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Instantons and the QCD vacuum wave functional

William E. Brown,* Juan P. Garrahan,† Ian I. Kogan,‡ and Alex Kovner§
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We analyze the instanton transitions in the framework of the gauge invariant variational calculation in the
pure Yang-Mills theory. Instantons are identified with the saddle points in the integration over the gauge group
which projects the Gaussian wave functional onto the gauge invariant physical Hilbert space. We show that the
dynamical mass present in the best variational state provides an infrared cutoff for the instanton sizes. The
instantons of the sizer,1/M are suppressed and the large size instanton problem arising in the standard WKB
calculation is completely avoided in the present variational framework.@S0556-2821~99!00305-7#

PACS number~s!: 12.38.Lg, 11.15.Tk
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I. INTRODUCTION

In recent years there has been renewed interest in
application of the Hamiltonian methods to the study of no
Abelian Yang-Mills theories@1–5#. One set of these work
@1,3,4# attempts to solve ‘‘exactly’’ the strongly interactin
gauge theories in the sense that a nonlinear transformati
performed to a set of gauge invariant coordinates. One t
tries to find a controlled expansion akin to strong coupl
perturbation theory, which hopefully solves the infrared p
of the theory in the leading order. Another set@2,5# attempts
to find the Yang-Mills vacuum wave functional with the he
of a variational approximation. In particular in@2# a gauge
invariant generalization of a Gaussian variational approxim
tion was developed. The hope of this approach is that
vacuum of QCD may be not very different from the vacuu
of a free theory in many important respects. This hope re
on the observation that many genuine nonperturbative eff
in QCD appear already on the momentum scales much la
than LQCD where the coupling constant is still small@6#. It
may be possible then to account for these effects with
Gaussian wave functional, which is similar to the grou
state of the free theory modifying only the width of th
Gaussian for the low momentum modes. This modification
essentially nonperturbative and should lead to the genera
of the same condensates that account for a variety of Q
phenomenology via the QCD sum rules@6#.

The variational calculations of@2# are of exploratory na-
ture and many questions regarding their validity remain
settled. Some of those are discussed in the original pape@2#
as well as in@10#. Nevertheless this variational approa
captures many of the essential features of gluodynam
mass generation, formation of the gluon condensate,@2#, and
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asymptotic freedom@7,8,10#. Possible appearance of the lin
ear potential between static quarks in this approach has
been discussed@9–11#. In fact one of the nicer features o
this approximation is that it exhibits nontrivial nonperturb
tive infrared physics~gluon condensate! along with correct
weak coupling ultraviolet behavior~one loop Yang-Millsb
function!. If so one is naturally lead to ask whether it als
gives a good account of the instanton physics. Instantons
the only concrete description of the non-perturbative nat
of the QCD vacuum in the path integral formalism. In th
ultraviolet region although the effect of the instantons is no
perturbatively small they are easily identifiable. They sho
therefore serve as a useful probe for any non-perturba
approach especially if it purports to capture both the infra
and the ultraviolet physics. The aim of the present pape
precisely to study the structure and the properties of the
stantons in the variational approach of@2#.

Instantons are localized, finite-action classical solutions
the field equations of QCD in Euclidean space-time@12#.
Such solutions have been obtained in exact analytical fo
and extensively studied. An excellent review of instantons
gauge theories can be found in@13# and @14#.

Physically instantons represent tunneling processes
tween topologically distinctive vacuum sectors with the e
ponent of the instanton action being equal to the transit
probability between two of these vacuum states. As any t
neling probability at weak coupling it is nonperturbative
small@of order exp(2const/aS)] and the instantons therefor
are invisible in the weak coupling perturbation theory. Wh
first discovered there was hope that instantons would prov
the solution to the strong coupling problem@15,16#. Al-
though it has been subsequently realized that instantons
irrelevant for understanding confinement, they have provid
a beautiful mechanism of spontaneous chiral symme
breaking @17#. The instanton liquid model~initially intro-
duced on phenomenological grounds@18#, and later justified
by Euclidean variational methods@19#! to this day remains
the most complete theory of chiral symmetry breaking
QCD. It is therefore vital to understand the properties of
instantons if one is hoping to extend the application of
Gaussian variational approximation to QCD with fermion

Although the notion of the instanton is intrinsically Eu
clidean, the tunneling between different vacuum sectors
be formulated in the Hamiltonian language as well as in

r-

il

,

©1999 The American Physical Society15-1



he

b

e-
h
g
e

r
ta
a
io
he
e
th
n
a
m

th

s
ou
th

fly

d
ith
d

he
t

lc
th
ap
nd

n
is

t
i

a
th

n

n

ith

l-

ex-

e
le

m
cale

of

trary

BROWN, GARRAHAN, KOGAN, AND KOVNER PHYSICAL REVIEW D59 034015
Lagrangian one. In fact the gauge projected formalism of@2#
is very well suited for this purpose. The projection of t
initial Gaussian onto the gauge invariant subspace
achieved by the integration over the gauge group. As will
explained in detail later, theSU(N) matrix U(xi) ~the de-
pendence here is on the spatial coordinates only! in this type
of calculation turns out to play the role of as-model field.
This field is governed by an ‘‘action,’’ whose structure d
pends on the parameters of the variational state. As we s
see, the Yang-Mills instantons correspond to the topolo
cally nontrivial saddle points of this action. In this paper w
will study the properties of these saddle point solutions.

