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Phase structure of latticeSU„2…^ US„1… three-dimensional gauge theory
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We discuss a phase diagram for a relativisticSU(2)3US(1) lattice gauge theory, with emphasis on the
formation of a parity-invariant chiral condensate, in the case when theUS(1) field is infinitely coupled, and the
SU(2) field is moved away from infinite coupling by means of a strong-coupling expansion. We provide
analytical arguments on the existence of~and partially derive! a critical line in coupling space, separating the
phase of brokenSU(2) symmetry from that where the symmetry is unbroken. We review unconventional
~Kosterlitz-Thouless type! superconducting properties of the model, upon coupling it to external electromag-
netic potentials. We discuss the role of instantons of the unbroken subgroupU(1)PSU(2), in eventually
destroying superconductivity under certain circumstances. The model may have applications to the theory of
high-temperature superconductivity. In particular, we argue that in the regime of the couplings leading to the
brokenSU(2) phase, the model may provide an explanation on the appearance of a pseudogap phase, lying
between the antiferromagnetic and the superconducting phases. In such a phase, a fermion mass gap appears in
the theory, but there is no phase coherence, due to the Kosterlitz-Thouless mode of symmetry breaking. The
absence of superconductivity in this phase is attributed to nonperturbative effects~instantons! of the gauge field
U(1)PSU(2). @S0556-2821~99!04701-3#

PACS number~s!: 11.25.Hf, 74.20.Mn
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I. INTRODUCTION

There has been a great deal of recent interest in the
namical symmetry breaking patterns of three-dimensio
quantum gauge field theories, both from the pure part
theory standpoint@1–3#, and as a tool for describing mode
of high-Tc superconductors@4–6#. The gauge theories stud
ied in those works have been either three-dimensional Q
(QED3) and variants of it@1,4,5#, or SU(2)^ U(1) @2,6#.

From the condensed-matter viewpoint, which motiva
our approach to the subject, the key suggestion which lea
a non-Abelian dynamical gauge symmetry structure for
doped antiferromagnet, was theslave-fermionspin-charge
separation ansatz for physical electron operators ateach lat-
tice site i @6#:

xab,i[S c1 c2

c2
† 2c1

†D
i

[ĉag,i ẑgb,i

5S c1 c2

2c2
† c1

†D
i
S z1 2 z̄2

z2 z̄1
D

i

, ~1!

wherexab are ‘‘particle-hole’’ matrix-valued operators@7#,
ca , a51,2 are electron annihilation operators, the Gra
mann variablesc i , i 51,2 play the role of holon excitations
while the bosonic fieldszi , i 51,2, represent magnon exc
tations @8#. The ansatz~1! has spin-electric-charge separ
tion, since only the fieldsc i carryelectriccharge. The holon
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fields ĉab may be viewed as substructures of the physi
electronxab @9#, in close analogy to the ‘‘quarks’’ of QCD

As argued in Ref.@6# the ansatz is characterized by th
following local phase~gauge! symmetry structure:

G5SU~2!3US~1!3UE~1!. ~2!

The UE(1) electromagnetic symmetry is due to the elect
charge of the holons. In the absence of external electrom
netic potentials is a global symmetry~fermion number!. It
becomes local~gauged! after coupling to external electro
magnetism.

The localSU(2) symmetry is discovered if one define
the transformation properties of theẑab andĉab

† fields to be
given by left multiplication with theSU(2) matrices, and
pertains to the spin degrees of freedom. The localUS(1)
‘‘statistical’’ phase symmetry allows fractional statistics
the spin and charge excitations. This is an exclusive fea
of the three dimensional geometry, and is similar in spirit
the bosonization technique of the spin-charge separation
satz of Ref.@10#. The presence ofUS(1) allows the alterna-
tive possibility of representing the holes as slave bosons
the spin excitations as fermions.

In the model of Ref.@6#, this US(1) is assumed strongly
coupled, capable of holonĉ pairing and~parity-preserving!
mass-gap generation. The mass generation breaks c
symmetry, which can be defined in three-dimensional th
ries with evennumber of fermion species@1#, as is the case
of the model of Ref.@6#. However, as discusssed in Ref
©1999 The American Physical Society02-1



as

-

w

in-

ita
e
fs

en

de

na

al

fo
-
by

n

e

-
-

e
at
nta-

in
-

the
-
gy

-
gle
d by
tive
uces
-

y,

an

e,
xis-
icle
ana-
ure
g

is

rs
er-

ef.

K. FARAKOS, N. E. MAVROMATOS, AND D. MCNEILL PHYSICAL REVIEW D59 034502
@11,4,6#, this mass gap is not accompanied by any ph
coherence, given that the symmetry breaking is realized
the Kosterlitz-Thouless mode@12#.

At this stage we would like to make an important com
ment, concerning therelativistic nature of the effective
model discussed in Ref.@6#. From a condensed-matter vie
point, such relativistic systems would arise by alinearization
about specific points on the fermi surfaceof the statistical
system, such as nodes, etc. In this respect it is worthy
mentioning that recent experimental tests@13# imply that the
superconducting gap in the high-Tc cuprates is ofd-wave
type, with lines of nodes on the fermi surface. It is the l
earization about such nodes, in the flux phase for theUS(1)
gauge field, that leads to Dirac spectrum for holon exc
tions, with the fermi velocity of holes playing the role of th
limiting ~‘‘light’’ ! velocity, as suggested above and in Re
@4,6#. Then, as a result of the Kosterlitz-Thouless~KT!
mechanism for superconductivity described in Ref.@4,6#, a
fermion gap opens at those nodes, which, due to the abs
of a local-order parameter, respects thed-wave character of
the superconducting state.

The pertinent long-wavelength lattice gauge model,
scribing the low-energy dynamics around suchd-wave
nodes, assumes the form@6#

HHF5(̂
i j &

tr$~8/J!D i j
† D j i 1K̂@2t i j ~11s3!1D i j #

3ĉ jVji U ji ĉ i
†%1(̂

i j &
tr@K̂ z̄̂iVi j Ui j ẑj #1H.c., ~3!

whereJ is the Heisenberg antiferromagnetic interaction,K̂ is
a normalization constant,D i j is a Hubbard-Stratonovich field
that linearizes four-electron interaction terms in the origi
Hubbard model, andUi j ,Vi j are the link variables for the
US(1) and SU(2) groups, respectively. The convention
lattice gauge theory form of the action~3! is derived upon
freezing the fluctuations of theD i j field @6#, and integrating
out the~massive! magnon fieldsz in the path integral. This
latter operation yields appropriate Maxwell kinetic terms
the link variablesVi j ,Ui j , in a low-energy derivative expan
sion @5,14#. On the lattice such kinetic terms are given
plaquette terms of the form@6#

(
p

@bSU~2!~12Tr Vp!1bUS~1!~12Tr Up!#, ~4!

where p denotes sum over plaquettes of the lattice, a
bUS(1)[b1 ,bSU(2)[b254b1 are the dimensionless~in
units of the lattice spacing! inverse square couplings of th
US(1) andSU(2) groups, respectively@6#. The above rela-
tion between theb i ’s is due to the specific form of thez-
dependent terms in Eq.~3!, which results in the same in
duced couplingsgSU(2)

2 5gUS(1)
2 . Moreover, there is a non

trivial connection of the gauge group couplings toK̂ @6#:

K̂}gSU~2!
2 5gUS~1!

2 ;Jh ~5!
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with h512d, d being the doping concentration in th
sample@6,15#. To cast the symmetry structure in a form th
is familiar to particle physicists, one may change represe
tion of the SU(2) group, and instead of working with
232 matrices in Eq.~1!, one may use a representation
which the fermionic matricesĉab are represented as two
component~Dirac! spinors in ‘‘color’’ space:

C̃1,i
† 5~c1 2c2

†! i , C̃2,i
† 5~c2 c1

†! i , i 5 lattice site.
~6!

In this representation the two-component spinorsC̃ ~6! will
act asDirac spinors on the lattice, and theg-matrix ~space-
time! structure will be spanned by the irreducible 232 Dirac
representation. By assuming a backgroundUS(1) field of
flux p per lattice plaquette@4#, and considering quantum
fluctuations around this background for theUS(1) gauge
field, one can show that there is a Dirac-like structure in
fermion spectrum@16,17,4,15#, which leads to a conven
tional Lattice gauge theory form for the effective low-ener
Hamiltonian of the large-U, doped Hubbard model@6#.

In the above context, a strongly coupledUS(1) group can
dynamically generate a mass gap in the holon spectrum@6#,
which breaks theSU(2) local symmetry down to its Abelian
subgroupU(1) generated by thes3 matrix. From the view
point of the statistical model~3!, the breaking of theSU(2)
symmetry down to its Abelians3 subgroup may be inter
preted as restricting the holon hopping effectively to a sin
sublattice, since the intrasublattice hopping is suppresse
the mass of the gauge bosons. In a low-energy effec
theory of the massless degrees of freedom this reprod
the results of Refs.@4,18#, derived under a large-spin ap
proximation for the antiferromagnetS→` which is not nec-
essary in the present approach.

The Kosterlitz-Thouless~KT! nature @12# of the US(1)
induced mass gap~absence of local order parameter!, is a
characteristic feature of gauge theories in 211 dimensions,
as argued in Refs.@11,4#. When applied to our non-Abelian
model @6# it leads to unconventional KT superconductivit
provided the gauge boson of the unbrokenU(1)PSU(2) is
massless. Due to the compactness of theU(1) gauge group,
however, which is a distinctive feature of the non-Abeli
gauge group nature of the spin-charge separation~1!, there
are nonperturbative effects~instantons!, which are respon-
sible for giving the gauge bosonU(1) a small but finite mass
@19#. This spoils superconductivity, leaving only a phas
characterized by pairing among the holons, without the e
tence of phase coherence. It is one of the points of this art
to argue that such a phase may provide a possible expl
tion of the so-called ‘‘pseudogap’’ phase of high-temperat
superconductivity@20#, an intermediate nonsuperconductin
phase, lying between the antiferromagnetic andd-wave su-
perconducting@13# phases. A preliminary discussion on th
issue appeared in Ref.@21#.

At this point, we would like to mention that other autho
have also used relativistic fermions to describe the und
doped or pseudo-gap phase of high-Tc materials @22,23#.
Their approaches, however, are different from ours: In R
2-2
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PHASE STRUCTURE OF LATTICESU(2)^ US(1) . . . PHYSICAL REVIEW D 59 034502
@22#, relativistic charge excitations are used as in our mo
@6#. Their relativistic nature is due to the adopted scena
that the fermi surface of the underdoped cuprates consis
four small pockets, centered around (6p/2,6p/2) in mo-
mentum space. However, the low-energy model used in
work, and the nature of the gauge symmetries involved,
different from our model. In the ‘‘nodal liquid’’ approach o
Ref. @23#, on the other hand, the relativistic Dirac-fermio
excitations around the four nodes of the putative fermi s
face in the underdoped situation are neutral, and, hence,
our point of view they correspond to spin degrees of freed
rather than holons. This leads to a different physical scen
for the pseudogap phase than the one discussed here a
Ref. @21#.

In this article we shall discuss in some detail the ph
structure of theSU(2)^ US(1) gauge theory. Despite th
above motivation from condensed-matter physics, the an
sis and the techniques used will be those of particle phys
thereby making the results even applicable to particle ph
ics applications of three-dimensional gauge theories, suc
early universe studies, or high-temperature field theories
this respect we mention the work by Volovik@24#, which
pursues the analogy between the physics of superfluid
lium and that of the early universe, in an attempt to sugg
condensed-matter experiments that could shed light in
physics of an early stage of our Universe. We hope that
work in this article will serve the purpose of pointing out y
another condensed-matter example, that of high-tempera
superconductors, which may be connected to particle ph
ics.

The structure of the article is as follows. In Sec. II w
review the basic symmety properties of the lattice acti
including a discussion on the issue of spontaneous an
dynamical breaking of parity in the context of the applicab
ity of the Vafa-Witten@25# theorem on the lattice. In Sec. II
we derive part of the phase diagram of theSU(2)^ US(1)
model, in the strong-coupling regime of theSU(2) gauge
group. The analysis is a nontrivial application of standa
lattice strong-coupling expansions@26,27# to our model. In
Sec. IV we review briefly theunconventionalsuperconduct-
ing properties of the system upon coupling it to exter
electromagnetic fields. Emphasis is placed on the Koster
Thouless type of breaking of the electromagnetic symme
which is not accompanied by phase coherence. In Sec. V
discuss briefly the role of instantons in destroying superc
ductivity, but maintaining pairing and fermion gap form
tion. In Sec. VI we discuss a possible application of t
model to the physics of high-temperature superconduct
with emphasis on the abovementioned role of instanton
inducing a pseudogap phase. This is an exclusive featur
the non-Abelian model of Ref.@6#. The possibility of tuning
the doping concentration in the sample to reach supers
metric points in coupling-constant space@28#, with interest-
ing consequences, is also mentioned briefly. Moreover,
role of additional four-fermion interactions, which ma
dominate the superconducting phase, is pointed out. Con
sions and outlook are presented in Sec. VII. Some techn
aspects of our approach, such as rules of strong-coup
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expansion, and the evaluation of a Jacobian in the transi
from fermionic lattice variables to mesonic fields, are giv
in three Appendixes.

II. BASIC SYMMETRY STRUCTURE
OF THE SU„2…^ US„1… THEORY

A. The Lagrangian of the model and its symmetries

The theory~3! corresponds, after integrating out the ma
non degrees of freedomz @6#, to a ~low-energy! lattice La-
grangian given by@2,29#

S@C̄,C,V,U#5
K

2 (
i ,m

@C i~2gm!Ui ,mVi ,mC i 1m

1C̄ i 1m~gm!Ui ,m
† Vi ,m

† C i #

1b1(
p

~12tr Up!1b2(
p

~12tr Vp!,

~7!

where Ui ,m5exp(iu i ,m) represents the statisticalUS(1)
gauge field andVi ,m5exp(isaBa) is theSU(2) gauge field.

