that the mass-squared matrix ansatz maps
cisely to superconvergent sum rules in pion-hadron sca
ing. We showed that these sum rules forI 5 1

2 mesons are
equivalent to assigning a novelZ2 symmetry to physical
states. Finally, we gave an interpretation of thisZ2 symmetry
in the context of lattice QCD. We suggested that aZ2 per-
mutation of chiral charges is a fundamental property o
gauge theory with an intrinsic cutoff.
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