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The phase structure of SUSY gauge theories can be very different from their nonsupersymmetric counter-
parts. Nonetheless, there is interesting information which might be gleaned from a detailed investigation of
these theories. In particular, we study the precise meaning of the strong interaction seééeask whether
one can meaningfully apply naive dimensional analysis and also ask whether the study of supersymmetric
theories can shed light on the apparent discrepancy between the perturbativé gggl@nd the “chiral
Lagrangian” scale\, . We show that ilfN=1 supersymmetric Yang-Mills theory, “naive dimensional analy-
sis” seems to work well, with\ , consistently equal to the scale at which the perturbatively evolved physical
coupling becomes of order® We turn toN=2 theories to understand better the effect of instantons in
accounting for the QCD discrepancy between scaleBl=2 supersymmetri§U(2) the instanton corrections
are known to all orders from the Seiberg-Witten solution and give rise to a finite scale ratio between the scale
at which the perturbatively evolved and “nonperturbatively evolved” couplings blow up. Correspondingly,
instanton effects are important even when the associated perturbatively evolved gauge coupling odypfjives
order 1(rather than 4). We compare théN=2 result to instanton-induced corrections in QCD, evaluated
using lattice data and the instanton liquid model, and find a remarkably similar behavior.
[S0556-282199)02201-§

PACS numbd(s): 12.60.Jv, 11.30.Pb

[. INTRODUCTION position that order of magnitude estimates might not lead to
a better understanding, the whole point of naive dimensional

One usually employs the notion of a “chiral Lagrangian” analysis is to include as well as possible any large factufrs
or sigma model to describe the low-energy degrees of freesrder 4r) which can be readily identified. We will discuss
dom of a strongly interacting gauge theory below a scalesome exact results in supersymmet&tJSY) theories to see
which we will refer to asAypa, WhereAypa sets the scale whether they give some insight into this discrepancy be-
for the cutoff and the suppression of higher derivative intertween scales. This might seem absurd in that the phase struc-
actions, with coefficients determined by “naive dimensionalture of supersymmetric theories can differ qualitatively from
analysis”(NDA) [1]. Although there is a potential ambiguity a nonsupersymmetric theory. However, there are some ques-
in its precise definition, one would expegafyp, to be the tions which one has about QCD that can be meaningfully
point where the original perturbative formulation of the field asked about solvable supersymmetric theories. These include
theory becomes impossible, so that perturbation theory rethe question of whether or not there can exist two distinct
quires the use of effective degrees of freedom and effectiveneaningful physical scales, whether or not the coupling be-
Lagrangians. The well-studied example of this phenomenogomes nonperturbative at one or the other of these scales,
is QCD, where the cutoff scale for the chiral Lagrangian is ofand which nonperturbative effects are significant at any
order 1 GeV. given scale.

It can be argued that theypa Scale should be the scale at  We will show that inN=1 super Yang-Mills(SYM)
which perturbation theory fails completely in the sense that aheory the scale at which the perturbative expansion breaks
coupling is of order 4 so that a loop expansion is no longer down according to the all order beta function~ig8m?N)*3
possible[2]. However, in QCD this higher scale is mysteri- bigger than the scale at which the holomorphic coupling
ous, as the running QCD coupling should be of order blows up. We will show that the larger scale is in qualitative
~4 at the Aypa Scale of order 1 GeV. According to the agreement with the NDA scale as determined from the exact
perturbative evolution, this is manifestly not the case. Regluino condensate. The basic conclusion is that there is one
lated to this puzzle is the question of why the 1 GeV scale iscale which determines the physics. This scale is the NDA
relevant at all, in light of the fact that both scales at whichscale. However, the fact that the perturbatively evaluated
the coupling blows up &) and the confinement scales coupling blows up at the NDA scale is not the same as the
(Acong) are of order 250 MeV. Although one might take the behavior of QCD, where the NDA scale is not associated
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with the perturbative blowup of the coupling. It does how- down. Notice also that the scalg, 4., defined by truncat-

ever suggest that NDA is a reliable tool that can be reasoning the renormalization grougRG) beyond two loops

ably applied to estimate Kahler potential terms in phenom{where it is anyway scheme dependentiffers from A.,

enological applications of strongly coupled supersymmetrionly by a factor (- g2N/8x2)13.

