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Instantons and the QCD vacuum wave functional
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We analyze the instanton transitions in the framework of the gauge invariant variational calculation in the
pure Yang-Mills theory. Instantons are identified with the saddle points in the integration over the gauge group
which projects the Gaussian wave functional onto the gauge invariant physical Hilbert space. We show that the
dynamical mass present in the best variational state provides an infrared cutoff for the instanton sizes. The
instantons of the size<1/M are suppressed and the large size instanton problem arising in the standard WKB
calculation is completely avoided in the present variational framewW&®556-282(199)00305-1

PACS numbgs): 12.38.Lg, 11.15.Tk

[. INTRODUCTION asymptotic freedomi7,8,10. Possible appearance of the lin-
ear potential between static quarks in this approach has also
In recent years there has been renewed interest in theeen discussefP—11]. In fact one of the nicer features of
application of the Hamiltonian methods to the study of non-this approximation is that it exhibits nontrivial nonperturba-
Abelian Yang-Mills theorie§1-5]. One set of these works tive infrared physicggluon condensajealong with correct
[1,3,4 attempts to solve “exactly” the strongly interacting weak coupling ultraviolet behavidone loop Yang-Millsg
gauge theories in the sense that a nonlinear transformation fanction). If so one is naturally lead to ask whether it also
performed to a set of gauge invariant coordinates. One thegives a good account of the instanton physics. Instantons are
tries to find a controlled expansion akin to strong couplingthe only concrete description of the non-perturbative nature
perturbation theory, which hopefully solves the infrared partof the QCD vacuum in the path integral formalism. In the
of the theory in the leading order. Another §215] attempts  ultraviolet region although the effect of the instantons is non-
to find the Yang-Mills vacuum wave functional with the help perturbatively small they are easily identifiable. They should
of a variational approximation. In particular [2] a gauge therefore serve as a useful probe for any non-perturbative
invariant generalization of a Gaussian variational approximaapproach especially if it purports to capture both the infrared
tion was developed. The hope of this approach is that thend the ultraviolet physics. The aim of the present paper is
vacuum of QCD may be not very different from the vacuumprecisely to study the structure and the properties of the in-
of a free theory in many important respects. This hope reststantons in the variational approach[&i.
on the observation that many genuine nonperturbative effects Instantons are localized, finite-action classical solutions of
in QCD appear already on the momentum scales much largehe field equations of QCD in Euclidean space-tipd)].
than A ocp where the coupling constant is still sméfl]. It Such solutions have been obtained in exact analytical form,
may be possible then to account for these effects with thand extensively studied. An excellent review of instantons in
Gaussian wave functional, which is similar to the groundgauge theories can be found[ib3] and[14].
state of the free theory modifying only the width of the Physically instantons represent tunneling processes be-
Gaussian for the low momentum modes. This modification igween topologically distinctive vacuum sectors with the ex-
essentially nonperturbative and should lead to the generatigponent of the instanton action being equal to the transition
of the same condensates that account for a variety of QCIprobability between two of these vacuum states. As any tun-
phenomenology via the QCD sum rules. neling probability at weak coupling it is nonperturbatively
The variational calculations dR] are of exploratory na- small[of order exp(-constirg)] and the instantons therefore
ture and many questions regarding their validity remain unare invisible in the weak coupling perturbation theory. When
settled. Some of those are discussed in the original d@per first discovered there was hope that instantons would provide
as well as in[10]. Nevertheless this variational approach the solution to the strong coupling probleft5,16. Al-
captures many of the essential features of gluodynamicshough it has been subsequently realized that instantons are
mass generation, formation of the gluon condeng@ieand irrelevant for understanding confinement, they have provided
a beautiful mechanism of spontaneous chiral symmetry
breaking[17]. The instanton liquid mode{initially intro-
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Lagrangian one. In fact the gauge projected formalisi2pf
is very well suited for this purpose. The projection of the ‘I’[A?]:f DU(x)Wy[A], (1)
initial Gaussian onto the gauge invariant subspace is
achieved by the integration over the gauge group. As will bewith
explained in detail later, th& U(N) matrix U(x;) (the de-
pendence here is on the spatial coordinates)anlyhis type
of calculation turns out to play the role of&model field.
This field is governed by an “action,” whose structure de-
pends on the parameters of the variational state. As we shall > G_—_lab(X_y) A_Ub(y)]_ )
see, the Yang-Mills instantons correspond to the topologi- N )
cally nontrivial saddle points of this action. In this paper we U i _
will study the properties of these saddle point solutions. ~ [1€réA™ is the gauge transform of the vector potential with
Our main result is the following. We find that the appear-the gauge transformatidd:
ance of the dynamical mass parameter in the variational state
stabilizes the size of the instantons. Recall, that the main
unsolved problem of the dilute instanton gas approximation .
is that(when account is taken of the one loop running of theWlth
coupling constantthe path integral is dominated by the large 1
size instantons. The measure for the integration over the S(x)= ~tr 22U T(x) PPU ()],
sizes diverges as a power in the infrared and this divergence 2
renders the dilute gas calculation meaningless. It is usually | (4)
assumed that this infrared divergence is eliminated by some argy— 4 art
nonperturbative effects. This is precisely what we find in the NOO= gtr[T UTC0aU(X)].
variational approach. The dynamical madspresent in the
best variational state suppresses instantons of sjzes The SUN) generators are taken to satisfy the following al-
>1/M. The size of the stable instanton that we find turns ougebra and normalization:
to be consistent with the average size of the instanton in the
instanton liquid model.
This paper is structured as follows. In Sec. Il we briefly
recall the formalism and the results [&]. We explain how
to identify the tunneling transition in this framework and The state thus constructed obeys Gauss’ law since it is ex-
what type of classical configuration should be identified withplicitly invariant under the gauge transformatiof;(x)
the instanton. It is also noted that the generation of the dy—_>A}’(x) with arbitrary SU(N) matrix V(x). The width of
namical mass itself found if2] can be directly interpreted in  the GaussiaiG(x) is a parameter with respect to which the
terms of the condensation of these instantons. expectation value of the Hamiltonian is varied. A simple
In Sec. Ill we study numerically the structure and thegiation and (globa) color invariant form is Gi}lab

