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We discuss a phase diagram for a relativi§id(2) X Ug(1) lattice gauge theory, with emphasis on the
formation of a parity-invariant chiral condensate, in the case whebl g#) field is infinitely coupled, and the
SU(2) field is moved away from infinite coupling by means of a strong-coupling expansion. We provide
analytical arguments on the existence(afid partially derivia critical line in coupling space, separating the
phase of broker§U(2) symmetry from that where the symmetry is unbroken. We review unconventional
(Kosterlitz-Thouless typesuperconducting properties of the model, upon coupling it to external electromag-
netic potentials. We discuss the role of instantons of the unbroken subgrflp= SU(2), in eventually
destroying superconductivity under certain circumstances. The model may have applications to the theory of
high-temperature superconductivity. In particular, we argue that in the regime of the couplings leading to the
brokenSU(2) phase, the model may provide an explanation on the appearance of a pseudogap phase, lying
between the antiferromagnetic and the superconducting phases. In such a phase, a fermion mass gap appears in
the theory, but there is no phase coherence, due to the Kosterlitz-Thouless mode of symmetry breaking. The
absence of superconductivity in this phase is attributed to nonperturbative éffistamtons of the gauge field
U(1) e SU(2). [S0556-282199)04701-3

PACS numbgs): 11.25.Hf, 74.20.Mn

I INTRODUCTION fields ¢,5 may be viewed as substructures of the physical

. . electrony,z [9], in close analogy to the “quarks” of QCD.
There has been a great deal of recent interest in the dy- As argued in Ref[6] the ansatz is characterized by the

namical symmetry breaking patterns of three-dimensionafollowing local phase(gauge symmetry structure:
guantum gauge field theories, both from the pure particle

theory standpoinfl—3], and as a tool for describing models
of high-T. superconductorg4—6]. The gauge theories stud-
ied in those works have been either three-dimensional QED ) ) )
(QED,) and variants of if1,4,5), or SU(2)®U(1) [2,6]. The Ug(1) electromagnetic symmetry is due to the electric
From the condensed-matter viewpoint, which motivateoChaErge of th_e ho.Ions. In the absence of external electromag-
our approach to the subject, the key suggestion which lead f3etic potentials is a global symmettfermion numbe. It
a non-Abelian dynamical gauge symmetry structure for thd?€comes localgauged after coupling to external electro-
doped antiferromagnet, was treave-fermionspin-charge Magnetism.

G=SU(2)XUg(1) X Ug(1). 2

separation ansatz for physical electron operatoesaah lat- The local SU(2) symmetry is discovered if one defines
tice site i[6]: the transformation properties of tag; and l//LB fields to be
given by left multiplication with theSU(2) matrices, and
¢, C pertgin_s to the spin degrees of freedom_. The Idd_g(;)
XaBiE( : T) E‘Aﬂayiiyﬂi “statistical” phase symmetry allows fractional statistics of
o\C TCq/, o the spin and charge excitations. This is an exclusive feature

_ of the three dimensional geometry, and is similar in spirit to
b1 Yo z, —7 the bosonization technique of the spin-charge separation an-
=\ _ zp; sz{ _ , D) satz of Ref[10]. The presence dflg(1) allows the alterna-
' tive possibility of representing the holes as slave bosons and
the spin excitations as fermions.
where y,,; are “particle-hole” matrix-valued operatof], In the model of Ref[6], this Ug(1) is assumed strongly
c,, @=1,2 are electron annihilation operators, the Grasseoupled, capable of holo pairing and(parity-preserviny
mann variableg; , i=1,2 play the role of holon excitations, mass-gap generation. The mass generation breaks chiral
while the bosonic fieldg;, i=1,2, represent magnon exci- symmetry, which can be defined in three-dimensional theo-
tations[8]. The ansatZ1) has spin-electric-charge separa- ries with evennumber of fermion specidd], as is the case
tion, since only the fieldg; carryelectriccharge. The holon of the model of Ref[6]. However, as discusssed in Refs.
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[11,4,6, this mass gap is not accompanied by any phasaith »=1—6, 6 being the doping concentration in the
coherence, given that the symmetry breaking is realized isample[6,15]. To cast the symmetry structure in a form that
the Kosterlitz-Thouless modéd.2]. is familiar to particle physicists, one may change representa-
At this stage we would like to make an important com-tion of the SU(2) group, and instead of working with
ment, concerning theelativistic nature of the effective 2X2 matrices in Eg(1), one may use a representation in
model discussed in Reff6]. From a condensed-matter view \hich the fermionic matricesgljaﬁ are represented as two-

about specific points on the fermi surfacé the statistical

system, such as nodes, etc. In this respect it is worthy of~

mentioning that recent experimental telst8] imply that the V= —9di. Wh=(k )i, i=lattice site.
superconducting gap in the high- cuprates is ofd-wave ®)
type, with lines of nodes on the fermi surface. It is the lin- _

earization about such nodes, in the flux phase forllgél) In this representation the two-component spirir$6) will

gauge field, that leads to Dirac spectrum for holon excita-act asDirac spinors on the latticeand they-matrix (space-
tions, with the fermi velocity of holes playing the role of the time) structure will be spanned by the irreducibl 2 Dirac
limiting (“light” ) velocity, as suggested above and in Refs.representation. By assuming a backgroumg(1) field of
[4,6]. Then, as a result of the Kosterlitz-Thoule@§T)  flux = per lattice plaquett¢4], and considering quantum
mechanism for superconductivity described in Hdf6], a  fluctuations around this background for thbs(1) gauge
fermion gap opens at those nodes, which, due to the absenfield, one can show that there is a Dirac-like structure in the
of a local-order parameter, respects thaave character of fermion spectrum[16,17,4,15, which leads to a conven-

the superconducting state. tional Lattice gauge theory form for the effective low-energy
The pertinent long-wavelength lattice gauge model, deHamiltonian of the largeéd, doped Hubbard mod¢6].

scribing the low-energy dynamics around sudhwvave In the above context, a strongly coupled(1) group can

nodes, assumes the for@] dynamically generate a mass gap in the holon speci&m

which breaks th&U(2) local symmetry down to its Abelian
subgroupU (1) generated by the; matrix. From the view
point of the statistical moddB), the breaking of th&&U(2)
symmetry down to its Abeliarr; subgroup may be inter-
« lAﬂjVji U; {MH (,EJ) t[ R Eivij Uij21]+ He., (3) preted as restricting the holon hopping effectively to a single

HHF=<Z> tr{(81) Al Aji + K[ —tij(1+ 03) + Ay;]
i

sublattice, since the intrasublattice hopping is suppressed by
the mass of the gauge bosons. In a low-energy effective
whereJ is the Heisenberg antiferromagnetic interactiris ~ theory of the massless degrees of freedom this reproduces
a normalization constand,;; is a Hubbard-Stratonovich field the results of Refs[4,18], derived under a large-spin ap-
that linearizes four-electron interaction terms in the originalProximation for the antiferromagn&- = which is not nec-
Hubbard model, andJ;; ,V;; are the link variables for the €sSary in the present approach.
Us(1) and SU(2) groups, respectively. The conventional ~The Kosterlitz-Thoules¢KT) nature[12] of the Ug(1)
lattice gauge theory form of the actid) is derived upon induced mass gafabsence of local order parameteis a
freezing the fluctuations of th&;; field [6], and integrating ~characteristic feature of gauge theories i 2 dimensions,
out the (massivé magnon fields in the path integral. This as argued in Ref§11,4]. When applied to our non-Abelian
latter operation yields appropriate Maxwell kinetic terms formodel[6] it leads to unconventional KT superconductivity,
the link variablesv;; ,U;; , in a low-energy derivative expan- Provided the gauge boson of the unbroké(i) e SU(2) is

sion [5,14]. On the lattice such kinetic terms are given by massless. Due to the compactness oflil{¢) gauge group,
plaguette terms of the fori6] however, which is a distinctive feature of the non-Abelian

gauge group nature of the spin-charge separatlpnthere
are nonperturbative effectgnstantony which are respon-
> [Bsuz(1-Tr Vp)+Bugn(1=TrUpl, (4  sible for giving the gauge bosdi(1) a small but finite mass
P [19]. This spoils superconductivity, leaving only a phase,
h denot | it f the latt haracterized by pairing among the holons, without the exis-
w ere_p eno es_sum over plaqueties of the 1atlice, anqg ¢ of phase coherence. It is one of the points of this article
Bugn)=PB1.Bsuz=p2=4p, are the dmenspnless{m to argue that such a phase may provide a possible explana-
units of the lattice spacingnverse square couplings of the tjon of the so-called “pseudogap” phase of high-temperature
Us(1) andSU(2) groups, respectivelfg]. The above rela-  syperconductivity20], an intermediate nonsuperconducting
tion between theg;’s is due to the specific form of the  phase, lying between the antiferromagnetic anave su-
dependent terms in Ed3), which results in the same in- perconducting13] phases. A preliminary discussion on this
duced coupling§ =0y (1)- Moreover, there is a non- issue appeared in R4R1].
trivial connection of the gauge group couplingskd6]: At this point, we wc')u'ldllike to 'mention that cher authors
have also used relativistic fermions to describe the under-
Rodl . =2 - ] 5 doped or pseudo-gap phase of hiGh-materials[22,23.
Ysu) = ugn Y7 (5) Their approaches, however, are different from ours: In Ref.
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[22], relativistic charge excitations are used as in our modeéxpansion, and the evaluation of a Jacobian in the transition
[6]. Their relativistic nature is due to the adopted scenaridrom fermionic lattice variables to mesonic fields, are given
that the fermi surface of the underdoped cuprates consists &1 three Appendixes.
four small pockets, centered around £/2,= 7/2) in mo-
mentum space. However, the low-energy model used in that Il. BASIC SYMMETRY STRUCTURE
work, and the nature of the gauge symmetries involved, are OF THE SU(2)®Ug(1) THEORY
different from our model. In the “nodal liquid” approach of
Ref. [23], on the other hand, the relativistic Dirac-fermion
excitations around the four nodes of the putative fermi sur- The theory(3) corresponds, after integrating out the mag-
face in the underdoped situation are neutral, and, hence, fronon degrees of freedom[6], to a (low-energy lattice La-
our point of view they correspond to spin degrees of freedongrangian given by2,29
rather than holons. This leads to a different physical scenario
for the pseudogap phase than the one discussed here and i@[q_;’q;,\/,u]: K > [W(— YUV LW,
Ref. [21]. 2 1Ta

In this article we shall discuss in some detail the phase —
structure of theSU(2)®@Ug(1) gauge theory. Despite the + Wi (v UL VT ]
above motivation from condensed-matter physics, the analy-
sis and the tt_echnlques used will be th.ose of partlcl_e physics, +B1> (1—tr Up)+ﬁ22 (1-trVy),
thereby making the results even applicable to particle phys- P P
ics applications of three-dimensional gauge theories, such as (7)
early universe studies, or high-temperature field theories. In
this respect we mention the work by VolovjR4], which  where U; ,=exp(i6; ,) represents the statisticall(1)
pursues the analogy between the physics of superfluid herauge field and/; ,=exp(io®B,) is theSU(2) gauge field.

lium and that of the early universe, in an attempt to suggestpq quantityKE}A(|ti-|, with |t;;|=t assumed smaJi]. The
condensed-matter experiments that could shed light in thgrmions are 2 com;:)onent splinorsb'nth Dirac (Greek and
physics of an early stage of our Universe. We hope that ougg)or (Latin) space¥ =W and the generators of t1&U(2)

work in this article will serve the purpose of pointing out yet group are the X 2 Pauli matricesr®®, i=1,2,3. The Dirac

another condensed-matter example, that of high-temperatufR,irices can also be taken to have the Pauli matrix represen-

_superconductors, which may be connected to particle physztion [we continue to write them a?/z,e, to distinguish
ics.

. them from theSU(2) color matrice$ Here we have passed
The structure of the article is as follows. In Sec. Il we

. ; - . “*onto a three-dimensional Euclidean lattice formalism, in
review the basic symmety properties of the lattice action, —

including a discussion on the issue of spontaneous and/dfhich ¥ is identified withW . For completeness we men-
dynamical breaking of parity in the context of the applicabil-tion that the(naive) continuum Lagrangian corresponding to
ity of the Vafa-Witten[25] theorem on the lattice. In Sec. Il EQ- (7) is given by

we derive part of the phase diagram of t8&(2)®Ug(1)
model, in the strong-coupling regime of tI&J(2) gauge
group. The analysis is a nontrivial application of standard
lattice strong-coupling expansiof&6,27] to our model. In
Sec. IV we review briefly the&inconventionakuperconduct- WhereDM=r9,L—iglas—igztraBa,M, andF,,,G,, represent

ing properties of the system upon coupling it to externalthe field strengths for thel(1), SU(2) gauge groups, re-
electromagnetic fields. Emphasis is placed on the Kosterlitzspectively.