Our main result is the following. We find that the appea
ance of the dynamical mass parameter in the variational s
stabilizes the size of the instantons. Recall, that the m
unsolved problem of the dilute instanton gas approximat
is that~when account is taken of the one loop running of t
coupling constant! the path integral is dominated by the larg
size instantons. The measure for the integration over
sizes diverges as a power in the infrared and this diverge
renders the dilute gas calculation meaningless. It is usu
assumed that this infrared divergence is eliminated by so
nonperturbative effects. This is precisely what we find in
variational approach. The dynamical massM present in the
best variational state suppresses instantons of sizer
.1/M . The size of the stable instanton that we find turns
to be consistent with the average size of the instanton in
instanton liquid model.

This paper is structured as follows. In Sec. II we brie
recall the formalism and the results of@2#. We explain how
to identify the tunneling transition in this framework an
what type of classical configuration should be identified w
the instanton. It is also noted that the generation of the
namical mass itself found in@2# can be directly interpreted in
terms of the condensation of these instantons.

In Sec. III we study numerically the structure and t
action of the small size instantons. For these instantons
presence of the dynamical mass is irrelevant and this ca
lation is performed at zero mass. The profile function of
instanton and the value of the transition probability are
proximately determined by a variational method. We fi
that the tunneling probability indeed scales as exp$2cas%
with the value ofc approximately two times larger than i
the standard Euclidean calculation. We explain why this d
crepancy is not unexpected in a variational calculation.

In Sec. IV corrections to the solution and the action due
a non-zero mass gap are calculated. It is found that the
stanton is stabilized to a size of the order of the inverse m
scale. This size is directly comparable with that found in
instanton liquid model.

Finally, Sec. V is devoted to discussion of our results a
their relation with the instanton liquid model.

II. THE HAMILTONIAN PORTRAIT OF AN INSTANTON

We start with a brief description of the gauge invaria
Gaussian approximation of@2#. The Ansatz for the QCD
wave functional considered in@2# is
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C@Ai
a#5E DU~xi !CU@A#, ~1!

with

CU@A#5expH 2
1

2E d3xd3y Ai
Ua~x!

3Gi j
21ab~x2y! Aj

Ub~y!J . ~2!

HereAU is the gauge transform of the vector potential w
the gauge transformationU:

Ai
Ua~x!5Sab~x!Ai

b~x!1l i
a~x!, ~3!

with

Sab~x!5
1

2
tr@taU†~x!tbU~x!#,

~4!

l i
a~x!5

i

g
tr@taU†~x!] iU~x!#.

The SU~N! generators are taken to satisfy the following a
gebra and normalization:

@ta,tb#52i f abctc,
1

2
tr@tatb#5dab. ~5!

The state thus constructed obeys Gauss’ law since it is
plicitly invariant under the gauge transformationAi(x)
→Ai

V(x) with arbitrary SU(N) matrix V(x). The width of
the GaussianG(x) is a parameter with respect to which th
expectation value of the Hamiltonian is varied. A simp
rotation and ~global! color invariant form is Gi j

21ab

5d i j d
abG21. The functional form ofG21 is chosen to agree

with the perturbation theory in the limit of high momentu
on one hand, and to allow for the nonperturbative mass s
on the other,

G21~k!5HAk2 if k2.M2,

M if k2,M2.
~6!

Technically, the calculation of the expectation values
gluonic operators in the state Eq.~1! is mapped into the
calculation in a nonlocal nonlinears-model in three Euclid-
ean dimensions. Consider the vacuum average of an arbi
gauge invariant operatorO@A#:

^O&5
1

ZE DAC* @A#O@A#C@A#

5
1

ZE DU1DU2DACU1
* @A#O@A#CU2

@A#

5
1

ZE DUDAC1* @A#O@A#CU@A#. ~7!
5-2
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INSTANTONS AND THE QCD VACUUM WAVE FUNCTIONAL PHYSICAL REVIEW D59 034015
In the last line the matrixU5U1
†U2 is the relative gauge

transformation between the two Gaussian wave functio
The normalization factorZ ~the norm of the state! is

Z5E DUDAC1* @A#CU@A#. ~8!

The Gaussian integration over the gauge potentialAi can be
performed explicitly. As a result the last step of the calcu
tion is a path integral over theSU(N) matrix U with the
s-model partition function,

Z5E DU exp$2G@U#%, ~9!

where the~nonlocal! action is

G@U#5
1

2
lDl1

1

2
Tr ln M. ~10!

Here summation over all indices~rotational, color and coor-
dinate! is implied. The first term is written explicitly as

1

2E d3xd3yl i
a~x!Dac~x,y!l i

c~y!, ~11!

with

Dac~x,y!5@dacG~x2y!1Sab~x!G~x2y!Scb~y!#21.
~12!

In Eq. ~10! we have defined,

M i j
ab~x,y!5@STac~x!Scb~y!1dab#G21~x2y!d i j .

The second term in Eq.~10! is of O(g2) relative to the first
one and with the accuracy of@2# can be ignored. We will not
consider it in the following. The action of thes-model Eq.
~11! depends on the variational parameterM through Eq.
~12!. The minimization of the expectation value of the e
ergy in @2# leads to a nonzero value of the mass parameteM
in the best variational state. The dynamical mass param
is determined by the relation

as~M0!5
p

4Nc
, ~13!

where the Yang-Mills coupling constantas evolves accord-
ing to one loopb-function.1 The significance of this value o
M from the point of view of the effectives model is that at
this point it undergoes the phase transition. ForM,M0 the
model is in the weakly coupled ordered phase. In this ph
the matrixU is close to the unit matrix with small fluctua
tions around it. ForM.M0 the model is in the disordere
phase. The matrixU fluctuates strongly so that it covers a
available phase space and its average value vanishes. I

1More accurately, theb-function in the variational calculation o
@2# is slightly different from the complete one loop expression. S
discussion in Sec. IV.
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found in @2# that the energy is minimized just above th
phase transitionM5M01 so that thes-model is in the dis-
ordered phase.

