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Four-fermion heavy quark operators and light current amplitudes in heavy flavor hadrons
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We introduce and study the properties of the ‘‘color-straight’’ four-quark operators containing heavy and

light quark fields. They are of the form (b̄Gbb)(q̄Gqq) where both brackets are color singlets. Their expecta-
tion values include the bulk of the nonfactorizable contributions to the nonleptonic decay widths of heavy
hadrons. The expectation values of the color-straight operators in the heavy hadrons are related to momentum
integrals of the elastic light-quark form factors of the respective heavy hadron. We calculate the asymptotic
behavior of the light-current form factors of heavy hadrons and show that the actual decrease is 1/(q2)3/2 rather
than 1/q4. The two-loop hybrid anomalous dimensions of the four-quark operators and their mixing~absent in
the first loop! are obtained. Using plausible models for the elastic form factors, we estimate the expectation
values of the color-straight operators in the heavy mesons and baryons. Improved estimates will be possible in
the future with new data on the radiative decays of heavy hadrons. We give the Wilson coefficients of the
four-fermion operators in the 1/mb expansion of the inclusive widths and discuss the numerical predictions for
the lifetime ratios. Estimates of the nonfactorizable expectation values are given.@S0556-2821~99!07601-8#

PACS number~s!: 13.20.He, 13.30.2a, 13.40.Gp
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I. INTRODUCTION

Heavy quark expansion proved to be useful in describ
the decay properties ofb-flavored hadrons. At the level o
nonperturbative effects a number of local heavy quark op
tors of increasing dimension appears whose expectation
ues in the heavy flavor hadrons determine the importanc
preasymptotic effects. The first nontrivial operators, chrom
magneticOG5b̄( i /2)smnGmnb and the kinetic operatorOp

5b̄( iDW )2b have D55. The expectation value ofOG is
known directly from the masses ofb-flavored hadrons. The
expectation valuemp

2 of Op is not yet known definitely,
although a certain progress has been achieved over the
few years in evaluating it forB mesons.

More operators appear atD56, in particular, four-
fermion operatorsb̄Gbq̄G8q where q are light quarks and
G,G8 denote various Lorentz and color structures. In the
clusive widths of heavy hadrons such expectation val
govern 1/mb

3 corrections. Their effect is still significant, es
pecially due to specific accidental suppression of the imp
of the leadingD55 operators.

Unfortunately, the expectation values of the four-fermi
operators up to now remain rather uncertain. Since the m
1980s@1#, the vacuum factorization approximation has be
used to estimate the mesonic matrix elements which t
appear proportional tof B

2 . Such factorizable terms are abse
in baryons, and a number of simple constituent quark mo
estimates have been employed. The validity of the assu
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tions implemented in such analyses is not clear, however
a result, the expectation values where the factorizable co
butions are absent or suppressed, remain uncertain.

On the other hand, the problem of a more reliable eva
ation of the relevant four-fermion expectation values recen
attracted a renewed attention since the lifetime ratios of
different b-flavored hadrons have been accurately measu
While data and predictions of the meson lifetimes are n
trivially consistent, the small experimental ratiotLb

/tBd

50.7860.07 @2#, if taken literally, seems to be in a conflic
with the expectations based on the 1/mb expansion.

In the framework of nonrelativistic quark description th
four-fermion expectation values are all expressed via
wave function density at originuC(0)u2 ~for mesons! or the
diquark density*d3yuC(0,y)u2 ~for baryons!. All expecta-
tion values differ then by only simple color and spin facto
@1#. For example, inB mesons one has

1

2MB
^B2u~ b̄b!~ ūu!uB2&5uC~0!u2,

1

2MB
^B2u~ b̄ig5u!~ ūig5b!uB2&5NcuC~0!u2 ~1!

~color indices are contracted inside each bracket!, and for
baryons

1

2MLb

^Lbu~ b̄b!~ ūu!uLb&5E d3yuC~0,y!u2,

1

2MB
^Lbu~ b̄u!~ ūb!uLb&5

1

2E d3yuC~0,y!u2,

~2!

etc.

d-
©1999 The American Physical Society12-1
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DAN PIRJOL AND NIKOLAI URALTSEV PHYSICAL REVIEW D 59 034012
In actual QCD this simple picture does not hold, and
naive quantum mechanics~QM! relations between differen
expectation values are generally violated. Moreover, the
tion itself of the nonrelativistic wave function used in th
potential description, becomes ambiguous. Even in the
turbative domain the expectation values become sc
dependent, and the renormalization is in general different
different operators. This manifestly goes beyond the pot
tial description, even extended for the price of introduci
various light-quark spin wave functions in an attempt to
count for the relativistic bispinor nature of the light qua
fields.

In this paper we note that there exists nevertheless a n
ral generalization of the notion of the wave function dens
in particular at origin~the origin is defined as the position o
the heavy quark!. It is associated with the expectation valu
of those four-fermion operators for which theb̄Gb bracket is
a color singlet. The color flow for such operators is not d
turbed, and we call them ‘‘color-straight’’ operators. The
expectation values in the heavy quark limitmb→` are re-
lated to the observable transition amplitudes. This fact s
gests that they are better candidates for the operator b
used to parametrize hadronic expectation values in var
applications. Moreover, they are more suitable also for
plying general bounds of the type discussed in@3#. Such
QM-type inequalities can be formulated more rigorously
these operators in full QCD.

Knowledge of the light-quark current elastic form facto
of heavy hadrons would allow one to determine the col
straight expectation values. Unfortunately, they are pra
cally unknown yet. Nevertheless, employing reasonable
sumptions about theirq2 dependence allows more defini
estimates of the expectation values. As the most conserva
attitude, they can be viewed as educated dimensional an
sis, with the added bonus of being free of ambiguities rela
to ad hoc powers of 2p inherent in various naive dimen
sional estimates. Such numerically significant uncertain
often cause controversy in the resulting expectations lea
sometimes to rather surprising phenomenological con
sions. We also think that the derived relations can be u
for an alternative, simple evaluation of the color-straight e
pectation values in the lattice heavy quark simulations.

II. COLOR-STRAIGHT OPERATORS AND LIGHT
CURRENT AMPLITUDES

Our main object of interest is the expectation values of
color-straight operators of the generic type

b̄iGbbi q̄jGqqj ~3!

whereGb ,Gq are arbitrary matrices contracting Lorentz i
dices (Gq can be also a matrix in the light flavor space!, and
i , j are color indices. We will consider the heavy quark lim
mb→` assuming that the normalization pointm of the op-
erators or currents is set much smaller thanmb . In this case
there are two nonvanishing types of operators transform
under rotations of the heavy quark spin as spin-singlet
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spin-triplet, respectively. The corresponding Dirac struct
on the heavy side isGb51 andGb5gW g55sW :

Os2s5~ b̄b!~ q̄Gqq!, Os2tr5~ b̄skb!~ q̄Gqq! ~4!

All possibleGb-structures are reduced to these operators
our discussion we always assume that the heavy quark
rest,vm5(1,0W ), andvm denotes the velocity of theb-hadron
Hb . Since in the heavy quark limit theb quark spin de-
couples, we start for simplicity from considering the spi
singlet operatorsOs2s. The straightforward generalizatio
for Os2tr will be formulated later.

If a heavy meson were a two-body QM system whe
additionally, the light quark is nonrelativistic as well, th
expectation values ofOi measure the meson wave functio
at origin, see the first of Eqs.~1!, and likewise for other
matricesGq for which different spin wave functionsC(x)
can enter. In the momentum representation

C~0!5E d3pW

~2p!3
C~pW ! ~5!

@we use the normalization where*d3pW /(2p)3uC(pW )u251].
On the other hand, in such a nonrelativistic system

Fourier transform of the light quark density distribution me
sures the elastic transition amplitude~form factor! of the me-
son associated with the scattering on the light quark:

F~qW ![
1

2MB
^B~qW !uq̄q~0!uB~0!&5E d3xWC~xW !C* ~xW !e2 iqW xW.

~6!

The following relation then obviously holds:

E d3qW

~2p!3
F~qW !5uC~0!u25

1

2MB
^Bu~ b̄b!~ q̄q!~0!uB&.

~7!

Integrating the transition amplitude over allqW yields the local
four-fermion expectation value we are interested in. Sin
we study a transition induced by scattering on the lig
quark, the scale of the transferred momentum is the typ
bound-state momentum and is much smaller thanmb .

In actual QCD the simple nonrelativistic picture does n
apply. The light quark is certainly relativistic. Additionally,
two-body potential description~generally, any fixed-parton
wave function! can only be approximately correct, witha
priori unknown accuracy.

It appears, however, that in spite of the fact that neit
Eqs.~1! nor ~6! can be rigorously written in QCD, the fina
relation between the momentum integral of the~elastic! tran-
sition amplitudes and the color-straight expectation val
holds exactly, up to corrections vanishing whenmb→`. It is
not difficult to see, for example, that proceeding from a tw
body nonrelativistic meson to a three-body nonrelativis
baryon does not modify the relation. We do not illustrate
here, and instead give a general field-theoretic proof.
2-2



m

om
tra
n

os

i-

e

r
h

w

in

o

e

d-
ity
,

rk
the
t

FOUR-FERMION HEAVY QUARK OPERATORS AND . . . PHYSICAL REVIEW D 59 034012
Let us start with the operatorOs-s5b̄bq̄Gq and consider
the corresponding light quark current and its transition a
plitude:

JG~x!5q̄Gq~x!;
1

2MHb

^H̃b~qW !uJG~0!uHb~0!&5AG~qW !.

~8!

The current does not need to be scalar; any particular c
ponent can even be considered separately. Likewise, the
sition amplitude may not be a true scalar. The initial a
final states may differ. The following relation holds:

1

2MHb

^H̃b~0!ub̄bq̄Gq~0!uHb~0!&5E d3qW

~2p!3
AG~qW !.

~9!

To prove this relation, we write explicitly the stateH̃b(qW )
with non-zero momentum as a result of the Lorentz bo
from rest to the velocityvW 5qW /MH̃b

:

uH̃b~qW !&5UFLS qW

MH̃b

D G uH̃b~0!&, ~10!

whereU@L(qW /MH̃b
)# is the corresponding Lorentz boost un

tary operator. This operator is given by@4#

U@L~vW !#5e2 inW •KW u, sinhu5uvW u, nW 5
vW

uvW u
; ~11!

the boost generatorsKW can be expressed in terms of th
symmetric energy-momentum tensorTmn :

Ki5E d3xW~xiT002x0T0i ! ~12!

@x0 is fixed in Eq.~10! and can be put to zero#. SinceqW does
not scale withmb , we actually need to retain only the linea
in vW terms, which leads to simplifications. For example, t
polarization degrees of freedom ofH̃b ~if any! do not change
under the boost.

The whole energy-momentum tensor consists of t
parts:

Tmn5Tmn
light1Tmn

heavy

5Tmn
light1

1

4
b̄@gm~ iDW !n1gn~ iDW !m2~iDQ !ngm2~ iDQ !mgn#b,

~13!

whereTmn
light is the usual QCD energy-momentum tensor

cluding only light fields; it is free of the large parametermb .
In the heavy quark limit we need to retain only the part
Tmn which is proportional tomb :

Ki5E d3xxiT00~x!5mbE d3xxi b̄b~x!1O~mb
0!. ~14!
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Here we have used the equations of motion for theb field.
The anomalous terms are included in the last term~see, e.g.,
@5#, Sec. II!. Therefore, we arrive at

^H̃b~qW !uJG~0!uHb~0!&5^H̃b~0!uei *d3z~qW zW !b̄b~zW !JG~0!uHb~0!&.
~15!

The heavy quark limit leads to further simplifications: th
number of heavy quarks becomes fixed andb itself becomes
static. Then in the single-b sector the following identity
holds:

ei *d3z f~zW !b̄b~zW !5E d3zei f ~zW !b̄b~z!. ~16!

Indeed, in the single-b sector any product of the staticb
quark bilinears is very simple:

~ b̄s1b!~zW1! . . . ~ b̄snb!~zWn!

5d3~zW12zWn! . . . d3~zWn212zWn!

3b̄s1 . . . snb~zn!usingleb ~17!

(sk are arbitrary spin matrices!. Using this, we obtain

ei *d3z f~zW !b̄b~zW !5 (
n50

`
i n

n! E d3z1 . . . d3znf ~zW1! . . . f ~zWn!

3b̄b~zW1! . . . b̄b~zWn!

5 (
n50

`
i n

n! E d3z fn~zW !b̄b~zW !

5E d3zei f ~zW !b̄b~zW !. ~18!

Taking f (zW)5qW zW we rewrite Eq.~15! in the desired form:

^H̃b~qW !uJG~0!uHb~0!&

5^H̃b~0!u E d3zeiqW zWb̄b~zW !JG~0!uHb~0!&. ~19!

Equation ~19! provides the discussed quantum fiel
theory generalization of the notion of the light-quark dens
q̄Gq at arbitrary separation; one can define, for example

uCG~x!uHb

2 5E d3qW

~2p!3
eiqW xW

1

2MHb

^Hb~qW !uJG~0!uHb~0!&.

~20!

In what follows we are interested in local heavy qua
operators, that is when the light field operators enter at
same point as theb quark field. It is these operators tha
appear in the heavy quark expansion. Integrating Eq.~19!

over qW we get
2-3
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DAN PIRJOL AND NIKOLAI URALTSEV PHYSICAL REVIEW D 59 034012
^H̃b~0!ub̄b~0!JG~0!uHb~0!&

5E d3qW

~2p!3
^H̃b~qW !uJG~0!uHb~0!&. ~21!

This is our master equation. We see that, in principle, i
even more general than was stated earlier:JG(0) can be an
arbitrary gauge-invariant operator composed of the li
fields, and not necessarily a light-quark bilinear. Besides,
relation holds not only for the truly forward transition matr
elements. The initial and final state hadrons can be differ
Generally, they can even have different momenta; howe
it must be assumed that these momenta are small comp
to mb – say, of the typical light hadron mass scale. Since
equation involves the integration over all transferred m
menta, varying the relative momentum of the final and init
hadrons have no effect whatsoever, as it should be.

Informative relations emerge, on the other hand, if
vary the heavy flavor stateuH̃b& ~or uHb&) within the corre-
sponding heavy-spin multiplet. Since theb-quark spin de-
couples, this yields similar relations for the color-straig
spin-triplet operators containingb̄sW b, that is, with the axial-
vectorb-quark current. In particular,

^H̃b~0!ub̄skb~0!JG~0!uHb~0!&

5E d3qW

~2p!3
^SkH̃b~qW !uJG~0!uHb~0!&, ~22!

whereSW /2 is theb-quark spin operator. Formally one obtain
this by using, for example, the representation

uSkH̃b&5E d3xW b̄skb~x!uH̃b&

and applying relations~16!,~17! generalized to include the
b-quark spin matrices. Alternatively, it follows merely from
the heavy-spin symmetry relation between matrix eleme
of the operatorsb̄bJG(x) and b̄skbJG(x).