The quantityK[K̂ut i j u, with ut i j u5t assumed small@6#. The
fermions are 2 component spinors inbothDirac ~Greek! and
color ~Latin! spaceC[Ca

a and the generators of theSU(2)
group are the 232 Pauli matricess i

ab , i 51,2,3. The Dirac
matrices can also be taken to have the Pauli matrix repre
tation @we continue to write them asgm

ab , to distinguish
them from theSU(2) color matrices#. Here we have passe
onto a three-dimensional Euclidean lattice formalism,

which C̄ is identified withC†. For completeness we men
tion that the~naive! continuum Lagrangian corresponding
Eq. ~7! is given by

L52
1

4
~Fmn!22

1

4
~Gmn!21C̄DmgmC, ~8!

whereDm5]m2 ig1am
S2 ig2saBa,m , andFmn ,Gmn represent

the field strengths for theUS(1), SU(2) gauge groups, re
spectively.

There are two sets of bilinears which transform as tripl
under aSU(2) transformation:

A1[2 i @C̄1C22C̄2C1#, A2[ i @C̄1C21C̄2C1#,

A3[C̄1C12C̄2C2 , F1m[C̄1smC21C̄2smC1 ,

F2m[ i @C̄1smC22C̄2smC1#,

F3m[C̄1smC12C̄2smC2 , ~9!

whereC̄a[Ca
†ag0

ab and twoSU(2) bilinear singlets given
by
2-3
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A4[C̄1C11C̄2C2 , F4,m[C̄1smC11C̄2smC2 ,

m50,1,2 ~10!

In this approach one can definemesonstates@2,6#:

Mab,ab5Cb,bC̄aa , ~11!

where Latin lettersa,b denote colorSU(2) indices, and
Greek lettersa,b denote Lorentz spinor indices. One ca
re-express the meson state M, which is a 232 matrix in both
color and Dirac space, in terms of the above bilinears@2#;

M5A31.s31A11.s11A21.s21A41.1

1F3,mgms31F1,mgm.s11F2,mgms21F4,mgm1.

~12!

The first matrix written is in Dirac space, and the second is
‘‘ SU(2) color’’ space.

The interesting feature of theSU(2)3US(1) model is
that the parity-invariant condensate transforms as aSU(2)
triplet ~9! and, hence, once formed, it breaksSU(2)
→U(1) dynamically@2,6#. The parity-violating condensate
one the other hand, is anSU(2) singlet. In continuum theo
ries, theenergeticallypreferable configuration in theabsence
of external sourcesis the parity-invariant condensate, a
cording to the theorem of Vafa and Witten@25,1# on the
impossibility of spontaneous parity breaking invectorlike
theories, which we shall discuss in the next subsection. T
at least from naive continuous considerations, one exp
that energeticsfavors the formation of parity invariant con
denates, and this was the main reason why parity viola
condensates have been ignored, so far, in the existing lit
ture. As we shall argue in the next subsection, this featur
respected by thelattice model of Ref.@6#.

All these ideas can be incorporated into a rough ph
diagram for a three-dimensionalSU(2)3U(1) theory, pro-
posed in Ref.@29#. The diagram is depicted in Fig. 1. Th
couplings shown areinverse couplings, b254/ag2

2 , b1

51/ag1
2 , wherea is the lattice spacing.

The top line b25`, b1Þ0, corresponds to the QED3
case. For QED3 it is now generally accepted that there exis
@1,5,30# a critical number of fermion flavors, below whic
there is dynamical formation of a chiral condensate and
ral symmetry breaking@1,3#. In the language of an effectiv
theory, where the dimensionless coupling is taken to be
inverse of the number of fermion flavors@5#, we can say that
there is acritical coupling above which there is symmetr
breaking.

In Fig. 1, the~inverse! critical coupling on the lattice is
denoted asb1

c . The shaded area shows the weakly coup
SU(2) breaking, and the fact that we have no breaking
the b250 ~i.e., infinitely coupled! SU(2) line, as discussed
in Ref. @29# and will be reviewed below, means—b
continuity—that one can draw a tentative critical line sep
rating the broken and unbroken phases. The issue of whe
the point where the line hits theb250 axis is at the origin or
at a finite value ofb2

c is one which we shall resolve here.
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We note at this point that, in the context of our statistic
model @6#, there is the special relation~5! among the~in-
verse! couplings of theSU(2) andUS(1) factors, namely,
b254b1 , which, as we have mentioned, originates from t
special structure of the magnon (CP1) degrees of freedom o
the model. This special relation is interesting in that, wh
combined with the fact that the gauge couplings in the s
tistical model depend on the doping concentration of the
perconducting system, implies the existence of extreme
ues for the doping concentration, above or below which
broken-SU(2) gapped phase is lost. As we shall argue in t
work, the critical valueb2

crit50, which implies that in the
context of the present effective theory one cannot see a m
mum coupling below which theSU(2) symmetry is restored
It is understood that in the condensed matter context su
minimum coupling, appropriate for the onset of antiferr
magnetism, arises from the magnonCP1 sector. We shall
discuss such issues in more detail in Sec. VI.

B. Parity and fermions on the lattice

1. The Vafa-Witten theorem in the continuum

Before embarking into a detailed analytical study of t
phase structure ofSU(2)^ US(1) theory, we would like first
to devote some time on the important issue of parity symm
try for lattice gauge models. As is well known, in continuu
models, an important theorem, due to Vafa and Witten@25#,
forbids the spontaneous breaking of parity symmetry in v
torlike theories, in the sense that the parity-violating cond

FIG. 1. Phase diagram for theSU(2)^ U(1) model. The solid
line is the critical line which is determined in this work, separati
the phases of brokenSU(2) gauge symmetry from the phase whe
the symmetry is unbroken. Its precise shape is conjectura
present. Analytical and continuity arguments in this work determ
the shape of the line in the neighborhood of (b1 ,b2)5(0,0) and
(b1 ,b2)5(b1

c ,`) only. This critical line also seems to characteri
a solid state model, whose low-energy continuum limit is the ga
theory studied in this work.
2-4
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sate is not energetically preferable. Let us briefly review th
in the context of our three-dimensional gauge model@6#. We
shall consider the Euclidian path integral for the two diffe
ent mass terms, corresponding to the condensatesA3 ~parity
preserving! and A4 ~parity violating!. Let us start from the
case where thêA4&Þ0 condensate is formed. In this cas
the relevant path integral reads

ZA4
5E DADC̄DC expS E d3x@L@A#1C̄~ iD” 1 im!C# D
5E DA det@ iD” 1 im# expS E d4xL@A# D ~13!

whereL@A# denotes the pure gauge part of the Lagrangi
We can see that det@ iD” # is positive because giveniD” C

5lC then iD” (g2s2C* )5l(g2s2C* ). Thus every eigen-
value is repeated twice and the determinant~the product of
the e values! is therefore real and positive. The gamma m
trices are in Dirac space and the sigma matrices are in c
space.

However, det@ iD” 1 im# is not real for the following rea-
son. The eigenvalue eiquations, in the presence of the m
m read

~ iD” 1 im!C5~l1 im!C

and

~ iD” 1 im!~g2s2C* !5~l1 im!~g2s2C* !. ~14!

The two equations have the same eigenvalue, howeve
squaring each eigenvalue we get a complex number
therefore the determinant is complex.

Let us now come to the case where the parity-invari
condensate is formed̂A3&Þ0. In this case, the effective
action reads

ZA3
5E DA det@ iD” 1 ims3# expE d3xS@A#. ~15!

Applying the same method again we now get

~ iD” 1 ims3!C5~l1 im!C,

and

~ iD” 1 ims3!~g2s2C* !5~l2 im!~g2s2C* ! . ~16!

Now we see that the eigenvalues come in complex conju
pairs, and therefore the determinant is real and positive.

Thus, the determinants in both cases have the same a
lute value, but the determinant in the case of a par
violating condensate has an extra phase factor makin
complex. It is then straightforward to argue that the pari
violating case will not be energetically preferable@25#. To
this end, we note that the vacuum energy~in a box of volume
V) is given by

e2EjV5E dm~A!e*d3xL[A]detj , ~17!
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where detj , j 53,4 denotes the result of the fermion dete
minant in the case where theA3 or A4 condensates are
formed, respectively, anddm(A) is the measure for the
gauge field integration and is positive; the same is true

the exponentiale*d3xL[A] in the Euclidean formalism. By a
generic result in complex integration calculus, then,
phase in det4 can only make the integration smaller than th
for det3 , and therefore the vacuum energy associated w
masŝ A4& is larger than the vacuum energy for^A3&. So we
can say that theenergetically preferredmass term is the
parity conserving one, and this is essentially the theorem
Vafa and Witten@25#. Caution should be expressed in appl
ing the theorem to the case of dynamical mass genera
due to the absence of bare fermion masses, which lead
the existence of fermion zero modes, that make the D
operator ill defined, in need of regularization. However, t
rigorous analysis of Ref.@25# deals with that case too.

2. Wilson fermions and the breakdown of the Vafa-Wittem
theorem on the lattice

On the lattice, however, the issue is nontrivial, and s
unsettled. As argued recently@31#, although the Vafa-Witten
theorem@25# may hold in the continuum limit, however, o
the lattice there may be terms~at least in an effective La-
grangian level!, proportional to the lattice spacinga, which
may violate explicitly the parity symmetry, thereby acting
external sources and hence spoiling basic assumptions o
Vafa-Witten theorem@25#. The issue of how the continuum
limit is taken is therefore a tricky one, and currently there
a debate as to whether spontaneous breaking of parity oc
on the lattice@31,32#. Although we shall not enter this de
bate, which concerns Wilsonian fermions on the lattice t
we do not use here, however, we consider it as usefu
point out the difficulties associated with the parity symmet
since it is a very important issue for the superconductiv
mechanism of the models@4,6#. This will help the reader
appreciate better how these problems are avoided in the
cific lattice model of Ref.@6#, which we use for our purpose
in this work.

The main problem with the lattice formulations of th
Vafa-Witten theorem, using Wilson fermions, is associa
with the fact that, in the case of spontaneous breaking
parity, the Dirac operator has zero modes, as we shall dis
below, and thus needs regularization. Such a regularizatio
provided by adding appropriate sources~which may trigger
parity breaking! in the effective action and then removin
them. The presence of a source term violates the vector
nature of the regularized theory, and in general the prob
arises from commuting the limits of removing the source
sending the bare mass term to zero.

Let us first review the situation in the case of fou
dimensional gauge theories. The reduction to thr
dimensional gauge theories with even number of fermio
species will be straightforward, as we shall argue below.
the case of lattice regularization with Wilson fermions, t
appropriate Hermitean operator is not the Dirac operator
the overlap Hamiltoniang5W(m0), wherem0 is a bare mass
term needed for regularization of the Wilson-Dirac opera
2-5
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W. This operator is known to have fermionic zero mod
The latter lead to a nonzero spectral density of eigenva
r(l,m0) aroundl50, in the limit of zero~bare! fermion

mass. If r̃ denotes the density of the Dirac operator2 iD” ,
then the following result holds@33#:

r~l,m!5
ulu

Al22m2
r̃~Al22m2!

ulu.m50 ulu<m. ~18!

As the fermion massm tends to zero, the operatorr(l,m)

→ r̃(l) nonuniformly.
To trigger numerically spontaneous breaking of a symm

try one adds an appropriate symmetry-breaking source t
and then removes it. In the case at hand, one should a

source term of the formihC̄g5s3C. As noted in Ref.@32#,
then, the parity-violating condensate, proposed to occu
Wilson fermions @31#, is proportional tor(0,m0) as the
source term is removed,h→06:

^ i C̄g5s3C&572pr~0,m0!, ~19!

wherem0 is a bare mass term which should be removed,
for simplicity we assumed two fermion flavors.

The debate in the current literature@31,32# concerns the
ordering of the limitsm0→0, h→0 in the case of lattice
theories with Wilson fermions. The presence of a nonz
physical massm0 renders the limith→0 safe, the parity-
violating condensate vanishes onboth the lattice and the con
tinuum formalisms, and, thus, there is no problem with
theorem of Ref.@25#.

In three-dimensional lattice gauge theories, with aneven
number of fermionic species, as the models we are intere
in, chiral and parity-symmetry breaking may be studied
full analogy with four-dimensional gauge theories, provid
one works with a 434 reducible Dirac representation@1#,
generated by the followingg matrices:

g05S s3 0

0 2s3
D , g15S is1 0

0 2 is1
D , g25S is2 0

0 2 is2
D .

~20!

In such a case, there are two matrices that anticommute
the set of theg-Dirac matrices@1#

g3[S 0 1

1 0D , g5[ i S 0 1

21 0D . ~21!

Chiral symmetry is then generated byg5 , and is broken by
the parity-invariant condensate, which in four-compon

notation for the spinorsC readsA35^C̄C&. On the other
hand, the parity-violating fermion condensate is given

A45^C̄DC&, with
03450
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D[ ig3g55S 1 0

0 21D . ~22!

It is, then, straightforward, following Ref.@32#, to show that
A4 obeys a relation of the form~19! for the three-
dimensional case.

We now remark that, in our condensed-matter inspi
case~3!, the fermions describing holon nodal excitations
the d-wave state areDirac spinors~6! and not Wilson. Ac-
cording to the discussion in Ref.@34#, for such a case there
are no consistency problems or ambiguities, as far as res
in the continuum are concerned@25#. To show this, in our
case, one should first note that, as we shall discuss in m
detail in the next section, the effective potential for the m
son fieldsM ~11! assumes the following generic form@2,29#:

Veff;Tr (
i

S Aln Mi2(
m

P@Mi~2gm!Mi
†gm# D , ~23!

whereA is a numerical constant,P(x) denotes an appropri
ate polynomial inx, i is the lattice site, and Tr is taken ove
the ~reducible! 434 Dirac indices. As mentioned above t
study spontaneous parity breaking numerically, one sho
add to Eq.~23! an appropriate source term:

VS[hMi . ~24!

Following Ref. @34#, we assume the following form for the
vacuum wave function ofMi :

Mi5UeiuD5U~cosu1 iD sin u!, ~25!

whereD has been defined in Eq.~22!.
From the specificM dependence ofP(x) in Eq. ~23!, one

observes that the only dependence onu comes through the
source term

Veff@h#;4@hUcosu1Aln U23P~U2!#. ~26!

By extremizing Eq.~26! with respect tou, one obtains only
the trivial minimumu50, in constrast to the case of Wilso
fermions, where the possibility for a nontrivial solution foru
exists, due to the Wilson parity-breaking term@34#. This so-
lution implies that parity cannot be broken spontaneously
agreement with the~continuum! theorem of Vafa and Witten
@25#.

