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The improvement problem of lattice gauge field theories is discussed within the Hamiltonian formulation.
For a pure gauge theory, we derive an improved quantum Hamiltonian from a lattice LagrangianG(ee)of
errors in the classical limit. We do this by the transfer matrix method, but we also show that the alternative via
Legendre transformation gives identical results. The resulting color-electric energy is an infinite series, which
is expected to be rapidly convergent. For the purpose of practical calculations, we construct a simpler improved
Hamiltonian, which includes only nearest-neighbor interactions. We also consider tadpole improvement and
the structure of Lecher-Weisz improvement. As a check of the improved Hamiltonian we compute the gluon
dispersion relation and find that ti@(a?) errors disappeafS0556-282(199)04301-5

PACS numbds): 11.15.Ha

I. INTRODUCTION cently by workers in standard lattice gauge theory by consid-
ering anisotropic lattices with lattice spacings<as. This
A systematic pursuit of Symanzik’s improvement pro- has the purpose of improving the computation of the mass
gram[1] has recently led to major progress in lattice QCD, spectrum[4,6].
opening the possibility to approach continuum physics on As a first step, we restrict ourselves to the problem of
coarse lattices. After the early work by &cher and Weisz improvement of pure gauge theory. Let us recall that the
[2], recently, much progress has been made by the ALPHAtandard improvement program consists of several steps, by
Collaboration concerning nonperturbative improvement ofstarting from the Wilson actiorisee the review article by
the fermion Lagrangian, by implementing PCA@artial  Lepagd4]): First defining a classically improved action, sec-
conservation of axial vector currgnBee, e.g., the review by ond performing tadpole improvement and third introducing
Luscher[3]. For the pure gauge actions, however, nobodyadditional quantum correctioné.lischer-Weisz improve-
knows how to perform nonperturbative improvement. Themeny. Hereby the tadpole improvement is considered as a
main impetus in this field came from Lepage’s tadpole im-convenient step in order to improve the rate of convergence
provemen{4]. of the third step. We now discuss how to carry over these
In this paper we want to address the question of how thisdeas to the Hamiltonian formulation. Different strategies are
improvement scheme can be formulated for a lattice gaugpossible, let us explain those for the case of classical im-
theory in the Hamiltonian approach. Although standard lat-provement.
tice gauge theory has been very successful over the last two Strategy 1.Construct the classical Hamiltonian corre-
decades, there are areas where progress has been quite slgponding to the classical Wilson action. Improve this classi-
Examples are the dynamical computation of 8matrix and  cal Hamiltonian and quantize this Hamiltonian according to
cross sections, QCD at finite baryon density, or the computhe rules of canonical quantization. This yieldslassically
tation of QCD structure functions in the region of smadl  improved gquantum HamiltoniaWe should mention that a
and Q2. This situation calls for the development of new classically improved Lagrangian to be used for classical cal-
methods, and in our opinion the lattice Hamiltonian approaclitulations relevant for heavy ion collisions has been recently
is a viable alternativg5] which should be explored. The given by Moore[7].
Hamiltonian approach corresponds to considering a continu- Strategy 2 Starting from the classically improved Wilson
ous time, i.e.,a,=0. Similar ideas have been pursued re-action, construct via the transfer matrix a classically im-
proved quantum Hamiltonian.
Strategy 3Starting from the classical Wilson action, con-

*Email address: stsixg@zsulink.zsu.edu.cn struct first the corresponding quantum Hamiltonian via the
"Mailing address. transfer matrix. This yields the Kogut-Susskind Hamiltonian
*Email address: hkroger@phy.ulaval.ca H(E,U) whereU andE are the link variables and their ca-
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of the field variablesA and their conjugaté@/JA yields then  Susskind lattice Hamiltoniafil3] from the classical lattice
the standard expressiofd®x((9/dA)%>+B2(A)) up to Lagrangian using the Legendre transformatfitd—16, and
corrections of O(a?). This Kogut-Susskind Hamiltonian canonical quantization. Wilson's Euclidean lattice action is
may be improved by adding corrections such that an bettegiven by @=a,)

agreement with thigormal continuum limit operator is ob-

tained. a 2N, a; 2N
Different strategies exist also for the further improve- =1 2 > (1=Po)+7 — > (1-Pg). (1)
ments(tadpole and Lscher-Weisgwith respect to the quan- t g° -t g°s-H

tum Hamiltonian. In principle, the construction of these
guantum corrections should start from new perturbative cal; . D
culations in the Hamiltonian framework. The coefficients OfHere the hotation of Refl17] has beef’ used, Let-[]
a fully improved Wilson actior(as given, e.g., by Lepage stand; for timelike ang—[J for spacelike plaquettes, re-
can only be used as starting point for the transfer matrix tGPectively, and
obtain a fully improved Hamiltonian if the action is ex-
pressed on a lattice with the time spacing being much 1
smaller than the spatial spacing{<as). . Po=—Re T(Up). 2)

In this paper, we mainly discuss the problem of classical c
improvement. As a first result we show explicitly that the

first strategy—the canonical quantization of a classical lattic o .
gauge theory—is a viable alternative to the second©' later use we need to distinguish between the Euclidean

strategy—using the transfer matrix—leading to the sam@”d_ Minkowski ac_t|on as we!l as Lagranglan: Its rel_atlon is

quantum Hamiltonian, but in a more direct way. defined, when going from M|n!<owsk| to Euclidean time by
The classically improved quantum Hamiltonian obtainedthe transformationit—t, exdiSyl—exd -] Ly——Le

in this way has the mathematical structure of a kinetic parndSy = [dtLy as well asSc=[dtLg. Thus the Euclidean

with an infinite number of terms. The reason for this struc-lattice Lagrangian is the following:

ture is given by the fact that the inversion of a nearly local

matrix leads to a nonlocal matrix. This being an undesirable

feature from the point of view of practical calculations, we 2N,

show that it is possible to use the nonuniqueness of the im- Le=—

proved action to obtain an improved quantum Hamiltonian

containing only nearest neighbor interaction terms.