theories. This relation between the Wilsonian and 1PI couplings
We then argue that the mismatch of scales in QCD couldvas originally obtained by NSVZ6] by considering the

be due to nonperturbative corrections. That these effects ceU(N) SYM instanton amplitude, which is proportional to

be large even when the perturbative coupling is relatively

small will be shown using the exact results frdis=2 SU(2)

in Sec. lll. In Sec. IV we will veer from exact results back to _ an© B

QCD. We use the instanton-induced corrections to the effec- Ainst= M g™N(w) K

tive charge defined by Callan, Dashen and GK&BG) [3],

which includes integrating out instantons of sizes less than

SOmepmay- Those integrals are done using available latticeThe relation betweeg? andg? is also simply obtained by

data for SW2), SU3) pure gauge theories as well as the considering the nontrivial Jacobian which occurs when going

instanton liquid modelfitted to QCD. The results display from holomorphic to canonical gauge fielfig]. The Jaco-

remarkable similarity to the behavior of tié=2 theory, bian can be evaluated by using the Konishi anomaly together

which indicates the potential significance of instanton ef-with the known fact that the beta function vanishes beyond

—8m2g%(u) -
3Ng—87 /gh(:"'):A%’\é_ 3

fects. 1-loop inN=2 SYM theory.
The important thing to notice in the two scales we have
II. N=1 SUPERSYMMETRIC YANG-MILLS THEORY defined is that they differ by a reasonable factor, namely
. (872/N)Y3, which is about 3 for lowN.
In this section, we will consideN=1 SYM theory for Now we turn to naive dimensional analysis, which was

which the exaciB function is known. We will demonstrate applied to supersymmetric theories in Rgf} and applied in
fchat the exact cgupling repr_oduces the assumptions underlynrious model-building studie§8—13 to estimate non-
ing NDA. In particular, we will show that two relevant scales perturbative contributions to the Kr potential. According
can be defined, the first at which the holomorphic couplingio NDA, operators composed of fields which are noncanoni-
blows up and the second higher scale at which the true physia|ly normalized(with a coefficient of their kinetic term
cal coupling becomes non-perturbative. The crucial distinc1/gz) are expected to have expectation values which scale
tio_n [4] is_ between the holomorphior “Wilsonian”) CoU-  according to the power afypa given by the dimension of
pling, which runs only at one-loop, and the “physical” one the gperator, with no additional factors ofr4This can be
particle irredu'cible(lPI) co_upIing which receﬁves corrections gerived by requiring that all orders in the loop expansion
at all orders in perturbation theory. We will argue that theyith a cutoff give comparable contributions to operators
true scale of the strong interactions is the latter. ~[4] or directly by rescaling fields in a suitably defined Wilson
We first define the different scales. The quantity which isgffactive action[2]. Notice that in a supersymmetric theory
generally used to construct the holomorphic superpotential ighe loop expansion is not a power series in the holomorphic
defined by coupling g2 (there are Irg? terms. It is the physical 1PI
5 2 coupling which controls the loop expansion and which will
Apg=pe™ 87 Pogh(x) (1) turn out to be of order # at the NDA scale. So, in order to
5. ] ) ) ] use the picture of the second of REZ], it is more appropri-
whereg, is the Wilsonian coupling constant, defined as thegte to use a scheme for the Wilson effective action where the
coefficient of the gauge kinetic operator in the Lagrangiar\gauge coupling is not holomorphisee for example Ref.
when written in a manifestly holomorphic form. Notice that [7]). The interesting thing in supersymmetric theories is that
althoughgy, is scheme dependentps is not. This is because the scaleA which determines the overall coefficient of
the overall coefficient in Eq(1), which we take to be 1 in  higher dimension operatotsp to factors of order unitycan
dimensional reduction¥R) [5], also changes accordingly. actually be determined. This is because there isesact
Another useful scale to define js.., which we define as result to determine the scale, namely the gaugino condensate.
the scale at which the physical coupling becomes non- In Refs. [15,16,3, the gaugino condensate in SUSY
perturbative according to the exact Novikov-Shifman-SU(N) was obtained by considering first the theory with
Vainshtein-ZakharoyNSVZz) g function —1 flavors broken through the Higgs mechanism far out
along a flat direction. The theory is then weakly interacting
and a reliable calculation of the superpotential from instan-
tons can be performed. Once this superpotential is obtained,
theN—1 flavors are given a large mass, and the gluino con-
where we have used the relation between the holomorphidensate in the low-energy SYM theory is evaluated via the
and physical 1PI couplinff] in the last equality. Notice that Konishi anomaly. The result is
according to NSVZ evolution the coupling constant never
blows up. Instead it reaches a maximum et (1.39)A -
where Ng?/87?=1 and where perturbation theory breaks (Naka)=32mAps 4

