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The improvement problem of lattice gauge field theories is discussed within the Hamiltonian formulation.
For a pure gauge theory, we derive an improved quantum Hamiltonian from a lattice Lagrangian free ofO(a2)
errors in the classical limit. We do this by the transfer matrix method, but we also show that the alternative via
Legendre transformation gives identical results. The resulting color-electric energy is an infinite series, which
is expected to be rapidly convergent. For the purpose of practical calculations, we construct a simpler improved
Hamiltonian, which includes only nearest-neighbor interactions. We also consider tadpole improvement and
the structure of Lu¨scher-Weisz improvement. As a check of the improved Hamiltonian we compute the gluon
dispersion relation and find that theO(a2) errors disappear.@S0556-2821~99!04301-5#
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I. INTRODUCTION

A systematic pursuit of Symanzik’s improvement pr
gram @1# has recently led to major progress in lattice QC
opening the possibility to approach continuum physics
coarse lattices. After the early work by Lu¨scher and Weisz
@2#, recently, much progress has been made by the ALP
Collaboration concerning nonperturbative improvement
the fermion Lagrangian, by implementing PCAC~partial
conservation of axial vector current!. See, e.g., the review b
Lüscher@3#. For the pure gauge actions, however, nobo
knows how to perform nonperturbative improvement. T
main impetus in this field came from Lepage’s tadpole i
provement@4#.

In this paper we want to address the question of how
improvement scheme can be formulated for a lattice ga
theory in the Hamiltonian approach. Although standard
tice gauge theory has been very successful over the last
decades, there are areas where progress has been quite
Examples are the dynamical computation of theSmatrix and
cross sections, QCD at finite baryon density, or the com
tation of QCD structure functions in the region of smallxB
and Q2. This situation calls for the development of ne
methods, and in our opinion the lattice Hamiltonian approa
is a viable alternative@5# which should be explored. Th
Hamiltonian approach corresponds to considering a cont
ous time, i.e.,at50. Similar ideas have been pursued r
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cently by workers in standard lattice gauge theory by cons
ering anisotropic lattices with lattice spacingsat!as . This
has the purpose of improving the computation of the m
spectrum@4,6#.

As a first step, we restrict ourselves to the problem
improvement of pure gauge theory. Let us recall that
standard improvement program consists of several steps
starting from the Wilson action~see the review article by
Lepage@4#!: First defining a classically improved action, se
ond performing tadpole improvement and third introduci
additional quantum corrections~Lüscher-Weisz improve-
ment!. Hereby the tadpole improvement is considered a
convenient step in order to improve the rate of converge
of the third step. We now discuss how to carry over the
ideas to the Hamiltonian formulation. Different strategies a
possible, let us explain those for the case of classical
provement.

Strategy 1.Construct the classical Hamiltonian corr
sponding to the classical Wilson action. Improve this clas
cal Hamiltonian and quantize this Hamiltonian according
the rules of canonical quantization. This yields aclassically
improved quantum Hamiltonian. We should mention that a
classically improved Lagrangian to be used for classical c
culations relevant for heavy ion collisions has been rece
given by Moore@7#.

Strategy 2.Starting from the classically improved Wilso
action, construct via the transfer matrix a classically i
proved quantum Hamiltonian.

Strategy 3.Starting from the classical Wilson action, con
struct first the corresponding quantum Hamiltonian via
transfer matrix. This yields the Kogut-Susskind Hamiltoni
H(E,U) whereU andE are the link variables and their ca
nonical conjugate momenta. The usual expansion in pow
©1999 The American Physical Society03-1
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of the field variablesA and their conjugate]/]A yields then
the standard expression*d3x„(]/]A)21B2(A)… up to
corrections of O(a2). This Kogut-Susskind Hamiltonian
may be improved by adding corrections such that an be
agreement with thisformal continuum limit operator is ob-
tained.

Different strategies exist also for the further improv
ments~tadpole and Lu¨scher-Weisz! with respect to the quan
tum Hamiltonian. In principle, the construction of the
quantum corrections should start from new perturbative
culations in the Hamiltonian framework. The coefficients
a fully improved Wilson action~as given, e.g., by Lepage!
can only be used as starting point for the transfer matrix
obtain a fully improved Hamiltonian if the action is ex
pressed on a lattice with the time spacing being mu
smaller than the spatial spacing (at!as).

In this paper, we mainly discuss the problem of classi
improvement. As a first result we show explicitly that th
first strategy—the canonical quantization of a classical lat
gauge theory—is a viable alternative to the seco
strategy—using the transfer matrix—leading to the sa
quantum Hamiltonian, but in a more direct way.

The classically improved quantum Hamiltonian obtain
in this way has the mathematical structure of a kinetic p
with an infinite number of terms. The reason for this stru
ture is given by the fact that the inversion of a nearly lo
matrix leads to a nonlocal matrix. This being an undesira
feature from the point of view of practical calculations, w
show that it is possible to use the nonuniqueness of the
proved action to obtain an improved quantum Hamilton
containing only nearest neighbor interaction terms.

Finally we discuss the structure of the quantum Ham
tonian related to the tadpole and Lu¨scher-Weisz corrections
The determination of the corresponding coefficients, ho
ever, will be deferred to a future investigation. Although w
do not discuss the third strategy in detail, a fully consist
computation of the quantum corrections should eventu
lead to the same result as the first two strategies. Note
we discuss here only the improved Hamiltonian for the p
pose to compute the spectrum. The general existence of
improved Hamiltonians is discussed in standard many-b
theory in the context of model space calculations~@8,9#!.
Like in the action formulation general observables requ
particular improved operators.

Calculations of the glueball spectrum using the coup
cluster method based on the standard Kogut-Susskind Ha
tonian have been done by Luoet al. @10# and Schu¨tte et al.
@11#. By incorporation of an improved Hamiltonian on
would expect reliable results already in lower order of t
coupled cluster truncation compared to the standard Ko
Susskind Hamiltonian. Calculations are under way@12#. In
order to check if the proposed improved Hamiltonian ac
ally gives improvement, we have computed the gluon disp
sion relation. We find that theO(a2) errors disappear. This
is presented in the Appendix.

II. FROM WILSON ACTION TO KOGUT-SUSSKIND
HAMILTONIAN

A. Canonical method via Legendre transformation

Before deriving the improved Hamiltonian, we describe
a pedagogical manner how to obtain the standard Ko
03450
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Susskind lattice Hamiltonian@13# from the classical lattice
Lagrangian using the Legendre transformation@14–16#, and
canonical quantization. Wilson‘s Euclidean lattice action
given by (a[as)

SE5
a

at

2Nc

g2 (
t2h

~12Ph!1
at

a

2Nc

g2 (
s2h

~12Ph!. ~1!

Here the notation of Ref.@17# has been used, i.e.,t2h

stands for timelike ands2h for spacelike plaquettes, re
spectively, and

Ph5
1

Nc
Re Tr~Uh!. ~2!