It is worthwhile to give a less rigorous but a transpare
QM derivation of the master equation Eq.~21!. Let us rep-
resent the expectation value of the color-straight oper
b̄sbJG(0) (s is either the unit or a spin matrix! by the sum
over possible intermediate states:

^H̃bub̄sb~0!JG~0!uHb&

5(
n
E d3qW

~2p!32En

^H̃bub̄sb~0!un~qW !&

3^n~qW !uJG~0!uHb&. ~23!

The statesun(qW )& are hadrons with a singleb quark. In the
effective theory the integral over momenta must converg
a hadronic scale which is much smaller thanmb . Then only
the elastic transition~i.e., whereH̃b and un& belong to the
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same hyperfine multiplet differing, at most, by the hea
quark spin alignment ifs is not a unit matrix! survive in the
sum: all excited transition amplitudes generated by the he
quark currentb̄sb(0) are either proportional to 1/mb, or to
velocity vW .qW /mb of the heavy hadron stateun(qW )& @6#.
Moreover, sincevW→0 the elastic amplitude is unity up t
corrections;q2/mb

2 we neglect. Thus, Eq.~21! is repro-
duced.

Let us illustrate the validity of relation~21! diagrammati-
cally, in respect to the perturbative corrections. Relev
order-as corrections to the expectation value of the fou
fermion operator are drawn in Figs. 1 whereas Fig. 2 sh
the corrections to the form factor. The gluon exchanges
volving only light quarks merely renormalize the current
question, and we do not consider them. The correcti
dressing the heavy-quark part vanish due to conservatio
the b-quark current ~we consider gluon momenta muc
smaller thanmb).

In the nonrelativistic approximation for the light quark th
‘‘crossed’’ diagrams are suppressed, and the remaining
grams Figs. 1~a! and 1~b! have obvious counterparts in th
corresponding diagrams in Fig. 2. Going beyond a sim
potential approximation~e.g., atk2@mq

2), however brings in
diagrams Figs. 1~c! and 1~d! as well. In fact, one should kee
in mind that in Eq.~21! the integration of the formfactor is
performed only over the spacelike components ofqW . This
fixes the spacelike separation of theb̄b and q̄Gq currents to
be zero, howeverper sedoes not specify the timelike sepa
ration of the vertices which is actually determined by t

FIG. 1. Diagrams for the renormalization of the four-fermio
operators.

FIG. 2. Diagrams contributing to the light quark form factor
a heavy hadron.
2-4
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FOUR-FERMION HEAVY QUARK OPERATORS AND . . . PHYSICAL REVIEW D 59 034012
heavy quark propagators. In reality, a single diagram F
2~a! corresponds to the sum of diagrams~a! and~c! in Fig. 1,
and likewise with diagrams~b!. In the coordinate represen
tation, the heavy quark propagator in Fig. 1~a! is q(2x0)
and in Fig. 1~c! it is q(x0) thus yielding unity in the sum
~unity means absence of any propagation, as in Fig. 2!.

Let us illustrate it in the usual momentum representati
Denoting the gluon momentum in Fig. 1 byk, we keep the
spacelike components ofk fixed and consider the integra
over v[k0 . The diagrams~a! and ~c! are given, respec
tively, by

1

2v2 i e
•A~kW ,v! and

1

v2 i e
•A~kW ,v!, ~24!

whereA(kW ,v) generically denotes the ‘‘light’’ part of the
diagram~including the gluon propagator!. Since

1

2v2 i e
1

1

v2 i e
52p id~v!,

the integration dk0/2p i of the sum of Figs. 1~a! and 1~c!
amounts merely to settingk050 in the rest of the diagram
~This is a special case of the more general relations give
Appendix A.! Then it exactly coincides with Fig. 2~a! if kW is
identified with the gluon momentumlW in the latter. Although
the gluon momentum transferlW is not generally equal toqW
but can differ by a primordial momentum in the bound sta
integration over allqW is equivalent to integration over d3 lW.
Similarly, the sum of the diagrams in Figs. 1~b! and 1~d!

yields the integral of Fig. 2~b! over qW .
It is clear that this proof is generalized for an arbitra

number of gluon exchanges between the ‘‘light’’ and ‘heav
parts of the diagrams, or the case of the axialb-quark current
~see Appendix A!. It is imperative, however, that theb quark
current is color-singlet.

III. APPLICATIONS

We now turn to some applications of the relations~21!,
~22!.

A. Perturbative renormalization
of the color-straight operators

In general, the composite heavy-quark operators dep
on the renormalization pointm which is assumed to satisf
the ‘‘hybrid’’ hierarchy conditionLQCD!m!mb . The most
interesting is the logarithmic renormalization. This ‘‘hybrid
renormalization was first considered in@7–9# where the one-
loop hybrid anomalous dimensions were calculated for
quark bilinears and four-fermion operators.

In the expressions of the matrix elements of the col
straight operatorsb̄(sk)bq̄Gq via the integral of the transi
tion matrix element of the light quarks current, th
normalization-point dependence can appear in two wa
first, as am-dependence of the light-quark current itself. Th
is a usual, ‘‘ultraviolet’’ renormalization sincem is an ultra-
03401
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violet cutoff in respect to the light degrees of freedom. T
second way the dependence on the UV cutoff can enter is
the divergence of the integral over the momentum of
final state. Indeed, in the effective theory with the cutoffm
the perturbative states with momenta abovem are absent,

while the form factors withuqW u!m coincide with those in
full QCD. Therefore, if in full QCD the integral of the am

plitude in Eqs.~21!,~22! does not converge atqW ;LQCD but
has a log behavior in the hybrid domain, this leads to
logarithmic dependence of the matrix element onm.

In practice we are interested in vector or axial vector c
rents of light quarks. They are conserved and their ano
lous dimensions vanish~for the flavor-singlet axial-vector
current there is an anomalous dimension in higher order
as related to the axial triangle anomaly!. Therefore we will
phrase our discussion neglecting this type of renormal
tion.

The asymptotics of the actual light quark current for
factors of the heavy flavor hadrons is given by the pertur
tive diagrams where hard gluons transfer the high mom
tum from the light quark to the heavy one. The tree-lev
order-as diagrams are shown in Figs. 2~a! and 2~b!. By vir-
tue of the relations Eqs.~21!,~22! they determineone-loop
renormalization of the four-fermion operators. It is easy
see that these diagrams yield amplitudes fading out at l

as 1/qW 4 ~the odd powers ofqW do not contribute to the
integral!.1 In principle, depending on the particular form o

G, the asymptotics of these diagrams may have the 1/uqW u3

term—it is given by

4pas

qW 4

1

2MHb

^H̃b~0!ub̄tabq̄~g0q”G2Gqg” 0!taq~0!uHb~0!&

~25!

(b̄tab→b̄sW tab for the spin-flip transitions!. The matrix ele-
ment may not vanish forb-flavored hadrons with nonvanish
ing spin of light degrees of freedom~let us recall thatq0

50). However, in this matrix element both hadrons are

rest, therefore any such 1/uqW u3 term vanishes upon integratin

over the direction ofqW . The fact of vanishing of the leading
order hybrid anomalous dimension for the operators of

form (b̄b)„q̄gm(g5)q… was noted in@8# already in the mid
1980s as a result of simple calculations of the one-loop d
grams. Our relation gives it an alternative interpretation.

A closer look reveals, however, that the cancellation

the leading 1/uqW u3 asymptotics does not hold already at t
one-loop level. The asymptotics has actually the fo
;as

2(qW )/uqW u3 which emerges from the diagrams shown
Figs. 3 ~other diagrams decrease faster in the Feynm

1Similar quark counting rules in heavy mesons foruqW u!mb have
been applied, e.g., in@10#.
2-5
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FIG. 3. Order-as
2 diagrams determining the asymptotics of the light quark form factor of a heavy hadron. Similar diagrams w

twisted gluon lines are not shown.
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gauge!. This leads to a nonzero anomalous dimension of
color-straight operators at orderas

2 and their mixing with
color-octet operators. In particular, the evaluation of the o
loop amplitudes leads to

AG~qW !5

p2

2
as

2

uqW u3 F S 12
1

Nc
2D ^H̃bub̄bq̄GquHb&

2MHb

1NcS 12
4

Nc
2D ^H̃bub̄tabq̄GtaquHb&

2MHb

G . ~26!

Equation~21! then yields for the UV part of the four-fermio
operator

Os2s5
as

2

4 F S 12
1

Nc
2D b̄bq̄Gq1NcS 12

4

Nc
2D b̄tabq̄GtaqG

3 ln
Luv

m
1finite piece , ~27!

and likewise for the spin-triplet operators.
A direct calculation of the two-loop anomalous dime

sions confirms this. The computational details are descri
in Appendix B. Here we only quote the result. Let us deno2

m
d

dmS Oi

Ti D 5ĝS Oi

Ti D . ~28!

Then

2The anomalous dimensions of the operators are often defi
with the opposite sign. We prefer to use this convention where
meaning of the anomalous and canonical dimensions are the s
That is, the scaling properties of the operators are given by the
~rather than difference! of their canonical and anomalous dime
sions.
03401
e
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g1154p2S 12
1

Nc
2D S as

4p D 2

1O~as
3!,

g1254p2NcS 12
4

Nc
2D S as

4p D 2

1O~as
3!

g215p2NcS 12
1

Nc
2D S 12

4

Nc
2D S as

4p D 2

1O~as
3!,

g2253Nc

as

4p
1O~as

2!. ~29!

We note that sinceg11, g12, and g21 vanish to orderas ,
these two-loop anomalous dimensions do not depend on
renormalization scheme. Forg22 the second-order terms de
pend on the scheme and we do not consider them.

Additional terms are present for the flavor-singlet ope
tors: for the vector current onlyg22 is modified,g22→g22
2 4

3 nf(as/4p). If the operator has the flavor-singlet axi
current then only the diagonal anomalous dimension for
color-straight operator changes, g11→g1126nf(Nc
21/Nc)(as/4p)2.

It is interesting that, althoughg11, g12, andg21 already
appear in the second loop, they are universal. In particu
they are the same for both timelike and spacelike com
nents of the light quark currents.A priori this does not need
to hold. We expect that this universality will be violated
the next order inas .

The two-loop anomalous dimensions are enhanced, t
contain a large factorp2. Neglecting them introduces a nu
merical uncertainty in the running of operators. We can
timate it by simply setting ln(m8/m) to unity. The correspond-
ing corrections atas51 constitute about 15 to 30%. Thi
provides additional justification for the standard choice
as(m)51 as the low~hadronic! normalization scale.

We point out that the naive estimate of the power of t
asymptotics 1/qW 4 of the light current form factors existing in
the literature@10# is not correct: the actual fall off is only
1/uqW u3 as shown in Eq.~26!, which, however, is generate
only by the exchange of two gluons with momenta;qW . ~The
modification for the spin-triplet operators is obvious.! This
asymptotics can be easily RG improved using relations E
~21!,~22!. To the NLO it amounts to adding the facto

ed
e
e.

m
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@as(qW )/as(m)#23Nc/2b0
„or @as(qW )/as(m)# (23Nc14/3nf )/2b0

for the flavor-singlet vector current… in front of the color-
octet operator, withm the normalization point of the opera
tors. Since the gap between the typical hadronic massmhad
andmb is not too large in the logarithmic scale, this obse
vation has, probably, rather theoretical than practical sign
cance.

It turns out that in the relativistic system the Coulom
interaction is still strong enough to make the wave funct
density not approaching a literal constant at zero separa
but having the small logarithmic dependence on dista
which appears only at the level of loop corrections, at or
;as

2 .
Based on the application to the lifetimes of heavy hadr

~first of all, in B mesons! and routine application of factor
ization, a standard choice for the basis for four-fermion o
erators ascending to the original papers on the subject
@11,12#

Osingl5~ b̄G~1!q!~ q̄G~2!b!, Ooct5~ b̄taG~1!q!~ q̄taG~2!b!
~30!

(ta5la/2,la are the usual Gell-Mann color matrices!, that is
the s-channel color-singlet and color-octet operators. It a
pears, however, that a better choice is to classify the op
tors according to the color structure in thet-channel:

O5~ b̄iG
~1!qj !~ q̄kG

~2!bl !•d i l dk j ,

T5~ b̄iG
~1!qj !~ q̄kG

~2!bl !•t i l
a tk j

a . ~31!

In the large-Nc limit these two bases coincide~up to permu-
tation!:

Osingl52T1
1

Nc
O, Ooct5

1

2S 12
1

Nc
2D O2

1

Nc
T ~32!

O52Ooct1
1

Nc
Osingl, T5

1

2S 12
1

Nc
2D Osingl2

1

Nc
Ooct.

~33!

The t-channel octet operatorsT also diagonalize the one-loo
anomalous dimension matrix; its value depends on the t
of the current, flavor-singlet or octet@8#.

We parametrize these generic expectation values enc
tered in actual weak decays as

1

2MB
^BuOVuB&5vV ,

1

2MB
^BuTVuB&5tV ~34!

1

2MB
^BuOAuB&5vA ,

1

2MB
^BuTAuB&5tA .

~35!

The parametersv,t have dimensionm3 and are constants in
the heavy quark limit. They can be valence or nonvalen
the flavor of the light quark in the operator will be indicate
as a superscript.
03401
-
-

n
on
e
r

s

-
as

-
a-

e

n-

e;

For Lb-baryons we denote

1

2MLb

^LbuOVuLb&5l,
1

2MLb

^LbuTVuLb&52
2

3
l8;

~36!

in the valence approximationl85l. The values ofl for u
and d quarks are equal, likewise forl8. These valence ex
pectation values will be normally used without flavor inde

A remark is appropriate to conclude the discussion of
perturbative renormalization. Strictly speaking, the flav
singlet operators can be renormalized in somewhat diffe
ways depending on the prescription to treat the tadpole-t
closed loops. The free quark loop by dimensional count
scales with the UV cutoffm like m3, and describes a possibl
power mixing with theD53 ‘‘unit’’ heavy-quark operator
b̄b already at orderas

0 . Although for practically relevant
operators such a ‘‘bare’’ mixing vanishes for the usual w
to regulate the light quark loop, one can raise the ques
where this freedom is reflected in relations~21!,~22! for a
generic G. The resolution is rather straightforward: th
flavor-singlet currentq̄Gq also requires regularization of th
closed fermion loop and,a priori admits mixing with the unit
operator~the tadpole graph!. This operator does not lead t
any physical transition atqÞ0 but to the forward amplitude
with qW 50. A formally defined currentq̄Gq may thus lead to
an additional term proportional tod3(qW ) in the transition
amplitudeA(qW ), which would reproduce the tadpole term
the expectation value.

Similarly, strictly speaking one could have chosen an
bitrary convention for the phases of the statesuH̃b(qW )& with
different momentaqW . This would redefine the phase of th
transition amplitudeA(qW ). In our relations such a freedom
was eliminated by adopting Eqs.~11!,~12!,~14! which en-
sures, for example, the proper analytic properties of the tr
sition amplitudes.