action of the small size instantons. For these instantons the 5ij5abG—1. The functional form ofG ! is chosen to agree

presence of the dynamical mass is irrelevant and this calcygiin the perturbation theory in the limit of high momentum

lation is performed at zero mass. The profile function of they, one hand, and to allow for the nonperturbative mass scale
instanton and the value of the transition probability are apyn the other

proximately determined by a variational method. We find

that the tunneling probability indeed scales as{exq}

with the value ofc approximately two times larger than in G Yk)=
the standard Euclidean calculation. We explain why this dis-

crepancy is not unexpected in a variational calculation. , . ,
In Sec. IV corrections to the solution and the action due to  1e€chnically, the calculation of the expectation values of

a non-zero mass gap are calculated. It is found that the irgluonic operators in the state E(l) is mapped into the
stanton is stabilized to a size of the order of the inverse masg?lculation in a nonlocal nonlinear-model in three Euclid-
scale. This size is directly comparable with that found in the€@n dimensions. Consider the vacuum average of an arbitrary

‘I’U[A]:exp(— %f d3xd®y AP3(x)

AP3(x) = SP(x) AP(x) + N 3(x), ©)

1
[ 7°]=2if %, St r7%)= 5%, (5)

Jk2 if  kE>M2

M if kE<M?2 ©

instanton liquid model. gauge invariant operat@[A]:

Finally, Sec. V is devoted to discussion of our results and
their relation with the instanton liquid model. (0y= %f DAV*[A]O[A]W[A]

1

Il. THE HAMILTONIAN PORTRAIT OF AN INSTANTON = zf DUlDUZDA\[fﬁl[A]O[A]\IIUZ[A]

We start with a brief description of the gauge invariant 1
Gaussian approximation d]. The Ansatzfor the QCD _ _J *
wave functional considered {2] is Z DUDAWT[AJOLAJW AL )

034015-2



INSTANTONS AND THE QCD VACUUM WAVE FUNCTIONAL PHYSICAL REVIEW D59 034015

In the last line the matrixy=UIU, is the relative gauge found in[2] that the energy is minimized just above the
transformation between the two Gaussian wave functiongphase transitiotm =M+ so that thes-model is in the dis-
The normalization factoZ (the norm of the stajes ordered phase.

Coming back to the subject of the present paper, the first
thing is to understand how do we expect to see instantons in
this formalism. The answer to this is the following. As ex-
o ) i plained above the effective-model arises as an integration
The Gaussian integration over the gauge potedjalan be  oyer the relative gauge transformations between the two
performed explicitly. As a result the last step of the calcula-ggssian states in the linear superposition Ef. The

tion is a path integral over th8U(N) matrix U with the  Bojtzmann factor expITU]) for a given matrixU is there-

zzf DUDAW*[A]W[A]. (8)

o-model partition function, fore just the overlap of the initial and the gauge rotated state,
or in other words the transition amplitude between the two
z:J’ DU exp{—T[U1}, (9) states’ The instanton transition is precisely the transition of

this type, where the two states are related by a large gauge
transformation. The matrix of this large gauge transforma-
tion must carry a nonzero topological chaidg(SU(N)).
1 1 The integration measure ovér indeed includes integra-
I[U]= ZMAN+ STT In M. (100 tion over topologically nontrivial configurations. The finite-
ness of the action Eqll) requires that the matrixX) ap-
Here summation over all indichtationaL color and coor- proaCheS constant value at |nf|n|ty This identifies all pOintS

dinate is implied. The first term is written explicitly as at spatial infinity hence, the physical space of the model is
S%. Field configurations are maps fro8t into the manifold

1 of SU(N) and are classified by their winding number, or
3y 43 '
Ef d*xdPyAFO) A%, YINT(Y), (1D topological charge, which is an element of the homotopy
grouplI;(SU(N))=Z. The o-model action in a given topo-
with logical sector is minimized on some configuration which is a

ac c b by 11 solution of classicalb-model equations of motion. In par-
A%(x,y) =[G (x—y) + ST(x)G(x—y)S™(y)] ticular, the solution with a unit topological charge is ex-

where the(nonloca) action is

(12 pected to have a “hedgehog” structure much like the topo-
In Eq. (10) we have defined, logical soliton in the Skyrme modézo]_. The integral ovet)
in the steepest descent approximation is saturated by these
M ﬁb(x1y):[§a0(><>scb(y)+ 6ab]G*1(x—y)5ij . classical solutions.