Coming back to the subject of the present paper, the
thing is to understand how do we expect to see instanton
this formalism. The answer to this is the following. As e
plained above the effectives-model arises as an integratio
over the relative gauge transformations between the
Gaussian states in the linear superposition Eq.~1!. The
Boltzmann factor exp(2G@U#) for a given matrixU is there-
fore just the overlap of the initial and the gauge rotated st
or in other words the transition amplitude between the t
states.2 The instanton transition is precisely the transition
this type, where the two states are related by a large ga
transformation. The matrix of this large gauge transform
tion must carry a nonzero topological chargeP3„SU(N)….

The integration measure overU indeed includes integra
tion over topologically nontrivial configurations. The finite
ness of the action Eq.~11! requires that the matrixU ap-
proaches constant value at infinity. This identifies all poi
at spatial infinity hence, the physical space of the mode
S3. Field configurations are maps fromS3 into the manifold
of SU(N) and are classified by their winding number,
topological charge, which is an element of the homoto
groupP3„SU(N)…5Z. Thes-model action in a given topo
logical sector is minimized on some configuration which is
solution of classicals-model equations of motion. In par
ticular, the solution with a unit topological charge is e
pected to have a ‘‘hedgehog’’ structure much like the top
logical soliton in the Skyrme model@20#. The integral overU
in the steepest descent approximation is saturated by t
classical solutions.

Theses-model configurations that belong to a nontrivi
topological sector with a unit winding number represe
QCD transitions between the topologically distinct secto
The topologically nontrivial classical soliton solutions of th
s-model are therefore the three dimensional images of
QCD instantons.

The QCD instantons are defined in space time and
therefore four dimensional point-like objects. Thes-model
solutions are intrinsically three dimensional. Neverthele
there is a natural simple relation between the two. Fo
given Yang-Mills instanton solutionAinst(xm) one can find a
three dimensionalSU(N) matrix U(xi) by the procedure dis-
cussed by Atiyah and Manton@21#,

UAM~xi !5P expS i E
C
dxmAm

instD , ~14!

where the contour of integrationC is a straight linexi
5const, 2`,x0,`. The matrix UAM gives the relative
gauge transformation between the initial trivial vacuum
x0→2` and the topologically nontrivial vacuum atx0

e

2Since the space of the matricesU is continuous, strictly speaking
the Boltzmann factor is the differential rather than the total am
tude.
5-3
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BROWN, GARRAHAN, KOGAN, AND KOVNER PHYSICAL REVIEW D59 034015
→1`, or in other words between the initial and final stat
of the instanton transition. Clearly, its meaning is precis
the same as of the classical soliton solution of the effec
s-model Eq.~11!. Also, the QCD instanton action and th
s-model soliton action have the same physical mean
They both give the transition probability between differe
topological sectors in QCD. We will therefore refer to th
s-model solitons as instantons in the following.

One has to realize that although the QCD and
s-model instantons have the same physical meaning, it is
assured that the numerical value for their respective act
is the same. They both approximate the value of the tra
tion probability in QCD, but the approximations involved a
quite different. The QCD instanton action is the result of t
standard WKB approximation which is valid at weak co
pling and therefore for small instantons, but breaks down
instantons of large size. Thes-model instanton action on th
other hand is the value of this transition probability in
particular Gaussian variational approximation. It is natura
expect that variational calculation underestimates the va
of the transition probability at very weak coupling. The tra
sition probability is given by the overlap of the ‘‘groun
state’’ wave functions in two topological sectors. For sim
plicity let us consider a quantum mechanical system w
two vacua atx6 . If the area below the barrier separating t
vacua is large, the standard WKB instanton calculation
applicable. The wave function of each of the vacua bel
the barrier has essentially an exponential fall
exp$i*xAE2V(x2x6)%. The instanton calculation is the ca
culation of the overlap of these functions. Our variation
calculation corresponds to approximating the respec
‘‘ground states’’ atx6 by Gaussian wave functions. The tai
of the Gaussians fall off much faster away from the mi
mum than the actual wave function and the overlap is the
fore is expected to be smaller. When the coupling constan
not too small~or when the area below the barrier is not t
large! the overlap between the two states is not determi
any more by the behavior of the ‘‘tails’’ of the wave func
tions. In this situation one can expect the Gaussian appr
mation to do much better, since the overlap region cont
utes significantly to the energy and therefore plays impor
role in the minimization procedure.

The rest of this paper is devoted to a quantitative study
instantons in the variational state Eq.~1!. Before proceeding
to this part, however, we would like to note that implicit
the instantons played a very important role already in
energy minimization of@2#. As we mentioned above the en
ergy is minimized for the value of the mass parameterM at
which thes model is in the disordered phase. The transit
between ordered and disordered phases in a statistical
chanical system can usually be described as a condens
of topological defects. This is a standard description of
phase transition in the Ising and XY models@22#. In the s
model Eq. ~11! the relevant topological defects are no
other than the instantons. In this sense the appearance o
dynamical mass in the best variational state itself is driv
by the condensation of instantons.
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III. SMALL SIZE INSTANTONS

In this section we wish to study small size instantons. F
the instanton solutions of a sizer!1/M the presence of a
finite dynamical mass is irrelevant. We will therefore ta
M50 for the calculations in this section. The existence o
finite mass scale is very important for the instantons of la
size and will be taken into account in the next section.
somewhat increases the complexity of the calculation but
the necessary methods can be developed for theM50 case.

For M50 the inverse propagator~6! which defines the
variational state Eqs.~1!,~2! is ~in momentum space!
G21(k)5uku. We find it more convenient to work in coor
dinate space throughout the rest of this paper. Fourier tra
forming G21 to the coordinate space according to the de
nition,

G21~k!5~2p!23/2E d3xG21~x!eikx, ~15!

we find

G21~x2y!52
1

p2 S Q~ ux2yu2L21!

ux2yu4

2L3d~ ux2yu2L21!D . ~16!