Hence, for our purposes in this work from now on w
assume thatdynamical mass generationin our SU(2)
3US(1) model selects—due to energetics—the pari
invariant combination, which is accompanied by the pr
ence of Goldstone bosons due to the breaking
SU(2)→U(1) @2,6,29,35#.
2-6
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FIG. 2. The effective potential in the cas
b25`,b150, which coincides with the case o
strongly coupled QED3 . The potential has sta
tionary points, implying a nonvanishing chira
symmetry breaking condensate.
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III. STUDY OF THE PHASE DIAGRAM OF THE
THREE-DIMENSIONAL SU„2…^ US„1… LATTICE

GAUGE THEORY

A. The phase diagram in the regimeb25`,b1 arbitrary

In this regime of the phase diagram the system is equ
lent to a strongly coupled QED3, with global SU(2) sym-
metry. This global symmetry acts like a flavor symmet
and is represented by an indexf. Because of this limiting
procedure to QED3, the spinors will be kept two componen
~6!, so that a smooth transition to the case of nonzeroSU(2)
coupling is guaranteed. The pertinent path integral is

Z5)
i ,m

E dUi ,mdC̄ i
fdC i

fexp~2S@C̄,C,U# !, ~27!

whereS denotes the action~7!, written as

S@C̄,C,U#5
1

2
K(

i ,m
(

f
@C̄ i

f~2gm!C i 1m
f Ui ,m

1C̄ i 1m
f gmC i

fUi ,m
† #1b1(

p
~12tr Up!.

~28!

Puttingb150, we can do theUS(1) integral immediately
@2#:

)
i ,m

)
f
E dUi ,mexpF2

K

2 (
i ,m

@C̄ i
f~2gm!C i 1m

f Ui ,m

1C̄ i 1m
f gmC i

fUi ,m
† #G5)

i ,m
)

f
I 0

tr~2Ayi ,m
f ! ~29!

yi ,m
f [

K2

4
C̄ i

f~2gm!C i 1m
f C̄ i 1m

f gmC i
f ,

5
K2

4
Tr@Mi

fgmMi 1mgm#. ~30!
03450
a-

,

The quantity (Mi
f)ab denotes the meson field~making the

Dirac indices explicit! (C i
f)a(C̄ i

f)b. I 0
tr denotes the zeroth

order modified Bessel function@36#, truncated to an order
determined by the number of the Grassmann~fermionic! de-
grees of freedom in the problem@6,29#. In our case, becaus
of the Dirac indices and 2 flavors of thelattice spinorsC,
one should retain terms inI 0

tr up toO(y4):

I 0
tr~2Ayim!511yim1

yim
2

4
1

yim
3

36
1

yim
4

576
. ~31!

The path integral is flavor symmetricZ5) fZf and,
hence, we may factor out and ignore this dependence.
wish to obtain a path integral for the meson fieldMi

f , which
necessitates the inclusion of the Jacobian for the pertin
field transformation. This is calculated in Appendix B, fo
lowing Ref. @26#. The result for the partition function read

Zf5)
i ,m

E dMi
fexpF2(

i
log detMi

f1(
i ,m

log I 0
tr~2Ayi ,m

f !G
5)

i ,m
E dMi

fexpF(
i ,m

2
1

6
log detMi

fM i 1m
f

1 log I 0
tr~2Ayi ,m

f !G . ~32!

The effective potential depends on the variabley defined in
Eq. ~30!. To determine its form, in terms of the condensa
one writes the vacuum expectation value~VEV! ^Mi

f&
5mfW where W is a unitary matrix. So DetMi

f;m2 and
yi ,m;K2m2/2.

From the discussion in the previous section, we know t
the energetically preferable configuration is the pari
conserving one, in which half of the fermion ‘‘flavors’’ ac
quire masses1m, and the rest acquire masses2m @25,1#.
Thus, the tree-level effective potential becomes, neglec
overall factors,
2-7
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Veff;
2

3
log m2

1

2
K2m21

1

16
K4m4

2
1

72
K6m61

11

3072
K8m8, ~33!

which is plotted in Fig. 2~with K51).1 This potential has
stationary points and, from the arguments of@26# ~described
in Appendix B!, this is sufficient to show that̂Mi

f&Þ0.
The incorporation of the gauge interactions will chan

the situation, and induce nontrivial dynamics which may
sult in a change in symmetry for some regions of the ga
coupling constants. From the previous result~33!, and the
discussion in Sec. II, it becomes clear that for weakSU(2)
and strong enoughUS(1) the SU(2) symmetry is broken
down to aU(1) subgroup@2#. The nontrivial issue here is
whether there exist critical~inverse! couplingsb i

c , i 51,2,
above which the symmetry is restored. According to ear
analyses, either in the continuum or on the lattice@1,30,37#,
there appears to be acritical coupling b1

c on the axisb2

5`,b15free, above which dynamical mass generation d
to theUS(1) group cannot take place. This is depicted in F
1.

In the large-N continuum theories@1# one usually identi-
fies 8g1

2N5a, wherea is kept fixed asN→`, and plays the
role of an effective ultraviolate cutoff. In our lattice actio
we may identify the inverse of our lattice spacinga21 with
a/8, in which caseb1

c;Nc , with Nc the critical number of
~four-component! fermion flavors, below which dynamica
mass generation due toUS(1) occurs. To leading 1/N resum-
mation@1#, Nc;32/p2; incorporating 1/N2 corrections shifts
this number slightly higher. The issue on the existence o
critical number is still not quite settled, and proper latti
simulations are needed in this respect. For our qualita
purposes, however, the large-N critical number will be suf-
ficient.

B. Strongly coupledSU„2…^ US„1… regime

In this section we commence our analysis of the effects
strongly coupledSU(2) gauge interactions, by means of
small b2 expansion.

1The general caseKÞ1 amounts to adding an irrelevantK-
dependent constant to the expression for the effective poten
This is an exclusive feature of the minimal gauge model~7!, be-
cause in that case one may absorbK in the normalization of the
fermion fields. However, in the presence ofadditional nonmiminal
fermion interactions, e.g., four-fermion interactions, which, as
shall see, may characterize realistic models of doped antiferrom
nets in their superconducting phases, the constantK can no longer
be absorbed in a normalization of the fermion fields, and henc
magnitude acquires physical significance. We shall address
issues in Sec. VI. For the purposes of this section, the mini
gauge model~7! will suffice.
03450
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1. The effective action forb25b150

First, we examine the model at the~limiting! point b2
5b150 ~i.e., the origin of the diagram of Fig. 1!. We absorb
the paramerterK in a redefinition of the fermion fields, be
cause the action under consideration is only quadratic inC
fields.2 In this case, one may integrate out first theUS(1)
gauge field. TheSU(2) action, then, is separable into a
integral on each link on the lattice@29#:

E dVH 11tr~ĀV!tr~AV†!1
@ tr~ĀV!tr ~AV†!#2

4

1
@ tr~ĀV!tr~AV†!#3

36
1

@ tr~ĀV!tr~AV†!#4

576
J , ~34!

where the variableA are defined as follows:

Am~x!b
a5C̄b~x1a!gmCa~x!,

Ām~x!b
a5C̄b~x!~2gm!Ca~x1a!. ~35!

The evaluation of these terms was first done by Samuel@27#,
whose formalism we follow here. The resulting partitio
function, now with all gauge fields integrated out, is

Z05)
i
E dC̄ idC i)

i ,m
H 11

1

2
tr~Āi ,mAi ,m!

1
1

6
@ tr~Āi ,mAi ,m!#22

1

12
tr@~Āi ,mAi ,m!2#

1
1

48
@ tr~Āi ,mAi ,m!#32

1

72
tr@~Āi ,mAi ,m!3#

1
17

5760
@ tr~Āi ,mAi ,m!#42

1

320
@ tr~Āi ,mAi ,m!#2

3tr@~Āi ,mAi ,m!2#1
1

1920
tr@~Āi ,mAi ,m!2#2J . ~36!

Since we wantZ0 to be in the formZ05eSeff we exponenti-
ate the above polynomial still keeping terms up to ord

O(AĀ)4:

al.

e
g-

ts
ch
al

2This is because our lattice fermions are of Dirac type. In
Wilson fermion case, on the other hand, due to the Wilson and b
mass terms, that one is forced to add in the lattice action, the ab
normalization of the spinors byK cannot be done.
2-8
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Z05)
i
E dC̄ idC iexp(

i ,m
H 1

2
tr~Āi ,mAi ,m!

1
1

24
@ tr~Āi ,mAi ,m!#22

1

12
tr@~Āi ,mAi ,m!2#

2
1

48
@ tr~Āi ,mAi ,m!#32

1

72
tr@~Āi ,mAi ,m!3#

1
1

24
tr~Āi ,mAi ,m!tr@~Āi ,mAi ,m!2#1

3

640
@ tr~Āi ,mAi ,m!#4

2
29

2880
@ tr~Āi ,mAi ,m!#2tr@~Āi ,mAi ,m!2#

1
1

144
tr~Āi ,mAi ,m!@ tr~Āi ,mAi ,m!#3

2
17

5760
tr@~Āi ,mAi ,m!2#2J . ~37!

We want to rearrange the (C̄,C) which make up theĀ,A to
get an effective action in terms of meson fields defined
site. The standard procedure for making an effective ac
in terms of meson fields is to rewrite each term in Eq.~36! as
a function ofMaa,ab5Ca,aCa,b, e.g.,

tr~Āi ,mAi ,m!5C̄ i
a,a~2gm!abC i 1m

b,b C̄ i 1m
b,g ~gm!gdC i

a,d ,

52C i
a,dC̄ i

a,aC i 1m
b,b C̄ i 1m

b,g ~2gm!ab~gm!gd,

52trcM i
datrcM i 1m

bg ~2gm!ab~gm!gd.
~38!

trcM means we have traced over the color indices. Howe
if we were to substitute in forM the expansion in terms o
bilinears ~12! we would find that the term containingA3
vanishes because of the traceless property of the Pauli m

s3 . Thus the above rearrangement of tr(ĀA) will not be of
any use if we want to get information on the VEV ofA3 . We
must thus look for an alternative rearrangement.

This alternative arrangement can be demonstrated if

look at the term@ tr(Āi ,mAi ,m)#2, which is written out as

@ tr~Āi ,mAi ,m!#25@C̄ i
b,a~2gm!abC i 1m

a,b C̄ i 1m
a,g ~gm!gdC i

b,d#

3@C̄ i
d,e~2gm!ezC i 1m

c,z C̄ i 1m
c,u ~gm!uhC i

d,h#,

~39!

we can rearrange the (C,C̄) which appear intopairs of me-
son states defined on each site.
03450
n
n

er

rix

e

C i
b,dC̄ i

d,eC i
d,hC̄ i

b,aC i 1m
a,b C̄ i 1m

c,u

3C i 1m
c,z C̄ i 1m

a,g gm
abgm

gdgm
ezgm

uh ,

5trc~Mi
deMi

ha!trc~Mi 1m
bu Mi 1m

zg !gm
abgm

gdgm
ezgm

uh .

~40!

This time when we substitute in our bilinear expansion
Mi

abab we do not lose the part depending onA3 . We are no
longer tracing over a single Pauli matrix, but rather ov
tr(s3

2)5tr(1). This procedure will be justified if we find tha
there exists an energetically favorable nonzero VEV forA3 .

Also we see that the terms in the action which have

odd number of (C,C̄) pairs@i.e.,O(AĀ) andO(AĀ)3# van-
ish in this procedure since they cannot be arranged to so
producepairs of mesons. There is a subtlety involved

calculating theO(AĀ)4 term, which we describe in Appen
dix A.

Having followed this procedure for each term in the a
tion the next step will be to substitute in forM, or more
precisely forA3 , the VEV we are looking for. We also as
sume that the VEVs of all other bilinears are zero@2,35,29#.
Therefore^Mi

ab,ab&5Uis3
abdab. Following the above pro-

cedure for each term in the action~37! we have

^O~AĀ!&50,

K 1

24
@ tr~Āi ,mAi ,m!#2L 5

4

3
Ui

2Ui 1m
2 ,

K 2
1

12
tr@~Āi ,mAi ,m!2#L 5

4

3
Ui

2Ui 1m
2 ,

^O~AĀ!3&50,

K 3

640
@ tr~Āi ,mAi ,m!#4L 5

3

5
Ui

4Ui 1m
4 ,

K 2
29

2880
@ tr~Āi ,mAi ,m!#2tr@~Āi ,mAi ,m!2#L 5

116

135
Ui

4Ui 1m
4 ,

K 1

144
tr~Āi ,mAi ,m!@ tr~Āi ,mAi ,m!#3L 5

4

9
Ui

4Ui 1m
4 ,

K 2
17

5760
tr@~Āi ,mAi ,m!2#2L 52

17

54
Ui

4Ui 1m
4 .

~41!
One can now change path-integration variables, from

mion to meson fieldsM. An important role in the dynamics
of the system is played by the Jacobian of such a trans
mation, which is calculated in Appendix B following stan
dard arguments@26#. Including the Jacobian we get
2-9
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Z05)
i
E dMiexpH 2(

i ,m
S 2

4

3
Ui

2Ui 1m
2

2
143

90
Ui

4Ui 1m
4 D2(

i
2 log Ui

4J ,

5)
i
E dMiexpH 2(

i ,m
S 2

4

3
Ui

2Ui 1m
2

2
143

90
Ui

4Ui 1m
4 1

2

6
log Ui

4Ui 1m
4 D J , ~42!

which describes the dynamics in theb25b150 region of
the phase diagram of Fig. 1. To get a simple saddle p
effective potential we complexify the condensateUi and
write, following Ref. @26#, UiUi 1m5U2. This is justified,
since we assume that, in the general case, the condensaUi
should be the same for all odd sites and all even sites s
rately. In our path integral the radial part of the contour
irrelevant ~see Appendix B! and we can chooseUeven
5Ueiw andUodd5Ue2 iw. As we discuss in Appendix B, th
minimum value of the effective potential occurs forw50.
The zeroth order effective potential is definedVeff5
2Seff /vol :

Veff58ln U24U42
143

30
U8, ~43!

which is plotted in Fig. 3.
We observe that it has a local maximum, but, as explai

in Ref. @26#, this still implies stability of the brokenSU(2)
vacuum, due to the special properties of the Jacobian a

ciated with the transformation from theC,C̄ variables to the
meson variablesM. This is reviewed briefly in Appendix B

From Fig. 3 it is evident that there existsSU(2) symme-
try breaking even for the case ofb250. This implies that the
critical line in the phase diagram of Fig. 1 passes through
origin. This is also the situation argued to characterize
statistical model of Ref.@6#, which may describe high
temperature superconductivity.