2\ 1/3
Ae=p )

8’772 1/3 ) ) 87
m) e 87 bog (M):(W Aps (2)
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where\ is noncanonically normalized, with coefficient of its 1
kinetic term 162%(x), and Aps agrees with our definition (MN)strong= g (M weako (10)
above ifg(u) is the OR) coupling®
On the other hand, according to NDA, the gaugino con-NDA gives a result in agreement with weak coupling meth-
densate should be ods. The origin of the discrepancy is not yet established. One
possibility is that while at weak coupling instantons presum-
()\a)\a>~A§D A- (5 ably saturate the condensate, there are new effects, other than
instantons, in the strong coupling regime. Quite interestingly,
It should be noted that NDA does not usually incorporateas a result of the space-time independence of\tpmint AA
largeN factors, but it can be easily done. In the noncanonicatorrelator, these effects should be important even at short
normalization, the gauge propagator isg?(p)/p2. By  distance in the strong coupling regime. However, since the
NDA, the condensate is going to be saturated by loop moscale at which the theory became nonperturbative was ad-

menta of orde\ \pa, SO that equately accounted for in perturbation theory, both instan-
tons and these additional nonperturbative effects seem irrel-

p2dp? g2(p) N2g%(Anpa)Adpa evant to establishing the NDA scale. Finally, another

(Naha)~N? 62 p 16,2 (6)  possibility, recently proposed by Kovner and Shifman, is that

there exists a chirally symmetric phase of SYM the[i§].

In this way the strong coupling result, interpreted as a
weighted average over chirally symmetric and asymmetric
vacua, is bound to be the lower.

The qualitative scaling of Ed7) is also reproduced with the  The obvious question now is how to extrapolate these

use of gap equatior{d4]. _ lessons to real QCD. In QCD, we know th&2 loop calcu-
By comparing the above to the exact result in Ej.one  |ation, although it goes in the right direction, does not change
gets the QCD scale sufficiently to account for NDA. In fact, the

relation between scales in this case is given as
32,”,2 1/3
Anpa= T) Aps, (8

which, within an©(1) factor, coincides withA, . This is ]

precisely what one would want to find;yp corresponds to yvhere 5 flavors have been a_lssun(bdt the result is rather
the scale at which the physical coupling becomes nonpertuffdependent of that By running fromu=Mg, the above
bative and the description of the theory must change. Indee§duation changes the one-loop QCD scale of about 100 MeV
accounting also folarge N factors, the loop expansion pa- to its two-loop value of about 250 MeV. This is still about 4
rameter of SYM theory should be~Ng? (4)2. Thus, by times smaller than the “observed” NDA scale of QCD. As
Eq. (2) we have that\ yp,, at whichx~ 1, essentially coin- W€ said before,.higher. qup effects, or scheme dependence,
cides withA.. . In other words, we find out that NDA repro- [N the perturbative definition of\ypa could amount to an
duces both the #s and largeN behavior of the instanton (1) factor. So the “big” factor in QCD is puzzling. In the
calculation at weak coupling. Given that it was the physicalneXt section we will argue that additional corrections could
g(w) which appeared in the propagator, it was natural to"0Me from instantons. This gives rise to the obvious question
expect the loop counting parameter to be the 1P rather thaff Why the instanton effects do not affect the “exact” cou-

Wilsonian coupling. Notice indeed that the Wilsonian expan-Pling 0f N=1 SYM theory. We will address this issue in the
sion parameter at the NDA scale is roughly concluding section. The discussion of this section seems to

suggest that additional effects, if present, are not very impor-

3.2772 0.33
) 1-loop (11)

A2—Ioop2<?