For later use we need to distinguish between the Euclid
and Minkowski action as well as Lagrangian. Its relation
defined, when going from Minkowski to Euclidean time b
the transformation i t→t, exp@iSM#→exp@2SE#, LM→2LE
andSM5*dtLM as well asSE5*dtLE . Thus the Euclidean
lattice Lagrangian is the following:

LE52
2Nca

g2at
2 (x,i

~Pio21!2
2Nc

g2a
(

x,i , j
~Pi j 21!

52
a

g2at
2(x,i

Tr„Ui0~x!1Ui0
† ~x!22…

2
1

g2a (
x,i , j

Tr„Ui j ~x!1Ui j
† ~x!22…. ~3!

Here Ui j (x,t) denotes a spacelike plaquette where the fi
link goes in directioni and the second link goes in directio
j, andUi0(x,t) denotes the corresponding timelike plaquet
One should note thatPi05P0i and Pi j 5Pji for plaquettes.
In the temporal gaugeU0(x,t)51, the timelike plaquette be
comes a function only of the link variablesUi(x,t) ( i
51,2,3) and we have

Pi05
1

Nc
Re Tr~Ui0!5

1

Nc
Re Tr„Ui~x,t !Ui

†~x,t1at!….

~4!

We want to construct a classical Lagrangian defining traj
tories of generalized coordinatesUi(x,t) and generalized ve
locities, where the variablet is now continuous. We assum
that the action corresponding to this Lagrangian is given
the continuum limitat→0 of the lattice action which also
yields the dependence on the generalized velocities.

In order to construct this Lagrangian, we introduce a Ta
lor expansion in time and write, for a fixed (i ,x) up to errors
of O(at

3),
3-2
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Pi0215
1

Nc
Re Tr@U~ t !U†~ t1at!21#

5
1

Nc
Re TrS U~ t !FU†~ t !1atU̇

†~ t !1
at

2

2
Ü†~ t !G21D

5
at

2

2Nc
Re Tr@U~ t !Ü†~ t !#

52
at

2

2Nc
Tr@U̇†~ t !U̇~ t !#

52
at

2

2Nc
Tr@ q̇~ t !q̇~ t !#. ~5!

Here, we denoteU(t)[Ui(x)[Ui(x,t), and we have intro-
duced a generalized velocityq̇ ~corresponding to the angula
velocities of the classical top theory! which is an element of
the SU(Nc) Lie algebra,

q̇i~x!5q̇i
a~x!la52 iU̇ i~x!Ui

†~x!5 iU i~x!U̇ i
†~x!. ~6!

The SU(Nc) generatorsla are normalized totr (lalb)
5dab/2. Going to the limitat→0 and performing a transi
tion from Euclidean to Minkowski space (t→ i t ) yields the
classical lattice Lagrangian

LM5
a

2g2(
x,i

q̇i
a~x!q̇i

a~x!1
1

g2a (
x,i , j

Tr~Ui j 1Ui j
† 22!.

~7!

Here we denoteUi j [Ui j (x)[Ui j (x,t). For a classical ca-
nonical formulation we introduce the conjugate momenta

Ej
a~x!5

]LM

]q̇ j
a~x!

5
a

g2q̇ j
a~x!5

2ai

g2 Tr@laU j~x!U̇ j
†~x!#,

Ej~x!5Ej
a~x!la5

a

g2q̇ j~x!. ~8!

The standard Legendre transformation leads then to the
lowing classical lattice Hamiltonion:

H5(
x,i

]LM

]q̇i
a~x!

q̇i
a~x!2LM

5
g2

2a(x,i
Ei

a~x!Ei
a~x!2

1

g2a (
x,i , j

Tr~Ui j 1Ui j
† 22!.

~9!

Recalling q̇i→gaȦ, we convince ourselves thatEi

'a2Ȧi /g. Therefore Ei(x) is the approximated color
electric field on the lattice.

To quantize this classical theory, we proceed accordin
the rules of quantization of the classical top theory@18#. This
results in the prescription that the quantum mechanical st
are functions of the link variablesUi(x) and that the canoni
03450
l-

to

es

cal conjugatesEi(x) become the operators of infinitesim
left multiplication. A generalization of the standard quantu
mechanical formulax1a5e2 i p̂axeip̂a yields, for the link
variables,

ei eala
U j~x!5e2 i eaEj

a
~x!U j~x!ei eaEj

a
~x!. ~10!

Variables corresponding to different lattice links are cons
ered to be independent. This yields the commutation re
tions

@Ui~x!,Ej
a~y!#5laUi~x!dx,yd i , j ,

@Ui
†~x!,Ej

a~y!#52Ui
†~x!ladx,yd i , j .

~11!

Since the operatorsei eaEj
a(x) yield a representation of the

gauge groupSU(Nc), we obtain for theEj (x) the commu-
tation relations of the Lie algebra

@Ej
a~x!,Ej

b~x!#5 i f abgEj
g~x!. ~12!

The quantization of the classical Hamiltonian, Eq.~9!, by use
of the commutation relations Eq.~11! gives the standard
quantum Hamiltonian of Kogut and Susskind.

B. The transfer matrix method

The construction of the Kogut-Susskind Hamiltonia
from the Wilson action via the transfer matrix method h
been first established by Creutz@17# ~see also Ref.@19#!.
Here we recall the basic steps which may be used also for
construction of the improved Hamiltonian as discussed
low:

SE5E dtLE5(
t

at@L0„q~ t !,q~ t1at!…

1L1„q~ t !…#1O~at
2!. ~13!

Hereby,L0 is kinetic part of the Lagrangian which couple
the system at timet to that at timet1at . Invoking the
Baker-Cambell-Hausdorf formula and going to the lim
at→0 @20#, the Hamiltonian is eventually given by

H5H01L1 , ~14!

where the nontrivial partH0 is related toL0 via the func-
tional integral kernel of the corresponding time evoluti
operator~transfer matrix formalism!.

Let us recall that relation for the simple example of sta
dard one-body quantum mechanics of free motion@20#
where one has~we put the massm51)

L0~q8,q!5
1

2at
2 ~q82q!2, ~15!

with q85q(t1at), q5q(t). The discrete time-evolution
which relates the generatorH0 to the kernelL0 , is given by
3-3
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~e2atH0c!~q!5NE dq8e2atL0~q,q8!c~q8!, ~16!

whereN is some unimportant normalization factor. Using

c~q8!5e~q82q!¹c~q!, ~17!

yields

e2atH05NE dq8e2atL0~q,q8! e~q82q!¹. ~18!

In this case, and also for the case of scalar field theory@20#,
this integral is analytically computable for finiteat . It yields
the usual resultH052D/2.