2N
2 k E (Pi;j—1)
g ax,i<j

oS (Pio—1)—
£ X

g?af

Finally we discuss the structure of the quantum Hamil- ___a > Tr(Uio(X) +Uly(x)—2)
tonian related to the tadpole anddahner-Weisz corrections. gzat2 X,i
The determination of the corresponding coefficients, how- 1
ever, will be deferred to a future investigation. Although we _ toon
do not discuss the third strategy in detail, a fully consistent gZaX’iZj Tr(U;;(x) + Ujj(x) = 2). ©)

computation of the quantum corrections should eventually

lead to the same result as the first two strategies. Note that

we discuss here only the improved Hamiltonian for the pur-Here U;;(x,t) denotes a spacelike plaquette where the first
pose to compute the spectrum. The general existence of sughk goes in directiori and the second link goes in direction
improved Hamiltonians is discussed in standard many-body andu;,(x,t) denotes the corresponding timelike plaquette.
theory in the context of model space calculatidf®,9]). One should note tha®,,=P,, and P;;=P; for plaguettes.
Like in the action formulation general observables require, the temporal gaugdg(x,t) =1, the timelike plaquette be-

particular improved operators. omes a function onl ; ; ;
: . y of the link variabled;(x,t) (i
Calculations of the glueball spectrum using the couplediliz,g) and we have

cluster method based on the standard Kogut-Susskind Hamil-
tonian have been done by Lt al. [10] and Schtte et al.

[11]. By incorporation of an improved Hamiltonian one 1 1
would expect reliable results already in lower order of the  P;;=-—Re TiU,,) = —Re Tr(U;(x,t)U](x,t+a,)).
coupled cluster truncation compared to the standard Kogut- c Nc

Susskind Hamiltonian. Calculations are under Wag]. In 4
order to check if the proposed improved Hamiltonian actu-

ally gives improvement, we have computed the gluon disper; . : - .
sion relation. We find that th@(a?) errors disappear. This We want to construct a classical Lagrangian defining trajec

is presented in the Appendix. tories of generalized cpord|_natt=J$(x,t) gnd generalized ve-
locities, where the variableis now continuous. We assume

II. FROM WILSON ACTION TO KOGUT-SUSSKIND that the action corresponding to this Lagrangian is given by
HAMILTONIAN the continuum limita,—0 of the lattice action which also
. ] . yields the dependence on the generalized velocities.
A. Canonical method via Legendre transformation In order to construct this Lagrangian, we introduce a Tay-

Before deriving the improved Hamiltonian, we describe inlor expansion in time and write, for a fixed,X) up to errors
a pedagogical manner how to obtain the standard Kogutef O(a?),
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1 R cal conjugatess;(x) become the operators of infinitesimal
Pio—1=Re TIU(U (t+a) 1] left multiplication. A generalization of the standard quantum
Cc . .
) mechanical formulax+a=e~'P2xe'P? yields, for the link
1 + - ag ..y variables,
=N—ReT umiu't)+au (t)+?u (Hy|—1
c Py @ P L AEQ P LAY
) e MU (x)=eTE MU (e E ), (10
o .
- ZNCRe TU(HU (1] Variables corresponding to different lattice links are consid-
) ered to be independent. This yields the commutation rela-
a; s tions
== o MU U]
N [Ui00,Ef(NT=A"Ui(X) 8,8,
A .
~ 7o, Mamaml ® (U700, Ef ()] =~ U] (0“6,

(11
Here, we denot& (t)=U;(x)=U;(x,t), and we have intro-
duced a generalized velocity(corresponding to the angular Since the operators'<‘5i ¥ yield a representation of the
velocities of the classical top thegrwhich is an element of gauge groulSU(N.), we obtain for theE;(x) the commu-
the SU(N.) Lie algebra, tation relations of the Lie algebra

ai(X) =g ()N = —iU;(x)U](x)=iU;(x)Uf(x). (6) [Ef(x),Ef(x)]=if “A7E](x). (12)

The SU(N.) generatorsh® are normalized totr(A3\P) The quantization of the classical Hamiltonian, E®), by use
= 6%°/2. Going to the limita,—0 and performing a transi- Of the commutation relations Eq11) gives the standard
tion from Euclidean to Minkowski spacé-it) yields the ~ quantum Hamiltonian of Kogut and Susskind.

classical lattice Lagrangian

B. The transfer matrix method
1

> E Tr(U”+UiTj—2), The construction of the Kogut-Susskind Hamiltonian
g axi< from the Wilson action via the transfer matrix method has
(7) " been first established by Creutt7] (see also Ref[19]).
Here we recall the basic steps which may be used also for the
construction of the improved Hamiltonian as discussed be-

a . .
LM=2—92; qr(x)a(x) +

Here we denotéJ;;=U;;(x)=U;;(x,t). For a classical ca-
nonical formulation we introduce the conjugate momenta

low:
N dlwm a.. 2ai N -
E; (X):W: g2 (x)=?Tr[>\ U;(x)Uj(x)], SE:f dtLE:Z aLo(q(t),q(t+ay))
a. +L1(a(t)]+0(ap). (13)
Ej(X)=Ej'(x)\*= ;q,-(x)- tS)

Hereby,L, is kinetic part of the Lagrangian which couples
fhe system at time to that at timet+a;. Invoking the
Baker-Cambell-Hausdorf formula and going to the limit
a;— 0 [20], the Hamiltonian is eventually given by

The standard Legendre transformation leads then to the fo
lowing classical lattice Hamiltonion:

Ly -

H=2 ——"q(x)~Lu H=Ho+Ly, (14)
xi d9(x)

o2 1 where the nontrivial parH, is related toL, via the func-
:_Z E{”(X)EF(X)—TZ_ Tf(Uij+UiT,-—2)- tional integral kernel _of the c_orrespondmg time evolution

2a%; grasi<| operator(transfer matrix formalism

Let us recall that relation for the simple example of stan-
dard one-body quantum mechanics of free mot{@Q]

where one hag$we put the massn=1)

9

Recalling g—gaA we convince ourselves tha€E;