Thouless type of breaking of the electromagnetic symmetry, There are two sets of bilinears which transform as triplets
which is not accompanied by phase coherence. In Sec. V Wgnder aSU(2) transformation:

discuss briefly the role of instantons in destroying supercon-
ductivity, but maintaining pairing and fermion gap forma-
tion. In Sec. VI we discuss a possible application of the
model to the physics of high-temperature superconductors, o . o o
with emphasis on the abovementioned role of instantons in g,=y ¢, — ¥, ¥, Fr,=V10,V,+V,0,¥,,
inducing a pseudogap phase. This is an exclusive feature of

the non-Abelian model of Ref6]. The possibility of tuning — —

the doping concentration in the sample to reach supersym#2,=i[V10,¥,—V,0,V],

metric points in coupling-constant spa@8|, with interest-

ing consequences, is also mentioned briefly. Moreover, th a0 O

role of additional four-fermion interactions, which may ?7:3“_\“0“\1’1 Va0, Vo,

dominate the superconducting phase, is pointed out. Conclu- _

sions and outlook are presented in Sec. VII. Some technicaﬂ/here\I'aE\I’;“ySB and twoSU(2) bilinear singlets given
aspects of our approach, such as rules of strong-couplinigy

A. The Lagrangian of the model and its symmetries

1 2 1 2 A
L=-7(F)?=7(G.) YD,y ¥, ®

wYu

A== Wo—WoWy], A=W W+ WW],

(©)
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A4E‘§1\If1+\;2\1’2, }-4,,LE‘§10',L‘1’1+ asz,ﬂ’z,

crit
B.

w=0,1,2 (10

In this approach one can defingesonstateq 2,6]:

Mab,aﬁzpr,ﬁqjaar (11)
SU(2)
. . . broken
where Latin lettersa,b denote colorSU(2) indices, and
Greek lettersa, 8 denote Lorentz spinor indices. One can
re-express the meson state M, which is>a2 matrix in both

color and Dirac space, in terms of the above bilindails

Critical line

SU(2)
M=A31l.053+A11l.ot+ A Llo,+A,1.1 unbroken

+Fauytost Fruytoo+ Fo vhoo+ Fy, yH L -
(12

0 >
0 00) [31

The first matrix written is in Dirac space, and the second is in
*SU(2) color” space.

The interesting feature of th8U(2)XUg(1) model is
that the parity-invariant condensate transforms &3U§2)
triplet (9) and, hence, once formed, it breal&U(2)

FIG. 1. Phase diagram for tf2U(2)® U(1) model. The solid
line is the critical line which is determined in this work, separating

! . . . the phases of brokedU(2) gauge symmetry from the phase where
—U(1) dynamically[2,6]. The parity-violating condensate, the symmetry is unbroken. Its precise shape is conjectural at

one the other hand, is éU(2) singlet. In continuum theo- aqent. Analytical and continuity arguments in this work determine
ries, theenergeticallyoreferable configuration in trebsence e shape of the line in the neighborhood ¢, (8,)=(0,0) and
of external sourcess the parity-invariant condensate, ac- (g,,,)=(g5,) only. This critical line also seems to characterize

cording to the theorem of Vafa and Wittd@5,1] on the 3 solid state model, whose low-energy continuum limit is the gauge
impossibility of spontaneous parity breaking wectorlike  theory studied in this work.

theories, which we shall discuss in the next subsection. Thus,
at least from naive continuous considerations, one expects We note at this point that, in the context of our statistical
that energeticsfavors the formation of parity invariant con- model[6], there is the special relatiofb) among the(in-
denates, and this was the main reason why parity violatingersg couplings of theSU(2) andUg(1) factors, namely,
condensates have been ignored, so far, in the existing litera, =42, , which, as we have mentioned, originates from the
ture. As we shall argue in the next subsection, this feature igpecial structure of the magno@ P') degrees of freedom of
respected by théattice model of Ref.[6]. the model. This special relation is interesting in that, when
All these ideas can be incorporated into a rough phaseombined with the fact that the gauge couplings in the sta-
diagram for a three-dimension&IU(2) < U(1) theory, pro- tistical model depend on the doping concentration of the su-
posed in Ref[29]. The diagram is depicted in Fig. 1. The perconducting system, implies the existence of extreme val-
couplings shown arenverse couplings ,82=4/ag§, B1 ues for the doping concentration, above or below which the
= 1/agf, wherea is the lattice spacing. brokenSU(2) gapped phase is lost. As we shall argue in this
The top line B,=«, B,;#0, corresponds to the QED work, the critical valuegy"=0, which implies that in the
case. For QEBit is now generally accepted that there existscontext of the present effective theory one cannot see a mini-
[1,5,30 a critical number of fermion flavors, below which mum coupling below which th8 U(2) symmetry is restored.
there is dynamical formation of a chiral condensate and chitt is understood that in the condensed matter context such a
ral symmetry breaking1,3]. In the language of an effective minimum coupling, appropriate for the onset of antiferro-
theory, where the dimensionless coupling is taken to be thenagnetism, arises from the magn@P! sector. We shall
inverse of the number of fermion flavdrs], we can say that discuss such issues in more detail in Sec. VI.
there is acritical coupling above which there is symmetry

breaking. ) N ) o B. Parity and fermions on the lattice
In Fig. 1, the(inversg critical coupling on the lattice is ) ) )
denoted ag8S. The shaded area shows the weakly coupled 1. The Vafa-Witten theorem in the continuum

SU(2) breaking, and the fact that we have no breaking on Before embarking into a detailed analytical study of the
the B8,=0 (i.e., infinitely coupledl SU(2) line, as discussed phase structure $U(2)® Ug(1) theory, we would like first

in Ref. [29] and will be reviewed below, means—by to devote some time on the important issue of parity symme-
continuity—that one can draw a tentative critical line sepa-ry for lattice gauge models. As is well known, in continuum
rating the broken and unbroken phases. The issue of whethafodels, an important theorem, due to Vafa and Wiftes,

the point where the line hits th@,=0 axis is at the origin or  forbids the spontaneous breaking of parity symmetry in vec-
at a finite value ofg5 is one which we shall resolve here. torlike theories, in the sense that the parity-violating conden-
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sate is not energetically preferable. Let us briefly review thiswhere det, j=3,4 denotes the result of the fermion deter-
in the context of our three-dimensional gauge mdé¢lWe  minant in the case where th&; or A, condensates are
shall consider the Euclidian path integral for the two differ- formed, respectively, andlx(A) is the measure for the
ent mass terms, corresponding to the condens®eparity  gauge field integration and is positive; the same is true for
preserving and A, (parity violating. _Let us start from the the exponentiabfdst[A] in the Euclidean formalism. By a
case where theA,)#0 condensate is formed. In this case, ganeric result in complex integration calculus, then, the
the relevant path integral reads phase in dgtcan only make the integration smaller than that
_ _ for det, and therefore the vacuum energy associated with
ZA4=f DADYDVY ex;{ J d3x[L[A]+\If(iD+im)\If]> mass(.A,) is larger than the vacuum energy fod3). So we
can say that theenergetically preferredmass term is the
parity conserving one, and this is essentially the theorem of
Zf DAdefild +im] exp{ f d*x L[A]> (13 vafa and Witter{ 25]. Caution should be expressed in apply-
ing the theorem to the case of dynamical mass generation,
WhereL[A] denotes the pure gauge part of the Lagrangian_due to the absence of bare fermion masses, which leads to
We can see that défd ] is positive because giveid ¥  the existence of fermion zero modes, that make the Dirac
=\T theniD (y,0,¥*)=\(y,0,¥*). Thus every eigen- Operator ill defined, in need of regularization. However, the
value is repeated twice and the determinéhe product of ~ figorous analysis of Ref25] deals with that case too.
the e values is therefore real and positive. The gamma ma-
trices are in Dirac space and the sigma matrices are in colop. wilson fermions and the breakdown of the Vafa-Wittem

space. _ _ _ _ theorem on the lattice
However, ddtiD +im] is not real for the following rea-

son. The eigenvalue eiquations, in the presence of the mass .
g g P unsettled. As argued recenfl$1], although the Vafa-Witten

On the lattice, however, the issue is nontrivial, and still

m read theorem[25] may hold in the continuum limit, however, on
(D +im)¥=(\+im)¥ the lattice there may be terntat least in an effective La-
grangian level proportional to the lattice spacirey which
and may violate explicitly the parity symmetry, thereby acting as

external sources and hence spoiling basic assumptions of the
(iD+im)(yo0,P*)=(N+im)(y,0,T*). (14  vafa-Witten theorenj25]. The issue of how the continuum
limit is taken is therefore a tricky one, and currently there is
The two equations have the same eigenvalue, however, gfidebate as to whether spontaneous breaking of parity occurs
squaring each eigenvalue we get a complex number angh the lattice[31,32. Although we shall not enter this de-
therefore the determinant is complex. bate, which concerns Wilsonian fermions on the lattice that
Let us now come to the case where the parity-invarianiye do not use here, however, we consider it as useful to
condensate is formedAs)#0. In this case, the effective point out the difficulties associated with the parity symmetry,
action reads since it is a very important issue for the superconductivity
mechanism of the modelst,6]. This will help the reader
Za :f DA defiD +imas] expf d®xgA]. (15 ap_preci_ate better how these pr_oblems are avoided in the spe-
3 cific lattice model of Ref]{6], which we use for our purposes
, ) in this work.
Applying the same method again we now get The main problem with the lattice formulations of the
. . . Vafa-Witten theorem, using Wilson fermions, is associated
(D +imes) ¥ =(A+im)¥, with the fact that, in the (?ase of spontaneous breaking of
parity, the Dirac operator has zero modes, as we shall discuss
below, and thus needs regularization. Such a regularization is
(iD +ima3) (y,0,¥*)=(A—im)(y,0,¥*). (16)  Pprovided by adding appropriate soura@ehich may trigger
parity breaking in the effective action and then removing
Now we see that the eigenvalues come in complex conjugatdiem. The presence of a source term violates the vectorlike
pairs, and therefore the determinant is real and positive. nature of the regularized theory, and in general the problem
Thus, the determinants in both cases have the same absarises from commuting the limits of removing the source or
lute value, but the determinant in the case of a parity-sending the bare mass term to zero.
violating condensate has an extra phase factor making it Let us first review the situation in the case of four-
complex. It is then straightforward to argue that the parity-dimensional gauge theories. The reduction to three-
violating case will not be energetically preferahs]. To  dimensional gauge theories with even number of fermionic
this end, we note that the vacuum ene(igya box of volume  species will be straightforward, as we shall argue below. In
V) is given by the case of lattice regularization with Wilson fermions, the
appropriate Hermitean operator is not the Dirac operator but
the overlap HamiltoniaysW(mg), wherem, is a bare mass
term needed for regularization of the Wilson-Dirac operator

and

e‘Eivzf d,u(A)efd3XL[A]de§, (17
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W. This operator is known to have fermionic zero modes. 1 0
The latter lead to a nonzero spectral density of eigenvalues A=iyzys= 0 -1 (22
p(\,my) around\=0, in the limit of zero(bare fermion

mass. Ifp denotes the density of the Dirac operateiD,
then the following result holdg33]: It is, then, straightforward, following Ref32], to show that
A, obeys a relation of the form(19) for the three-
N~ dimensional case.
p(A,m)= \/%P(\/kz—mz) We now remark that, in our condensed-matter inspired
AT—m case(3), the fermions describing holon nodal excitations in
the d-wave state ar®irac spinors(6) and not Wilson Ac-
cording to the discussion in Rdf34], for such a case there
are no consistency problems or ambiguities, as far as results
~ ] in the continuum are concerngé5]. To show this, in our
—p(\) nonuniformly . case, one should first note that, as we shall discuss in more
To trigger numerically spontaneous breaking of a symmeqjetail in the next section, the effective potential for the me-

try one adds an appropriate symmetry-breaking source terggp fieldsm (11) assumes the following generic forfi@,29]:
and then removes it. In the case at hand, one should add a

source term of the forrih@yg,ag\lf. As noted in Ref[32],
then, the parity-violating condensate, proposed to occur in v _.~Tr > [ Aln M;,— >, P[Mi(_h)MiTM] . (23
y

IN[>m=0 |\|=m. (18

As the fermion massn tends to zero, the operatpf\,m)

Wilson fermions[31], is proportional top(0,my) as the i
source term is removed,—0~:

_ whereA is a numerical constanB(x) denotes an appropri-
(iVys03¥)=F2mp(0mg), (199  ate polynomial inx, i is the lattice site, and Tr is taken over
the (reducible 4x4 Dirac indices. As mentioned above to
&tudy spontaneous parity breaking numerically, one should

wheremy is a bare mass term which should be removed, an .
add to Eq.(23) an appropriate source term:

for simplicity we assumed two fermion flavors.