Theseo-model configurations that belong to a nontrivial
The second term in Eq10) is of O(g?) relative to the first topological sector with a unit winding number represent
one and with the accuracy fi2] can be ignored. We will not QCD transitions between the topologically distinct sectors.
consider it in the following. The action of the-model Eq.  The topologically nontrivial classical soliton solutions of the
(11) depends on the variational paramedMrthrough Eq. o-model are therefore the three dimensional images of the
(12). The minimization of the expectation value of the en-QCD instantons.
ergy in[2] leads to a nonzero value of the mass paranidter The QCD instantons are defined in space time and are
in the best variational state. The dynamical mass parametetierefore four dimensional point-like objects. Themodel

is determined by the relation solutions are intrinsically three dimensional. Nevertheless,
there is a natural simple relation between the two. For a

ag(Mg)= o (13) given Yang-Mills instanton solutioA™{(x,) one can find a

SO AN three dimensionab U(N) matrix U (x;) by the procedure dis-

_ _ cussed by Atiyah and Mantdr21],
where the Yang-Mills coupling constant; evolves accord-

ing to one loopB-function! The significance of this value of _

M from the point of view of the effectiver model is that at Uam(X)=P exp( iJ’ dx“A':St), (149
this point it undergoes the phase transition. Kb M the c

model is in the weakly coupled ordered phase. In this phase

the matrixU is close to the unit matrix with small fluctua- where the contour of integratio€ is a straight linex;
tions around it. FoM>M the model is in the disordered =const, —o<xy<e. The matrixU,y gives the relative
phase. The matrix) fluctuates strongly so that it covers all gauge transformation between the initial trivial vacuum at
available phase space and its average value vanishes. It wag— —o and the topologically nontrivial vacuum aty

IMore accurately, thgg-function in the variational calculation of ~ 2Since the space of the matricgsis continuous, strictly speaking
[2] is slightly different from the complete one loop expression. Seethe Boltzmann factor is the differential rather than the total ampli-
discussion in Sec. IV. tude.
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— o0, or in other words between the initial and final states Ill. SMALL SIZE INSTANTONS
of the instanton transition. Clearly, its meaning is precisely

the same as of the classical soliton solution of the effective:he instanton solutions of a size<1/M the presence of a
o-model Eq.(11). Also, the QCD instanton action and the finite dynamical mass is irrelevant. We will therefore take

o-model soliton action have the same physical meaningy; — o for the calculations in this section. The existence of a

They both give the transition probability between differentnite mass scale is very important for the instantons of large

topological sectors in QCD. We will therefore refer to the gjze and will be taken into account in the next section. It

o-model solitons as instantons in the following. somewhat increases the complexity of the calculation but all
One has to realize that although the QCD and thehe necessary methods can be developed foMhkeD case.

o-model instantons have the same physical meaning, itis not For M=0 the inverse propagatd6) which defines the

assured that the numerical value for their respective actiongariational state Egs(1),(2) is (in momentum spage

is the same. They both approximate the value of the transic ~!(k)=|k|. We find it more convenient to work in coor-

tion probability in QCD, but the approximations involved are dinate space throughout the rest of this paper. Fourier trans-

quite different. The QCD instanton action is the result of theforming G~ to the coordinate space according to the defi-

standard WKB approximation which is valid at weak cou- nition,

pling and therefore for small instantons, but breaks down for

instantons of large size. The-model instanton action on the G (k)= (277)73/2f d3x G L(x) ek, (15)

other hand is the value of this transition probability in a

particular Gaussian variational approximation. It is naturalto

expect that variational calculation underestimates the valu®/® find

In this section we wish to study small size instantons. For

of the transition probability at very weak coupling. The tran- _
i, LR y 1(0(x-y|-A"Y
sition probability is given by the overlap of the “ground G Yx—y)=——
state” wave functions in two topological sectors. For sim- m? [x—y|*
plicity let us consider a quantum mechanical system with
two vacua ak.. . If the area below the barrier separating the A 3cilvul A -1
vacua is large, the standard WKB instanton calculation is ASS(Ix=yl=AT |. (16

applicable. The wave function of each of the vacua below

the barrier has essentially an exponential fall off Here we had to introduce the ultraviolet cutdffto define
expli[*VE—V(x—x.)}. The instanton calculation is the cal- the coordinate space expression properly. The coefficient of
culation of the overlap of these functions. Our variationalthe second term is determined by requiring that at finite cut-
calculation corresponds to approximating the respectiv®ff A,

“ground states” atx.. by Gaussian wave functions. The tails

of the Gaussians fall off much faster away from the mini- f dx3GL(x)« G~ L(k=0)=0. (17)
mum than the actual wave function and the overlap is there-

fore is expected to be smaller. When the coupling constant i .
not too small(or when the area below the barrier is not too R_Iote thatA is infroduced as a regulator only and no subtrac-

large) the overlap between the two states is not determine&On in the expression for the propagator the. agtl_om was

anv more by the behavior of the “tails” of the wave func- performed. The cutofi\ should be taken to infinity at the

i y | th'y tuati tthe G ; end of the calculation and the results of the calculation
|on§. n this situation one ca}n expect the auss'lan apprqxghould be finite in this limit. Below we show how the diver-
mation to do much better, since the overlap region contribs

AR ) ent terms cancel exactly, so that in the numerical calcula-
utes significantly to the energy and therefore plays mportar‘uﬁonS we only take into account finite terms in the limit
role in the minimization procedure. oo