~a?A;/g. Therefore E{(x) is the approximated color- 1

electric field on the lattice. Lo(q',q)= _Z(qf_q){ (15)
To quantize this classical theory, we proceed according to a;

the rules of quantization of the classical top the[d8]. This

results in the prescription that the quantum mechanical stategith q’'=q(t+a;), q=q(t). The discrete time-evolution,

are functions of the link variabled;(x) and that the canoni- which relates the generatét, to the kernel, is given by
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(e—atHow)(q):Nf dg'e 2@ y(q’), (1) e‘atHfJ:Nf dU’ e akoV)gio B (23

whereN is some unimportant normalization factor. Using whereL,(V) is given by Eq.(20). We use the invariance of
N -V the Haar measure yieldindU’=dV and note that like in
¥(q')=e ¥(Q), 17 Egs. (17),(21), the operator€? have to be treated as com-
muting withU andU’. The integral in Eq(23) can not be
evaluated analytically for finite time translatioas. How-
ever, for the determination ¢, one may consider the limit
e*atHf):Nf dq’ e ado(@a") g~V (18)  a,—0. In this case, the variabl&sapproach the identity and
it is legitimate to use the approximation for thg term

yields

In this case, and also for the case of scalar field thEpoy, L
':Ll:es Lrgjglr?(la;su&noiyt_lc:}g computable for finigg. It yields THVVT) = 2Tr(cos “0®) = 2| N, — Zw2+0(w4)}.

In order to clarify the notations and the particularities for (24
non-Abelian gauge field theories, we first recall how to ob-
tain from the transfer matrix method the standard Kogut\writing the group integral fdU as Haar measure
Susskind Hamiltonian. We start by the decomposition of thef Tl ,dw?det; . yields for Eq.(23) a Gaussian integral in anal-
action as given by Ed1) and introduce the temporal gauge. ogy to Eq.(18), with the exponent
The corresponding Lagrangian is given by

) - atg2 2
a a a @, a a
Lo(U(t+a),U(t)=——> Tr2—U;(x,t+a) rage R T TR )
g a; X,i
a 2
xUT(x,t)—H.c), + 29 cepa, (25)
2a
L, (U(1)= % E Tr(2—U;j(x,t)—H.c). Taking the sum over the spacelike links this reproduces the
ga xi<j 19 standard kinetic term of the Kogut-Susskind Hamiltonian
19
2
Here Lo correspo_nds to the k_meyc part ahg to the poten- Ho=g—2 EFOOEX(X). (26)
tial part, respectively. The kinetic part of the Lagrangian is 2ay]

given by the plaquettes involving different times. Using the

notation analogous to E@l15),
9 (ﬁ ) I1l. CLASSICAL IMPROVEMENT OF KOGUT-SUSSKIND

a HAMILTONIAN
LO(U;(J Uy j) = gz_atz XEJ Tr2—=(Vy, +V>t,j)]' A. Continuum behavior of classical improved action
The Wilson action reproduces the classical continuum ac-
Vyi= U;]jUI'j , (20)  tion only up to errors o(a?). It is possible to add to the
Wilson action new terms such that the®éa?) errors are
whereU corresponds to the time sliteand U’ to the time  canceled[1,21,4. In order to construct the corresponding
slicet+a,, respectively. It is well known that the quantum improved Hamiltonian, one needs a generalization to lattices
mechanics oBU(N.) gauge theory and that of the quantum with a;#a;=a. We first discuss the classical continuum be-
mechanical top are closely relatgt3,18. Thus the relation havior of the Wilson action. For spacelike plaguettes one has
between the wave function at time sliteand time slice (see Ref[4])

t+a;, in analogy to Eq.(17), involves the standard color

| i a 2 1 923.4
electric operator&®,a=1, ... N;—1, P.=—Re (U )—1— THFFii ]
ij Nc ij ZNC ijrij
V(U =€ W), (21 a2
+ —Tr[F”(D$+Df)F”]>. (27)
where the numbers“ are the parameters of a group element 12

gve SU(N.) such that
For convenience, the continuum limit of a loop is expressed
=U'U"t=v. (220  in terms of the field strength tensor and its covariant deriva-
tive the center of the loog,. According to Ref.[4] for
The analogy to Eq(18) the HamiltonianH, in the case of timelike plaguettes one has to consider the path ordered in-
one link variablev=U'U" is given by tegral

a) a

gy=e"
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§ al2 a2
A-dx— dx-f dt| Fio(Xo) 1
—ap —a2 10870 Rio=—ReTr ? (32
NC — 1
T
+1 (D Dy Fig)
=X Xjr i’ A it
2 MO X=xo yielding

RioziRe TEU;(x,H)U;(x+ai,t)

3
a@d®
_’aatFiO(XO)"_ﬁ(Di YFio(Xo) N

. X Ug(x+2ai,t)U] (x+ai,t+a Ul (x,t+a)Ul(x,1)]

aal .,
+—4(D0)Fio(xo). (28) gzazatz a2 , 2
—>1_ 2NC TI’ R%2F|O+ ?DiFiO)
The last term can be neglected sir;e<a. Therefore 5 2.2
g%a%a; 4a? 5
—>1_ 2N 4T'{Fi0Fi0]+ TTr[Fiopi Fio] . (33)
C

2

1
P; =N—ReTr(U,0)—> ReT{l—E(g §A~dx
Secondly, one has aagx a rectangular loop

1 g°a‘af 1 2?2 2
—)N—cReT 1_T F|O+ 24 DiFiO 1 (34)
Rg; = —ReTr
2,242 2 NC ?
—1=-=y Tr[FioFio] + 1_2Tr[FiODiFiO]
¢ This term corresponds to advancing two steps in time di-
+0(a%?) 29 rection. The conventional transfer matrix corresponds to an
).

advance of a single step in time direction. Thus it is not

compatible with the definition of the transfer matrix. We

2 may disregard this term because the improvement terms in
In order to compensate the€a") errors, one may add 5"} agrangian are not uniquely determiridd Taking into

new terms to the Wilson actid22,4]. One of these terms is account only the first term is sufficient.

given by a rectangular loop, Therefore, we make the following ansatz for the classi-

cally improved Euclidean lattice Lagrangif|:

1 _ 2N aE POi+C’R +const
_ 4 v = 2 2Rig|+const.
R‘“’ = NC Re TI’ T_»M (30) g at X,i 1
T
C;=4/3 and C;=—1/12,
For a spacelike loop one has in particular __2Ne > [ Py +02(R +Ry;) [+ const,
g axi<j
1 - N C,=5/3 and C,=—-1/12,
Rij=N—Re TEU;(x)Ui(x+ai)U;(x+2ai)
C
Le=L+Ls. (35

xUf(x+aj+ai)Ul(x+aj)Uu](x)]
We remark that an equivalent expression for the classically