In the purely perturbative calculations one can, in pr
ciple, consider not only the actual physical amplitudes,
also similar transition amplitude induced by the light qua
currents carrying color. Applying to them relations similar
Eq. ~21! and ~22! one would need to consider the colo
nonsinglet quarkin or out states. This case requires certa
care since such amplitudes may have additional~gauge-
dependent! infrared singularities.

It is worth reiterating that in our analysis it is assum
that all heavy quark operators are renormalized at a s
well below mb , which implies a nontrivial—even if finite—
renormalization when passing from the full QCD fields.
particular, the vectorb̄b and axialb̄sW b currents both do not
renormalize in this domain; however, they run differen
when evolved down from the scale;mb . While b̄g0b

→b̄b is not renormalized, the short-distance renormalizat
of b̄gkg5b→b̄skb slightly suppresses it:

z.12
2as

3p
1O~as

2!
2-7
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~the second-order correction has been also calculated@13#!.
This is not, however, the only short-distance contribut
differentiating the renormalization which, in general, d
pends on the exact form of the operators. We will not furth
dwell on these corrections in our numerical analysis.

B. Estimates of the color-straight expectation
values in B mesons

Relations~21!,~22! open up a possibility for an alternativ
evaluation of the expectation values of the color-straight
erators. This requires knowledge of the light-quark-curr
formfactors of heavy hadrons. The direct experimental inf
mation about them is scarce. Therefore, we have to assu
reasonable model. Our general strategy for all expecta
values of interest is the same: decompose the transition
plitude into the invariant formfactors, and adopt a model
the formfactors satisfying known constraints.

For the family of Lb baryons, the number of possib
amplitudes is limited due to the fact that the light degrees
freedom are spinless—one can construct only scalar, ve
and tensor currents while pseudoscalar and axial amplitu
vanish. There are no axial analogues of the expectation
ues in Eq.~36!. For mesons all amplitudes are possible. O
main attention will be devoted to the vector and axial c
rents, due to the chiral invariance of phenomenologically
evant four-fermion operators. We do not consider the ten
current, and only briefly comment on the scalar one.

There is only one formfactor for the vector current~for
each flavor content! for both B and Lb describing the only
nonvanishing timelike component:

^B~qW !uJmuB~0!&52vmFB~q2!

^Lb~qW !uJmuLb~0!&5vmFLb
~q2!ū~v,s8!u~v,s!.

~37!

One important constraint on the formfactors is their value
q250. The values ofFB,Lb

(0) are fixed by the correspond

ing charge of the hadron: it is 1 for the current of a valen
quark, and zero for a ‘‘sea’’ light flavor.3 For the amplitude
in Eqs.~37! the integration overqW yields

vmE d3qW

~2p!3
F~q2!5

vm

4p2E0

`

dtAtF~2t ! . ~38!

The valence form factors are expected to decrease
nonzeroqW 2. For the isovector formfactor the slope atq2

50 ~related to the corresponding charge radius! can be esti-
mated in terms of experimentally observable quantities by
analogue of the Cabibbo-Radicati sum rule for heavy h
rons @14#:

3We adopt the convention whereB mesons have the quark conte

bq̄.
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dF~q2!

dq2 uq250
5

1

8aQ2(exc
~2J11!

G~Bexc→Bg!

ukW u3
~39!

where the sum runs over excitations ofB with spin J andQ
is the light quark charge in units ofe ~a similar relation holds
for baryons as well!, and the nonresonant contributions a
neglected. This slope is not yet known experimentally w
enough.

Relations following from Eq.~38! can be used in the lat
tice simulations to evaluate the expectation values, by m
suring the transition formfactors in a few kinematic poin
and interpolating between them. This type of lattice measu
ments can be simpler than for the heavy-quark current tr
sitions, since the heavy quarks remain at rest and the
menta involved in the process do not scale withmQ . This
makes the static approximation rather straightforward.

If we represent the form factor as a sum over singularit
in the t-channel

F~q2!5(
n

cnMn
2

Mn
22q2

, ~40!

the integral Eq.~38! takes the form

E d3qW

~2p!3
F~q2!52

1

4p(
n

cnMn
3 ; ~41!

we have an additional constraint

(
n

cnMn
250 ~42!

following from the fact that the transition amplitudes d
crease faster than 1/qW 2.

It is natural to consider the simplest model of saturat
containing only two lowest-lying 12 states with appropriate
isospin quantum numbers. For example, forI 51 we use
r(770) andr(1450). With fixed normalization atq250 and
the constraint~42! this model predicts the value of the inte
gral in terms of the two masses. It is worth noting that su
a model would obviously lead to equal expectation values
the operators inB andLb . Imposing an additional constrain
from the slope of the form factors would allow one to fix a
residues in a three-pole model as well, which can be ho
to yield a more accurate estimate.

A word of reservation is in order at this point. Such
saturation of the nucleon form factors by two lowestt-
channel resonances is known to provide a good approxi
tion for moderateq2 where the experimental form factors a
described by the double-pole expressions. There is no g
eral theoretical justification for such a coincidence, and m
resonances are expected to play a role for largerq2. In par-
ticular, at2q2.1 GeV2 the form factor can decrease faste
Because of the phase space factor the role of the doma
largeq2 is enhanced. The contribution of higher states, wh
affecting a little the formfactors nearq250, still can signifi-
cantly change the integral~41!. We will return to this point
later.
2-8
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It is clear that since the asymptotics of the amplitudes
an odd power of 1/uqW u, their representation by a finite num
ber of the t-channel resonances is not possible. The t
spectrum of thet-channel states must extend to arbitrary hi
masses. It applies even if there were no typical for QC
log-like dependence of the asymptotics 1/uqW u3. It does not
affect our estimates since we evaluate the operators in
effective theory where the high-momentum component
the hadrons is peeled off.

Addressing the color-straight operators containing
axial light-quark current~which does not vanish inB me-
sons! we note that its matrix elements are generally d
scribed by two form factors, just as in the well-known ca
of spin-12 fermions. These are analogues of the axial-cha
and weak magnetism terms. Spontaneous breaking of
chiral symmetry modifies the value of the axial-charge fo
factor from its symmetric limit of 1 atq250. Nevertheless
for the isovector current, its conservation]mJm5(x)50 in the
chiral limit leads to a relation between the form factors,
that only one, the axial-charge form factor is independent
in the case of the vector current. Atq250 this relation
equates the axial-charge form factor to theB* Bp couplingg
~the heavy-quark analogue of the Goldberger-Treiman r
tion!. Given the value ofg, therefore, one can evaluate th
expectation value exactly as outlined for the vector curre

For the isosinglet axial current, one has to take into c
sideration the anomalous term, the topological charge d
sity Q:

]mJm5
~0!~x!52i q̄m̂qg5q~x!1nfQ~x!,

Q~x!5
as

4p
TrGabG̃ab~x! ~43!

with m̂q the light quark mass matrix. The matrix elements
Q over theB meson states are not known, and the abo
relation appears to be less constraining. In the large-Nc limit
the difference between singlet and nonsinglet formfactor
expected to disappear; however, the practical validity of t
approximation for the anomalous term is questionable. Th
problems are addressed in the next section.

Let us briefly mention the case of the scalar current.
though the corresponding formfactor is not fixed atq250, its
value for the valence quarks can be obtained from theSU(3)
mass splittings:

1

2MB
^B1uūu~0!uB1&.

MBs
2MB

ms
.0.7,

1

2MLb

^Lbuūu~0!uLb&.
MJb

2MLb

ms
.1.4.

~44!

This estimate is obtained with the help of the Zweig rule in
similar way as done in@15# to extract the value of the
nucleons-term from theSU(3) splittings in the baryon oc
tet. We neglected here the light quark massesmu,d and took
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ms(1 GeV).130 MeV. The mass of the baryonJb has
not been yet measured; the above estimate used the pr
tion MJb

55805.768.1 MeV @16#. The normalization point

dependence ofms in these relations reproduces the depe
dence of the scalar current.

In what follows we will apply the described strategy
the evaluation of a few expectation values of operators w
the vector and axial light quark currents. First, however,
make a few qualitative observations.

In the case of the~valence! vector current we haveF(0)
51. It is usually believed thatuF(q2)u,1 at spacelikeq. Let
us further assume thatF(q2) is small enough above a certa
scalem, so that we can neglect it there:

F~q2!.0 at 2q2.m2. ~45!

Then we get an upper bound

u
1

2MB
^Hbub̄gmbq̄gmquHb&u,

m3

6p2
50.017 GeV3 ~46!

for m51 GeV. This bound is of the type discussed in@3#; the
numerical coefficient coincides with the one given there.

A possible justification for the assumption, Eq.~45!, can
be given as follows. In the effective theory with the norma
ization pointm the momenta of fields exceedingm are ab-
sent, whether or not the full theory yields a logarithm
‘‘tail’’ at large momenta. For example, it is not possible
exchange a gluon with momentumuqW u.m in such a theory.
The exact shape of the formfactor would depend on the c
crete realization of the effective theory. The amplitude m
not vanish exactly due to multiple gluon exchanges w
uqW u,m, however would then decrease exponentially.

A literal steplike formfactor saturating the bound~46! is
clearly unrealistic. Therefore, we can assume instead tha

uF~q2!u,e2qW 2/m2
, ~47!

which results in

u
1

2MB
^Hbub̄gmbq̄gmquHb&u,

m3

8p3/2
50.022 GeV3 ~48!

with the same value form as in Eq. ~46!. Moreover, the
exponential ansatz e2qW 2/m2

for the formfactor withm2 ad-
justed to reproduce the ‘‘charge’’ radius, seems a reason
model for the possible behavior of the valence form factor
purely soft degrees of freedom. As expected, in this mo
the momentum integrals of the formfactors are noticea
smaller than in the two-pole ansatz with the same slope
q250:

1

2MB
^Hbub̄gmbq̄gmquHb&5F~0!

1

8p3/2S M1
2M2

2

M1
21M2

2D 3/2

,

~49!
2-9
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m25
M1

2M2
2

M1
21M2

2
.

The above discussed bounds rely on the assumption
uF(q2)u,1. It always holds in the nonrelativistic QM an
usually is taken for granted. However, we do not know
general rigorous proof in QCD. Nevertheless, there are s
indirect arguments that it must hold, which we outline he
For the isovector current one can employ the equal-t
commutation relation (Jm

a can be both the vectorVm
a

5q̄gm
1
2 taq or the axial currentAm

a 5q̄gmg5
1
2 taq)

@J0
1~xW !,J0

2~yW !#5d3~xW2yW !2V0
3~xW ! ~50!

to represent 12uF(q2)u2 at q2,0 as a difference of two
sums of the distinct transition probabilities:

uF~qW 2!u2512S (
n

uFn
1u22(

m
uFm

2u2D . ~51!

Here uFn
1u2,uFm

2u2 schematically denote the transition pro

abilities in, say,B2 meson induced by the currentsūg0d and
d̄g0u with the momentum transferqW , respectively~and simi-
larly for Lb). In the second sum only the states withI 5 3

2

contribute. Since there are no valenced̄ quarks inB2, in the
large-Nc limit the last term with the wrong sign would van
ish. Additionally, in this limit the isoscalar meson form fa
tor is expected to coincide with the isovector one. Therefo
the large-Nc arguments allow to establish such a QM bou
for all form factors of interest.

The situation seems different for the axial~pseudoscalar!
formfactors. They do not have a natural normalization
small momentum. Moreover, the amplitudes generally h
an enhancement due to the pion pole~the effect absent in
nonrelativistic QM!. However, the domainqW 2;mp

2 yields a
very small contribution to the integral@see, e.g., Eq.~46!#.
The significant contribution can originate only from m
menta*1 GeV where one expects the effects of chiral sy
metry breaking to become insignificant. The equal-time co
mutation relation~50! can still be used to derive a sum ru
of the type~51! for the matrix elements of the axial isovect
current. Its explicit form is similar to Eq.~51! and reads

uG1~qW 2!u2512S (
n

uGn
1u22(

m
uGm

2u2D ~52!

with G1(q2) defined below in Eq.~68! anduGn
1u2,uGm

2u2 are
the analogues of theFn amplitudes for transitions induced b
the axial vector current acting on aB meson. Atq250 this
sum rule is just the familiar Adler-Weisberger sum rule a
the amplitudesGn are related to pion couplings between t
ground and excited states. The explicit form of these s
rules for heavy mesons and baryons can be found in@14,17#.
Thus, we expect the type of bounds~46!, ~48! to hold for the
axial vector current expectation values as well.
03401
at

e
.
e

e,

t
e

-
-

m

IV. NUMERICAL ESTIMATES

In this section we estimate the expectation values of
color-straight four-fermion operators relevant for the lif
times of b-flavored hadrons. The light quark fields are le
handed; the Penguin diagrams bring in the right-han
fields as well. Nevertheless, the chiral structure of the c
rents admits only the vector or axial vector light quark cu
rents. Since the coefficient functions can include the mom
tum of the decayingb hadron~its velocity!, the timelike and
spacelike components enter, in general, with differ
weights; the three-dimensional rotation invariance is s
preserved. Finally, since the forward matrix elements
considered, only the parity-conserving~three-dimensional!
scalar expectation values survive. Therefore, we need to
sider the operators

OV5~ b̄b!~ q̄g0q!5~ b̄gmb!~ q̄gmq!,

OA52~ b̄sW b!~ q̄gW g5q!5~ b̄gmg5b!~ q̄gmg5q!.
~53!

As was mentioned, the expectation value of the operatorOA
in Lb vanishes.

A. Vector current

We first consider the case ofB mesons. Assuming only
isospin symmetry, we define the isovector and isoscalar fo
quark matrix elements by

1

2MB
^Bi ub̄gmbq̄tagmquBj&5V3t i j

a

1

2MB
^Bi ub̄gmb (

q5u,d
q̄gmquBj&5V1d i j . ~54!

The indicesi , j label the respective state in the isospin do
blet i 5(d̄,2ū). Accordingly, we introduce the isospin
triplet and singlet vector form factors

1

2MB
^Bi~qW !uq̄tagmquBj~0!&5vmF3~q2!t i j

a

1

2MB
^Bi~qW !u (

q5u,d
q̄gmquBj~0!&52vmF1~q2!d i j ,

~55!

with the normalization conditionsF1(0)5F3(0)51. Using
the two-pole ansatz saturated byr(770) andr(1450) for the
nonsinglet currentF3 , we get from Eqs.~40!–~42!

V3.
1

4p

M1
2M2

2

M11M2
.0.045 GeV3. ~56!

It is natural to saturate theI 50 form factorF1 by the states
v(782) andv(1420). It then leads to almost the same n
merical estimate forV1 as forV3 . The reason is obviously an
almost exact degeneracy of the vector states in the isove
and isosinglet channels. Although it perfectly fits the larg
2-10
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FOUR-FERMION HEAVY QUARK OPERATORS AND . . . PHYSICAL REVIEW D 59 034012
Nc picture, we cannot be sure what is the actual accurac
such a conclusion. Nevertheless, in view of such a supp
sion of the difference, we will take the two different comb
nations of the expectation values which actually paramet
the valence and nonvalence contributions:

V12V3

2
5

1

2MB
^B2ub̄gmbūgmuuB2&.20.044 GeV3

~57!