N o2 tant in determining the strong scale, as the condensate is well
Ow 1 . X
5~ 5 (9) estimated perturbatively.
87"  1+In(87/N) Finally we briefly comment on the relation, suggested by
_ _ NDA, between the hadron masses and their sizes, as deter-
which for smallN may look perturbative. mined by the confinement scale. Consider for instance the

As an aside, we comment on the well-known &7,  elastic scattering of a spin zero glueb&lbf mass~Aypa.
that the direct calculation of\N) in pure, strongly coupled, By NDA we expect the quartic coupling to (1672, so
SYM theory disagrees with the weak coupling result calcuthat the elastic cross section is4m(4m/ Aypa)?. This re-
lated in the Higgs phase. In particular even the laXgbe-  sult can be interpreted as due to the collision of two hard
havior is different, objects of radius 4/Aypa. This remains true also at large
N though there the mesons are weakly interacting, and the
suitable factor oN must be factored out in the cross section.
1|n Ref. [5], the scheme independent factogz_” was never ex- It Should be noted that from thIS pOint Of VieW, the COinCi-
plicitly displayed; if included, it would combine together with the dence ofAqcp, the scale at which the perturbative gauge
g(w) in the exponent to give the instanton amplitudes in terms ofcoupling blows up, and the confinement scale, 250 MeV
9. ~2Anpaldm, is merely coincidental. The first scale seems
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to have no physical meaning, though it can of course bge|atorG

defined from the two-loogB-function.
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»={((A\)(XN)) at zero momenturd It is useful to

consider the dispersive Man-Lehman representation for

What we have learned about NDA in SYM theory can beg, :
useful in particle physics models where the strong interaction

scaleA itself depends on some modulXs In the models of
Refs.[11-13 X gives mass to alSU(N) flavors, so that
below the scaleX the effective gauge theory is just SYM
theory. The strong dynamics then generates a superpotenti
for X via gaugino condensation. In Refd.1,12 the effec-
tive superpotential iwefsz%S(X)zAZX, where A pg(X)

[

dn? m?a(m?)
pZ—m?

Gy (p?)= J (17)

0
al

wherea(m?) is a positive definite functiodOur basic point

is that we can perform an operator product expan§inRE

and A are respectively the holomorphic scales in the low-for G, in the Euclidean—p?>AZ, region. The lowest

and high-energy theories. The resulting potential is very flat
and an estimate of the non-perturbativehia potential can

power correction corresponds {&G)/p*~ Aypa/p*. It is
reasonable to expect that the correctionss{@n®> A2 ,)

be crucial. The only way we can do that at the moment is byscale in the same way. If that is the case, the leading non-

NDA. In Ref.[12] X is the inflaton so that the size and sign

perturbative contribution téK yytG, (p?=0) comes only

of these corrections can have a crucial impact on the sloWom the region of integration atm?~AZ,,. This gives

roll. We have argued that NDA should apply for SYM. De-

noting by Anpa(X) andApg(X) the scales of the low energy 4

theory the effective Lagrangian &3]

1
Eeff:TGﬂ_z(Jd4‘9ClANDA(X)TANDA(X) (12

+f d?0A Nypa(X) 3+ H.c.) (13

wherec; is expected to b&(1). By writing the above in
terms of the original holomorphid we have that the correc-
tion to the Kaler metric is

)4/3

This scaling with 4r can also be established by a direct
diagrammatic analysis. For this purpose it is useful to param
etrize X=(X)+ 6X, where(X) is thec-number vacuum ex-
pectation valu¢VEV). Below the scaléX), where the mes-
sengers are integrated outX couples effectively to the
SYM theory via a one-loop effect

1

ol |

4

A

X

C1

5KxxT: 9

(14

! fdz 5XWW“ 15
m 0@ o + . ( )

