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Meson correlators at finite temperature
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We evaluate equal time point to point spatial correlation functions of mesonic currents at finite temperature.
For this purpose we consider the QCD vacuum structure in terms of quark-antiquark condensates and their
fluctuations in terms of an irreducible four point structure of the vacuum. The temperature dependence of quark
condensates is modeled using chiral perturbation theory for low temperatures and lattice QCD simulations near
the critical temperature. For the four point function, we assume a simplependence so that it vanishes at
Tc. We first consider the propagation of quarks in a condensate medium at finite temperature. We then
determine the correlation functions in a hot medium. Parameters such as mass, coupling constant and threshold
energy are deduced from the finite temperature correlators. We find that all of them decrease close to the
critical temperaturel S0556-282(99)05401-9

PACS numbd(s): 12.38.Gc

[. INTRODUCTION tive here is to employ a different nonperturbative approach
developed by u$16]. This has been successful at zero tem-
The structure of a vacuum in quantum chromodynamicgerature, and its extension to finite temperature is therefore
(QCD) is one of the most interesting questions in strongof interest. In particular, we will obtain the temperature de-
interaction physic§1]. The evidence for quark and gluon pendence of masses, coupling constants, and threshold ener-
condensates in a vacuum is a reflection of its complex naturgies for the pion ang mesons.
[2]. Determination of correlation functio8,4] of hadronic It is worthwhile pointing out that OPE and our approach
currents in such a vacuum state provides rich informatiorare based on intrinsically different assumptions. The former
regarding interquark interaction as a function of their spatials an expansion which separates short distaf¢son co-
separation as well as on hadron spectroscopy. These aefficienty and long distancécondensatgsphysics. In our
some of the nonperturbative features of QCD and are of greanethod we assume an explicit vacuum structure in terms of
value in understanding the ground state structure of th@uark condensate@wo point function plus an irreducible
theory of strong interactions3,4]. four point function. Having made an ansatz for the vacuum
We have earlier studied mesonic and baryonic currentas abovg we do not make any further approximation in the
correlators at zero temperature with a nontrivial structure forevaluation of the correlators. The approach is phenomeno-
the ground state with quark-antiquark condens@fe§]. It  logical in the sense that the values of the parameters in the
was shown that the square of the quark propagator does nfgur point function[16] are chosen to reproduce the behavior
reproduce the equal time or spatial correlation function forof the correlators. As emphasized by Shuryakand Scha
the pion deduced from observations. In order to match théer and Shurya14] OPE is able to quantitatively describe
data it was necessary to introduce an irreducible four pointhe zero temperature pion correlation functions for srwall
structure for the quarks in the vacuum. This may be lookedup to 0.25 fm but underpredicts it for large. In our work
upon as a combination of two effectgh-an effective way [6,16] the agreement is quantitative with experimentally de-
of incorporating gluon condensate contributions to the corduced mesonic correlation function and lattice regulisfor
relator and(ii) the existence of explicit four point quark the whole range. This covers the smallvalues, resonance
structure in the vacuum. region, and largex domain where the correlator vanishes.
As is well known[7] the QCD vacuum state changes with We have, however, more parameters. To the extent that the
temperature. Lattice Monte Carlo simulations suggest thafarge x behavior of the pionic correlator depends on gluon
chiral symmetry is restored around 150 MeV. In view of this condensates in OPE our parametrization would imply an ef-
the present note is aimed at looking at the behavior of théective way of including gluon condensate effects. For study-
meson correlation functions at finite temperature. This is oing the correlators at finite temperature, we assume that the
great interest in the context of behavior of hadrons aroundwo point as well as the four point function vanish &t
the chiral phase transition associated with quark gluon=T.. The parameters in the four point function are assumed
plasma[8,9]. It may be noted that there is little phenomeno- constant at theif =0 values—no additional dependence is
logical information in this regime but there are several theogiven to them.
retical studies[10-13 using operator product expansion \We organize the paper as follows. In Sec. Il we discuss
(OPB and sum rule methods as well as using instanton ligthe quark condensate at finite temperature to fix the param-
uid model for QCD ground statd44,15. The main objec- eter appearing in the ansatz of the ground state of QCD. We
then discuss in Sec. Il the quark propagation in the thermal
vacuum. In Sec. IV we calculate meson correlation functions
*Electronic address: varun@prl.ernet.in at finite temperature. Finally we discuss the results in Sec. V.
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(aQ)r :S(T)s{l_z\/gjer;2/25in2(z,77)772d7/,