2,4
a ; . .
1 %N ATHF, Fy ] improved Lagrangian was obtained by Mog¢id.
Cc
a2 B. Improved Hamiltonian via Legendre transformation
2. 2 . )
+ gTr[Fij(‘mi +Dj )Fij])- (3D Now we proceed as in Sefll A) to construct a classical

Lagrange function in Minkowski space in terms of the gen-
eralized coordinatedJ;(x) and the generalized velocities

Considering timelike loops, there are two possibilities. Firstdi(x) as defined in Eq(6). Working in the temporal gauge
one has a 28X a, rectangular loop and denotng(t) U;(x+ ai ,t) yields
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Ri0=NicRe TiUt)UT(t+a)Uf(t+a)u(t)]

2

2
_>NiRe Tr{ U(t)[UT(t) +a,uT(t)+ %Uf(t)} { utt)+a,uf(t)+ %to T(t)} U(t)}

2

1 a?_ . a’Z.. y—
=—ReT ?U(t)UT(t)Jr?UT(t)U(t)ﬂLatU(t)UT(t)UT(t)U(t)

+const
N¢

%di<x+a?>di<x+a‘i>+%qu)qi(xwQi<x>qi<x+a?> +const, (36

1 2
—>—N—CatTr

where we have introduced the variable

lw -,
. . H=23 =470 ~Lu=Ho+V,
Qi(x)=U;i(x) 'gqi(x)U;(x). (37) xi dqi(X)
This gives the following classical improved lattice Lagrang- g? B
ian in Minkowski space Ho=5 EUEP E (MM 2E,,
L —aE Tr{ (C}+2C5)qi(X)c 2N Pij+ Pji
M= g2 r(C1+2C5)ai(x)qi(x) v=—203 o, 00 oo R4 RY) .
g axizj 2 S
+2C5Qi(0)q(x+ai)] - Ls. (39) 43

The color-electric fieldE,, is given by the conjugate momen-

This Lagrangian can be written in the form ) ) Lo
tum, being related to the generalized velodity via,

1la . -
LMZEETEW q. ()M, (U(1))q,(t) —Ls, E :(9__L

a .
== MY, 44
dq gzg oo (44

o

h = 1-! H = 1.! ) . . . . .
where  o=(x.1,a), p=(¥.].8) The color-electric field, obeys commutation relations with

M(,,p(U(t))z(Ci+20;)50,p+4C§5(x,y—aAi)5i,j the link variables given by Eq11).
XTr[UiT(x))\”‘Ui(x))\B]. (39) 1. Hopping expansion and algebraic properties of Jy,
Taking a closer look to the kinetic part of the improved

The matrixM is not symmetric. However, it can be shown Hamiltonian reveals that via}, an infinite number of
that only the symmetric part oM will contribute to the  terms enters into the Hamiltonian. In analogy to the hopping
Hamiltonian. Thus we introduce parameter expansidi9], which expresses the propagator in
R terms of powers of a hopping matrix, we introdu¢g¥™
LY "=8(x,y—ai) & ;T Ul AUy \F]
ts ~ T B N Msym: m0[1+Ksym]:mO[1+kOLsym]

(X,y+a|)5i’jTr[U A Uy_>x7\ ], (40)

y—X
7
which allows to write mo=Cj+ 2Cé=€,
sym_l t — ’ ’ 7] sym ,
Mo’,p_i(M—i_M )(r,p_(Cl+2C2)5(r,p+2C2L0’,p . ko 2C2 _ 1 (45)
(41) ® ci+2c, ’

Inspection shows thdts,, and henceMgy, are real, sym- 4 optain

metric matrices. Then the Lagrangian reads

M —i[l—K +K2 K] (49
Mo sym sym sym

sym

1 . -
Lmzzég a,() MEUD) () —Ls.  (42)

While Ky involves only link variables between next neigh-
Via Legendre transformation, the classical improved Hamil-bor lattice sites, higher powers K, ,involve links extend-
tonian is obtained ing over several lattice sites. Using the notation
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U;(x)U; (x+a|) Ui(x+NaAi), (47

UXHX+(N+l)aI
we generalize the definition dfs,, to

(N)sym_
Lo',p

8(x,y—Nai) & ;U \*U,  \F]

+6(x,y+ Na|)5I JTr[U)HX)\ Uy AT,

X—y
N=0,12..., (48
whereL 0} =1, andL{}) =Lsym. A little algebra shows that

the matnxLé@%n obeys the following product rule:

1
L(p)nl-sym 2|_(p+q)+ 2|_(|p Q\)

sym

(49
Thus we obtain, for the lowest powers &t

Ksym= KoL)

sym:

o .1 1
I-sym'ip 2 I-sym'ip 8 I-sym )

W (1.1
VR T R LR T

1
LS +—L<5m},

(1
416

11
HERET

1 1 1 1
—+-+—+

(2)
48" 16 32L

sym

LO +

sym

1
Lot 25

(50

It has the general structure

n
ng (n)L(p)
p=0

n
K sym:

sym

(51)

The coefficients of lowest order are

Kgl)= 0, K(ll) =1,

(52

The coefficients«{” vanish except whem and p are both
even or both odd. Using E@51), we expresdv .t sym DY

PHYSICAL REVIEW D 59 034503

L(p)

sym:

sym Mo 2 Mp
. (53
/-Lp:E (_ko)nKE)n)-
n=p

As result, starting from an improved Lagrangian with a finite
number of terms, one obtains for the improved Hamiltonian
an expression given by an infinite number of terms.