At second order in this interaction, we get a quantum correc
tion to the §X wave function

more justification to the NDA estimate we did above. This
Iso suggests that it is probably not unreasonable to assume
that the effect is well described by summing just over the
lowest resonances itn. Under that assumption we conclude
thatc,>0 in Eq.(14). This result has important implications
for the models of Refs[11,12. There the correction with
c,>0 creates a potential that “pushes” tixefield towards

the origin. This is not problematic for the inflationary models
of Ref.[12], but it can destabilize the local vacuum of the
gauge mediated scenarios of RgL1]. The condition to
avoid the latter problem has already been discussed in Ref.
[11]: it requires the scalX to be above 19-10° GeV.

lll. N=2 SUSY Su2)

ForN=2 SUSY QCD the effective Lagrangian to leading
order in a momentum expansion was derived in an exact
solution by Seiberg and Wittei20]. Although the dynamics
and physical fields are very different from QCD, one can
nonetheless observe a similar puzzle; the effective coupling
blows up at the point where according to the one-loop beta
function one would geg?/(4m)=a=0.76. This might have
been thought to be a safely perturbative region, but in fact
the instanton effects become large at this point; they induce a
very strong interaction and make the use of the original for-
mulation of the theory impossible.

This is seen from the exact result for the effective cou-

pling

1\ (2, ,0%p?) 8r K(V1-k?)
5KXX*:(W> J " ar X7 (19 ) KK 18

where two powers of 1/8% come from insertions of Eq.
(15). For large(X) the leading contribution to Eq16) is
perturbative,~g*({X))/(4)®, and comes from integration
at p~({X). Non-perturbative effects are estimated via NDA
by the contribution ap~ A ypa to Eq.(16). The result agrees
with the estimate in Eq(14). This effect becomes rapidly
important whenX) is decreased.

It would be interesting to have information on the sign of
this correction. Notice thadK «xt is proportional to the cor-

whereK is elliptic integral and the argument

25K xxt can be obtained by focusing on the correctiorFt;(j:;
and by noticing thaFy couples just taw\ in Eq. (15).

SNotice thate~g*(m?), at m>Aypa, giving an apparent qua-
dratic divergence. This is regulated by performing suitable match-
ing to the above theory at the scgl€). Above this scale there is
just the logarithmic divergence of thé€ wave function.
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correction(thick dashed one Because we will want to com-

5.0 ‘
45| — oneloop ,' i pare the running of the coupling in different theories, we

o o Joope t ; have plottedog?/872 (b=4 in this case is the one-loop co-
40 L (2) Iatf[lce I /] . . . . .

5—1SU(3) lattice i , efficient of the beta functignand measure all quantities in
35| ©—oQCD, IILM | /] units of Apg, so that the one-loop charge blows out at 1. The

— Seiberg-Witten / meaning of the scale can therefore be determined by what

30 [ enters in the logarithm. We have plotted the exact result
25 | P ] against¢ rather thara.

L7 Note the very rapid change of the coupling induced by
2or A | instantons. It is also of interest that the full multi-instanton
1.5 | -7 . sum makes the rise in the coupling even more radical than
ol . 1 with only the one-instanton correction incorporated. It is also

al interesting to observe that at the scale where the true cou-
05 . pling blows up, the perturbatively evolved coupling is still
00 L— ‘ not very large. Individually, the perturbative logarithmic and
0.0 0.5 instanton corrections are well defined at this region: how-

a[fm] ever, they cancel each other in the inverse charge. This is
. 2 P . encouraging from the point of view of developing a consis-
FIG. 1. The effective c_harglege”(p,)lsw_ (b. s the co_efflcn_ant tent expansion for the instanton corrections. The rapid rise in
of the one-loop beta functigiversus normalization scaje(in units th ling is al n raging in that it ensures that per
of its value at which the one-loop charge blows.uphe thick solid ¢ ebC?uD thg S a.so el.dCOlIJ ag t? th a . te Shu es it ; per-
line corresponds to exact soluti¢®0] for the N=2 SYM theory; urbation theory IS valild aimost to tne point where it blows
thp. For a consistent picture of QCD, in which perturbation

the thick dashed line shows the one-instanton correction. Lines wi . .
theory still appears to be applicable at tbejuark scale,

symbols(as indicated on figudestand forN=0 QCD-like theories, A ) ’
SU(2) and SU3) pure gauge ones and QCD itself. Thin long- While the theory is nonperturbative at 1 GeV, such a dra-

matic effect is essential.
So the basic lessons seems to be, first, that instantons can

lead to a discrepancy between the scales at which the pertur-

dashed and short-dashed lines are one- and two-loop results.