Here we had to introduce the ultraviolet cutoffL to define
the coordinate space expression properly. The coefficien
the second term is determined by requiring that at finite c
off L,

E dx3G21~x!}G21~k50!50. ~17!

Note thatL is introduced as a regulator only and no subtra
tion in the expression for the propagator~or the action! was
performed. The cutoffL should be taken to infinity at the
end of the calculation and the results of the calculat
should be finite in this limit. Below we show how the dive
gent terms cancel exactly, so that in the numerical calcu
tions we only take into account finite terms in the limitL
→`.

We are searching for an instanton solution of topologi
charge one to the action~11!. Such a solution should hav
the maximally symmetric ‘‘hedgehog’’ form,

U~x!5ei tax̂af ~r !5cos f ~r !1 i tax̂asin f ~r !, ~18!

whereta are the generators ofSU(2) andf (r ) is an unspeci-
fied function ofr 5uxu, which we will refer to as the profile
function. The profile function is constrained to satisfyf (0)
5p and f (`)50, which ensures that the field configuratio
Eq. ~18! has unit topological charge. We need only consid
the groupSU(2) since the solutions forSU(N.2) can be
found from the embedding ofSU(2) in SU(N) @23#. Substi-
tuting this form for the field into the components of the a
tion, we find
5-4
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l i
a~x!5

i

g
tr@taU1~x!] iU~x!#

52
2

g
x̂i x̂af 8~r !2

1

gr
~d ia2 x̂i x̂a!sin2f ~r !

2
2

g
eabi

x̂b

r
sin2f ~r !, ~19!

Sab~x!5
1

2
tr@taU1~x!tbU~x!#

5dab2eabcx̂
csin2f ~r !12~ x̂ax̂b2dab!sin2f ~r !,

~20!

where eabc is the antisymmetric tensor. For the hedgeh
configuration, the functionSab(x) differs significantly from
dab only over a small region, the size of which depends
how fast the transition is from the asymptotic behavior
large distance to that at small distance. If the profile funct
has a sharp transition between these two limits one can
sonably approximateSab by dab. Once the form of the pro-
file function has been found this can be checked for con
tency. It is possible to expand aroundSab5dab and
systematically calculate corrections inSab2dab. At the end
of this section we calculate the leading correction and fi
that it is indeed small for the instanton profile function.

This approximation allows us to write

Dac~x,y!5@dacG~x2y!1Sab~x!G~x2y!Scb~y!#21

.
1

2
G21~x2y!dac. ~21!

With the definition Eq.~16!, we write the action Eq.~11!
as

G5G12G2 ,

G152
1

4p2E d3xd3yl i
a~x!

Q~ ux2yu2L21!

ux2yu4
l i

a~y!,

~22!

G252
L3

4p2E d3xd3yl i
a~x!d~ ux2yu2L21!l i

a~y!.

Both G1 andG2 are divergent. The divergences between
two terms however cancel leaving the action finite. Chang
variables,ui5xi1yi , v i5xi2yi , and using the fact tha
2uvu245¹v

2uvu22, we find after integrating by parts twice,

G152
1

64p2E d3ud3vuvu22¹v
2@l i

a~x!l i
a~y!#

1Gsurf1Gdiv , ~23!
03401
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Gsurf52
1

64p2E d3udVv~2uvu211] uvu!

3@l i
a~x!l i

a~y!#u uvu5` , ~24!

Gdiv5
1

64p2E d3udVv~2uvu211] uvu!

3@l i
a~x!l i

a~y!#u uvu5L21, ~25!

wheredVv denotes angular integration inv-space, and¹v
2 is

the v-space Laplacian. The divergent partGdiv cancels ex-
actly the ‘‘subtraction’’ termG2 whenL→`. Moreover, the
surface termsGsurf vanish if the profilef (r ) approaches zero
asr 22 or faster at infinity, and is infinite otherwise. In wha
follows we assume thatf (r ) decreases fast enough. Ignorin
all terms in the action which vanish in the limitL→` we
are left with the finite, cutoff independent action,

G52
1

8p2E d3xd3y
1

ux2yu2S ]2

]xj
2

1
]2

]yj
2

22
]2

]xj]yj
D

3@l i
a~x!l i

a~y!#. ~26!

For the hedgehog configuration~18!,

l i
a~x!l i

a~y!5
1

g2F4 cos2u f 8~r ! f 8~s!

1
2

s
~12cos2u! f 8~r !sin 2f ~s!

1
2

r
~12cos2u! f 8~s!sin 2f ~r !

1
1

rs
~11cos2u!sin 2f ~r !sin 2f ~s!

1
8

rs
cosu sin2f ~r !sin2f ~s!G , ~27!

where cosu5x̂•ŷ, r5uxu and s5uyu. From Eq.~27! we see
that l i

a(x)l i
a(y) is a function of only three variables

l i
a(x)l i

a(y)5(1/g2)(n50
2 cosnu Hn(r,s), whereHn are imme-

diately found from Eq.~27!. They are given explicitly in the
Appendix for easy reference. We also give in the Appen
the coefficient functionsH̃n(r ,s) which are defined by

S ]2

]xj
2

1
]2

]yj
2

22
]2

]xj]yj
D @l i

a~x!l i
a~y!#

5
1

g2(n50

3

cosnu H̃n~r ,s!. ~28!