FIG. 3. The effective potential forb15b250.
03450
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2. Strong coupling expansion ofb2

We now look at the strong coupling expansion of t
SU(2) field, up to and including orderO(b2

2):

expF2b2(
p

~12tr Vp!G.12b2(
p

~12tr Vp!

1
b2

2

2 (
p

~12tr Vp!

3(
q

~12tr Vq!1O~b2
3!.

~44!

The zeroth order term has been calculated in the prev
section, Eq.~42!.

The first order term in theSU(2) integral is written

Z152b2)
i ,m

E dVi ,mI 0
tr~2Ayi ,m!S Np2(

p
tr VpD

52b2Np)
i ,m

E dVi ,mI 0
tr~2Ayi ,m!52b2NpZ0 ~45!

because the addition of a single plaquette will give an o
number of group elements on each side of the plaquette,
therefore will integrate to zero.

At second order the calculation is no longer so simple

Z25
b2

2

2 )
i ,m

E dVi ,mI 0
tr~2Ayi ,m!

3(
p

~12tr Vp!(
q

~12tr Vq
†!, ~46!

by the same argument as used in the first order case, we
only have a nonzero integral where we avoid integrals o
different numbers ofV’s and V†’s. Thus the product(p(1
2tr Vp)(q(12tr Vq) can be replaced by (Np

2

2(ptr Vp
†tr Vp),

Z25
b2

2

2 )
i ,m

E dVi ,mI 0
tr~2Ayi ,m!S Np

21(
p

tr Vptr Vp
†D ,

5
b2

2Np
2

2
Z01

b2
2

2 )
i ,m

3E dVi ,mI 0
tr~2Ayi ,m!(

p
tr Vptr Vp

† . ~47!

Hence, the problem is to calculate the group integr
which make up the nontrivial part ofZ2 namely,
2-10
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Z25)
i ,m

E dVi ,mI 0
tr~2Ayi ,m!(

p
tr Vptr Vp

†

5(
p

)
i ,m¹p

E dVi ,mI 0
tr~2Ayi ,m!

3 )
i ,mPp

E dVi ,mI 0
tr~2Ayi ,m!tr Vptr Vp

†

5)
i ,m

E dVi ,mI 0
tr~2Ayi ,m!

3(
p

)
i ,mPp

E dVi ,mI 0
tr~2Ayi ,m!tr Vptr Vp

†

)
i ,mPp

E dVi ,mI 0
tr~2Ayi ,m!

5Z0(
p

Jp . ~48!

The full path integral is then written as

Z5Z0S 12b2Np1
b2

2Np
2

2 D 1
b2

2

2
Z0(

p
Jp . ~49!

We will be interested in the logarithm of this function:

Seff5 logFZ0H 12b2Np1
b2

2Np
2

2
1

b2
2

2 (
p

JpJ G , ~50!

which can be expanded, ignoring constant factors and ke
ing terms up toO(b2)

Seff5 log Z01
b2

2

2 (
p

Jp . ~51!

Therefore, the strong coupling expansion leads us to ca
late the group integrals around the plaquette in the func
Jp

Jp5

)
i ,mPp

E dVi ,mI 0
tr~2Ayi ,m!tr Vptr Vp

†

)
i ,mPp

E dVi ,mI 0
tr~2Ayi ,m!

. ~52!

The denominator has already been given earlier and is

product around each side of the plaquette of the (AĀ) poly-
nomial in Eq.~36!. For convenience let us label the plaque
as having sides 1,2,3,4 and sitesA,B,C,D
03450
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i ,mPp

E dVi ,mI 0
tr~2Ayi ,m!J 21

5S 11
1

2
tr A1Ā11••• D 21S 11

1

2
tr A2Ā21••• D 21

3S 11
1

2
tr A3Ā31••• D 21S 11

1

2
tr A4Ā41••• D 21

.

~53!

These brackets can be expanded and truncated toO(AĀ)4

since they still contain the Grassmann fields (CC̄). The
numerator contains a multitude of group integrals wh
need to be evaluated around the plaquette. The method,
lined briefly in Appendix C, is somewhat involved and th
interested reader can refer to Ref.@38# for the algorithms
used. It suffices to say that the terms which have an e

number of (CC̄) are kept since they will form the meso
states.

After a tedious calculation along the above sketched lin
the quantityJp becomes

Jp511
628

81
~UAUBUCUD!21

1624

135
~UAUBUCUD!2

3~UA
2UB

21UB
2UC

2 1UC
2 UD

2 1UD
2 UA

2 !

1
548069

18225
~UAUBUCUD!4, ~54!

and since in three dimensions we have one plaquette per
the effective potential toO(b2

2) is ~again with UiUi 1m

5U2)

Veff~b2
2!58ln U24U42

143

30
U82

b2
2

2

3H 31
628

27
U81

1624

45
U121

548069

18225
U16J .

~55!

This is plotted in Fig. 4, withb2 taking a range of values
between 0 and 0.5. The behavior does not change qua
tively as we increaseb2 , showing that the symmetry re
mains broken as we move up theb2 of Fig. 1. This is as
expected assuming a continuous critical line.

C. The phase diagram forb250, b1Þ0

Let us now complete our analysis on the phase diag
by concentrating on the region of strongSU(2),b250,
keepingUS(1) coupling arbitrary~bottom horizontal axis of
Fig. 1!. In this part of the phase diagram one canintegrate
out the ~strongly coupled! SU(2) gauge fields to derive an
effective action for the fermion andUS(1) gauge fields. The
SU(2) path integration is performed along the lines of R
@26#. In the strong coupling limit forSU(2),b250, the ef-
2-11



ly

at
t

rs
e

o

-

f a

s an

ne
ing
e
the

ex-

the

cise
ken
ng
by

ad-
the
rk,
ria,
tiv-

xt
r

d-
eter

er-
er-

in

pert
ich

,

etry
e
he

r
g

K. FARAKOS, N. E. MAVROMATOS, AND D. MCNEILL PHYSICAL REVIEW D59 034502
fective action, obtained after integration of theSU(2) gauge
fields, reduces to the sum ofone-link contributions Seff

5Seff(A,Ā), with

Am~x!b
a5C̄b~x1a!gmUx,m

† Ca~x!,

Ām~x!b
a5C̄b~x!~2gm!Ux,mCa~x1a!,

~56!

whereUx,m denotes theUS(1) group element,a is the lattice
spacing, and the Latin indicesa,b are colorSU(2) indices.
Below we shall proceed to evaluate explicitly this strong
coupled effective action along theb250 axis of the phase
diagram in Fig. 1.

For the SU(N) case the effective action exp(2Seff) is

known in an expansion overA, Ā @26#. This will be sufficient
for our purposes here:

Seff5
1

N
Tr~ĀA!1

1

2N~N221!
F2Tr@~ĀA!2#

1
1

N
~Tr@ĀA# !2G1•••1

1

N!
~det A1det Ā!1••• .

~57!

The determinant terms are associated with baryonic st
@26#. We also note that for theU(N) case the determinan
terms areabsent. In the phase diagram of Fig. 1 theU(2)
case occurs at the pointb2→0,b1→0. We approach this
point asymptotically, by working on theb250 line, and as-
sumingb1Þ0. We first notice that the Abelian phase facto
of theUS(1) interactionscancelfrom the expressions for th

traces ofA, Ā in the effective action~57!. Moreover, from
the discussion of Sec. II, we know that theSU(2) ~strong-
coupling! integrationcannot producea parity-invariant con-
densate, since the latter is not anSU(2) singlet @2#. The
resulting effective action should be expressible in terms
SU(2) invariant fields. Thus, on the axisb250 there isno
possibility for the US(1) group to generate a fermion con

FIG. 4. The effective potential forb150 and for b2

50,0.125,0.25,0.375,0.5, the corresponding curves lying in orde
decreasing magnitude of their maxima from right to left in the fi
ure.
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densate. This implies that for very strongSU(2) group the
symmetry isrestoredfor arbitraryUS(1) couplings.

This is a very important fact, indicating the existence o
not well-defined limitb2 ,b1→0, since from the discussion
in this and the previous subsections it seems that there i
ordering problem in how one approaches the point (b1 ,b2)
5(0,0). This indicates that the shape of the critical li
around that point is the one depicted in Fig. 1, concav
upwards. Bycontinuity arguments, then, one expects th
shape of the entire critical line to be the one depicted in
figure. About the point (b1 ,b2)5(b1

c,0), where theSU(2)
interactions are negligibly weak, and thus irrelevant, one
pects an almost vertical shape of the critical line.

This discussion completes our analytical results for
phase diagram of theSU(2)^ US(1) gauge theory. As we
have already mentioned above, the derivation of the pre
shape of the critical line, separating the phases of unbro
SU(2) symmetry from the region where symmetry breaki
occurs, requires a proper lattice simulation analysis,
means of a fermionic algorithm. We hope to be able to
dress these issues in a future publication. However,
above results will be sufficient for our purposes in this wo
and will enable us to present physically intreresting scena
pertinent to the physics of high-temperature superconduc
ity, which we shall discuss in Sec. VI.

Before doing so, it will be essential to review in the ne
two sections:~i! the symmetry breaking properties of ou
non-Abelian gauge model from the point of view of Gol
stone’s theorem and the existence of a local order param
and ~ii ! the role of nonperturbative effects. These will be
important in considering the coupling of the model to ext
nal electromagnetic fields, as required for the study of sup
conducting properties.

IV. KOSTERLITZ-THOULESS REALIZATION
OF SUPERCONDUCTIVITY IN THE

SU„2…^ US„1… MODEL

This section is mainly a review of results that appear
the literature regarding the model@6,4,11#. It mainly serves
as a comprehensive account, for the benefit of the nonex
in the area, of the various delicate issues involved, wh
play a very crucial role in the underlying physics.

An important issue in the model~8! is the existence of a
global conserved symmetry, namely, the fermion number
which is due to the electric charge of the fermionsC. The
corresponding current is given by

Jm5 (
c51

2

C̄cgmCc . ~58!

This current generates a globalUE(1) symmetry, which after
coupling with external electromagnetic fields isgauged.

In the absence of such external potentials, the symm
UE(1) is broken spontaneouslyin the massive phase for th
fermions C. This can be readily seen by considering t
following matrix element~see Fig. 5!:

of
-
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S a5^Bm
a uJnu0&, a51,2,3, Jm5C̄gmC. ~59!

As a result of the color group structure only the masslessBm
3

gauge boson of theSU(2) group, corresponding to thes3
generator in two-component notation, contributes to
graph. The result is@11,4#

S5^Bm
3 uJnu0&5~sgnM !emnr

pr

Ap0

, ~60!

whereM is the parity-conserving fermion mass~or the holon
condensate in the context of the doped antiferromagnet!. In
our case this mass is generateddynamicallyby means of the
US(1) interactions, as we discussed above, provided the
pling constants were lying in the appropriate~strong! regime
of the phase diagram of Fig. 1.

The result~60! is exactin perturbation theory, in the sens
that the only modifications coming from higher loops wou
be a multiplicative factor 1/12P(p) on the right hand side
with P(p) the Bm

3 -gauge-boson vacuum polarization fun
tion @11#.

As discussed in Refs.@4,11#, the Bm
3 color component

plays the role of theGoldstone bosonof the spontaneously
broken fermion-number symmetry. If this symmetry is exa
then the gauge bosonBm

3 remainsmassless. This is crucial
for the superconducting properties@4#, given that this leads
to the appearance of amassless polein the electric-current
two-point correlators, the relevant graph being depicted
Fig. 6.

It can be shown@4# that in the massive-fermion@broken
SU(2)# phase, the effective low-energy theory obtained a
integrating out the massive fermionic degrees of freed
assumes the standard London action for superconducti
the massless excitationf being defined to be thedualof Bm

3 :

FIG. 5. Anomalous one-loop Feynman matrix element, lead
to a Kosterlitz-Thouless-like breaking of the electromagne
Uem(1) symmetry, and thus superconductivity, once a fermion m
gap opens up. The wavy line represents theSU(2) gauge boson
Bm

3 , which remains massless, while the blob denotes an insertio

the fermion-number currentJm5C̄gmC. Continuous lines repre
sent fermions.

FIG. 6. The lowest-order contribution to the electric curre
current correlator̂0uJm(p)Jn(2p)u0&. The blob in the propagato
for the gauge bosonBm

3 indicates fermion loop~resummed! correc-
tions. The blob in each fermion loop indicates an insertion of
currentJm .
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]mf[emnr]nBr
3 . ~61!

All the standard properties of superconductivity, Meissn
effect ~strongly type II @4#!, flux quantization, and infinite
conductivity, follow then in a standard way, provided th
excitationf ~and, hence,Bm

3 ) is exactly massless.
Having discussed the spontaneous breaking of ferm

number symmetry in the massive fermion phase, it is natu
to inquire about the nature of symmetry breaking, in t
sense of establishing the existence or absence of a local o
parameter. In this respect, our discussion will parallel tha
Ref. @4#. The neutral parity-invariant condensa

^C̄1C12C̄2C2&, generated by the strongUS(1) interaction,
is invariant under theU(1)^ UE(1), as aresult of thet3

coupling ofBm
3 in the action, and hence does not constitu

an order parameter. This is a characteristic feature of
gauge interactions. Putative charge 2e or 22e order param-
eters, such as the pairing interactions among opposite s

in the statistical model of@6,4#,3 e.g.,^C1C2&,^C̄1C̄2& will
vanish at any finite temperature, in the sense that str
phase fluctuations will destroy the vacuum expectation v
ues of the respective operators, due to the Mermin-Wag
theorem. Even at zero temperatures, however, such V
yield zero result to any order in perturbation theory triviall
due to the fact that in the context of the effectiveBm

3 gauge
theory of the brokenSU(2) phase, the gauge interaction
preserve ‘‘flavor.’’ For a more detailed discussion on t
symmetry breaking patterns of (211)-dimensional gauge
theories, and the proper definition of order parameter fie
we refer the reader to the literature@11,4#.