To calculate the correlators at finite temperature we need (qQg)t-q
the expression for the equal time propagator for the interact- (4
ing quark field operators. We have earlier developgda _ 4 eze(n) L
model of vacuum structure in terms of quark-antiquark conVhere sifi(z,7)=1/e*" +1, with z=B/R(T) and &()
densates with a condensate functiotk). The equal time = 7/C0S (7). _
propagator could then be calculated in terms of the conden- W€ can obtainS(T) =R(T=0)/R(T) if we know the
sate functior{6]. One can generalize this to finite tempera- {€MPperature dependence of the order parameter on the left
ture using the method of thermofield dynamics. Here thd12nd side of Eq(4). As there are no phenomenological in-
thermal average is obtained as an expectation value of tHauts for this, we shall consider the results from chiral pertur-

operator over the thermal vacuuit7]. This leads to bation theory(CHPT) which is e>_<pected to be valid at least
for small temperatures. For higher temperatures near the

critical temperature, lattice simulations seem to yield the uni-
f e”z"zAMB(IZ,T)dIZ, vgrsal behaviof7] with a large cor(elation length associated
with a second order phase transition for two flavor massless
QCD. We shall use such a critical behavior to consider the
5 temperature dependence of the order parameter near the criti-
i@y i (A — —ik-X " L cal temperature.
(e (D900 (2m)3 J e A palk k. @ We quote here the results of CHPT obtained by Gerber
and Leutwyler[18]. The condensate ratio at small tempera-

The thermal vacuum is obtained from the zero temperaturéirés compared to the pion mass is given as
vacuum by a thermal Bogoliubov transformation in an ex-

II. QUARK CONDENSATE AT FINITE TEMPERATURE

S

(2m)*

(YL ()9l (0))r=

. : . : qc c |3
tended Hilbert space involving extra field operat@termal ﬁqq)T =1+ = ET“h(’)+47-;T4(a’h§+ 2ah;hy)
doubling of operatons[17]. The functionsA . [Eq. (1)] for (qa)7=0
the case of two flavor massless quarks are givetwits k
=K|) +T8(h' bey+ blgh) |, (5)
R 1 " . .
AL(KT)= E[ltcos (;%sin (k) + @k cos D(K))]. where the function$ are defined as
@  ho=Hw/(37%),  hj=—H¥w)/(27°T?),
hi=H*w)/(2m%),  hi=—H%w)/(47°T?),
In the aboveh(k) is the condensate functid,6,16 corre- 5 , , )
sponding to the Bogoliubov transformation to include a con- h=3holho+ x"hy], h’"=3he[ho+uhy]
densate structure in the vacuum. The functida associated +3hg[hy+ hl/T2+/U'2hi]! (6)
with the thermal Bogoliubov transformation and is related to
the distribution function af17] with  u=M_/T. Also  bez=b—(0.6T/7°F*M ),

big=—1m°F*M2[&—(0.3T/M )], and a’'=(2a/m?)

+(3/327F?)[1— (35m2/327?F2)]. The constantc=0.9
andF . /F=1.057+0.012 withF =93 MeV [18]. The con-
stantsa andb are related to th&-wave andD-wave 77

B being the inverse temperature. Furth€k) is the single scattering lengths, respective[{t8]. Finally the functions
particle energy given as(k) = Vk?+m(K)2. In the presence H"(x) are given a$19]

of condensate the dynamical mass is given as

sirfa(k) = 3

1
exd Be(k)]+1°

m(k)=m-+k tan Zh(k), m being a possible current quark () = = X"dX 1 @
mass[5]. K 0 /X2+M2 e‘/xzﬂ‘z—l.