In order to clarify the notations and the particularities f
non-Abelian gauge field theories, we first recall how to o
tain from the transfer matrix method the standard Kog
Susskind Hamiltonian. We start by the decomposition of
action as given by Eq.~1! and introduce the temporal gaug
The corresponding Lagrangian is given by

L0„U~ t1at!,U~ t !…5
a

g2at
2(x,i

Tr„22Ui~x,t1at!

3Ui
†~x,t !2H.c.…,

L1„U~ t !…5
1

g2a
(

x,i , j
Tr„22Ui j ~x,t !2H.c.….

~19!

HereL0 corresponds to the kinetic part andL1 to the poten-
tial part, respectively. The kinetic part of the Lagrangian
given by the plaquettes involving different times. Using t
notation analogous to Eq.~15!,

L0~Ux, j8 ,Ux, j !5
a

g2at
2 (

x, j
Tr@22~Vx, j1Vx, j

† !#,

Vx, j5Ux, j8 Ux, j
† , ~20!

whereU corresponds to the time slicet andU8 to the time
slice t1at , respectively. It is well known that the quantu
mechanics ofSU(Nc) gauge theory and that of the quantu
mechanical top are closely related@13,18#. Thus the relation
between the wave function at time slicet and time slice
t1at , in analogy to Eq.~17!, involves the standard colo
electric operatorsEa,a51, . . . ,Nc

221,

C~U8!5eivaEa
C~U !, ~21!

where the numbersva are the parameters of a group eleme
gVPSU(Nc) such that

gV5eivala
5U8U215V. ~22!

The analogy to Eq.~18! the HamiltonianH0 in the case of
one link variableV5U8U† is given by
03450
-
-
e

t

e2atH05NE dU8e2atL0~V!eivaEa
, ~23!

whereL0(V) is given by Eq.~20!. We use the invariance o
the Haar measure yieldingdU85dV and note that like in
Eqs. ~17!,~21!, the operatorsEa have to be treated as com
muting with U andU8. The integral in Eq.~23! can not be
evaluated analytically for finite time translationsat . How-
ever, for the determination ofH0 one may consider the limi
at→0. In this case, the variablesV approach the identity and
it is legitimate to use the approximation for theL0 term

Tr~V1V†!52Tr~coslava!52FNc2
1

4
v21O~v4!G .

~24!

Writing the group integral *dU as Haar measure
*)advadetJac yields for Eq.~23! a Gaussian integral in ana
ogy to Eq.~18!, with the exponent

a

2atg
2
vava1 iEava5

a

2atg
2S va1 iEa

atg
2

a D 2

1
atg

2

2a
EaEa. ~25!

Taking the sum over the spacelike links this reproduces
standard kinetic term of the Kogut-Susskind Hamiltonian

H05
g2

2a(y, j
Ej

a~x!Ej
a~x!. ~26!

III. CLASSICAL IMPROVEMENT OF KOGUT-SUSSKIND
HAMILTONIAN

A. Continuum behavior of classical improved action

The Wilson action reproduces the classical continuum
tion only up to errors ofO(a2). It is possible to add to the
Wilson action new terms such that theseO(a2) errors are
canceled@1,21,4#. In order to construct the correspondin
improved Hamiltonian, one needs a generalization to latti
with atÞas[a. We first discuss the classical continuum b
havior of the Wilson action. For spacelike plaquettes one
~see Ref.@4#!

Pi j 5
1

Nc
Re Tr~Ui j !→12

g2a4

2Nc
S Tr@Fi j Fi j #

1
a2

12
Tr@Fi j ~D i

21D j
2!Fi j # D . ~27!

For convenience, the continuum limit of a loop is express
in terms of the field strength tensor and its covariant deri
tive the center of the loopx0 . According to Ref.@4# for
timelike plaquettes one has to consider the path ordered
tegral
3-4
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R A•dx→E
2a/2

a/2

dxiE
2at/2

at/2

dtFFi0~x0!

1
1

2
xi 8xj 8~Di 8Dj 8Fi0!U

x5x0

G
→aatFi0~x0!1

ata
3

24
~D i

2!Fi0~x0!

1
aat

3

24
~D 0

2!Fi0~x0!. ~28!

The last term can be neglected sinceat!a. Therefore

Pi05
1

Nc
Re Tr~Ui0!→

1

Nc
Re TrF12

1

2S g R A•dxD 2G
→

1

Nc
Re TrF12

g2a2at
2

2 S Fi01
1

24
a2D i

2Fi0D 2G
→12

g2a2at
2

2Nc
S Tr@Fi0Fi0#1

a2

12
Tr@Fi0D i

2Fi0# D
1O~a2at

4!. ~29!

In order to compensate theseO(a2) errors, one may add
new terms to the Wilson action@22,4#. One of these terms is
given by a rectangular loop,

~30!

For a spacelike loop one has in particular

Ri j 5
1

Nc
Re Tr@Ui~x!Ui~x1a î !U j~x12a î !

3Ui
†~x1a ĵ1a î !Ui

†~x1a ĵ !U j
†~x!#

→12
g2a4

2Nc
S 4Tr@Fi j Fi j #

1
a2

3
Tr@Fi j ~4D i

21D j
2!Fi j # D . ~31!

Considering timelike loops, there are two possibilities. Fir
one has a 2a3at rectangular loop
03450
t,

~32!

yielding

Ri05
1

Nc
Re Tr@Ui~x,t !Ui~x1a î ,t !

3U0~x12a î ,t !Ui
†~x1a î ,t1at!Ui

†~x,t1at!U0
†~x,t !#

→12
g2a2at

2

2Nc
Tr ReS 2Fi01

a2

3
D i

2Fi0D 2

→12
g2a2at

2

2Nc
S 4Tr@Fi0Fi0#1

4a2

3
Tr@Fi0D i

2Fi0# D . ~33!

Secondly, one has a 2at3a rectangular loop

~34!

This term corresponds to advancing two steps in time
rection. The conventional transfer matrix corresponds to
advance of a single step in time direction. Thus it is n
compatible with the definition of the transfer matrix. W
may disregard this term because the improvement term
the Lagrangian are not uniquely determined@4#. Taking into
account only the first term is sufficient.

Therefore, we make the following ansatz for the clas
cally improved Euclidean lattice Lagrangian@4#:

Lt52
2Nca

g2at
2 (

x,i
FC18

Pi01P0i

2
1C28Ri0G1const.

C1854/3 and C28521/12,

Ls52
2Nc

g2a (
x,i , j

FC1

Pi j 1Pji

2
1C2~Ri j 1Rji !G1const,

C155/3 and C2521/12,

LE5Lt1Ls . ~35!

We remark that an equivalent expression for the classic
improved Lagrangian was obtained by Moore@7#.