The rest of this paper is devoted to a quantitative study of \ve are searching for an instanton solution of topological

instantons in the variational state Ed). Before proceeding charge one to the actiofil). Such a solution should have
to this part, however, we would like to note that |mp||C|tIy the maxima”y Symmetric “hedgehog” form,

the instantons played a very important role already in the A

energy minimization of2]. As we mentioned above the en- U(x)=e ™ =cosf(r)+irx3sin f(r), (19
ergy is minimized for the value of the mass paraméfeat

which theo model is in the disordered phase. The transitionwherer® are the generators &U(2) andf(r) is an unspeci-
between ordered and disordered phases in a statistical méed function ofr =|x|, which we will refer to as the profile
chanical system can usually be described as a condensatifumction. The profile function is constrained to sati$fy0)

of topological defects. This is a standard description of the= 7 andf (%) =0, which ensures that the field configuration
phase transition in the Ising and XY mod¢R2]. In the o Eq. (18) has unit topological charge. We need only consider
model Eq.(11) the relevant topological defects are nonethe groupSU(2) since the solutions foBU(N>2) can be
other than the instantons. In this sense the appearance of tfmind from the embedding &U(2) in SU(N) [23]. Substi-
dynamical mass in the best variational state itself is drivertuting this form for the field into the components of the ac-
by the condensation of instantons. tion, we find
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a I ap|+
N(x)= atr[r U (x)o;U(x)]

2.~ 1 ..
=— X'X3f'(r)— —(8'*—x'x®)sin2f (r
KX = )sin2f(r)

2 ob

- §€abi XTSIan(r), (19)

S(x)= 1tr[Tau+(x)Tt’U(x)]
2

= 80— €, X°SIN2f (1) + 2(X2X°— 520 sirdf (1),
(20)

PHYSICAL REVIEW D59 034015

1 3 -1
Fsurf:_@ d*udQ,(2[v| " +d))

XINCON Y o)== » (24)
1 _
divze%zf dPudQ,(2lo] 1+ ay)
XINPOONT (W o= a1, (25

whered(}, denotes angular integration inspace, and75 is
the v-space Laplacian. The divergent pai§, cancels ex-
actly the “subtraction” terml’, whenA —co. Moreover, the
surface termd s vanish if the profilef (r) approaches zero
asr 2 or faster at infinity, and is infinite otherwise. In what

where e, is the antisymmetric tensor. For the hedgehogfollows we assume thdt(r) decreases fast enough. Ignoring

configuration, the functiors*(x) differs significantly from

all terms in the action which vanish in the limt— o we

52 only over a small region, the size of which depends orare left with the finite, cutoff independent action,
how fast the transition is from the asymptotic behavior at

large distance to that at small distance. If the profile function
has a sharp transition between these two limits one can rea-

sonably approximat&?® by 52°. Once the form of the pro-

file function has been found this can be checked for consis-

tency. It is possible to expand arounf®’=s*" and
systematically calculate corrections $°— 62°. At the end

1 2+02 ) 32
Ix=yl?\ax?  ayf 9%y,

1
—— = | 43y 3
r 8772f d3xddy

XINBONA(Y)]. (26

For the hedgehog configuratighg),

of this section we calculate the leading correction and find

that it is indeed small for the instanton profile function.
This approximation allows us to write

A%(x,y) =[ 5*°G(x—y) + S*(x)G(x—y)S(y)] *

1
= EG-l(x—y) 52°, (22)

With the definition Eq(16), we write the action Eq(11)
as
r=r,-r,,

O(|x—y|—A"1
(Ix=yl : )x?(y%
Ix—yl

(22

1
— 3y A3
r,=- 4W2f d>xd®yA?(x)

A3
I,=— —f A3 AdPYA{(x) (X —y[ = AT HAR(Y).
472

BothT'; andT", are divergent. The divergences between the
two terms however cancel leaving the action finite. Changing

variables,u;=x;+vy;, vi=X;—Y;, and using the fact that
2|v|~4=V23v|~2, we find after integrating by parts twice,

1
6472

F]_:

f dBudiolv| 2V ONY)]

+ 1-‘surf"' 1—‘div ' (23)

4 cogof'(r)f'(s)

1
N ONE(Y) ==
g

2
+ g(1—co§0)f'(r)sin 2f(s)
2 )
+ F(l—cosza)f’(s)sm 2f(r)
1 ) .
+ =5 (1+cog)sin 2f(r)sin 2f(s)

+ %cose sirtf(r)sirtf(s)|, (27)

where cog=x-y, r=|x ands=|y|. From Eq.(27) we see
that A} (x)A3(y) is a function of only three variables,
N2(X)N2(y) = (1/g%) =2_,cod'0H,(r,9), whereH,, are imme-
diately found from Eq(27). They are given explicitly in the
Appendix for easy reference. We also give in the Appendix

the coefficient function$(r,s) which are defined by

? 9 92

+ -2
axtayF 9%y

[APOON(Y)]

3

1 ~
= ?nzo cos'OH(r,s).

(28)

After carrying out the angular integrations we get an ac-
tion as a functional of the profile function,
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We have calculated the first correctiad’ to the action in
the expansion o82° arounds,, for the two profiles. We find
AT'=0.21(87%/g?) for f, and AT'=0.34(8x?/g?) for f,.
The correction to the action for both profiles is of order of
10%. Note, however, that thénsatz f is more stable, and
indeed after the correction is taken into account has lower
action thanf,.

The correctedto this ordey values for the action are

2 : -
F=—— [ drds(rs)?2, I(r,s)Hy(r.s), (29
g n=0

where

L (r.9) fl d(cos 6)cos'e
r,s)=
" ~1(r?+s%—2rs cos )

(30

are given in the Appendix.