V11V3

2
5

1

2MB
^B2ub̄gmbd̄gmduB2&.O~1024 GeV3!.

The last number, clearly, is at best an order of magnit
estimate.

We can try to estimate the violation of theSU(3) flavor
symmetry considering the expectation value ofb̄gmbs̄gms in
Bs mesons. For this we saturate the form factor with
vector s̄s statesf(1020) andf(1680), which correspond
to the ‘‘ideal’’ mixing in thev2f system@18#. In this case
we would get

1

2MB
^Bsub̄gmbs̄gmsuBs&.20.085 GeV3, ~58!

i.e., almost twice larger than the first estimate~57!.
A closer look reveals, however, that the above expecta

values are saturated at rather high momenta. Half of the ‘
lence’’ value comes fromuqW u.1.5 GeV, and from even
higher momenta inBs . For this reason these estimates e
ceed the bounds~46!,~48! discussed in the previous sectio
for a reasonable scalem.1 GeV. Adopting the exponentia
ansatz for the form factor we get

1

2MB
^B2ub̄gmbūgmuuB2&.20.007 GeV3

1

2MB
^Bsub̄gmbs̄gmsuBs&.20.015 GeV3. ~59!

A somewhat unexpected result of these simple estim
is the apparently large amount ofSU(3) breaking in Eqs.
~57!,~58!. While it is not clear to what extent this is an art
fact of our use of the simple two-pole ansatz for the fo
factors over a wide domain ofq2, it is worth noting that a
simple mechanism exists which could account for it. It
well-known that the isovector charge radius of a hadron
verges in the chiral limit@19#. This indicates that the contri
bution of the low-momentum region in the integral over t
form factor~38! is more suppressed in nonstrange B mes
compared to the Bs case. Since the two-pole model does n
capture the origin of this phenomenon~the contribution of
the two-bodypp intermediate state in thet-channel!, it is
conceivable that the magnitude ofSU(3) violation in the
matrix elements does exceed a few percent.

It is interesting to compare the above estimates with
evaluation based on vacuum factorization. Both types of
timates have the sameO(Nc

0) scaling inNc . However, the
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vacuum contribution for the color-straight operators
O(Nc

0), similar to other meson states. This is in contrast
the case of thet-channel octet operators where the vacuu
state isNc-enhanced. Therefore, the factorization estimate
not expected to give an accurate result. For the valence
pectation value one has

1

2MB
^B2ub̄gmbūgmuuB2& factor52

1

4Nc
f̃ B

2~m!MB ~60!

~the nonvalence value vanishes!. Here f̃ B denotes the annihi-
lation constant ofB for the b̄gag5u current normalized at a
low point m where factorization must be applied@7,8#, in
contrast to the physicalf B defined for the current normalize
at m@mb :

f̃ B~m!. f BF as~m!

as~mb!G
22/b0

. ~61!

The physical value of f B lies, probably, around
160 MeV. However, to the leading order in 1/mb we work
in, it is more consistent to use the asymptotic value wh
differs from the physical one by 1/mb and nonlogarithmic
perturbative corrections. These decrease the physical v
of f B by about 20%@20#, so that we use in the right-han
side ~RHS! of Eq. ~61! f B

static5200 MeV. Therefore, we

adopt f̃ B5160 MeV for as(m)51, yielding

1

2MB
^B2ub̄gmbūgmuuB2& factor.20.011 GeV3, ~62!

which is significantly lower than Eq.~57!.
The fact that the corrections to factorization can be s

nificant, is expected. Unfortunately, there are good reason
question the accuracy of the alternative estimate~57! either,
and a too largeSU(3) breaking is another indication. W
think that it is justified to consider the estimate~57! for the
valence expectation value rather as an upper bound, w
the number obtained in the exponential ansatz a reason
lower bound. A conservative estimate then is

1

2MB
^B2ub̄gmbūgmuuB2&52~0.02560.015! GeV3

1

2MB
^B2ub̄gmbd̄gmduB2&'O~531024 GeV3!. ~63!

Similar estimates can be adopted for strange quarks inBs .
Next we turn to baryons. Under the light flavorSU(3)

group theLb and Jb states transform as an antitripletTi

5(Jb
d ,2Jb

u ,Lb). In the limit of SU(3) symmetry there are
only two independent form factors, which can be defined
2-11
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1

2MLb

^Ti~qW !uq̄lagmquTj~0!&

5vmF 8
L~q2!l j i

a ū~v,s8!u~v,s!

1

2MLb

^Ti~qW !u (
q5u,d,s

q̄gmquTj~0!&

5vmF 1
L~q2!d i j ū~v,s8!u~v,s!. ~64!

The normalization atq250 is F 1
L(0)52,F 8

L(0)521. Us-
ing a similar model for the formfactors as in the meson c
we get the same expectation values~up to the sign! for the
valence matrix elements, and strongly suppressed no
lence contributions:

1

2MLb

^Lbub̄gmbūgmuuLb&

5
1

2MLb

^Lbub̄gmbd̄gmduLb&

.H 0.007 GeV3 ~exponential!

0.045 GeV3 ~two-pole!
. ~65!

For the same reasons as before it is natural to conside
two-pole value as an upper bound. The expectation value
the nonstrange operators in theJb states emerge the same
in ~65!, whereaŝ Jbub̄gmbs̄gmsuJb& again literally appears
twice larger than in theSU(3) limit. As discussed in theB
meson case, such a large symmetry violation can be
pected to be, at least partially, an artifact of the two-p
model.

It is worth noting that in the case of heavy baryons t
light quark form factors have anomalous Landau thresho
associated with theNN̄B triangle diagrams. It is well known
that it is such singularities that determine the low-moment
behavior of the form factors and, in particular, the lar
charge radius of weakly-bound states like deuteron@21#. For
the Lb form factor the anomalous singularity starts at

t thr54MN
2 S 12

~MLb

2 2MN
2 2MB

2 !2

4MB
2MN

2 D 53.2 GeV2.

~66!

In this system, however, the corresponding mass lies hig
than the states we use to saturate the form factors. Moreo
there is no reason to expect the residues to be significant~for
example, they are 1/Nc suppressed!. Therefore, we believe
that these singularities do not play a role in the expecta
values we study. In any case, a refined estimate will be p
sible with a better knowledge of the form factors, say us
the determination of the slope based on an application of
Cabibbo-Radicati sum rule to the radiative decays of exc
baryons.
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B. Operators with axial current

The expectation value of the operatorb̄gmg5bq̄gmg5q
vanishes in theLb baryon family, and we consider it only fo
B mesons employing the relation Eq.~22!. In this case

~SW beW !uB~qW !&5uB* ~qW ,eW !&, SW b5E d3xb̄gW g5b~x!.

~67!

Since the light degrees of freedom carry spin1
2 , the axial

current is parametrized by two form factors; the third po
sible structure has wrongT parity and vanishes. This is a
exact analogue of the absence of the second-class curren
b-decays of light baryons. Thus one has

1

2MB
^Bi* ~qW ,eW !u (

q5u,d,s
q̄gmg5q~0!uBj~0!&

5$em* G1
~0!~q2!2~e* q!qmG0

~0!~q2!%d i j ,

1

2MB
^Bi* ~qW ,eW !uq̄lagmg5q~0!uBj~0!&

5$em* G1~q2!2~e* q!qmG0~q2!%l j i
a . ~68!

Absence of the structure (e* q)vm is easy to show explicitly
~note that in any case the timelike component of the ax
current does not enter the four-fermion operators!. Using Eq.
~67! and the fact thatSW b commutes with all light-quark field
operators, we get an equality

^B* ~qW ,eW !uJm5~0!uB~0!&* 5^B~0W !uJm5~0!uB* ~qW ,eW !&

5^B* ~0W ,e*W !uJm5~0!uB~qW !&.

Inserting here the form factor decompositions~68! for these
matrix elements and taking into account the fact thatGi are
real from T invariance, one finds that the structure (eq)vm
appears with opposite signs on the two sides of the equa
Hence its coefficient must vanish.

We thus get

1

2MB
^B2ub̄gmg5b~ ūgmg5u2d̄gmg5d!uB2&

52
1

4p2E0

`

dtAt„3G1~2t !1tG0~2t !… ~69!

and a similar expression for the singlet matrix elements.
In the chiral limit, which will be assumed in what follows

the isovector form factorG1 at q250 is related to theBB* p
coupling:

G1~0!5g. ~70!

The nonrelativistic quark model predictsg520.75. How-
ever, QCD sum rules estimates yield lower values@22–25#.
The most recent analyses predictg520.3 @23,24# which is
consistent with the existing experimental boundsg250.09
20.5 @26#. Moreover, the equation of motion]mJm550
2-12
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leads toq2G0(q2)5G1(q2) at all q2, therefore for the non-
singlet expectation value Eq.~69! takes the form

1

2MB
^B2ub̄gmg5b~ ūgmg5u2d̄gmg5d!uB2&

52
1

2p2E0

`

dtAtG1~2t !. ~71!

The only nonvanishing contribution toG0 from the pseu-
doscalar states in the isovector channel comes from
massless pion. TheJPC5111 states contribute to bothG1
andG0 :

G1~ t !5(
n

gnMn
2

Mn
22t

G0~ t !52
g

mp
2 2t

1(
n

gn

Mn
22t

~72!

with the condition(ngn5g replacing the zero momentum
transfer normalization of the vector formfactor. A faster th
1/q2 fall-off of the transition amplitude requires additional

(
n

gnMn
250, ~73!

which is analogous to the second constraint in Eq.~42! for
the vector current.

In the numerical estimates for the isotriplet current
will consider both a two-pole ansatz forG1(q2) and the ex-
ponential ansatz

G1~q2!5ge2qW 2/m2
,

G0~q2!5g
e2qW 2/m2

q2
with m25

M1
2M2

2

M1
21M2

2
. ~74!

Such a choice ofm ensures that the two ansa¨tze have the
same behavior at smallq2.

In the I ,JPC51,111 channel only the lowest-lying stat
a1(1260) has been observed. For the numerical estimate
will need also the mass of its first radial excitationa18 . This
has been extracted in@27# from an analysis of the Weinber
sum rules. The value obtained in@27# for the mass of thea18
resonance is 1869 MeV, which is what we will use in o
estimates.

First, with the two-pole ansatz we obtain

1

2MB
^B2ub̄gmg5b~ ūgmg5u2d̄gmg5d!uB2&

52
g

2p

M1
2M2

2

M11M2
.0.084 GeV3. ~75!
03401
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As explained above, we have adopted in this estimate
valueg520.3 @23,24#. For the exponential form factor on
obtains a smaller value

1

2MB
^B2ub̄gmg5b~ ūgmg5u2d̄gmg5d!uB2&

52
g

4p3/2S M1
2M2

2

M1
21M2

2D 3/2

.0.015 GeV3. ~76!

In a completely analogous way one can estimate the
trix element of theI 50 octet axial current with the flavo
content ofh. With the mass of the statef 1(1285) close to
mass ofa1 and assuming a similar degeneracy for the sec
excitation we do not get appreciableSU(3) violation and,
therefore, obtain for

1

2MB
^B2u~ b̄gmg5b!~ ūgmg5u1d̄gmg5d22s̄gmg5s!uB2&

the same value as in Eqs.~76! and ~75!.
In the case of the singlet axial vector current we need

account for the presence of the anomalous term in its div
gence,

]mJm5
~0!~x!5nfQ~x!, Q~x!5

as

4p
GG̃~x!.

For simplicity, we will assume the exactSU(3) chiral limit.
The value of the isosinglet axial form factor at smallq2 is
given by the matrix element of the anomalous divergen
Q(x):

1

2MB
^B* ~e,qW !uQ~0!uB~0!&5

i

nf
G1

~0!~0!~e* q!1O~q2!.

~77!

We used here the fact that there are no massless particl
the singlet channel and consequentlyG0

(0)(0) is finite. The
contribution of the pseudoscalar states to the form fac
G0

(0) does not vanish and is determined by their coupling
Q(x),^nuQ(0)u0&. Similarly, theG1

(0) andG0
(0) form factors

at arbitraryq2 are not directly related to each other, but t
differencei (G1

(0)2q2G0
(0)) equals to the matrix element o

nfQ(x). Very little is known directly about these flavor
singlet expectation values orB* Bh (8) coupling.

Nevertheless, for estimates one usually employs an
proximation in which the matrix elements ofQ(x) are satu-
rated by theh8 pole. Moreover, the couplings of the who
nonet of the pseudoscalar mesonsp,K,h,h8 are assumed
SU(3)-symmetric. This assumption is incorporated in t
simple s-models proved to be successful in describing
properties of light hadrons. This model@28,29# naively has
an U(3)3U(3) chiral symmetry; theU(1) problem is
solved by adding the anomalous term withQ(x) and assum-
ing the nonvanishing~in the quenched approximation, that i
2-13
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in QCD without light flavors! value of the zero-momentum
correlator of the topological charge densitiesQ(x)

l45E d4x^0u iT$Q~x!Q~0!%u0&nf50 ~78!

which leads, basically, to the nonzero anomalous mass oh8
mesonmh8

2
5l4/ f p

2 . Adopting such a model, we also hav
G1

(0)(0).G1(0).
A possible justification for such a picture lies in the larg

Nc approximation. However, in this limitmh8
2 }1/Nc and the

anomalousU(1) symmetry effectively restores, which seem
not be close to actual world where the anomalous mass oh8
is numerically large and the octet-singlet mixing in pseud
scalars is small. It is probable that there exists a deeper
namic reason explaining the practical validity of such
approximation.

The model with a singleh8 state in the pseudoscala
channel which merely shifts the pole in the nonsinglet a
plitudes from q250 to mh8

2 , while describing reasonabl
well the low-q2 matrix elements of the topological charg
density, leads to their too mild suppression at largeq2. In
reality they are expected to decrease very fast above a ty
momentum scale of the nonperturbative vacuum configu
tions. In order to mimic this behavior, we have to employ
least two pseudoscalar states saturating the correlatorsQ,
and we take the stateh8 with a mass ofMh851295 MeV as
the second pole. One expects anJPC5021SU(3) singlet in
this mass region, accompanying the observed octet of p
doscalars containingp(1300),h(1295). In reality, the wide
‘‘gluonium’’ states can give a significant contribution. Pro
ably, an exponential ansatz is a better approximation he

In principle, the spectrum of the axial-vector singlet sta
has no direct relation to the anomaly and theU(1) problem.
Hence we take for the corresponding masses the experim
tal values, namelyf 1(1285) and its first radial excitationf 18 ,
neglecting their mixing with the octet states.f 1(1285) lies
close to the isotriplet statea1(1260), indicating smallness o
the annihilation effects. Therefore we will take for the ma
of the first radial excitationM f

18
5Ma

18
.1870 MeV in the

numerical estimates below. In the two-pole model we ha

G1
~0!~q2!5G1

~0!~0!