In the following we will explore more of the algebraic
structure ofM,Sym and obtain analytlc expressions for the
hopping expansion coefﬂuems‘p This will be useful in
what follows. We introduce

Jgp=28(x,y—al)& ; TTUT_  \U, (NPl (54)
A little algebra shows that
Iy ,=28(x,y—nai)s TTUI_ AU, . \P], (55
and
JJ=J30=1, (56)

i.e., J is a real, orthogonal matrix. Comparison with Egs.
(40),(48) shows

L (J+J)

sym 2

LB 3@+ (39D),

Ko
Ksym: E(J + Jt):

Ko
M gym=Mo| 1+ 3(J+J‘) ) (57)

Using Eq.(56), Mgy, can be factorized,

(58)

My
Msym=7(1+CJ)(1+CJt),

if Cis chosen as solution of

2C
1+C?%

Solutions areC=—7+4./3. Note thatJ being a real, or-
thogonal matrix, which has eigenvalues of modulus one, and
|C|#1, thus the matrixMs,, can be inverted anl!VIs_ylm s

well defined. Moreover, we note thit, ,is a positive defi-
nite matrix. This can be seen directly from E§8), which
factorizesM gy, into a matrix times its Hermitian conjugate.
Also, a lower bound can be estimated using &4). J being
orthogonal implies||J||=1. ThusR; defined byR;=3(J
+JY, being a real, symmetric matrix liké sym: Obeys
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|IR;||<1. Then an arbitrary state vectet of unit norm  Note that this is an expansion in terms®@fandJ.
yields [{ ¢|R;|#)|<1. Then Eq.(57) implies Analytic expressions for the coefficients of the hopping
expansion can be obtained in the following way:
(IMgyn] @) =mo+moko( #|R;| $)

1
~g(¢Rle) =1, (60) i
KDym= (EO (J+3Hn
showing also thaM, ,, is positive. To summarize the prop-
erties ofMy,, this is a real, symmetric, positive definite and k"
nonsingular matrix. This property is needed for the construc- = <_°) > ( )Jp(Jt)n—p_ (62)
tion of the Hamiltonian via the transfer-matrix, in particular 2] p=o\p

for doing the Gaussian integral.
Factorization oM, ,,, via Eq.(58), allows to express the
kinetic energy ternH, of the Hamiltonian, Eq(43), as fol-

lows: Because this expression is a symmetric matrix and making

use of Egs(56),(57), one may write

92 1+C2 , 2
%3 mo 2 ; (1+CJ),'E,
g +c2 KN n
0
23 - TrE [Ei(x)—CU;(x)Ej(x+ai)U](x) K’S‘ym—(?) go ag”(Jer(Jt)p)—( ) Z Lg’;m
N R R (63
+C2U;(x)U;(x+ai)E;(x+2ai)U] (x+al)
xUf)—---12 (61)  Comparison of coefficients yields
|
(@) 1/ n\ if n iseven,
P=0: a0"=3| /2] zero else,
n if n,p are both even or both odd,
p=1: a\V= (64)
P (n+p)/2] zero else.
|
Comparison with Eq(51) eventually yields for the hopping
expansion coefficients” the following expression: Pio= N, STV, DU (x,t+ay)
ut 1 t
+Ui(x,t+a)Ui(x,t)]= 2N, B +HVi(X D],
KE)n) = 27n+1a§)n) . (65) 66)

using the notatior}\/i(x,t)=Ui(x,t+at)Ui*(x,t). Similarly
one obtains for the rectangular loop

C. Improved Hamiltonian via transfer matrix

! =T V,(x,H) U;(x,t)Vi(x+ai,t)UT(x,t)

I:ZIO 2N

We start from the classically improved Euclidean La-
grangian, given by Eq(35). It is built from spacelike
plaquettesP;; , timelike plaquettesP;, and corresponding +Ui(x, )V (x+al,nuf(x,)Vi(x,t)]. (67
rectangular loop&;; andR;o. We now want to show that the
transfer matrix method yields the same Hamiltonian as haghe Hamiltonian is defined via the transfer matrix like in Eq.
been obtained in the previous section via Legendre transfof23). Because we conside;— 0, the group integral will be
mation. Let us consider the timelike part of the Lagrangiandominated by group elements &U(N,) in the neighbor-
which yields the kinetic part of the Hamiltonian. The space-hood of the unit element. Thus one can expand the group
like part yields the potential part in a trivial way. Using the elementsv;(x,t) in a Taylor series of the Lie group param-
temporal gauge, one has eterswy (1),
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Vix,t)=exfioy () ]=1+iwy(t) - %wx,i(t)z‘l' O(w®),
(68)

where we denote, j(t) == oy ;(t)\“. Thus we arrive at

THVi(x,t)+ VI(x,)]= 2N, %E 0% (1)2+0(w?),
(69

and hence in the notation of E(89),

2 TV +Vi(xh]= - %E 0g(t) ,,(t)
X, i a,p

+O(w3) + const. (70)

Carrying out the corresponding steps for the rectangular

term, one obtains

> T Vi(x,HUi(x,H)Vi(x+ai,t)uf(xt)
+U;i(x, D)V (x+ai, Ul (x,t) VI (x,1)]

1
Bpt 530p w,(t)+O(w?) +const,

== wy(t)
a.p
(71)

wherelJ is given by Eq.(54). Inserting this into the timelike
LagrangiarnL, yields eventually

1 a
Li=5 az_gzg w,(D[(C]+2C})8,,+4C5I0 M w,(1).

t
(72)
One should note that the matrikis not symmetric. How-

ever, to the Lagrangian only the symmetric pag = (J
+J%/2 contributes. Note further that,=Lsymand Mgy,

=(C;+2C35)1+4C,)sym, being real, symmetric matrices.

Thus we arrive at

1 a

__ sym
Le=> _afg%z,p W (M0 (1), (73

The transfer matrix is then given by

PHYSICAL REVIEW D 59 034503
exf —aHo+0(af)]

:J [H dVi(x)

exd —alL(Vi(x))]

xexp{i > ol ENX)

X0, a

:f [H do,det,.

1 a .
Xex;{———zz w(,Mf,i')mwp-i-lz 0w E,
[oa

2 a,g%op
-1

1 a

=Nexg — 52 E,| =M™ E,|. (74)
25p "\ag op

Thus we obtain
g2

Ho=5a2; Eo(MsymoE, (75)

in agreement with the result, E@3), obtained via Legendre
transformation.