2
We were unable to minimize the action with respect to the = 1_96877 (39)
profile function by analytical methods. We have therefore 9° '
employed a variational method to determine the best profile
function approximately. The two important variational pa-for f,, and
rameters are the ones that govern the asymptotic behavior of
f(r), 8’772
fNrfa, f—o0, (31) FZZO??' (39)
f~a—rf r—0.

The dependence on the parameterhich determines the

asymptotics at large distance turns out to be simple. Usin

two trial functions,

a

fa(r)=m , (32

pa+xa

fo(r)=2 arctarip/r)*, (33

and performing the double numerical integration we hav
found that the action monotonically increases with This
means that the optimal value for this parameterais 2,

since this is the lowest possible value at which the surfac

terms are non-infinite.
Having fixed «, we next studied the dependence on th

parameter3 which determines the behavior close to the in-
stanton center. The trial functions we used for this purpos

are

o8 28
firn=m i (34)
fo(r)y=2 t l{ 2 ) (35
r)= r _— .
A A i)

We find numerically the optimal value for the paramegeo
be B=1.1 for f; and 8=1.0 for f,.
The corresponding values for the action are

8?2
I'=1.75—, (36
g
for f,, and
82
I'=1.73—, (37
g
for f,.

S

for f,.

Note that although ouAnsdze for the profile function

ﬁepend on the instanton sipe the value of the action does
ot depend on it. This is the direct consequence of the dila-

tational invariance of the effective-model action Eq(21).

The introduction of the cutoff\ strictly speaking breaks the

dilatational invariance. This breaking however is very small

and the invariance is restored in the limit— .

We now want to comment on the numerical value of the
transition probability obtained in our variational approach.
QOur result Eq.(38) should be compared with the value
82/ g? for the classical action of a Yang-Mills instanton. So
the action of an instanton in the variational approach is about
wo times larger than the standard path integral result and the
ransition probability therefore appears to be much smaller.

eAs explained in Sec. Il it is in fact natural to expect this sort

of behavior in the Gaussian approximation since the tails of

%Ee Gaussians fall off much faster away from the minimum

an the actual wave function and the overlap is therefore
smaller. This is the basic reason for the discrepancy in the
numerical values of the action between the variational in-
stanton of this section and the weak coupl{kigKB) instan-
ton of the standard path integral approach.

It is significant that both the asymptotic behavior and the
value of the action for both our variationAinsaze for the
profile function is very similar to the corresponding results
for the Atiyah-MantonAnsatz[21]. As discussed in Sec. I,
the natural identification between the QCD instanton and the
instanton in the effectiver-model is furnished by the ho-
lonomy along all time lines,

Ux)=T ex;{— f f dx*AR(x) |. (40)

For the QCD instanton E¢40) results in the profile func-
tion,

2

p —-1/2
l—<l+ r—2> ]

fam(r)=m (41)
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4.0 the separation between instantons is not too large and the
interaction between them is not negligible. These are the
configurations of the instanton liquid type. As discussed in
the previous section, these configurations are in fact respon-
sible for the generation of the dynamical scale in the best
variational state through the condensation of instantons. The
direct discussion of these multi-instanton configurations is
however beyond the scope of the present paper. The large
size instantons, or rather the instantons of the size compa-
rable to the dynamical scaleM/ are the subject of the next
section.

IV. MASS CORRECTION AND INSTANTONS
OF STABLE SIZE

10.0

We now want to explore the effect of the dynamical mass
on the properties of the instantons. Our expectation is that
FIG. 1. The hedgehog profile functiorfs, f, and fay for  the presence of the mass scale stabilizes the size of the in-
p=1 stantons and suppresses the instantons of the sizes larger than
1M,
The asymptotics of this configuration at large distances is The simple qualitative argument to this effect is the fol-
f(r)«1/r2, and near the instanton cofiér)—m=r. This lowing. Consider the effective-model action for very large
gives a=2, B=1 for the Atiyah-Manton configuration, size instantons. In such a configuration only field modes with
identical with f, and practically indistinguishable frorfy, . small momentunk<<M are present. For these momenta the
In fact the profilef 5y, is very similar tof; not only asymp- action simplifies, and as discussed #] the action Eq(11)
totically but also in the whole range<Or <oc. In Fig. 1 we  becomes the standard loaaimodel whereM plays the role
plot the three profile functions for the same value of theof the ultraviolet cutoff
instanton size. It is clear thdt, and f,,, are very similar
while f, differs from them somewhat inside the instanton _ E
core. We also note thdt, has a slower approach to its value 2 g%(M)
atr =0, which explains why the value of the action for this
profile is less stable against tiS8°— 52° corrections.

tr| d3 o,UT(x)a,U(x). (42

If the large size instantons are stable at all they should also

We have calculated the-model action for the Atiyah- be present gs_stable solutions in this local a_ction Eg).
Manton profile numerically and foundncluding the first However this 1S not the case as can be easily seen t_>y the
correction in S*— 62 expansion I'=1.97(82/g?). This standard Derrick type scaling argument. Take an arbitrary
again is very close to the value we obtain with our Varia_conﬁguraﬂonu(x) in the instanton sector and scale all the

tional AnsatzEq. (38). This means that even though the coOrdinates by a common factar Then obviously
value of the transition probability is underestimated in the TTUAX)]=A"TTu(x)]. (43)
Gaussian approximation, the actual field configurations into
which the tunneling is most probable are identified The dependence of the action bris monotonic and is mini-
correctly—they are precisely the same as in the WKB calcumized at\ —c. This means that the instantons in the local
lation. o-model shrink to the ultraviolet cutoff M. For instantons