The debate in the current literatuf@1,32 concerns the
ordering of the limitsmy—0, h—0 in the case of lattice Vs=hM, . (24)
theories with Wilson fermions. The presence of a nonzero
physical masang renders the limith—0 safe, the parity-
violating condensate vanishes baththe lattice and the con- Following Ref.[34], we assume the following form for the
tinuum formalisms, and, thus, there is no problem with thevacuum wave function of/; :
theorem of Ref[25].

In three-dimensional lattice gauge theories, withexen
number of fermionic species, as the models we are interested
in, chiral and parity-symmetry breaking may be studied in
full analogy with four-dimensional gauge theories, provided,ynereA has been defined in EQR2.
one works with a &4 reducible Dirac representatiqd], From the specifi dependence dP(x) in Eq. (23), one

generated by the following matrices: observes that the only dependence énomes through the

source term
702 g3 0 ,yl: |0'1 0 ) 72: |0'2 0
0 — 03 ' 0 _iO'l ' 0 _i0'2 )

M,=Ue 2 =U(cos6+iA sin 6), (25)

Ve h]~4[hUcos 6+ Aln U—3P(U?)]. (26)

(20)
In such a case, there are two matrices that anticommute witRy extremizing Eq(26) with respect tod, one obtains only
the set of they-Dirac matriceq1] the trivial minimum#=0, in constrast to the case of Wilson
fermions, where the possibility for a nontrivial solution fér
exists, due to the Wilson parity-breaking tefB8#]. This so-
0 1 0 1 S ; )
ys= ye=i ) (22) lution implies that parity cannot be broken spontaneously, in
1 0/)° -1 0 agreement with thécontinuun) theorem of Vafa and Witten

[25].
Chiral symmetry is then generated lyy, and is broken by ~Hence, for our purposes in this work from now on we
the parity-invariant condensate, which in four-componenSSume thatdynamical mass generatioin our SU(2)
. . — XUg(1) model selects—due to energetics—the parity-
notation for the spinorsl” readsA;=(WW). On the other inyariant combination, which is accompanied by the pres-
hand,_the parity-violating fermion condensate is given byonce of Goldstone bosons due to the breaking of

A,=(VAW), with SU(2)—U(1) [2,6,29,35.
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215 3
-0.2
o FIG. 2. The effective potential in the case
' Bo==2,B,=0, which coincides with the case of
strongly coupled QEB. The potential has sta-
tionary points, implying a nonvanishing chiral-
0.8 symmetry breaking condensate.
-0.8
al

The quantity (\/Iif)“ﬁ denotes the meson fielghaking the

Dirac indices explicit (¥/)*(Ww!)#. 13 denotes the zeroth
order modified Bessel functiof86], truncatedto an order
determined by the number of the Grassméenmionic) de-
grees of freedom in the problef,29. In our case, because
A. The phase diagram in the regimeg,= «, 8, arbitrary of the Dirac indices and 2 flavors of thattice spinors¥,

In this regime of the phase diagram the system is equiva@n€ should retain terms i up to O(y*):
lent to a strongly coupled QED with global SU(2) sym-
metry. This global symmetry acts like a flavor symmetry, yI yI y|
and is represented by an indéxBecause of this limiting 18(24yi,) = 1+yiut 7 £+ 3—g+ 5_7M6 (32)
procedure to QEB, the spinors will be kept two component
(6), so that a smooth transition to the case of non&up2)
coupling is guaranteed. The pertinent path integral is The path integral is flavor symmetriz=1II;Z; and,
hence, we may factor out and ignore this dependence. We
_ _ wish to obtain a path integral for the meson fiMd, which
Z=_H dUi,Md\Ififd\Ififexp(—S[‘lf,\If,U]), (27 necessitates the inclusion of the Jacobian for the pertinent
La field transformation. This is calculated in Appendix B, fol-
lowing Ref.[26]. The result for the partition function reads

lll. STUDY OF THE PHASE DIAGRAM OF THE
THREE-DIMENSIONAL SU(2)®Ug(1) LATTICE
GAUGE THEORY

whereS denotes the actiofv7), written as
SERS UJ——KE 2 V(- y,)¥!, U, z.=[1 dMifexp =2 log detMm, +z log 15(2y! )
(Y7

+W, Ly, ! U.M]+312 1—tr Uy).

=1 | dMfexp X —glog detM{M/
(29) o |1

itu

Putting8,=0, we can do th& (1) integral immediately +log |g<2&Z) (32

[2]:

N The effective potential depends on the variapleefined in
j du #exp{ E [\P (- y")\P'*“ Eq. (30). To determine its form, in terms of the condensate,

one writes the vacuum expectation val@eEV) (M)
H H | (2\/?;) (29) =mfw 2thereW is a unitary matrix. So DeM/~m? and

Yi, .~ Kem/2.

From the discussion in the previous section, we know that
a P! \Pf the energetically preferable configuration is the parity-
(=74 'W */ﬁ’ﬂ conserving one, in which half of the fermion “flavors” ac-

quire masses-m, and the rest acquire massesn [25,1].
Thus, the tree-level effective potential becomes, neglecting
overall factors,

+1Iff+,m;1f ur,

f
i

Yi

e blxm

=7 TIMI 7, Mit 7, (30
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2 - ad 1. The effective action foiB,=B,=0
Veir— 3109 M= 5 KIm™+ 7K m First, we examine the model at th#miting) point 3,
= B,=0 (i.e., the origin of the diagram of Fig)IWe absorb
_ iKsmeJr 11 K8m? (33) the paramerteK in a redefinition of the fermion fields, be-
72 3072 ’ cause the action under consideration is only quadrati¥ in

fields? In this case, one may integrate out first tg(1)
gauge field. TheSU(2) action, then, is separable into an
which is plotted in Fig. 2with K=1).! This potential has integral on each link on the lattid@9]:
stationary points and, from the argumentq 26| (described
in Appendix B), this is sufficient to show thatM )+ 0.

The incorporation of the gauge interactions will change — [tr(AV)tr(AVT)]?
the situation, and induce nontrivial dynamics which may re- f dV| 1+tr(AV)tr(AV") + 2
sult in a change in symmetry for some regions of the gauge _ .
coupling constants. From the previous req@8), and the [tr(AV)tr(AVN) ]2 [tr(AV)tr(AVT)]*
discussion in Sec. II, it becomes clear that for w&dl(2) + 6 + 576 : (34)

and strong enouglg(1) the SU(2) symmetry is broken
down to aU(1) subgroug2]. The nontrivial issue here is
whether there exist Criticdlinversé COUpIingSIBiC, i:1,2, where the variabl@ are defined as follows:
above which the symmetry is restored. According to earlier
analyses, either in the continuum or on the latfit£0,37,
tjlere a_ppears to be <ar|t_|cal couph_ng B3 on the ams_ﬁz A, (X)3=T(x+a) 7, ¥3(x),
=, B,;=free, above which dynamical mass generation due
to theUg(1) group cannot take place. This is depicted in Fig.
1. — —
In the largeN continuum theorie§1] one usually identi- AL ()p=Tp(X)(— 7,)Pi(x+a). (35
fies 8gsz a, wherea is kept fixed adN— oo, and plays the
role of an effective ultraviolate cutoff. In our lattice action ) ]
we may identify the inverse of our lattice spaciag® with ~ 1he evaluation of these terms was first done by Saf2i|
«/8, in which case8S~N,, with N, the critical number of whose formalism we follow here. The resulting partition

(four-component fermion flavors, below which dynamical function, now with all gauge fields integrated out, is
mass generation due tdg(1) occurs. To leading N resum-
mation[1], N.~32/72; incorporating 1IN corrections shifts o
this number slightly higher. The issue on the existence ofa 7z =[] | dw.dv, ][]
critical number is still not quite settled, and proper lattice [ i
simulations are needed in this respect. For our qualitative

- ; 1 — 1 —
purposes, however, the largecritical number will be suf- +tr(A A )R =t (A A )
ficient. 6 12 e

1 —
1+ Etr(AwAw)

1 — 1 —
+ —[tr(A; A D13 ==t[(A A )3
B. Strongly coupled SU(2) ® Us(1) regime 48[ i) 72 LALAL)
In this section we commence our analysis of the effects of 17 — . 1 — )
strongly coupledSU(2) gauge interactions, by means of a + %[tr(Ai,#Ai,u)] - ﬁ)[”(Ai,uAi,M)]
small B, expansion.

J— 1 .
xtr[(Ai,MAi,M)2]+ Kz&r[(Ai,,uAi,p,)z]z . (36)

The general cas&#1 amounts to adding an irrelevait-
dependent constant to the expression for the effective potential.
This is an exclusive feature of the minimal gauge mod@) be-  Since we wanf, to be in the formzZ,= e we exponenti-
cause in that case one may abs#thn the normalization of the ate the above polynomial still keeping terms up to order
fermion fields. However, in the presenceaafditional nonmiminal O(AK)“'
fermion interactions, e.g., four-fermion interactions, which, as we '
shall see, may characterize realistic models of doped antiferromag-________
nets in their superconducting phases, the condfacein no longer
be absorbed in a normalization of the fermion fields, and hence its °This is because our lattice fermions are of Dirac type. In the
magnitude acquires physical significance. We shall address sudWilson fermion case, on the other hand, due to the Wilson and bare
issues in Sec. VI. For the purposes of this section, the minimafass terms, that one is forced to add in the lattice action, the above
gauge mode(7) will suffice. normalization of the spinors bi¢ cannot be done.
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— 1 — b, 5x5d, €xyp 0, gy b, gy @, B gy C. 0
Zo=I1 | dw,d¥;exp>, |§tr(Ai,MAi,M) R TR SR S SRR e
i 1, u _

1 — 1 — O S SRS AL T A

A i i 2_ A i i 2 € a (03 €
ol U ALAL T = TR ALALL] =tre (MM tro(MEY MEY ) yify oyt yi.

1 — s 1 — 5 (40
- 4_8[tr(Ai,,uAi,,u)] - 7_2tr[(Ai,/LAi,,u) ] ] ] ] ] - ]
This time when we substitute in our bilinear expansion for
M?baﬁ we do not lose the part depending dg. We are no
longer tracing over a single Pauli matrix, but rather over
tr(cri) =tr(1). This procedure will be justified if we find that
there exists an energetically favorable nonzero VEVAgr

Also we see that the terms in the action which have an

. . odd number of ¥, ¥) pairs[i.e., O(AA) andO(AA)?3] van-
r(Ai,MAi,M)[tr(Ai,,uAi,M)]B ish in this procedure since they cannot be arranged to solely
producepairs of mesons. There is a subtlety involved in
17  — - calculating theO(AA)* term, which we describe in Appen-
- ﬁ}r[(Ai,pAi,M) 1. (37) dix A.
Having followed this procedure for each term in the ac-
tion the next step will be to substitute in fdd, or more
We want to rearrange thel{, %) which make up thé,A to  Precisely forAs, the VEV we are looking for. We also as-
get an effective action in terms of meson fields defined orfume that the VEVs of all other bilinears are z{2q35,29.
site. The standard procedure for making an effective actior] herefore(M3>*#)=U;05°5*#. Following the above pro-
in terms of meson fields is to rewrite each term in B3§) as ~ cedure for each term in the acti¢87) we have
a function ofM3@ef=pa.agab e g

1 — UV ,
+ ﬁtr(Ai,p,Ai,,U,)tr[(Ai,,uAi,,u,) ]+ %[tr(Ai,,uAi,p.)]

29 — _
B mO[tr(Ai”“Ai v“)]ztr[(Ai,,uAi ,u)z]

1
*1ad

(O(AA))=0,

tr(Ai'#Ai”u) = \I’ia'a( — ’yﬂ)aﬁ\lfb"g \If_bvy

I+u*1+u

(7,)7°W 22, . A
<ﬂ[tr(Ai,p,Ai,,u)]2> = §Ui2Ui2+,u,’

= — WYL WP (= y,)*B(y,)7,

<—£tr[(§ A )2]>=fU-2U-2
(VTR 7 I ~i+u
= U MPUMET,(— 7,0 (7,07, 12 3
(38) _

(O(AA)%) =0,
tr,M means we have traced over the color indices. However
if we were to substitute in foM the expansion in terms of 3 — A\ 3 4
bilinears (12) we would find that the term containingl, gaok (AL AL T ) = g UUR
vanishes because of the traceless property of the Pauli matrix

3. Thus the above rearrangement of&#) will not be of 29 _ _ 116
any use if we want to get information on the VEV 4f. We < - m[tr(Ai,MAi,M)]Ztr[(Ai,MAi,ﬂ)2]> = 1—35Ui4Ui4+M,
must thus look for an alternative rearrangement.