IV. IMPROVED HAMILTONIAN GIVEN
BY FINITE NUMBER OF TERMS

As was shown in the previous section, the kinetic energy
of the classical improved Hamiltonian obtained directly from
the corresponding action is given by an infinitive series of
terms. Even though the series is rapidly convergent, such an
Hamiltonian is too complicated for a practical calculation.
Recalling that the purpose of classical improvement is to
push theO(a?) error to orderO(a*), we show here how to
construct a simpler improved Hamiltonian corresponding to
a finite number of terms to achieve such a goal. In the pre-
vious section we have seen that the infinite number of terms
in the Hamiltonian arises due to the inversion of the matrix
Mgy m, Which itself has only a finite number of terms. Thus it
is plausible that in order to obtain a Hamiltonian given by a
finite number of terms, one needs to start from a Lagrangian
corresponding to a matrik sy, with an infinite number of
terms. Such a construction is possible, because the Lagrang-
ian leading to improvement is not unique. We start by con-
sidering the following type of Wilson loop, which emerges
as a generalization of the aXa; loop R, to a
(n+1)axa, loop parallel transporteRR,; o given by

1
Rm',o = F ReTr

[+

z Zo z + naz

(76)

In the temporal gauge it corresponds to the expression
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1 -
Rnio= N —Re T{U;(x)U;j(x+ai)- - A’ |3'+4Zl c'"=1, (81)
X U;(x+(n—1)ai)U;(x+nai)
x Ul (x+nai,t+a)U/(x+(n—1)ai)--- +E ( z|C'"|=0. (82

xUT(x+ah)Ul(x,t+a,)]. 7 .
i Uil ] 7 We have deliberately introduced the coeffici@&it Choos-
Note that forn=1R,; o coincides with R,. The path- N9
ordered integral of such a Wilson loop is given by

©

1 B'=1-2> C'M (83
A-dx— dXidt FiO(XO)+ Exi’xj’(Di’Dj’FiO) X=Xg n=1
1 5 (a2 results in a simple expression of the Lagrangian expressed in
=2aaFio(Xo) +5 D Fio(Xo) f( 1)a/2x dx terms of generalized coordinates and velocities. Using
ne

[’

—(n—1)a/2 * ’ ’
+ x2dx S necnocr (0’1)2 cn_C(14C)
C’

—(n+1)al2 =1 oC' /n=1 (1-C")3 '
3n’+1 ., (84)
=2aaiFio(Xo) + 1o @ DiFio(Xo). (78 _
we obtain
Therefore, we obtain the following continuum behavior for
the above Wilson loop , 1-C
1 1 ) 1+C"’
Rni,o— N—cRe Tr[l— E( § A-dx)
2,242 B’ 1-3C (85)
a‘a = ;
1= R aTF R ) 1-c
C
+(n2+1/3)a2THF ;oD 2Fio]). (799 ~andC’ s aroot of
One verifies fom=1 that Eq.(79) coincides with Eq(33), C’3+11C'?+11C'+1=0. (86)

as should be.

Lagrangian

2Nca c'=-1
S il LY 2 P.o(x>+2 C'"2 RuidlX)|.
C'=-5+26. 8
©0) V6 (87)
In order that the usual continuum limit of the Lagrangian isThe root closest to zero is Cy=-5+ 2.6=
obtained and th®(a?) error is canceled, we imply from the —0.10102 ... . Inorder to obtain the kinetic energy, we
continuum behavior oP;,, Eq.(29), and ofR,; ¢, Eq.(79), expresR, o in terms of generalized coordinates and veloci-
that the following conditions hold, ties,
|
1 t |t 1 o0t A 2 °
RmyoﬂN—cReT U; (x)+aU; (x)+ Eatui(x) U;(x)Uj(x+ai)- - -U;(x+(n—=1)ai)U;(x+nai)

t A |t A o “
Ui(x+na|)+atUi(x+na|)+Eatui(ernal)

Ul (x+(n—1)ai)- - -Uf(x+al)

1 1 1 ) .. .
—>N—Tr[ atq (x)q (xX)— atq (x+ nal)q (x+ nal) atZQi(x+(n—1)ai)qi(x+ nai)|, (88
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where we have introduced
Qi(x+(n—1)ai)=U/(x+(n—1)ai)--- U/ (x+ah)Uf(x)qi(x)U;j(x)U;(x+al)- - -U;(x+(n—1)ai). (89)

Note again, fom=1, Q;(x+(n—1)ai) coincides withQ;(x) defined in Eq(37). Thus we can write the timelike part of the
Minkowski lattice Lagrangian,
a’ - - = - N -~
Li'=2A' 2 Tr ai(0a(0+2.2 C'"Qikx+(n—1)abg(x+nai)|. (90)

To find the kinetic energy of the improved Hamiltonian, it is convenient to express this in terms of the dnalefined by
Eq. (54),

a . :
M_ ’
Lt _2_920_2") q(TMa'pq[:H (91)
where
M'=A’ 1+2§ C’”J”}—A’HC,J (92
n=1 1-C'J
The color-electric field is expressed as
JL a .
- _ rsy
E,,—aqa— 2; M’ (93
where
1 1-C'? (1-C")?
M'SYM=—(M'+M'H=A’ = . (99
2 (1-C'J)(1-C'IYH (1+C’'3-C'(I+IYH
If we chooseC’ such tha{C'[#1, e.9.Co=—0.10102 . . . ,thenM, . is a real, symmetric, positive and nonsingular matrix.
Finally, we obtain the corresponding kinetic energy of the improved Hamiltonian, given by
E E,(M"™), E,
g > L+c” E,d, E,— < J+Jt
“2at |(amcnE Tt et e
—92 L+cr E,é, E,— 2C’ —E,J, ,E
C2af5 | (1-cn? TP (1-cn? TP
TS | 2 00— 25 U, (0"E 00U, (0 (x-+a) (95)
=—Tr —-x-x—— () TE;(X)U;(X)Ej(x+al) |.
a X| (1 C )2 | I (1—C/)2 I I | I

It consists of only two terms, which makes it convenient fortional terms. Without such improvement, only part of the
practical calculations. O(a?) errors are canceled. According to Lepage and Mack-
enzie, tadpole improvement is a simple, but important sec-
ond step. In fact most of the tadpole contributions can be
removed just by dividing each link operatdr, by the mean

In the preceding section, we derived an improved Hamil-u, of the link. For asymmetric Iattlcesa;t<as, and small
tonian for gluons with no cIaSS|ca])(a2) corrections. An enoughat we haveu,=1 for time-like directions. In the
important further step of the improvement program is to takeHamiltonian formulation, the meamy of a spacelike link is
into account quantum corrections by adding suitable addidefined by