We had earlier taken a Gaussian ansatz for the condensate

function sin 1(k)=e~"*2 In order to determine the pa- Wwe have extracted the temperature dependence of the con-
rameterR, we had taken a value @ consistent with had- densate as in Eq5) for low temperatures. For temperatures
ronic correlator phenomenology. We choose a similar strucclose toT,, the critical behavior is that of @) spin model
ture for the condensate function at finite temperaturein three dimensio20] and has also been seen in lattice
namely, sin B(k)=e RM*2 with R(T) now being tem- QCD simulationd21]. The order parameter here is given as
perature dependent. (Aq)71/(qQ)1=o=[1—(T/T.)]?, where g=0.39 [7]. We

In order to determineR(T) or equivalently the ratio have takenT.=150 MeV [7]. The two regions are joined
S(T)=R(T=0)/R(T), we first evaluate our expression of smoothly and the result is shown in Figal This result is
the order parametdthe condensate valuat finite tempera- fitted with Eq.(4) to determineS(T)=R(0)/R(T), which is
ture. In terms of the dimensionless variabje= Rk, this is  plotted in Fig. 1b). We shall use it to calculate the quark
given as propagator and the hadronic correlation functions. Note that
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(@ /(T Do R(0)/R(T) IIl. QUARK PROPAGATION IN THERMAL VACUUM

T (a) " [T S In the calculation of correlators, quark propagators enter

1 in a direct manner and hence it is instructive to study aspects
1 of the interacting propagator in some defdl. The equal
time interacting quark Feynman propagator in the condensate
vacuum is given asS,5(X)=(z[ ¥/, (X),¥}(0)]), which at
finite temperature reduces to

08 |
06 [

04 [

1 &Y o . "
- S(X,T)== - f e'**cos P [sin Zh— y-k cos h]dk
02 | 5 2 (2m)
i )
0 0.4"“""""'
0 50. 100 150 0 50. 100 150 | 5;)_( 1 |3(X)
Ty e =iz h0-LX]+ == ©
FIG. 1. (a) shows quark condensates at finite temperature nor-
malized to that at zero temperature obtained from CHPT and Lat\'Nhere
tice. (b) showsR(0)/R(T) as determined frona).
_ ) S o sin kx
in this framework we are unable to explicitly include gluon I1(xX)=| k| coskx— I cos Xdk, (10
0

condensate effects at finite temperature. However, as dis-
cussed later we have included an irreducible four point struc-
ture for the quarks. () = Jx - ~R2(T)K?
) ) ) X)= [ k sinkx cos Xe dk, 11
In the OPE studies, different models are considered for 3 0 (19
the behavior of a vacuum at finite temperature by Adami

et al.[11]. These include lattice simulation, instanton liquid s sin kx

models, and string models. Further, the Wilson coefficients |2(X)=f k(COSkX— i )

are temperature dependent. In a later work Hatseidal. 0

[13] argue that thl dependence in the Wilson coefficients e RATIK?

is due to an erroneous mixing of short and long distance Xcos ¥ 7—>——adk, (12
physics. These authof$3] also stress the crucial importance 1+(1-e RDKH12

of retaining Lorentz nonscalar operators in OPE because of a .

special choice of frame to define thermal equilibrium. A di- with x=|X|, k=K]|.

lute pion gas model is used to define the thermal vacuum in The free massive propagator, which can be derived from
this[13] work. Later we compare our findings with those of S(X,T) by the substitutions sin®k)=my/e and

Hatusdaet al. [13]. cos 2f(k)=kl/e, is given as
. 1 1 PR
So(mq,x,T)=(27T)2; Mg (MgK 1(MgX) = 215(x)) — i —— (MgK(mgx) + 21 6(u)) |, (13
where
=k _ = k2 sinkx\
I5(x)=f - sin(kx)sir? 6dk, I6(x)=f — | coskx— sirfodk.
0o € 0o € kx

K1(mgX) andK,(mgx) are the first and second order modi- To compare with the constituent quark models with an
fied Bessel functions of the second kind, respectively. effective constituent mass, we have also plotted the behavior
In Fig. 2 we plot the two components BX,T) of free massive quark propagators with masses 100 MeV,
and Tr(y-X)S(X,T) of the propagator for massless interact- 200 MeV, and 300 MeV. In the chirality flip part, the propa-
ing quarks given by Eq(9) at T=0MeV, T=100 MeV, gator in the condensate medium starts from zero, consistent
and T=135 MeV, corresponding to the chirality flip and with zero quark mass at small distances, attains a maximum
nonflip components considered by Shuryak and Verbaarvalue of about 250 MeV at a distance of about 0.9 fm and
schot[22]. The normalization is discussed in our earlierthen falls off gradually. Further the interacting propagator
work [6]. overshoots the massive propagators after about 0.6 fm. We
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2 x2 Tr S(3) [in MeV] 7 x3/2 Tr[y . X S(%)] where J(x) = ¢, (X)T ,5/5(X) is a generic meson current
a00 KT T 18 [T with I" being a 4<4 matrix (1s,y, or v,¥s); X is a four
LN 7 ] . 4 vector; @ and B are spinor indices; and and j are flavor

\ \li‘._.(a) i - (b) - indices. The field(X) is the condensate fluctuation field

introduced in Ref.[16] to include four point irreducible
structures in QCD vacuum.