This alternative arrangement can be demonstrated if we

A 2 P ; 1 — — 4
look at the tern{tr(A; ,A; ,)]°, which is written out as <mr(Ai,MAi,,u)[tr(Ai,;LAi,,u)]3> — §Ui4Ui4+,u!
[tr(A LA P = (WP (= ) P RE W, (7,) WP 17—\ 1T,
— _ ; _ﬁ}r[(Ai,MAi,p) ] =~ g3YiVivu
XL E(=y,) WL W (7,) W], 1)
(39 One can now change path-integration variables, from fer-

mion to meson field$V. An important role in the dynamics
_ of the system is played by the Jacobian of such a transfor-
we can rearrange thel(, %) which appear int@airs of me-  mation, which is calculated in Appendix B following stan-
son states defined on each site. dard argument§26]. Including the Jacobian we get
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2112
3Ui Ui We now look at the strong coupling expansion of the

SU(2) field, up to and including orde(r)(ﬂg):

zozﬂ f d/\/liexp[ -

( 4 2. Strong coupling expansion of,
i

it ST S L I 4
5 Uiui+ﬂ> EI 2 log ui],
exp[—ﬂz% (1—tr Vp) :1—32% (1—tr Vp)
4

:]_i[ fd/\/liexp{—z (—guﬁuiﬂ#

| B3

i +7% (1—-tr Vp)
143 2

—%U?Uiﬁﬁg log UFUY, ,

], (42 X2, (1—tr Vo) +O(B3).
q

(44)
which describes the dynamics in tigs=8,=0 region of

the phase diagram of Fig. 1. To get a simple saddle poinfhe zeroth order term has been calculated in the previous
effective potential we complexify the condensdte and  section, Eq(42).

write, following Ref.[26], U;U;. ,=U? This is justified, The first order term in th&U(2) integral is written
since we assume that, in the general case, the conddnisate

should be the same for all odd sites and all even sites sepa-

rately. In our path integral the radial part of the contour is 7. = dv. 112 N

. g =- i VYi -2 v
irrelevant (see Appendix B and we can chooS&Jeye, ! '8211,_,[ Ll o(2\Yi) | N % P
=Ue'? andUg=Ue '?. As we discuss in Appendix B, the

minimum value of the effective potential occurs fer=0. = —B.N J dVv. 1T 2. )=—B8.N.Z 45
The zeroth order effective potential is defined. = & pil,_,IL o210 =~ BoNopZo (49
— Ser/vol:

eff

because the addition of a single plaquette will give an odd
B . 143 o number of group elements on each side of the plaquette, and
Veg=8In U—4U*— —— U8, (43 illi
30 therefore will integrate to zero.
At second order the calculation is no longer so simple,

which is plotted in Fig. 3.

We observe that it has a local maximum, but, as explained ,35
in Ref. [26], this still implies stability of the broke®U(2) z,=511 f dVi 15(2Vyi )
vacuum, due to the special properties of the Jacobian asso- e

ciated with the transformation from the, ¥ variables to the +
meson variables. This is reviewed briefly in Appendix B. X % (1-w VP)% (1=t Vg), (46)

From Fig. 3 it is evident that there existdJ(2) symme-
try breaking even for the case g5=0. This implies that the i }
critical line in the phase diagram of Fig. 1 passes through th8Y the same argument as used in the first order case, we can
origin. This is also the situation argued to characterize th@nly have a nonzero integral where we avoid integrals over
statistical model of Ref[6], which may describe high- different numbers ofv’s and V''s. Thus the produck (1
temperature superconductivity. —trVp)Sq(1-trVy) can be replaced by Nj

=St Vitr vp),

—a}

,32
2=511 fdvi,,AS(sz

2 t
Np+% tr Vptr V|,

2n12 2
02 0.4 o6 o8 \1 ZIBZZNDZO+%H
i

X J dvi,#|g(2\/yw)% tr Vi V}. 47

-12 F

Hence, the problem is to calculate the group integrals
FIG. 3. The effective potential fo8,=8,=0. which make up the nontrivial part &, namely,
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ZZ:il_[ Vi ulo(24Yi, M)E tr Vptr v}
e
—E IT | dvi 152y,
iuep
Xin Vi 624y )t Vot vT
JME

=11 | avi,i52 i
IT | dvi 152y )t vptr Vi

i,uep
X,
" IT | dviIey )

luep

=ZO% Jp- (48)

The full path integral is then written as

B3N?
2

2
z:zo( 1— BN+ + %ZOE Jp. (49
p

We will be interested in the logarithm of this function:

202
,BNp

eff_ IOg

BZE J H (50

Zorl BoNp+——

which can be expanded, ignoring constant factors and keep-

ing terms up taO(8?)

B>
Ser=log Zy+ ?% Jp- (51)

Therefore, the strong coupling expansion leads us to calcy-
late the group integrals around the plaquette in the functio

Jp

t T
i,Ep dV; 1 8(2vy; )tr Vptr V]
Jp= . (52

IT | dvi52Vyi,)

i,uep

PHYSICAL REVIEW D 59 034502

B

Luep

J i o(Nﬂﬁ

-1 l .
1+ St AApt -

l J—
=(1+§tr AAL+ - -

-1

1 J—
L St AgAg+ -

1 J—
X| 1+ 5tr AgAg+ - -

(53

These brackets can be expanded and truncateid(mX)“

since they still contain the Grassmann fieldB¥). The
numerator contains a multitude of group integrals which
need to be evaluated around the plaquette. The method, out-
lined briefly in Appendix C, is somewhat involved and the
interested reader can refer to RER8] for the algorithms
used. It suffices to say that the terms which have an even

number of @W¥) are kept since they will form the meson
states.

After a tedious calculation along the above sketched lines,
the quantityJ, becomes

628 , 162
Jp:1+ ﬁ(UAUBUCUD) + —

135 (UAU gUcUp)?

X (UZU3+U3U2+U2UZ+U3U3)
+548069U UgUcUp)? 54
m( aUgUcUp)™, (59

and since in three dimensions we have one plaquette per link
the effective potential toO(,Bz) is (again with U;U;, ,
=U?

143 B2

Ver(B3)=8In U—4U*— 22U =2
s 628U8 1624 12, 548069
2T s 18225

(55

This is plotted in Fig. 4, with3, taking a range of values

etween 0 and 0.5. The behavior does not change qualita-
tively as we increasg3,, showing that the symmetry re-
mains broken as we move up ti#® of Fig. 1. This is as
expected assuming a continuous critical line.

C. The phase diagram for8,=0, B,#0

Let us now complete our analysis on the phase diagram
by concentrating on the region of strorfgU(2),8,=0,
keepingUg(1) coupling arbitrarybottom horizontal axis of
Fig. 1. In this part of the phase diagram one dategrate

The denominator has already been given earlier and is thgt the (strongly couplell SU(2) gauge fields to derive an

product around each side of the plaquette of thé\)( poly-  effective action for the fermion and (1) gauge fields. The
nomial in Eq.(36). For convenience let us label the plaquetteSU(2) path integration is performed along the lines of Ref.
as having sides 1,2,3,4 and sig#$8,C,D [26]. In the strong coupling limit foiSU(2),8,=0, the ef-
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-4t densate. This implies that for very stro&dJ(2) group the

symmetry isrestoredfor arbitraryUg(1) couplings.

- This is a very important fact, indicating the existence of a
not well-defined limitB,,8,—0, since from the discussion

0.2 5.4 o6 ) s in this and the previous subsections it seems that there is an

ordering problem in how one approaches the poBy,3,)
=(0,0). This indicates that the shape of the critical line
around that point is the one depicted in Fig. 1, concaving
upwards. Bycontinuity argumentsthen, one expects the
shape of the entire critical line to be the one depicted in the
figure. About the point 8,,,) = (85,0), where theSU(2)
interactions are negligibly weak, and thus irrelevant, one ex-
pects an almost vertical shape of the critical line.

This discussion completes our analytical results for the
=0,0.125,0.25,0.375,0.5, the corresponding curves lying in order Ophase diagram of .thSU(2)®US(1) gauge t.heory. As we .
decreasing magnitude of their maxima from right to left in the fig- have already m_e,nt'or_]ed above, t_he derivation of the precise
ure. shape of the critical line, separating the phases of unbroken
SU(2) symmetry from the region where symmetry breaking

fective action, obtained after integration of t8&J(2) gauge ©OCCUrS, requires a proper lattice simulation analysis, by

fields, reduces to the sum afne-link contributions §  Means of a fermionic algorithm. We hope to be able to ad-
— dress these issues in a future publication. However, the

-16

FIG. 4. The effective potential for3,=0 and for 3,

= Ser(AA), with above results will be sufficient for our purposes in this work,
a = t oa and will enable us to present physically intreresting scenaria,
Au(X)p=Yp(x+a)y,Uy ,P3(x), pertinent to the physics of high-temperature superconductiv-
_ _ ity, which we shall discuss in Sec. VI.
AM(x)g‘:\Ifb(x)(— YUy Yi(x+a), Before doing so, it will be essential to review in the next

(56) two sections:(i) the symmetry breaking properties of our
] ] non-Abelian gauge model from the point of view of Gold-
whereU, , denotes théJ5(1) group element s the lattice  stone’s theorem and the existence of a local order parameter
spacing, and the Latin indicesb are colorSU(2) indices.  gnd (i) the role of nonperturbative effectsThese will be
Below we shall proceed to evaluate explicitly this stronglyimportant in considering the coupling of the model to exter-
coupled effective action along th&,=0 axis of the phase pa| electromagnetic fields, as required for the study of super-

diagram in Fig. 1. . . ~ conducting properties.
For the SU(N) case the effective action expSer) IS

known in an expansion ove, X[26]. This will be sufficient

for our purposes here: IV. KOSTERLITZ-THOULESS REALIZATION

OF SUPERCONDUCTIVITY IN THE
SU(2)®Ug(1) MODEL
Se

1 R J—
Tr(AA) + . { —Ti[(AA)?]

1
N N(N2—-1) This section is mainly a review of results that appear in
the literature regarding the modg,4,11. It mainly serves
as a comprehensive account, for the benefit of the nonexpert
in the area, of the various delicate issues involved, which
play a very crucial role in the underlying physics.

(57 An important issue in the modé€8) is the existence of a
The determinant terms are associated with baryonic statgiobal conserved symmetryamely, the fermion number,
[26]. We also note that for the)(N) case the determinant Which is due to the electric charge of the fermiokis The
terms areabsent In the phase diagram of Fig. 1 th#(2)  Corresponding current is given by
case occurs at the poimg,—0,8,—0. We approach this

1 J—
+-~+m(detA+detA)+--~ .

1 AATV2
+ N(Tr[AA])

point asymptotically, by working on th8,=0 line, and as- 2
sumingB;# 0. We first notice that the Abelian phase factors J,= E vy W, (58
of theUg(1) interactionsancelfrom the expressions for the c=1

traces ofA, A in the effective action(57). Moreover, from

the discussion of Sec. Il, we know that tB&J(2) (strong-  This current generates a glolag(1) symmetry, which after
coupling integrationcannot producea parity-invariant con- coupling with external electromagnetic fieldsgauged
densate, since the latter is not &U(2) singlet[2]. The In the absence of such external potentials, the symmetry
resulting effective action should be expressible in terms otJg(1) is broken spontaneousin the massive phase for the
SU(2) invariant fields. Thus, on the axi3,=0 there isno  fermions¥. This can be readily seen by considering the
possibility for the Ug(1) group to generate a fermion con- following matrix elementsee Fig. %
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3, =€,,,0,B. (62)
All the standard properties of superconductivity, Meissner
effect (strongly type I1[4]), flux quantization, and infinite

FIG. 5. Anomalous one-loop Feynman matrix element, Ieadingconducmnty’ follow then in a standard way, provided the

to a Kosterlitz-Thouless-like breaking of the electromagneticexc'tat'_on¢ _(and’ henceBu) is exactly maSSIejQ‘S' )
Uer(1) symmetry, and thus superconductivity, once a fermion mass Having d'SCUSSQd the spontaneous breaking _Of fermion
gap opens up. The wavy line represents 819(2) gauge boson numbel‘ Symmetry n the massive ferm'on phase, itis natural

B’ , which remains massless, while the blob denotes an insertion dP inquire abo‘_Jt t_he nature of symmetry breaking, in the
- sense of establishing the existence or absence of a local order

parameter. In this respect, our discussion will parallel that of
Ref. [4]. The neutral parity-invariant condensate

(¥, ¥,—W¥,V¥,), generated by the strorgg(1) interaction,

is invariant under theU(1)®@Ug(1), as aresult of thers
coupling ofoL in the action, and hence does not constitute
As a result of the color group structure only the massSs  an order parameter. This is a characteristic feature of our
gauge boson of th&U(2) group, corresponding to the;  gauge interactions. Putative charge & — 2e order param-
generator in two-component notation, contributes to thesers, such as the pairing interactions among opposite spins

graph. The result ip11.4 in the statistical model di6,4]3 e.g., (W, W), (¥, W) wil
vanish at any finite temperature, in the sense that strong
& (60) phase fluctuations will destroy the vacuum expectation val-
“ Ipe ues of the respective operators, due to the Mermin-Wagner
theorem. Even at zero temperatures, however, such VEVs

whereM is the parity-conserving fermion magsr the holon yield zero result to any order in perturbation theory trivially,

condensate in the context of the doped antiferromagiret  due to the fact that in the context of the effectBE gauge

our case this mass is generatithamicallyby means of the ~theory of the brokerSU(2) phase, the gauge interactions

Us(1) interactions, as we discussed above, provided the col2éserve “flavor.” For a more detailed discussion on the

pling constants were lying in the appropridtérong regime ~ Symmetry breaking patterns of ¢21)-dimensional gauge

of the phase diagram of Fig. 1. theories, and the proper deﬁnmon of order parameter fields,
The result(60) is exactin perturbation theory, in the sense We refer the reader to the literaturel, 4]

that the only modifications coming from higher loops would ~ Thus, from the above analysis it becomes clear that gap

be a multiplicative factor 1/4 IT1(p) on the right hand side, formation, pairing an(_j sup_erconductlwty can occur in the

with TI(p) the Bi—gauge—boson vacuum polarization func- above model without implying any phase coherence.

the fermion-number current, =¥y, ¥. Continuous lines repre-
sent fermions.