M f 1

2 M f
18

2

~M f 1

2 2q2!~M f
18

2
2q2!

G1
~0!~q2!2q2G0

~0!~q2!

5G1
~0!~0!

Mh8
2 Mh8~1295!

2

~Mh8
2

2q2!~Mh8~1295!
2

2q2!
. ~79!

The last equation replaces the second of Eqs.~72!.
As a result, the difference in the estimates compared

the isotriplet current lies basically in the anomalous ter
and is not too significant. Numerically, we get for the tw
pole ansatz
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1

2MB
^B2ub̄gmg5b (

q5u,d,s
q̄gmg5quB2&

52
G1

~0!~0!

2p S M f 1

2 M f
18

2

M f 1
1M f

18
1

1

2

Mh8
2 Mh8~1295!

2

Mh81Mh8~1295!
D

.2~0.2910.054!G1
~0!~0! GeV3

50.1 GeV3 atG1
~0!~0!520.3. ~80!

In the numerical estimate we used the equalityG1
(0)(0)

5G1(0)5g which holds in the large-Nc limit, as discussed
above.

We present also a calculation of the matrix element~80!
employing the exponential ansatz. This is constructed in
same way as for the axial charge form factor. For the to
logical charge form factor we use an exponential normaliz
at q250 by the same valueG1

(0)(0) and vary the slope pa
rametermQ

2 from mQ
2 5mh8

2
50.92 GeV2 @corresponding to

the pole dominance byh8 alone! to 0.59 GeV2 @correspond-
ing to the two-pole model, see Eq.~49!#. This yields the
following numerical estimate:

1

2MB
^B2ub̄gmg5b (

q5u,d,s
q̄gmg5quB2&

.2
G1

~0!~0!

4p3/2 S F M f 1

2 M f
18

2

M f 1

2 1M f
18

2 G 3/2

1
1

2
mQ

3 D
.2„0.0531~0.010 to 0.020!…G1

~0!~0! GeV3

.~0.02 to 0.023! GeV3 ~81!

with the same value forG1
(0)(0) as before. One could try to

estimate the effects ofSU(3) breaking by accounting for the
known shifts in masses and mixing. We think, however, t
such models are too crude to capture correctly details
SU(3) violation, and we do not attempt it here.

Combining the above results for the octet and singlet
pectation values, we get the following estimates for the
lence and nonvalence axial expectation values:

1

2MB
^B2ub̄gmg5būgmg5uuB2&.0.018 GeV3 ~82!

0.09 GeV3

1

2MB
^B2ub̄gmg5bd̄gmg5duB2&.0.002 GeV3 ~83!

0.007 GeV3

where the upper~lower! value corresponds to the exponent
~two-pole! form factor model.

We note that the effect of the axial anomaly can be n
merically important, although it is formally of order 1/Nc . In
the approximations considered here, it makes a contribu
2-14
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of about 15% of the total singlet expectation values~80! and
~81!, respectively, and it can dominate the nonvalence ma
elements.

Finally, we quote also the factorization approximation e
timate for the valence expectation value of the axial vec
current. We obtain

1

2MB
^B2ub̄gmg5būgmg5uuB2& factor

5
3

4Nc
f̃ B

2~m!MB.0.034 GeV3. ~84!

Just as for the color-straight operators containing the ve
current, we do not expect the factorization approximation
be accurate. However, it is interesting that the factorizat
value for the axial operators is less suppressed compare
the case of the vector current, and appears to be closer t
estimates given above.

C. Estimates from the fourth sum rule

One of the color-octet operators, the flavor-singlet vec
four-fermion operator can be estimated in an alternative w
This operatorÕD

ÕD5 (
q5u,d,s

~ b̄gmtab!~ q̄gmtaq! ~85!

is the QCD generalization of the Darwin term in atom
physics@31,5,32#:

1

2MHb

^Hbu2pasÕDuHb&52
1

2MHb

^HbuODuHb&

52~rD
3 !Hb

. ~86!

On the other hand, it determines the third moment of
small velocity ~SV! structure function, the so-called fourt
sum rule, and is related to quantities measurable in the s
leptonic decays. For example, inB mesons this sum rule in
the resonant approximation takes the form@32#

1

3
rD

3 5E1/2
3 ut1/2u212E3/2

3 ut3/2u21•••, ~87!

where t j are so-called ‘‘oscillator strengths’’ which dete
mine the small velocity transition amplitudes into the excit
p-wave states with spin of light degrees of freedomj. The
excitation energies of these states with respect to the gro
states-wave mesons are denoted withEj ~for a recent dis-
cussion see review@33#!.

It should be noted that the literal application of the fou
sum rule requires a specific regularization scheme for
operators. In view of the tentative nature of our estimates
neglect these subtleties here. Some of them were discu
in @5# and more recently in@34# and @35#. We only mention
that the large negative logarithmic anomalous dimension
the Darwin operator@1#
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~asÕD!m8.S as~m8!

as~m! D 13/~2b0!

~asÕD!m , b05
11

3
Nc2

2

3
nf

~88!

to a large extent offsets the apparent scale dependence i
evaluation of^ÕD& via rD

3 due to them-dependence ofas

~or, similarly, the scale dependence of the factorization e
mate ofrD

3 in B mesons!. According to the standard practic
we use for our estimates the scale corresponding toas(m)
51.

A recent discussion of the status of the sum rule eval
tion of rD

3 in B mesons can be found in the review@33#, Sec.
IV. The corresponding value is in a reasonable agreem
with the factorization estimates@see Appendix C, Eq.~C7!#.

Since the straightforward factorization cannot be used
baryons, we will apply the fourth sum rule to evaluate t
operatorÕD in Lb . The fourth sum rule for it takes the form

1

2MLb

^Lbu2pasÕDuLb&523(
n

En
3us~n!u2. ~89!

The states appearing in the RHS are orbital excitations of
Lb baryon with quantum numbers of the light degrees
freedomsl

p l512. Their excitation energies areEn ands (n)

are the corresponding oscillator strengths describing se
leptonic decays ofLb to the analogous excitations of theLc
baryon; they are defined as in@36#.

The first excited states appearing in this sum rule h
been identified as the doublet of negative-parity baryo
Lc1

1 (2593) andLc1

1 (2625). Unfortunately no experimenta

information is available to date on the transition amplitu
s (1) governing the decays ofLb into both of them, although
it will be ultimately measured.

The important piece of information would be the slo
rLb

2 of the elastic IW function inLb . This quantity is more

accessible thans (1) and will be measured in the near futu
at LEP. In the absence of the data we can use the second
rule ~Voloshin’s ‘‘optical’’ sum rule! @37# for L̄Lb

5MLb

2mb.MLc
2mc . As discussed in@33# ~for earlier applica-

tion see also@32,38#!, we can estimaterD
3 using just the

excitation energy of the first states. We simply takeML
c*

.2.615 GeV and the first excitation energyD1

.330 MeV. Assuming L̄B.600 MeV and, therefore
L̄Lb

.900 MeV, we then have

~rD
3 !Lb

'
3

2
D1

2L̄Lb
'0.15 GeV3. ~90!

@A similar estimate (mp
2 )Lb

. 3
2 D1L̄Lb

.0.45 GeV2 agrees
well with the mass relations@39,12# for charm and beauty in
the meson and baryon sectors.# We note in passing that, mos
probably, the large mass of the heavy baryon implying lar
2-15
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TABLE I. Estimated valence expectation values inB andLb , in GeV3; factorized contributions assum

f̃ B5160 MeV.

vV vA tV tA lu lu8 (rD
3 )B (rD

3 )Lb

Secs. IV A–IV B 20.020 0.045 0.020

Factorization 20.011 0.034 20.015 0.045 0.10

4th sum rule 20.028 0.018 0.18 0.15
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L̄ compared toB meson is due to larger sloperLb

2 ; the

higher-dimension operators, therefore, can be even sm
than in mesons.

The sum of the expectation values for all three light fl
vors 2l81ls8 is related to the expectation value of the Da
win operator@31#:

2l81ls85
3

4pas
~rD

3 !Lb
.

Hence, we estimate theSU(3)-singlet color-octet expecta
tion value inLb as

lu1d1s8 '
3

4p
~rD

3 !Lb
'0.036 GeV3 ~91!

with uncertainty about 30–40%. The estimate oflu8 can be
obtained if we neglect the small contribution of the nonv
lence strange quarks:

lu85ld8.
3

8p
~rD

3 !Lb
.0.018 GeV3. ~92!

We note that we get a reasonable agreement with the q
model relationl8'l between the straight and octet expe
tation values inLb for our central estimates, Eq.~65!. It is
interesting that the corresponding value of the diquark d
sity at origin appears close to our central estimate for mes
2vV ~but larger than the alternative analogue ofuC(0)u2 in
mesonsf̃ B

2MB/12). It also exceeds the estimates obtained
the QCD sum rules@40# or quoted from bag models@41#;
these analyses determined the combination4

3 l82 1
3 l which

generally emerged in the ball park of 0.004 GeV3.

V. NONFACTORIZABLE PIECES IN THE MATRIX
ELEMENTS OF THE FOUR-QUARK OPERATORS

As was mentioned earlier, there are four operators~for a
given light quark flavor! determining the corrections to th
mesons widths. These are color-straightO and color-octetT.
Each of these can contain either timelike~vectorOV ,TV) or
spacelike ~axial OA ,TA) components of light and heav
quark currents.

The color-octet expectation valuest in general can be
estimated using vacuum factorization, since the operatoT
coincide with the operators colorless in thes-channel up to
1/Nc terms@see Eq.~33!#. For such operators vacuum facto
ization is expected to work up to 1/Nc corrections. This gives
03401
ler

-

-

rk
-

n-
ns

n

tV52
f̃ B

2~m!MB

8 S 12
1

Nc
2D .20.015 GeV3 ~93!

tA5
3 f̃ B

2~m!MB

8 S 12
1

Nc
2D .0.045 GeV3.

~94!

It is interesting to note that the leading 1/Nc corrections to
the factorization approximation can be estimated in a p
nomenological approach. For this the expectation value
the color singletOsingl in ~33! is written as

^Hbu~bḠq!~qḠb!uHb&5^HbubḠqu0&^0uqḠbuHb&

1(
n

^HbubḠqun&^nuqḠbuHb&.

~95!

The leading corrections to the vacuum factorization appro
mation are of order 1 and come from one-particle interme
ate states likep(h,h8),r(v),a1 for B mesons, or light bary-
ons for Lb . The corresponding transition amplitudes ha
been evaluated in the QCD sum rules@44# and lattice simu-
lations with an accuracy sufficient for determining the sc
of the effects. Alternatively, they can be approximately o
tained from the corresponding decays of charmed particl

Large-Nc argumentsper sedo not ensure that the vacuum
factorization approximation works in the case of the col
straight operators, for the nonfactorizable contribution a
pears at the same order inNc as the factorizable one. The
Wilson coefficients are not suppressed compared to thos
the color-octet operatorsT ~see Table I!, and they can be
important even if their expectation values are formally su
leading in 1/Nc . Moreover, the factorizable part of the ex
pectation values has only a specific Lorentz structure wh
is subject to the strong chirality suppression;mc

2/mb
2 in the

effects of weak annihilation~WA! in mesons. Nonfactoriz-
able contributions there can be dominant@11,12#.

Nonfactorizable effects also appear as expectation va
of the nonconstituent quark operators. Although they do
split the widths ofB6 and B0, they can differentiate the
meson vs baryon lifetimes. Numerically they seem to
strongly suppressed, with a possible exception of the Dar
operator which will be discussed below.

The nonfactorizable effects inB mesons were first dis
cussed in the framework of the 1/m expansion in@11# where
the parametrization
2-16
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1

2MB
^Bub̄gm~12g5!qq̄gn~12g5!buB&

5
f̃ B

2MB

2
~vsvmvn2gsgmn! ~96!

1

2MB
^Bub̄gm~12g5!taqq̄gn~12g5!tabuB&

5
f̃ B

2MB

2
~vovmvn2gogmn! ~97!

was suggested motivated by the analysis of the WA effe
neglecting thec quark mass WA is governed bygo andgs .
~In the factorization approximationvs51 and vo5go5gs
50.) These parameters are related tov,t in the following
way:

f̃ B
2MBvs52

2

Nc
vV1

2

3Nc
vA24tV1

4

3
tA ~98!

f̃ B
2MBgs52

1

Nc
vV2

1

3Nc
vA22tV2

2

3
tA

~99!

f̃ B
2MBvo52S 12

1

Nc
2D vV1

1

3S 12
1

Nc
2D vA

1
2

Nc
tV2

2

3Nc
tA ~100!

f̃ B
2MBgo52

1

2S 12
1

Nc
2D vV2

1

6S 12
1

Nc
2D vA

1
1

Nc
tV1

1

3Nc
tA . ~101!

The inverse relations expressingv and t via v and g are
given in Appendix C.

The color counting rules suggest thattV,A;Nc while
vV,A;Nc

0 . The factorization estimates fortV,A in the large-
Nc limit are expected to hold with the 1/Nc accuracy. There-
fore, knowledge of the color-straight operators allows to
timate the leading, 1/Nc terms invo andgo :

vo.2
3vV2vA

3 f̃ B
2MB

2
1

2Nc
~valence! ~102!

go.2
3vV1vA

6 f̃ B
2MB

. ~103!

@The term21/(2Nc) is absent for non-valence expectatio
values.#

Since the nonvalence expectation values appear to be
pressed, we only consider the valence matrix elements
nerically denoted by the superscript (v). Let us consider for
03401
s:

-

p-
e-

definiteness the chargedB meson; the corresponding param
eters are then defined by Eqs.~96!,~97! with q5u. Although
vV and vA are not precisely evaluated, we still observe
clear tendency to cancellations ingo and, therefore, suppres
sion of the effects of WA. Say, for the exponential ansatz
get

vo
~v !'20.07, go

~v !'0.004. ~104!

For the two-pole ansatz representing the upper limit in
estimates, we get

vo
~v !'0.4, go

~v !'0.05. ~105!

The nonfactorizable octet parameters seem to emerge
pressed. In particular, the expectation value of the oper
responsible for WA is very small. The color-singlet expec
tion valuegs was not estimated in the literature. It is natur
to think @12# that the scale ofgs does not exceed that ofgo .
The above estimates then illustrate the degree of suppres
of the effects of WA when thec quark mass is neglected.

It is appropriate to note at this point that there is convin
ing experimental evidence that WA is indeed strongly su
pressed in heavy mesons. The width difference betweenDs
andD0 is very sensitive to WA. Even though the literal 1/mc
expansion in charmed particles is hardly applicable at
quantitative level, the significance of such effects wou
have led to a largetDs

–tD0 difference. Barring accidenta
cancellations one gets a typical estimate@12#

ugo ,gsu&1022.