V. TADPOLE IMPROVEMENT
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us=(Q[P;;| Q) (96)
where|Q) is the vacuum of the improved Hamiltonian. Thus Clve = i Re Tr Q (100
tadpole improvement of the lattice LagrangiarL,+Lg, # N,

wherelL, is given by Eq.(80) and L by Eq. (35), corre-
sponds to the replacements
It corresponds to

P”HP,J /Ug, L
Rij N Rij /US , Cx,,uvo:N_Re Tr(UX,[LUX+a,l;,VUX+a[’:L+ an,o
(97) _
PiO_} Piolug' XUX+av+aO' p.UXJiLaU I/U ) (101)

2n+2

Rnio— Rnio/Us The corresponding term occurring in the Lagrangian is pro-

portional to
This is equivalent to the following replacement of constants

C:l._>C1/uLS1 ' Z CX,,(LV(I" (102)

X u<v<o

6

ComCalus, The structure of the corresponding improved Hamiltonian

gi—gu can be inferred from the improved Lagrangian as before:
toes One introduces different lattice spacings=a and a; and

C’—>C’/u2 (98) constructs the Hamiltonian by Legendre transformation and

' canonical quantization. Here, we refrain from discussing de-

where we putg=g, in Eq. (80). For the transition to the t@ils and only give the general structure of emerging Hamil-
Hamiltonian these redefinitions of the coefficients can bdonian. _
taken over yielding for the “two-term” tadpole improved (1) The plaquette and planar rectangle loogrms will

Hamiltonian C’ = —0.101021) give a part of the improved Hamiltonian which has the same
form as before, only the weights of the individual terms will
H=Hy+V, be different.

(2) The spacelike parallelogram loogerms (i.e. uvo
spacelike will yield a corresponding additional term in the

g?u? 1+C'?/u? . U
_t STrE E,(X)E;(x) potential part of the Hamiltonian.
a xi [ (1—C'/u 2)2 (3) The timelike parallelogram loogerms (where either
© or v or o is time-like, the other two indices being space-
2C’/u§ . X like) produce a large number of different contributions to the
22 ViEQUIOE (x+ai) |, Hamiltonian(with well defined weights The final result for
(1-C'/ug) . X
the improved Lagrangian has the structure
P +P;i C :
SN —g(RijJeri)}- L=Ly(q,U)+Lg(U), (103
gsax i<j 2 Us
(99 with
Here, we have introduced different couplings in the kinetic
and potential terms in order to allow for a “speed of light” E q,M Up(u)qp+2 A (U)q0'+H C.
correction as discussed in R§23] (see below. gt a.p (104

VI. FURTHER PERTURBATIVE IMPROVEMENT . . ..
A new feature is the occurrence of a term linearginAs

Tadpoles have been identified as an essential part of theefore,M(U) is a symmetric matrix of the form
problem when approaching the continuum limit of quantum
field theory on the lattice. A systematic perturbative calcula- M=1+M, (105
tion on the lattice has been performed bysther and Weisz

[2]. This leads to the determination of additional terms in theallowing the definition oM ~ by a geometric series expan-
Lagrangian needed to compensate errors. It turns out thaion. Legendre transformation and quantization yields a
such a further improved Lagrangidfor details see Refs. Hamiltonian of the structure

[24,25) contains the same plaquettes and planar rectangle

loop terms which occurred before, but with suitably rede- H=Hy+V, (106
fined coefficients, plus a new term, being a nonplanar “par-
allelogram” loop, given by with
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9t2 analogue of the recent exciting development of @@?)
H0=2—a2 [E,M ;plEp—(AUM ;plEp+ H.c) improvemen{ 3] in the Hamiltonian framework.
a.p
—2A,M_A,]. (107 ACKNOWLEDGMENTS

H.K. would like to acknowledge support by NSERC
VIl DISCUSSION Canada. X.Q.L. is supported by the National Science Fund

For the purpose of a numerical calculation, in particular’®’ Distinguished Young Scholars of China. X.Q.L. and

for a comparison with lattice Monte Carlo results, the fol- >-H-G. would also like to acknowledge additional support by
lowing points are important. the National Natural Science Foundation of China, Ministry

(1) As discussed in Ref$26,23, the scales related to the ©f Education, and Hong Kong Foundation of Zhongshan
regularization of the gauge field theory in the HamiltonianUniversity Advanced Research Center. X.Q.L. is grateful to

formulation as opposed to the Euclidean path integral formuth® hospitality offered by the colleagues of the Physics De-

lation are different. This difference can be accounted for byPartment, Universitéaval, where part of the work was done.
introducing spaceliked) and timelike couplingsd;) which We also thank K. Chao, X. Fang, H. J|rar|_, T. Hl_Jang, J. L,
have a well defined relation to the “Lagrangian coupling” £+ Mei, N. Scheu, and J. Wu for useful discussions.
In one-loop approximation this relation is of the type

APPENDIX

(108 As a simple example for the validity of our improvement
scheme, we derive in this appendix the dispersion relation

wherec,, depends on the space-time dimension and on thfeor the (classical gauge fields.

type of the gauge group and is given in detail in Refs.
[26,27,23. 1. Dispersion relation in the continuum

(2) Because of this difference in the nature of the lattice From the Lagrangian equations of motion and using a
regularization, all perturbative calculations which determingyeak field approximationA®(x)<1, we obtain

some non-classical improvement in the sense oécher-
Weisz have to be redone. Such a calculation can be done on N u
an asymmetric Euclidean lattice with<a, (see Ref[23]). aFm_; diF;i=0. (A1)

(3) Tadpole improvement which has been considered by
Lepag€g25] in the Lagrangian framework corresponds in the
Hamiltonian framework to an expression given by E2g).

(4) A systematic determination of the kcher-Weisz im-
provement terms on asymmetric lattices in the Hamiltonian Ai‘“(x)=z (5ijV2—(9i(7j)Af‘(x). (A2)
framework has still to be done. Since these additional cor- I
rections turn out to be small in the standard Euclidean frame- _ . ) )
work (see Ref[25])—the most important correction coming Its F_ouner transformation leads to the expected dispersion
from the inclusion of the tadpole terms—in should be worth-"elation
while to work with the improved Hamiltonian given by Eg.