After carrying out the angular integrations we get an a
tion as a functional of the profile function,
5-5
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G52
2

g2E dr ds~rs!2(
n50

3

I n~r ,s!H̃n~r ,s!, ~29!

where

I n~r ,s!5E
21

1 d~cosu!cosnu

~r 21s222rs cosu!
~30!

are given in the Appendix.
We were unable to minimize the action with respect to

profile function by analytical methods. We have therefo
employed a variational method to determine the best pro
function approximately. The two important variational p
rameters are the ones that govern the asymptotic behavi
f (r ),

f ;r 2a, r→`, ~31!

f ;p2r b, r→0.

The dependence on the parametera which determines the
asymptotics at large distance turns out to be simple. Us
two trial functions,

f 1~r !5pF ra

ra1xaG , ~32!

f 2~r !52 arctan~r/r !a, ~33!

and performing the double numerical integration we ha
found that the action monotonically increases witha. This
means that the optimal value for this parameter isa52,
since this is the lowest possible value at which the surf
terms are non-infinite.

Having fixeda, we next studied the dependence on t
parameterb which determines the behavior close to the
stanton center. The trial functions we used for this purp
are

f 1~r !5pF rb

rb1xbG 2/b

, ~34!

f 2~r !52 arctanS 2

~r /r!21~r /r!bD . ~35!

We find numerically the optimal value for the parameterb to
be b51.1 for f 1 andb51.0 for f 2 .

The corresponding values for the action are

G51.75
8p2

g2
, ~36!

for f 1 , and

G51.73
8p2

g2
, ~37!

for f 2 .
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We have calculated the first correctionDG to the action in
the expansion ofSab arounddab for the two profiles. We find
DG50.21(8p2/g2) for f 1 and DG50.34(8p2/g2) for f 2 .
The correction to the action for both profiles is of order
10%. Note, however, that theAnsatz f1 is more stable, and
indeed after the correction is taken into account has lo
action thanf 2 .

The corrected~to this order! values for the action are

G51.96
8p2

g2
, ~38!

for f 1 , and

G52.07
8p2

g2
, ~39!

for f 2 .
Note that although ourAnsätze for the profile function

depend on the instanton sizer, the value of the action doe
not depend on it. This is the direct consequence of the d
tational invariance of the effectives-model action Eq.~21!.
The introduction of the cutoffL strictly speaking breaks the
dilatational invariance. This breaking however is very sm
and the invariance is restored in the limitL→`.

We now want to comment on the numerical value of t
transition probability obtained in our variational approac
Our result Eq.~38! should be compared with the valu
8p2/g2 for the classical action of a Yang-Mills instanton. S
the action of an instanton in the variational approach is ab
two times larger than the standard path integral result and
transition probability therefore appears to be much smal
As explained in Sec. II it is in fact natural to expect this so
of behavior in the Gaussian approximation since the tails
the Gaussians fall off much faster away from the minimu
than the actual wave function and the overlap is theref
smaller. This is the basic reason for the discrepancy in
numerical values of the action between the variational
stanton of this section and the weak coupling~WKB! instan-
ton of the standard path integral approach.

It is significant that both the asymptotic behavior and t
value of the action for both our variationalAnsätze for the
profile function is very similar to the corresponding resu
for the Atiyah-MantonAnsatz@21#. As discussed in Sec. II
the natural identification between the QCD instanton and
instanton in the effectives-model is furnished by the ho
lonomy along all time lines,

U~x!5T expF2E
2`

`

dxmAm
inst~x!G . ~40!

For the QCD instanton Eq.~40! results in the profile func-
tion,

f AM~r !5pF12S 11
r2

r 2 D 21/2G . ~41!
5-6
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INSTANTONS AND THE QCD VACUUM WAVE FUNCTIONAL PHYSICAL REVIEW D59 034015
The asymptotics of this configuration at large distances
f (r )}1/r 2, and near the instanton coref (r )2p}r . This
gives a52, b51 for the Atiyah-Manton configuration
identical with f 2 and practically indistinguishable fromf 1 .
In fact the profilef AM is very similar tof 1 not only asymp-
totically but also in the whole range 0,r ,`. In Fig. 1 we
plot the three profile functions for the same value of t
instanton size. It is clear thatf 1 and f AM are very similar
while f 2 differs from them somewhat inside the instant
core. We also note thatf 2 has a slower approach to its valu
at r 50, which explains why the value of the action for th
profile is less stable against theSab2dab corrections.

We have calculated thes-model action for the Atiyah-
Manton profile numerically and found~including the first
correction inSab2dab expansion! G51.97(8p2/g2). This
again is very close to the value we obtain with our var
tional AnsatzEq. ~38!. This means that even though th
value of the transition probability is underestimated in t
Gaussian approximation, the actual field configurations i
which the tunneling is most probable are identifi
correctly—they are precisely the same as in the WKB cal
lation.

It should be noted that the exact value of the transit
probability due to small size instantons~very weak coupling!
is not so important, since they do not significantly affect t
structure of the vacuum in any case. It would therefore
incorrect to declare the Gaussian approximation as a fai
from the instanton point of view. One expects the Gauss
approximation to do much better at intermediate couplin
since the overlap region contributes significantly to the
ergy and therefore plays an important role in the minimi
tion procedure. In the Yang-Mills framework this means th
there are two types of instantons configurations that we
pect to contribute significantly and therefore to be better
scribed by the Gaussian approximation. First, these are l
instantons for which the coupling constant is not small a
the action not large. Those are presicely the configurati
that cause problems in dilute instanton gas approximat
The second class is the multi-instanton configurations, wh

FIG. 1. The hedgehog profile functionsf 1 , f 2 and f AM for
r51.
03401
is

-

o

-

n

e
e
re
n

s,
-
-
t
x-
-

ge
d
s

n.
re

the separation between instantons is not too large and
interaction between them is not negligible. These are
configurations of the instanton liquid type. As discussed
the previous section, these configurations are in fact resp
sible for the generation of the dynamical scale in the b
variational state through the condensation of instantons.
direct discussion of these multi-instanton configurations
however beyond the scope of the present paper. The l
size instantons, or rather the instantons of the size com
rable to the dynamical scale 1/M , are the subject of the nex
section.