_ 2 _ 4
k2:u (19) bative evolution of the coupling blows up and the nonpertur-
u+Ju?—4A*4 bative coupling blows up. Second, the rise in the coupling is

_ _ _ ) ) very dramatic. Third, the coincidence betwegnand A ocp
is a function of the gauge invariant vacuum expectation okeems to be just that. Fourth, even though we are in a weak

the squared scalar field, coupling regime where the instantons should be dilute, there
5 4 is a notable difference between the rise in the coupling due to
_ E 2\ _ a A one instanton and due to the full instanton sum; multi-
u= (%) Tzt (20 :
2 2 a instantons are also important.
anda is just its VEV. For largea there is a weak coupling IV. QCD

expansion which includes instanton effécts
Having learned what we can from exact SUSY results, we

87 2 o 2a*) 3A* (21)  Mow turn to ordinary QCD. We know that naive dimensional
gz(u) T 9 Az a* analysis appears to work, but with the dimensional scale

which sets the cutoff and which suppresses higher dimen-
The exact coupling blows up at=2A?, which means that sional operators set by 1 GeV. As the theory is not super-
the factor between the exact strong interaction scale and thg/mmetric, we cannot derive this dimensional scale as we
perturbative one is in this theory,,=2%?A 5. Actually this  did with the gluino condensate. Nonetheless, sum 2k

is the ratio of the scale/u to the scalea at which the per- and lattice simulationf23] yield, consistently, a quark con-
turbatively evolved couplingone-loop blows up. If one densatgqq)~ (250 MeV)>. On the other hand, NDA sug-
were to account for the next term in the expansiompthe  gests
ratio of scales is reduced @ 2+ v2. The fact that instan-

ton effects can be important at such a high scale was antici- _ Adpa (1GeVv)®
pated in Ref[3] and is presumably due to the significance of (qa)= 1672Z(Anpp) - 16m2Z(Aypa)
the prefactor in instanton calculations.

The behavior is shown in Fig. 1, where we have includedyherez is the multiplicative renormalization of the compos-
both a curve which shoyvs t.he full couplirithick solid .Ilne, ite operatorgg. Equation(22) agrees with the phenomeno-
as well as a curve which illustrates only the one—lnstantoqogica| value of the condensateZ{ A yp) ~ 1. This require-

ment is not inconsistent & does not run very fast.
The question then is where this scale arises in terms of the
“It should be noted that the first terms in this expansion have beetheory of the fundamental fields, the quarks and gluons. We
explicitly verified in instanton calculatiorf21]. know that the parton model is limited from below by the 1

(22
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GeV scale, but perturbative QCD seems well-behaved at thistill valid. It is perhaps a little surprising that all the theories

scale. For theN=1 coupling, we know we can estimate the including instantons look so similar, and that furthermore the

dimensional analysis scale using only the leading two term#stanton effects are so similar to that fér=2 SUSY QCD.

in perturbation theory. We also know this is inadequate inAlthough this is probably accidental, it does establish that

QCD, as the subleading term changes the QCD scale froimstantons can generate a somewhat higher scale, and that the

about 100 MeV to 250 MeV; higher order terms should nottheory looks perturbative until almost reaching this scale

change this substantially. (that is the coupling rises very rapidlyOne may further
So it seems that if the NDA scale of 1 GeV is to have aspeculate by analogy to tié=2 theory that multi-instanton

physical meaning, it is probably due to nonperturbative efeffects yield an even more substantial rise in the coupling.