B. Improved Hamiltonian via Legendre transformation

Now we proceed as in Sec.~II A ! to construct a classica
Lagrange function in Minkowski space in terms of the ge
eralized coordinatesUi(x) and the generalized velocitie
q̇i(x) as defined in Eq.~6!. Working in the temporal gauge
and denotingŪ(t)5Ui(x1a î ,t) yields
3-5
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Ri05
1

Nc
Re Tr@Ū~ t !Ū†~ t1at!U

†~ t1at!U~ t !#

→
1

Nc
Re TrH Ū~ t !F Ū†~ t !1atU̇̄

†~ t !1
at

2

2
Ǖ†~ t !GFU†~ t !1atU̇

†~ t !1
at

2

2
Ü†~ t !GU~ t !J

5
1

Nc
Re TrFat

2

2
Ū~ t !Ǖ†~ t !1

at
2

2
Ü†~ t !U~ t !1at

2Ū~ t !U̇̄†~ t !U̇†~ t !U~ t !G1const

→2
1

Nc
at

2TrF1

2
q̇i~x1a î !q̇i~x1a î !1

1

2
q̇i~x!q̇i~x!1Q̇i~x!q̇i~x1a î !G1const, ~36!
g

n

i

-

ith

d

ing
in

h-
where we have introduced the variable

Q̇i~x!5Ui~x!†q̇i~x!Ui~x!. ~37!

This gives the following classical improved lattice Lagran
ian in Minkowski space

LM5
a

g2(
x,i

Tr@~C1812C28!q̇i~x!q̇i~x!

12C28Q̇i~x!q̇i~x1a î !#2Ls . ~38!

This Lagrangian can be written in the form

LM5
1

2

a

g2(s,r
q̇s~ t !Msr„U~ t !…q̇r~ t !2Ls ,

where s5~x,i ,a!, r5~y, j ,b!,

Ms,r„U~ t !…5~C1812C28!ds,r14C28d~x,y2a î !d i , j

3Tr@Ui
†~x!laUi~x!lb#. ~39!

The matrixM is not symmetric. However, it can be show
that only the symmetric part ofM will contribute to the
Hamiltonian. Thus we introduce

Ls,r
sym5d~x,y2a î !d i , jTr@Ux→y

† laUx→yl
b#

1d~x,y1a î !d i , jTr@Uy→x
† lbUy→xl

a#, ~40!

which allows to write

Ms,r
sym5

1

2
~M1Mt!s,r5~C1812C28!ds,r12C28Ls,r

sym.

~41!

Inspection shows thatLsym and henceMsym are real, sym-
metric matrices. Then the Lagrangian reads

LM5
1

2

a

g2(s,r
q̇s~ t ! Msr

sym
„U~ t !… q̇r~ t !2Ls . ~42!

Via Legendre transformation, the classical improved Ham
tonian is obtained
03450
-

l-

H5(
x,i

]LM

]q̇i
a~x!

q̇i
a~x!2LM5H01V,

H05
1

2

g2

a (
s,r

Es~Msym!s,r
21Er ,

V52
2Nc

g2a (
x,i , j

FC1

Pi j 1Pji

2
1C2~Ri j 1Rji !G .

~43!

The color-electric fieldEs is given by the conjugate momen
tum, being related to the generalized velocityq̇s via,

Es5
]L

]q̇s

5
a

g2(r
Ms,r

symq̇r . ~44!

The color-electric field, obeys commutation relations w
the link variables given by Eq.~11!.

1. Hopping expansion and algebraic properties of Msym

Taking a closer look to the kinetic part of the improve
Hamiltonian reveals that viaMsym

21 an infinite number of
terms enters into the Hamiltonian. In analogy to the hopp
parameter expansion@19#, which expresses the propagator
terms of powers of a hopping matrix, we introduceKsym

Msym5m0@11Ksym#5m0@11k0Lsym#

m05C1812C285
7

6
,

k05
2C28

C1812C28
52

1

7
, ~45!

to obtain

Msym
21 5

1

m0
@12Ksym1Ksym

2 2Ksym
3 1•••#. ~46!

While Ksym involves only link variables between next neig
bor lattice sites, higher powers ofKsym involve links extend-
ing over several lattice sites. Using the notation
3-6
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Ux→x1~N11!a î5Ui~x!Ui~x1a î !•••Ui~x1Naî!, ~47!

we generalize the definition ofLsym to

Ls,r
~N!sym5d~x,y2Naî!d i , jTr@Ux→y

† laUx→yl
b#

1d~x,y1Naî!d i , jTr@Uy→x
† lbUy→xl

a#,

N50,1,2, . . . , ~48!

whereLsym
(0) 51, andLsym

(1) 5Lsym. A little algebra shows tha
the matrixLsym

(N) obeys the following product rule:

Lsym
~p! Lsym

~q! 5
1

2
Lsym

~p1q!1
1

2
Lsym

~ up2qu! . ~49!

Thus we obtain, for the lowest powers ofKsym,

Ksym5k0Lsym
~1! ,

Ksym
2 5k0

2F1

2
Lsym

~0! 1
1

2
Lsym

~2! G ,
Ksym

3 5k0
3F S 1

2
1

1

4DLsym
~1! 1

1

4
Lsym

~3! G ,
Ksym

4 5k0
4F S 1

4
1

1

8DLsym
~0! 1

1

2
Lsym

~2! 1
1

8
Lsym

~4! G ,
Ksym

5 5k0
5F S 1

2
1

1

8DLsym
~1! 1S 1

4
1

1

16DLsym
~3! 1

1

16
Lsym

~5! G ,
Ksym

6 5k0
6F S 1

4
1

1

16DLsym
~0! 1S 1

4
1

1

8
1

1

16
1

1

32DLsym
~2!

1S 1

8
1

1

16DLsym
~4! 1

1

32
Lsym

~6! G ,
A ~50!

It has the general structure

Ksym
n 5k0

n(
p50

n

kp
~n!Lsym

~p! . ~51!

The coefficients of lowest order are

k0
~0!51,

k0
~1!50, k1

~1!51,

k0
~2!5

1

2
, k1

~2!50, k2
~2!5

1

2
,

A ~52!

The coefficientskp
(n) vanish except whenn and p are both

even or both odd. Using Eq.~51!, we expressMsym
21 by
03450
Msym
21 5

1

m0
(
p50

`

mpLsym
~p! ,

~53!

mp5 (
n5p

`

~2k0!nkp
~n! .

As result, starting from an improved Lagrangian with a fin
number of terms, one obtains for the improved Hamilton
an expression given by an infinite number of terms.

In the following we will explore more of the algebrai
structure ofMsym and obtain analytic expressions for th
hopping expansion coefficientskp

(n) . This will be useful in
what follows. We introduce

Js,r52d~x,y2a î !d i , jTr@Ux→y
† laUx→yl

b#. ~54!