IV. MASS CORRECTION AND INSTANTONS
OF STABLE SIZE

We now want to explore the effect of the dynamical ma
on the properties of the instantons. Our expectation is
the presence of the mass scale stabilizes the size of th
stantons and suppresses the instantons of the sizes large
1/M .

The simple qualitative argument to this effect is the fo
lowing. Consider the effectives-model action for very large
size instantons. In such a configuration only field modes w
small momentumk,M are present. For these momenta t
action simplifies, and as discussed in@2# the action Eq.~11!
becomes the standard locals-model whereM plays the role
of the ultraviolet cutoff

G5
1

2

M

g2~M !
trE d3x ] iU

†~x!] iU~x!. ~42!

If the large size instantons are stable at all they should a
be present as stable solutions in this local action Eq.~42!.
However this is not the case as can be easily seen by
standard Derrick type scaling argument. Take an arbitr
configurationu(x) in the instanton sector and scale all th
coordinates by a common factorl. Then obviously

G@u~lx!#5l21G@u~x!#. ~43!

The dependence of the action onl is monotonic and is mini-
mized atl→`. This means that the instantons in the loc
s-model shrink to the ultraviolet cutoff 1/M . For instantons
smaller than the inverse cutoff we cannot use the local ac
anymore. However the behavior of these small size inst
tons is already familiar. We know that when the running
the coupling is taken into account, these instantons
pushed to the large size. This is the infrared problem of la
instantons we alluded to earlier. In our variational state
coupling constant stops running at the scaleM. The picture is
therefore very simple. The small size instantons are pus
to larger size by the effect of the coupling constant, while
large size instantons are pushed to smaller size by the e
of the locals-model scaling. It is therefore clear that the si
will be stabilized somewhere in the vicinity ofr;1/M .

To confirm this picture we now turn to the numeric
evaluation of the instanton action. We write the inver
propagator~6! as

G21~k!5G0
21~k!1DG21~k!, ~44!
5-7
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where

G0
21~k!5uku

~45!
DG21~k!5u~M2uku!~M2uku!.

Since the action Eq.~11! is linear inG21, the G0
21 term

will lead to the classical actionG0 calculated in the previous
section. As discussed above,G0 is scale invariant and there
fore does not depend on the size of the instanton. In coo
nate space, the second term in Eq.~44! reads

DG21~ ux2yu!52
1

p2ux2yu4
S cosM ux2yu21

1
M ux2yu

2
sin M ux2yu D . ~46!

The mass correction term in the propagator gives rise
the correction in the action

DG5
1

4E d3xd3yl i
a~x!DG21~x2y!l i

a~y!. ~47!

We now compute the dependence ofDG on the size of the
instanton for the three profile functions considered abo
f 1 , f 2 and f AM . As before, the angular integrations can
performed exactly. We obtain

DG52
2

g2E drds~rs!2(
n50

3

Ĩ n~r ,s!Hn~r ,s!, ~48!

whereHn are as before andĨ n defined by

Ĩ n5E
21

1 d~cosu!cosnu

~r 21s222rs cosu!2

3S cosM ux2yu211
M ux2yu

2
sin M ux2yu D ,

~49!

are given in the Appendix.
We calculated numerically the dependence of the class

action3 on the size of the instanton for the three profiles~34!,
~35! and ~41!. We find that the action increases monoto
cally with the instanton size. The dependence of the class
action on the size for the threeAnzätseis shown in Fig. 2. As
discussed in the beginning of this section the classical ac
favors small size instantons in all threeAnsätze.

We now must include the effect of the running coupli
constant. This is equivalent to calculating the one loop c
rection around the instanton background. Rather than
forming this technically nontrivial calculation we will us

3In this section we limit ourselves to the approximationSab

5dab. The corrections to this approximation as we saw in the p
vious section are fairly small and we will not explore them here
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the results of@7#. We will limit ourselves to theSU(2)
theory in the following. Theb-function in the nonlinear
s-model was found in@7# as

b~g!52
g3

~4p!2
8. ~50!

This is slightly different from the complete one loop Yan
Mills b-function. The origin of this discrepancy was studie
in @7,8# and is well understood now. It is due to the fact th
the present variational calculation omits the screening c
tributions of the transverse gluons. As discussed in@10# the
variational state can be modified to yield an exa
b-function. This point is not essential for our analysis a
we will not dwell on it any further except noting that the u
of either Eq.~50! or the exact one loop expression in th
following leads to the same results.

Equation~50! is valid at distances smaller than 1/M . The
coupling constant at these distances therefore scales ac
ing to

8p2

g2~m.M !
58 lnS m

LQCD
D . ~51!

At distances larger thanM the running of the coupling con
stant stops and it tends to a constant value,

8p2

g2~m,M !
58 lnS aM

LQCD
D ~52!

with a, a numerical constant of order one. The precise in
polation between the two regimes is unimportant and we w
use the following simple interpolating expression:

8p2

g2~m!
54 lnX M2

LQCD
2 S m2

M2
1aD C. ~53!-

FIG. 2. Dependence of the classical action on the size of
instanton for the profilesf 1 , f 2 and f AM . The action is given in
units of 8p2/g2.
5-8
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Since the exact value of the constanta is not known we will
present our results for several values of order one. W
evaluating the action of the instanton of the sizer we obvi-
ously must takem51/r.

The running of the coupling constant is not the only log
rithmic effect at one loop order. In addition one has to ta
into account the path integral measure over the three tr
lational zero modes and the size of the instanton,

dx1dx2dx3drr24, ~54!

which contributes an extra term to the action,

Gmeasure54 log r. ~55!