fects in the evolution of the coupling. It is possible that in-

stantons are the only nonperturbative effect which is substan-

tial above the confinement scale. This was the original CDG V. DISCUSSION AND CONCLUSIONS

suggestiori3]. For a review of subsequent developments and  |n conclusion, we have argued thatf=1 pure gauge

phenomenological fits in support of this hypothesis with al-theory the analogue of the “chiral Lagrangian” scale corre-

lowance for inter-instanton interactiorithe “instanton lig-  sponds to the scale where the physitHPl) coupling be-

uid model”) one may consult the revief24]. comes of order #. We had two benefits from considering
For the purpose of this discussion we restrict ourselves tghe supersymmetric theory; the NDA scaledisterminecby

the one instanton effedthough for QCD the distribution the gluino condensate and furthermore the exact beta func-

allows for instanton interactiomsa Single-instanton correc- tion is known. Our argument is made by Comparing the

tion to the effective action of some smooth backgroundcnown exact value of the gluino condensate to a “naive di-

gauge fieldG,,. The external field is supposed to be nor- mensional analysis estimate” and by evaluating the exact

malized at some normalization scale and CDG have pro- coupling at this scale. This is a useful conclusion for appli-

posed to include all instantons with sige< pya,=1/u. The  cations to supersymmetric model buildif2,8,10-13. The

effective charge is then defined as lessons for QCD are less obvious. In QCD the chiral La-
5 ) grangian scale\ \p, is in fact somewhat larger~1 GeV)
87 —b In( ~ )_ 4m than the scalé\ ocp~250 MeV which is associated with the
gesz(M) Apert (Nﬁ—l) perturbative coupling. It was pointed out, almost two de-
s 12 cades ag$3], that small instantons can lead to a precocious
% fp’"axd I’l(p)p4( 2877 ) (23) breakdown of perturbation theory, i.e. at scale whefr is
Gert(p) somewhat less than unity. It is an important question how

instanton effects can be relevant for QCD but not relevent for
whereb=11N./3—2N;/3 is the usual one-loop coefficient of N=1 supersymmetric theories.
the beta function, andn(p) is the distribution of instantons Consider, for examplé\=0 SU3) with three flavors and
(and anti-instantonsover size. N=1 SU3) with no flavors. These theories have identiogl

The instanton density is semiclassically calculable only aand numerically very similab, . Since the perturbative scal-

small p where it is very small, and therefore for high scalesing is therefore practically the same, we need to understand
the instanton correction is tiny; (A/u)P. At larger p the  whether it is possible that instanton effects can be important
instanton size distributioiknown from lattice studies and for the first theory at a scale in which they can be neglected
model-dependent calculationsas a strongly peaked shape, in the second.

with the peak aip~.2—.3 fm[19]. As soon aspya,= 1/u To address this question, we first need to remind our-
becomes close to the position of the peak, the CDG effectiveelves how instantons can affect the coupling. The naive an-
charge(23) blows up. swer is that they do not since the exact beta function is given

Of course in order to establish the magnitude of the effectvithout including instanton corrections to the running. In
of instantons one needs to know the instanton distribution. I@ssence supersymmetry protects against contributions from
Fig. 1 we compare three QCD-like theories. The first two aresmall instantons. However, this answer is inadequate since
pure gauge S(2) and SU3) where the distributions are ob- we already know that the dominant instanton contribution
tained by cooling of lattice configurations frara5] and[26]  will only affect the coefficient of a multifermion operator.
respectively. There are other recent lattice works fofZU This only contributes to the renormalization of the gauge
and SU3) which we have not included, e.§27] and[28].  coupling in the presence of a nonzero gluino condensate,
For QCD with three light flavors, we use the interacting in-which is only relevant in the infrared and would not be in-
stanton liquid mode(lILM) [29] to provide a model distri- cluded in the definition of the beta function.
bution. Now let us compare our two theories in more detail. We