S2=(B2|3,|0), a=1,2,3, J,=V¥y,¥. (59

S§=(B3]J,/0)=(sgnM)e

tion [11].
As discussed in Refd4,11], the B, color component V. INSTANTONS AND THE FATE
plays the role of theGoldstone bosowf the spontaneously OF SUPERCONDUCTIVITY

broken fermion-numbeg symmetry. If this symmetry is exact,  anp important feature of our model is that, due to the
then the gauge bosdd), remainsmasslessThis is crucial  non_Apelian symmetry breaking patte®1J(2)—U(1), the
for the superconducting propertig4], given that this leads apejian subgroupJ(1) e SU(2), generated by the Pauli
to the appearance of massless polén the electric-current  ganerator o5 U(2), is compact and may contaiinstantons
two-point correlators, the relevant graph being depicted if19], which in three space-time dimensions are similar to

Fig. 6. . ) _ monopoles, and are known to be responsible for giving a
It can be showrj4] thgt in the masswe-fermm[broken small but nonzero masto the gauge bosoB? ,
SU(2)] phase, the effective low-energy theory obtained after

integrating out the massive fermionic degrees of freedom mgz~e~ (12% (62)
assumes the standard London action for superconductivity,
the massless excitatiap being defined to be théualof BY:  whereS, is the one-instanton action, in a dilute gas approxi-

mation. Its dependence on the coupling constgrt gsy,)
is well known[19]:

const

9

(63

FIG. 6. The lowest-order contribution to the electric current-
current correlatof0|J ,(p)J,(—p)|0). The blob in the propagator
for the gauge bosoB, indicates fermion looggresummedl correc- 3 ] o
tions. The blob in each fermion loop indicates an insertion of the N four-cmponent notation, such fermionic bilinears correspond
currentJ,, . to (¥ ys¥),(¥Vys¥), considered in Ref4].
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For weak couplingy, the induced gauge-boson mass can be
very small. However, even such a small mass is sufficient to”
destroy superconductivity, since in that case there is nc
massless pole in the electric current-current correlator.
The presence ofnasslessfermions, with zero modes
around the instanton configuration, is knof!®] to suppress
the instanton effects on the mass of the photon, and unde
certain circumstances, to be specified below, the Abelian-
gauge boson may remain exactly masskasn in the pres- pseudo gap phase
ence of nonperturbative effecthus leading to superconduc- S
tivity, in the context of our model. This may happglf] if .
there are extra global symmetries in the theory, whose cur- \ T e
rents connect the vacuum to the one-gauge-boson state, ar AF ya AN
thus they break spontaneously. This is precisely the case ¢ \ / 98¢ \
the fermion number symmetry considered above. In such ¢ X B \ doping
case, the massless gauge boson is the Goldstone boson of the
(nonperturbatively spontaneously broken symmetry. FIG. 7. The temperature-doping phase diagram summarizes the
However, in ourSU(2)®Ug(1) theory, discussed in this current(experimentally obser\{e)d;ituation.in high-tempergture su-
work, as a result of théinfinitely strong Ug(1) interaction, perconducting cuprates. Notice the_ existence of an intermediate
a mass for the fermions is generated, so we are not facing zgro-temperature phase, characterized by the existence of pre-

problem with zero modes. Our analysis is based on a Wilsof©rmed pairs, leading to a pseudogap.

nian treatment, where massive degrees of freedom are intf‘dng [19], and hence superconductivity can occur, in the
grated out in the path integral. This includes the gapful fer4ense that the system will remain in that false vacuum for a

mions, and the massivBU(2) gauge bosons. The resulting yery |ong period of time, longer than any other time scale in
theory, then, is a pure gauge thedsy1l)e SU(2), and the ihe problem.
instanton contributions to the mass®} are present, given  The short reviews of symmetry-breaking patterns and the
by Eq.(62), in the one-instanton case. role of nonperturbative effects, just presented, provided us
We now remark that supersymmetry is knoWt®] to  ijth the necessary equipment to attempt a construction of
suppress instanton contributions. For instance, in ceftain possible scenaria, which might simulate the interesting phys-
=1 Supersymmetric models with massless fermionS, consi TS under|ying the high_temperature Superconducting cu-
ered in Ref[19] the instanton-induced mass of the Abelian prates. A rather preliminary and Heuristic discussion will be

T v~._  T*doping)

non-fermi liquid phase

gauge boson is given by presented in the next section. A more detailed analysis, es-
pecially in the context of the statistical models of Rje],
m e S (64) i ice si i i i in-
gauge boson requires proper lattice simulations which automatically in

corporate nonperturbative effects. This, however, falls be-
which is suppressed, compared to the nonsupersymmetrigond the scope of the present paper.
case(62).

N=2 supersymmetric theories in three space-time dimen- VI. APPLICATION TO THE PHYSICS
sions constitute additional examples of theories where the OF HIGH-TEMPERATURE
Abelian gauge boson remains exactly massless, in the pres- SUPERCONDUCTORS

ence of instantongl9,39. Such theories have complex rep-
resentation for fermions, and hence are characterized by ex-
tra global symmetriegsuch as fermion numbgrin view of
our discussion above, such models will then lead to In this section we would like to consider a possible appli-
Kosterlitz-Thouless superconductivity upon gauging the fercation of the abov&U(2)®Ug(1) model[6] to the physics
mion number symmetry. of high-temperature superconducting cuprates. Recent ex-
We also remark that in supersymmetric theories of theperiments[20] have demonstrated an extremely unconven-
type considered here and in RE28], it is known[19] that  tional and rich structure of these materials, not in their su-
supersymmetry cannot be broken, due to the fact that thperconducting phases, but rather in the normal phase. The
Witten index (—1)F, whereF is the fermion number, is phenomenology of the high-temperature cuprates may be
always nonzero. Thus, in supersymmetric theories the presummarized by the temperature-doping concentration phase
ence of instantons should give a small mass, if at albhdth  diagram, shown in Fig. 7.
the gauge boson and the associated gaugino, However, in The phase diagram shows clearly a very l@ncluding
three-dimensional supersymmetric gauge theories it is poserg doping antiferromagnetic phagaF). Above a critical
sible that supersymmetry is broken by having the system in doping concentratiorfpoint A in Fig. 7), AF order is de-
“false” vacuum, where the gauge boson remains masslesstroyed, but the interesting issue is the existence of a phase,
even in the presence of nonperturbative configurations, whileamed the “psuedogap phase,” which interpolates between
the gaugino acquires a small mass, through nonperturbatiite AF and the superconducting phaggSQ, the latter be-
effects. The life time, however, of this false vacuum is verying known to be ofd-wave type[13].

A. Phenomenology of high-temperature
superconducting materials
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It is a general belief today, supported by many experimen- Before starting our analysis on th@ero-temperatuje
tal results[20], e.g., results on optical conductivity, photo- pseudogap phase, we should point out that the gauge theory
emission, transport, etc., that the pseudogap phase is charat- hand, is also in agreement with deviation from Fermi-
terized by pairing (“preformed pairs”), leading to the liquid behavior in the normalno mass gapphase. Indeed,
existence of a madpseudo gap in the fermionic spectrum, as we discussed in previous articlek?], a U(1) fermion-
which, however, is not accompanied by phase coherencgauge theory in 2 1 dimensions, in which the mass of the
This situation is in sharp contradiction with standard BCSfermions is generated only dynamically through the gauge
theories of superconductivity, according to which phase cointeractions, is characterized by nontrivial infrared fixed
herence appears simultaneously with the appearance of mints, which according to general argumejt8] is suffi-
gap. cient to drive the theory away from the Landau-Fermi liquid

The pseudogap phase is separated by a critical temperérivial infrared structurg
ture curve T.(doping from the d-wave superconducting Let us continue our discussion on the diagram of Fig. 7 by
state, characterized by the sharp drop in resistivity, andonsidering the antiferromagnetic phase. In such a phase, the
strong type Il superconductivitipenetration depth of exter- only excitations are assumed to be spin degrees of freedom.
nal magnetic fields is of order of a few thousands of A There are no charged excitations, and the pertinent dynamics
Today, the general belief is that the superconducting pairings described by the magnasector of the mode3). As the
is of BCS type involving four-fermion itneractions among doping exceeds a critical concentratipoint A in Fig. 7),
the charged excitations. However, the four-fermion interacthe antiferromagnetic order is destroyed. In the context of
tions do not have to be phononic. simple low-energyCP! models, which describe adequately

The pseudogap phase is also separated by another cunthee dynamics of the AF sector, this can be seen easily by
T* (doping from the normal state phase, where there is ncapplying renormalization-group argumeiit&!,45, and tak-
gap, but where there are abnormal normal state propertiek)g into account the dependence of the respective coupling
such as linear dependence of the electrical resistivity wittfeonstant on doping, in the way explained in R¢#515].
temperature for a wide range of temeprature scales, etc. All The important question is whether superconductivity does
such properties point towards a non-Fermi-liquid behavior ofot set in immediately, but one has to pass through the in-
the normal state, which is experimentally observed, as far a¢rmediate phas&B, where a “pseudogap” appears, but no
we understand, not only in the regime of optimum doping,Phase coherence exists. As we shall argue now, our strongly
but well below it(shown in the Fig. Y. coupled gauge th.eor$U(2)®Us(1), presented above, may
offer an explanation for the phenomenon.

To this end, we first remark that above the critical doping
concentration that marks the on-set of disordeiirf Fig. 7),
the z magnons are massive, with masses which themselves

In this section we shall argue that the gauge theorydepend on the doping concentratipfb,15,23. In this re-
SU(2)®Ug(1) of Ref.[6], whose low-energy limit has been gime, there are both charge and spinfigld) excitations.
studied in this paper in some detail, may provide a satisfacitegrating out the massive magnanghe long-wavelength
tory qualitative explanation of the phase diagram of Fig. 7,dynamics of the charge excitations is described by the effec-
especially as far as the appearance of a pseudogap phasdi¥e SU(2)®Ug(1) gauge theory of Ref6], (8). The gauge
concerned. For the purposes of this article, we shall concerds(1) interaction is capable of inducing dynamical opening
trate in the zero temperature region of the graph. Our methodf a holon gap(pairing if the pertinent coupling constant of
will be that of Ref.[40], i.e., approaching the pseudogap the statistical model lies inside tf&U(2) broken regime of
phase by studying the excitations about the nodes of ththe phase diagram of Fig. 1.
d-wave superconducting gap. We shall not deal here with We now remark that in the statistical mod@), which
excitations away from the nodes of the gap. Our hope will bewill be the basis of our discussion in this section, the inverse
that similar (long range gauge-interaction phenomena are couplings of theSU(2) andUg(1) gauge groups lie in the
responsible for the formation of the bulk of thewave gap straight lineAB depicted in Fig. 8, as a result of E(). In
and the pseudogap. From the preliminary finite-temperaturthe condensed-matter model of R, then, the local gauge
analysis of Ref[40] it becomes clear that the gaps that opengroup isU(2) rather tharSU(2)®Ug(1).°
up at the nodes disappear at much lower temperatufes (At present, the precise shape of the critical line is not
<0.1 K) than the bulk of thed-wave type gap[T. known, since it requires the construction of an appropriate
=(©(100 K)], and this means that the predictions made infermionic algorithm, which will allow for a proper lattice
this work, if true, can be realized only if one looks at low study of the model. The strong coupling analysis in this pa-
temperature$. per has demonstrated, however, that the critical line passes

through the origin of the graph, concaving upwards in the

B. Strongly coupledU(2) gauge theory
and the pseudogap phase

“However, we point out that the presence of external magnetic
fields may enhance these valyd$)], as, for instance, is the case of 5This, however, does not affect the results of the previous analysis
the experiments involving thermal conductivity measuremptits pertaining to the mass generation. The only difference olut2)
See discussion at the end of this section. case is theabsenceof baryonsfrom the spectrunj26].
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This issue is related to the presence of instantons, dis-
cussed in the previous section, which are responsible for giv-
ing a small but finite mass to the gauge boﬁﬁl and thus
destroying the basic criterion of superconductivisge Fig.