We note, therefore, that our estimates, whatever tenta
they are, indicate a strong enough suppression. It is inter
ing that the QCD sum rule estimates of the parameterg
made in 1992 by V. Braun4 yielded close values, a few unit
31022. Later evaluations gavevo.0.05,go.0.05@30#, and
vo.0.1,go.0.03 @42#; they were simplified in many as
pects, though. While the expectation value ofvo generally
emerges of the order of 0.05, our estimates forgo seem to
predict typically somewhat smaller values;1022, in a bet-
ter agreement with the experimental indications.

The nonvalence expectation values are probably even
ther suppressed. Our estimates yieldedvo

(nv)'(0.5 to
2)31022 and go

(nv)'2(0.25 to 1)31022, with the domi-
nant part coming from the axial current via the anomalo
terms.

For baryonic expectation values there is no vacuum f
torization approximation. This does not mean, of course, t
they are suppressed. The color-straight expectation valul
were estimated in the preceding sections to vary from 0.
to 0.045 GeV3; the interval above 0.03 GeV3 seems im-
probable, though. The estimate of the color-octetlu,d8 based
on the evaluation of the Darwin operator yielded abo
0.018 GeV3.

4Private communication to N. Uraltsev.
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A different parametrization of the valence expectati
values was used in@43#:

1

2MB
^B2u„b̄gm~12g5!u…„ūgm~12g5!b…uB&

5
f̃ B

2~m!MB

2
B1~m! ~106!

1

2MB
^B2u„b̄~12g5!u…„ū~11g5!b…uB2&

5
f̃ B

2~m!MB

2
B2~m! ~107!

1

2MB
^B2u„b̄gm~12g5!tau…„ūgm~12g5!tab…uB2&

5
f̃ B

2~m!MB

2
«1~m! ~108!

1

2MB
^B2u„b̄~12g5!tau…„ū~11g5!tab…uB2&

5
f̃ B

2~m!MB

2
«2~m!. ~109!

These parameters are related as follows:

f̃ B
2MBB15 f̃ B

2MB~vs24gs!54~tV1tA!1
2

Nc
~vV1vA!

~110!

f̃ B
2MBB25 f̃ B

2MB~vs2gs!522~tV2tA!2
1

Nc
~vV2vA!

~111!

f̃ B
2MB«15 f̃ B

2MB~vo24go!

52
2

Nc
~tV1tA!1S 12

1

Nc
2D ~vV1vA!

~112!

f̃ B
2MB«25 f̃ B

2MB~vo2go!

5
1

Nc
~tV2tA!2

1

2S 12
1

Nc
2D ~vV2vA!.

~113!

The above estimates for the octet expectation values neg
ing 1/Nc

2 terms read for«1,2 as

«1'20.085 to 0.17, «2'20.07 to 0.33, ~114!

while the QCD sum rule calculations give«1.20.15,«2
.0 @30# and«1.20.0460.02,«2.0.0660.03 @42#.
03401
ct-

For convenience, we give in Table I the central estima
of the four-fermion expectation values discussed above iB
mesons (vV,A ,tV,A) and inLb(l,l8 for a fixed flavor,u or
d). Since the nonvalence expectation values are stron
suppressed, we do not quote them here.

Concluding this section, we note that there are two ex
positivity constraints on the expectation values of thes-
channel colorless operators:vs2gs.1 (vs2gs.0 for non-
valence! andgs.0.

The first inequality follows from inserting a complete s
of intermediate statesun& in the matrix element̂Bu„b̄g0(1
2g5)q…„q̄g0(12g5)b…uB&. We obtain

vs2gs511
1

f̃ B
2MB

2(n
E dm~n!u^nuq̄g0~12g5!buB&u2.1,

~115!

where dm(n) stands for the phase space. The 1/Nc contribu-
tions in the RHS come when the intermediate statesn are
p,r,a1 , etc. For nonvalence quarks the vacuum factori
tion contribution 1 in the RHS explicitly showingun&5u0&
vanishes.5 In terms of the parametersBi ,« i , the constraint
~115! readsB2.1. Estimates of@42# give values forBi com-
patible with 1.

The second inequality is obtained by taking spacelikem
5n5 i in Eq. ~96!. Summing overi yields

gs5
1

3 f̃ B
2MB

2(n
E dm~n!(

i
u^nuq̄g i~12g5!buB&u2.0.

~116!

~For theB parameters this isB2.B1 .)
A similar inequality can be obtained for the baryonic m

trix elements:

l82
1

4
l5

3

4MLb

(
n
E dm~n!u^nuq̄~11g5!buLb&u2.0,

~117!

where we used the identity

^Lbu„b̄~12g5!q…„q̄~11g5!b…uLb&

52
1

2Nc
^LbuOVuLb&2^LbuTVuLb&. ~118!

In the constituent quark model the bounds forB mesons
become equalities; the relation Eq.~117! merely expresses
the fact that the diquark wave function at origin is positive
does not seem to be very restrictive for our estimates. Th
is an additional constraint on the expectation values of
operators with chirality flip for light quarks, however we a

5These inequalities assume a physical regularization scheme
composite operators in which, for example, there is a power mix

of the four-fermion operators with the unit one,b̄b(0). For arecent
discussion, see e.g.@33,35#.
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not interested in them. The above bounds can be refined
even actual approximate estimates can be obtained eva
ing the contributions of a few lowest intermediate states
the hadronic saturation Eqs.~115!–~117!.

VI. CORRECTIONS TO THE DECAY WIDTHS

In this section we give the expressions for the correcti
to the widths in terms of the effective four-fermion operato
normalized at a low scale. These expressions were origin
derived in@1#. We present them here for completeness a
book-keeping purposes, in a more convenient form.

Let us introduce the notationDĜ for the operator describ
03401
nd
at-
n

s

lly
d

ing the corrections to the inclusive widthDGHb
of the beauty

hadronHb :

DG5
1

2MHb

^HbuDĜuHb&. ~119!

In what follows we neglect the effects generated in the K
suppressed decays which have a factoruVub /Vcbu2, and by
penguin operators inHweak(DB51) at the scalemb .

Without accounting for the perturbative QCD effects
the domaink!mb one has
al
ally,

nite-

w

DĜ5
GF

2mb
2

2p
uVcbu2~12y!2H S c1

21c2
21

2

Nc
c1c2D @OV

u1OA
u #14c1c2@TV

u1TA
u #J 2

GF
2mb

2

4p
uVcbu2~12y!2H S c1

21c2
21

2

Nc
c1c2D

3F ~11y!OV
d81

1

3
~12y!OA

d8G12~2c1c21Ncc2
2!F ~11y!TV

d81
1

3
~12y!TA

d8G J
2

GF
2mb

2

4p
uVcbu2A124yH S c1

21c2
21

2

Nc
c1c2D FOV

s81
1

3
~124y!OA

s8G12~2c1c21Ncc2
2!FTV

s81
1

3
~124y!TA

s8G J
2

GF
2mb

2

2p
uVcbu2H S c1

21c2
21

2c1c2

Nc
1

nl

2Nc
D FOV

c 1
OA

c

3 G12S 2c1c21Ncc1
21

nl

2 D FTV
c 1

TA
c

3 G J . ~120!

We denoted herey5mc
2/mb

2 andd85dcosuc1ssinuc , s85scosuc2dsinuc . Themc-dependence for the operators with extern
c quark legs is completely neglected.~Eventually they will lead only to penguin-type operators which are estimated, basic
in the leading-log approximation.! We included the contribution from the semileptonic decays withnl52 species of light
leptons~the t contribution is suppressed by phase space!. Since numericallymc

2/mb
2'mhad/mb , keepingmc

2/mb
2 corrections

apparently is not legitimate in practice at all. We retain these terms only for getting an idea of the scale of the fimc
corrections in the coefficient functions.

The perturbative evolution belowmb in the LLA is particularly simple in this basis: the color-straight operatorsO do not
renormalize. The color-octet operatorsT renormalize in a universal way withgT53Nc , except for the flavor singlet vectorlike
operator similar toÕD which has anomalous dimensiong D̃53Nc2 4

3 nf where nf is the number of open flavors (gD
52 13

3 Nc). At the scale below the charm mass the operators with thec-quark fields merely vanish. As a result, at the lo
normalization pointm we have

DĜ5
GF

2mb
2

2p
uVcbu2H ~12y!2S c1

21c2
21

2

Nc
c1c2D FOV

u1OA
u2

11y

2
OV

d82
12y

6
OA

d82
A124y

2~12y!2
OV

s82
~124y!3/2

6~12y!2
OA

s8G
1z~12y!2F4c1c2~TV

u1TA
u !2~2c1c21Ncc2

2!S ~11y!TV
d81

12y

3
TA

d81
A124y

~12y!2
TV

s81
~124y!3/2

3~12y!2
TA

s8D G12pcD

OD

2pJ ,

~121!

where

z5S as~mc!

as~mb! D
3Nc /~2b024/3!S as~m!

as~mc!
D 3Nc/2b0

, b05
11

3
Nc2259. ~122!

We wrote the contribution of the Darwin operator separately although it is related to the sumTV
u1TV

d1TV
s . In this form cD

emerges from the penguin-type diagrams while the other terms do not include the annihilation diagrams.
The coefficientcD of the Darwin operator Eq.~86! takes the following LLA form:
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cD52
1

2pas~m!
zH ~12y!2S h21

nf
1

h~j21!

nf11 D F4c1c22~2c1c21Ncc2
2!S 11y1

A124y

~12y!2D G
22

h~j21!

nf11 F2c1c21Ncc1
21

nl

2 G J , ~123!

TABLE II. Values of Wilson coefficients for the total width.

as(mb) AV,A
u AV

d AV
s AA

d AA
s BV,A

u BV
d BV

s BA
d BA

s

0.3 0.98 20.53 20.48 20.15 20.11 22.1 0.70 0.64 0.20 0.15

0.2 0.98 20.53 20.48 20.15 20.11 22.6 0.84 0.77 0.24 0.18

as(mb) 2pcD B̃V
u B̃V

d B̃V
s

0.3 20.80 21.3 1.5 1.4

0.2 20.56 22.0 1.4 1.3
in

n
lcu

th

f t

n

te
i-
n
th

ted
to

us

p-

d

where

j5S as~mc!

as~mb! D
22~nf11!/~3b022!

, h5S as~m!

as~mc!
D ~22nf /3b0!

;

nf53. ~124!

In principle, there is another source of the Darwin term
the width which comes from the 1/mb expansion of the ex-
pectation value ofb̄b and from the nonlogarithmic terms i
the expansion of the transition operator. They were ca
lated for the case of the semileptonic width in@45# and@46#.
We can estimate this correction to the LLA by neglecting
deviation of the Wilson coefficientsc1 ,c2 from their bare
values 1 and 0, respectively, and neglecting the mass o
quarks ~leptons! produced by the virtualW boson. In this
approximation the possible effect from theūd( c̄s) loop can-
cels and we can use the calculations for the semilepto
widths. This yields to the leading order inas

dcD.
2Nc1nl

576p2
~77288y124y228y325y4136y2lny!.

~125!

The overall nonlog term incD appears to be of the opposi
sign to the LLA result and is roughly a half of it in magn
tude. We conclude that the LLA estimate is accurate withi
factor of 2 being, probably, on the upper side. We use
LLA expressions for numerical estimates below.

At the next-to-leading order theDB51 weak decay Wil-
son coefficientsc1(mb),c2(mb) are6

6Note that these NLO values ofc1,2 are immediately reproduce
03401
-

e

he

ic

a
e

c151.13, c2520.29, ~126!

corresponding toas(MZ)50.118. This gives

c1
21c2

21
2

Nc
c1c2.1.15, 2c1c21Ncc2

2.20.40,

4c1c2.21.3, 2c1c21Ncc1
2.3.2. ~127!

With this input the resulting values for the coefficients inDĜ
are given in Table II. To illustrate the uncertainty associa
with the LLA we quote two sets of values corresponding
using as(mb)50.3 and toas(mb)50.2 ~the former option
can represent the choice of theV-scheme strong coupling in
the LLA expressions, which seems more appropriate to!.
The coefficientsA andB are defined as

DĜ5
GF

2mb
2

2p
uVcbu2S AV

uOV
u1AV

dOV
d81AV

s OV
s81AA

uOA
u

1AA
dOA

d81AA
s OA

s81BV
uTV

u1BV
dTV

d81BV
s TV

s81BA
uTA

u

1BA
dTA

d81BA
s TA

s812pcD

OD

2p D ~128!

~i.e., using the ‘‘redundant’’ basis including the Darwin o
erator to show explicitly the loop contributions!. We also
quote the values ofB̃V

u , B̃V
d and B̃V

s given by

in the simple LLA if one uses the more physicalV-schemeas

coupling @47#.
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B̃V
u5BV

u22pascD , B̃V
d5BV

d22pascD ,

B̃V
s 5BV

s 22pascD . ~129!

The Cabibbo mixing is neglected here.
r
t

-
a
m

s

s
-
s

s
to
o

u

03401
For numerical estimates we use the values of the runn
low-scale massesmb.4.6 GeV,mc.1.25 GeV and nor-
malize the width correctionDGHb

to the semileptonic width
which is reliably evaluated in the OPE~for a review, see
@33#!. The final estimates for these corrections then read
DGHb

Gsl
.

1

BRsl

DGHb

GHb

.0.36FAV
u ^OV

u&

0.02 GeV3
1AV

d ^OV
d8&

0.02 GeV3
1AV

s ^OV
s8&

0.02 GeV3
1AA

u ^OA
u&

0.02 GeV3
1AA

d ^OA
d8&

0.02 GeV3

1AA
s ^OA

s8&

0.02 GeV3
1BV

u ^TV
u&

0.02 GeV3
1BV

d ^TV
d8&

0.02 GeV3
1BV

s ^TV
s8&

0.02 GeV3
1BA

u ^TA
u&

0.02 GeV3
1BA

d ^TA
d8&

0.02 GeV3

1BA
s ^TA

s8&

0.02 GeV3
10.8 ~2pcD!

rD
3

0.1 GeV3G50.36FAV
u ^OV

u&

0.02 GeV3
1AV

d ^OV
d8&

0.02 GeV3
1AV

s ^OV
s8&

0.02 GeV3

1AA
u ^OV

u&

0.02 GeV3
1AA

d ^OV
d8&

0.02 GeV3
1AA

s ^OV
s8&

0.02 GeV3
1B̃V

u ^TV
u&

0.02 GeV3
1B̃V

d ^TV
d8&

0.02 GeV3
1B̃V

s ^TV
s8&

0.02 GeV3

1BA
u ^OV

u&

0.02 GeV3
1BA

d ^OV
d8&

0.02 GeV3
1BA

s ^OV
s8&

0.02 GeV3G , ~130!
of
n

just
ana-

en-
ti-
as-
e

ark
sion
tet

eir
d as
ma-
ove
cal
l-
too

o.
a-
nt
-

es
the

glet
where^OV
u&5(1/2MHb

)^HbuOV
u uHb&, etc. We recall that the

expectation values inB are denoted byv for color-straight
operatorsO and byt for the octet onesT, Eq. ~35!; for Lb
these arel and2 2

3 l8, Eq. ~36!.
It is interesting to note that, regarding theNc counting

rules one can view the Wilson coefficients of the colo
straight operators to beNc

0 while the coefficients of the octe
operators as 1/Nc . This is true if we recall that formally
c1(mb)5O(1) while c2(mb)5O(1/Nc). These are not man
datory assumptions for the large-Nc analysis: smallness of
particular perturbative renormalization can always be co
pensated by large logarithms ofMW /mb ; in any case the
nonleptonic weak decay coefficientsc1,2 are external to QCD
itself and can be taken completely arbitrary. Neverthele
their numerical values fit well such a naive assignment.