Thus, from the above analysis it becomes clear that
formation, pairing and superconductivity can occur in t
above model without implying any phase coherence.

V. INSTANTONS AND THE FATE
OF SUPERCONDUCTIVITY

An important feature of our model is that, due to th
non-Abelian symmetry breaking patternSU(2)→U(1), the
Abelian subgroupU(1)PSU(2), generated by thes3 Pauli
generator ofSU(2), is compact, and may containinstantons
@19#, which in three space-time dimensions are similar
monopoles, and are known to be responsible for giving
small but nonzero massto the gauge bosonBm

3 ,

mB3;e2~1/2!S0, ~62!

whereS0 is the one-instanton action, in a dilute gas appro
mation. Its dependence on the coupling constantg2[gSU(2)
is well known @19#:

S0;
const

g2
2

. ~63!

3In four-cmponent notation, such fermionic bilinears correspo

to ^Cg5C&,^C̄g5C̄&, considered in Ref.@4#.
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For weak couplingg2 the induced gauge-boson mass can
very small. However, even such a small mass is sufficien
destroy superconductivity, since in that case there is
massless pole in the electric current-current correlator.

The presence ofmasslessfermions, with zero modes
around the instanton configuration, is known@19# to suppress
the instanton effects on the mass of the photon, and un
certain circumstances, to be specified below, the Abel
gauge boson may remain exactly masslesseven in the pres-
ence of nonperturbative effects, thus leading to superconduc
tivity, in the context of our model. This may happen@19# if
there are extra global symmetries in the theory, whose
rents connect the vacuum to the one-gauge-boson state
thus they break spontaneously. This is precisely the cas
the fermion number symmetry considered above. In suc
case, the massless gauge boson is the Goldstone boson
~nonperturbatively! spontaneously broken symmetry.

However, in ourSU(2)^ US(1) theory, discussed in thi
work, as a result of the~infinitely strong! US(1) interaction,
a mass for the fermions is generated, so we are not faci
problem with zero modes. Our analysis is based on a Wi
nian treatment, where massive degrees of freedom are
grated out in the path integral. This includes the gapful f
mions, and the massiveSU(2) gauge bosons. The resultin
theory, then, is a pure gauge theoryU(1)PSU(2), and the
instanton contributions to the mass ofBm

3 are present, given
by Eq. ~62!, in the one-instanton case.

We now remark that supersymmetry is known@19# to
suppress instanton contributions. For instance, in certaiN
51 supersymmetric models with massless fermions, con
ered in Ref.@19# the instanton-induced mass of the Abeli
gauge boson is given by

mgauge boson;e2S0 ~64!

which is suppressed, compared to the nonsupersymm
case~62!.

N52 supersymmetric theories in three space-time dim
sions constitute additional examples of theories where
Abelian gauge boson remains exactly massless, in the p
ence of instantons@19,39#. Such theories have complex re
resentation for fermions, and hence are characterized by
tra global symmetries~such as fermion number!. In view of
our discussion above, such models will then lead
Kosterlitz-Thouless superconductivity upon gauging the f
mion number symmetry.

We also remark that in supersymmetric theories of
type considered here and in Ref.@28#, it is known @19# that
supersymmetry cannot be broken, due to the fact that
Witten index (21)F, where F is the fermion number, is
always nonzero. Thus, in supersymmetric theories the p
ence of instantons should give a small mass, if at all, inboth
the gauge boson and the associated gaugino, Howeve
three-dimensional supersymmetric gauge theories it is p
sible that supersymmetry is broken by having the system
‘‘false’’ vacuum, where the gauge boson remains massl
even in the presence of nonperturbative configurations, w
the gaugino acquires a small mass, through nonperturba
effects. The life time, however, of this false vacuum is ve
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long @19#, and hence superconductivity can occur, in t
sense that the system will remain in that false vacuum fo
very long period of time, longer than any other time scale
the problem.

The short reviews of symmetry-breaking patterns and
role of nonperturbative effects, just presented, provided
with the necessary equipment to attempt a construction
possible scenaria, which might simulate the interesting ph
ics underlying the high-temperature superconducting
prates. A rather preliminary and Heuristic discussion will
presented in the next section. A more detailed analysis,
pecially in the context of the statistical models of Ref.@6#,
requires proper lattice simulations which automatically
corporate nonperturbative effects. This, however, falls
yond the scope of the present paper.

VI. APPLICATION TO THE PHYSICS
OF HIGH-TEMPERATURE

SUPERCONDUCTORS

A. Phenomenology of high-temperature
superconducting materials

In this section we would like to consider a possible app
cation of the aboveSU(2)^ US(1) model@6# to the physics
of high-temperature superconducting cuprates. Recent
periments@20# have demonstrated an extremely unconve
tional and rich structure of these materials, not in their
perconducting phases, but rather in the normal phase.
phenomenology of the high-temperature cuprates may
summarized by the temperature-doping concentration ph
diagram, shown in Fig. 7.

The phase diagram shows clearly a very low~including
zero! doping antiferromagnetic phase~AF!. Above a critical
doping concentration~point A in Fig. 7!, AF order is de-
stroyed, but the interesting issue is the existence of a ph
named the ‘‘psuedogap phase,’’ which interpolates betw
the AF and the superconducting phases~dSC!, the latter be-
ing known to be ofd-wave type@13#.

FIG. 7. The temperature-doping phase diagram summarizes
current~experimentally observed! situation in high-temperature su
perconducting cuprates. Notice the existence of an intermed
zero-temperature phase, characterized by the existence of
formed pairs, leading to a pseudogap.
2-14
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It is a general belief today, supported by many experim
tal results@20#, e.g., results on optical conductivity, photo
emission, transport, etc., that the pseudogap phase is ch
terized by pairing ~‘‘preformed pairs’’!, leading to the
existence of a mass~pseudo! gap in the fermionic spectrum
which, however, is not accompanied by phase cohere
This situation is in sharp contradiction with standard BC
theories of superconductivity, according to which phase
herence appears simultaneously with the appearance
gap.

The pseudogap phase is separated by a critical temp
ture curve Tc~doping! from the d-wave superconducting
state, characterized by the sharp drop in resistivity,
strong type II superconductivity~penetration depth of exter
nal magnetic fields is of order of a few thousands of Å!.
Today, the general belief is that the superconducting pai
is of BCS type involving four-fermion itneractions amon
the charged excitations. However, the four-fermion inter
tions do not have to be phononic.

The pseudogap phase is also separated by another c
T* ~doping! from the normal state phase, where there is
gap, but where there are abnormal normal state proper
such as linear dependence of the electrical resistivity w
temperature for a wide range of temeprature scales, etc
such properties point towards a non-Fermi-liquid behavio
the normal state, which is experimentally observed, as fa
we understand, not only in the regime of optimum dopin
but well below it ~shown in the Fig. 7!.

B. Strongly coupledU„2… gauge theory
and the pseudogap phase

In this section we shall argue that the gauge the
SU(2)^ US(1) of Ref.@6#, whose low-energy limit has bee
studied in this paper in some detail, may provide a satis
tory qualitative explanation of the phase diagram of Fig.
especially as far as the appearance of a pseudogap pha
concerned. For the purposes of this article, we shall conc
trate in the zero temperature region of the graph. Our met
will be that of Ref. @40#, i.e., approaching the pseudoga
phase by studying the excitations about the nodes of
d-wave superconducting gap. We shall not deal here w
excitations away from the nodes of the gap. Our hope will
that similar ~long range! gauge-interaction phenomena a
responsible for the formation of the bulk of thed-wave gap
and the pseudogap. From the preliminary finite-tempera
analysis of Ref.@40# it becomes clear that the gaps that op
up at the nodes disappear at much lower temperatureT
,0.1 K) than the bulk of thed-wave type gap@Tc
5O(100 K)#, and this means that the predictions made
this work, if true, can be realized only if one looks at lo
temperatures.4

4However, we point out that the presence of external magn
fields may enhance these values@40#, as, for instance, is the case o
the experiments involving thermal conductivity measurements@41#.
See discussion at the end of this section.
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Before starting our analysis on the~zero-temperature!
pseudogap phase, we should point out that the gauge th
at hand, is also in agreement with deviation from Ferm
liquid behavior in the normal~no mass gap! phase. Indeed
as we discussed in previous articles@42#, a U(1) fermion-
gauge theory in 211 dimensions, in which the mass of th
fermions is generated only dynamically through the gau
interactions, is characterized by nontrivial infrared fix
points, which according to general arguments@43# is suffi-
cient to drive the theory away from the Landau-Fermi liqu
~trivial infrared structure!.

Let us continue our discussion on the diagram of Fig. 7
considering the antiferromagnetic phase. In such a phase
only excitations are assumed to be spin degrees of freed
There are no charged excitations, and the pertinent dynam
is described by the magnonz sector of the model~3!. As the
doping exceeds a critical concentration~point A in Fig. 7!,
the antiferromagnetic order is destroyed. In the context
simple low-energyCP1 models, which describe adequate
the dynamics of the AF sector, this can be seen easily
applying renormalization-group arguments@44,45#, and tak-
ing into account the dependence of the respective coup
constant on doping, in the way explained in Refs.@4,15#.

The important question is whether superconductivity do
not set in immediately, but one has to pass through the
termediate phaseAB, where a ‘‘pseudogap’’ appears, but n
phase coherence exists. As we shall argue now, our stro
coupled gauge theorySU(2)^ US(1), presented above, ma
offer an explanation for the phenomenon.

To this end, we first remark that above the critical dopi
concentration that marks the on-set of disorder (A in Fig. 7!,
the z magnons are massive, with masses which themse
depend on the doping concentration@45,15,22#. In this re-
gime, there are both charge and spin (z field! excitations.
Integrating out the massive magnonsz, the long-wavelength
dynamics of the charge excitations is described by the ef
tive SU(2)^ US(1) gauge theory of Ref.@6#, ~8!. The gauge
US(1) interaction is capable of inducing dynamical openi
of a holon gap~pairing! if the pertinent coupling constant o
the statistical model lies inside theSU(2) broken regime of
the phase diagram of Fig. 1.

We now remark that in the statistical model~3!, which
will be the basis of our discussion in this section, the inve
couplings of theSU(2) andUS(1) gauge groups lie in the
straight lineAB depicted in Fig. 8, as a result of Eq.~5!. In
the condensed-matter model of Ref.@6#, then, the local gauge
group isU(2) rather thanSU(2)^ US(1).5

At present, the precise shape of the critical line is n
known, since it requires the construction of an appropri
fermionic algorithm, which will allow for a proper lattice
study of the model. The strong coupling analysis in this p
per has demonstrated, however, that the critical line pa
through the origin of the graph, concaving upwards in t

ic
5This, however, does not affect the results of the previous anal

pertaining to the mass generation. The only difference of theU(2)
case is theabsenceof baryonsfrom the spectrum@26#.
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way shown in the figure. Also, from the behavior of th
critical line about the point (b25`,b1

c), it is evident from
the graph of Fig. 8 that the intersection pointB defines an
upper bound for the inverse couplingb1 , in order for the
system to be in the mass-generation phase. For all prac
purposes it is qualitatively meaningful to assume an alm
vertical shape of the critical line at the intersection pointB,
which implies that the critical coupling for mass generati
for the couplingb1 in the statistical model is still given by
the singleU(1) gauge theory critical coupling, i.e.,b1,bc

1

~see Fig. 1!. It is known thatb1
c;32/p2 @1,37#. So, on ac-

count of our discussion in Sec. III A and Eq.~5!, such a
gauge pairing would occur in the following range of dopi
concentrations:

dAF,d,dc
~2![12

p2

32

L

J
, ~65!

wheredAF denotes the doping concentration at which the
order is destroyed andL is the ultraviolet cutoff, which, in
our lattice model, may be identified with the inverse of t
lattice spacinga, as discussed at the end of Sec. III A.

This phase is characterized by the breaking of chiral sy
metry. However, as discussed in Refs.@11,4#, and reviewed
in Sec. IV, the symmetry breaking occurswithout a local
order parameter. Strong phase fluctuations destroy the p
tive order parameter for (211)-dimensional QED. This is an
exclusive featureof the 211 gauge interactions, and as w
argue now, it is responsible for the appearance o
pseudogap. The concept of the pseudogap is associated
cisely with the presence of a nonvanishing mass gap and
the existence of ‘‘preformed pairs’’ in underdoped cupra
@20#, but in absence of a local order parameter~phase coher-
ence! in the model. The situation is analogous to t
Kosterlitz-Thouless mode of symmetry breaking@12#. The
important issue to understand is why there is no superc
ductivity in the model.

FIG. 8. Phase diagram for theSU(2)3US(1) gauge theory,
viewed as a low-energy continuum limit of the solid-state model
doped antiferromagnets of Ref.@6#. The straight line indicates the
specific relation of the coupling constants in the model.
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This issue is related to the presence of instantons,
cussed in the previous section, which are responsible for
ing a small but finite mass to the gauge bosonBm

3 , and thus
destroying the basic criterion of superconductivity~see Fig.
6!. The presence of fermions does not change this. In
brokenSU(2) ~gapped! phase of the model~8! the fermions
are already massive, due to the extraUS(1) interactions, and
hence there is no issue of zero modes that could screen
instanton effects. From Eq.~62!, as well as the fact that the
one-instanton action exhibits the following dependance
the gSU(2) coupling constant for the case at hand@19#:

S0;
const

gSU~2!
2

, gSU~2!
2 }J~12d! ~66!

one observes that the instanton-inducedBm
3 -boson mass de

creases upon increasing the doping concentrationd in the
sample.

In the context of the statistical models of Ref.@6#, etc.,
one should also consider the coupling of superconduc
planes, by means of Coulomb interactions among the cha
carriers~electrons!. Such interactions may result in a sma
leakage of electrons across the planes, which inevitably le
to fermion-number nonconservation on the plane. In R
@28#, within a spin-charge separating framework, such an
terplanar coupling has been represented by inserting in
path-integral a term of the form

E dhe2i *d3xh
¯

Caza1H.c., ~67!

wherea51,2 runs over ‘‘colors’’ in the model ofSU(2),
andh is a Majorana spinor. Due to this, the term~67! in the
effective action violates fermion number, and is interpre
as implying a hopping ofboth spin ~z! and charge (C) de-
grees of freedom. Notably,h may play the role of the super
symmetric partner of theBm

3 gauge boson, in aN51 super-
symmetric formulation of the model,6 which is possible upon
certain relation@28# among the couplings of the microscop
spin-charge separating model of Ref.@6#.