A little algebra shows that

Js,r
n 52d~x,y2na î!d i , jTr@Ux→y

† laUx→yl
b#, ~55!

and

JJt5JtJ51, ~56!

i.e., J is a real, orthogonal matrix. Comparison with Eq
~40!,~48! shows

Lsym5
1

2
~J1Jt!,

Lsym
~p! 5

1

2
„Jp1~Jt!p

…,

Ksym5
k0

2
~J1Jt!,

Msym5m0F11
k0

2
~J1Jt!G . ~57!

Using Eq.~56!, Msym can be factorized,

Msym5
m0

11C2
~11CJ!~11CJt!, ~58!

if C is chosen as solution of

k05
2C

11C2
. ~59!

Solutions areC52764A3. Note thatJ being a real, or-
thogonal matrix, which has eigenvalues of modulus one,
uCuÞ1, thus the matrixMsym can be inverted andMsym

21 is
well defined. Moreover, we note thatMsym is a positive defi-
nite matrix. This can be seen directly from Eq.~58!, which
factorizesMsym into a matrix times its Hermitian conjugate
Also, a lower bound can be estimated using Eq.~57!. J being
orthogonal impliesuuJuu51. Thus RJ defined byRJ5 1

2 (J
1Jt), being a real, symmetric matrix likeMsym, obeys
3-7
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uuRJuu<1. Then an arbitrary state vectorf of unit norm
yields u^fuRJuf&u<1. Then Eq.~57! implies

^fuMsymuf&5m01m0k0^fuRJuf&

5
7

6
2

1

6
^fuRJuf& >1, ~60!

showing also thatMsym is positive. To summarize the prop
erties ofMsym, this is a real, symmetric, positive definite an
nonsingular matrix. This property is needed for the constr
tion of the Hamiltonian via the transfer-matrix, in particul
for doing the Gaussian integral.

Factorization ofMsym, via Eq.~58!, allows to express the
kinetic energy termH0 of the Hamiltonian, Eq.~43!, as fol-
lows:

H05
g2

2a

11C2

m0
(

n
F(

r
~11CJ!nr

21ErG2

5
g2

a

11C2

m0
Tr(

x,i
@Ei~x!2CUi~x!Ei~x1a î !Ui

†~x!

1C2Ui~x!Ui~x1a î !Ei~x12a î !Ui
†~x1a î !

3Ui
†~x!2•••#2. ~61!
a-

ha
fo

an
e
e

03450
-

Note that this is an expansion in terms ofC andJ.
Analytic expressions for the coefficients of the hoppi

expansion can be obtained in the following way:

Ksym
n 5S k0

2 D n

~J1Jt!n

5S k0

2 D n

(
p50

n S n

pD Jp~Jt!n2p. ~62!

Because this expression is a symmetric matrix and mak
use of Eqs.~56!,~57!, one may write

Ksym
n 5S k0

2 D n

(
p50

n

ap
~n!
„Jp1~Jt!p

…5S k0

2 D n

(
p50

n

ap
~n!2Lsym

~p! .

~63!

Comparison of coefficients yields
p50: a0
~n!5

1

2S n

n/2D if n is even,

zero else,

p>1: ap
~n!5S n

~n1p!/2D if n,p are both even or both odd,

zero else.
~64!
q.

oup
-

Comparison with Eq.~51! eventually yields for the hopping
expansion coefficientskp

(n) the following expression:

kp
~n!522n11ap

~n! . ~65!

C. Improved Hamiltonian via transfer matrix

We start from the classically improved Euclidean L
grangian, given by Eq.~35!. It is built from spacelike
plaquettesPi j , timelike plaquettesPi0 and corresponding
rectangular loopsRi j andRi0 . We now want to show that the
transfer matrix method yields the same Hamiltonian as
been obtained in the previous section via Legendre trans
mation. Let us consider the timelike part of the Lagrangi
which yields the kinetic part of the Hamiltonian. The spac
like part yields the potential part in a trivial way. Using th
temporal gauge, one has
s
r-
,
-

Pi05
1

2Nc
Tr@Ui~x,t !Ui

†~x,t1at!

1Ui~x,t1at!Ui
†~x,t !#5

1

2Nc
Tr@Vi~x,t !1Vi

†~x,t !#,

~66!

using the notationVi(x,t)5Ui(x,t1at)Ui
†(x,t). Similarly

one obtains for the rectangular loop

Ri05
1

2Nc
Tr@Vi~x,t !Ui~x,t !Vi~x1a î ,t !Ui

†~x,t !

1Ui~x,t !Vi
†~x1a î ,t !Ui

†~x,t !Vi
†~x,t !#. ~67!

The Hamiltonian is defined via the transfer matrix like in E
~23!. Because we considerat→0, the group integral will be
dominated by group elements ofSU(Nc) in the neighbor-
hood of the unit element. Thus one can expand the gr
elementsVi(x,t) in a Taylor series of the Lie group param
etersvx,i

a (t),
3-8
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Vi~x,t !5exp@ ivx,i~ t !#511 ivx,i~ t !2
1

2
vx,i~ t !21O~v3!,

~68!

where we denotevx,i(t)5(avx,i
a (t)la. Thus we arrive at

Tr@Vi~x,t !1Vi
†~x,t !#52Nc2

1

2(a vx,i
a ~ t !21O~v3!,

~69!

and hence in the notation of Eq.~39!,

(
x,i

Tr@Vi~x,t !1Vi
†~x,t !#52

1

2(s,r
vs~ t !dsrvr~ t !

1O~v3!1const. ~70!

Carrying out the corresponding steps for the rectang
term, one obtains

(
x,i

Tr@Vi~x,t !Ui~x,t !Vi~x1a î ,t !Ui
†~x,t !

1Ui~x,t !Vi
†~x1a î ,t !Ui

†~x,t !Vi
†~x,t !#

52(
s,r

vs~ t !Fdsr1
1

2
JsrGvr~ t !1O~v3!1const,

~71!

whereJ is given by Eq.~54!. Inserting this into the timelike
LagrangianLt yields eventually

Lt5
1

2

a

at
2g2(s,r

vs~ t !@~C1812C28!dsr14C28Jsr
sym#vr~ t !.

~72!

One should note that the matrixJ is not symmetric. How-
ever, to the Lagrangian only the symmetric partJsym5(J
1Jt)/2 contributes. Note further thatJsym5Lsym and Msym

5(C1812C28)114C28Jsym, being real, symmetric matrices
Thus we arrive at

Lt5
1

2

a

at
2g2(s,r

vs~ t !Msr
symvr~ t !. ~73!

The transfer matrix is then given by
03450
r

exp@2atH01O~at
2!#

5E F)
x,i

dVi~x!Gexp@2atLt„Vi~x!…#

3expF i (
x,i ,a

vx,i
a Ei

a~x!G
5E F)

s
dvsdetJacG

3expF2
1

2

a

atg
2(s,r

vsMsr
symvr1 i(

s
vsEsG

5NexpF2
1

2(s,r
EsS a

atg
2

MsymD
sr

21

ErG . ~74!