Thus, at finite temperature the correlafttg. (14)] is now
the square of the interacting equal tirtteermal propagator
plus the four point contribution at finite temperature. The
thermal quark propagator was obtained in an earlier section.
We keep the structure of the fieldgx,T) the same as for
zero temperaturgl6]:

X (in fm) . Cxnfm) 2 op(X) :EZB()?)"”E%( X), (15
FIG. 2. The two components of the thermal quark propagator, :,U«i( yi Yj)aﬁfijk¢k(i)+M§5aﬁ¢(i), (16)

(@ Tr(S) and (b) Tr{(y-X)S] versus the distance (in fm). The

three lines, dot, short dash-long dash, and solid corresponds {here the first term corresponds to vector fluctuations

massless quark interacting propagaB(x, T) at temperatures of 0, 54 the second to scalar fluctuatiops.and «, in the above
100, and 135 MeV, respectively. The three lines, short dashed, dogquations are dimensional parameters which give the

short dashed, and long dashed correspond to a massive free ProRg; - K/ o >
. ; rength of the fluctuations angl(X) and ¢(X) are vector
gator with a mass of 100, 200, and 300 MeV, respectivelyT at and sgcalar fields such that v&?fi() )as thed)é]rc))und state of

200 [~

100

=135 Mev. QCD, we have

also see that with increasing temperature, the chirality flip i 1 — Sy (7

component has a lower peak and the position of the peak (Q¢'(x)4!(0)|Q) = 8" gy(X); .
shifts towards higher distances indicating the decrease of the (17)

(Q]p(X)(0)[Q2) =gs(X).

dynamical mass with temperature.

In the chirality nonflip part, the interacting propagator : finite temperature, the functiong, and gs will be
starts from 1, again consistent with the behavior eXpeCte?'emperature depende;qt. We do not kr\1/ow howsto calculate it
from asymptotic freedom. But at a larger separation it fa"Sexcept for a general property that the effect of the four
rather fast indicative of an effective mass of the order of 15 oint structure should decrease with temperature. We take
MeV. These features are qualitatively similar to that of thehere a simple ansatz for the temperature dependenge of
guark propagator at zero temperat(ige22], though quanti-

tatively there are differences. Also, the nonflip component ndgs:
falls faster with an increase of temperature. @a)r |2
Clearly therefore, the situation is similar to the one at zero Osv(x,T)= (W) Osv(X,T=0). (19
T=0

temperature. We find that a constituent quark description is

adequate to describe the behavior of the chirality nonflip par: _ .
of the propagator, but it is not able to do so for the chirality]‘rhe parameterg, are chosen to have the values obtained

flip part. We would like to mention that foF=0 the leading earlier[16] while fitting the mesonic and baryonic correla-

. . . - tors atT=0.
behavior of the propagator in our madeél is identical to the Similar to the calculations at zero temperature, we evalu-

OPE result ate(for T#0) the ratio of the physical correlation function to
that of massless noninteracting quarks at zero temperature
IV. MESON CORRELATION FUNCTIONS given as

In our earlier work, we noted that phenomenology of cor- _ .
relation functions necessitated the introduction of an irreduc- Ro(X) = Tr[So(:)T" So(=x)T']. (199
ible four point structurg(or fluctuations of the condensate

fields) in the vacuum[16]. In fact, the meson correlation The normalized correlation functions thus defined as

functions were different from the square of the two R(%,T)
point function (propagator and the difference could be ex- C(X,T)= — (19b
pressed in terms of the four point function. The expression of Ro(X)

the meson correlation function at zero temperature defined in

our earlier work{16] can be extended to finite temperaturesﬁ;esploned in Fig. 3 for the pseudoscalar and vector chan-

as
As expectedon physical groundsthe amplitude of the
R(Z,T)=Tr[S(X,T)["S(—%,T)T'] correlator decreases with increasing temperature. The peak
of the vector correlator shifts towards the right after
+Tr{|[ZX)T'2(=X)T]])T, (149  T=0.9T.. We might remind ourselves that the position of
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Vector Channel