6). The presence of fermions does not change this. In the
brokenSU(2) (gapped phase of the mod€B) the fermions

are already massive, due to the extrg(1) interactions, and
hence there is no issue of zero modes that could screen the
instanton effects. From E¢62), as well as the fact that the
one-instanton action exhibits the following dependance on
su(2) the gsy(2) coupling constant for the case at hdid]:

unbroken

SU(2)
broken

Critical line

const

So~——. géu(z)“\](l_(s) (66)

Jsu2)

0 @ p one observes that the instanton-indu&;ﬁboson mass de-
FIG. 8. Phase diagram for th8U(2)xUg(1) gauge theory, Creases upon increasing the doping concentrafidn the

viewed as a low-energy continuum limit of the solid-state model forsample.

doped antiferromagnets of RdB]. The straight line indicates the In the context of the statistical models of Ré8], etc.,

specific relation of the coupling constants in the model. one should also consider the coupling of superconducting

planes, by means of Coulomb interactions among the charge

way shown in the figure. Also, from the behavior of the carriers(electron. Such interactions may result in a small

critical line about the point 8,=,55), it is evident from  leakage of electrons across the planes, which inevitably leads

the graph of Fig. 8 that the intersection politdefines an to fermion-number nonconservation on the plane. In Ref.

upper bound for the inverse couplingy, in order for the [28], within a spin-charge separating framework, such an in-

system to be in the mass-generation phase. For all practicarplanar coupling has been represented by inserting in the

purposes it is qualitatively meaningful to assume an almospath-integral a term of the form

vertical shape of the critical line at the intersection pdnt

which implies that the critical coupling for mass generation e

for the coupling; in the statistical model is still given by f dpe?fdx ¥ zatHe, (67)

the singleU(1) gauge theory critical coupling, i.q&1<,8§

(see Fig. 1 It is known thatg$~32/72 [1,37]. So, on ac-

count of our discussion in Sec. lllA and E¢p), such a

gauge pairing would occur in the following range of doping

where a=1,2 runs over “colors” in the model oEU(2),
and 7 is a Majorana spinor. Due to this, the tef6¥) in the
effective action violates fermion number, and is interpreted

concentrations: as implying a hopping oboth spin (z) and charge ¥) de-
) a2 A grees of freedom. Notably; may play the role of the super-
Sar< 6< 5 )El_z 3 (65 symmetric partner of th&> gauge boson, in Al=1 super-

symmetric formulation of the mod&hich is possible upon

where 8, denotes the doping concentration at which the AFcertain relatior] 28] among the couplings of the microscopic
order is destroyed and is the ultraviolet cutoff, which, in  spin-charge separating model of RE].
our lattice model, may be identified with the inverse of the The explicit breaking of the fermion number symmetry by
lattice spacingn, as discussed at the end of Sec. Il A, the interplanar coupling, as well as the absence of fermion

This phase is characterized by the breaking of chiral symzero modes in the massive phasee to theUg(1) interac-
metry. However, as discussed in Rdf$1,4], and reviewed tions| imply that the presence of fermions will not cancel the
in Sec. IV, the symmetry breaking occurdthout a local  instanton-induced small mass of the gauge bo&®.” In
order parameter. Strong phase fluctuations destroy the putauch a case, then, the gapped phase will be characterized by
tive order parameter for (21)-dimensional QED. Thisis an the presence of pairing, mass gap, but no phase coherence
exclusive featuref the 2+ 1 gauge interactions, and as we
argue now, it is responsible for the appearance of a
pseudogap. The concept of the pseudogap is associated prérhis supersymmetry carries nontrivial dynamical information
cisely with the presence of a nonvanishing mass gap and thyg,out the spin-charge separation mechanism underlying the model,
the existence of “preformed pairs” in underdoped cupratesand hence it is different from the nondynamical global supersym-

[20], but in absence of a local order paramefgtase coher-  metry algebras, at specific points of the coupling constants, discov-
encg in the model. The situation is analogous to theered in Ref[46].

Kosterlitz-Thouless mode of symmetry breakifitg]. The Although, a reduction of orde(64) might be expected iN=1
important issue to understand is why there is no supercorsupersymmetric cas¢&8], occurring for particular values of dop-
ductivity in the model. ing. See discussion below.
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and superconductivity, features shared by the pseudogajpns are contacfour-fermion interactions[47,4]. From a
phase observed in cupraté§g. 7). microscopic point of view such interactions may arise as an
The above considerations are rather Heuristic at presengffective way to describe the tendency of holes to occupy
The complete analysis would necessitate a lattice simulationearest-neighbor lattice sit¢4,18], or in some recent sce-
of the model(7) in the presence of instanton effe¢is the  naria they may describe attractions due to screened Coulom-
broken phase after mass generation dudJtgl) interac- bic interactions among charged excitations, as a result of the
tions]. Analytical results at present exist only fdk=2 su- interplanar coupling48]. The corresponding coupling con-
persymmetric theories, as we mentioned ab¢®6,39, stant will again depend on the doping concentrafibl and
which, however, seem not to correspond to the physics of ththis will imply interesting phase structures.
cuprated 28], which appear to have at mdst=1 supersym- The additional four-fermion interactions are, then, viewed
metry upon coupling of the superconducting planes. Superas being responsible for the appearance of an orderealve
symmetry suppresses instanton effects in some c@&ps state, with the gap being characterized by four nodes. We
and some times may lead to a massless gauge boson, ahall be fairly phenomenological, given that a detailed incor-
though such a case at present seems to charactdkz2  poration of extra four-fermion interactions in our strongly
supersymmetric theories. We hope to return to a more desoupled gauge model is not striaghtforward. However, a phe-
tailed study of such issues in the future. nomenological analysis will be sufficient to demonstrate the
The suppression of instanton effects by supersymmetrynain unconventional features of our scenario for high-
which in our class of statistical models may occur for certaintemperature superconductivity, at least in the context of a
doping concentrationg28] points to the following possibil- continuum effective field theory.
ity: As one increases the doping concentration, a region is It is known that, in the context of relativistic models we
reached where there is a special relation among the variounsider here, as a result of linearization about the nodes of
coupling constant of the effective spin-charge separating d-wave superconducting gap, the four-fermion interactions
theory, leading to & =1 supersymmetrj28]. For instance, are the only ones which become renormalizabievany in
in the context of models of Ref15] such a supersymmetric the 1N framework, wheré\ is a flavor number for fermions.
point could be reached for doping concentratigifs such  As an instructive example, consider, for instance, Gross-
that t'~\/ﬁ(1— 5)3/2, where the prime denotes next-to- Neveu-type four-fermion couplings in the effective Lagrang-
nearest-neighbor hoppin@ and Heiseneberg exchange en-ian [21]

ergies (). By tuning the couplings one may arrange— 2
always in the context of phenomenological models—for a a2
Ly=x>, (V¥
situation in whiché* < &%) This would imply that, within UK (WaW5)% (68)

the region of dopings for which the gauge statistical interac-
tions are responsible for the opening of a gap and pairing, theshereW, are the relativistic spinor&) describing the exci-
suppression of instanton effects due to the presendswf tations about the nodes ofcawave gap.
persymmetrig fermions may be sufficient to allow for a From standard argumenfd9] on the phase structure of
gauge-theory-induced Kosterlitz-Thoule$KT) supercon- Gross-Neveu type couplings, we are considering here, we
ducting gap at thel-wave nodes. The KT nature of the gap know that pair formation, and hence mass generation, in
implies that once opened such a gap cannot affeaf-tivave  four-fermion theories occurs for dimensionless inverse cou-
character. This scenario for superconductivity has been aglings \=1/2«A weaker than a critical value 2f. How-
vocated in Ref[6]. In a related, but less probable, scenario,ever, the full phase diagram, incorporating tB&/(2) and
the tunneling to a “false” supersymmetry-broken vacuumUg(1) couplings as well, as appopriate for the model of Ref.
[19] could occur in the dSC region of the phase diagfage  [6], will be more complicated. However, for our purposes in
Fig. 7). the present work it will be sufficient to consider only the
effects of theUg(1) coupling, responsible for the mass gen-
eration in the model.

A phase diagram for an Abelian gauge theory with extra
four-fermion interactiongof Gross-Neveu typehas been de-

Despite these appealing scenaria for the role of gaugeved analytically in the context of a Schwinger-Dyson large
(spin-spin interactions for inducing KT superconducting fermion-flavor analysis in Ref4], and in principle the result
gaps at the nodes, in the realistic situation the onset ofan be checked in lattice models. For our purposes in this
(d-wave superconductivity occurs at higher doping concen-work it will be sufficient to assume the validity of the large-
trations, for which the attractive four-fermion couplings flavor-number continuous results of Ref], and concentrate
among charged excitations in the effective field theory beon the pertinent phase diagram in the coupling constant
come strong enough, so as to overcome the gauge interaspace between the gaugeand four-fermion couplings,
tions, and lead to a standard BCS type pairing among thdepicted in Fig. 9.
charged excitations. In toy models of doped antiferromagnédt8,15, which

In such a case one then is forced to consider the effect adre sufficient for our illustrative purposes, such Gross-Neveu
additional contact interactions, among ti@lons which are  four fermion terms are expressing the tendency of holes to
up and above the gauge interactions considered so far. Thweak as less bonds as possible in the antiferromagnetic lat-
simplest, and most likely the most relevant, of such interactice, which is the configuration featuring the holes sitting

C. Superconducting phase and additional
four-fermion interactions
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Ka 1
KHubbard* Ko(t,,\],)m, (71)
(onset of local order
parameter)
______________ where kq(t’,J") is an appropriate function of the next-to-
= sﬁ?ﬂ‘f:iy ......... nearest-neighbor hopping element and Heisenberg exchange
K™ ’ energies.
g Combining Eq.(69) with such repulsive interactions, one
{_ (Kosterlitz then arrives at a generic coupling for four-holéGross-
Thouless mode) Nevey operators in the model of the form
symmetry 1
ubroken broken kar=1(8) = kot 3') 75, (72)
critical where «(9) is, at present, a phenomenological parameter,
Lline which, however, is expected to increase, as we said, with
0 w > increasings. For the four-fermion interactions to be attrac-
0 g g, tive one needsc,:>0, and this places restrictions on the
regime of doping, for which the interactions are going to lead

to dynamical mass gap generation. When combined with the
FIG. 9. A generic phase diagram of the theory with(1)  Phase diagram of Fig. 9, this implies that pairing due to
gauge and four-fermioriGross-Nevel interactions. The critical four-fermion interactions would occur for doping concentra-
line separates the phase of unbroken symmetry from that of brokefons in a region determined by the critical line of Fig. 9. By
symmetry. The symmetry breaking is due to the fermion condenappropriately choosing,, in the context of phenomeno-
sate. The dotted line is conjectural at present, and indicates thi@gical models, it is then possible to arrange for a situation
on-set of a local order parameter due to the dominance of fourike the one depicted in Fig. 7, where the zero-temperature
fermion interactions. pseudogap phase interpolates between the AF and the stan-
dard BCS-typal-wave superconducting theory.
next to each other. Such interactions, may be described by Notice that the dynamical mass generation due to four-
adding to the Hamiltoniarattractive four-fermion interac- fermi couplings leads to aecond ordettransition, at zero
tions of the form temperatures, and hence to phase coherence, as is standard in
BCS-type pairing. This should be contrasted with the gauge
. . situation described above, which leads to Kosterlitz-
_K:¢I¢1(J)::¢£¢2(J+1):: (69) Thouless—type breakinpl1,4,6. It would probably imply
the existence of a crossover liidotted in the diagram of
where, ,a=1,2 are Grassman(imolon) operatorsj denote  Fig. 9, separating the region of the broken symmetry phase
lattice site, and . ..: denotes normal ordering of quantum where a local order parameter is present, due to the domi-
operators. The normal ordering conventions are such that mance of the four-fermion interactions, from the region
fermion bilinear is written as where the Kosterlitz-Thouless mode of symmetry breaking
(absence of a local order parameteccurs, due to the domi-
Tt t TN nance of the gauge interactions. Such phase diagrams should
V=), (B)=6 (70 be confirmed by detailed lattice simulations, using appropri-
ate fermionic algorithms, which fall beyond the scope of the
with & the doping concentration in the sample. Such termsyresent work.
may be asssembled, in the continuum, low-energy, limit The interesting feature is thaixperimentallyone can
[15,4], into Gross-Neveu four-fermion terms of the form make a distinction between a gap induced by the gauge in-
(68), where the spinors are constructed as in @&g. teractions, or by four-fermion interactions, as a result of dif-
At this stage, the coupling constanis a phenomenologi- ferent scaling of the mass gap with an externally applied
cal parameter. However, from quite generic arguments, ongagnetic field. A suggestive experiment along these lines is
would expect it to increase upon increasing the doping conthat of Ref.[41], measuring the behavior of the thermal con-
centrations in the sample, since the larger the doping, theductivity, in both the superconducting and “pseudogap”
bigger the probability of the holes to lie in adjacent sites ofphases. Details on such issues are discussed in Refs.
the lattice. [40,50,51,2]
At present, the only case where four-holon-operators ap-
pear with well-defined coupling constants in terms of the
microscopic parameters of the theory, is thior Hubbard
model case, where, however, the four-fermion interactions In this work we have described a strong coupling expan-
are repulsive[15,47). In the models of Ref[15], for in- sion for an SU(2)®@Ug(1) gauge theory, in three-
stance, such Hubbard four-fermion couplingg,pparg @S- dimensional space time. From the physical point of view,
sume the generic form such models may serve either as a prototype for physical