Collecting all the one-loop logarithmic contributions t
gether we calculate the corrected action as a function of
size of the instanton as

G„g2~1/r!…1Gmeasure. ~56!

The result for the three different profiles we have cons
ered are shown in Figs. 3, 4 and 5, for different values of
parametera.

In all cases the action has a minimum at a size of
order of 1/M . The values for the size of the instanton,
action and the curvature at the minimum are given in Tab
for different values ofa. The results for the Atiyah-Manton
Ansatzand our functionf 1 are practically indistinguishable
Varying the parametera between 1/2 and 2 the size of th
stable instanton varies between 1.5/M and 1/M . TheAnsatz
f 2 leads to the instanton size smaller by a factor of 1.522.
We consider however the former estimate to be better, s
the Ansatz f2 gives a considerably larger value of the acti
~see Fig. 2! and is therefore not a very good choice for t
instanton ‘‘valley’’ configuration.

The numerical analysis of this section confirms theref
our expectations. The presence of the dynamical mass s

FIG. 3. The classical action plus one-loop logarithmic corr
tions for the profile f 1 as a function of the instanton size. Th
different curves correspond to different values of the parametea
50, . . . ,2, and thebullets mark the minimum of each curve.
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lizes the size of the instantons at the valuer5(121.5)/M .
The large instanton problem therefore finds a nonpertur
tive solution in the framework of the Gaussian variation
approximation.

V. DISCUSSION

In this paper we have discussed how the instanton tra
tions appear in the framework of the gauge invariant Gau
ian approximation of@2#. The relative gauge rotation be
tween two gauge field configurations between which
tunneling transition is most probable is determined from
saddle point equation of the effective nonlinears-model. We
found that the relative gauge transformations for most pr
able tunneling transitions are very similar to the ones fou
in the standard path integral instanton approach.

- FIG. 4. The classical action plus one-loop logarithmic correct
for the profile f 2 as a function of the instanton size. The differe
curves correspond to different values of the parame
a50, . . . ,2, and thebullets mark the minimum of each curve.

FIG. 5. The classical action plus one-loop logarithmic correct
for the profilef AM as a function of the instanton size. The differe
curves correspond to different values of the parame
a50, . . . ,2, and thebullets mark the minimum of each curve.
5-9
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TABLE I. Stable sizermin for the soliton in units of 1/M50.75 GeV21, the value of the minimum action
G(rmin) and the curvature at the minimumG9(rmin), for the three profiles, for different values of th
parametera.

f 1 f 2 f AM

a rmin G(rmin) G9(rmin) rmin G(rmin) G9(rmin) rmin G(rmin) G9(rmin)

1/3 1.5 32 6.9 0.9 36 23 1.6 32 6.3
1/2 1.4 33 7.9 0.8 37 26 1.5 33 7.0
1 1.1 36 9.7 0.7 39 33 1.2 36 8.1
2 0.9 39 12.0 0.6 41 41 1.0 39 9.7
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The value of the logarithm of the tunneling probability f
small size instantons however turns out to be larger by ab
a factor of two in the variational vacuum. This is understan
able since the tail of a Gaussian wave function decrea
faster and therefore the overlap integral of two such w
functions is smaller than of the semi-classical wave fu
tions.

Our main result concerns the effect of the dynamical m
scale that characterizes the variational vacuum. We find
the presence of this scale stabilizes the size of the instan
The instantons of the size larger than the inverse of this s
are suppressed. When account is taken of the proper run
of the strong coupling constant, the integral over the inst
ton sizes has a saddle point. This saddle point determine
most likely size of the instanton asr5121.5/M . The large
size instanton infrared problem which plagues the stand
dilute instanton gas approximation is thereby removed in
variational vacuum due to the presence of the dynam
nonperturbative scale.

An interesting point is that the instanton action for t
most likely size instanton is pretty large, the numerical va
being around 35~see Table I!. This means that the configu
rations with small number of instantons and anti-instant
are not important energetically. Nevertheless, the genera
of the dynamical mass itself within the framework of o
variational approximation is due to the instanton conden
tion. This is so since the effectives-model is in the disor-
dered phase at the value of the best variational parameteM.
This suggests that the important type of configurations
the ones that contain many instantons and anti-instant
The small fugacity factor in these configurations can be ov
come by a large entropy and also by the interaction betw
instantons and anti-instantons. This interaction is known
be attractive for some relative color orientation. The inter
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tion also is quite long range, since the instanton profile fu
tion away from the instanton center decreases only as
second power of the distance. It is therefore entirely poss
that the important configurations for the energy minimizati
are of the type of the instanton liquid—namely those hav
large number of instantons which although fairly dilute ne
ertheless feel each others presence strongly due to the
range interaction. It is in fact interesting to note that the m
likely instanton size we found here is consistent with t
average size of the instantons in the instanton liquid mo
of @18,19#. For the case ofSU(2), theaverage instanton size
in units of the gluon condensate obtained in the instan
liquid model, turns out to be@19#

r~^Fmn
a Fmn

a &a/p!1/4;0.4.

In our case, taking the value of the gluon condensate
tained in the variational approach@2#, we find

r ~^Fmn
a Fmn

a &a/p!1/4;0.220.3.

The relation of the variational approach with the instant
liquid model is a very interesting open question and warra
further study.
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APPENDIX

The finite action for the case of the mass scaleM50 is given in Eq.~26!. To obtain the explicit action for the profile of th
hedgehog field~18! it is necessary to calculate the Laplacian overv5x2y of the product of the right currentsl i

a at the points
x andy, which has the form

l i
a~x!l i

a~y!5
1

g2(n50

2

cosnuHn~r ,s!. ~A1!