It should be noted that the exact value of the transitiorsmaller than the inverse cutoff we cannot use the local action
probability due to small size instantofigery weak coupling  anymore. However the behavior of these small size instan-
is not so important, since they do not significantly affect thetons is already familiar. We know that when the running of
structure of the vacuum in any case. It would therefore behe coupling is taken into account, these instantons are
incorrect to declare the Gaussian approximation as a failurpushed to the large size. This is the infrared problem of large
from the instanton point of view. One expects the Gaussiainstantons we alluded to earlier. In our variational state the
approximation to do much better at intermediate couplingscoupling constant stops running at the sddleThe picture is
since the overlap region contributes significantly to the entherefore very simple. The small size instantons are pushed
ergy and therefore plays an important role in the minimiza+o larger size by the effect of the coupling constant, while the
tion procedure. In the Yang-Mills framework this means thatlarge size instantons are pushed to smaller size by the effect
there are two types of instantons configurations that we exef the localo-model scaling. It is therefore clear that the size
pect to contribute significantly and therefore to be better dewill be stabilized somewhere in the vicinity pf~1/M.
scribed by the Gaussian approximation. First, these are large To confirm this picture we now turn to the numerical
instantons for which the coupling constant is not small ancevaluation of the instanton action. We write the inverse
the action not large. Those are presicely the configurationgropagator(6) as
that cause problems in dilute instanton gas approximation.
The second class is the multi-instanton configurations, where G 1 k)=Gg (k) +AG k), (44)
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where 3.0 .

Gy l(k)=|K|

(45)
AGH(k)=6(M—[K|)(M = [K]). ae
Since the action Eq1) is linear inG™%, the G, * term
will lead to the classical actiohy calculated in the previous
section. As discussed aboVg; is scale invariant and there-
fore does not depend on the size of the instanton. In coordi-
nate space, the second term in E4f) reads 201

I§(3)

AG Y(|x—y])=— cosM|x—y|—1

e x—yl*

0.0 0.5 1.0 1.5 2.0

Mix—y| _
————sinM|x—y]||. (46) pM

2
FIG. 2. Dependence of the classical action on the size of the

The mass correction term in the propagator gives rise tGstanton for the profiles;, f, andfy,. The action is given in
the correction in the action units of 87%/g>.

Al = lf dBXAPYNEX)AG L(x—y)A(y). (47) the results of[7]. We will limit ourselves to theSU(2)
4 ' ' theory in the following. Theg-function in the nonlinear

: -model was found if7] as
We now compute the dependencedf on the size of the 7 7]

instanton for the three profile functions considered above, 3
f,, fo andf,y . As before, the angular integrations can be B(g)=— 58. (50)
performed exactly. We obtain (4)

2 S This is slightly different from the complete one loop Yang-
AT =— —zf drds(rs)2>, T,(r,s)Hq(r,s), (48  Mills B-function. The origin of this discrepancy was studied

9 n=0 in [7,8] and is well understood now. It is due to the fact that
the present variational calculation omits the screening con-
tributions of the transverse gluons. As discussefiliB] the
variational state can be modified to yield an exact
B-function. This point is not essential for our analysis and

whereH, are as before ant}, defined by

T fl d(coséf)cos'd
=

~1(r?+s2—2rs cos6)? we will not dwell on it any further except noting that the use
of either Eq.(50) or the exact one loop expression in the
x| cosM|x—y|— 1+ MIx—yl sin M|x—y| following leads to the same results.
2 ' Equation(50) is valid at distances smaller thanvl/ The
coupling constant at these distances therefore scales accord-
(49 in
g to
are given in the Appendix. 5
We calculated numerically the dependence of the classical 8w —3 n( Lt ) (51)
actior’ on the size of the instanton for the three profil@4), g2 (u>M) Aqcp/’

(35 and(41). We find that the action increases monotoni-
cally with the instanton size. Thq dependence of the classicalt distances larger thal the running of the coupling con-
action on the size for the thréenzdseis shown in Fig. 2. As  stant stops and it tends to a constant value,
discussed in the beginning of this section the classical action
favors small size instantons in all thré@saze 82

We now must include the effect of the running coupling > =3oin
constant. This is equivalent to calculating the one loop cor- 9°(n<M)

rection around the instanton background. Rather than pewth numerical constant of order one. The precise inter-
forming this technically nontrivial calculation we will use a,a numerical constant ot order one. 1he precise inte
polation between the two regimes is unimportant and we will

use the following simple interpolating expression:

aM

(52

Aqep

3In this section we limit ourselves to the approximatiGA® 8772 M?2 / 2
= 5%, The corrections to this approximation as we saw in the pre- 5 =4In|— \—2 +all. (53
vious section are fairly small and we will not explore them here. g°(u) AQCD M
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60.0 70.0
0 — 0
13 - 1/3

50.0 60.0
= | B L
= 40.0 = 50.0

30.0 40.0 -

20.0 I I I 30.0 I I I

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
pM pM

FIG. 3. The classical action plus one-loop logarithmic correc-  FIG. 4. The classical action plus one-loop logarithmic correction
tions for the profilef; as a function of the instanton size. The for the profilef, as a function of the instanton size. The different
different curves correspond to different values of the paranwter curves correspond to different values of the parameter
=0, ...,2, and théullets mark the minimum of each curve. a=0,...,2, and théullets mark the minimum of each curve.