VII. CONCLUSIONS
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applications to the physics of excitations about nodes in @f a mass gap in the fermion spectrum. However, the mode
d-wave high-temperature supercondudi®} or—when for-  of symmetry breaking is of Kosterlitz-Thouless type, and
mulated in Euclidean lattices—as describing high-hence no order parameter exists, since strong phase fluctua-
temperature phases of four-dimensional gauge theories of th®ns destroy itthe parity-invariant fermion mass gap in the
early universe. model of Ref.[6] is not an order parameter, since it is in-
Our analysis has indicated a phase diagram of the formnvariant under the respective symmetries, and hence there is
depicted in Fig. 1. The analytical results obtained in theno contradiction with the Mermin-Wagner theorgr8uch a
present article pertained to the strongly coupBd(2) sec- KT mass gap may be viewed as a pseudogap. In our scenario
tor. We have shown the absence of a finite critical couplingabove, such a gap owes its presence to relativistic fermions
for SU(2) symmetry breaking. The breaking 8fU(2) is  at specific points of the fermi surfade.g., nodes of the
induced by dynamical parity-conserving mass generation dug-wave gap, argued to play a crucial role in the pertinent
to theUg(1) strongly coupled sector. The shape of the criti-Phase. We stress once more, that the important point in our
cal line, separating the phases of bro&i(2) symmetry, is  aPproacti6] was the Kosterlitz-Thouless nature of the gauge
still conjectural, since it requires proper lattice simulationsSYmmetry breaking induced by gauge interactions 12
with dynamical fermions, which is under consideration atdimensions{11,4], which discriminates our approach from
present. others[22,_23_|. _ _ _ _
An important ingredient in our analysis, which was moti- OUr belief that spin-gauge interactions may play a crucial
vated from our condensed-matter ancestor mofiswas ~ role in the underdoped and normal phase of the iglou-
the use of “naive” Dirac spinors on the lattice, amwt  Prates is strengthened by the abnormal properties of these
Wilson fermions. The latter are known to violate explicitly Phase$20], including the explicit observation of phase sepa-
parity-symmetry breaking, due to the Wilson term. This mayranqn in the so-cal_led stripe phase, occurring for a part_lcular
lead to spontaneous violation of parity symmef8a,31], doping concentrgtlorﬁSS]. I.n the .d.-wave sgperconductlng
and therefore to a completely different phase diagram, alPhase, four-fermion BCS-like pairing may indeed occur, al-
though the issue is still unsettl¢d2].2 though the attractive four-fermion interactions, most prob-
An interesting application of our strongly coupled gauge@Ply. are not due to phonons, but of electronic origif].
theory SU(2)® U(1) was argued to be provided by a pos- In the presence olbo_th types of interactions, gauge an_d
sible explanation of thézero-temperatujepseudogap phase four-fermion, the effective th_eory mod_el_ presents interesting
between the antiferromagnetic addvave superconducting Phases. One way to determine the origin of the dynamically
phases of the high-temperature cuprdsee Fig. 7. Due to |ndL_|ced mass gap in the various phases is to study the be
the special symmetry breaking patter®J(2)— U(1) in havior of the system under the influence of external fields, as
the phase where a fermion mass is generated dynamically ) the experiment of Ref41]. It is known[50,40,2] that the
the Ug(1) statistical interactions in the modg8], and the 9auge-field induced mass gap scales differently with an ap-
existence of instanton configurations in the compd¢t)  Plied magnetic field as compared to the gap induced by four-
eSU(2), asmall mass for theJ(1) gauge boson can be fermion Gross-Neveu—type interactions. Such a scaling may

generated. Such a small mass, although does not preveff determined by studying the thermal conductivity in the
pairing, however, it spoils superconductivity, since it leads toPresence of an externally applied magnetic field, as in the
the disappearance of the massless pole in the electric currefPeriments of Refi41]. Details of this analysis appear in
two-point correlators. As explained in the text, in such aref.[21].

sector, the gauge theory is responsible only for the openinﬁel\évfh:gz/ an;?;sr;e\;v:"ﬁfetjzastt tgree ;‘3‘;‘1‘%3' rifgi/cg\cl)? t?:ggi

ficient to explain quantitatively the rich phenomenology of

o . _ ~ the high-temperature cuprates. We believe, however, that it

A similar effect may be induced by external electromagnetic in-cgonstitutes a step in this direction. Our hope is that, due to
teractions, which from a condensed-matter point of view are naturaﬂhe simplicity and universality that underlies the supercon-
to consider. Recently, the effects of constant magnetic fields on thaucting models based on the gauge symmetry approach, our
opening of a mass gap at the nodesdeivave high-temperature g t5" capture essential features of the physical mecha-
superconductors have been considered in the experiments of R%SMS) underlying various phases of high-temperature su-
[41]. Claims that this may induce, for strong enough fields, a erconductors, in much the same way as the single phonon

change of state of the condensate into a parity-violating one, hav . . .
been mad¢52]. Indeed, in the case of a constant external magnetic CS theory describes adequately the complicated physics of

field, perpendicular to the spatial plane, one has an external sourégwnomc. SUP?rconduqorS' M_oreover., as .pam(.:le thepnsts,
term violating parity and time-reversal symmetry. For strongWe also f"?d this exercise very Intere.stllng, since it may imply
enough source fields it is possible that a parity-violating condensat@t certain phenomena, characterizing the physics of the
is magnetically induced. Such a phenomenon is at present a conjeBa/ly universe, may have interesting counterparts in
ture, which needs to be demonstrated analyticallg Schwinger- ~ condensed-matter physics, and in particular the high-
Dyson analysisor on the lattice. We postpone such an issue fortemperaturgantiferromagneticsuperconductors. In this re-
future investigations. We should mention, however, that recent preSPect, specific mention should be made again to the work of
liminary lattice[50] or continuum[40] analyses, in the presence of Volovik [24], who pursues the analogies between particle
an external field, showed that the magnetic field enhances thand condensed matter physics, by suggesting solid-state ex-
parity-conserving condensate. periments, involving superfluid helium, as possible labora-
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tory experiments which might shed light to the physics of the 1

early stages of our Universe. In the same spirit, the rich, and 3‘I’P“S‘I’?’E‘I’?‘”‘P?’“‘I’{’p‘l’r’”‘l’f“x‘l’r"‘
unconventional, structure of the high-temperature cuprates,
depicted in Fig. 7, may also find interesting, and possibly 1 — — — —
L . . b, xgr . gy N Xagr Bs @y Fopoagr O eagp ds gy o6
new, applications to particle physics. AR T T S TR T S
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1
APPENDIX A: RULES FOR MULTIPLE Xtri[ MPEM (7"]+§trc[Mi5"M{’“]trc[MiXEM 777t (AB)
“MESON” PAIRING

When we come to calculate the meson pairs on a particuThiS must be contracted with the gamma matrices on the link

lar site there is a subtle complication if there are two pairs or@nd then with the meson states on siteu, calculated in the

L same way. This procedure must also be followed when the
the site, i.e., four?'’'s and four¥’s. Let us take as an ex- —

ample the functior’[tr(Ki,MAW)]4 which lies on the link
(i,i+u). Expanded out this gives

four (PW) pairs on the site come from two functions on
adjacent sides meeting at that site.

e B a8 Tay APPENDIX B: THE “MESON” JACOBIAN
(Wi (= yu) PO,

+uti+u

Yoy b, &
(7,)7°%2?] , _ ,
In this appendix we shall calculate the Jacobian of the

_d,e € s _, d, . . . —
X[V (= vu) gq'icfuq’icfu(h)ﬁnq’i "] transformation from the fermion variableg, ,, ¥, ,, to
— — : ab _ b2 ; :
S[WIE(— ) JEMpeN e moapfop the meson variabled\1 ;=¥ ;¥ . This change of vari-
[V ) WL (r) ] ables implies the following transformation in the path inte-
who o Tl I:
XU (=y,) WOl ()] (A 9
Before, when we just had a term which produced one pair of 11 f d\idqfiHH J’ dm; . (B1)
i [

mesons on each site there was only one unique way of com-

bining the (P¥) at that site to make the meson. However,\ye adapt the method outlined in R¢R6]. Let our initial
now, as we see, there are three ways at each site. Writingath integral be written

down the fields at sité

— — — — . 4. eSe Mi]
Ph gD agdagdeplogloghoghe (A 11 fd‘l"d‘l"e e

these can be combined into pairs in three ways: —
p Y :H eseﬁ[ﬁ/{sa]J' dW,dw,e" M|, _,, (B2
— — — — |
Yot ey d gD plhoghog gl
the above fermionic integral can be evaluated,
or

= e = dwdwe M= f W dwe"" = det,
R S AR DS S i kA Al f

or P JP = PpaaJababybs, (B3)

phoplaplepbay ghopdeapdngho — (A3)  where det] means the product of the eigenvaluesofvhich
is a 2X 2 matrix in two spaces. However, there is a problem
When faced with a choice of three possible meson states, waefining exactly what we mean by the meastM, sinceM
must assume that each is likely to happen with equal problives in two spaces. However, if we instead regdfdas a
ability (in a sense they can be seen as quantum states with<4 matrix we can use some simple results from group
equal energyand so we write the final combination state atintegration[54,2€ to define a measure. The following iden-
sitei as tity is true for au(4) group integral:
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1 ,
J dUmetrJ RU:detJ’, (B4)

whereR is any positive-definite Hermitian matrix. The ma-
trix J’ is chosen to be the equivalent matrix itx4 space to
the J defined in Eq.(B2) which lived in two 2x2 spaces.
But the determinant of both are the same, dlet detJ. It is
then a simple matter of associating, in E§4), dU—dM
andRU—M and we get

f dwdwet M= f dm el M (B5) FIG. 10. Explanation on stability despite the existence of a local
detM maximum in the effective potential.
and our path integral becomes The VEV of the mass terftm¥;o5¥;) is m(As(i)) and so
summed over even and odd sites will pick out the real part of
11 f M, S ndeth + Seg (8e)  the complex number:
i , 1
> m(A(i)y=2 >mUcos . (B9)
| I

Our path integradM; over the 4x4 space which we have
represented as a group integral, can b.e viewed as a mu“ﬂjur effective potential now with the mass term is given in
component generalization of a contour integral. the form

If M; had been a complex number, which is the case of a

U(1) gauge theory with Kogut-Susskind lattice fermions, we 2 4 4 MU
would have had26] Verr~ 3ln UT=P(U%) — —z—cos ¢, (B10)
— o dz e whereP(U*) represents the polynomial Id* which makes
f dvwe ™ =J= > —. (B7)  up the rest oW, given in the tex(43),(55). It is now clear

how the apparent maximum at the stationary point is inter-

This contour integral can be evaluated by parametrizing preted. Since the path integral is effectively a contour inte-

—Réd’, which is of course a representation of the1) gral, we can choose our contour around the cif¢lés(i))|
group. In such a case, this property of the Jacobian, express:—U' . L .