Thus we obtain

H05
g2

2a(s,r
Es~Msym

21 !srEr ~75!

in agreement with the result, Eq.~43!, obtained via Legendre
transformation.

IV. IMPROVED HAMILTONIAN GIVEN
BY FINITE NUMBER OF TERMS

As was shown in the previous section, the kinetic ene
of the classical improved Hamiltonian obtained directly fro
the corresponding action is given by an infinitive series
terms. Even though the series is rapidly convergent, such
Hamiltonian is too complicated for a practical calculatio
Recalling that the purpose of classical improvement is
push theO(a2) error to orderO(a4), we show here how to
construct a simpler improved Hamiltonian corresponding
a finite number of terms to achieve such a goal. In the p
vious section we have seen that the infinite number of te
in the Hamiltonian arises due to the inversion of the mat
Msym, which itself has only a finite number of terms. Thus
is plausible that in order to obtain a Hamiltonian given by
finite number of terms, one needs to start from a Lagrang
corresponding to a matrixMsym with an infinite number of
terms. Such a construction is possible, because the Lagr
ian leading to improvement is not unique. We start by co
sidering the following type of Wilson loop, which emerge
as a generalization of the 2a3at loop Ri0 to a
(n11)a3at loop parallel transporterRni,0 given by

~76!

In the temporal gauge it corresponds to the expression
3-9
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Rni,05
1

Nc
Re Tr@Ui~x!Ui~x1a î !•••

3Ui„x1~n21!a î…Ui~x1na î!

3Ui
†~x1na î,t1at!Ui

†
„x1~n21!a î…•••

3Ui
†~x1a î !Ui

†~x,t1at!#. ~77!

Note that for n51,Rni,0 coincides with Ri0 . The path-
ordered integral of such a Wilson loop is given by

R A•dx→E dxidtFFi0~x0!1
1

2
xi 8xj 8~Di 8Dj 8Fi0!Ux5x0G

52aatFi0~x0!1
1

2
atD i

2Fi0~x0!F E
~n21!a/2

~n11!a/2
x2dx

1E
2~n11!a/2

2~n21!a/2
x2dxG

52aatFi0~x0!1
3n211

12
ata

3D i
2Fi0~x0!. ~78!

Therefore, we obtain the following continuum behavior f
the above Wilson loop

Rni,0→
1

Nc
Re TrF12

1

2S R A•dxD 2G
→12

g2a2at
2

2Nc
„4Tr@Fi0Fi0#

1~n211/3!a2Tr@Fi0D i
2Fi0#…. ~79!

One verifies forn51 that Eq.~79! coincides with Eq.~33!,
as should be.

We make the following ansatz for the Euclidean latti
Lagrangian

Lt52
2Nca

g2at
2

A8FB8(
x,i

Pio~x!1 (
n51

`

C8n(
x,i

Rni,0~x!G .

~80!

In order that the usual continuum limit of the Lagrangian
obtained and theO(a2) error is canceled, we imply from th
continuum behavior ofPi0 , Eq. ~29!, and ofRni,0 , Eq. ~79!,
that the following conditions hold,
03450
A8FB814(
n51

`

C8nG51, ~81!

A8FB8

12
1 (

n51

` S n21
1

3DC8nG50. ~82!

We have deliberately introduced the coefficientB8. Choos-
ing

B85122(
n51

`

C8n, ~83!

results in a simple expression of the Lagrangian expresse
terms of generalized coordinates and velocities. Using

(
n51

`

n2C8n5C8
]

]C8
S C8

]

]C8
D (

n51

`

C8n5
C8~11C8!

~12C8!3
,

~84!

we obtain

A85
12C8

11C8
,

B85
123C8

12C8
, ~85!

andC8 is a root of

C83111C82111C81150. ~86!

This equation has three real roots, given by

C8521,

C852562A6. ~87!

The root closest to zero is C0852512A65
20.101021 . . . . In order to obtain the kinetic energy, w
expressRni,0 in terms of generalized coordinates and velo
ties,
Rni,0→
1

Nc
Re TrF FUi

†~x!1atU̇ i
†~x!1

1

2
at

2Ü i
†~x!GUi~x!Ui~x1a î !•••Ui„x1~n21!a î…Ui~x1na î!

3FUi
†~x1na î!1atU̇ i

†~x1na î!1
1

2
at

2Ü i
†~x1na î!GUi

†
„x1~n21!a î…•••Ui

†~x1a î !G
→

1

Nc
TrF12

1

2
at

2q̇i~x!q̇i~x!2
1

2
at

2q̇i~x1na î!q̇i~x1na î!2at
2Q̇i„x1~n21!a î…q̇i~x1na î!G , ~88!
3-10
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where we have introduced

Q̇i„x1~n21!a î…5Ui
†
„x1~n21!a î…•••Ui

†~x1a î !Ui
†~x!q̇i~x!Ui~x!Ui~x1a î !•••Ui„x1~n21!a î…. ~89!

Note again, forn51, Q̇i(x1(n21)a î ) coincides withQ̇i(x) defined in Eq.~37!. Thus we can write the timelike part of th
Minkowski lattice Lagrangian,

Lt
M5

a

g2 A8(
x,i

TrF q̇i~x!q̇i~x!12(
n51

`

C8nQ̇i„x1~n21!a î…q̇i~x1na î!G . ~90!

To find the kinetic energy of the improved Hamiltonian, it is convenient to express this in terms of the matrixJ, defined by
Eq. ~54!,

Lt
M5

a

2g2(
s,r

q̇sMsr8 q̇r , ~91!

where

M 85A8F112(
n51

`

C8nJnG5A8
11C8J

12C8J
. ~92!

The color-electric field is expressed as

Es5
]L

]q̇s

5
a

g2(r
M 8s,r

symq̇r . ~93!

where

M 8sym5
1

2
~M 81M 8t!5A8

12C82

~12C8J!~12C8Jt!
5

~12C8!2

~11C82!2C8~J1Jt!
. ~94!

If we chooseC8 such thatuC8uÞ1, e.g.C08520.101021 . . . , thenMsym8 is a real, symmetric, positive and nonsingular matr
Finally, we obtain the corresponding kinetic energy of the improved Hamiltonian, given by

H05
1

2

g2

a (
s,r

Es~M 8sym!s,r
21Er

5
g2

2a(s,r
F 11C82

~12C8!2
Esds,rEr2

C8

~12C8!2
Es~J1Jt!s,rErG

5
g2

2a(s,r
F 11C82

~12C8!2
Esds,rEr2

2C8

~12C8!2
EsJs,rErG

5
g2

a
Tr(

x,i
F 11C82

~12C8!2
Ei~x!Ei~x!2

2C8

~12C8!2
Ui~x!†Ei~x!Ui~x!Ei~x1a î !G . ~95!
fo

i

k
d

he
ck-
ec-
be
It consists of only two terms, which makes it convenient
practical calculations.