The explicit breaking of the fermion number symmetry
the interplanar coupling, as well as the absence of ferm
zero modes in the massive phase@due to theUS(1) interac-
tions# imply that the presence of fermions will not cancel t
instanton-induced small mass of the gauge boson~62!.7 In
such a case, then, the gapped phase will be characterize
the presence of pairing, mass gap, but no phase coher

6This supersymmetry carries nontrivial dynamical informati
about the spin-charge separation mechanism underlying the m
and hence it is different from the nondynamical global supersy
metry algebras, at specific points of the coupling constants, dis
ered in Ref.@46#.

7Although, a reduction of order~64! might be expected inN51
supersymmetric cases@28#, occurring for particular values of dop
ing. See discussion below.
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and superconductivity, features shared by the pseudo
phase observed in cuprates~Fig. 7!.

The above considerations are rather Heuristic at pres
The complete analysis would necessitate a lattice simula
of the model~7! in the presence of instanton effects@in the
broken phase after mass generation due toUS(1) interac-
tions#. Analytical results at present exist only forN52 su-
persymmetric theories, as we mentioned above@19,39#,
which, however, seem not to correspond to the physics of
cuprates@28#, which appear to have at mostN51 supersym-
metry upon coupling of the superconducting planes. Sup
symmetry suppresses instanton effects in some cases~64!,
and some times may lead to a massless gauge boson
though such a case at present seems to characterizeN52
supersymmetric theories. We hope to return to a more
tailed study of such issues in the future.

The suppression of instanton effects by supersymme
which in our class of statistical models may occur for cert
doping concentrations@28# points to the following possibil-
ity: As one increases the doping concentration, a regio
reached where there is a special relation among the var
coupling constant of the effective spin-charge separa
theory, leading to aN51 supersymmetry@28#. For instance,
in the context of models of Ref.@15# such a supersymmetri
point could be reached for doping concentrationsd* , such
that t8;AJJ8(12d)3/2, where the prime denotes next-to
nearest-neighbor hopping~t! and Heiseneberg exchange e
ergies (J). By tuning the couplings one may arrange
always in the context of phenomenological models—fo
situation in whichd* <dc

(2) . This would imply that, within
the region of dopings for which the gauge statistical inter
tions are responsible for the opening of a gap and pairing,
suppression of instanton effects due to the presence of~su-
persymmetric! fermions may be sufficient to allow for
gauge-theory-induced Kosterlitz-Thouless~KT! supercon-
ducting gap at thed-wave nodes. The KT nature of the ga
implies that once opened such a gap cannot affect thed-wave
character. This scenario for superconductivity has been
vocated in Ref.@6#. In a related, but less probable, scenar
the tunneling to a ‘‘false’’ supersymmetry-broken vacuu
@19# could occur in the dSC region of the phase diagram~see
Fig. 7!.

C. Superconducting phase and additional
four-fermion interactions

Despite these appealing scenaria for the role of ga
~spin-spin! interactions for inducing KT superconductin
gaps at the nodes, in the realistic situation the onse
(d-wave! superconductivity occurs at higher doping conce
trations, for which the attractive four-fermion coupling
among charged excitations in the effective field theory
come strong enough, so as to overcome the gauge inte
tions, and lead to a standard BCS type pairing among
charged excitations.

In such a case one then is forced to consider the effec
additional contact interactions, among theholons, which are
up and above the gauge interactions considered so far.
simplest, and most likely the most relevant, of such inter
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tions are contactfour-fermion interactions@47,4#. From a
microscopic point of view such interactions may arise as
effective way to describe the tendency of holes to occu
nearest-neighbor lattice sites@4,18#, or in some recent sce
naria they may describe attractions due to screened Cou
bic interactions among charged excitations, as a result of
interplanar coupling@48#. The corresponding coupling con
stant will again depend on the doping concentration@4#, and
this will imply interesting phase structures.

The additional four-fermion interactions are, then, view
as being responsible for the appearance of an orderedd-wave
state, with the gap being characterized by four nodes.
shall be fairly phenomenological, given that a detailed inc
poration of extra four-fermion interactions in our strong
coupled gauge model is not striaghtforward. However, a p
nomenological analysis will be sufficient to demonstrate
main unconventional features of our scenario for hig
temperature superconductivity, at least in the context o
continuum effective field theory.

It is known that, in the context of relativistic models w
consider here, as a result of linearization about the node
a d-wave superconducting gap, the four-fermion interactio
are the only ones which become renormalizable~relevant! in
the 1/N framework, whereN is a flavor number for fermions
As an instructive example, consider, for instance, Gro
Neveu-type four-fermion couplings in the effective Lagran
ian @21#

L4 f5k (
a51

2

~C̄aCa!2, ~68!

whereCa are the relativistic spinors~6! describing the exci-
tations about the nodes of ad-wave gap.

From standard arguments@49# on the phase structure o
Gross-Neveu type couplings, we are considering here,
know that pair formation, and hence mass generation
four-fermion theories occurs for dimensionless inverse c
plings l[1/2kL weaker than a critical value 2/p2. How-
ever, the full phase diagram, incorporating theSU(2) and
US(1) couplings as well, as appopriate for the model of R
@6#, will be more complicated. However, for our purposes
the present work it will be sufficient to consider only th
effects of theUS(1) coupling, responsible for the mass ge
eration in the model.

A phase diagram for an Abelian gauge theory with ex
four-fermion interactions~of Gross-Neveu type! has been de-
rived analytically in the context of a Schwinger-Dyson lar
fermion-flavor analysis in Ref.@4#, and in principle the result
can be checked in lattice models. For our purposes in
work it will be sufficient to assume the validity of the large
flavor-number continuous results of Ref.@4#, and concentrate
on the pertinent phase diagram in the coupling cons
space between the gaugeg and four-fermion couplingsk,
depicted in Fig. 9.

In toy models of doped antiferromagnets@18,15#, which
are sufficient for our illustrative purposes, such Gross-Ne
four fermion terms are expressing the tendency of holes
break as less bonds as possible in the antiferromagnetic
tice, which is the configuration featuring the holes sitti
2-17
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next to each other. Such interactions, may be described
adding to the Hamiltonianattractive four-fermion interac-
tions of the form

2k:c1
†c1~ j !::c2

†c2~ j 11!:, ~69!

whereca ,a51,2 are Grassmann~holon! operators,j denote
lattice site, and: . . . : denotes normal ordering of quantu
operators. The normal ordering conventions are such th
fermion bilinear is written as

c†c5:c†c:1^c†c&, ^c†c&5d ~70!

with d the doping concentration in the sample. Such ter
may be asssembled, in the continuum, low-energy, li
@15,4#, into Gross-Neveu four-fermion terms of the for
~68!, where the spinors are constructed as in Eq.~6!.

At this stage, the coupling constantk is a phenomenologi-
cal parameter. However, from quite generic arguments,
would expect it to increase upon increasing the doping c
centrationd in the sample, since the larger the doping, t
bigger the probability of the holes to lie in adjacent sites
the lattice.

At present, the only case where four-holon-operators
pear with well-defined coupling constants in terms of t
microscopic parameters of the theory, is thet-j or Hubbard
model case, where, however, the four-fermion interacti
are repulsive @15,47#. In the models of Ref.@15#, for in-
stance, such Hubbard four-fermion couplingskHubbard as-
sume the generic form

FIG. 9. A generic phase diagram of the theory withUS(1)
gauge and four-fermion~Gross-Neveu! interactions. The critical
line separates the phase of unbroken symmetry from that of bro
symmetry. The symmetry breaking is due to the fermion cond
sate. The dotted line is conjectural at present, and indicates
on-set of a local order parameter due to the dominance of f
fermion interactions.
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kHubbard}k0~ t8,J8!
1

12d
, ~71!

where k0(t8,J8) is an appropriate function of the next-to
nearest-neighbor hopping element and Heisenberg exch
energies.

Combining Eq.~69! with such repulsive interactions, on
then arrives at a generic coupling for four-holon~Gross-
Neveu! operators in the model of the form

k4 f5k~d!2k0~ t8,J8!
1

12d
, ~72!

where k(d) is, at present, a phenomenological parame
which, however, is expected to increase, as we said, w
increasingd. For the four-fermion interactions to be attra
tive one needsk4 f.0, and this places restrictions on th
regime of doping, for which the interactions are going to le
to dynamical mass gap generation. When combined with
phase diagram of Fig. 9, this implies that pairing due
four-fermion interactions would occur for doping concentr
tions in a region determined by the critical line of Fig. 9. B
appropriately choosingk4 f , in the context of phenomeno
logical models, it is then possible to arrange for a situat
like the one depicted in Fig. 7, where the zero-temperat
pseudogap phase interpolates between the AF and the
dard BCS-typed-wave superconducting theory.

Notice that the dynamical mass generation due to fo
fermi couplings leads to asecond ordertransition, at zero
temperatures, and hence to phase coherence, as is stand
BCS-type pairing. This should be contrasted with the gau
situation described above, which leads to Kosterli
Thouless–type breaking@11,4,6#. It would probably imply
the existence of a crossover line~dotted! in the diagram of
Fig. 9, separating the region of the broken symmetry ph
where a local order parameter is present, due to the do
nance of the four-fermion interactions, from the regi
where the Kosterlitz-Thouless mode of symmetry break
~absence of a local order parameter! occurs, due to the domi
nance of the gauge interactions. Such phase diagrams sh
be confirmed by detailed lattice simulations, using approp
ate fermionic algorithms, which fall beyond the scope of t
present work.

The interesting feature is thatexperimentallyone can
make a distinction between a gap induced by the gauge
teractions, or by four-fermion interactions, as a result of d
ferent scaling of the mass gap with an externally appl
magnetic field. A suggestive experiment along these line
that of Ref.@41#, measuring the behavior of the thermal co
ductivity, in both the superconducting and ‘‘pseudoga
phases. Details on such issues are discussed in R
@40,50,51,21#.

VII. CONCLUSIONS

In this work we have described a strong coupling exp
sion for an SU(2)^ US(1) gauge theory, in three
dimensional space time. From the physical point of vie
such models may serve either as a prototype for phys
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-
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applications to the physics of excitations about nodes i
d-wave high-temperature superconductor@6# or—when for-
mulated in Euclidean lattices—as describing hig
temperature phases of four-dimensional gauge theories o
early universe.

Our analysis has indicated a phase diagram of the f
depicted in Fig. 1. The analytical results obtained in
present article pertained to the strongly coupledSU(2) sec-
tor. We have shown the absence of a finite critical coupl
for SU(2) symmetry breaking. The breaking ofSU(2) is
induced by dynamical parity-conserving mass generation
to theUS(1) strongly coupled sector. The shape of the cr
cal line, separating the phases of brokenSU(2) symmetry, is
still conjectural, since it requires proper lattice simulatio
with dynamical fermions, which is under consideration
present.

An important ingredient in our analysis, which was mo
vated from our condensed-matter ancestor models@6#, was
the use of ‘‘naive’’ Dirac spinors on the lattice, andnot
Wilson fermions. The latter are known to violate explicit
parity-symmetry breaking, due to the Wilson term. This m
lead to spontaneous violation of parity symmetry@34,31#,
and therefore to a completely different phase diagram,
though the issue is still unsettled@32#.8

An interesting application of our strongly coupled gau
theorySU(2)^ US(1) was argued to be provided by a po
sible explanation of the~zero-temperature! pseudogap phas
between the antiferromagnetic andd-wave superconducting
phases of the high-temperature cuprates~see Fig. 7!. Due to
the special symmetry breaking patterns,SU(2)→U(1) in
the phase where a fermion mass is generated dynamical
the US(1) statistical interactions in the model@6#, and the
existence of instanton configurations in the compactU(1)
PSU(2), a small mass for theU(1) gauge boson can b
generated. Such a small mass, although does not pre
pairing, however, it spoils superconductivity, since it leads
the disappearance of the massless pole in the electric cu
two-point correlators. As explained in the text, in such
sector, the gauge theory is responsible only for the open

8A similar effect may be induced by external electromagnetic
teractions, which from a condensed-matter point of view are nat
to consider. Recently, the effects of constant magnetic fields on
opening of a mass gap at the nodes ofd-wave high-temperature
superconductors have been considered in the experiments of
@41#. Claims that this may induce, for strong enough fields
change of state of the condensate into a parity-violating one, h
been made@52#. Indeed, in the case of a constant external magn
field, perpendicular to the spatial plane, one has an external so
term violating parity and time-reversal symmetry. For stro
enough source fields it is possible that a parity-violating conden
is magnetically induced. Such a phenomenon is at present a co
ture, which needs to be demonstrated analytically~via Schwinger-
Dyson analysis! or on the lattice. We postpone such an issue
future investigations. We should mention, however, that recent
liminary lattice@50# or continuum@40# analyses, in the presence o
an external field, showed that the magnetic field enhances
parity-conserving condensate.
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of a mass gap in the fermion spectrum. However, the m
of symmetry breaking is of Kosterlitz-Thouless type, a
hence no order parameter exists, since strong phase flu
tions destroy it~the parity-invariant fermion mass gap in th
model of Ref.@6# is not an order parameter, since it is in
variant under the respective symmetries, and hence the
no contradiction with the Mermin-Wagner theorem!. Such a
KT mass gap may be viewed as a pseudogap. In our scen
above, such a gap owes its presence to relativistic ferm
at specific points of the fermi surface~e.g., nodes of the
d-wave gap!, argued to play a crucial role in the pertine
phase. We stress once more, that the important point in
approach@6# was the Kosterlitz-Thouless nature of the gau
symmetry breaking induced by gauge interactions in 211
dimensions@11,4#, which discriminates our approach from
others@22,23#.

Our belief that spin-gauge interactions may play a cruc
role in the underdoped and normal phase of the high-Tc cu-
prates is strengthened by the abnormal properties of th
phases@20#, including the explicit observation of phase sep
ration in the so-called stripe phase, occurring for a particu
doping concentration@53#. In the d-wave superconducting
phase, four-fermion BCS-like pairing may indeed occur,
though the attractive four-fermion interactions, most pro
ably, are not due to phonons, but of electronic origin@48#.