The expression forHn are obtained from Eq.~27!,
5-10
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H05
1

rs
sin 2f ~r !sin 2f ~s!1

2

r
sin 2f ~r ! f 8~s!1

2

s
sin 2f ~s! f 8~r !, ~A2!

H15
8

rs
sin2f ~r !sin2f ~s!, ~A3!

H25
1

rs
„sin 2f ~r !22r f 8~r !…„sin 2f ~s!22s f8~s!…. ~A4!

After calculating the Laplacian overv we obtain

S ]2

]xj
2

1
]2

]yj
2

22
]2

]xj]yj
D @l i

a~x!l i
a~y!#5

1

g2(n50

3

cosnuH̃n~r ,s!. ~A5!

From Eq.~27! the expressions forH̃n(r ,s) can be found:

2r 3s3H̃0~r ,s!58rs sin2f ~r ! sin2f ~s!1r 2 sin 2f ~r !sin 2 f ~s!216r 2s cos f ~r !sin f ~r !sin2f ~s! f 8~r !22 r 3 sin 2 f ~s! f 8~r !

22r 2s2 sin 2f ~r ! sin 2f ~s! f 8~r !222r 2s sin 2f ~r ! f 8~s!14r 3s f8~r ! f 8~s!24r 3s2 sin 2f ~s! f 8~r ! f 8~s!2

12r 2s2 sin 2f ~s! f 9~r !1r 2s2 cos 2f ~r ! sin 2f ~s! f 9~r !12r 3s2 cos 2f ~s! f 8~r ! f 9~s!1r 3s2 sin 2f ~s! f ~3!~r !

1~r↔s!, ~A6!

2r 3s3H̃1~r ,s!528r 2 sin2f ~r !sin2f ~s!13rs sin 2f ~r !sin 2f ~s!24r 2s sin 2f ~s! f 8~r !22r 2s cos 2f ~r !sin 2f ~s! f 8~r !

18r 2s2 cos f ~r !2 sin2f ~s! f 8~r !218r 2s2 cos 2f ~r ! f 8~r ! f 8~s!24r 2s2 cos 2f ~r !cos 2f ~s! f 8~r ! f 8~s!

28r 2s2 sin2f ~r !sin2f ~s! f 8~s!218r 2s2 cos f ~r !sin f ~r ! sin2f ~s! f 9~r !16r 3s sin 2f ~s! f 9~r !

28r 3s2f 8~s! f 9~r !24r 3s2 cos 2f ~s! f 8~s! f 9~r !1~r↔s!, ~A7!

2r 3s3H̃2~r ,s!5232rs sin2f ~r !sin2f ~s!23r 2 sin 2f ~r !sin 2 f ~s!132r 2s cos f ~r !sin f ~r !sin2f ~s! f 8~r !

16r 3 sin 2f ~s! f 8~r !22r 2s2 sin 2f ~r !sin2f ~s! f 8~r !216r 2s sin 2f ~r ! f 8~s!212r 3s f8~r ! f 8~s!

232r 2s2 cos f ~r !cos f ~s!sin f ~r !sin f ~s! f 8~r ! f 8~s!14r 2s3 sin 2f ~r ! f 8~r !2f 8~s!22r 2s2 sin 2f ~s! f 9~r !

1r 2s2 cos 2f ~r !sin 2f ~s! f 9~r !14r 2s3f 8~s! f 9~r !22r 3s2 cos 2f ~s! f 8~r ! f 9~s!2r 3s2 sin 2f ~s! f ~3!~r !

12r 3s3f 8~s! f ~3!~r !1~r↔s!, ~A8!

2r 3s3H̃3~r ,s!529rs sin 2f ~r !sin 2f ~s!112r 2s sin 2f ~s! f 8~r !16r 2s cos 2f ~r ! sin 2f ~s! f 8~r !216r 2s2f 8~r ! f 8~s!

28r 2s2 cos 2f ~r ! f 8~r ! f 8~s!24r 2s2 cos 2f ~r !cos 2f ~s! f 8~r ! f 8~s!26r 3s sin 2f ~s! f 9~r !

18r 3s2f 8~s! f 9~r !14 r 3 s2 cos 2f ~s! f 8~s! f 9~r !24r 3s3f 9~r ! f 9~s!1~r↔s!. ~A9!

The expressions for the angular integrals~30! appearing in the action~29! are the following:

I 05
1

2rs
logF ~r 1s!2

~r 2s!2G , ~A10!

I 152
1

rs
1

~r 21s2!

4r 2s2
logF ~r 1s!2

~r 2s!2G ,

I 252
1

2r 2
2

1

2s2
1

~r 21s2!2

8r 3s3
logF ~r 1s!2

~r 2s!2G ,
034015-11
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I 352
1

3rs
2

~r 21s2!2

4r 3s3
1

~r 21s2!3

16r 4s4
logF ~r 1s!2

~r 2s!2G .

The corresponding integrals~49! for the case ofMÞ0 read:

Ĩ 05
1

rsS sin2~ t/2!

t2 D
M ur 2su

M ~r 1s!

, ~A11!

Ĩ 15
r 21s2

2rs
Ĩ 01

1

2r 2s2S cos t

2
2ci~ t !1 ln~ t/2! D

M ur 2su

M ~r 1s!

, ~A12!

Ĩ 25
r 21s2

2rs
Ĩ 12

1

8r 3s3
@~241t22r 22s2!cos t12~r 21s2!„ci~ t !2 ln~ t/2!…1t~ t24 sin t !#M ur 2su

M ~r 1s! , ~A13!

where ci(t) is the cosine-integral function

ci~ t !52E
t

` cos t

t
dt. ~A14!
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