V. TADPOLE IMPROVEMENT

In the preceding section, we derived an improved Ham
tonian for gluons with no classicalO(a2) corrections. An
important further step of the improvement program is to ta
into account quantum corrections by adding suitable ad
03450
r

l-

e
i-

tional terms. Without such improvement, only part of t
O(a2) errors are canceled. According to Lepage and Ma
enzie, tadpole improvement is a simple, but important s
ond step. In fact most of the tadpole contributions can
removed just by dividing each link operatorUm by the mean
um of the link. For asymmetric lattices,at!as , and small
enoughat we haveut51 for time-like directions. In the
Hamiltonian formulation, the meanus of a spacelike link is
defined by
3-11
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us5^VuPi j uV&1/4, ~96!

whereuV& is the vacuum of the improved Hamiltonian. Thu
tadpole improvement of the lattice LagrangianL5Lt1Ls ,
where Lt is given by Eq.~80! and Ls by Eq. ~35!, corre-
sponds to the replacements

Pi j→Pi j /us
4 ,

Ri j→Ri j /us
6 ,

~97!
Pi0→Pi0 /us

2 ,

Rni,0→Rni,0 /us
2n12 .

This is equivalent to the following replacement of consta

C1→C1 /us
4 ,

C2→C2 /us
6 ,

gt→gtus ,

C8→C8/us
2 , ~98!

where we putg5gt in Eq. ~80!. For the transition to the
Hamiltonian these redefinitions of the coefficients can
taken over yielding for the ‘‘two-term’’ tadpole improve
Hamiltonian (C8520.101021)

H5H01V,

H05
gt

2us
2

a
Tr(

x,i
F 11C82/us

4

~12C8/us
2!2

Ei~x!Ei~x!

2
2C8/us

2

~12C8/us
2!2

Ui~x!†Ei~x!Ui~x!Ei~x1a î !G ,

V52
2Nc

gs
2a (

x,i , j
FC1

us
4

Pi j 1Pji

2
1

C2

us
6 ~Ri j 1Rji !G .

~99!

Here, we have introduced different couplings in the kine
and potential terms in order to allow for a ‘‘speed of ligh
correction as discussed in Ref.@23# ~see below!.

VI. FURTHER PERTURBATIVE IMPROVEMENT

Tadpoles have been identified as an essential part of
problem when approaching the continuum limit of quantu
field theory on the lattice. A systematic perturbative calcu
tion on the lattice has been performed by Lu¨scher and Weisz
@2#. This leads to the determination of additional terms in
Lagrangian needed to compensate errors. It turns out
such a further improved Lagrangian~for details see Refs
@24,25#! contains the same plaquettes and planar recta
loop terms which occurred before, but with suitably red
fined coefficients, plus a new term, being a nonplanar ‘‘p
allelogram’’ loop, given by
03450
s

e

c

he

-

e
at

le
-
r-

~100!

It corresponds to

Cx,mns5
1

Nc
Re Tr~Ux,mUx1am̂,nUx1am̂1an̂,s

3Ux1an̂1aŝ,m
21

Ux1aŝ,n
21

Ux,s
21!. ~101!

The corresponding term occurring in the Lagrangian is p
portional to

(
x,m,n,s

Cx,mns . ~102!

The structure of the corresponding improved Hamilton
can be inferred from the improved Lagrangian as befo
One introduces different lattice spacingsas5a and at and
constructs the Hamiltonian by Legendre transformation a
canonical quantization. Here, we refrain from discussing
tails and only give the general structure of emerging Ham
tonian.

~1! The plaquette and planar rectangle loopterms will
give a part of the improved Hamiltonian which has the sa
form as before, only the weights of the individual terms w
be different.

~2! The spacelike parallelogram loopterms ~i.e. mns
spacelike! will yield a corresponding additional term in th
potential part of the Hamiltonian.

~3! The timelike parallelogram loopterms ~where either
m or n or s is time-like, the other two indices being spac
like! produce a large number of different contributions to t
Hamiltonian~with well defined weights!. The final result for
the improved Lagrangian has the structure

L5Lt~ q̇,U !1Ls~U !, ~103!

with

Lt5
a

2gt
2F(

s,r
q̇sMsr~U !q̇r1(

s
As~U !q̇s1H.c.G .

~104!

A new feature is the occurrence of a term linear inq̇. As
before,M (U) is a symmetric matrix of the form

M511M̃ , ~105!

allowing the definition ofM 21 by a geometric series expan
sion. Legendre transformation and quantization yields
Hamiltonian of the structure

H5H01V, ~106!

with
3-12
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H05
gt

2

2a(s,r
@EsMsr

21Er2~AsMsr
21Er1H.c.!

22AsMsr
21Ar#. ~107!

VII. DISCUSSION

For the purpose of a numerical calculation, in particu
for a comparison with lattice Monte Carlo results, the fo
lowing points are important.

~1! As discussed in Refs.@26,23#, the scales related to th
regularization of the gauge field theory in the Hamiltoni
formulation as opposed to the Euclidean path integral form
lation are different. This difference can be accounted for
introducing spacelike (gs) and timelike couplings (gt) which
have a well defined relation to the ‘‘Lagrangian coupling’’g.
In one-loop approximation this relation is of the type

1

gm
2 5

1

g2 1cm , ~108!

wherecm depends on the space-time dimension and on
type of the gauge group and is given in detail in Re
@26,27,23#.

~2! Because of this difference in the nature of the latt
regularization, all perturbative calculations which determ
some non-classical improvement in the sense of Lu¨scher-
Weisz have to be redone. Such a calculation can be don
an asymmetric Euclidean lattice withat!as ~see Ref.@23#!.

~3! Tadpole improvement which has been considered
Lepage@25# in the Lagrangian framework corresponds in t
Hamiltonian framework to an expression given by Eq.~99!.

~4! A systematic determination of the Lu¨scher-Weisz im-
provement terms on asymmetric lattices in the Hamilton
framework has still to be done. Since these additional c
rections turn out to be small in the standard Euclidean fra
work ~see Ref.@25#!—the most important correction comin
from the inclusion of the tadpole terms—in should be wor
while to work with the improved Hamiltonian given by Eq
~99!, e.g., for the numerical simulation of glueballs.