In the presence ofboth types of interactions, gauge an
four-fermion, the effective theory model presents interest
phases. One way to determine the origin of the dynamic
induced mass gap in the various phases is to study the
havior of the system under the influence of external fields
in the experiment of Ref.@41#. It is known@50,40,21# that the
gauge-field induced mass gap scales differently with an
plied magnetic field as compared to the gap induced by fo
fermion Gross-Neveu–type interactions. Such a scaling m
be determined by studying the thermal conductivity in t
presence of an externally applied magnetic field, as in
experiments of Ref.@41#. Details of this analysis appear i
Ref. @21#.

We are, of course, aware that the simple, effective ga
field theory analysis we have just presented, may not be
ficient to explain quantitatively the rich phenomenology
the high-temperature cuprates. We believe, however, th
constitutes a step in this direction. Our hope is that, due
the simplicity and universality that underlies the superco
ducting models based on the gauge symmetry approach
results capture essential features of the physical me
nism~s! underlying various phases of high-temperature
perconductors, in much the same way as the single pho
BCS theory describes adequately the complicated physic
phononic superconductors. Moreover, as particle theor
we also find this exercise very interesting, since it may im
that certain phenomena, characterizing the physics of
early universe, may have interesting counterparts
condensed-matter physics, and in particular the hi
temperature~antiferromagnetic! superconductors. In this re
spect, specific mention should be made again to the wor
Volovik @24#, who pursues the analogies between parti
and condensed matter physics, by suggesting solid-state
periments, involving superfluid helium, as possible labo
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K. FARAKOS, N. E. MAVROMATOS, AND D. MCNEILL PHYSICAL REVIEW D59 034502
tory experiments which might shed light to the physics of
early stages of our Universe. In the same spirit, the rich,
unconventional, structure of the high-temperature cupra
depicted in Fig. 7, may also find interesting, and possi
new, applications to particle physics.
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APPENDIX A: RULES FOR MULTIPLE
‘‘MESON’’ PAIRING

When we come to calculate the meson pairs on a part
lar site there is a subtle complication if there are two pairs

the site, i.e., fourC ’s and fourC̄ ’s. Let us take as an ex

ample the function@ tr(Āi ,mAi ,m)#4 which lies on the link
( i ,i 1m). Expanded out this gives

@C̄ i
b,a~2gm!abC i 1m

a,b C̄ i 1m
a,g ~gm!gdC i

b,d#

3@C̄ i
d,e~2gm!ezC i 1m

c,z C̄ i 1m
c,u ~gm!uhC i

d,h#

3@C̄ i
f ,k~2gm!klC i 1m

e,l C̄ i 1m
e,p ~gm!prC i

f ,r#

3@C̄ i
h,s~2gm!stC i 1m

g,t C̄ i 1m
g,f ~gm!fxC i

h,x#. ~A1!

Before, when we just had a term which produced one pai
mesons on each site there was only one unique way of c

bining the (CC̄) at that site to make the meson. Howev
now, as we see, there are three ways at each site. Wr
down the fields at sitei

C i
b,dC̄ i

b,aC i
d,hC̄ i

d,eC i
f ,rC̄ i

f ,kC i
h,xC̄ i

h,s ~A2!

these can be combined into pairs in three ways:

C i
b,dC̄ i

d,eC i
d,hC̄ i

b,a3C i
f ,rC̄ i

h,sC i
h,xC̄ i

f ,k ,

or

C i
b,dC̄ i

h,sC i
h,xC̄ i

b,a3C i
f ,rC̄ i

d,eC i
d,hC̄ i

f ,k ,

or

C i
b,dC̄ i

f ,kC i
f ,rC̄ i

b,a3C i
h,xC̄ i

d,eC i
d,hC̄ i

h,s . ~A3!

When faced with a choice of three possible meson states
must assume that each is likely to happen with equal pr
ability ~in a sense they can be seen as quantum states
equal energy! and so we write the final combination state
site i as
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3
C i

b,dC̄ i
d,eC i

d,hC̄ i
b,aC i

f ,rC̄ i
h,sC i

h,xC̄ i
f ,k

1
1

3
C i

b,dC̄ i
h,sC i

h,xC̄ i
b,aC i

f ,rC̄ i
d,eC i

d,hC̄ i
f ,k

1
1

3
C i

b,dC̄ i
f ,kC i

f ,rC̄ i
b,aC i

h,xC̄ i
d,eC i

d,hC̄ i
h,s

~A4!

or

H 1

3
trc@Mi

deMi
ha#trc@Mi

rsMi
xk#1

1

3
trc@Mi

dsMi
xa#

3trc@Mi
reMi

hk#1
1

3
trc@Mi

dkMi
ra#trc@Mi

xeMi
hs#J . ~A5!

This must be contracted with the gamma matrices on the
and then with the meson states on sitei 1m, calculated in the
same way. This procedure must also be followed when

four (CC̄) pairs on the site come from two functions o
adjacent sides meeting at that site.

APPENDIX B: THE ‘‘MESON’’ JACOBIAN

In this appendix we shall calculate the Jacobian of

transformation from the fermion variablesC̄a,a ,Ca,a , to

the meson variablesM ab
ab [Cb

bC̄a
a . This change of vari-

ables implies the following transformation in the path int
gral:

)
i
E dC̄ idC i°)

i
E dMi . ~B1!

We adapt the method outlined in Ref.@26#. Let our initial
path integral be written

)
i
E dC̄ idC ie

Seff[ Mi ]

5)
i

eSeff[d/dJ]E dC̄ idC ie
tr JMiuJ50 , ~B2!

the above fermionic integral can be evaluated,

E dC̄dCetr JM5E dC̄dCeC
¯

JC5det J,

C̄JC5C̄aaJababCbb, ~B3!

where detJ means the product of the eigenvalues ofJ, which
is a 232 matrix in two spaces. However, there is a proble
defining exactly what we mean by the measuredM, sinceM
lives in two spaces. However, if we instead regardM as a
434 matrix we can use some simple results from gro
integration@54,26# to define a measure. The following iden
tity is true for aU(4) group integral:
2-20
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E dU
1

det RU
etr J8RU5det J8, ~B4!

whereR is any positive-definite Hermitian matrix. The ma
trix J8 is chosen to be the equivalent matrix in 434 space to
the J defined in Eq.~B2! which lived in two 232 spaces.
But the determinant of both are the same, detJ85det J. It is
then a simple matter of associating, in Eq.~B4!, dU°dM
andRU°M and we get

E dC̄dCetr JM5E dM
1

det M
etr JM, ~B5!

and our path integral becomes

)
i
E dMie

2( i ln det M1Seff. ~B6!

Our path integraldMi over the 434 space which we have
represented as a group integral, can be viewed as a m
component generalization of a contour integral.

If Mi had been a complex number, which is the case o
U(1) gauge theory with Kogut-Susskind lattice fermions,
would have had@26#

E dC̄CeC
¯

JC5J5 R dz

2p iz

eJz

z
. ~B7!

This contour integral can be evaluated by parametrizinz
5Reiu, which is of course a representation of theU(1)
group. In such a case, this property of the Jacobian, expr
ible in terms of contour Cauchy integrals, can be used
infer stability of the broken vacuum in strongly couple
gauge theories, despite the appearance of a local maxim
in the potential. A detailed discussion may be found in R
@26#, where we refer the reader for more details. Below
shall only concentrate to a description of the basic resu
pertinent for our analysis in this work.

In our problem,M is a 434 matrix and thus has 16 de
grees of freedom. These degrees of freedom are illustrate
the expansion ofM ~12! in terms of the ‘‘lengths’’~theA’s
andF’s! along the 16 ‘‘axes.’’ However, we were intereste
in symmetry breaking along just one of these ‘‘axes,’’s3 .1,
with a ‘‘length’’ given by the complex numberA3 . So we
can view the important part of the integraldM as being in
the complex plane where the only degree of freedom isA3 .
In this respect we have complexified the VEV ofA3 in order
to apply the contour integration. Eventually, the effecti
potential will be minimized for real̂A3&. We have thus a
standard contour integral as above Eq.~B7!.

To make things clearer it is useful@26# to add an explicit

chiral-symmetry-breaking fermion mass term,( imC̄ is3C i ,
to our Lagrangian. The VEV ofA3( i ) can be written as@26#

^A3~ i !&5Ueiw even sites,

^A3~ i !&5Ue2 iw odd sites. ~B8!
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The VEV of the mass term̂mC̄ is3C i& is m^A3( i )& and so
summed over even and odd sites will pick out the real par
the complex number:

(
i

m^A3~ i !&5(
i

1

2
mUcosw. ~B9!

Our effective potential now with the mass term is given
the form

Veff;
2

3
ln U42P~U4!2

mU

6
cosw, ~B10!

whereP(U4) represents the polynomial inU4 which makes
up the rest ofVeff , given in the text~43!,~55!. It is now clear
how the apparent maximum at the stationary point is int
preted. Since the path integral is effectively a contour in
gral, we can choose our contour around the circleu^A3( i )&u
5U.

Then, the important parameter for minimizingVeff is w,
and the minimum along the contour occurs atw50. The
local maximum inVeff lies along the radial directionU ~see
Fig. 10!, which is irrelevent given that our variation of th
potential is contrained to lie along the contour. Asm→0, the
minimum flattens and the whole contour becomes dege
ate. By this argument, one will have a dynamically genera
nonzero VEV forA3 , even in the absence of a bare ma
term. Although this could equally be applied to any of t
terms in the bilinear expansion ofMi , we know from the
discussion of Vafa-Witten@25#, briefly reviewed in Sec. II,
that the parity-conserving massA3 is energetically favored.

APPENDIX C: OUTLINE OF STRONG-COUPLING
COMPUTATIONAL RULES

We want to calculate the following function on th
plaquette:

Jp5H )
i ,mPp

E dVi ,mI 0
tr~2Ayi ,m!tr Vptr Vp

†J
3H )

i ,mPp
E dVi ,mI 0

tr~2Ayi ,m!J 21

,

5Zp~Zp
0!21 ~C1!

with

FIG. 10. Explanation on stability despite the existence of a lo
maximum in the effective potential.
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I 0
tr~2Ayi ,m!511yi ,m1

yim
2

4
1

yim
3

36
1

yim
4

576
,

yi ,m5tr~Ai ,mVi ,m!tr~Āi ,mVi ,m
† !. ~C2!

Our convention will be to label the sides of the plaque
1,2,3,4 and the sitesA,B,C,D. We need to perform the
group integrals*dVi ,m on each side of the plaquette. In th

case ofZp
0 this will give a product of polynomials inO(AĀ)

on each side~36!:

Z05 )
i ,mPp

E dVi ,mI 0
tr~2Ayi ,m!

5S 11
1

2
tr~A1Ā1!1••• D S 11

1

2
tr~A1Ā1!1••• D

3S 11
1

2
tr~A3Ā3!1••• D S 11

1

2
tr~A4Ā4!1••• D . ~C3!
03450
Zp will not be separable into products of simple link
polynomials becasue of the trVptr Vp

† which connects the
color indices of the links around the plaquette in a nontriv
way. For example, there could be a term such

tr(A1A2A3A4Ā4Ā3Ā2Ā1) in Zp which would definitely be
absent inZp

0 .
Zp andZp

0 are both truncated due to the Grassmann fie

(CC̄) contained in theA,Ā functions. So, e.g., a term suc

as tr(A1Ā1)4tr(A2Ā2) will be immediately zero becaus
there are too many fields at siteB between sides 1 and 2

However, e.g., a term such as tr(A1Ā1)4tr(A3Ā3)4 will sur-
vive.

A lot of the integrals inZp will turn out to be equal to
their equivalent values inZp

0 . In fact the group integrals

without at least a term of first order in (AĀ) on every side
will just be equal to their zeroth order result. This is obvio
if we consider, e.g.,
k

er of

te,
e

~C4!

The diagram represents the plaquette with the clockwise flowing arrows being trVp and the anticlockwise trVp
† , ~the reader

should refer to Creutz@54# for a description of diagrammatic group integration!. We do the group integral on one of the blan
sides first. Following Creutz@54#, this produces delta functions which contract with the other group matrices in trVptr Vp

† all

the way around the plaquette, removing them. This leaves the initial@ tr(AV†)tr(ĀV)#2 without the trVptr Vp
† .

There are only nine terms inZp that do not have this simplification. They are the terms which have at least one pow

(ĀA) on each side, i.e.,

~C5!

The evaluation of these terms starts by spliting up the trVptr Vp
† into VabVcd

† pairs around the sides of the plaquet
working out the group integrals on each side~following Samuel@27#! and then ‘‘gluing’’ the sides together by contracting th
spare color indices (ab,cd).

As an example we give the explicit form for the first of the integrals in Eq.~C5!
2-22
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E dV1dV2dV3dV4y1y2y3y4 tr Vptr Vp
†

5
41

648
tr~Ā1A1!tr~Ā2A2!tr~Ā3A3!tr~Ā4A4!2

1

648
$tr~Ā1A1!tr~Ā2A2!tr~A3A4Ā4Ā3!1tr~Ā2A2!tr~Ā3A3!tr~A4A1Ā1Ā4!

1tr~Ā3A3!tr~Ā4A4!tr~A1A2Ā2Ā1!1tr~Ā4A4!tr~Ā1A1!tr~A2A3Ā3Ā2!%1
1

324
$tr~Ā1A1!tr~A2A3A4Ā4Ā3Ā2!

1tr~Ā2A2!tr~A3A4A1Ā1Ā4Ā3!1tr~Ā3A3!tr~A4A1A2Ā2Ā1Ā4!1tr~Ā4A4!tr~A1A2A3Ā3Ā2Ā1!%

1
1

324
$tr~A1A2Ā2Ā1!tr~A3A4Ā4Ā3!1tr~A4A1Ā1Ā4!tr~A2A3Ā3Ā2!%2

1

162
$tr~A1A2A3A4Ā4Ā3Ā2Ā1!

1tr~A2A3A4A1Ā1Ā4Ā3Ā2!1tr~A3A4A1A2Ā2Ā1Ā4Ā3!1tr~A4A1A2A3Ā3Ā2Ā1Ā4!%1
1

81
tr~A1A2A3A4!tr~Ā4Ā3Ā2Ā1!.

~C6!