Since the exact value of the constaris not known we will  lizes the size of the instantons at the vajuse(1—1.5)/M.
present our results for several values of order one. Wheilhe large instanton problem therefore finds a nonperturba-
evaluating the action of the instanton of the sizeve obvi-  tive solution in the framework of the Gaussian variational

ously must takew=1/p. approximation.
The running of the coupling constant is not the only loga-
rithmic effect at one loop order. In addition one has to take V. DISCUSSION
into account the path integral measure over the three trans- _ ) ) _
lational zero modes and the size of the instanton, In this paper we have discussed how the instanton transi-
tions appear in the framework of the gauge invariant Gauss-
dx;dx,dxgdpp 4, (54) ian approximation off2]. The relative gauge rotation be-
tween two gauge field configurations between which the
which contributes an extra term to the action, tunneling transition is most probable is determined from the
saddle point equation of the effective nonlineamodel. We
I heasurs= 4 log p. (55  found that the relative gauge transformations for most prob-

. S o able tunneling transitions are very similar to the ones found
Collecting all the one-loop logarithmic contributions to- in the standard path integral instanton approach.
gether we calculate the corrected action as a function of the

size of the instanton as 60.0
r(gz( 1/p))+ T measure (56)
The result for the three different profiles we have consid- %90 |
ered are shown in Figs. 3, 4 and 5, for different values of the
parametei.

In all cases the action has a minimum at a size of the
order of 1M. The values for the size of the instanton, its
action and the curvature at the minimum are given in Table |
for different values ofa. The results for the Atiyah-Manton
Ansatzand our functionf, are practically indistinguishable. 800
Varying the parametea between 1/2 and 2 the size of the
stable instanton varies between M5and 1M. The Ansatz
f, leads to the instanton size smaller by a factor of-125 20.0 ‘ ‘
We consider however the former estimate to be better, since 0.0 0.5 1.0 5 20
the Ansatz § gives a considerably larger value of the action M

(see Fig. 2 and is therefore not a very good choice for the  F|G. 5. The classical action plus one-loop logarithmic correction

40.0 -

T'p)

instanton “valley” configuration. for the profilef y as a function of the instanton size. The different
The numerical analysis of this section confirms thereforecurves correspond to different values of the parameter
our expectations. The presence of the dynamical mass staki=0, ... ,2, and thdullets mark the minimum of each curve.
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TABLE I. Stable sizepy, for the soliton in units of M =0.75 GeV !, the value of the minimum action
I'(pmin) @and the curvature at the minimuii’(p,,,), for the three profiles, for different values of the

parametei.
fa fa fam
a Pmin I'(pmin) " (pmin) Pmin I (pmin) " (pmin) Pmin I (pmin) " (pmin)
1/3 1.5 32 6.9 0.9 36 23 1.6 32 6.3
1/2 1.4 33 7.9 0.8 37 26 1.5 33 7.0
1 1.1 36 9.7 0.7 39 33 1.2 36 8.1
2 0.9 39 12.0 0.6 41 41 1.0 39 9.7

The value of the logarithm of the tunneling probability for tion also is quite long range, since the instanton profile func-
small size instantons however turns out to be larger by abouton away from the instanton center decreases only as the
a factor of two in the variational vacuum. This is understand-second power of the distance. It is therefore entirely possible
able since the tail of a Gaussian wave function decreasehat the important configurations for the energy minimization
faster and therefore the overlap integral of two such wavere of the type of the instanton liguid—namely those having
functions is smaller than of the semi-classical wave funcdarge number of instantons which although fairly dilute nev-
tions. ertheless feel each others presence strongly due to the long

Our main result concerns the effect of the dynamical massange interaction. It is in fact interesting to note that the most
scale that characterizes the variational vacuum. We find thdikely instanton size we found here is consistent with the
the presence of this scale stabilizes the size of the instantoaverage size of the instantons in the instanton liquid model
The instantons of the size larger than the inverse of this scalef [18,19. For the case 08U(2), theaverage instanton size,
are suppressed. When account is taken of the proper running units of the gluon condensate obtained in the instanton
of the strong coupling constant, the integral over the instankiquid model, turns out to bg19]
ton sizes has a saddle point. This saddle point determines the
most likely size of the instanton gs=1—1.5/M. The large p((F3,F2 Yalm)1*~0.4.
size instanton infrared problem which plagues the standard
dilute instanton gas approximation is thereby removed in thén our case, taking the value of the gluon condensate ob-
variational vacuum due to the presence of the dynamicalained in the variational approa¢], we find
nonperturbative scale.

An interesting point is that the instanton action for the p ((F&,F% )alm)¥~0.2-03.
most likely size instanton is pretty large, the numerical value
being around 3%see Table)l This means that the configu-  The relation of the variational approach with the instanton
rations with small number of instantons and anti-instantongiquid model is a very interesting open question and warrants
are not important energetically. Nevertheless, the generatiofurther study.
of the dynamical mass itself within the framework of our

v_ariatior_1al_ appro>.<imation is due_: to the insta_nton Condensa- ACKNOWLEDGMENTS
tion. This is so since the effective-model is in the disor-
dered phase at the value of the best variational parariveter I.I.LK. is grateful to the organizers of the NORDITA work-

This suggests that the important type of configurations arshop “Instantons and monopoles in the QCD vacuum”
the ones that contain many instantons and anti-instantongiorkshop for hospitality and to D.l. Diakonov, V.l. Petrov,
The small fugacity factor in these configurations can be overYu.A. Simonov and K. Zarembo for interesting discussions.
come by a large entropy and also by the interaction betweeW.E.B. wishes to thank PPARC for financial support. The
instantons and anti-instantons. This interaction is known tavork of J.P.G. was supported by EC Grant ARG/B7-3011/
be attractive for some relative color orientation. The interac94/27. A.K. is supported by PPARC.