The two-loop resultshown by the thin short-dashed ljne need to determine the normalization by which we will com-
is the same for any pure gauge the@mjth minor modifica-  pare the theories. This is straightforward as we can take iden-
tions for QCD which are not shownAs we have mentioned, tical gauge coupling values in the ultraviolet for the two
the two-loop running raises the scale at which the couplingheories in a safely perturbative regime. Subsequently, run-
gets big, but does not generate a sufficiently large scaliing down in energy, both couplings will run according to
With instantons present, the coupling blows up at a someperturbation theory essentially identically. Actually there is a
what higher scale, where perturbation theory looks naivelycaveat that the coupling we generally use in QCD is the

035005-6



IMPLICATIONS OF EXACT SUSY GAUGE COUPLING . .. PHYSICAL REVIEW D 59 035005

modified minimal subtractionMS) coupling whereas the Fid. 1) between these phenomenological models and the ex-
(DR) scheme is used in té=1 theory. However, one can aCt N=2 case. Furthermore, the generated scales are very
explicitly check that the difference in couplings is suffi- ¢10S€, and for QCD it is not so far from 1 GeV, the right
ciently small that it does not affect the argument below, ~ Phenomenological value. All this seems to support the in-
Now for theN=1 theory we know the NDA scale by the Stanton scenario of the generation of this scale for QCD,

arguments given previously. In fact we know it is the scale af!though it does not exclude other nonperturbative effects.
which the coupling blows up, which is about 250 MeV. In summary, we have looked at_potentlal implications of
Let us consider the fermion condensates and their evoly2USY theories for our understanding of low energy QCD.
tion in the two theoriegwe mean here the condensates of theB_ecause the phas_e structure of sgpersymmetrlc theorles is so
fields that are canonically normalized at each Scale the different, we restricted our attention to the question of ob-

scale wherg?~ 1 the two condensates are roughly the Saméaining a consistent picture of the boundary of the perturba-
since <M>_(AN:1 3= (250 MeV)? and (qq) tive domain. We have not addressed the issue of chiral sym-
- NDA/ —

— (1 GeV)¥1672=(250 MeV). Now let us compare their metry breaking and confineme(@side from mention of the

values at 1 GeV. The gluino condensate scales inversely Cei?g;eigc r;e;]lait;)nn sbcz;\g?/% ';]r;evecoarglger:r;?n; dzcig!sesea:jn(:htehe
the gauge coupling squared and is therefore grang

(250 MeV)/g°(1 GeV)=(250 MeV)dm. This is smaller pg;(s;::edgésecr:gipnznglr? St‘hlg ctgfrei]:t?gg\:‘ﬁni?igﬁhgg Ic\)I:I/\r/] Iecze(r:g;
than thle quzrk condens:;te which ishscaling VIVithI the rza e have argued that in fact the fundamental QCD scale 01;
anomalous dimension, that is, much more slowly, and i . ; . .

therefore still about (250 MeV) That is, the QCD conden- Sthe theory is more readily associated with the blowup of the

L : . . rphysical coupling, and that this is more likely to be the
sate is significantly larger. It is therefore not inconsistent fo hiaher chiral Laaranaian scale. We also note that the separa-
instantons to be significant at 1 GeV in QCD, but not in the 9 grang ' P

Eion of scales due to instantons argues against a standard

comparable supersymmetric theory. Although this does n ) ; S
establish the importance of instantons for QCD, it is reassu?l-argeN interpretation of QCD, for which instantons would

ing. not be important.
In order to probe the possible relevance of instanton ef-
fects, we studied the effective gauge coupling in Mwe 2
SU(2) SYM theory. There also we found that instanton ef- We acknowledge useful conversations with N. Arkani-
fects lead to a precocious explosion of the coupling. WeHamed, M. Beneke, C. Callan, A. Cohen, D. Finnell, H.
compared the effective charge as a function of the adjoinGeorgi, R. Jaffe, K. Johnson, D. Kaplan, M. Luty, P. Nason,
VEV in N=2 with the effective charge df=0 gauge theo- J. Negele, A. Nelson, M. Porrati, M. Strassler and F. Wilc-
ries obtained by smearing over small instanton effects. Week. L. R. thanks Princeton University and the Institute for
used the instanton liquid model and lattice data to estimat@dvanced Study for their hospitality during the course of this
the instanton density. We found a suggestive similaisge  work.
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