It it obvious from Eq.~C6! above that the nine integrals are not separable into products of link functions. We rewrZp
5Zp

01Zp8 whereZp8 contains the above nine integrals minus the corresponding integrals inZp
0 ~without the trVptr Vp

†). So

Jp511Zp8(Zp
0)21. Expanding (Zp

0)21 in powers ofO(AĀ),

~Zp
0!215 )

i ,mPp
H 12

1

2
tr~Āi ,mAi ,m!1

1

12
@ tr~Āi ,mAi ,m!#21

1

12
tr@~Āi ,mAi ,m!2#

2
1

144
@ tr~Āi ,mAi ,m!#32

1

24
tr@~Āi ,mAi ,m!3#1

19

1920
@ tr~Āi ,mAi ,m!#4

2
49

2880
@ tr~Āi ,mAi ,m!#2tr@~Āi ,mAi ,m!2#1

37

5760
tr@~Āi ,mAi ,m!2#2J , ~C7!

where we have truncated up to orderO(AĀ)4

Looking at an example term inZp8 , e.g.,

~C8!

When evaluated this will be an even more complicated function ofA1 ,Ā1 ,A2 ,Ā2 ,A3 ,Ā3 ,A4 ,Ā4 than Eq.~C6!. However,

although it will have four pairs ofCC̄ at sitesB andC ~so two pairs ofMM ) it will have three pairs ofCC̄ at sitesA and
D which cannot be arranged solely intoMM pairs. In order to give a nonzero contribution, this diagram will have to

multiplied by the factor2 1
2 tr(A4Ā4) coming from (Zp

0)21. This will then give a diagram withO(AĀ)2 on each side and al

CC̄ fields can be rearranged into tr(MiMi) form. So we must evaluate each of the nine diagrams in Eq.~C5! and then

multiply each by whatever terms in (Zp
0)21 ~C7! will give a contribution containing pairs ofCC̄ at each site.

There will be only four ways of arranging theO(AĀ)n terms on each side of the plaquette to ensure that on each c

there are either twoCC̄ pairs or fourCC̄ pairs. These are shown below:

~C9!
034502-23
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Finally we describe the procedure for summing over all
delta functions which arise after substituting^tr Mi

abMi
gd&

52Ui
2dabdgd at each site.

One term which will occur inZp8(Zp
0)21 is

~C10!

where a simple possibility forO(AĀ) is tr(Ai ,mĀi ,m)2. Of
course there will be much more complicated terms

O(AĀ)2 where theA,Ā are connected by color indices t

other A,Ā on adjacent sides, but the procedure will be t
same:

@ tr~Ā1A1!#25@C̄A
b,a~2gm!abCB

a,bC̄B
a,g~gm!gdCA

b,d#

3@C̄A
d,e~2gm!ezCB

c,zC̄B
c,u~gm!uhCA

d,h#,

~C11!

and this can be rewritten

;~CA
b,dC̄A

b,aCA
d,hC̄A

d,e!(gm
abgm

gdgm
ezgm

uh)

3~CB
a,bC̄B

a,gCB
c,zC̄B

c,u!, ~C12!

or in a more abstract form

aA
•XAB

•aB, ~C13!

where the center dot represents the contraction over
Dirac indices. So all around the plaquette we ha

@ tr(Ā1A1)#2@ tr(Ā2A2)#2@ tr(Ā3A3)#2@ tr(Ā4A4)#2, written in
this abstract form as

~aA
•XAB

•aB!~aB
•XBC

•aC!~aC
•XCD

•aD!~aD
•XDA

•aA!
~C14!

or

Tr@~aAaA!•XAB
•~aBaB!•XBC

•~aCaC!.XCD
•~aDaD!•XDA#,

~C15!

where Tr is, at the moment, just indicating that all Dir
indices are being summed over. (aAaA) now has eight Dirac
indices, four of which it contracts withXAB and four with
XDA.

The next step, is to rearrange the 4 (C i ,C̄ i) pairs in
(aiai) into 2 meson pairs. As mentioned in Appendix A, th
can be done in three, equally likely ways. The function at s
B, aBaB will be of the form

aBaB;CB
a,bC̄B

a,gCB
c,zC̄B

c,uCB
f ,rC̄B

f ,kCB
h,xC̄B

h,s ,
~C16!

where CB
a,bC̄B

a,gCB
c,zC̄B

c,u comes from side AB and

CB
f ,rC̄B

f ,kCB
h,xC̄B

h,s from sideBC. We rewrite this as
03450
e

f

e

he
e

e

5
1

3
CB

a,bC̄B
c,uCB

c,zC̄B
a,gCB

f ,rC̄B
h,sCB

h,xC̄B
f ,k

1
1

3
CB

a,bC̄B
h,sCB

h,xC̄B
a,gCB

f ,rC̄B
c,uCB

c,zC̄B
f ,k

1
1

3
CB

a,bC̄B
f ,kCB

f ,rC̄B
a,gCB

c,zC̄B
h,sCB

h,xC̄B
c,u . ~C17!

Now we substitute in̂ Mi
ab,ab&5Uis3

abdab to get

4

3
UB

4$dbudzgdrsdxk1dbsdxgdrudzk1dbkdrgdzsdxu%.

~C18!

So we have effectively replaced (aiai) with
6 4

3 Ui
4Dbuzgrsxk, with D representing the sum of produc

of delta fns~the bit in$ %!, which has 8 Dirac indices. The6

above appears because when we rearrange the (C i ,C̄ i) we
need to be careful about the anti-commuting Grassm
numbers.

Since each Dirac index has 2 possible values~it’s a 232
representation of the Dirac algebra! and half the indices con
tract to the right and half to the left, we can re-represent
function D ~a 28 tensor! with a 16316 matrix. In~C18! the
four indicesbuzg connect via fourg matrices to site A, and
rsxk connect via fourg matrices to site C. We can there
fore replace each set of four indices~four pairs 5 sixteen
combinations! with a single index taking 16 values. S
D (buzg)(rsxk)5DQV. The same goes for the functionsX rep-
resenting the four gamma matrices in~C15! and we merely
need to calculate products of 16316 matrices around the
plaquette. The Tr in~C15! then becomes a matrix trace. Ac
tually working out the matrix form for each product of del
functions then becomes a matter of bookkeeping. A help
result is that, because of the symmetry of the problem
the even number of gamma matrices, we can actually rep
the X’s with identity matrices.

We have outlined the procedure for working out one ter
where all the corner functions were of the form (aiai) but
the same goes for each term inZp(Zp

0)21. In the case where
there are spare color indices to contract at the corners

must do this first and then rearrange theCC̄, but each cor-
ner will eventually be written similar to~C16!.

For the other diagrams in Eq.~C9! there will not be four

gamma matrices on the sides but rather two@for O(AĀ)# or

six @for O(AĀ)3# and these can be rewritten as 434 or 64
364 matrices, respectively. So the corner function will be

434 matrix for a corner connecting twoO(AĀ) sides, and

for a corner connecting aO(AĀ) side and aO(AĀ)3 side a
4364 matrix~with the transpose 6434 for an adjacent cor-
ner!. The general procedure, however, is identical in ea
case. Our computation is given in more detail in Ref.@38#
and is summarized below.
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~1! Work out the group integrals on each side, the res
will be a sum of terms such as~C13!. ~2! Write the integral
around the whole plaquette as a sum of terms each of
form ~C15! contracting all spare color indices.~3! Replace
a,
.

B

tt.

s

B

03450
lt

he

each corner functions with the sum of delta functions, be
careful to keep track of6 due to the anticommuting natur
of (C i ,C̄ i). ~4! Rewrite theD functions as 16316, 434,
or 4364 matrices.~5! Trace over the matrices.
os,
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Fröhlich, T. Kerler, and P. Marchetti, Nucl. Phys.B374, 511
~1992!.

@11# A. Kovner and B. Rosenstein, Mod. Phys. Lett. A5, 2661
~1990!; Phys. Rev. B42, 4748~1990!; A. Kovner, B. Rosen-
stein, and D. Eliezer, Nucl. Phys.B350, 325 ~1990!.

@12# J. Kosterlitz and D. Thouless, J. Phys. C6, 1181~1973!.
@13# D. A. Bonn et al., Phys. Rev. Lett.68, 2390 ~1992!; C. C.

Tsueiet al., ibid. 73, 593 ~1994!; K. A. Moler et al., ibid. 73,
2744 ~1994!; J. R. Kirtley et al., Nature ~London! 373, 225
~1995!; D. Wollmanet al., Phys. Rev. Lett.74, 797 ~1995!.

@14# A. M. Polyakov, Gauge Fields and Strings~Harwood, Chur,
1987!; S. Deser and A. N. Redlich, Phys. Rev. Lett.61, 1541
~1989!.

@15# N. Dorey and N. E. Mavromatos, Phys. Rev. B44, 5286
~1991!.

@16# C. Burden and A. N. Burkitt, Europhys. Lett.3, 545 ~1987!.
@17# I. Affleck and J. B. Marston, Phys. Rev. B37, 3774~1988!; 39,

11 538~1989!.
@18# R. Shankar, Phys. Rev. Lett.63, 203 ~1989!; Nucl. Phys.

B330, 433 ~1990!.
@19# I. Affleck, J. Harvey, and E. Witten, Nucl. Phys.B206, 413

~1982!.
@20# A. Loeseret al., Science273, 325 ~1996!; H. Ding et al., Na-

ture ~London! 382, ~1996!; B. Batlogget al., Physica C235-
240, 130~1994!; C. C. Homeset al., Phys. Rev. Lett.71, 1645
~1993!; A. V. Puchkovet al., ibid. 77, 3212~1996!.
B

.

@21# K. Farakos, G. Koutsoumbas, and N. E. Mavromat
cond-mat/9805402.

@22# P. A. Marchetti, Z.-B. Su, and Lu Yu, cond-mat/970910
cond-mat/9805191.

@23# L. Balents, M. Fisher, and C. Nayak, cond-mat/9803086.
@24# G. Volovik, talk at theWorkshop on Low Dimensional Ferm

liquid Systems, Hamamatsu, Japan, October, 199
cond-mat/9711031.

@25# C. Vafa and E. Witten, Commun. Math. Phys.95, 257 ~1984!.
@26# N. Kawamoto and J. Smit, Nucl. Phys.B192, 100 ~1981!.
@27# S. Samuel, J. Math. Phys.21, 2695~1980!.
@28# G. A. Diamandis, B. C. Georgalas, and N. E. Mavromat

Mod. Phys. Lett. A13, 387 ~1998!.
@29# K. Farakos and N. E. Mavromatos, Mod. Phys. Lett. A13,

1019 ~1998!.
@30# P. Maris, Phys. Rev. D54, 4049~1996!.
@31# S. Sharpe and R. Singleton, Jr, Phys. Rev. D58, 074501

~1998!.
@32# K. Bitar, U. Heller, and R. Narayanan, Phys. Lett. B418, 167

~1998!.
@33# T. Banks and A. Casher, Nucl. Phys.B169, 103 ~1980!.
@34# S. Aoki, Phys. Rev. D30, 2653~1984!.
@35# K. Farakos and G. Koutsoumbas, Phys. Lett. B178, 260

~1986!.
@36# M. Abramowitz and I. Stegun,Handbook of Mathematica

Functions~Dover, New York, 1965!.
@37# E. Dagotto, A. Kocic, and J. B. Kogut, Phys. Rev. Lett.62,

1083 ~1989!; Nucl. Phys.B334, 279 ~1990!.
@38# D. McNeill, Ph.D. dissertation, Oxford University, 1998.
@39# N. Dorey, D. Tong, and S. Vandoren, J. High Energy Phys.04,

005 ~1998!.
@40# K. Farakos and N. E. Mavromatos, Int. J. Mod. Phys. B12,

809 ~1998!.
@41# K. Krishanaet al., Science277, 83 ~1997!.
@42# I. J. R. Aitchison and N. E. Mavromatos, Phys. Rev. B53,

9321 ~1996!; I. J. R. Aitchison, G. Amelino-Camelia, M
Klein-Kreisler, N. E. Mavromatos, and D. Mc Neill,ibid. 56,
2836 ~1997!.

@43# R. Shankar, Rev. Mod. Phys.66, 129 ~1994!; J. Polchinski,
TASI Lectures1992, Boulder Colorado, hep-th/9210046.

@44# A. M. Polyakov,Gauge Fields and Strings@14#; S. Deser and
A. N. Redlich, Phys. Rev. Lett.61, 1541~1989!; B. Rosenstein
and A. Kovner, Nucl. Phys.B346, 576 ~1990!.

@45# N. E. Mavromatos and M. Ruiz-Altaba, Phys. Lett. A142, 419
~1989!.

@46# P. B. Wiegmann, Phys. Rev. Lett.60, 821~1988!; S. Sarkar, J.
Phys. A23, L409 ~1990!; 24, 1137~1991!; F. H. L. Essler, V.
A. Korepin, and K. Schoutens, Phys. Rev. Lett.68, 2960
~1992!; A. Lerda and S. Sciuto, Nucl. Phys.B410, 577~1993!.
2-25



J.

y

d.

.

K. FARAKOS, N. E. MAVROMATOS, AND D. MCNEILL PHYSICAL REVIEW D59 034502
@47# G. Semenoff and L. C. R. Wijerwardhana, Phys. Rev. Lett.64,
2633 ~1989!.

@48# A. Leggett, talk at Oxford, 1998~unpublished!.
@49# B. Rosenstein, B. J. Warr, and S. H. Park, Phys. Rev. Lett.62,

1433 ~1989!; G. Gat, A. Kovner, B. Rosenstein, and B.
Warr, Phys. Lett. B240, 158 ~1990!.

@50# K. Farakos, G. Koutsoumbas, and N. E. Mavromatos, Ph
Lett. B 431, 147 ~1998!.
03450
s.

@51# G. Semenoff, I. A. Shovkovy, and R. Wijerwadhana, Mo
Phys. Lett. A13, 1143~1998!.

@52# R. B. Laughlin, cond-mat/9709004.
@53# J. Tranquadaet al., Nature~London! 375, 561 ~1995!; Phys.

Rev. B54, 7489~1996!; O. Zachar, S. A. Kivelson, and V. J
Emery, cond-mat/9702055, and references therein.

@54# Michael Creutz,Quarks, Gluons and Lattices~Cambridge Uni-
versity Press, Cambridge, England, 1983!.
2-26