Our procedure of evaluating the 1/mb
3 corrections to the

widths then gets justification in theNc counting rules: we
take at face value theNc

0 color-straight expectation value
appearing with the coefficients;Nc

0 , and take only the lead
ing factorizable values;Nc for the color-octet operator
which come with the subleading coefficient 1/Nc . This for-
mally sums up all leading corrections;Nc

0 in the decay
widths. We can expect therefore that the matrix element
the color-straight operators include the dominant nonfac
izable contributions to the nonleptonic decay widths
heavy hadrons.

VII. DISCUSSION

We have considered the expectation values of the fo
fermion operators which are encountered in the 1/mQ expan-
-

-

s,

of
r-
f

r-

sion of the inclusive widths of beauty hadrons. The size
the color-straight operators used to be most uncertain iB
mesons, since the factorization approximationa priori is not
expected to be accurate for them. On the other hand,
these operators have the most direct meaning being
logues of the usual wave function densityuC(0)u2. Using
the exact relation of their expectation values to the mom
tum integral of the elastic transition amplitudes, we es
mated these expectation values employing reasonable
sumptions about the behavior of the form factors. W
showed that the actual large-q2 asymptotics of the light
quark amplitudes in heavy hadrons is 1/(q2)3/2 rather than
1/q4 as has been believed based on simple-minded qu
counting rules. We also calculated the anomalous dimen
of the color-straight operators and their mixing with the oc
operators, the effects absent at orderas . The order-as

2 cor-
rections appear to be numerically enhanced.

In our estimates of the valence expectation values th
size obtained from the two-pole ansatz can be considere
an upper bound. A more reasonable exponential approxi
tion which suppresses the contributions of momenta ab
1 GeV, yields smaller results. We accept it as a typi
lower bound for the color-straight expectation values. A
though the accuracy of the central estimates cannot be
good, they probably hold better than within a factor of tw

Our estimates, in principle, include a source for nonv
lence expectation values. It is related to a differe
q2-behavior of form factors describing different isospin am
plitudes atq2,0. We have it mainly as the different mass
of the isosinglet resonances saturating the form factors in
t-channel, compared to the corresponding flavor nonsin
2-21
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particles~i.e., annihilation shift of masses!. Except forh8,
experimentally these splittings are rather small, and our
eral estimates thus yield a strong suppression. We are
sure if this really applies to the color-straight expectat
values; the actual suppression can be softer.

We observe a weaker suppression of the nonvale
color-straight matrix elements for the operators with t
axial current. It is related to the nonperturbative ‘‘annihil
tion’’ effect, in particular, the axial anomaly in QCD and i
solution of theU(1) problem. We conjecture that the dom
nant effect is the mass shift of the lowest pseudoscalar s
h8 while the splitting of the massive resonances~in particu-
lar, axial! or the effect of the possible difference in the si
glet and triplet couplingsGA(0) and GA

(0)(0) is smaller.
Then we get a tentative relation

1

2MB
^B1ub̄gmg5bd̄gmg5d1b̄gmg5bs̄gmg5suB1&

'2
GA

~0!~0!

8p3/2

Mh8
2 Mh8~1295!

2

Mh81Mh8~1295!

. ~131!

This estimate has the correct scaling with 1/Nc . Numeri-
cally, the axial nonvalence expectation values appear to
suppressed by a factor about 0.1. We note that the nume
suppressions of various nonvalence effects typically is str
ger than the naive factor 1/3 which would be expected
their justification was merely the largeNc approximation.

An interesting indication from our estimates is that t
possible nonperturbative vitiation of the chirality suppress
of WA in B mesons emerges at a rather low level@it is
governed by the combinations (vV1 1

3 vA), (tV1 1
3 tA)]. For

the color-straight operators~where the effecta priori can be
significant!, the literal suppression is by more than an ord
of magnitude, in accord with the evidences from charm
mesons. In our approach the origin of the suppression r
to the fact that2GA(0)&1/3. The WA effect of the octe
operators can be probed in the difference of the semilept
b→u distributions inB1 andB0 @11#.

The chirality suppression of WA can be eliminated
ready in the perturbative evolution of the effective operato
This does not happen in the LLA@48#. Our NLO calculations
show that it does not happen at this level as well. It is int
esting to check this property for the two-loop diagonal ren
malization of the color-octet operators. In any case, we
pect it to be lifted in three loops; also, the nonlogarithm
gluon corrections atk;mb defining the initial values of the
Wilson coefficients must generate the chirality nonsu
pressed effect at some level.

Let us now turn to the phenomenological consequence
our analysis. The estimated expectation values are typic
of the order of, or somewhat larger than the factorizat
values~when the latter are possible! at f̃ B5160 MeV ~the
factorization value ofvV is additionally suppressed, and o
estimates only partially reproduce this!. The actual expecta
tion values of the color-straight operators can be smalle
for example, the form factors change sign at2q2

&1 GeV2. Such subtleties are not properly captured by
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simple models we relied upon. On the other hand, lar
values than quoted in Table I are improbable, at least if
nonperturbative dynamics we account for are dominated
the momenta not exceeding 1 GeV.

The relevance of the latter assumption for the analysis
the inclusive widths is easy to see, say, on the example of
effect of interference~dominant inB mesons!. The decay rate
of the processb→ūkW1(cd)q is proportional toq25(pb

2k)2. At k250 one hasq25mb
222pbk, and this constitutes

only about 12 GeV2 vs mb
2.21 GeV2 already for ukW u

51 GeV. At the same time the usual relation of the 1/mb
3

effects via the expectation values of the corresponding fo
fermion operators assumes thatq25mb

2 . Therefore, if ukW u
becomes as large as taken above, the validity of the lead
order expressions breaks down. In any case, accounting
effects like interference in the usual way is legitimate only
their impact is much smaller than the partonic width of
particular quark channel. It is worth noting, on the oth
hand, that the assumption that the nonperturbative contr
tions to the expectation values come from momenta not
ceeding 1 GeV is built in the approach of the QCD su
rules.

At first sight, WA in mesons and ‘‘weak scattering’’~WS!
in baryons can get enhanced, in contrast to interferenc
the quark momenta saturating the expectation values of
operators are large. Such a conclusion, even though eve
ally may prove to be correct, cannot be justifieda priori, and
even the sign of the corresponding corrections to the s
dard expressions is not known. All such effects manifes
go beyond the 1/m expansion truncated after 1/mb

3 terms. For
this reason, simply assuming large expectation values iB
particles does not allow one to boost significantly the li
time differences respecting the self-consistency of the s
plest 1/mb expansion.

Bearing in mind all reservations made above, we s
quote the central values for the corrections to the inclus
widths stemming from our analysis:

dGB2

Gsl
.0.36~21.1PI21.2D!,

dGB0

Gsl
.0.36~20.15WA21.2D!, ~132!

dGLb

Gsl
.0.36~2.2WS21PI21D!.

Here we showed separately the effects of different light
vors: of the operators (b̄b)(ūu) responsible for PI inB and
WS in Lb , and of (b̄b)(d̄d) generating WA inB and PI in
Lb . We singled out the contribution of the Darwin term
Even though it may seem to be a computational separatio
is legitimate, for it can be formally carried through the d
pendence on the number of light flavors. Being a flavor s
glet, the Darwin operator does not differentiate the lifetim
of charged and neutralB @also of Bs to the extent that
SU(3)fl is a good symmetry#.
2-22
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The above estimates generally support the original th
retically predicted pattern of the lifetimes. The nonvalen
effects seem to be strongly suppressed. The main effe
destructive PI inB2, about24%, while WA is small, at a
half percent level. Moreover, literally we get the effect
WA decreasing the width, the possibility originally discuss
in @48,11,12# and which may seem to contradict the nai
interpretation of WA. The overall difference ofG(B2) and
G(B0) appears about24%. The major effect is WS in
Lb ,8.5%, but it is partially offset by interference,23.5%.
The difference betweenG(Lb) and G(B0) is literally 6%.
These estimates fall close to the expectations quoted in
review @49#. We note that the often discarded Darwin ter
~e.g., in @43#! typically decreases the width by about 4%
although literally we get its effect inB andLb close to each
other. Including it, the overall decrease in theLb lifetime
from the four-fermion operators at the order 1/mb

3 comes out
only at a percent level whiletB0 increases by 5% andtB2 by
9%. The overall absolute shift is not too interesting by its
though, since it depends on the exact definition of the pa
width.

It is worth noting that the corrections we addressed do
formally exhaust the 1/mb

3 terms in the asymptotic expansio
of GHb

—they come implicitly as well from the expectatio
values of the kinetic and chromomagnetic operators wh
appear at the level of 1/mb

2 corrections. These expectatio
values in the actualb hadrons differ from their asymptoti
values atmb→` by terms;1/mb @5#. In particular, these
deviations contain the expectation valuerLS

3 of one new lo-
cal heavy quark operator, the convection current~or spin-
orbital! one. ~This operator cannot appear independently
the expansion of the transition operator describing the in
sive width since it is not Lorentz-invariant.! These correc-
tions do not affectGB22GB0 but, in principle, are present in
GB2GLb

. Their practical neglection nevertheless is leg
mate: such effects are included in the existing uncertainty
the differences of the expectation valuesmp

2 andmG
2 of the

D55 operators betweenB andLb . So far these expectatio
values are estimated without considering corrections to
heavy quark limit; for example, the value ofmG

2 in Lb is
nonzero but generally of the order ofLQCD

3 /mb . All such
effects are also expected to be numerically insignificant.
us recall that inB mesons therLS

3 expectation value is sup
pressed to the extent that their two-particle description
applicable@5#.

Our analysis does not indicate a crucial impact of
nonfactorizable contributions in the low-scale expectat
values on theB lifetimes conjectured in@43# or later specu-
lations thatG(B1) can even exceedG(B0) by a significant
amount.

The small experimental lifetime ofLb thus remains a
challenge for the straightforward 1/mb expansion. An accu-
rate measurement of the semileptonic width ofLb @or
BRsl(Lb)] would help to shed light on the origin of the prob
lem. The gap between the experimental value oftLb

and the
theoretical expectations could have been reduced by a
nificant enhancement of WS and suppression of PI inLb ,
03401
o-
e
is

he

f
n

t

h

-

f

e

t

is

e
n

ig-

according to the natural guess about the role of the spec
momentum we mentioned above. Since these effects o
nate from the quark decay modeb→cūd constituting about
60% of the total width, a 25% effect in the lifetime woul
signal a more than 50% enhancement of this chan
Clearly, such an effect is not possible for the spectator qu
occupying only a small fraction of the total phase space
the decay, and would require a nonconventional composi
of the heavy hadron. The standard calculation of the 1mb

3

terms neglecting the effect of finite spectator momenta is
applicable for quantitative description of such large corr
tions. For example, the expectation values of the Darw
operator would be in general much larger, likewise the m
scale governing the size of higher-dimension operators
1/mb

4 and higher-order corrections must be higher in this s
ation.

Note added.When this paper was prepared for public
tion, a new improved QCD sum rule calculation of the fou
fermion expectation values appeared@50#; the quoted results
correspond to vo.20.03, go.0.003, and B150.60
60.01, B250.6160.01. It can be suspected, however, th
the stated small errors did not adequately reflect the un
tainties inherent in the determination from the sum ru
per se.
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APPENDIX A: COMBINATORIAL RELATIONS

Here we quote two general algebraic relations which
useful in calculating the renormalization of amplitudes co
taining static heavy quarks.

For any set ofN numbersx1 , . . . ,xN

(
k50

N S P j 51
k 1

(
l 51

j

2xl
D S P j 5k11

N 1

(
l 5 j

N

xl
D 50 ~A1!

~it is assumed thatPn1

n251 if n1.n2), and

(
k50

N S P j 5k11
N 1

(
l 5k11

j

2xl
D S P j 51

k 1

(
l 5 j

k

xl
D 50. ~A2!

The proof will be given below.
The sums of the type~A1! are reminiscent to those ap

pearing in calculating the renormalization of any colo
2-23
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DAN PIRJOL AND NIKOLAI URALTSEV PHYSICAL REVIEW D 59 034012
straight operator of the typeb̄b•Olight . The sums similar to
Eq. ~A2! emerge in calculations of mixing of an arbitra
heavy quark operator into the color-straight operato
b̄Tb•Õlight→b̄b•Olight whereT is any color matrix.

For the color-straight weak vertexb̄b the product of color
matrices on the heavy quark line does not depend on
location of the weak vertex in respect to the gluon vertic
Thekth term in the sum Eq.~A1! corresponds to the diagram
where the firstk gluons attach to the initialb quark while the
last N2k gluons attach to the final-state quark, Figs. 4~a!
and 4~b!. We thus do not sum over permutations of gluo
~their time ordering is fixed! but combineN11 possibilities
to place the weak vertex. The analogues ofxk are vk , the
energies of gluons flowing into the quark line. With th
identification the structure of the product of the heavy qu
propagators is reproduced.

In dressing a nonstraight operator the gluon and w
vertices do not commute and moving the weak vertex wo
change the product of color matrices. However, calculat
mixing into the color-straight operators amounts to taki
trace over color indices of the initial and final state quar
Then one, instead, can perform a cyclic move of the leftm
gluon in the initial state to the latest position in the fin
state, and vice versa, Figs. 4~c! and 4~d!. In considering Eq.
~A2! we thus imply combining all graphs obtained by t
cyclic permutations of a particular diagram. Both consid
ations apply for any color representation of the quarks
gluons.

Taken naively, the relation~A1! would suggest that the
renormalization of the color-straight operators vanishes to
orders~already in the sum of the above groups of diagram
before actual integration over all gluon momenta!. Likewise
the identity~A2! would look like the property that the octe
operators never mix with the straight operators. This is
so, however. The reason is that the identities Eqs.~A1! and
~A2! apply only if the externalb quarks are exactly on she
so that their nonrelativistic energy vanishes,E50. In this

FIG. 4. The diagrams combined for the color-straight opera
@~a!,~b!# and for the mixing into the color-straight operato
@~c!,~d!#. The solid box denotes a color-straight operator, the blob
the diagrams~c! and~d! stands for an arbitrary heavy quark oper
tor. Only two of six (N55) diagrams to be combined are shown
both cases.
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case the quark propagators generally become IR sing
when integrated over the gluon momenta, and must be re
larized by a small imaginary part2 i e in each heavy quark
denominator. Alternatively, this is done by a shift of th
external heavy quark energies by an infinitesimal imagin
amount. This regularization translates into the shift of allxl
which, however, is of the opposite sign for the initial-sta
and final-state gluons. For example, for the sum in Eq.~A1!

xl→xl1 i e for l<k and xl→xl2 i e for l .k

@and the opposite shift in the sum in Eq.~A2!#. This infini-
tesimal shift of denominators leads to the fact that the sum
all diagrams does not vanish exactly but contains cer
d-functions of combination of energies corresponding to
certain on-shell heavy quark inside the diagrams. Never
less this kills some of the integrations overv and simplifies
the remaining integrals.