1000 ; 15 ‘
Pseudoscalar Vector 0.80
} by
0.75 o J[
= 1.0 = {
= <
& T, 0-70 +
= £ f
o 0.5 0.65
\.."‘ \ 0% s 0.09 0.12
\ T (GeV)
0 : ‘ ‘ 0.0 ' ' '
00 05 10 15 20 00 05 10 15 20 2.00
x (in fm) x (in fm) 180 4 t

FIG. 3. The ratio of the meson correlation functions at finite < 4.0 t '
temperature to the correlation functions for noninteracting masslessja '
quarks at zero temperatuR(x,T)/Ry(X,T=0) vs distancex (in = **
fm). The solid, dashed, dotted, and dot-dashed lines correspond ~ .o 4
to temperatures T=0 MeV, T=130 MeV,T=140 MeV, and
T=148 MeV, respectively. 1% 5e 0.9 012

T (GeV)
the peak of the correlator is inversely proportional to the o0
mass of the particle in the relevant chanpél o0.48 -

The spatial hadronic correlators have been used to extract% o6 | | ‘ ‘
the hadronic screening masses and widths at finite tempera H
ture[9]. To extract the hadronic properties at finite tempera- & o.2+
ture, we use a phenomenological parametrization as is usu- § ora
ally done in sum rule calculatiorjd1,13. We may note here =
however, that the phenomenological inputs are not available 0.00 = ods STz s

T (GeV)

0.138
and coupling for the vector channel. The vertical lines represent the
9°"3’ errors obtained while fitting.
3
g "% t t i at finite temperature. Consequently, the correlators are pa-
= s rametrized using the spectral density function with the
' mass, decay width, and the coupling of the particle to the
0.134 , . . . : vacuum, all three parameters being temperature dependent.
28 . (M’:V) 1ee 1es =0 We first express the correlator in terms of spectral density
function:
2.300
1.900 } - * \/5
_ Ron(X)=| ds——Ki(VsX)p(s). (20
= + 0 494X
. 1.500 '
%);1 roo Y Then we use the following phenomenological parametriza-
= . tion for the spectral density functidi.1,13:
0.700 T T T T T :
25 50 75 100 125 150 35 \/g
056 T (Mev) p¥(s)=3)\25(s—M2)+ = tanr{ﬁ 6(s—s,)
0.48 * 2
g 0.40 i,' +T Sp5(3)1 (21)
~ t
o 0.32 i
E oz + P(s)=A28(s—M2)+ 33 tan E 6(s—s,) (22)
S oe ' pr(S)=AGO(s— ML)+ gz tanh o o/
= 0.08
0.00 . . . . . where\ is the coupling of the bound state to the currewt,
2 = (M’:V) o0 128 150 is mass of the bound state, agglis the threshold for con-

FIG. 4. The temperature dependence of mass, thresi8)d (

Pseudoscaler Channel

FIG. 5. The temperature dependence of mass, thresi®h (

tinuum contributions. The last term in EQ1) is the scatter-
ing term for soft thermal dissociationgmainly through

and coupling for the pseudoscalar channel. The vertical lines reprgpions, which exists only at finite temperaturgl]. This term
sent the errors obtained while fitting.

is given as
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Channel Temp(MeV) M (GeV) ) Vso(GeV)

Vector 0 0.78@:0.005 (0.426:0.041 GeV¥ 2.070+0.035
100 0.771-0.001 (0.4110.062 GeV¥ 1.897+0.033

130 0.774£0.001 (0.402-0.061 Ger 1.672+0.027

134 0.762:0.001 (0.3910.061 GeV¥ 1.586+0.026

138 0.7410.001 (0.37%:0.061 GeV¥ 1.468+0.024

140 0.726:-0.001 (0.36%0.062 Ger 1.393+0.024

142 0.706:-0.001 (0.34%0.063 Ger 1.303+-0.024

144 0.679:0.001 (0.325:0.064 Ger 1.192+0.024

Pseudoscalar 0.13%.00014 (0.4730.021 Ger 2.110+0.152
100 0.136:0.00014 (0.45%0.021 GeV¥ 1.974+0.118