To summarize, we have investigated in this paper t
schemes of improvement of the Kogut-Susskind Ham
tonian: If one starts from Lepage’s Lagrangian, which
preferable for Monte Carlo simulations in the Lagrangi
formulation, the corresponding Hamiltonian is given by
infinite series of terms which contain terms with arbitra
long range. In contrast, we have shown that by starting fr
a suitable Lagrangian with an infinite number of terms , o
can get an improved Hamiltonian consisting of a finite sm
number of terms. This should be preferable for numeri
computations in the Hamiltonian framework. Finally w
should stress that we have restricted ourselves within
paper to elucidate the structure of the Hamiltonian impro
ment problem for a pure lattice Yang-Mills theory, i.e., f
the Kogut-Susskind Hamiltonian. Including fermions, t
improvement problem is even more vital since the stand
action with Wilson fermions contains alreadyO(a) errors
due to the removement of the mirror fermions by a Wils
term. It should be interesting and important to work out t
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analogue of the recent exciting development of theO(a2)
improvement@3# in the Hamiltonian framework.
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APPENDIX

As a simple example for the validity of our improveme
scheme, we derive in this appendix the dispersion rela
for the ~classical! gauge fields.

1. Dispersion relation in the continuum

From the Lagrangian equations of motion and using
weak field approximation,Ai

a(x)!1, we obtain

d

dt
F0i

a 2(
j

] jF ji
a 50. ~A1!

In the temporal gauge, this is equivalent to

Äi
a~x!5(

j
~d i j ¹

22] i] j !Aj
a~x!. ~A2!

Its Fourier transformation leads to the expected dispers
relation

v i
25(

j
~d i j k

22kikj !, ~A3!

which means that only the transverse momentum com
nents contribute to the dispersion relation.

2. Dispersion relation for the Kogut-Susskind Hamiltonian

Once we obtain a generalized momentum according to
standard definitionEs5]LM /q̇s the conjugate variablesqs

andEs should satisfy the Poisson bracket relation$qr ,Es%
5ds,r . The corresponding commutation relation is

@qr ,Es#5 ids,r . ~A4!

Where we have as befores5(x,i ,a). From the Kogut-
Susskind Hamiltonian

H5
g2

2a(s EsEs2
2Nc

g2a (
x,i , j

Pi j ~x!, ~A5!
3-13
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LUO, GUO, KRÖGER, AND SCHÜTTE PHYSICAL REVIEW D 59 034503
and the commutation relation Eq.~A4!, one shows that the
conjugate variablesq andE satisfy automatically the Hamil
ton equations of motion

q̇s5 i @H,qs#5
g2

a
Es ,

Ės5 i @H,Es#. ~A6!

Combining these two equations, we obtain the equation
motion in a second order differential form

q̈s5
g2

a
Ės5 i

g2

a
@H,Es#. ~A7!

According to Eq.~29!, the definition of the generalized co
ordinate and the continuum behavior of the timeli
plaquettePi0 tells us

Trq̇i~x!2'g2a2TrFFi0~x!1
a2

24
D i

2Fi0~x!G2

, ~A8!

from which we have

q̇i
a~x!'gaF Ȧi

a~x!1
a2

24
D i

2Ȧi
a~x!G , ~A9!

or

qi
a~x!'gaS 11

a2

24
D i

2DAi
a~x!5gaZi

21Ai
a~x!, ~A10!

Z is an operator defined below. This equation tells us t
due to theO(a2) error in the kinetic energy, the generalize
coordinateqi

a(x) differs from the continuum onegaAi
a(x)

by order ofO(a2). The continuum gauge field is express
in terms of the generalized coordinate by inverting E
~A10!:

Ai
a~x!'

1

gaS 12
a2

24
] i

2Dqi
a~x!5

1

ga
Ziqi

a~x!. ~A11!

Neglecting the higher order terms ofA we have that

Zi512
a2

24
] i

2 , ~A12!

which deviates from the identity because of theO(a2) error
in the kinetic energy. In the weak field approximation, t
gauge field tensor and its square can be expressed in term
the generalized coordinates by

Fi j '] iAj2] jAi5
1

ga
~Zj] iqj2Zi] jqi !,
03450
of

t

.

of

Fi j
2 '

1

g2a2 @Zj
2~] iqj !

22Zi
2~] jqi !

2

22ZiZj] iqj] jqi #

→
1

g2a2 ~2qjZj
2] i

2qj2qiZi
2] j

2qi

12qjZiZj] j] iqi !. ~A13!

The continuum behavior of the spacelike plaquette is

Pi j 21→2
g2a4

2Nc
S Tr@Fi j Fi j #1

a2

12
Tr@Fi j ~D i

21D j
2!Fi j # D

'
a2

2Nc
TrH qjZj

2F11
a2

12
~] i

21] j
2!G] i

2qj

1qiZi
2F11

a2

12
~] i

21] j
2!G] j

2qi1•••J , ~A14!

where••• denotes cross terms plus higher order ones. Us
Eqs.~A5! and Eq.~A14!, Eq. ~A7! becomes

q̈i
a~x!5Zi

2(
j

@~d i j ¹
22] i] j !1O~a2]4!#qj

a~x!.

~A15!

By Fourier transformation, we obtain the dispersion relat

v i
25S 11

a2

12
ki

2D F(
j

~d i j k
22kikj !1O~a2k4!G .

~A16!

In comparison to the continuum dispersion relation Eq.~A3!,
there areO(a2ki

2) andO(a2k4) errors. The first one come
from the error in the kinetic energy, and the second o
comes from the error in the potential energy.

3. Dispersion relation for the improved Hamiltonians

Improvement of the spacelike part leads to the absenc
the a2Fi j (D i

21D j
2)Fi j /12 term in Eq.~A14!. Consequently,

the O(a2]4) term in Eq. ~A15! disappears so that@up to
O(a4)]

i @H,Ei
a~x!#5

a

g2 Zi
2(

j
~d i j k

22kikj !qj
a~x!. ~A17!

The timelike part of any improved Lagrangian has the g
eral form

Lt
Imp5

a

2g2(
s,r

q̇sMsrq̇r5
a3

2 (
s,r

ȦsZs
21MsrZr

21Ȧr ,

~A18!

where Eq.~A10! has be used. Up toO(a4), this part is
required to satisfy
3-14
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Lt
Imp5

a3

2 (
s

ȦsȦs . ~A19!

Therefore, the matrixM should be

Mi j
ab'Zi

22d i j d
ab'd i j d

abS 12
a2

12
] i

2D , ~A20!

which fits exactly to the two improved Hamiltonian propos
before. The kinetic energy of the improved Hamiltonians h
the following form:

H0
Imp5

g2

2a(s EsMsr
21Er . ~A21!

According to the equation of motion,
9

u,

03450
s

q̇s5 i @H,qs#5
g2

a
Msr

21Er ,

q̈s5q̈i
a~x!5

g2

a
Msr

21Ėr

5 i
g2

a
Msr

21@H,Er#5Msr
21Zi 8

2 (
j

~d i 8 j¹
22] i 8] j !qj

b~x!

5(
j

~d i j ¹
22] i] j !qj

a~x!, ~A22!

where Eq.~A20! has been used. Its Fourier transformati
leads to the correct dispersion relation up toO(a4). This
tells us that once the kinetic and potential energies in
Hamiltonian are properly improved, the dispersion relation
certainly improved.
s
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