APPENDIX

The finite action for the case of the mass sddle 0 is given in Eq.(26). To obtain the explicit action for the profile of the
hedgehog field18) it is necessary to calculate the Laplacian averx—y of the product of the right currenis’ at the points
x andy, which has the form

2

1
NOONF(Y) == 2, codOH,(r,s). (A1)
g n=0

The expression foH,, are obtained from Eq27),
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Ho= %sin 2f(r)sin 2f(s)+ %sin 2f(r)f'(s)+ %sin 2f(s)f'(r), (A2)
8 .

H,= Esmzf(r)smzf(s), (A3)

H,= é(sin 2f(r)—2rf’(r))(sin 2f(s)—2sf’(s)). (A4)

After calculating the Laplacian over we obtain

2 3

2 42 1 -
[N2OONE(Y) = ?go cod'6H (1 ,S). (A5)

+
gx> gyt 9Xay;

From Eq.(27) the expressions fdf ,(r,s) can be found:

2r3s3H(r,s)=8rs sirff(r) sir’f(s) +r2sin 2f(r)sin 2f(s)—16r2scosf(r)sin f(r)sir?f(s)f'(r)—2r3sin 2f(s)f'(r)
—2r2s?sin 2f(r) sin 2f(s)f’(r)?2—2r?ssin 2f(r)f'(s)+4r3sf'(r)f’(s)—4r3s?sin 2f(s)f'(r)f'(s)?
+2r2s? sin 2f(s)f"(r)+r2s?cos 2(r) sin 2f(s)f"(r)+2r3s?cos Z(s)f'(r)f"(s)+r3s?sin 2f(s)f3(r)

+(r<s), (AB)

2r3s®H,(r,s) = — 8r2 sir?f(r)sirf(s) + 3rs sin 2f(r)sin 2f(s)—4r2ssin 2f(s)f’(r)—2r2scos 2(r)sin 2f(s)f’(r)
+8r2s? cosf(r)?sirff(s)f’(r)2+8r2s?cos 2 (r)f'(r)f’(s)—4r?s?>cos 2(r)cos X(s)f'(r)f’(s)
—8r2s? sir’f(r)sirtf(s)f’(s)?+8r2s? cos f(r)sin f(r) sirff(s)f"(r)+6r3ssin 2f(s)f"(r)
—8r3s2f'(s)f"(r)—4r3s? cos 2 (s)f'(s)f"(r)+(r<s), (A7)

2r3s®H,(r,s) = — 32rs sirff (r)sirtf(s) — 3r2sin 2f(r)sin 2 f(s)+32r2scosf(r)sin f(r)sir?f(s)f’(r)
+6r3sin 2f(s)f'(r)—2r?s?sin 2f(r)sin2f(s)f'(r)?+6r?ssin 2f(r)f’'(s)— 12r3sf'(r)f'(s)
—32r?s? cosf(r)cosf(s)sin f(r)sin f(s)f'(r)f’(s)+4r?s3sin 2f(r)f'(r)2f'(s)—2r2s?sin 2f(s)f"(r)
+r2s? cos 2 (r)sin 2f(s)f"(r)+4r?s3t’(s)f"(r)—2r3s? cos 2 (s)f’(r)f"(s)—r3s?sin 2f(s)f3(r)

+2r3% " (s)f(r)+ (r—s), (A8)

2r3s®H,(r,s)= —9rs sin 2f(r)sin 2f(s)+12r2ssin 2f(s)f'(r)+6r2scos 2(r) sin 2f(s)f'(r)—16r2s%f’(r)f’(s)
—8r2s?cos (r)f'(r)f'(s)—4r2s?cos 2(r)cos Z(s)f'(r)f'(s)—6r3ssin 2f(s)f"(r)
+8r3s2f'(s)f"(r)+4r3s?cos 2f(s) f'(s) f"(r)—4r3s>f"(r)f"(s)+ (r<s). (A9)

The expressions for the angular integréd6) appearing in the actiof9) are the following:

lg= ! | (I’+S)2 A10
0= 5599 —s?|’ (A10)
o 1 Jr(r2+52)I (r+s)?
17T s T2z 9 (r—s)?|’
o1 1 +(r2+52)2| (r+s)?
2 22 282 83 | (r—s)?]
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1 (r’+s?? (r’+ 52)3I

(r+s)zl

lg=— =——— lo :
3 3rs 4388 16r4s* (r—s)?
The corresponding integra(g9) for the case oM # 0 read:
©_ Lfsifa) M(r+s) AL
" rs| g2 ’ (A11)
M|r—s|
T sy + L [ cost i(t)+In(t/2) e (A12)
1= Io —ClI n y
2rs 2r232\ 2 M|r—s|
~ 2+
o= —1,— [(—4+t?—r?—s?)cost+2(r?+s?)(ci(t) —In(t/2)) +t(t—4 sint) i+, (A13)
2rs 8r333
where cit) is the cosine-integral function
< cost
ci(t)=—J Tdt' (Al4)
t
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