Let us prove the identities~A1! and ~A2!. This can be
done most simply by using the following trick. We can co
sider the sum as a rational function of the variablexN ~for
example!, at x1 , . . . ,xN21 arbitrary but fixed. If we show
that the residue of this function at any potential pole va
ishes, this would mean that the whole function vanish
identically.

For the sum in Eq.~A1! this is particularly simple. Pres
ence of a pole means that at certaink some of the denomi-
nators withj 5 j 0 vanish, with eitherj 0<k ~to the left of the
weak vertex! or j 0.k ~to the right of it!. Let j 0,k, for
example, and therefore( l 51

j 0 2xl50. Then the same vanish
ing denominator will be present for all diagrams correspo
ing to k. j 0 , and it will change only fork< j 0 . Moreover,
all terms withk. j 0 will have the common factor

P j 51
j 021 1

(
l 51

j

2xl

which is the product of the propagators to the left of the o
which vanishes.

The remaining factors will be different, but fork5 j 0
11, . . . ,N their sum exactly reproduces the LHS of E
~A1! for the set ofxj 011 , . . . ,xN ~that is, the case ofN

2 j 0 gluons! owing to the on-shellness of thej 0-th propaga-
tor ~the condition( l 51

j 0 2xl50). The induction from the ob-
vious caseN51 immediately proves Eq.~A1! for arbitrary
N.

The proof of the identity Eq.~A2! is a little more compli-
cated. To phrase it, it is convenient to close the heavy qu
line and map it onto the circle, Figs. 5. The weak vertex c
be referred to as North Pole whereas the infinity can
called~with some reservations! South Pole. Every arc on th
circle can be attributed the corresponding energy denom
tor. Proceeding from thekth arc to thek11-th arc clockwise
decreases the denominator byxk . The values of all denomi-
nators are fixed by the condition that the arc containing
South Pole~the Infinity arc! has vanishing denominator@cor-
respondingly, it is excluded from the product of propagat
in Eq. ~A2!#.

s

n
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With this image it is easy to establish the vanishing of
residues in the sum Eq.~A2! as well. A pole would appea
due to the vanishing of the denominator of some other
with j 5 j 0 ; it is indicated by the star in Fig. 5~a! ~the Zero
arc!. This figure shows the case ofj 056 andk54. It is easy
to see that the residue is exactly canceled by the config
tion with j 0↔k, that is, when the Infinity arc and the Zer
arc are interchanged, Fig. 5~b!.

Indeed, due to vanishing of the denominators at the b
arcs all other denominators in Fig. 5~b! are equal to the cor
responding denominators in Fig. 5~a!. To get the residue one
must merely remove the two vanishing propagators from
product and take it with the factor21 when the Zero arc is
clockwise from the Infinity arc and with the factor11 oth-
erwise. This cancellation in Eq.~A2! reads as

S (
l 5k11

j 0

2xl DP j 5k11
N 1

(
l 5k11

j

2xl

•P j 51
k 1

(
l 5 j

k

xl

→S (
l 5k11

j 0

2xl DP j 5 j 011
N 1

(
l 5 j 011

j

2xl

3P j 51
j 0

1

(
l 5 j

j 0

xl

at (
l 5k11

j 0

2xl→0.

Thus, both identities~A1! and ~A2! are proved.

APPENDIX B: TWO-LOOP ANOMALOUS DIMENSIONS

For the order-as hybrid renormalization of the heav
quark operatorsQ̄Qq̄q the identities discussed in Append
A say that summing over all attachments of the gluon to
heavy quark line results ind(v). Therefore, the integration
over d3k cannot produce an UV logarithm since it wou
require an odd power ofkW in the integrand. This is not pos
sible in the simple one-loop diagram. The one loop ren
malization of the straight operators coincides, therefore, w
that of the light quark bilinear, while the octet-to-straig
mixing is absent. For the vector or axial vector currents

FIG. 5. Graphic illustration for the caseN58.
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consider, the overall one-loop renormalization vanishes.
the octet operator an additional contribution to the diago
renormalization comes from the gluon exchange between
heavy and light lines.

In orderas
2 both the renormalization of the color-straig

operators and the straight–octet mixing occur. We do
consider theO(as

2) diagonal anomalous dimension of th
octet operators. Since theO(as) contribution does not van
ish, theO(as

2) anomalous dimension is scheme-depende
For the light-quark currents we are interested in, only no
factorizable diagrams must be considered where at least
gluon connects the heavy quark line with the light part of t
diagram.

The hybrid anomalous dimensions are given by a~single!
logarithmic UV divergence of the diagrams in the limitmQ
→`, uku!mQ . In the Feynman gauge we adopt for comp
tations, only 18 ‘‘double exchange’’ diagrams where tw
gluons connect light quark line with the heavy quark li
each, yield the log. All other diagrams where there is o
one gluon vertex either on the heavy quark or on the li
quark lines, are finite for symmetry reasons similar to t
one-loop case, or~in the case of dressing the octet operat!
yield only the octet structure we are not interested in.

Combining the diagrams into groups of three according
the rules described in Appendix A~all locations of the weak
vertex on the heavy quark line for the color-straight ope
tors, or cyclic permutations of theQ̄Qg vertices for the octet
operators! we get, at fixed values of the gluon momen
k1 ,k2 the sum of the heavy quark propagators in the form

22p id~v11v2!
1

v11 i e
or 22p id~v11v2!

1

v21 i e
~B1!

for the color-straight operators, or

22p id~v11v2!
1

v11 i e
12p i SP 1

v1
d~v2!2P

1

v2
d~v1! D

~B2!

~and v1↔v2) for the octet operators. In view of th
v→2v symmetry of the integration only the structu
22p2d(v1)d(v2) survives, and the resulting integrals co
tain simple purely three-dimensional expressions given
low . By dimensional counting they all are logarithmic; the
do not vanish since integrations runs over two spacelike v
tors.

1. Dressing of color-straight operatorsQ̄Qq̄Gq

The six groups of three diagrams in turn fall into thr
types which differ by the location of the gluon vertices o
the light quark line, Figs. 6~a!–6~c!. Each diagram can hav
gluon lines twisted or not. Their expressions are
2-25
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FIG. 6. Diagrams showing the different attachments of gluons to the light quark line.
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I a5
gs

4

2
C@Ggmg0gng0#E d3k1

~2p!3

d3k2

~2p!3

~k11k2!m~k1!n

kW1
4kW2

2~kW11kW2!2

I b5
gs

4

2
C@g0gmGgng0#E d3k1

~2p!3

d3k2

~2p!3

2~k2!m~k1!n

kW1
4kW2

4

~B3!

I c5
gs

4

2
C@g0gmg0gnG#E d3k1

~2p!3

d3k2

~2p!3

~k2!m~k11k2!n

kW1
2kW2

4~kW11kW2!2
.

The color factorsC are

C15@ tatb# l@ tatb#h5
1

4S 12
1

Nc
2D @1# l@1#h2

1

Nc
@ ta# l@ ta#h

~B4!

C25@ tatb# l@ tbta#h

5
1

4S 12
1

Nc
2D @1# l@1#h1

Nc

2 S 12
2

Nc
2D @ ta# l@ ta#h

~B5!

for ‘‘twisted’’ and ‘‘nontwisted’’ diagrams, respectively.
For G5g0 or g0g5 , twisted or non-twisted separately, w

have

I a1I b1I c52gs
4CGE d3k1

~2p!3

d3k2

~2p!3

~kW1•kW2!22kW1
2kW2

2

kW1
4kW2

4~kW11kW2!2

5gs
4CG

1

32p2ELdk

k
. ~B6!

For G5g i or g ig5

I a1I b1I c5
1

3
gs

4CGE d3k1

~2p!3

d3k2

~2p!3

3
~kW1•kW2!212~kW1•kW2!~kW1

21kW2
2!13kW1

2kW2
2

kW1
4kW2

4~kW11kW2!2

5gs
4CG

1

32p2ELdk

k
. ~B7!

The sum of all diagrams for arbitraryG takes the form
03401
Q̄Qq̄Gq→X11
as

2

4 S 12
1

Nc
2D lnLCQ̄Qq̄Gq

1
as

2

4
NcS 12

4

Nc
2D lnLQ̄taQq̄taGq. ~B8!

2. Mixing of octet operators Q̄taQq̄taGq into color-straight
operators

Taking the trace over the heavy quark color indices w
likewise can combine the 18 diagrams into 6 groups belon
ing again to the pairs, where each pair has the same loca
of the q̄qg vertices but different trace of color matrices alon
the heavy line. For example, forG5g0 the projection onto
the straight operator yields

~ I a1I b1I c!ustraight52gs
4~C31C4!G

3E d3k1

~2p!3

d3k2

~2p!3

~kW1•kW2!22kW1
2kW2

2

kW1
4kW2

4~kW11kW2!2

5gs
4~C31C4!G

1

32p2ELdk

k
, ~B9!

where the color factors are given by

C352
1

4Nc
S 12

1

Nc
2D , C45

Nc

8 S 12
1

Nc
2D S 12

2

Nc
2D .

~B10!

The same renormalization emerges for other Lorentz str
turesG as well.

For the flavor-singlet operators additional, annihilatio
diagrams are possible where theqq̄ line forms a closed loop.
It is easy to see that for the vector current it does not co
tribute. If the operator is color-straight, only two gluons ca
come out of the quark loop. The analogue of the Furry the
rem leads to the cancellation of the two possible diagram

For any color-octet operator the sum of the diagram
where one of the gluons connects the external light a
heavy quark lines yields only the octet operator in analo
with the one-loop diagrams. All other diagrams can obv
ously produce only the octet operators as well.

For the color-straight operator with the axial light quar
current, both gluons must come out of the quark loop. T
expression for the triangle subgraph does not differ from t
2-26
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Abelian case@51#. The sum of the diagrams where one of t
gluons is attached to the external light quark and ano
ends on the heavy quark line yields only nonlogarithmic c
tribution. The diagrams when both gluons are absorbed
the light quark legs describe the two-loop renormalization
the singlet axial current and differ from the classic Abeli
result @51# only by the color factorCF/2.

Using Eqs.~B8!–~B10! and the definition Eq.~28!, we
arrive at theO(as

2) matrix of the anomalous dimension
given in Eq.~29! and in the text following it.

APPENDIX C: RELATIONS BETWEEN
PARAMETRIZATIONS

Here we collect the relations between different parame
zations of the expectation values of the four-fermion ope
tors in B mesons.

The hadronic parameters suggested in Ref.@11# are given
by

f̃ B
2MBvs52

2

Nc
vV1

2

3Nc
vA24tV1

4

3
tA ~C1!

f̃ B
2MBgs52

1

Nc
vV2

1

3Nc
vA22tV2

2

3
tA

~C2!

f̃ B
2MBvo52S 12

1

Nc
2D vV1

1

3S 12
1

Nc
2D vA

1
2

Nc
tV2

2

3Nc
tA ~C3!

f̃ B
2MBgo52

1

2S 12
1

Nc
2D vV2

1

6S 12
1

Nc
2D vA

1
1

Nc
tV1

1

3Nc
tA . ~C4!

The inverse relations read as

vV5 f̃ B
2MBF2

1

2
vo2go2

1

4Nc
vs2

1

2Nc
gsG ~C5!

vA5 f̃ B
2MBF3

2
vo23go1

3

4Nc
vs2

3

2Nc
gsG

~C6!

tV5 f̃ B
2MBF 1

4Nc
vo1

1

2Nc
go2

1

8S 12
1

Nc
2D vs

2
1

4S 12
1

Nc
2D gsG ~C7!
03401
er
-
y
f

i-
-

tA5 f̃ B
2MBF2

3

4Nc
vo1

3

2Nc
go1

3

8S 12
1

Nc
2D vs

2
3

4S 12
1

Nc
2D gsG . ~C8!

We recall that for valence quarksvs
fact51 while vo

fact5gs
fact

5go
fact50.

For the parametrization of@43#

f̃ B
2MBB15 f̃ B

2MB~vs24gs!54~tV1tA!1
2

Nc
~vV1vA!

~C9!

f̃ B
2MBB25 f̃ B

2MB~vs2gs!522~tV2tA!2
1

Nc
~vV2vA!

~C10!

f̃ B
2MB«15 f̃ B

2MB~vo24go!

52
2

Nc
~tV1tA!1S 12

1

Nc
2D ~vV1vA!

~C11!

f̃ B
2MB«25 f̃ B

2MB~vo2go!

5
1

Nc
~tV2tA!2

1

2S 12
1

Nc
2D ~vV2vA!,

~C12!

with the inverse relations

vV5 f̃ B
2MBF 1

4Nc
B12

1

2Nc
B21

1

2
e12e2G ~C13!

vA5 f̃ B
2MBF 1

4Nc
B11

1

2Nc
B21

1

2
e11e2G ~C14!

tV5 f̃ B
2MBF1

8S 12
1

Nc
2D B12

1

4S 12
1

Nc
2D B2

2
1

4Nc
e11

1

2Nc
e2G ~C15!

tA5 f̃ B
2MBF1

8S 12
1

Nc
2D B11

1

4S 12
1

Nc
2D B2

2
1

4Nc
e12

1

2Nc
e2G . ~C16!

All these relations hold for each light quark flavor separate
In the DB52 transitions B(s)

0 →B̄(s)
0 determining the

width splitting in theB-B̄ systems one encounters two fou
2-27
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fermion operators@9#, both color-nonsinglet in thet-channel.
They are naturally parametrized as

^Bqub̄igm~12g5!qib̄jgn~12g5!qj uB̄q&

522 f̃ B
2~ ṽPmPn2g̃gmnMB

2 !. ~C17!

The nonvalence matrix elements vanish. There is a stan
notationB̃B for @1/(111/Nc)#( ṽ24g̃):
s.

-

d

03401
rd

^Bqub̄iga~12g5!qib̄jga~12g5!qj uB̄q&

522S 11
1

Nc
D B̃Bf̃ B

2MB
2 . ~C18!

The anomalous dimension of this operator equals two tim
the anomalous dimensions of theb̄q currents, so thatB̃B is
renorm-invariant in one loop@7,8# ~all operators above are
normalized at the low point, not atmb). The combination of
the operators corresponding to theṽ structure also renormal
izes multiplicatively in one loop; its anomalous dimensi
was calculated in@9#. Power mixing of these operators
absent.
,

rt.

tt.

s
of
,

-
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