130 0.136:0.00014 (0.402:0.018 GeV¥ 1.574+0.052

134 0.136:0.00014 (0.386:0.017 GeV¥ 1.445+0.038

138 0.136:0.00014 (0.35%0.016 GeV¥ 1.284+0.025

140 0.136:0.00014 (0.332:0.015 GeV¥ 1.190+0.020

142 0.136:0.00014 (0.316:0.014 Ger 1.084+-0.014

144 0.136:0.00014 (0.282:0.013 Ger 0.965+0.011

148 0.136:0.00014 (0.20%x0.009 Ger 0.970+0.020

150 0.136:0.00014 (0.13+0.006 Ger 0.777+0.020

o 1 |ﬁ|2d ZJM 2( ( |plx— w) ( |B|x+ @ ) results. This is because the assumptions are differ_ent in the
P \§I|To 27 Jo ¢, XA\ %7 N>t two approaches. We recall that Hatsuetaal. [13] attribute

the decrease in themass to contributions coming from four
point function. They also find variation in the gluon conden-

The derivation of the above expression is slightly tricky andSates to be less than 5% over the temperature region that
we have given it in the Appendix. Following Rdfl1] we  considered. In our work we do not include the gluon conden-
take SP~T2/9. sates and the four point structure vanishe$-asl . This is

The mass, threshold and coupling are then extracted sud#pt the case for gluon condensaté&G)) in lattice calcu-
that the correlators as obtained from E20) agree with the lations or in the dilute pion gas model of R¢13]. Conse-
normalized correlation functions as calculated by(kig. 3 ~ quently, we may be tempted to infer that the decrease in
[16]. This is done for each temperature. The results arénass in our model is due to “genuine” four point function
plotted in Fig. 4 for the pseudoscalar channel and ireffects(as in Hatsudeet al. [13]) and not from the “effec-

Fig. 5 for the vector channel. The results are also shown ifive” gluon condensate contribution. One, however, has to
Table I. be very cautious. This is because in the present work the

parameters in the four point function were kept constant at
their T=0 values. It should be recalled that these values
were determined so as to correctly describe the behavior of
As can be seen from Fig. 3, with increase in temperaturethe correlatorsin particular pion at T=0. Hence the param-
the correlation functions have a lower peak indicating lack ofeters do reflect some effective gluon condensate effects. The
correlations with temperature. In the vector channel the masesults at finite temperature would certainly be modified if
of the p meson appears to decrease beyond 120 MeV. Ththese parameters are given significdhtdependence. Our
threshold for the continuum also decreases around the sanparametrization is such that if the parameters decreaselwith
temperature. The behavior with the temperature of thesthen the contribution to the correlator will decrease. The cru-
guantities is qualitatively similar to that found by Hatsudacial question, however, still remains as to the behavior of
et al.[13]. We have also plotted the temperature dependencgGG) for T<T(. If it varies very little in this range then our
of the coupling of the bound state to the current which de-assumption that the parameters remain constant would be
creases with temperature but rather slowly as compared teasonable.
mass or the threshold for the continuum. The temperature In the pseudoscalar channel the mass remains almost con-
dependence of these parameters can be used to calculate tiant until the critical temperature, whereas the threshold and
lepton pair production rate fromin the context of ultrarela- the coupling decrease with the temperature. We have found
tivistic heavy ion collision experiments to estimate vectorthat in the pseudoscalar channel, the contribution to the cor-
meson mass shift in the medium. relation function mostly comes from the fluctuating fields.
We see that our results are broadly in agreement withrurther, the temperature behavior as taken in(E§). essen-
those of Hatsudat al.[13]. All the same, it is not possible to tially does not shift the position of the peak, whereas the
carry out a term by term comparison of our results with OPEmagnitude of the correlator decreases. That is reflected in the

(23

V. SUMMARY AND CONCLUSIONS
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above behavior of the parameters in the pseudoscalar chan- R 2 I d3k, )
nel. We may note here that a similar behavior of the Sp(w-p)=2><mz4|p |f E—l(Gﬂ(p))

pion mass becoming almost insensitive to temperature below

the critical temperature was also observed in Réf], X 8(w—E+E—2)(2E;—w)?(n,—ny), (A5)

where correlation functions were calculated in a QCD moti-

\é]aézglleffecnve theory, namely, the Nambu—Jona-Las,lnqui,[h I22=f)—lzl. N_ext, since th?‘s function at_)ove contrib-
We would like to add here that the present analysis wiIIUtes to the spacelikepf<0) region we write it as

be valid for temperatures below the critical temperature.