ible in terms of contour Cauchy integrals, can be used to 1N€n, the important parameter for minimizig; is ¢,
infer stability of the broken vacuum in strongly coupled @nd the minimum along the contour occurs g0. The
gauge theories, despite the appearance of a local maximulfical maximum inV lies along the radial directiod) (see
in the potential. A detailed discussion may be found in RefFig- 10, which is irrelevent given that our variation of the
[26], where we refer the reader for more details. Below wePotential is contrained to lie along the contour. s~ 0, the

shall only concentrate to a description of the basic resultsninimum flattens and the whole contour becomes degener-
pertinent for our analysis in this work. ate. By this argument, one will have a dynamically generated

In our problem,M is a 4x 4 matrix and thus has 16 de- Nonzero VEV forA;, even in the absence of a bare mass

grees of freedom. These degrees of freedom are illustrated f§™M- Although this could equally be applied to any of the
the expansion oM (12) in terms of the “lengths”(the A's ~ t€rms in the bilinear expansion &f;, we know from the
and F's) along the 16 “axes.” However, we were interested discussion of Vafa-Wittei25], briefly reviewed in Sec. Il,

in symmetry breaking along just one of these “axes. 1, that the parity-conserving mass; is energetically favored.
with a “length” given by the complex numbe#;. So we
can view the important part of the integrdM as being in
the complex plane where the only degree of freedomd4s
In this respect we have complexified the VEV.4£ in order We want to calculate the following function on the
to apply the contour integration. Eventually, the effectiveplaquette:

potential will be minimized for rea{.4;). We have thus a

APPENDIX C: OUTLINE OF STRONG-COUPLING
COMPUTATIONAL RULES

standard contour integral as above 7). _ j Ve 1Y(2 v r Votr VT
To make things clearer it is usefi26] to add an explicit I i,lp._'!p Vil o(2VYi,)tr Vit Vi
chiral-symmetry-breaking fermion mass tersymv¥; o3V, -1
to our Lagrangian. The VEV afl5(i) can be written af26] X [ 11 f dVi,MIg(Z \/yw)] ,
i,uep

(As(i))y=Ue'¢ even sites, 7,20 1
(As(i))=Ue™'¢ odd sites. (B8  with

034502-21



K. FARAKOS, N. E. MAVROMATOS, AND D. MCNEILL PHYSICAL REVIEW D59 034502

Z, will not be separable into products of simple link-
polynomlals becasue of the ¥,tr VJr which connects the
color indices of the links around the plaquette in a nontrivial
way. For example, there could be a term such as

tr(A1A2A3A4A4A3A2A1) in Z, which would definitely be
Our convention will be to label the sides of the plaquettejpsent |nZ

12,34 and the sitet\,B,C,D. We need to perform the Z, andZ0 are both truncated due to the Grassmann fields
group integralsfdV; , on each side of the plaquette. In the

case ofzg this will give a product of polynomials i@(AA)
on each side€36):

zo= 11 Vi 8241 )

i,wep

ym yl,u yl,u.
15(2\yi ) =1+y;, vt 236 T 578

Vi = (AN ALV ). (C2)

(\If\If) contained in theA, A functions. So, e.g., a term such

as trQAlAl)“tr(AzAz) will be immediately zero because
there are too many fields at sii between sides 1 and 2.

However, e.g., a term such asA@A;)*tr(AzAz)* will sur-
vive.

A lot of the integrals inZ, will turn out to be equal to
their equivalent values nio In fact the group integrals

1 —

1 R
without at least a term of first order irA@) on every side

will just be equal to their zeroth order result. This is obvious

€3 if we consider, e.g.,

1 —

1 —

o(kA)"

L

(C4

/ AV, dVadVadVa(tr(AV DR (AV))2erVtr Vi

The diagram represents the plaquette with the clockwise flowing arrows befgatnd the anticlockwise tv;{,, (the reader
should refer to Creutp54] for a description of diagrammatic group integratiow/e do the group integral on one of the blank
sides first. Following Creuts4], this produces delta functions which contract with the other group matrices\ﬁ,;trtr\/;g all

the way around the plaquette, removing them. This leaves the i[‘li|t(aa.!lv’r)tr(KV)]2 without the trV/tr V;g.
There are only nine terms i, that do not have this simplification. They are the terms which have at least one power of

(KA) on each side, i.e.,

) oFR) offA) ofiaj oAy
O(AA) D O(AR) OfAAy D OfAn) ofasy D ofAay oAy D 0fAn) OgAAy D
- + > + + +
) OAA) ) OfAn) oAy
O(AA) OAA) OfAA) O(AA)°
O(RAY* D ORa)* O(AA) D O(AA) oAy D offay O{RA) D O{AA)
+ + + (CH

OfAA)*

0(AA)

O{R4)

O(AA)

The evaluation of these terms starts by spliting up thetr V;g into VabVZd pairs around the sides of the plaquette,

working out the group integrals on each sifi@lowing Samuel27]) and then “gluing” the sides together by contracting the
spare color indicesab,cd).
As an example we give the explicit form for the first of the integrals in &%)
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f dV1dVodVadVyy yoysyatr Votr Vg

1

6 48{tr(A1A1)tr(A2A2)tr(A3A4A4A3) TU(AAD(AgA)I(AgA1A1A,)

l — — — —
= @3”(A1A1)tr(AzAz)tr(AsAs)tr(AztAA) -

— — - — — N 1 —
+ tr(A3A3) tr(A4A4) tr(AlAzAzAl) + tr(A4A4) tr(AlAl) tr(A2A3A3A2)} + 3_24{tr( AlAl)tl’( A2A3A4A4A3A2)

HH(AANT(AsALAL AL ALAS) + I AgA T ALAL ALALA AL) +r(AANT (AL AAAZALA)}

1 1 ————

*t35 4{tr(A1A2A2A1)tr(A3A4A4A3) Fr(AZALAL AN A2AzAA,) | — 162{U(A1A2A3A4A4A3A2A1)

F(AZAAAIAIAAA) + I AsAAIAAAIAA) +H(AsArAAIATA A AL+ St ArALAZAI(AAgALA, ).

(C6)

It it obvious from Eq.(C6) above that the nine integrals are not separable into products of link functions. We réyrite
=Zg+ Zé WhereZ,’J contains the above nine integrals minus the corresponding integrm% (without the trVtr V:,). So

Jp=1+2Z)(Zp) . Expanding Zp) ' in powers ofO(AA),

1 — 1 — 1 —
(23)‘1=£p 1_Etr(Ai,,u,Ai,M)+1_2[tr(Ai,MAi,,u)]2+1_2tr[(Ai,MAi,,u)2]

1 — 3 1 — 3 19 — 4
- m[tr(Ai,,u.Ai,/.L)] - ﬂtr[(Ai,,uAi,p.) ]+ Kzo[tr(Ai,p.Ai,,u)]

Ry 247 (A 21y S0 272
~ 2gga VALLAL TTIL(A LA L) TH sz (A AL T (C7)

where we have truncated up to ord@(AA)*
Looking at an example term ig, , e.g.,

1 : -
_/dVldVZd%dVla(yl)2(y2)2y3(y4)2trvptﬂ/p’r or  ofiaf D o) . (C9

When evaluated this will be an even more complicated functioAlqal,Az,KZ,A3,K3,A4,K4 than Eq.(C6). However,

although it will have four pairs o’ ¥ at sitesB andC (so two pairs oM M) it will have three pairs o ¥ at sitesA and
D which cannot be arranged solely inkdM pairs. In order to give a nonzero contribution, this diagram will have to be

multiplied by the factor— 3tr(A,A,;) coming from Zg)*l. This will then give a diagram wit®(AA)? on each side and all
PP fields can be rearranged into M(M;) form. So we must evaluate each of the nine diagrams in(Ef) and then
multiply each by whatever terms irzg)‘1 (C7) will give a contribution containing pairs OPE at each site.

There will be only four ways of arranging tr@(AX)” terms on each side of the plaquette to ensure that on each corner
there are either tw(if\l_f pairs or four\lf\l_f pairs. These are shown below:

O(AR) O(ARY o(aay o(Aay

0(A4) ofAA) O(AA)* oAy O(AA} 0(Aa) 0(AA) ' oRa) . (C9)
or or or
OfAA) OfAAy O(AN) ofay
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Finally we describe the procedure for summing over all the 1

delta functions which arise after substitutify M **M°)
=2U?26%F57° at each site.
One term which will occur irZé(Zf;)*l is

ofAny

(C10

O{AA) O(AA) y

oAy

where a simple possibility foO(AK) is tr(Ai,ﬂKi,M)z. Of

PHYSICAL REVIEW D59 034502

o S T S SR
1

*3

WY LW W o g O G
1 a,ﬁ_f,x f,p_a,y c,g_h,zr h,X_c,e
+ 3 VRV PPV R RS’ (C17)

Now we substitute ifM2?*#y=U;a5°5F to get

course there will be much more complicated terms of

O(AX)2 where theA,A are connected by color indices to

other A,A on adjacent sides, but the procedure will be the §Ué{5ﬁe5§y5p"5“+ 8P 5P0 5K+ 8P 5P 557 X7},

same.:
[tr(A;AD 2= ¥R (—7,) PUEAVEY(y,) PR

XOWR (=7 “WETE (7,0 PR,

(C1)
and this can be rewritten
~(WRNUR WL (VP YY)
X(PEPULITEWEY), (C12
or in a more abstract form
a® - XAB.gB, (C13

where the center dot represents the contraction over th
Dirac indices. So all around the plaquette we hav

[tr(ALAL) T tr(AxAL) T tr(AsAs) T2 tr(AAL) 12, written in
this abstract form as

(aA‘XAB'aB)(aB'XBC' aC)(aC‘XCD‘aD)(aD'XDA'aA)

(C19
or

Tr[(aAaA) . xAB' (aBaB) . xBC‘ (aCaC).XCD' (aDaD) . XDA],

(C15

(C19

So we have effectively replaced a'@')  with
+ 2UAPRY Xk with A representing the sum of products
of delta fns(the bit in{ }), which has 8 Dirac indices. The

above appears because when we rearrangeheld(;) we
need to be careful about the anti-commuting Grassmann
numbers.

Since each Dirac index has 2 possible val(igs a 2x2
representation of the Dirac algelpnd half the indices con-
tract to the right and half to the left, we can re-represent the
function A (a 28 tensoj with a 16x16 matrix. In(C18) the
four indicesB 6y connect via foury matrices to site A, and
poxk connect via foury matrices to site C. We can there-
fore replace each set of four indicé®ur pairs = sixteen
combinationg with a single index taking 16 values. So
K (BOY)(poxK) = AOQ The same goes for the functioXgep-
eresenting the four gamma matrices(ifl5 and we merely

need to calculate products of X86 matrices around the
plaguette. The Tr ifC15 then becomes a matrix trace. Ac-
tually working out the matrix form for each product of delta
functions then becomes a matter of bookkeeping. A helpful
result is that, because of the symmetry of the problem and
the even number of gamma matrices, we can actually replace
the X's with identity matrices.

We have outlined the procedure for working out one term,
where all the corner functions were of the for@'q') but
the same goes for each termZg(Zg)*l. In the case where

where Tr is, at the moment, just indicating that all Dirac there are spare color indices to contract at the corners we

indices are being summed ovea”a”) now has eight Dirac
indices, four of which it contracts witik"® and four with

XPA,

The next step, is to rearrange the Wi(,\l_fi) pairs in

(a'a') into 2 meson pairs. As mentioned in Appendix A, this

must do this first and then rearrange mei_f but each cor-
ner will eventually be written similar t¢C16).
For the other diagrams in EQC9) there will not b_e four

gamma matrices on the sides but rather ffas O(AA)] or

can be done in three, equally likely ways. The function at sitesix [for O(AA)®] and these can be rewritten ax 4 or 64

B, aBaP will be of the form

aBaB~ WEAWE WL W LW Ly e
(C16)

where WaAparpSips? comes from side AB and
WEPEEp P from sideBC. We rewrite this as

X 64 matrices, respectively. So the corner function will be a
4X 4 matrix for a corner connecting two(AA) sides, and

for a corner connecting @(AA) side and aD(AA)® side a
4% 64 matrix (with the transpose 644 for an adjacent cor-
nern. The general procedure, however, is identical in each
case. Our computation is given in more detail in H&8]
and is summarized below.
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(1) Work out the group integrals on each side, the resuleach corner functions with the sum of delta functions, being

will be a sum of terms such d€13). (2) Write the integral

careful to keep track of- due to the anticommuting nature

around the whole plaquette as a sum of terms each of thef (¥;,¥;). (4) Rewrite theA functions as 1& 16, 4x4,

form (C15 contracting all spare color indice&3) Replace

or 4xX 64 matrices(5) Trace over the matrices.
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