(99), e.g., for the numerical sjmulat_ion of glueb.alls. wiZIE (5, k2—Kk; k), (A3)

To summarize, we have investigated in this paper two j
schemes of improvement of the Kogut-Susskind Hamil-
tonian: If one starts from Lepage’s Lagrangian, which iswhich means that only the transverse momentum compo-
preferable for Monte Carlo simulations in the Lagrangiannents contribute to the dispersion relation.
formulation, the corresponding Hamiltonian is given by an
infinite series of terms which contain terms with arbitrary 5 pigpersion relation for the Kogut-Susskind Hamiltonian
long range. In contrast, we have shown that by starting from . , )

a suitable Lagrangian with an infinite number of terms , one ©Once we obtain a generalized momentum according to the
can get an improved Hamiltonian consisting of a finite smallstandard definitiorE ,=dL, /q,, the conjugate variables,
number of terms. This should be preferable for numericaBnd E, should satisfy the Poisson bracket relatiay, ,E,,}
computations in the Hamiltonian framework. Finally we =4, ,. The corresponding commutation relation is
should stress that we have restricted ourselves within this )

paper to elucidate the structure of the Hamiltonian improve- (A, Ec]=i60,,- (A4)
ment problem for a pure lattice Yang-Mills theory, i.e., for )

the Kogut-Susskind Hamiltonian. Including fermions, the\Where we have as before=(x,i,«). From the Kogut-
improvement problem is even more vital since the standar@USskind Hamiltonian

action with Wilson fermions contains alread¥(a) errors ) N

due to the remove_ment of the mirror fermions by a Wilson H= 9_2 EE, — Tc 2 P, (X), (A5)
term. It should be interesting and important to work out the 2a gaxiz; !

In the temporal gauge, this is equivalent to
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and the commutation relation EGA4), one shows that the ) 1 ) S )
conjugate variableg andE satisfy automatically the Hamil- Fij~ gTaZ[Zj (4i9;)°=Z7(9;q)
ton equations of motion

, —27iZ;0;9;9;q;]
e 9
~=Ii[H,q,]=—E,, 1
Gom1Ha 17 — (= q,Z}d— 9.z dfq;
ga
E,=i[H,E,]. (A6) +20,Z,Z;9;0,0). (A13)

Combining these two equations, we obtain the equation of '€ continuum behavior of the spacelike plaquette is

motion in a second order differential form g%a’ a2
Pi—1— (Tr[FijFij]Jr1—2Tr[Fij(Di2+Dj2)Fij])

. gz. . g2 2N,
q(rZEEUZI E[HIEU] (A7) a2 a2
%2—NCTI'[ C]JZJ2 1+ 1—2((9i2+ (912) aiij
According to Eq.(29), the definition of the generalized co-
ordinate and the continuum behavior of the timelike 9 a’ AN
plaquetteP;, tells us HAiZi| 1+ 5 (9 97 [0t g, (A14)

2 2

a where- - - denotes cross terms plus higher order ones. Using

: . 2
Trgi(x)*~g*a’Tr| Fig(x)+ 5,D7Fio(X) |, (A8)  Eqs (A5) and Eq.(A14), Eq. (A7) becomes
from which we have G () =ZF2 [(8;V7=didy) + (") Jaj'(x).
_ _ a2 . (A15)
0i"(x)~gal Aj"(x)+ ﬂDi AT(X) |, (A9)
By Fourier transformation, we obtain the dispersion relation
or az
, w?z(1+1—2k$) > (5”k2—kikj)+0(a2k4)}.
@ a 2 @ —1paa :
a(x)~ga| 1+ 5.Df|Af(x)=gaZ "Al(x), (A10) (A16)

In comparison to the continuum dispersion relation &),
Z is an operator defined below. This equation tells us thathere areO(a’k?) and O(a%k*) errors. The first one comes
due to theO(a®) error in the kinetic energy, the generalized from the error in the kinetic energy, and the second one
coordinateq;(x) differs from the continuum ongaA*(X)  comes from the error in the potential energy.
by order ofO(a?). The continuum gauge field is expressed
I(n te)rms of the generalized coordinate by inverting Eqg. 3. Dispersion relation for the improved Hamiltonians
A10):
Improvement of the spacelike part leads to the absence of
) 1 22 | 1 thea?F (D7 +D?)F;;/12 term in Eq(A14). Consequently,
A (X)“g—a 1=5z97 |4 (X):g_aZiQi (). (All)  the O(a29%) term in Eq.(A15) disappears so thdup to
o(a"]

Neglecting the higher order terms Afwe have that a
I[H.EF001= 2202 (8K~ kik)a[ (0. (AL7)
2
Zi=1- a—a?, (A12)
24 The timelike part of any improved Lagrangian has the gen-
eral form
which deviates from the identity because of théa?) error
in the kinetic energy. In the weak field approximation, the imp__ & ) .oalw . 1 Y
gauge field tensor and its square can be expressed in terms of Lt :2—922 a.M,,0,= 72 Al M2, 7A,,
the generalized coordinates by 7P 7P (A18)

where Eq.(A10) has be used. Up t®(a%), this part is

1
Fij=aiA = A= 5 (41918~ Zi9,h), required to satisfy
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- L _ o
mp__ _ _ —
Lt p_?; AA,. (A19) 4o=i[H,d.]= M, E,,
. 2
Therefore, the matris should be R 9”4
4, =07 ()= M, E,
B 2 a’ 2 2
M&F~z" 5--5“%5'45“13(1——3-), A20
i i 1 127 (A20) =i%M;’}[H,Ep]=M;plZi2,E (8V2= 31100 (x)
J

which fits exactly to the two improved Hamiltonian proposed
before. The kinetic energy of the improved Hamiltonians has =, (5”-V2— 3;9;)4"(x), (A22)
the following form: j

2 where Eq.(A20) has been used. Its Fourier transformation
Hlmp:g_E EM-E . (A21) leads to the correct dispersion relation upQ@ga*). This
0 2 a¥lap =p . . . . .
a‘s tells us that once the kinetic and potential energies in the
Hamiltonian are properly improved, the dispersion relation is

According to the equation of motion, certainly improved.
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