Above the critical temperature there have been calculations ~ 8(@—E1+Ep) =2E,8((w—E)?—E2)6(—p?).

essentially using finite temperature perturbative QCD in ran-

dom phase approximatiof®PA) [24]. However, in the re- To simplify further, we may change the integration

gion aboveT ¢, nonperturbative features have been known togyer three momenturk; to the integration over energg,

exist from studies in lattice QCD simulatiofig]. In view of 54 the angle cog;. Performing the integration over

this, one may have to carry out a hard thermal loop calculagngles restricts the lower limit of the energy integial as
tion where a partial resummation is dof@5]. Alternatively, g =Yw+|plv), where v=[1—(4m2/p?)]¥2 Thus we
min= 2 ) ar B

one may use other nonperturbative approaches such as Q
sum rules at finite temperatuf@6] or RPA approach in an
instanton liquid model for the QCD vacuuf5].

ve

1 o
pHw.B)= 2= IpP | GADIE -0 (nmn),  (A8)
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APPENDIX XGL(P)(2E;—w)*(na—ny). (A7)
Here we shall derive the scattering teBp. This may be v shall consider the longitudinal form fact8(w, ) in a

calculated by considering the imaginary part of the longitu-frame which is at rest with respect to the medium which
dinal correlator for spacelike four momenta and can be writjmpjies thatg— 0. In this limit the constraint & o< 2 also

ten as forcesw to approach zero. However the above integral be-
comes increasingly large g@&—0 such that the integrated
p(,5) = ImlIgo (A1) q_u_antity of Sp(w,_f)) v_vithin the phase_spaC(_a fav _rerT_1a_ins
' Ip? finite. Thus we first integrate over this region withfinite

and then take the limif—0. Thus let
which is explicitly written ag27]

12 S
. a)_zx(zw)“ f a3k, d%k, = lim ﬂ”' dw?pf(w,p)= 5=, (A8)
PROPZE6 ) 2E 2w 2E,(2m) e

X |(1(Ky)| Jo| (Kz))|2 (A2)  so thatpi(w,p) effectively becomes @ function. Thus the

spectral density reduces to
><5((0—E1+E2)5(3)(ﬁ—k1+k2)(n2—n1).
(A3) _ ~ " S,
lim p(w,p)=8(w?) 5. (A9)

Here E;=Vk3+m2; E,=Vk3+m2 and nj=n(E;) is the 5|0

Bose distribution function for pions.

In general the expectation of a vector current with r«=:spec¥ve aflsot nOt‘:Gthat ihoerf frﬁes ?r? a_1nt1b|gu||ty frotr)n the_tplon
to a pion state is given 428] orm factor asG (p=0)=1. Now the integral can be writ-

ten as
(m(kp)[J,| (k)= (ki +K2) .G r(P), (Ad)
1 (e, ("
where p=k;—k, and G ,(p) is the pion form factor with 'ZQ lim fo do f dxx*
G,(0)=1. Substituting this in EqA3) and integrating over Ipl—0 ’
k, we obtain X[n((|p|x— w)/2T)—n((|p|x+ )/2T)].  (A10)

034501-7
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We change the integration variabl¢29] by putting w Ip|x— o |px+ w 2x|p|2(1—A?)2 dn
=|p|x and x=1+[y?/|p|°(1—\?)]. Hence the spectral N =71 ]~ >T Ty an
density function can be written as
ydy Substituting back in EqA11) and performing an integration
= E ‘|I‘m f dML I=n272 by parts ford\ integration we have
pl— m,.
|p|X_(1) |5|X+(1) 1 1 o0 y
X[n - (Al11) |=—fd)\f dynl ——|y.  (Al2
2T 2T 27 Jo ™ Lo Y o1 ione)Y (A12)

In the limit of | 5| — 0, we may Taylor expand the difference
of the distribution functions in the square bracket of Eq.In the limit of vanishing pion mass we have=27T?/9 so
(A11) and have thatS,=T?/9.
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